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ABSTRACT

Several different statistical fracture theories are developed for

materials with cracks confined to the surface. All assume that crack planes

are normal to the surface, but are otherwise randomly oriented. The simplest

theory assumes that only the component of stress normal to the crack plane

contributes to fracture • This theory is in fair agreement with biaxial frac-

ture data on pyrex glass obtained by Oh. When the contribution of shear is

included in the analysis, the crack shape has to be considered. Several shapes

are ev~~Saed, and the corresponding fracture statistics are derived . The fail-

ure criterion employed is that fracture occurs when the maximum tensile stress

on some part of the crack surface reaches the intrinsic strength of the mate—

r ial. The assumption of shear—sensitive cracks leads to improved agreement

with experiment, but really good agreement appears to require the assumption

that the cracks have a preferred orientation.
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I. INTRODUCTION

There are many cases in which structures must be fabricated using brittle

materials. The strongest and most refractory materials tend to be brittle.

Also, materials t ransparent to microwave, inf rared , or visible radiation are

generally brittle. Brittle structures characteristically exhibit a large

L variation in fracture stress which must be taken into account in design.

The most widely used statistical theory of fracture is due to Weibull

(1939) . He attributed the variation in fracture stress of nominally identical

specimens to the presence of unidentified, invisible flaws. The flaws were

assumed to have a distribution in strength, and the specimen or structure was

assumed to fail when the strength of the weakest flaw or link was exceeded.

Batdorf and Crose (1974) revised weakest link theory by assuming the

flaws to be cracks, and therefore to have strengths which depend on the orien—

tation of the cracks with respect to the applied stresses. All orientations

were considered equally likely, i.e., the material was assumed to be macro—

scopically isotropic. It was further assumed that only the compon-’nt of

stress normal to the crack plane contributed to fracture. The latter assump-

tion was a convenient approximation which permitted development of a general

theory without having to specify crack shapes. The shear parallel to the

crack plane also contributes to the fracture, but by an amount that depends

on the crack shape, which is something one usually does not know. In some

cases, however, we may be able to derive information about crack shapes by

examining th. fracture statistics for a number of different stress states.

Only volume distributed cracks were treated by Batdorf and Crose (1974).

In the case of some materials, e.g., glass, it is generally accepted that
all cracks are located at the surf*c*, and also that the crack planes are

normal to th. glass surface (McClintock and Argon, 1966). For such materials

-
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the crack orientation is given by a single parameter rather than two, as in

the case of volume distributed cracks.

In the present paper the theory of Batdorf and Crose is modified for

surface distributed cracks and is applied to fracture data for glass obtained

by Oh (Oh, 1970; Oh et al., 1973). The agreement with experiment leaves some— )
thing to be desired. It is evident that including the effects of shear on

the crack plane would decrease the discrepancy.

A more refined theory including the influence of shear and based on the

assumption that the cracks are Griffith cracks and that failure occurs when

the local tensile stress on the crack surface exceeds the intrinsic strength

of the material was developed by Oh (1970). Some improvement in agreement )
with test data resulted. The present authors believe that the crack model

employed by Oh is not appropriate for surface cracks . Alternative models

are therefore proposed , but the improvement is marginal. Good agreement

with experiment is obtained by assuming that in addition to being shear—

sensitive, the cracks have a preferred orientation.

II. THEORY : SHEAR ON CRACK PLANE NEGLECTED

Consider first a single crack of arbitrary orientation. Since it is

assumed to be small and located at the surface, it is subjected at most to

plane stress. In the principal axis system, the tensile component of stress

normal to the crack line and in the plane of the surface is

a0 — a
~
cos28 + a7sin2e (1)

where e is the angle between the x—axis and the crack normal. In accordance

with the preceding assumptions, the material will rupture when >

where 0cr i the macroscopic normal stress required to rupture the crack.

If the crack is randomly oriented , the probability of failure is given by

(2)

2



where w is the radian measure of the angular range in the positive ax half-

j  plane within which a > an cr
In a real material , there will be a number of cracks of varying orienta—

tion and critical stress. If we assume that the cracks are uniformly dis-
~~ tributed over the surface , the material can be characterized by a density

function N(E . a ) where E is the applied stress state. This function

represents the number of cracks per unit area having a critical stress less

than or equal to a • The number of cracks per unit area having critical
•

st resses between a and a + do is , then,cr cr cr

dO
c~ 

dO

The probability that failure will occur in a uniformly stressed surface of

area A due to a crack having a critical stress in the range a to a + do

is the product of the probability that a crack is present and the probability

that the crack, if present , will fail ; i.e.,

Pf(E~ d o )  — (A do d o )  (
~) 

(4)

The probability that such cracks will survive is

P5 (E~ 
da~~) 

