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ABSTRACT

Several different statistical fracture theories are developed for
materials with cracks confined to the surface. All assume that crack planes
are normal to the surface, but are otherwise randomly oriented. The simplest
theory assumes that only the component of stress normal to the crack plane
contributes to fracture. This theory is in fair agreement with biaxial frac-
ture data on pyrex glass obtained by Oh. When the contribution of shear is
included in the analysis, the crack shape has to be considered. Several shapes
are examined, and the corresponding fracture statistics are derived. The fail-~
ure criterion employed is that fracture occurs when the maximum tensile stress
on some part of the crack surface reaches the intrinsic strength of the mate-
rial. The assumption of shear-sensitive cracks leads to improved agreement
with experiment, but really good agreement appears to require the assumption

that the cracks have a preferred orientation.
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I. INTRODUCTION

There are many cases in which structures must be fabricated using brittle
materials. The strongest and most refractory materials tend to be brittle.
Also, materials transparent to microwave, infrared, or visible radiation are
generally brittle. Brittle structures characteristically exhibit a large
variation in fracture stress which must be taken into account in design.

The most widely used statistical theory of fracture is due to Weibull
(1939). He attributed the variation in fracture stress of nominally identical
specimens to the presence of unidentified, invisible flaws. The flaws were
assumed to have a distribution in strength, and the specimen or structure was
assumed to fail when the strength of the weakest flaw or link was exceeded.

Batdorf and Crose (1974) revised weakest link theory by assuming the
flaws to be cracks, and therefore to have strengths which depend on the orien-
tation of the cracks with respect to the applied stresses. All orientations
were considered equally likely, i.e., the material was assumed to be macro-

scopically isotropic. It was further assumed that only the compon-~nt of

T

stress normal to the crack plane contributed to fracture. The latter assump-

tion was a convenient approximation which permitted development of a general

theory without having to specify crack shapes. The shear parallel to the
crack plane also contributes to the fracture, but by an amount that depends
on the crack shape, which is something one usually does not know. In some
cases, however, we may be able to derive information about crack shapes by
examining the fracture statistics for a number of different stress states.

Only volume distributed cracks were treated by Batdorf and Crose (1974).
In the case of some materials, e.g., glass, it is generally accepted that

all cracks are located at the surface, and also that the crack planes are

normal to the glass surface (McClintock and Argon, 1966). For such materials

T ——




the crack orientation is given by a single parameter rather than two, as in
the case of volume distributed cracks.

In the present paper the theory of Batdorf and Crose is modified for
surface distributed cracks and is applied to fracture data for glass obtained
by Oh (Oh, 1970; Oh et al., 1973). The agreement with experiment leaves some-
thing to be desired. It is evident that including the effects of shear on
the crack plane would decrease the discrepancy.

A more refined theory including the influence of shear and based on the
assumption that the cracks are Griffith cracks and that failure occurs when
the local tensile stress on the crack surface exceeds the intrinsic strength
of the material was developed by Oh (1970). Some improvement in agreement
with test data resulted. The present authors believe that the crack model
employed by Oh is not appropriate for surface cracks. Alternative models
are therefore proposed, but the improvement is marginal. Good agreement
with experiment is obtained by assuming that in addition to being shear-
sensitive, the cracks have a preferred orientation.

II. THEORY: SHEAR ON CRACK PLANE NEGLECTED

Consider first a single cfack of arbitrary orientation. Since it is
assumed to be small and located at the surface, it is subjected at most to
plane stress. In the principal axis system, the tensile component of stress
normal to the crack line and in the plane of the surface is

2 2
0, = 0,co8 e+ oysin ] (1)

vhere 6 1s the angle between the x-axis and the crack normal. In accordance
with the preceding assumptions, the material will rupture when % > Ocr
where °ct is the macroscopic normal stress required to rupture the crack.
If the crack is randomly oriented, the probability of failure is given by

W

Pe 3 ; )




where w is the radian measure of the angular range in the positive Ux half-
plane within which Gn >0 P

