
AD—A 035 9113 MASSACHUSETTS INST OF TECH CAIIRR!DGF ARTIFICIAL INTF——ETC FIG Q12
INITIAL REPORT ON A LTSP PROGAAMFaFR’S APPPENTICF.(U)
DEC 76 C RICH . H E SHROAF N000lI4—75—C—0fl3

F UNCLASS !FI7 r~ SCiUUMU IUU

I

• ,~ ~~ 2.8 12.5
I.’)

1.1
11.8
uuI~~~

1.25 ~ I.4 ~1II.6
_ _ _ IIIII~~~ mii~~~

MICROCOPY RESOLUTION TEST CHART
NATIONAL SUNCAU O~

STANOA T$ 1963 A

- — .‘.- -“ _________

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (lThw Data Ent.r.d)

REPORT DOCUMENTATION PAGE BEFORE COVPLETfl~~ FORM

~~~~~ 

~
5 QL2~ RT NuMBEy. 

~~~~~~~~ 

GOVT ACCEUION NO S. RECIPIENT S CATALOG NUMBER

4. TST I P.4~~ ~~~~~~~~~~~
.$_ irt u Si r — t — —~~~~~ VERED

~~~~~~~~

‘ 

0Jnitiai~~~port on aj~~p~ rogramer
’
sJ ~~ Technica1,~~

p
~~

t
~~~

1°..

1PE~FoR~ wa ORG. REPORT NUMBER

7. AU THOR(s) ~~ . CONTRACT OR GRANT •CR(..

Charles/Rich — Howard E./ Shrob!] L_~~ ~~~~~S. PERFORMING ORGAN IZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT , TASK
AREA 3 WORK UNIT NUMBERS

‘~rt it icua l Intelligence Laboratory
545 Technology Square 0’~~~

Cambridge, Massachusetts 02139 ___________________________

k II. CONTROLLING OFFICE NAME AND AODRESS ~~~~~~~PO~~~J T ° -1
Advanced Research Projects Agency /1 ~ 76 J
1400 Wilson Blvd /1 #*~‘1ILuIIP QF AGES

Arlin gton, Virg inIa 22209 217
14. MONITORING AGENCY NAME 3 ADDR!SS(I S C0RfroJ1Sn~ Site.) ir iICiJRtTY CLAS S. (of (1,5. r porf)

Off ice of Naval Research
~~~ 

UNCLASSIFIED
Information Systems __________________________
Ar ling ton, V I r g inia 2221 ‘. o~ c~~AssuruCATIoN/oowNGnAoING

IS. DISTRIBU TION STATEMENT (ci AS. R.port) 
* s ~e*~ tur 

- .

Distribution of this document Is unlimited . ISIte S6C.~$5 U
DDC Bsfl Sectlu C
UNANNDWI CEO o
JUSTIF!CAT 1ON 

*7. DISTRiBUTION STATEMENT (of ha .b.t,.c f ~ ,t.,.d Sn Stock 30, Ii dtff .r.nI ham R.pmt)

BY 
$ flI$TRlBOr ION..’A~A,t~~;1rTy C • ~~

IS. SUPPL EMENTARY NOTES

IL KEY WORDS (Conilnu. on r•vsu. .td. Si n.c... 7. ~ Sds.,Ht~. S~ bI.c* m b )

Programmer’s apprentice artificial intelligence side effects
program verification plann ing
automatic programming debugging
software engineering program specifications

V LISTP cymhnlir
~ ~0. ABSTRACT (ConUflu . on r.vi,a• aM. if n•c~i s ?  med SdinII~~ by bl.ck m b.r)

The conceptual basis of the system lies in three forms of program description:
(I) definition of structured data objects, their parts, properties, and rela-
tions between them, (ii) input-output specification of the behavior of program
segments (specs), and (iii) a hierachical representation of the internal struc-
ture of programs (plans). The major theoretical work reported here is a repre-
sentation for program plans which Includes data flow, control flow, and also
goal-subgoal prerequlslte,and other dependency relationships betw~ n the segment
of th~ prnç1r~m.. k

DO ~~~~ ~473 E~~~~ON OF I NOV SI IS OBSOLETE UNC LASS IF I ED
S/N b~(02.014. 6601 

SECURITY CLAUIP1CATION OP THIS PAGE (~~
IIIl 0.’. lIe*.,.d)



—w-~—- ~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.. 

~~~~~~~~~~~~~~~~~~~~~~ 
.

~~~

,.

~~~~~~~

-—-

~~

-

~

--- ‘

~~~~~~~~~~~~
-

~~
—-

•d*~ ~~~~~~~~ . ~~~ — -~~ ••,. ______ .••

~~~

• -—

• This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory’s artificial Intelligence

1~
research is provided in part by the Advanced Research Projects Agency of the Department

I. of Defense under)ff ice of Naval Research Contract N00014-75-C4643. This research was
also supported in part under Naval Research Contract N00014-75-C.0522.

•—.. . - - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _ • - --.- _ _ .~~-

INITIAL REPO RT ON

A LISP PROG RAMMER ’S APPRENTICE

by

-

. Charles Rich and Howard E. Shrobe

• Massachusetts Institute of Teohnology

H

December 1976

‘1 :

:j

Revised Ion of a ~1uerta• o~ .ubmitted to the Department of Electrical Engineering on • 1I Asgeat 15, ~7I In par ~s ?ulfillment of the requirements for th, degree of Master of
H Science.

~~•~~~ •-• . ‘- - - - -~ - - - -~~ -~~~~~~~ ~~~
~~~~~~~~~~~~



-
~~-.• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4 •

‘1 Abstract

•

•

This is an Initial report on the design and partial implementation of a LI~~~programmer’s
apprentice, an interactive programming system to be used by an expeirp jrammer in the
design, coding, and maintenance of large, complex programs.

The conceptual basis of the system lies in three forms of program description: (I) definition
of structured data objects, their parts, properties, and relations between them, (i i) input-output

• specification of the behavior of program segments (~!~), and (i l l) a hierachical representation
• of the internal structure of programs (pj~~). The major theoretical work reported here is a

representation for program plans which includes data flow, control flow, and also goal-subgoal,
• prereq~iisite, and other dependency relationships between the segments of a program. Plans are

utilized in the apprentice both for describing particular programs, and also in the compilation
of a knowiedEe base of more abstract knowledge about programming, such as the concept of a
loop and Its various specializations, such as search loops and enumeration loops.

4 As a practical matter , we have designed a system with three major performance modu)es a
deductive system, a surface flow analyzer for LISP code, and a program recognition module.
The deductive system is based on the technique of symbolic evaluation using a situational data
base, and can be used to verify the correctness of plans. The surface flow analyzer is the only
programming language-specific component of the system; given a particular LISP program
written by the programmer, It abstracts a superficial plan which represents the control flow and
data flow present in the LISP code. In a program verification scenario, this superficial plan is
acted upon by the recognition component which, using the knowledge base and aided by the

~ I programmer’s written comments, builds a deeper and more complete plan description of the
program, which can then be verified by the deductive system. Initial Implementations of the
deductive system and the LISP flow analysis module are described; the recognition component
has not yet been implemented.

a As compared to automatic programming research, the programmer’s apprentice emphasizes
a cooperative relationship between the computer and the human programmer. wherein the
computer provides primarily support facilities. This Is seen as a more realistic, interim solution

• to current software problems; as techni ques for automated program synthesis are perfected,
these can be incorporated into the apprentice environment In an evolutionary manner, with the
computer eventually taking over more and more of the programming responsibility. The
present work also entails an extension of symbolic evaluation and verification techniques to
programs which have side effects on complex data structures.

-
~ Acknowledg ements

• We would like to express our sincere gratitude to our thesis advisors, Professors Gerry

Sussman and Carl Hewitt, and to all the graduate students of the M.I.T. Artificial Intelligence

-
•

Lab, from whom we have benefited greatly in the exchange of ideas and by their intellectual

and moral support. In particular we wish to acknowledge here our many discussions on the
• topics of this report with Dick Waters, Johan DeKleer, Richard Stelger, Robert Moore. Mike

Genesreth, Keith Nishihara, and Mark Mifler.

-
We would also like to thank Mitch Marcus and Wall Clinger for their careful help In

proofreading this document, and Karen Prendergast for preparing the figures

I

1— .
~

.

p~ _ ._,~~~~
‘r’

— — -
-~~~ .-_ _

~~~~, . .  ~~~~~~~~~~~~~~~~~~

~~S• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ .s-*-.~--  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE OP CONTINTS
. —

1. Introduction

1.1 The Complexity Barrier I

1.2 A Solution: The Programmer’s Apprentice S
A Unified Environment

.
$

L3 Scenarios 5
First Scenario. Design and Coding 5

- Second Scenario: Maintenance 10

-
L4 Outline of Our Work 12

The Domain of LISP Programs 12
The Elements of Program DescriptIon 15

I Implementation Progress Report 15
¶ Further Work lB

L5 Anatomy of the PA. System 17

1~ • I i
2. Tb. ~ 1.m.nt. Of Program Descri ption

Programming Concepts 20

LI Deicrlptlois of Data Objects 22
Parts Decomposition 22
Generic Part Structure 24
Type Restrictions 25
Properties 26

-

~ Relations 27

I
- .~—-—— — —-5.., - -‘S S — - . ~~~~~~~~~~~~~~~~ ~ S-~ --.-~.-~ - ~~~~~~~~~~~~ — • ---5— -— —~~~~ - -

~~rr~ ~~~~~~~~~~~~~~~~~

— -, .. — - --.--- ~~~-.. — ---- 5- -—5--- —-- ~~~~~~~~ ~—-~~~-~ — -~
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

— 
~~~~~~~ ~~~~~~~~ _~~~~.

4 2.2 SpecifIcation of Behavior $0
Specs Si

Case SplittIng 35
Side Effects $7

mming concepts so

LI Implementation and Deep Plans 45
Implementation of Data Objects 45
Implementation of Specs by !laIn 47
Data Flow
Purpose Links 52
Purpose Links as Summary ofaJustiflc*tIOfl 56

- Purpose Links and Control Plow
,

58

A Relation Between Specs and Plans 58
Deep Plans as Levels of AbstractIon 60

-
-• 2.4 Surface Plans

Why Have Code? 62
Building a Surface Plan and a CPD
Code Segments and Plan Segments 63
Surface Plans and Connective TIssue 69
Surface Control Flow 66
Surface Data Flow 70
tail Segments 73

H - Data iloeCoupllng 76
Knowludge Speclfic to USP 78
Impl1mentatlon Note The Code Table 7$

I
2.5 The Organization Of Programming Knowledge 81

Programming Concepts SI

Plan Types 84

Deslgn Cholces 89
Plan Transformations 90

• 2.1 AnnotatIon of Programs 91

Comments That Invoke Shared Knowledge 91
New Information Comments 92
Annotation In the PA System 66

- -- ‘ - _ 5
~~ ’~~~~~~~~~~

__
~~~~,



- ‘“.‘, “ ‘~~~~~~~~~ ‘~~‘ ~~~~~~~~~~~~~~~~ 
,,5-r ’-- - ,~~~~~ - - — “ “W5- ?~~~~~~~ “ - - ‘r’ - -~~~~~~~~~~~~

’5-
~~

5- --w”rn5- c-~~~ - -C 
~~~~~~~~~~~~~~

- ‘ -5 -- --— - — — - - .— .-

1

• 8. Tb. Deductive øyst.m

Structure Of The Deduct ive System 97

3.1 Mechanisms 99
Uncertainty and Anonymous Objects 99
IdentIfication 103

- Ojiantiflcatlon 104
• Asserting Qjiantifiers 106

Proving Ojantlflers 110
Implementation Note Contexts and Demons 112

L 3.2 Specs Applicatii.n 111
Side Effects 117

4 • Side Effects and Gate-keepers 120

3.3 A Complete Verification 123
Proving the FOR-ALL Assert ion 131

-
- The Hypothetical Case Split HeuristIc 138

3.4 Extensions 141
- Building Purpose Links 141

Reasoning with Mixed Implementation Levels 141
Case Splitting 144

-‘ —~ • - -‘ - ~~~~, - • _ _ _ _ _ _ _ •~~~~~~~~~~~~~~~~~

-“ - ..•.,-,--.--- —— ..— 5-

~~~~~~‘~~~~~~~
“—— ‘ 

~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ —.--——---—- ~ — 5•__~~~

- ______ u1__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4
4. Surface Analysis Of LISP Pro~rama

Symbolic Evaluation If?