— 1 — Pf — 1 — A 
~ 
do dOc

• exp [— A 
~ do 

dacrj

The probability that cracks in every stress range dOtr will survive is the

product of the probabilities of survival of cracks in the individual ranges ,

i.e.,

P — exp [_Af~~ d? 
da
r] 

— 1 — Pf (6)

~~~~ C I 
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The fracture probability for a surface of area A subjected to stress

state can he evaluated ;;ith the use of Eq. (6) when w and N are known.

For any stress state we can determine w by using Eq. (1) , while N mus t

be obtained by experiment.

In the uniaxial case, Eq. (1) reduces to

O — o c o s ~8n x

Thus f or this case, t0cr’ the angle within which 0n > 0cr ’ is given by

2o —a co s 0cr x cr

or

0cr — 
_l

\J
~~~ ( 7 )

Since w 2O ,cr

(8)

In the equibiaxial case,

a — a  — a  (9)x y

as a result of which, a — a andn

— 1 for 0cr < a (lOs)

— O f o r o  > 0  (lOb )
cr

As a result of (lOa , b), in the equibiaxial tension case Eq. (6) takes the

simple form

Pf(O) — 1 — exp [ —  AN(a) J (11) )

From a comparison of Eqs. (6) and (8) wi th (11) , it becomes clear that it is

computationally advantageous to determine N from the fracture statistics for

equal biaxial tension . From (11), we find AN is given by

4

I, ,



AN — Ln(l — P
f)

1 
(12)

t thereby avoiding the necessity encountered in the theory of volume—distributed

cracks of solving simultaneous linear algebraic equations or an integral aqua—

- ~. tion to obtain N. Actually, in the volume distribution case, a simplifica—

tion like Eq. (12) occurs for equitriaxial tension, but this state of stress

cannot be realized in practice.

Under general biaxial stress states, Eq. (1) can be rewritten as

a — a (cos2O + K sin2O) a
~
[cos2e(l — K) ÷ K] (13)

where

(14)

Thus, 
_ _ _ _ _ _

:~ 
0cr — ~~ —1 ~/(acr~~x)~~ 

K 
(15)

— ~ cos~
1 ~J(acri 0x)  — K 

(16)

Using Eqs . (6) , (12) , and (16) we can obtain the probability of failure of a

t surface of area A subject to biaxial tension.

The results of the theory just outlined are compared with the experi-

mental results of Oh in Figure 1. It is evident that although the general

1 trend of the theoretical results are in accord with the data, the theoretical

curves for stress ratios 1:1, 1:0.5, and 1:0 are too far apart. Taking

account of the contribution of shear on a crack to the failure process would

• S increase the probability of failure for stress ratios 1:0.5 and 1:0, and

therefore bring the curves closer together. We therefore turn to theories

in which shear eff cts are taken into account.

p
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III. OH’S THEORY

It was shown by Oh (1970) that when a Griffith crack is subjected to

principal stresses and 0),. the maximum tensile stress at any point on the

surface of a crack is (in our notation)

Omax _ * ( T +1T2 + S 2 )  (h a)

where the tensile and shear forces on the crack are given by

T _ a
~ (1~~

K + 1
;
K cos 20) (l7b)

s a  (l_ K sin 2O
’
~ (l7c)x~~ 2

In these equations K a~,/a~ < 1, ~ is the ratio of the minor to the major

axis of the ellipse, while 0 is the complement of the angle between the larger

principal stress and the crack plane. All values of 0 were assumed equally

likely, and the distribution of cracks with respect to ~ was chosen to fit a

three—parameter Weibull representation of the data f or the stress ratio 1:1.

To obtain the failure probabilities for stress ratios 1:0.5 and 1:0 it

was arbitrarily asatseed that these would also be three—parameter Weibull din—

• tributions. The corresponding parameters were found by applying the graphical

approach for Weibull parameter estimation to synthetic data computed f or

Pf 
CC 0.01. Such a procedure would be theoretically justified if failure

• always occurred for — C< a , a condition not applying to Oh’s data. In

spite of this, when the procedure is applied using Oh’s Weibull parameters for

.quibia~4a1 tension, good agreement is obtained with uniaxial. test data. How—

• ever, two other fits to the equibiazial data were dsvis d by the present

authors (Pigure 2). One, labeled A, is an alterna tive We.ibull function. The

other, labeled I and identified in Figurs 2, is a closer fit to the data , but

• also more complicated than any Weibull function. Although the three fits to

7
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the 1:1 data are quite close, the Oh procedure leads to very significant dif—

ferences in the predicted uniazial failure curves for the three cases, as

shown in Figure 3. This suggests that the good agreement found using Oh’s

function may be fortuitous.