In a real material, there will be a number of cracks of varying orienta-
tion and critical stress. If we assume that the cracks are uniformly dis-
tributed over the surface, the material can be characterized by a density

function N(z:, g,

represents the number of cracks per unit area having a critical stress less

r)*where Y is the applied stress state. This function

than or equal to ocr. The number of cracks per unit area having critical

8
stresses between 0 _ and 0 _ + do__ is, then,
: cr cr cr
dN
: dN = do (3)
; docr cr
g )
& The probability that failure will occur in a uniformly stressed surface of
_E area A due to a crack having a critical stress in the range ocr to Our + docr
£ is the product of the probability that a crack is present and the probability
5 .
: that the crack, if present, will fail; i.e.,
% dN w
g Pf(z : doc::') " (A do docr) (?) (4)
i cr
: 8 The probability that such cracks will survive is
=1-Pp =1-489dN
Ps (z’ dc’cr:) & Pe Lok m docr docr
¥ loioss [' A % d::m dUcr] (5
cr
The probability that cracks in every stress range dacr will survive is the
product of the probabilities of survival of cracks in the individual ranges,
)
i.e.,
w dN
s [“fﬂ&;“’cr] it ity
3




The fracture probability for a surface of area A subjected to stress
state 2: can be evaluated with the use of Eq. (6) when w and N are known.
For any stress state z , we can determine w by using Eq. (1), while N must
be ohtained by experiment.

In the uniaxial case, Eq. (1) reduces to

2
O = 0. cos O
n x

Thus for this case, tecr, the angle within which Gn > Oup? is given by
O _=2g0 cosze
cr X cr
or
(5]
-1 cr
ecr cos ox (7)

Since w = 29ct,

g
2 -1 cr
= 5 cos \’ G;_ (8)

In the equibiaxial case,

Ale

g O, ~ 0 9
as a result of which, L SRl and

%’-- 1foro, <o (10a)

= 0 for o> 9 (10b)

As a result of (10a, b), in the equibiaxial tension case Eq. (6) takes the
simple form

Pe(0) = 1 - exp [~ AN(0)] (11)
From a comparison of Eqs. (6) and (8) with (11), it becomes clear that it is

computationally advantageous to determine N from the fracture statistics for

equal biaxial tension. From (11), we find AN is given by

W/
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AN = 2n(1 - pf)‘l (12)

thereby avoiding the necessity encountered in the theory of volume-distributed
cracks of solving simultaneous linear algebraic equations or an integral equa-
tion to obtain N. Actually, in the volume distribution case, a simplifica-
tion like Eq. (12) occurs for equitriaxial tension, but this state of stress
cannot be realized in practice.

Under general biaxial stress states, Eq. (1) can be rewritten as

on = ox(cosze + K ainzﬁ) = Ox[cosze(l - K) + K] (13)
where
X
K= P (14)
x
Thus,
- K
0 = cos-1 m (15)
cr i~-K
w . _2_ 008-1 l o (16)
T m 1-K

Using Eqs. (6), (12), and (16) we can obtain the probability of failure of a
surface of area A subject to biaxial tension.

The results of the theory just outlined are compared with the experi-
mental results of Oh in Figure 1. It is evident that although the general
trend of the theoretical results are in accord with the data, the theoretical
curves for stress ratios 1:1, 1:0.5, and 1:0 are too far apart. Taking
account of the contribution of shear on a crack to the failure process would
increase the probability of failure for stress ratios 1:0.5 and 1:0, and
therefore bring the curves closer together. We therefore turn to theories

in which shear effects are taken into account.
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Figure 1.  Probability of Feilure for Pyrex Tubes Under Biaxial Tensile Stress States 1:1, 1:0.5,
and 1:0 Assuming Only Normel Components of Stress on the Cracks Contribute to
Failure. The curves for 1:0.5 and 1:0 are generated from the curve for 1:1, which is
fitted to the experimental resuits of Oh (1970). Data points for the three stress states
are plotted.
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III. OH'S THEORY
It was shown by Oh (1970) that when a Griffith crack is subjected to

principal stresses cx and oy. the maximum tensile stress at any point on the

surface of a crack is (in our notationm)
Oy ™ % <1~ +/1% + 2 ) (17a)
where the tensile and shear forces on the crack are given by

: 1+K_1-K
T Ux( 2 + 3 cooze)

(17b)

l -K
S o, ( 2 sin 29) (17¢)