4.1 OperatIon of the Symbolic Evaluator 14$

Init ial Segmentation of the Code 148
Build ing Control Flow Links . 150
Building Data Flow LInks 151

Eva luation Procedures for Special Forms 155
Spftts,Jotns and Loopi 155
A Complete Example Using LOCKUP 157

• Data Flow by Side Effects on Data Structures 158

5. Pro posed Apprentice Envi ronment

-
• 5.1 Program Design 165

Use of Stored Plans 165

• Perturbation Analysis ISO
-
‘ Plan Thnsfo rmatlons and ModularIty 170

5.2 Plan Recogni tion 172
An Example Usiflg LOOKUP 173
Control Structure 178

What About an incorrect Program? 179

:1 5.3 AnswerIng Qjsestloissfrom the CPD 112

I

- - --- - a - - - - .-~~~ — ---~-~~~~~~~~~~~~~~ - - - ‘ - —~~~~~~~~~~~~~~

T~~~
5-5-TT ~~ ~~~~~

IITI5•5-
~~ ~~~ ~~~~~~~~~~~~i i - -;

r • J

B. Relationshi p To Other Work

11 OvervIew 184
Synthesis vs. Analysis 184

:1 Use of Domain Specific Knowledge 185
Program Understanding 186

6.2 Limit ations of Other Approaches 187
-

Program Verification $87
• Automatic Programming 189

6.3 Program Understanding 191
Planning and Debugging 191
Programmer’s Apprentices 193
Other Program Understanding Systems $94

- Reasoning Techniques 195 •

BiblioEra phy 196

f

1

• . ~~~
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - _ __ _~_____s___••____, —



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~ 5•W~ ~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. • .-‘~~•~5•~~5-~~•* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—-‘--5--- -_- 5- - —_---—-—---_—-
- -——

I.1
- TABLE OF FIGURES

- 1 - - -

‘.
. =

1. Example LISP Program 13
2. Cross Anatomy of P.A. System 18

• 3. Summary of Data Object Descriptions 29
:~ 4. Written and Diagrammatic Format for Specs 34

-
-
~ S. Representation of Hashing Concept 41

6. Representation of Arrays Concept ‘44
7. Data Flow Links in Deep Plan for GET-8UCKET 51
8. Purpose Link without Direct Data Flow 54
9. Deep Plan for GET-BUCKET 57
10. Plan With Multiple Purpose Links 59
11. Control Flow for LOOKUP 69
12. Summary of Surface Plan Representation 79
13. Lists as a Specialization of Data.Structu res 82
14. Partial Hierarch y of Programming Concepts 83

- 15. Most General Plan for Loops 85
16. Plan for Search Loop 86
17. Comment Forms 95 -•

18. Asser tk~n Types in the Situational Data Base 100
19. Quantif ier Forms in Deductive System 105
20. Segment Types in Plan for Insert 124
21. Data Flow for Insert with Situation Numbers 127
22. Uncertainty In Ident it ies of INDEX-i and INDEX-2 133
23. Uncertainty in Identities of BIJCKET-2 and BUCKET-3 135
24. Uncertainty in Identity of BUCKET -4 137
25. Word Description of Evaluation Procedure for CONO 156
26. Surface Contro l Flow for LOCKUP 159
27. Surface Data Flow for LOCKUP 160
28. Data Flow by Side Effect on Data Struc ture

-
163

29. Data Flow in Deep Plan for LOCKUP-SEGMENT 167
-

-
30. Purpose Links in Deep Plan for LOCKUP-SEGMENT 168
SI. Externalization of an Initial Segment 171

-
-

• 32. Control and Data Flow In Transformed Plan for LOOP-8 176
33. Program with Coding Error 180

.~~
-i

34. Program with Fencepost Error 180

-

‘— ~~ -- ~~~~~~~~~~~~~~~~~~~ as~s — --_ - . a- -
~~~~~~~~~~~~ - -l ~~~~~~~~~~~ -~~~~~~~~

• - ~~ - ‘5--a-th-~ ~~~~~~~~~~~~~~~ - ~~~~~~ - ~~~~ ~~~ ~~~~~



~~~~~~~~~~ ~~~~ ‘~~~~~~ ‘~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~

5•5-
~

S

I

CHAPTER ONE

INTRODUCTION

1.1 The Comple xity Barrier - •

During the past decade the power of computational facilities has increased by several
orders of magnitude. The transition from tab equipment to modern day computer uti lites has
taken little more than two decades. Moreover , we are faced with the prospect that current
hardware w il l soon be superseded by technol ogies capable of housing In a desk drawer
computers more powerful than those of the present generation.

Software development has also proceeded at an amazing rate, taking about two decades for
the transition from the first FORTRAN compiler to structured languages , opt imit izing
compilers, sophisticated data base systems , complex operat ing systems , and the like. In the
artificial intelli gence research communit y, similar progress has taken place from the batch LISP
1.5 to high powered Interact ive dialects such as MACLISP and INTERLISP. in addition, new

specialized A.I. languages have been developed, such as PLANNER, CONNIVER , and Qj 4.

Each advance In comput ing hardware or in the power of programming languages has
spawned a new generation of larger and more complex prog rams. Software engineering is now
caught on the horns of a dilem ma. The sheer size of modern software systems seemingly
dicta tes that they be produced by a group of people, in which responsibilities for modules are
parcelled out. However , the interactions between these modules are frequently so diverse that
they prevent the ef fective coordination of labor between individuals who cannot each see the
entire picture. The result has been that software is both notoriously late and unreliable. The
alternative to division of labor, i.e. that design and even coding be accomplished by a single
Individual , is no better since one person’s capacity for keeping track of a large number of

I - Interactions Is also quite limited. Thus the problem is not simply due to the size of programs,
but also the fact that as size increases, the number of relationships between modules grows
much more quickly .

- I &

Li 
_ _ _ __  

_ 
_

--— -5-- ’- - - - -~~~~~~ —— _ -_ •  ~-—-~~-- —--~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-5----



- 
- 

— 
5 - 5 - •

~~~~~~~~~~~
.•.••• -5---—- —5---

¶ I

r4~~
-

2

- I The economics of large scale software product ion bring about additional diffi culties. The
elite expert programmer who crafted a system and stayed with it for years has been replaced by
armies of young college graduates who change Jobs frequentl y Thus any particular module In

a lar ge system may be modified and remodif ted by many successi ve generations of

programmers, each time increasi ng the likelihood that a bug will be introduced because of the

current programmer’s distance from the original design.

Terry Winograd has labelled this cluster of phenomena the complexity barrlet
cWlnograd, 1973>. He experienced it workmg in the research environment of the M.I.T.

- Artificial Intel ligence Laboratory. Program s such as his natural language understand ing

system , SHRDLIJ, grew larger and more complex than could be handled by either an

Individual or a large group. Furthermore , it was clear that the current generation of A.I.

programs fell far shor t of the complexity and size necess ary to achieve the levels of

performan ce to which the field aspires . Thus Wlnograd and others have concluded that

overcoming this complexity barrier i-s crucial to contin ued research In A.I.

I

5 - - -

--5-5-—-- -

3
•1

-

-
.
~ 1.2 A Solution: The Program mer ’s Apprentice

The purpose of this report is to describe our concept of a programmer’s apprentice. The
programmer’s apprentice approach to the software problems described above Is an instance of a
general orientation towards symbiotic man-machine interactions , in which respons IbIlItIes are
dIvided between the two according to their respectIve strength s and weaknesses. Thus our
Immediate goal is not to replace programmers , but rather to design an intelligent computer
system which can help an already competent programmer. Chapter Six is a review of other
similar and alternative approaches to software problems.

Our conce pt of a programmer’s apprentice is based largely on the metaphor of a
relationship between the senior expert programmer and a very junior colleague in a joint
project. The senior partner has the accumulated experience, the sense of aesthetics, and the
high ll,vel planning that are the basis of quality programming. The apprentice helps him
mostly by keeping track of the mundane but crucial low level details that guarantee a program
will work. A computer is well suited to keeping track of a large number of precisely specified
details, which people cannot do very well People on the other hand, have a unique ability to
solve problems by the application of vague but powerful global reasoning strategies.

In order for the expert programmer and the apprentice to work together , they must be able
to communicate effectively. We believe that communication in this situation must rest not only
on the use of a mutually understood syntax, but also on a significant base of shar ed knowledge.
The apprentice must know what a loop Is. what a list Is, chat cops have tests, that lists have
CAR’s , and so on. Some of this knowledge is basic to all programming, and should therefore
be “bui lt-k n to the apprentice. Other knowledge pertains only to a particular program , and is
therefore built up during interaction with the programmer. Chapter Two Is concerned with
how to represent this shared knowledge.

A Unified Environment

In a simple v iew, programming activity can be divided into three phases: design, coding,
and maintenance. As we will illustrate in the following scenarios, cur apprentice Is aimed at khelping the programmer in all three phases. - •

5-—-- -5- ~~-~----~~~~- - -
~~~~~~~~ ~~—5 - -~~--— -~~~~~~ -—~~~—-- — ~~--~~~~~ - -- 

-: 4  4

Design is the most abstract activity. Given specifications which tell ~~~~~ the program Is

supposed to do, a programmer must decide ~~~ to do it. Sometimes, the answer to “how Is to

use a well-known standard plan, as for example using the Newton-Raphson method of

success ive approxi mation for finding the roots of an equation. Other times, a programmer Is

more creati ve, putting together a number of basic operations In a new way In order to achieve

the desired result. In both cases, the apprentice can help the programm er by recording the

design plan , and if possib le verifyin g that the plan indeed satisfies the specifications.

Once the programm er has settled on a design, or part of a design, he usually starts the

coding of the program. Here again, the apprentice can be of assistance. If the cod ing is done

in an orderly fashion, and adequately commented, an apprentice should be able to verify that

the code is a correct implemen tation of the programm er’s design intent ions. If there are

incompatibilites between the code and the design, these can be pointed out to the programmer

by specific reference to the design .

Finally , even after a program has been correctly designed and coded with respect to a

I j particular set of specifications, there is continuing maintenance. Sometimes the specIfications

r change , sometimes the programmer changes his mind on how he wants to achieve them. In any

case, the apprentice can help the programmer (particularly a replacement person who was not

involved in the original programming) by recalling and explaining the desIgn decisions and

particular knowledge that was originally used. Also, the apprentice can apply Its reasoning

abil ities to help point out potential Incons istenc ies caused by chang es to eIther the

specifications, the design , or the code.



— 
- -. ________

- -e — — — — I
:1

5

1.3 Scenarios

To complete our explanation of the kind of programmer’s apprentice we are trying to
Implement, we now give two excerpts from an imagined interaction between a LISP
programmer’s apprentice (PA) and a human programmer (Pgmr). In these sessIons, the
programmer is working on a storage and retrieval system for keyed records, implemented as a
hash table. This particular programming task Is one which we will use repeatedly for
illustrative examples throughout this report. The programming errors and modifications that
arise in the scenarios are realistic in the sense that they actually occurred while the authors were
programming a similar task.

In this presentation, all dialogue is in English. This Is primarily for ease of reading.
Although we feel that the system we are designing will ultimately have adequate knowledge to
support communication in natural language, this has not been an immediate concern thus far.
Nothing in this report will deal with the question of natural language communication.

— First Scenarim Design and Coding

(The scenario joins the programmer and apprentice in the middle of the design of a
hash table system. We assume the programmer has already explained the structure
of the main data objects: the hash table is an array, whose buckets are lists and
each entry is a CONS cell whose CAR Is the key. Furthermore, the lookup and hashing
routines have already been coded.)