Oh’s analysis is based on the tacit assumption that the Griffith crack

is a through—crack (Figure 4a). This is not considered by the present authors

to be an appropriate model for the surface crack. Section IV is concerned

with two other types of cracks illustrated in Figures 4b and 4c. The first,

which we shall call a Griffith notch, is a half—elliptic cylinder with the

principal axis of the cylinder at the surface of the specimen . The second is

a half—ellipsoid in which a >> b >> c.
p

IV. PRESENT THEORY

A fracture criterion under combined stress can be formulated on any of

several different bases. These include use of an energy criterion, use of
. 5

critical stress concentration factors, and use of maximum tensile stress

occurring at a point on a surface of the crack. The simplest one of these

to apply is the last.

Mirandy and Paul (1975; also Paul and Mirandy, 1975) have recently

worked out the stress state at any point on the surface of an ellipsoidal

cavity having axes a , b , and c, such that c CC b 
~ 
a for arbitrary applied

stresses. For present purposes the principal findings are: (1) If the

applied stress is simple tension T normal to the plane of the crack (i.e.,

parallel to the polar or c—axis of the crack), the maximum stress occurs at
$

• - 

the intersection of the cavity and the a—b or equatorial plane . The local

stress is th . same at all points in the equatorial plane and is given by

• a — .
~~~~~ - (18)

9
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where E is an elliptic integral of the second kind. For b/a << 1, E — 1.

(2) If shear stress S is applied to the crack plane in a direction parallel

to the a—axis, the maximum tensile stress induced on the surface of the

cavity occurs in the a—c plane, and is given by

b 2 sin 28 sE 2(1— v) ~19)

where B is the local latitude. (3) When both S and T as described above are

present, the local tensile stress on the cavity surface is largest in the a—c

plane and becomes, for a >> b,

a — ~~ (r cos 28 — 
2(1— ~- sin 28) (20)

which has a maximum value of

~aax - 
.
~ [T + Vc2 + (21)

(4) In the case of a Griffith crack subjected to tension normal to the crack

plane and shear on the crack p lane applied parallel to the cylinder axis, the

tensile stress under combined loads is greatest along the line of maximum

curvature. It is evaluated by finding the maximum principal stress at the

end of the b—axis in a long ellipse where, according to Mirandy and Paul

(1975), the local stress state is

a —~~~ T (22a)
S C 3

a — v a (plane strain) (22b)
x a

t ~~~~~~~~~ 
(22c)

• Using Mohr’s circle, this is readily shown to be

(23)

12

~A -  - 

- ~~~~~ ~~~~~~~~ 
- - - - ‘

— 

a 

- —



ft

The above results are f or ellipsoids in an isotropic elastic body

located far from any free surfaces. In the case of surface cracks such as

those shown in Figure 4, the presence of the free surface will modify to

some degree the stresses on the surface of the half—ellipsoid and Griffith

notch. An estimate of the amount of this modification can be made for the

• Griffith notch as follows: We note that as a -~ the ellipsoid approaches

an elliptic cylinder, so that (23) should be valid for the cylinder. In the

case of the half cylinder (Griffith notch) of Figure 4b, it has been shown

(Paris and Sih, 1965) that the free surface causes the stress concentration

factor for tension to be increased by a factor of 1.12, while that for shear

is unchanged. Thus, we modify (23) to read

- 1.12 ~ [
T(l + v) + ~~T2 (1 - v)2 + (l~l2)

2 

1 
(24)

This equation differs appreciably in appearance from that applying to

the through—crack (17a). Among other thing., it depends on Poisson’s ratio.

However, for the range of values appropriate to glass, v — 0.2 to 0.3, the

relative contribution of the applied tensile and shear stresses to the maid—

u tensile stress on the surface of the cavity is almost the same.

The present method of determining failure probability curves for various

stress states is to solve the integral in (6) numerically over the entire

range of applied stress. The data for equibiaxial tension are used to

deter mine 
~~~~~~~ 

via (12). While it is not necessary to assume a Weibull

form for Pf (G)~ several Weibull fits to the data were investigated . The beat
$ 

fit , however , was a piecewise f*mction defined over three region. of the applied

stress range (Figure 2) and used exclusively in the computations of the

present theory.

13