In these equations K = oylox < 1, £ is the ratio of the minor to the major
axis of the ellipse, while 6 is the complement of the angle between the larger

principal stress and the crack plane. All values of 0 were assumed equally

likely, and the distribution of cracks with respect to § was chosen to fit a
three-parameter Weibull representation of the data for the stress ratio 1:1.
To obtain the failure probabilities for stress ratios 1:0.5 and 1:0 it

was arbitrarily assumed that these would also be three-parameter Weibull dis-
tributions. The corresponding parameters were found by applying the graphical
approach for Weibull parameter estimation to synthetic data computed for

Pf << 0.01. Such a procedure would be theoretically justified if failure
always occurred for 9, = 9, << Oy @ condition not applying to Oh's data. In
spite of this, when the procedure is applied using Oh's Weibull parameters for
equibilaxial tension, good agreement is obtained with uniaxial test data. How-
ever, two other fits to the equibiaxial data were devised by the present
suthors (Figure 2). One, labeled A, is an alternative Weibull function. The
other, labeled B and identified in Figure 2, is a closer fit to the data, but

also more complicated than any Weibull function. Although the three fits to
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Figure 2.

------ 0(1:1)
0 e ¢ A(1:1)
B(1:1)
l X
6 7 9
Oy, ksi

Failure Probability Curves Fitted to 1:1 Data of Oh (1970). Curve (0) is determined from

perameters reported by Oh for the thres-parameter Weibull function Pg = 1 -oup{-((o-q.bloolm}.
Curve (A) is s Weibull function, and (B) is a piecewise function consisting of two Weibull curves
joined by a straight line such that Ps and its slope remain continuous. The values of the parameters

are as follows:
0:
A:
8:

oy =150 op=3.32
Oy =028 og=4.64
oy =0.50 oo =446
P¢ =0.221 (0-0.5) - 0.373
oy =050 0og=4.00
[}
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m=220
m=3.60
m=273

Oy £0< 35
36< 0 <60
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the 1:1 data are quite close, the Oh procedure leads to very significant dif-
ferences in the predicted uniaxial failure curves for the three cases, as
shown in Figure 3. This suggests that the good agreement found using Oh's
function may be fortuitous.

Oh's analysis is based on the tacit assumption that the Griffith crack
is a through-crack (Figure 4a). This is not considered by the present authors
to be an appropriate model for the surface crack. Section IV is concerned
with two other types of cracks illustrated in Figures 4b and 4c. The first,
which we shall call a Griffith notch, is a half-elliptic cylinder with the
principal axis of the cylinder at the surface of the specimen. The second is
a half-ellipsoid in which a >> b >> c.

IV. PRESENT THEORY

A fracture criterion under combined stress can be formulated on any of
several different bases. These include use of an energy criterion, use of
critical stress concentration factors, and use of maximum tensile stress
occurring at a point on a surface of the crack. The simplest one of these
to apply is the last.

Mirandy and Paul (1975; also Paul and Mirandy, 1975) have recently
worked out the stress state at any point on the surface of an ellipsoidal
cavity having axes a, b, and c, such that ¢ << b € a for arbitrary applied
stresses. For present purposes the principal findings are: (1) If the
applied stress is simple tension T normal to the plane of the crack (i.e.,
parallel to the polar or c-axis of the crack), the maximum stress occurs at
the intersection of the cavity and the a-b or equatorial plane. The local

stress is the same at all points in the equatorial plane and is given by

st Setis (18)
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Figure 3.  Probability of Failure for Uniaxial Tension by Oh‘s Method. The curves labeled A(1:0),
8(1:0) snd 0(1:0) are Weibull functions whose parameters are determined graphicaily
from computed welues of P§<0.01 starting from the A(1:1), B(1:1), and 0(1:1) fits to
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where E is an elliptic integral of the second kind. For b/a << 1, E = 1,
(2) 1I1f shear stress S is applied to the crack plane in a direction parallel
to the a-axis, the maximum tensile stress induced on the surface of the
cavity occurs in the a-c plane, and is given by

_sin 28

ol 2(1 - V)

b
< S (19)

2
E

where B is the local latitude. (3) When both S and T as described above are
present, the local tensile stress on the cavity surface is largest in the a-c

plane and becomes, for a >> b,

2b S
O-T(T cos Zﬁ-msin 28) (20)
which has a maximum value of
2
b 2 S
o = =IT +\/T° + ———— (21)
max c[ (l_v)z