Pgmr. Here is the design for the Insert routine. Inputs are a key and a data object. Build an
entry out of them. The key is hashed to get the correct bucket. The entry is then added to the
bucket to create the new bucket. Finally, the new bucket is stored in the slot of the array
indexed by hashing the key.

— PM OK. By the way, you only have to hash the key once.

(The apprentice uses the programmer’s outline of the design to build for Itself a
representation of the program’s intended data flow. This representation, called the

- 5----- p- -- -- - -—5- ~~~~~ -~~~~~~~~~ -- —- -~~~~~ 5-



- 5-~~~~~~~~~~~~~~~~~~~~ ——-~~~5-~~~~-- -~~~ - —~ 
- -5 -

-1 ~
B

deep plan. forms the basis of the apprentices further understanding of the program.

Section 5.1 will discuss how plans may be built up interactively. Notice that the plan

is more modular than the programmer’s description, since in buildIng the plan a

redundant computation was exposed.)

Pgmr Here’s the code

(DEFINE INSERT (KEY DATAI DATA2 )
(STORE (HASH KEY)

(CONS (CONS DATA1 DATA2 ) KEY))))

(Mnemonic identifiers are a convenient form of commentary. In this case, the

programmer’s use of KEY, DATAL , and DATA2 facilitate recognition of the relatIonshIp

between the surface structure of the code and the underlying plan. The Idea of plan

recognition is elaborated in Section 5.2.1

PA: Sorry, but I see a few problems:

I. You are building an entry here by doing

( CONS ( CONS DATA 1 DATA2 ) KEY)

But in the lookup routine, the key is the ~~ of an entry.

2. The first argument to STORE must be a subscripted array reference, but HASH is not an

array. HASH is a function which returns a bucket of the hash table.

[The apprentice has already compiled the internal dependencIes of the hashing

scheme. For example. the entry builder of insert must agree with the key-extractor of

the lookup routine. Also, It has built-in the syntax and semantic restrictions of the

basic LISP functions, such as STORE .)

Pgmr To fix the first problem, reverse the order of the arguments to the outer COIlS.

_ _  -
——--—5- - -rn —



7

(The apprentice diagnoses an Inconsistency. In general. It is the responsibility of the
programmer to supply a correction.)

PA: That fix es It.

( CONS KEY (CONS DATA I DATA2))

Pgmr. Let me see the second problem again.

- 

- - 
PA: In the indicated form , the fir st argument to STORE must be a subscrIpted array reference:

(STORE (HASH KEY)
(CONS KEY ( CONS DATA1 DATA2)))

— Pgmr What is the name of the hash table array?

PA: TBL

k Pgmr Change the first argument of STORE to

(TBL (HASH KEY) )

PA: That won’t work either. TBL is an array. The argument to TBL must be an non-negative
Integer; however HASH returns a bucket, which is a list.

[The apprentice has checked for argumen ts being of the right type. In this case, TBL
and HASH have already been defined. It checks to see If the one produces the right
kind of data for the other. Since they don’t, it complains.]

Pgmr Can I change HASH so that it will return the integer Index of the bucket rather than
the buck et itself? - 

-

PA: No. In the tookup routine, HASH is required to return a list which is searched for the
desired entry.

— - - —- — —~~



_ _ _ _  - ________ 
_ _ _ _ _ _ _ _ _ _ _ _

— 
U— —~_ _~~~ -.- 5--

- 

- - -.

~
- - - - rn

~
- -.

~
-- --

S

- 

[The apprentice has searched through Its internal representation of the program

• structure to see If the suggested change creates an Inconsistency elsewhere.]

- 

Pgawr OK, let me see the code for HASH.

PA:
s . (DEFINE NASH (KEY) -

( 181.
(ABS (REMAINDER (MAKNUM KEY) TILSIZE)))))

Pgmr. Rename this function BKT-NASH. Also make a function called HASH out of the Inner
form. HASH will now take a key and return the index c4 the appropflste buCkeL

PA: Is this what you want?

4’ (DEFINE NASH (KEY)
(ABS (REMAINDER (M*Nhll KEY) T$LSIZE)))

(DEFINE BKT-HASH (KEY)
-

- 
-

~ - (TBL
* (ABS (REMAINDER (NAkNl~ KEY) TILSIZE))))

(The apprentice performs a simple edit under Instructions from the pregrammes.)

I Pgmn Yes. Now change the inner form in BKT-HASH to call HASH with the key as argument.

j (DEFINE BKT-HASH (KEY)
(181 (HASH KEY)))

[This time the programmer recognizes a redundant computation. Now the apprentice
reminds the programmer that this change must be propagated to several other 

- 

-

- routines.] - S

PA: Should all prev ious references to NASH be changed to BKT-HASN ?

-t 
________5-—--- —5-



- -s•~~:’~
--
~ p n~

555
~ 

- - — 
— 5- ‘-5- -.- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ - - ‘5- 5- ~~~~~~ — — - ~ -- - • -

~~
S - 

• ~~
_‘_5-S’5•~U-~~~~~ — —---—-5———., 

S—I

- -‘ _ _ _ _  — - - -5-- — 5 -- -

9

- 

• 

Pgmn Yes, except for the one In INSERT . That one should be HASH . -

(DEFINE INSERT (KEY DATA 1 DATA2 )
- (STORE (TBL ( HASH KEY) )

( CONS KEY (CONS DATA I DATA 2))))

PA: There is still a bug. After you do the STORE in INSERT , the array slot won’t contain a
bucket, but rather an entry. The old entries in that bucket will not be in the table afterwards.

- ; [In attempting to verify that the insert routine satisfies its specifications, it finds a
violation, i.e. it is not true that all entries in the table before are in the table after

. INSERT. Furthermore, there was an Inconsistency detected between the types of data
objects.]

Pgmn Change the second argument of STORE to:

(CONS (CONS KEY (CONS OATA1 DATAZ))
(BKT-HASH KEY))

[ PA: OK, INSERT now satisfies the specificatIons I have been given. However you still have
a redundant HASH computation.

Pgmr~ Leave it.

(The session continues until the programmer has finished and the apprentice Is
- satisfied there are no problems. The program , together with the know ledge about it

are filed away for future use.] 

~~~~~~~~~ ~~. ~~~~~~~~ • • .  ~~, 
~~~~~~~~~~ ~~~~‘ ~~ • A



‘ -5- ’ ---— ~~
-5-- • -—--~

-.
~~
, -5-5-5-5- ’ --5-5------ 

5- ~~~~~~~~~~~~~~~~~~~~~~~~_ _ _ _  • ‘ 5- ’

— 5-5-5-5-’ - ~~‘5- 5-’5- ’5-’ ‘ 5 - 5 - ”  - 
_ _ _ _ _ _ _ _ _ _- 5-

10

Second Scenarlec Maintenance :

Pgmr ~d like to work on the hashing system again.

PA: OK.

Pgmr What is the part structure of an entry?

(KEY . (DATA 1 . DATAZ ))

(The apprentice displays a “typical” entry in the hash table. This knowledge was
recorded during the design and coding of the program.]

Pgmr What are the restrictions on keys ?

PA: None.

Pgmr Let an entry whose key Is an atom be called a “simple entry”.

PA: SImple entries are a subset of entries. The key of a simple entry must be an atom.

(The new Information is stored in its knowledge base]

Pg r  Where are entries referenced ?

PA: In the lookup and deletion routines, where the key part Ii checked, and in the insert
rnutlne,wh.rethe entry ls buftt.

(This information Is not foun d by a syntactic cross-reference on the code. For
example, in the Insert routine, there was no explic it named module that built an entry.
Rather, the apprentice’s internal representation of the program Includes concepts like
building an entry and extractin g its parts, and pointers from these concepts to the
code that realizes them.]

A



- — - ‘ ‘~~~5-5-~~~~~~~~~~’ 5 - ’  
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~5- ’ 5- ~~ ‘“ ‘ ‘~~ s . . .~~~~~- ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~ W!!! ~~ U-~~~~~~~~~ 5- 5-

~~~~

Ii

Pgmr I want to make a design change in the lookup routine. If an entry Is a simple entry,
then the test for the desired entry should also check that the DATA1 part of the entry is equal to
an additional input called PARENT.

PA: Since the only distinguishing feature of a simple entry is that its key is an atom, I assume
that the check for simple entries is a test that the key Is an atom.

(The apprentice makes this modification to the code and checks it has no
repercussions elsewhere. Notice that the apprentice explains the changes in terms of
the design concepts, key, entry, etc., rather than the implementation in terms of car’s
and cdr’sJ

(The programmer continues working on further modifications] t 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----- -5-- 5-’ -~~- ”5-~~~ ’---:5-~~~~ - 


- 5 - -— -

-

~~~ 12

1.4 Outl in, of Our Work

- 

- Our first step towards building a programm er’s apprentice was to look at a variety of

— 
programs, together with the written annotation that accompanied them and verbal explanations

by programmers of what the programs did and how they did it. This led us to believe that

there really is a common conceptual level under lying the various capabilities suc h as

explanation, verification , and debugging exhibited by the apprentice In the preced ing

scenarios.

This belief is reflected In the order of presentation of th is report. The purpose of Chapter

Two, the first chapter in the body of the report, is to lay out our system’s basic concep ts and

forma lisms in a fairly definitional manner. Chapter Two also provides initial motivation for

our descriptive the ory by showing Its appl ication to the description of an already wrItten

progra m. Then in Chapters Three , Four , and Five we show how the same elements of

program description are used for reason ing about prog rams , evolving desi gns , and

documentation of programs.

The Domain of LISP Programs

The majori ty of our work on a programmer’s apprentice is intended to be independent at

partic ular programming languages . The basic features of data and control flow that we deal

with differ only in their syntactic realizations in the major programming languages in coIVWnOfl

use. Nevertheless we have in fact been look ing specifically only at LISP programs. Waters

<1976> has propose d a system which works on FORTRAN programs in a similar way.

Our work thus far has also been biased toward s a particular genre of programs written In

LISP. Our favorite exam ple program , which we use througho ut this report , is the

implementation of a simple hash table (see Figure 9. More generally, we have been interested

In programs in which there is significant Internal structure both in the data (such as the hash

table) and the proced ures that use it (such as lookup, insert, and delete). We have found the

hash table example to be very productive so far, but to continue our research we need to more

clearly define a class of programming problems we want our apprentice to initially address.

- - - 5-5 - - 5- - - - - -- -“ - ‘ - - ‘  -



- -~~
,- ,~~- - - ~~~~~~~~ ~~~~~ - 

~~~~~ 
-. ____________________

H is

(DECLARE (ARRAY TBL 500)) ;hash tab le

- ;;; This is a hashing syste m in which buckets of the table are
-

-
;;; Implemented as list s . Entries in the table are CONS cells
; ; ; where th~ key part is the CAR .

(DEFINE LOCKUP (KEY)
- ;; returns entry with given key or nil

(PROG (SKI)

(SETQ SKI (TBL (HASH KEY))) :fetch bucket
• LP (OR BKT (RETURN NIL)) ;fallure, return n i l

-
I

(COND ((EQUAL (CUR BKT) KEY) ;match keys
- (RETURN (CAR BKfl))) ;success, return entry

(SETQ SKI (CDR SKI))
-

~~~~ (GO t ))))

I

(DEFINE INSERT (KEY DATA )
;; side effect on the table
((LAMBDA ( INDEX)

(STORE (TB L INDEX)

- 

(CONS (CONS KEY DATA) ;make new entry
-J • 

(TBL INDEX))))
(HASH KEY)))

Figure 1. Example LISP Program (cont’d next page).