~~~~~~ ~U— ~~~
—•- 

~~~~~~~~~~~~~~ • • 
-— --—-  _____________________

a 

- T ‘~~~~~~~ - - - ____________



The fraction wiir is a function of the applied stress state and acr and

is determined in the following manner. The maximum tensile stress on the sur-

face of the crack (equations 17, 21 or 24) can be written as

ama — a g(O,K) (25)

where g(O,K) is the function of crack orientation 0 and stress state K appro—

priate to the crack model and a
~ 
is the applied stress. The failure criterion

is � 
~~cr 

or a g(8,K) 
~ 
0cr The fraction win is the portion of the

range O~~ 0 � 1T/2 for which g(0,K) � O rIO~ 
and in general can be determined

from the roots of the nonlinear equation g(0,K) — acr /ax at each value of

a ,acr x

Figure 5 compares the failure probability curves for stress ratio 1:0

deduced from the experimental data for stress ratio 1:1 using (13), (21) and

(24). The results using (21) are somewhat closer to the experimental data,

but not much. A correction of unknown magnitude is needed to account for the

presence of the free surface. Moreover, it is doubtful whether a fracture

criterion should be based on a maximum Stress occurring at the end of the

3major axis. If the material strength is exceeded there, the crack should

lengthen along the surface but not penetrate in from the surface in the manner

required to partition the specimen. Accordingly, we conclude that (24) is

the more appropriate fracture criterion.

Use of the critical stress concentration factor for the fracture crite-

rion leads to the same conclusion. The critical stress concentration factors

for a notch subjected to tension and out—of—plane shear are (Paris and Sih,

1965).

K1 ” 1.l2TJ~~ (26)
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and

(27)

respectively, where b is the appropriate ellipsoid axis for a Griffith notch

in our notation, As a result, along the plane of symmetry of the notch

— l.l2
V

I
~~~

T (28a) )

T S (28b)

a — Va (plane strain) (28c) )

Combining these to get the maximum principal stress as a function of r by

using Mohr’s circle, we get

- l.12\4 [ T(l + v) +.~6(l — )2 + (l~l2)2j (29)

The expressions in square brackets in (24) and (29) are identical, and this

is all that is used to find the relative contribution of shear to crack failure.

It is of interest, however, to note that (24) and (29) are identical when

r — p — c2/8b, where p is the minimum radius of curvature of the Griffith

notch. According to Mirandy and Paul (1975), this is the value of r at which

the solution in the neighborhood of a closed crack tip is equal to the value

of the maximum surface stress of an open notch.

We find, then, that agreement with experiment is improved when the con—

tribution of shear to crack fractures is taken into account, but that this is

not sufficient to bring theory into really good agreement with experiment.

We must therefore seek other reasons for the remaining discrepancy.

One possible source of the discrepancy is the fact that the data for

failures at a stress ratio 1:1 cover a somewhat lower stress range than

failure, at stress ratio 1:0. Thus, an analytical expression for AN(Ocr)

obtained from 1:1 data should not be extrapolated to higher values of

16
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However, the 1:1 failure stress range covers most of the 1:0 failure stress

range so the agreement between theory and experiment in this large overlap

region should be good, but it is not.

Another possible source for the discrepancy is the assumption in the

theory that crack planes are always normal to the free surface of the material.

This explanation also fails. It has been shown (by methods to be reported

elsewhere) that the 1:0 failure curve deduced from 1:1 data is the same using

the surface crack theory described here as it is using the volume distributed

crack theory of Batdorf and Crose, employing a normal stress failure criterion

in both cases.

The final possible explanation to be discussed here is that the assumption

of uniform distribution of crack orientation is not valid for the pyrex tubes

tested. There is no a priori method of predicting what form an anisotropic

f ~ 
distribution should take. A crude but useful check on the hypothesis of

anisotropy is to investigate the consequences of assuming that cracks are

uniformly distributed through a given range of angles and are absent outside

this range. For instance, one might assume that all crack planes are within

i~~ radians of the axis of the pyrex tubes, thus occupying a fraction R — 24i/ n

of the total available angular orientation. Figures 6 and 7 show the results of

• assuming shear—sensitive Griffith notch cracks for R — 0.6 and R — 0.75. It

is evident that the anisotropy assumption greatly improves agreement between

theory and experiment. Unfortunately, the tubes were tested in simple ten—

•ion in only one (the circumferential) direction, so that a direct test of

• the anisotropy hypothesis is lacking.

0
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V. CONCLUDING DISCUSSION

float statistical fracture theories are weakest link thtnriss that attn-
-a

bute the spread in fracture stress exhibited by nominally identical specimens

to the presence of invisible flaws, generally believed to be cracks. Nearly

all such theories explicitly or implicitly assume that only the component of

stress normal to a crack plane contribute , to the failure of the crack. This

is a convenient approximation. Thea, calculations in this paper confirm the

expectation that the errors involved are rather small. For instance, in the

case of the pyrex glass for which the theory was evaluated numerically, the

ratio of biaxial. to uniaxial stress for Pf — 0.5 was calculated to be 1.44

for shear—insensitive cracks and 1.38 for shear—sensitive cracks.

Nevertheless, since the assumption of shear insensitivity always over-

estimates the biaxial stress failure probability calculated from uniaxial

data, an improved result can be obtained for biaxial streseas in the tension—

tension quadrant by including the effects of shear. The present paper ahoy.

how this can be accomplished in the case of surface cracks. A future paper

will show bow to treat th . case of volume—distributed cracks .

• 4
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