(4) In the case of a Griffith crack subjected to tension normal to the crack
plane and shear on the crack plane applied parallel to the cylinder axis, the
tensile stress under combined loads is greatest along the line of maximum
curvature. It is evaluated by finding the maximum principal stress at the
end of the b-axis in a long ellipse where, according to Mirandy and Paul

(1975), the local stress state is

2
g (22a)
0‘ =y 0‘ (plane strain) (22b)
T - -b- s (22c)
c
Using Mohr's circle, this is readily shown to be
s % [T(l + v) +Jrz(1 - \))2 + sz ] (23)
12
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The above results are for ellipsoids in an isotropic elastic body
located far from any free surfaces. In the case of surface cracks such as
those shown in Figure 4, the presence of the free surface will modify to
some degree the stresses on the surface of the half-ellipsoid and Griffith
notch. An estimate of the amount of this modification can be made for the
Griffith notch as follows: We note that as a + «» the ellipsoid approaches

; an elliptic cylinder, so that (23) should be valid for the cylinder. In the
case of the half cylinder (Griffith notch) of Figure 4b, it has been shown

(Paris and Sih, 1965) that the free surface causes the stress concentration

GURRA denat N,

factor for tension to be increased by a factor of 1.12, while that for shear

PUORIA

) is unchanged. Thus, we modify (23) to read

2
Opax = 1:12 -:— T(1 + V) + \ﬂz a-w?+ (‘1'.3'12) :l Ly

This equation differs appreciably in appearance from that applying to

TR ST AN

the through-crack (17a). Among other things, it depends on Poisson's ratio.
However, for the range of values appropriate to glass, vV = 0.2 to 0.3, the

relative contribution of the applied tensile and shear stresses to the maxi-

mum tensile stress on the surface of the cavity is almost the same.

The present method of determining failure probability curves for various
stress states is to solve the integral in (6) numerically over the entire
range of applied stress. The data for equibiaxial tension are used to
determine d'/docr via (12). While it is not necessary to assume a Weibull
form for !'f(o). several Weibull fits to the data were investigated. The best
fit, however, was a piecewise function defined over three regions of the applied
stress range (Figure 2) and used exclusively in the computations of the

present theory.

13
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The fraction w/m is a function of the applied stress state and ocr and
is determined in the following manner. The maximum tensile stress on the sur-

face of the crack (equations 17, 21 or 24) can be written as

2
Omax -'E Ox g(06,K) (25)

where g(0,K) is the function of crack orientation 6 and stress state K appro-
priate to the crack model and ox is the applied stress. The failure criterion
is gamax 2 Zocr or g g(6,K) > O.p+ The fraction w/n is the portion of the

range 0 £ 6 € 1/2 for which g(6,K) 2 0 _/0_, and in general can be determined

cr X

from the roots of the nonlinear equation g(6,K) = ocr/ox at each value of
Oct/Ox.

F;gure 5 compares the failure probability curves for stress ratio 1:0
deduced from the experimental data for stress ratio 1:1 using (13), (21) and
(24). The results using (21) are somewhat closer to the experimental data,
but not much. A correction of unknown magnitude is needed to account for the
presence of the free surface. Moreover, it is doubtful whether a fracture
criterion should be based on a maximum stress occurring at the end of the
major axis. If the material strength is exceeded there, the crack should
lengthen along the surface but not penetrate in from the surface in the manner
required to partition the specimen. Accordingly, we conclude that (24) is
the more appropriate fracture criterion.

Use of the critical stress concentration factor for the fracture crite-
rion leads to the same conclusion. The critical stress concentration factors

for a notch subjected to tension and out-of-plane shear are (Paris and Sih,

1965).

K = 1.12 TVm : (26)

14
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Figure 5.  Fellure Probebility Curves for Unisxiel Tension (1:0) Determined from the B(1:1) Fit to the
Equiblexisl Deta Assuming Thres Differsnt Crack Models: the Sheer Insensitive (S1), the
Griffith Notch (GN), and the Meif-ENipeoid (HE). The points are the 1:0 data of Oh (1970).
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and
KIII = S /1b 27)

respectively, where b is the appropriate ellipsoid axis for a Griffith notch

in our notation. As a result, along the plane of symmetry of the notch

g 1.12 /-2-; T (28a)

T W g § (28b)

ox = vuz (plane strain) (28¢c)

Combining these to get the maximum principal stress as a function of r by

using Mohr's circle, we get

2 3
\/b 2 2 S
e ™ 1.12 £ [T(l + v) +\/4 1Q-v)"+ (ITIE) } (29)

The expressions in square brackets in (24) and (29) are identical, and this

is all that is used to find the relative contribution of shear to crack failure.
It is of interest, however, to note that (24) and (29) are identical when

r -'% p= C2/8b, where p is the minimum radius of curvature of the Griffith
notch. According to Mirandy and Paul (1975), this is the value of r at which
the solution in the neighborhood of a closed crack tip is equal to the value

of the maximum surface stress of an open notch.