-• 
‘ 5 - 5 -~~~~~~~~

’ - -  — 
~~~~~~~~

5-
~

5-•-
~~~~ ,.5-~~~~~~ gI5- 5-5-.5 - •.- • - • -  ~

_
~~ w 5- .•- 5-~ 

5-—-
- - -



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 5- - -- • -
~~~~~
-

~~
-
~~ 

-- -
~~

- ~~~~~~~~~~~ 
I’ 

~~~~~~~~~~~ _____________

‘4

(DEFINE DELETE (KEY)
(PROG (SKI)

(SETQ SKI (TBL (HASH KEY))) ;fstch bucket

• ;; special case for entry first in bucket
(COND ((EQUAL (CUR SKI) KEY) ;match keys

(STORE (TBL (HASH KEY)) ;store new bucket
(COR SKI))

(RETURN N I L)))[; ; search loop through bucket
LP (OR BKT (RETURN NIL))

(COND ((EQUAL (CAADR SKI) KEY) ;aatch keys
(RPLACD SKI (CDDR BKT))) ;slde effect bucket in p’ace
(T (SETQ BKT (CUR BKT))

(GO LP)))))

(DEFINE HASH (K EY)
;; returns index into table
(ABS (REMAINDER (MAKNUM KEY) 500)))

Figure 1. Example LISP Program (cont’d). —

I

———5-

• - 5- ~•5-~~5- 5-•5-~5- •
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

-- - - ~
-- -

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
---

~~~
--

~~~~~~~
•- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

The Elements of Program Descript ion

The conceptua l basis of our system Is contained in three main ideas:

(i) Structural description of data objects.

(ii) Input-output specification of behavior.

(iii) TeleologIcal description of the internal structure of programs.

Chapter Two of this report describes the formalisms we have developed to represent these
ideas. Section 2.1 explains how we describe the structure of a data object In terms of its parts,
properties and relationships between them. Section 2.2 defines the specification language we
use for the input-output behavior of program segments. Our major effort, however, has been

in area (iii) above. We have develop ed a representation called the p~~, which is a coherent,
formal way of describing the internal structure of a program in terms of how the behaviors of
the parts interact to achieve the overall specifications. Plans are discussed in detail, with

• examples , in Sections 2.3 and 2.4.

In addition to providing the vocabulary for describing particular programs, the descriptive
elements of Chapter Two are also used to represent the apprentice’s knowledge base of general

programming techniques. Section 23 discusses our current ideas about the organization of such
a knowledge base. Also , at the end of Chapter Two , there is a brief section which relates the
elements of program description to the types of comments that we have observed on LISP

¶ programs, and suggests how a program annotation facility might be implemented in the context
of an apprentice system .

Implementation Progress Report

We are currently in the process of designing and implementing several key components of .
-:

the complete apprentice. Chapters Three and Four describe the two components that are the
•

- furthest advanc ed. Chapter Three reports on the initial implementation of a deductive system
that, given input-output specifications, can reason about the effect of a program on abstr act
data objects (this process Is often called “ symbolic evaluation ”). Chapter Four describes a

- _• _
~~~~~ 5-_  •__ •_ ! •__•_•_ _•___5-__• •_ •_ - -— _~~~~~ _ 5 - 5 -



-~~ — -‘ .—v__ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5-

$6

program that has been written to analyze the control flow and data flow In a LISP program
and build up a more schematic represen tation (called a “ surface plan ”) that will form the
framework for fu rther understand ing of the program.

Chapter Five discusses three additional components of a complete programmer ’s apprentice
environment that have not yet been implemented : a plan formulation sys tem for use In
program design, a program recognizer to aid in catching implementation and coding bugs, and

an inte ractive documentation system.

Further Work

We hope to use our initial implementation of a programmer ’s apprentice as a vehicle for

continued research on program understanding. What we have done so far is to lay the
foundations of a representational system intended to meet several criteria. First and foremost,
we want our system to be based on concepts which correspond naturally to those used by
practicing programmers. Secondly, we require representational adequacy : that is to say, our

system must be capable of supporting all the capabilities we desire of an apprentice. Finally,
the representation should be simple enough to allow an honest implementation attempt.

t We believe that our work to date does satisfy the basic criteria we have established.
However, many areas of implementation and theory still remain to be elaborated and clarified .
For example, we would like to explore the applicability of our current approach to a larger
range of programming domains, such as numerical computation, symbolic manipulation, and

• data base systems . There are also many desirable functional modes of the apprentice which we
have not yet thought about in detail, such as a smart editor, a “code-cleaner”, a smart display
system, and so on. Undoubtedly, expansion in these two directions will reveal shortcomings in
our initial system.

Two significant problems have already surfaced. First of all, we are lacking a good theory
of how to organize a large data base of programming knowlege. We have managed thus far
in our prototype implementation to avoid facing this issue squarely, but we cannot do so for
much longer . Secondly, our current Implementation effort has been fragmentary. The
deductive system and the surface plan analyzer don’t really “talk to each other” at the moment.

• The communication and interaction between subsystems required to achieve a fluid and robust
apprentice environment presents new and as yet untreated design problems.

5-- 5-••• 5- - •- - - -
- -

••• -- •- •- 5-- -


~~~‘~~~~~~~~~~~~
5- ’~~— -  .~~~~~,~~~~~~•__~~~~ -_ _ ~~~~~~~~~ Wfl~~~~~~~~~~~~~~~ 5-V~~~~ 5-7 --5-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5- - -5-—- -5-,—-
.!’

17

1.5 Anatomy of the PA.  System

• In order to aid in reading of the remainder of this report. Figure 2 names and shows the
important relationships between the major knowledge representations and processes In our
system.

At a gross level , the anatomy of our PA . system consi sts of two major block s ,
corresponding to two major phases of writing a program: design and coding. The left side of
the figure shows the knowledge structures that are most directly involved in coding activity;
the right side shows the deeper knowledge used In program design. All the apprent ice’s
knowledge about a given program taken together is referred to as the “complete program
description”, which Is used for continued maintenance of the program.

- At the leftmost of the figure is LISP code with comments. We feel hr is very important to
have as the base level in our descriptive system actual code that can run in tine standard LiSP
environment at our computer site.

The first level of abstra ction above the raw LISP code Is called the surface plan. It is
obtained from the LISP code by a process called surface flow analysis. In a surface plan. the

• code has been aggregated into meaningful units called segments, and the implementation details
of data flow and control flow (e.g. the use of variables and the control primitives of LISP
such as PROG. COND, etc.) have been abstracted away.

Deep plans are the level of description which captures the design Intentions of the
1 programmer. A deep plan is structurally similar to a surface plan in the sense that it Is made

J up of segments. However, the segments in a deep plan are related by purpose links, In addition
to data flow and possibly control flow. Purpose links express teleological dependencies between
parts of a program, such as goal-subgoal and prerequisite relationships. In the ideal case,

• I purpose links form the basis of a formal verification of the program.

• In order to support plan recognition and verification, the apprentice requires a reasoning
• 

• 
system , and a knowledge base of standard data structures, specification forms, and plans.

- - 
These components of the PA. are also shown In Figure 2. • •

-4

- - — ••---~~ ~~~~~~~•• 5- — 5-——~~~ - --~~ - • — • - -~~~ 5-



_ Ei~ /I
- I 1
3 1 ~~~ •‘~._ C.D 0

-
~~~ 

- ‘
I5- —I , .— .

L~J I O _

__ a I ~~~~* I~~~~~u-. ,L~e
I j c ~~S S — — — — 4,

~~~~~

J4

~~~~~~

I

H IS I I ~~~~~~~~

H LU
-~~~

I V
(~

- • I — Q_

LU 0 ’ O

(~
)—.T.—

‘

~~~~~~

-,

~ 

I
,
)

Figure 2. Gross Anato.y of P.A. System 

- ~• • -  - ——--- 5-5- - _5 -~~~~



- ‘ ‘5-tW5-! 
• ~~~~~~~~~ — •.• -—— -—— --—~ - --—-— ~~~• ~~ .•— - -  --

- 

~~~~~~~~~~~~ - --.--—------—•— --5- - - - ,—— -~~~-5- —-. 5-5-- 
~~~~~~~~~~~~

- 1

I 

19

For the apprentice to understand a particular LISP program means that it has connected all

1 three levels of description for the program: code, surface plan, and deep plan. One way this

can happen is for the programmer to initially specify a deep plan for his program through

interaction with a plan formulation system like that described in Section 5.1. Then the

I programmer actually Implements his plan In LISP code. The apprentice checks to see that the
• LISP code is compatible with the programmer’s intentions by first building a surface plan, and

- • 
then “recognizing” the correspondence (with the aid of the programmer’s comments) between

segments in the surface plan and segments in the deep plan. - - •

H
I~~4

I 

-

~

5- -~~~~~ ~~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ - —~~~~~~--~~~~~~~~~~~~~~~~~~~~~ -~~~~-- - • ~~ -- ---~~~~~ —-•



- - • 5-5- _5-• 
- ~~~~~~~~~~~~ -r -~~ 5- - 

___________________________
-5-- —5- - -

20

CHAPTER TWO

THE ELEM ENTS OP PRO GRAM DESCRIPTI ON

In this chapter we present the descriptive system which underlies all of our work on

program understanding . This Includes a description of (i) data obj ects and the ir

implementation, (ii) the input-output behavior of modules in the program, (iii) the Internal data

flow and teleological structure of the modules, and finally (iv) the surface features of the

programming language used to write the code.

ProgrammIng Concepts

Often a group of procedures and the data structures upon which they operate can be

thought of as multiple aspects of a single concept. Hashing, for example, is a concept which

involves both a table data structure and procedures which implement the rules of associatIve

retrieval. Thus hashing is a conce ptual grouping of related objects (e.g. a table, buckets ,

• entries, and keys) and related-operations (e.g. insert , lookup, delete , and hash). Thus the

conceptual foundations of our apprentice Include both procedural and data abstractions.

The notion of a programming concept as a grouping or “cluster” of objects and operations

is similar to the ideas expressed In SIMIJLA cDahl, l97O~ and CLU <Liskov, 1974>. However

our intention Is not to enforce these Ideas as part of a programming language, as in these

systems, but rather to employ the notion of clustering as a basis for describing programs - 
-

written in LISP.

Before going on to the details of our descriptive system, It is important to stress that our 5-

- 
! initial treatment of programming concepts is Intended to be abstract; for example, we are

trying to capture the essential aspects of hash tables in general1 not an ad hoc description of a

particular hash table In a particular confIguration. In later sections, we return to the issues of •

understanding a particular program In terms of more general concepts. 
. • 

-

- ----- 5-----



—-5---- 
~~~~~~~~~~~~~~

- 5- - - -
~~~~~~~ 

- --- -~~~~~~~

- 

21

The reader will notice that our current descriptive system ignores many complex
efficiency-related issues such as time-space trade-off. For example, nowhere in our current

I system have we provided the ability to state that hash tables provide quick access at the cost of
excess storage. We have however concerned ourselves with another difficult problem , that of

describing and understanding programs with mutable data structures, side effects and sharing
of sub-parts. This aspect of our work is a significant advance over most previous systems

- 
4 

which have stayed within the domain of pure programs.

-• -- - -5 -5 - -~ - ---5--~ -— -— •- 5-— 
- s-.- - .  - - - .~~~~ - .  ~~~~~~~~~~



‘5-.. -‘-- ~~~- ..— --—.-.,“.-,- -- —5-—-.-.- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - —- - -- —I.—-- ~~~~~~~~~~~~~~~~~~~~~~~ 
— -•— ••,--.—.•——. - --5-- 5--,’

22

21 D.~oz 4ptIon of Data ObJ.ct.

The apprentice!s knowledge of data structure takes two fornu~

(i) The definitIon of object ~~~ 
which are recorded In the programming knowledge

base, and thus become part of the apprentice’s permanent “vocabulary”.

(ii) The description of particular objects (i.e. tokens of object types) that arise in

describing and reasoning about the behavior of particular programs. These objects

are described using vocabulary appropriate to the type of object involved.