We find, then, that agreement with experiment is improved when the con-
tribution of shear to crack fractures is taken into account, but that this is
not sufficient to bring theory into really good agreement with experiment.

We must therefore seek other reasons for the remaining discrepancy.

One possible source of the discrepancy is the fact that the data for
failures at a stress ratio 1:1 cover a somewhat lower stress range than
failures at stress ratio 1:0. Thus, an analytical expression for AN(ocr)

obtained from 1:1 data should not be extrapolated to higher values of Oupe

16

L




S SRR A

PR

However, the 1:1 failure stress range covers most of the 1:0 failure stress
range so the agreemeﬁt between theory and experiment in this large overlap
region should be good, but it is not.

Another possible source for the discrepancy is the assumption in the
theory that crack planes are always normal to the free surface of the material.
This explanation also fails. It has been shown (by methods to be reported
elsewhere) that the 1:0 failure curve deduced from 1:1 data is the same using
the surface crack theory described here as it is using the volume distributed
crack theory of Batdorf and Crose, employing a normal stress failure criterion
in both cases.

The final possible explanation to be discussed here is that the assumption

of uniform distribution of crack orientation is not valid for the pyrex tubes

tested. There is no a priori method of predicting what form an anisotropic
distribution should take. A crude but useful check on the hypothesis of
anisotropy is to investigate the consequences of assuming that cracks are
uniformly distributed through a given range of angles and are absent outside
this range. For instance, one might assume that all crack planes are within
¥ radians of the axis of the pyrex tubes, thus occupying a fraction R = 2y/n
of the total available angular orientation. Figures 6 and 7 show the results of
assuming shear-sensitive Griffith notch cracks for R = 0.6 and R = 0.75. It
is evident that the anisotropy assumption greatly improves agreement between
theory and experiment. Unfortunately, the tubes were tested in simple ten-
sion in only one (the circumferential) direction, so that a direct test of

the anisotropy hypothesis is lacking.
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Figure 6.  Failure Probability Curves for Uniaxial Tension Calculated Using the B(1:1) Fit to the
Equibiaxial Data for Griffith Notch Cracks Assuming a Simple Anisotropy of Crack
Orientation in Which the Cracks are Uniformly Distributed Over Only a Certain Fraction
R of the Possible Angular Orientations. Curves for R = .6 and R = .75 are shown in
comparison to the data points.
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Figure 7.  Fallure Probebility Curves for Stress State 1:0.5 for Isotropicsily and Anisotropicelly
(R = .8) Distributed Cracks Calculated Using the B(1:1) Fit to the Equibiaxial Data.
The points are the 1:0.5 data of Oh (1970).
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V. CONCLUDING DISCUSSION

Most statistical fracture theories are weakest link theories that attri-
bute the spread in fracture stress exhibited by nominally identical specimens
to the presence of invisible flaws, generally believed to be cracks. Nearly
all such theories explicitly or implicitly assume that only the component of
stress normal to a crack plane contributes to the failure of the crack. This
is a convenient approximation. The calculations in this paper confirm the
expectation that the errors involved are rather small. For instance, in the
case of the pyrex glass for which the theory was evaluated numerically, the
ratio of biaxial to uniaxial stress for Pf = 0.5 was calculated to be 1.44
for shear-insensitive cracks and 1.38 for shear-sensitive cracks.

Nevertheless, since the assumption of shear insensitivity always over-
estimates the biaxial stress failure probability calculated from uniaxial
data, an improved result can be obtained for biaxial stresses in the tension-
tension quadrant by including the effects of shear. The present paper shows
how this can be accomplished in the case of surface cracks. A future paper

will show how to treat the case of volume-distributed cracks.
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