Parts DecompositIon

We want our apprentice to use a description of data objects which human progravfliflels

will also find natural. One of the most basic data structure notions is that there are object

types which are characterize d by their decomposition Into parts. The basic object type of LISP,

for example, is the CONS which can be described In terms of having two parts named CAR and

COR. In order to avoid committing ourselves to the term inology of a particular programming

language we refer to this object type as a PAIR and call Its parts LEFT and RIGHT:

(O6,)ECT TYPE pair)
(PART pair left)
(PART pair right)

The simplest object type In our system which has parts Is called a CELL; It has one part

called CONTENTS:

(OBJECT-TYPE c.ll)
(PART c•l l contents)

_ _  



- - • - 

- - 

- - - 5-~~
5-

~~~ — -

r~~~

-

~ 1 Furthermore, in our current system every object type having parts decomposition Is
potenually mutable, i.e. its parts may be changed without changing its Identity (more on the
Implications of this point in Section 2.2).

Particular objects are denoted by unique object identifiers, e.g. OBJECT-25. In order to
ind icate that a particular object is an instance (token) of a given type. e.g. PAIR, we write

(PAIR object-25)

As a mnemonic device , in the remainder of this report we will usually employ unique object
identifiers which have the object ’s ty pe embedded , e.g. PAIR-25. However no semant ic
significance is attached to the use of upper and lower case type. these are used only to Improve
readability.

Once the abstract definition of the part structure of an object type has been gIven, the
parts decomposition of a particular object can be written using the vocabulary of defined part
names. The parts of an object are other objects. Thus, for example, the following list
structure would be represented in our system as shown below:

pair-25H I
/ J \ I

palr-26 pair—27 - =
-
~ I I I I I 1

(LEFT pal r-25 pal r-26)
(RIGHT palr-25 pair-27)

Part names can also be used in a t~nctional notation to refer to a part of an object without
specifying an actual identifIer for the part. For readability, square brackets (read “the object
which is the”) are used to denote functional use of a part name. Thus to describe the following
shared structure

l ’ s

U
I

-

-

~

-

~

-

—
—5-----. - — _-5--....—-—-

~~~ ——‘5-—-.- 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= pair-ES pair-fl
I ~I

obj.ct—ISS

either of the three following farina are equlvalet

(LEFT pair-29 (RIGHT pair-tB])

(RIGHT pal r-2B (LEFT pair-tB])

(LEFT palr-29 object-lOB)

(RIGHT palr-28 object-lOB)

In any case, when it comes to reasoning with this information, the square bracket notation Is

always expanded into the symmetric mukipleitatement form above introducing “anonymous

objects (see Section 3.1) If the actual identity of all the objects involved cannot be determined

at the time of expansion.

Generic Part Structure

Some objects. for example arrays, have many parts which are not usually distinguished by

distinctive names. We call this ~enerlc part structure, in which each part Is identified by the

generic part name and a numerical index. For example,

(OBJECT-TYPE array)
(GENERIC-PART array Its.)

In order to refer to a particular Item of a particular array, we write

(ITEM array-25 lnd x -2 obj .ct -17)

meaning that OBJECT-li is the Item In ARRAY-25 indexed by the index number INDEX-2.

-.~~~~~~~~~~~~~~~~~~~~~--~~~~~~ — -5 - - - -— —------.- . ~~~~~~~~~~~~~~~

-
- - - - -—-r ~~~

-

25

Type Restrictions

In general, the definition of an object type involves more than just part structure. Often
there are restrictions on the type of object that may fill particular part slots. For example, the
key part of an entry in a hash table might be restricted to being an atom, or the items of an
integer-array must be integers. We express this through a MUST-BE statement:

— (OBJECT-TYPE entry)
(OBJECT-TYPE ato is)
(PART entry keypart)
(MUST-BE keypart entry ato.)

(OBJECT-TYPE Integer-array)
(OBJECT-TYPE Integer)
(GENERIC-PART Integer-array Iten)

• (MUST-BE Item Integer-array Integer)

Similarly, a part may be restricted to one of several object types. A linked list structure, for
example, may be defined recursively as an object with two parts called FIRST and REST; the
REST is required to be either an object of type LIST or the empty list. (In LISP, of course, the
empty list is the special atom NIL) Suc h ranges of restriction are expressed by MAY—BE
statements:

(OBJECT-TYPE list)
(OBJECT-TYPE eaptyl ist)
(PART list first)
(PART list rest)

(MAY-BE rest list list)
(MAY—BE rest list eaptylist)

26

Furthermore, our current system interprets MAY-BE ’s for a given part as an exhaustive

enumeration of possible types.

-
I

Requi red typ e and permissible type statements can also be applied to properties. relations,

and implementation parts (Section 2.3).

- ~- Properties

Besides decomposition Into parts, data objects are also characterized by various properties,

such as the length of a list , or the depth of a tree. The notation for property description Is

similar to that for parts, e.g.

(PROPERTY list length)
(PROPERTY empty list length)

(LENGTH list- I 5)

Furthermore, since properties of particular objects are themselves objects, type restrictions

are also applicable to properties. For example, the length of a list must be a positive integer,

and the length of empty lists Is zero:

(OBJECT-TYPE pos-I nteger)
(M~JST-BE length list pos- Integer)
(MUST-BE length emptyllst 0)

Many properties of programming data objects are defined in terms of the object ’s internal

part structure, and are thus subject to change if a part is changed . For example, in LISP the

RPLACD operation changes the REST of a list, thereby changing its length if the new REST has a

different length than the old one. Such dependencies are captured in p~roperty-def1flitlOfls such

as the follo wing:

(PROPERTY-DEFINITION
(length list pos -Integer) (a>
(length (rest list] [ainusi pos-integer]))

-~ -

‘—5-— .--- - _-r_— ~~~~~~~~~~~~~~~ - -~~

27

The above definition can be used in several ways. When the deductive system (Chapter
Three) is attempting to determine the length of a particular list, it can expand the right-hand
side of the property definition and try to prove that the length of the REST of the list is one
less than the desired length. Conversely, given the know n length of the REST of a particular
list, the definition can be used in the opposite direction to calculate the length of the enclosing
list

Notice that in this examp le we have introd uced symbo lic arithmetic , which brings with it a
raft of possible computationa l difficulties. However , for our present purpose s, simp le ad hoc

techniques for reasoning about arithmetic relationships will be adequate.

A final use the apprentice can make of the above property definition is to conclude that the

length of a list depends on the REST, while being Independent of the FIRST. This sort of
- - dependency analysis Is important for reasoning about side effects (Sec. 3.2).

Relations

Objects may be related to other objects in other ways than being parts or properties. For
example. a common relation is membersh!p of an object in a data structure. Unlike properties,
relations can be many-to-many mappings. A list has only one length, but it may have many
members; similarly, a given object may be a member of several lists:

(RELATION member list object)

(MEMBER list-i object-2)
(MEMBER list-i obj ect-3)
(MEMBER list -2 obj ect-3)

- 4 Like properties, however, relations are often defined In terms of the part structure of the
objects involved, and are therefore subject to change when the parts of either object are
changed. For example , an object is a member of a list if and only if It is the FIRST of the list
or a member of the REST of the list. This Is expressed In a relatIon-definItion:

- - - -~~.-5--

- - W n —~~- ! 5 - 5 - - -

- I
28

-4

(RELATION-DEFINITION
(member list object) <a>

(or (first list object)
(member (rest list) object)))

- - In our descriptive system, the same named relation or property may exist for several

different object types. For example, membership is also defined for pairs:

(RELATION member pair object) -.

(RELATION-DEFINITION -

(member pair object) (s>

- i (or (left pair object)
(right pair object)))

:~~ Thus, for any given objects, the applicable relation or property definition is determined by

the types involved. Furthermore, there is inheritance of relation definitions from a given

object type to its specializations (see Section 2.5). For example, since association lists (a-lists) are

a specialization of lists, they have the same membership relation, unless specified otherwise.

Type restrictions can also be placed on relations. For example, an a-list Is a list, all of

whose members are pairs:

(OBJECT-TYPE a-list)
(MUST-BE member a-list pair)

Figure 3 is a summary of the the data description statements presented in this section. The

forms enclosed in angle brackets are mets-syntactic in the usual sense. Note that an

<object-Id> is a unique object identifier, such as OBJECT-lB.

L

- ----~~~~ -- - —- ---- -- -— - - ~~~~~~ -.-,--,-..- - ~~~~~~~~~~~~~~~~~~~~~~~~~~ —‘.-~~~

~~~~ 
- 

~~~~~~,.. —5-—!——’-..-  - 
-

—.—---.-.‘-.--.5-----.- --. ,--.-’,—- ---~~-----,—.-—-,----——- -——-- ,---.-----,-

29

Description of Object Types

Parts Decomposition

(OBJECT-TYPE (object-type>)
(PART <obj ect-t yp e> <partname >)
(GENERIC-PART <object-type> <partname>)

Type Restrictions

-

- :- (MUST-BE (part property ,ralation_name> <object-type—i> <object—typ.—2))

(MAY-BE <part ,property,relation-name> (object-type-i> <object—type-2>)

Properties

(PROPERTY (object-type> (property-name>)

Relations

(RELATION <relation-name> (object-type-i> <object-t yp e-2>)

Description of Particular Ob jects

((obj ect-t yp e) (obj ect- id>)
(<partname) <object-Id-i > (obj ect- ld-2>)
((partnam e> (object-Id-i > <Index > <obj ect -Id-2>)
(<property-name) <obj ect-Id -i> <obj ect- id-2>)
(<relation-name) <object-Id-i> <object-Id-2>)

Figure 3. Summary of Data Object Descriptions.

L I — ‘ -— -.— 5- - ~~~~~~~~~~~ - _-~
___p_ —‘-- —~~--~~~ — ~~~~~~ — -_-- --------- --__ -5-

-- -— 5 - Y 5 - W ‘r~~ ______

30

- 1 2.2 Specifica tion of Behavior

Structural decomposition of objects does not alone provide an adequate description of

-
~ -

. programming concepts. For example, the concept of a stack is characterized both by its
-

I recursive structure (top element and rest of the stack) and by the push and pop operations used
-
I to manipulate this structure. Thus in order to describe a stack at this level of abstraction (I.e.

without reference to details of implementation) we require a way of describing the behavior of

the operations on It.

Programmers understand the behavior of their programs in terms of the effect of important

units of behavior (which correspond to “chunk s of code). Depending on focus and level of

abstraction the appropriate aggregation of behavior (and therefore code) changes. For

example , if one is focussed on a particular stack, the appropriate units of behavior are the

push and pop operations. However, if one is thinking at the level of the entire time-sharing

system in which the stack is embedded, the appropriate units of behavior are much larger. We

refer to units of program behavior (and the aggregations of code which realize that behav~or)

as segments.

A segment can be characterized by Its effect on any set of Input objects which satisfy

certain restrictions. For example, a push operation acts on two Input objects, one of which

must be a stack and the other of which might be restricted to the object type appropriate for

3
membershIp in that stack. The effect of this segment is to make the second input object the

new top of the stack, while the old stack becomes the rest of the new stack.

-

~ In general, a segment’s behavIor Is specified by Its input restrictions, the modification it

performs on the Input objects, the new objects It creates, and the conditions that are guaranteed

to hold true between the Input and output objects following execution of the segment. Thus

for an implementation-independent level of behavioral description, we use the traditional

notion of Input-output specifications. .

-- - ~~~~

FL
5-

. Specs

We have developed a particular notation for input-output specifications called ~~~~ Specs
have four sections: a list of input objects (INPUTS), a list of input conditions which are
required to be true for the segment to perform its function (EXPECT), a list of output objects
including new objects created and Input objects ihich have been modified (OUTPUTS), and
finally a lIst of conditions guaranteed to be true on output (ASSERT). As a simple example,
consider the specs for a push segment:

(SEGMENT-TYPE push-segment) -

(OBJECT-TYPE stack)
(PART stack top)
(PART stack rest)

(SPECS-FOR : push-se gment
(INPUTS : stack-i object-2)
(EXPECT: (stack stack-i))
(OUTPUTS : sta ck-3)
(ASSERT: (stack stack-3)

(top stack-3 object-2)
(rest stack-3 stack-I))

Specs like these express what we think is the natural , common way that programmers
conceptualize the behavior of code they have written, or are planning to write. Each segment’s
specs describes the intrinsic input -output behavior of the segment , i.e. the conditions that hold
before and after execution of the segment , independent of Its Interaction with surrounding
segments. The intrinsic behavior of a segment is determined solely by its internal workings.
As a second example, consider the intrinsic description of FIRST-SEGMENT, which takes the
FIRST part ofalist:

-_
_ _

r -

-

~

--

~~~~~~~~~
(SEGMENT-TYPE first-segment)

(SPECS-FOIl: first-segment
(INPUTS: list-i)
(OUTPUTS : object-2)
(EXPECT: (list list—i))
(ASSERT: (first list--i objeCt-2)))

FIRST-SEGMENT is a segment type in the same sense that LIST is an object type. Each

instance (token) of a segm ent type has a unique name, e.g SEGMENT-iS. The type of a

particular segment is denoted as follows:

(FIRST-SEGMENT segment-75)

Each instance of FIRST-SEGMENT has the same intrinsic behavior, i.e. the specs given

above. However , various instances of FIRST-SEGMENT may be used for different purposes, e.g.

to extract a key f rom a data entry, get the top of a stack, and so on. The use of a segment in a

particular program is called its extrinsic description. We will return to the topic of extrinsic

descriptions In Section 2.3 on implementation and plans.

The definiti on of segment type Implicitly defines a new n-ary relation with the same name,

which can be used to express the relationship between the input and outpu t objects. For

example

(PUSH-SEGMENT stack -iD obj ect -3 st ack-li )

asserts that STACK- il ls the outpu t obj ect resu lting from the app lication of the specs for

PUSH-SEGMENT to inputs STACK-ID and OBJECT-3i. Notice that the meaning of the argument

positions in the relation impl icitly defined by a segment Is determined by the order of objects

lIsted in the input and output clauses of the specs. In the case where there is a sing le output 
J

object. Is is also convenient to allow use of functional notation f or such relations, e.g. :

(PUSH-SEGMENT stack-iD obj ect-33 !~



~~~ “-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

33

refers to the single output object of the segment with the gIven inputs, without naming it
explicitly.

The general format for wrIting the specs of a segment Is shown at the top of Figure 4
(angle brackets are mets-syntactic as usual). Note that each <obj ect -Id) In the input and
output lists is assumed to be unique only within the scope of the specs in which it appears.
However, the <segment-Id) is a system-wide unique identifier for the segment. Beneath the
written format is the diagrammatic form for representing specs that we will follow throughout
this report. (Notice that there are two alternative positions for the (sega.nt—ld> In the
diagram.)

Input objects are any data objects (e.g. an array, a number, or a list) that the behavior of
the segment depends upon in any way. In terms of LISP code. Input objects enter a segment
either as bindings of a lambda argument or the value of a free variable. The conditions listed
under EXPECT are the conditions on, or relationships between individual input objects that are

-
-

expected to hold just prior to the execution of the segment, and upon which the correct
functioning of the code depends . AU pre-condlUons upon which the segment depends much be
listed in EXPECrs.

The other half of a specs Is the list of output data objects and conditions on them. Any
data structure that is changed as a result of executing the segment. or newly created In the
segment, must be listed in the OUTPUTS. In terms of LISP code, output objects are usually the
return value of an s-expression, the value of a f ree variable, or list structure that has beenr RPLAC’ed or newly CONS’ed. ASSERT conditions are conditions on the output objects, or relations
between input and output objects, that will hold immediately following the correct execution of
the segment. With the exception of special rules for side-effected objects (which will be
specified later), nothing Is assumed to be true of output objects except what Is explicitl y
AssERred.

Our specification language is based on the concept of data flow between operations, similar
to Dennis <1975>. Thus, a fundamental difference between input-output specificatIons In our
system and those in the traditional Floyd -Hoare approach cHoare, 1969> is that variables in our
specification assertions denote program data objects rather than literal program variables, as In
Floyd-Hoare. An additional minor difference is that, since we are using a specially tailored
deductive system , we have modified thi standard quantifiers of predicate cakulus to more

- 5 - - - - - 5 -

- - - - -~ -- - ---—--~ 5---- ---
~~~
—

~~
-—-—— P., - -,- _ _--_-__,___ ——-—5-—-——-- 5----

34

(SPECS-FOR: <segment-Id>
(INPUTS : (object-id> (object-id> ... )

(OUTPUTS : <object-id> (object-Id> ... )
(EXPECT: (pre-conditlon )

(pre-cond it lon> ... )
(ASSERT : <post-condition)

(post-condition> ...

(object-id) (object-id>
(segment- Id > 4’ —

<pre-condition)
<pre-conditlon)

(segment-I d>

<post—condition)
(post—condition)

(o~ [t_ld) (objct-Id>

* I

Figure 4. Written and Diagrammat ic Format for Specs.

_ _ _  —.5-- - - -~~~



35

convenient forms. (See Section 3.1 for more details on quantif iers in our system.)

One very important form of condition that will appear In almost all specs, is the ~~restriction. For example . In the specs for FIRST-SEGMENT, given earlier, there is the expectation
(LIST LIST-i ) . This means that the correct functIoning of such a segment depends on the

- 

- Input object LIST-i being of the type LIST. Because type restrictions are so common in specs,
for presentation purposes we will often embed the typ e restriction in the object ident ifier itself
and omit the exp licit expectation En the specs. Thus for example, we abbreviate

(INPUTS : object-i) to (INPUTS: list-i) .
(EXPECT: (list object-i))

and similarly for other typ es.

Case Splitting

Much of the power of computer programs derives from the ability to do conditional
branching. This branching behavior is reflected In specs by introducing ~~~ For example,
the specs for LOOKUP-SEGMENT, a segment to look up entries in a hash table, has two cases:
either the search Is successful, in which case the required entry Is returned; or the search is
unsuccessful, In which case a failure Indication is returned.

: 1

.

~~~

.

L ~ ~ - -~~~~~ - 5-- —-5--. -- ~~
—- -——---

~
-

~~~~.~~—-.—-- - —“--— -—--—-- ----



5-

(SPECS-FOR: lookup-segment
(INPU TS: k.y-5 table-b)

— 
(CASE-i

(EXPECT: (there-exists-a-un ique (member table-b sentry)
such-that (keypart entry key-5)))

(OUTPUTS: entry-i)
(ASSERT: (keypart entry-i key-5)

(member table-b entry-i)))

(CASE-2
(EXPECT: OTHERWISE)
(OUTPUTS : fallure-8)
(ASSERT: (for-all (member table-b sentry )

(not (keypart entry key—5))))))

The part of a segment’s specs that is applicable in all cases is listed first. In the above

example, for instance, the Inputs to a LOOKUP-SEGNENT are always a key and a table. The rest

of the specs is divided Into cate clauses, labelled CASE-i, CASE-2, etc. The expectations of the

segment as a whole are met if and only if all non-CASE-embedded EXPECVs are met and the

EXPECT’s of one case are met. Furthermore, the EXPECT conditions are supposed to be mutually

exclusive, though the current version of the apprentice does not actually check for violations of

this. The special keyword OTHERWISE Is a convenient abbreviation for the conjunction of the

negations of the EXPECT conditions of all the other clauses. Obviously only one OTHERWISE
may be used in each specs.

In diagrams, case splitting is indicated by dividing the bottom of a specs box into sections,

one per case, using vertical lines. Examples of diagrams with case splitting will appear later.

:1 More details on the role of case structure in reasoning about programs will be given in Chapter

Three.

F 
—

_ _ _



- - - ‘r---- 5- — — -—5--——- ~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --
~
-
~~

- -~~~~~
.- 

~~ - , - -~

37

Side Effects

In Floyd-Hoare type programming semantics, which is based on the concept of program
variables as opposed to the flow of data objects, the issue of side effectsu usually refers to F

programs that change the value of a global free variable. In our descriptive system, however,
the side effect problem arises due to the notions of identity and mutability of data objects. A
mutable data object is one whose parts (and therefore properties) can be changed without
changing its identity. All data objects in our system that have part structure are potentially
mutable.

In specs. each output object falls into one of three classes:

(I) The out put objects is known to be identical to one of the Input objects.

(ii) The output objects is known to be new and uniquely created.

(iii) Neither of the above is known. -
.

Our specification language has special assertions :o express these possibilities. The default
notation denotes the least specified case (iii) above. For example , the following specs would be
satisfied either by a segment that replaces the LEFT part of pair (i.e. RPLACA in LISP) or by one
that makes up a new pair with the new LEFT and the old RIGHT parts:

(SPECS-FOR : put-left
( INPUTS : pair-i object -2)
(OUTPUTS: palr-3)
(ASSERT: (left palr-3 object-2 )

(right palr-3 (right pair—i])))

Thus in these specs, PAIR-3 may or may not be indentical to PAIR-i. To specify a side
effect, an ID (for identical”) assertion is used: 

- — S . - -- ~~~~~- - - ~~~~-— ----~ - -5-- --- - -



5- —5--— _S_—-_ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-5-- -—- ——5- —-~~-- 

—5-- - -

~~~~~

-5-— —

~

—

~~

— ——
-:

~~~~~~~~ S - -  -

(SPECS-FOR: replace-left
(INPUTS: pair-i object -2) 

-

(OUTPUTS: pair-3)
(ASSERT: (Id pair-i palr-3)

(left palr-3 obj ict-2)))

— These specs would be satisfied only by an implementation using RPLACA. For output

objects that are ID to Input objects, our current system assumes that all ~~~ not explicitly
changed In the output situation are the same In the output situation as In the input situation.
Thus, for example, in the specs for REPLACE-LEFT it is assumed that the right part of PAIR-3

Is unchanged from the Input situation , I.e. It was not necessary (though it would not be
incorrect) to ASSERT:

(right pair-3 (right pair-i])

~~ 

~ , However, all properties and relations Involving side-effected objects in the input situation
are considered unknown in the output situation unless they are explicitly ASSERT’ed.

Notice that PAIR-i and PAIR-3 In the above specs are different names for the identical
object in the “before and 0after situations, respectively. This double naming is necessary ir
order to allow relations to be specified between the parts of the side-effected object In the
before situation and In the after situation, as for example In the following segment which
exchanges the RIGHT and LEFT parts of a pair:

(SPECS-FOR: swap
(INPUTS : pair -i) —

(OUTPUTS: pair-2)
(ASSERT: (Id pair-i pair-2)

(left palr—2 (righ t pair—i])
(right palr-2 [left pair—i]))) 

- - - —

5 - -



!hhhl5- 
5-_ •

~

__5-•

~~~~

• •?..

~

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ —--- _ - - - - - -.-— — — -— -5---——- ‘—5---—- -— ‘.- 5 - 5 - ’  ~~~~~~~~~~~~~~ ‘ -~.r 5 - - ’5- - -5-~~~

1 1  
. . 

39

A NEW assertion Is used to specify a newly created abject (e.g. by CONS) which is known to
be distinct from all existing objects:

(SPECS-FOR : create-left
(INPUTS: pair-i object-2)
(OUTPUTS: palr-3)
(ASSERT: (new pair-3)

(left pair-3 object-2)
(right pai r—3 (right pair-i])))

Identity and mutability of data objects introduce another complexity that is not present at
all in traditional variable-oriented semantics: sharing of data structures. This Is a
common technique in LISP programming, which is achieved by inserting a single data object
as part of two different data objects. The specification language presented thus far is
adequate to describe segments that have this effect. However, it is important to recognize that
the real difficulty with sharing is not the specification per se. but rather being able to reason F

effectively using the specifications. Thus we will see that a great deal of mechanIsm in the
deductive system is concerned with reasoning about side effects.

Programming Concepts

Now that we have Introduced the essentials of program behavior and data object
description, we can return more concretely to the notion of a programming concept as a
grouping of object types, segment types, and associated relations and properties. For example,
the concept of hashing, which runs throughout this report, has as its constituent object types:
the hash table, buckets which are part of the table, entries, and keys which are part of entries.
Furthermore, In many concepts one of the constitutuent object types seems to be the primary
ob iect, i.e. the object whose Implementation has the most Important effect on the
Implementation of the other objects and segment types. For example, in hashing the hash table
is the primary object. Three important segment types for hashing at thIs most abstract level of
description are lockup, insert, and delete, each with its appropriate specs. Furthermore, the
relation of membership of an entry In the table and of the hash formula Itself should also be
considered as important high-level constituents of the hashing concept (Unfortunately our
present specs for the hash segment are significantly deficient, since we do not yet know how to

_ _  5-”— — ——- - —  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •- -- 5-5-5-—~~~~~—-—  -5-


40

represent the efficiency Issues that are the crux of why hashing is done in the firU pu ce.)

Figure 5 shows how the information associated with the hashing concept is represented by

the apprentice. Figure 6 following also shows the Information which our current apprentice

associates with the concept of arrays, another Important concept that we wi ll make use of in

examp les. Many of the details in these figures, for example the unusual quantifiers used in

the specs for lookup, Insert, and delete, can be skipped on first reading, since they will be

explained In later sections.

__ j
— - r n--rn- ~~~——~-—-- --

___ - — -
-5--’---- .~~~- — ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ‘-~~~~~~~~~~~~ ‘ ‘

~~~~~~~~~~~~~

41

(CONCEPT hashin g )

(CONSTITUENT-OBJECTS hashin g (table entry key Index))
(CONSTITUENT-SEGMENTS hashing

(lookup-segment insert-segment delete-segment hash))
(CONSTITUENT-RELATIONS hashing (member Index-of))
(CONSTITUENT-PROPERTIES hashin g (size))

I (PRIMARY-OBJECT hashin g table)

(OBJECT-TYPE table) (OBJECT-TYPE key )

(OBJECT-TYPE bucket) (OBJECT-TYPE entry )

(GENERIC-PART table bucketpart)
(PART entry keypart)
( PART entry datapart )
(MUST-BE bucketpart table bucket)

(MUST-BE keypart entry key)

(PROPERTY table size)

(MUST-BE size table pos-integer)

(RELATION member table entry )
-
‘ (RELATION-DEFINITION

(member table entry ) (R>

(member (bucketpart table (hash (keypart entry]])
entry))

(RELATION index-of table index)
(RELATION-DEFINITION

(Index-of table index) <.>
(and (pos-Integer Index )

(less—than-or-equal (size table] Index)))

Figure 5. Representation of Hashing Concept (cont’d next page)



~~~~ ‘
‘
~~~
5-

~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~

42

-

I

(SPECS-FOR: lookup-segment
(INPUTS: key-5 table-6)
(CASE 1
(EXPECT: (there-exists-a-unique (member table-B sentry)

such-that (keypart entry key-5))

(OUTPUTS: entry-i)

(ASSERT: (keypart entry-i key-5)

(member table-B entry-i))))

(CASE-2

j (EXPECT: OTHERWISE)

(OUTPUTS: failure-B)
(ASSERT: (for-all (member table-6 sentry)

(not (keypart e,hry key-5))))))

j J (SPECS-FOR: Insert-segment
(INPUTS: entry-i table-2)
(OUTPUTS: table-3)
(ASSERT: (Id table-2 table-3)

(member table-3 entry-i)
(for-al l (member tabie-2 sentry)

(member tabls—3 entry))))

Figure 5. RepresentatIon of Hashing Concept (cont’d next page)

—-5—---- — —-——- —-5 ——-— —-5 -—- — — AL.~~~ _______

- ~~~~~~~~~~~~ -~~~~~~~ -5• -
~~~~~~~~~~~~~~~~~~~~ - _ _ _

43

(SPECS-FOR : delete-segment
(INPUTS : key-i table-2)

(OUTPUTS: table-3)
i _i (ASSERT: (id table-2 table-3)

(for-all (member table-2 sentry )
(member table-3 entry )

except-for (keypart entry key-i)
- - 

for-which (not (member table-3 entry)))))

(SPECS-FOR : hash
(INPUTS : key-i table-2 )
(OUTPUTS: index-3)
(ASSERT: (index-of table-i index-3)))

FIgure 5. Representation of Hashing Concept (cont’d).

I



- - —- ‘--55- 

— -
~~~~~~~~ --“~~

--- ‘-- ‘-— ~~
-
~~

44

(CONCEPT arrays)

(CONSTITUENT-OBJECTS arrays (array index))
(CONSTITUENT-SEGMENTS arrays (arrayfetch arraystore))
(CONSTITUENT-RELATIONS arrays (Index-of))
(CONSTITUENT-PROPERTIES arrays (size))
(PRIMARY-OBJECT arrays array)

(OBJECT-TYPE array) (OBJECT-TYPE Index)

(GENERIC-PART array item)

(PROPERTY array size)
(MUST-BE size array pos-Integer)

(RELATION index-of array index)
(RELATION-DEFINITION

(Index-of array Index) (a>

(and (pos-Integer index)
—

(less-than-or-equal Index (size array])))

(SPECS-FOR : arraystore
(INPUTS: array-i index-2 object-3)
(OUTPUTS: array-4)
(EXPECT: (Index-of array-i index-2))

(ASSERT: (Id array-4 array-i)
(item array-4 Index-2 object-3)))

.4 (SPECS-FOR: arrayfetch

4 (INPUTS: array- i lndex-2) -i
(OUTPUTS: object-3)

(EXPECT: (Index-of array-i lndex-2))
(ASSERT: (item array-i index-2 object-3)))

Figure 6. RepresentatIo n of Arrays Concept

- ,- -5 , --”~~~~~~~~~~~~~~~~~

45

2.3 Implementation and Deep Plans

Although part of the programmer’s task is to choose the appropriate procedural and data
abstractions for his problem domain, his work does not stop at that point. The abstract data
ob jects and program specifications must be transformed into the available primitives of the
programming environment which is being employed. We call this process program
implementation. Many methodologies have been advanced as the “correct way of undertakIng
this process: top-down, ste p wise refinement , bottom-up programming, middle-out
programming, and so on. Our intention Is not to argue for one or another such methodology,
but rather to investigate what conceptual structures are needed by the programmer’s apprentice
to support Implementation in any form.

Implementation of Data Objects

Data objects are implemented by mapping the parts of the abstract data object onto
structures of less abstract data objects. For example, a hash table may be conceptualized as
having a generic part structure consisting of objects called buckets, each of which may contain
a variable number of entries:

(OBJECT-TYPE table)
(OBJECT-TYPE bucket) -

(GENERIC-PART table bucketpart)
(MUST-BE bucketpart table bucket)

A table may be Implemented as an array, with the items of the array playing the role of the
buckets. Thus,

(IMPLEMENTATION-PART table table-array)
(MUST-BE table-array table array)

-
~~

(IMPLEMENTATION-DEFINITION
(bucketpart table Index bucket) (.>
(item (table-array table] Index bucket))

_ _ _

-- --5-~~~~ - - -’ —-5- _ _ _ _ _ _

46

TABLE-ARRA Y is the name of an Implementation part. It is used syntactically in the same
way as a part name. This Is a comparatively simple example of implementing a data object,
since a single abstract object, the TABLE, Is implemented using a single implementation part, the
TABLE-ARRAY. Consider the Implementation of a queue using an array. This requires three
implementation parts, an array plus two pointers:

(OBJECT-TYPE queue)
(PART queue front)
(PART queue back)

(IMPLEMENTATION-PART queue queue-array)
- (IMPLEMENTATION-PART queue front-poInter)

(IMPLEMENTATION-PART queue back-pointer)

(MUST-BE queue-array queue array)
(MUST-BE front-pointer queue cell)
(MUST-BE back-pointer queue cell)

(IMPLEMENTATION-DEFINITION
(front queue object) <a>
(Item [queue-array queue] (contents (front-pointer queue]] object))

(IMPLEMENTATION-DEFINITION
(back queue object) (a>
(item (queue-array queue] (contents (back-pointer queue]] object))

Of course there are usually several different ways to implement any given abstract object.
For example, queues can also be implemented using two implementation parts. a list and a

back-pointer:

- A A

-5 - ~~~~~~~~~~~~ fl5-~~” ’ ~~ --
‘W ~~~W .‘ ,r .-~

_
~~~~_--—.-~-- .—. .-------_------ - — ,-.- —-5, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-5

47

(IMPLEMENTATION-PART queue queue-list)
(IMPLEMENTATION-PART queue back-pointer)

(MUST-BE queue-list queue list)
(MUST-BE back-pointer queue cell) -

(IMPLEMENTATION-DEFINITION -

(front queue object) <a>
(first (queue-list queue] object))

(IMPlEMENTATION-DEFINITION
(back queue object) (a>

(first (contents (back-pointer queue]] object))

The information above does not specify all aspects of implementing the concepts of either
hashing or queues. Just as the primary data objects above are Implemented in terms of the
structure of a mnre primitive objects, so too segment types are Implemented in terms of more
primitive behaviora l units. Furthermore, the implementation of data objects and segments in
terms of more primitive abstractions often proceeds in coordinated steps. so that at each level

there Is a coherent vocabulary for describing the program. How to organize the representation
of alternative Implementations and multiple levels of description in a large data base is a

-
~ problem which we have not yet dealt with in any depth. Section 2.5 discusses our current ideas

on this and other difficult issues of data base organization in the apprentice.

ii
Implementation of Specs by Plans

Segments are the programmer’s building blocks. To design a program, he puts together a
number of segments, arranging data f low and control flow to satisfy the overall specifications,
In much the same way as an electronics engineer constructs a circuit from electronic
components, or a mechanical engineer constructs a machine from mechanical parts. This
purposeful arrangement of building blocks is called a p~~, by analogy with construction plans,
mechanical plans, and so on. In makIng a plan, the design engineer chooses from a repertoire
of many types of building blocks, according to the requirements of his application. Building
blocks may be very slmpk such as resistors, capacitors and diodes for electronics, or plates.

- -

- - - -—— -5-5 ..— -,,--

~~~~~~~~~~~~~~T~~~~~IiTI~~~~~~~~~

48

rods, and bolts for mechanical engineeling; or they may be large modules with internal plans
of their own, such as filters, amplifiers, and modulators, or pulleys, motors, and gearboxes.

Similarly in programming there is a repertoire of segment types at different levels of
complexity, e.g. FIRST-SEGMENT, PUSH-SEGMENT. INSERT-SEGMENT, etc., which the programmer
has to work with.

Thus a program plan Is a network of segments (similar to Sacerdoti s ‘1975a> procedural
nets), each having its own Intrinsic specs, along with the extrinsic relationships between them.
In our present work we also distinguIsh between two levels of plan: deep plans and surface

plans. Deep plans. which we will dIscuss first, contain only information about the data flow
between segments and the goal structure (teleological relationshIps) between segments. Surface
plans add to this the details of actual control flow In the coded program and the syntactic

mechanisms used in the code to achieve inter-segment communication.

The statemen t of a deep plan has three major sections: a list of sub-segments in the plan. a
list of data flow between sub-segments, and a list teleol ogical relationsh ips between the

sub-segments. We illustrate with GET-BUCKET, a segment used In a typical hashing system to
fetch a bucket , given the key. The specs for GET-BUCKET would be

(SPECS-FOR : get-bucket
(INPUTS: table-6 key-5)
(EXPECT: (table table-6)

(key key-S))
(OUTPUTS: bucket-lO)
(ASSERT: (bucket part tab le-6 (hash key-5 tab le-6 3 bucket-lO )))

The typical plan for GET-BUCKET In an array Implementation of the hash table uses a HASH

segment and an ARRAYFETCH segment. In the apprentice’s notation, this becomes:

(PLAN-FOR : get-bucket

.1 (SUB-SEGMENTS : (hash-i arrayfetch-2 ))) - .

Here HASH-I and ARRAYFETCH-2 are instances (tokens) of the respective segment types.
Diagrammat ically, the segments Inc plan are drawn as sub- boxes ins ide the larger box

- —-5- -- _____-5-5______  ~~_——-
_s____ - -



- -~--— — - - - -
~~~ - - — ----5 — -.~~ 

-
~~~~~~~ W -. - - ‘ -~~~~~~~~~~~~~~~~~~~~~~~~ - -

49

representing the overall segment being implemented. For example, see Figure 7.

Our plan representation does not exclude overlapping of segments i.e. sub-segments shared
between two different enclosing segments — though no overlapping will appear in examp les in

this report. Waters <1976> has reported on overlapping 1oops and similar plans in a corpus of
mathematical FORTRAN programs. -

Since each sub-segment in a plan is an Instance of a segment type, It has the same specs as
given for that segment type

(SPECS-FOR: hash-i
( INPUTS: key-13 table-14)
(EXPECT: (key key-13)

(table table-14))
(OUTPUTs : index -i5)

— - (ASSERT: (Index-of tab le-14 Index- IS))

(SPECS-FOR: arrayf’etch-Z
(INPUTS : array-il Index-18)
(EXPECT: (array array—i ?)

(Index-of array-il Index- 18))
(OUTPUTS: object-fl)
(ASSERT : (Ite m array- li Index- lB obj sct-22 )))

The plan for a segment achieves its specs as a result of the purposeful interaction between
Its sub -segments. Sub-segments interact in several ways. First of all, there is data flow between
segments, e.g. the output object of one segment becomes the input object of another. There are
also teleological relationships between segments, called purpose links. The purpose links in a
plan describe ~why~ each segment Is used. For example, a segment is of ten used because its
output assertions establish the requIred input expectat ions of another, subsequent segment. Lit

us first consider data f low . 

-5 ---5- ----- -~~~~-—--~~ --5- _ _



—~~~~~~~~~~~~-- -- - -—-- -~~~- 

50

- . 3

Data Flow

There are three possible forms of data flow between segments in our plan representation:
input-input, output-output, and output-Input. Input-Input and output-output data flow occur
between a segment and its sub-segments; output-input data flow occurs only between segments
at the same level of plan. Diagrammatically data flow is shown using arrows between the
labelled input and output objects of each segment involved, as in Figure 7. (Note that no
sIgnifIcance is to be attached to thick vs. thin arrows that will appear in some flow diagrams —

these have been used in alternation simply to increase legibility of crossing arrows.) FIgure 7 Ii
encoded in the apprentic e’s data as follo ws:

(PLAN-FOR : get-bucket
(SUB-SEGMENTS : (hash-i arrayfetch-2))
(DATAFLOW : (get-bucket INPUT key-5)

(hash-i INPUT key-13))
(DATAFLOW : (get-bucket INPUT table-6)

(hash- i INPUT tab~e-14))
(DATAFLOW: (get-bucket INPUT table-6)

(array fetch-2 INPUT array -li ))
(DATAFLOW : (hash-I OUTPUT Index 15)

(arrayfetch-2 INPUT Index-18))
(DATAFLOW: (arrayfetch-2 OUTPUT Itea-22)

(get-bucket OUTPUT bucket- lO)))

Let us now consider a particular data flow link :

(DATAFLOW : (hash-i OUTPUT Index-i5)
(arrayfetch-2 INPUT Index-18)) 

-

:

This is an example of an output-input data f low link. HASH-I and ARRAYFETCH-2 are
• sub-segments In the plan for SET-BUCKET. The output INDEX-iS of HASH-i becomes the input

object INDEX-lB of ARRAYFETCH-2. This kind of data flo w can occu r by several mechanisms in

LISP. For examp le, the two sub -segment s could use the sam e free variable for the
correspondIng data objects , or alternatively, HASH-i could give its output object as the return
value of an s-ex pression , which is then lambda-bo und to an argument of the code whic h

1-

t I 
- 

_ _ _ _ _ _ _ _



-• ~~~~~~ -~~~ — —;F - - —.- - ~~~~~ -5 -~~~~~~~~~~~~ --..- - —- -~ - -~ ‘— — -~----— ~~ ~~~~~~~~

5’

I I
key-S table-b

SET-BUCKET 
• _________

key-13 tabls-i4 \

I HASH-i

I
Index-15

I I  /Index-lb array-17
I

ARRAYFETCH -2 I
ltem-22

F 
______________________________________

bucket-iD —

1
— 

Figure 7. Data Flow Links in Deep Plan for GET-BUCKET.

-5-- _____________________—

~

-

~

- -• ---5-- —• - -- -— ‘—-—-5— —-5 —~~~~---- - -~~~



- -_ ~~~•~ •• ••~~~~ -5 ~ ••~-~__•_-5 - 
— -5—

52

realizes the ARRAYFETCH-2 segment. Such Information on how data flow in the deep plan is
realized at the LISP code level is represented only in surface plans, which will be described in
SectIon 2.4.

Sometimes the input data to a segment does not come from the output of other

sub-segments In the same plan. For example, the input KEY-13 to HASH-i in the plan for
GET-BUCKET is not the output of any other sub-segment; rather, it is the same as the KEY-S
which Is an Input abject of GET-BUCKET. This Is called input-Input data flow. Similarly, there

are output-output data flow links between a sub-segment and the enclosing segment. For

example, the output ITEPI-22 of ARRAYFETCH-2 becomes the output BUCKET- 10 of GET-BUCKET.
These kinds of data f low also have many possible realizations In LISP code.

Purpose Links

Obviously segments are not linked together in an arbitrary manner, randomly running data
from one to the other; rather the programmer has in mind a structure of Interlocking goals
and subgoals, which are embodied by the sub-segments of the deep plan. To achieve the
overall specs of the segment he Is trying to Implement, the programmer often poses
intermediate goals which are achieved by sub-segments In the plan. These sub-segments are
useful only if their expectations can in turn be satisfied. Thus a network of goal-subgoal and

• prerequisite relationships is created tying together the sub-segments. This teleoloeical structure
is the deepest level of understanding how a program works.

Since the teleological relationships between a given segment and the rest of the plan answer
the question of why that particular segment is being used, we call these relationships purpose

ij~~s. In our system a purpose link Is represented as a one-to-many relation between an Input
or output condition of a given segment and the input or output conditions of other segments
that support It. Furthermore we categorize purpose links according to whether an EXPECT or
an ASSERT condition is being satisfied: the support for an EXPECT condition is called a PREREQ I -

(for prerequlsite”) link; the support for an ASSERT condition is called an ACHIEVE link.



-r-~ ’ - -- -~~~~~~ ---— ‘ r - - ~ - ~~ ‘
53

I~t us fi~~ consider PREREQ links. The expectations of a sub-segment in a plan can be
satisfied from two directions: either from the output assertions of another (preceding)

sub-segment, or from the overall expectations of the super-segment . For examp le, —

ARRAYFETCH-2 in the plan for GET-BUCKET expects one of Its Input objects to be a valid index
for the given array. This expectation is guaranteed in the plan by the output assertion of

H HASH-i:

(PLAN-FOR: get-bucket

(PREREQ : (arrayfetch-2 EXPECT (Index-of arr.y-17 Ind.x-i8))
((hash-i ASSERT (Index-of table-i4 Index-15))))

(DATAF LOW : (hash-i OUTPUT index-15)(arrayfetch-2 INPUT Index-18))

• 4 •  )

As Is quite typical, this purpose link Is coupled with a data flow link between the segments.
However, it is also possible to have a PREREQ relationship without direct data flow between the
two segments involved. For examp le (see Figure 8), in plans which COR down lists, it I5
common to check for the empty list (NIL) before taking the CAR. The specs for a test segment

has two cases, asserting respectively the success or failure of the test condition on the input
object; but there are no output objects. Nevertheless, one of the cases of the test segment can
the PRERE Q for some other operation to be performed on the same input object.

The second input expectation of ARRAYFETCH -2, I.e. (ARRAY ARRAY-il) is satisfied by one
of the input conditions of the overall plan segment, GET-BUCKET:

(PLAN-FOR : get-bucket

(PREREQ: (arrayfetch-2 EXPECT (array array—il))
((get-bucket EXPECT (table table-b))))

(DATAFLOW: (get-bucket INPUT table-b)
-1 (arrayfetch-2 INPUT array-il))

.•. ) 

~~~~~~~~~ - -- ~~~-~~~- - • ‘ ---- - - -- ‘-- --—~~~~-- — - -—• - — - - 5 - - 5 -- --5- -5 ---——


- -
-5,

54

4’
1 (list list—i)

REST-SEGMENT

(rest list- i object-2)

I
object-2

object-3

(NUILTEST I
(euptylist object-3)

1
(list object-3)

IPREREQ
/

llst-4

(list llst—4)

FIRST-SEGMENT

Figure 8. Purpose Link without Direct Data Flow.

~

~~~—~~~~-- ‘ - ~~~~~~~~~~~~~~~~~ -5-— —  -~~~~~~~~~~~~
‘
~~~~~~ -~~~~~~~ —-‘-  - - - 5 - --


r’~~~~ ~~~

-

~~~~~~~~~~~~~~~~

— ——- -5

~~~~~

-—-

~~~~~~~ 

- 5 -

55

• Notice that in this case the support relation between the conditions In the purpose link is
not literal equality as in the first example. Often a purpose link depends on some Intermediate
deductions using knowledge about desIgn choices. In this case the validity of the purpose link

depends on the fact, recorded in the knowledge base, that the hash table in question has been
implemented as an array:

( IMPLEMENTATION-PART table-b table-array)

- 
~- 

(TABLE-ARRAY table-b array-li)

The dependence of purpose links on such design and implementation facts Is also recorded
by the apprentice as part of a complete program description.

ACHIEVE links usually express goal-subgoal relationships between desired output assertions
of the overall segment and output assertions of certain sub-segments in the plan. Goldstein
<1974> has called these important sub-segments Nmain~steps_. It is also possible In our
formalism, though somewhat of a programming oddity, for an output assertion to be satisfied
directly by an input expectation of the same segment; however, we have found no natural

examples of this kind of purpose link.

The ACHIEVE link in the plan for GET-BUCKET Is the most complicated purpose link
presented thus far:

(PLAN-FOR : get-bucket

:~ (ACHIEVE :

(get-bucket ASSERT (bucketpart table-b (hash key-S table-b] bucket- lO))

((hash-i ASSERT (hash key-i3 table-i4 lndex-i5))
(arrayfetch-2 ASSERT (Item array-17 Index-lb ltem-22))))

“

The validity of this link depends not only on all the data flow in the plan, but also on the
implementation fact that the l’th bucket of the table Is implemented as the i’th Item of the

array:

H

_ j  -- -~~~~---- ~~~-— - -5- -~~~~~~~ ~~~~---- -~~ -‘ ~---- —-~~ - 5 - 5  - —-5—’ -- - -- - — -



,~~~~~ -p,~ - --- -,~ ç~’—’ - - - t , ~~~..’- r.1 —--.- --- --.- .-.! , .-.-.-,-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~—,- ,--- ,--

56

(bucketpart table-b Index bucket) <a>

(item array-li Index bucket)

The complete deep plan for GET-BUCKET is shown in FIgure 9.

Purpose Links as Summary of a Justification

We have already seen that purpose links often involve a brief deductive step typically

using a fact from th e design knowledge base to show that two non -identical conditions

corresp ond. However , the proof structure of purpose link may also be much more complicated

than this. In Chapter Three we will show such an example, wherein the verification of an

ACHIEVE link requires a proof by cases involving vIrtuafly every assertion in the data base.

in general, a purpose link is supposed to capture the programmer’s reason for believing

that a required condition will be met at a particular point In his programs execution. As an

alternative to just “believin(the programmer, the apprentIce can attempt to formally verify

each of these purpose links using the deductive system described in Chapter Three.
The full

record of verification for all the purpose links in a deep plan Is called the j~~ificatiofl of a

program. The structure of this justification. though frequently quite simple, can also be

arbitrarily complex.

Thus one way of thinking about purpose links is that they summarize the important steps

in a program’s justifIcation. We can Imagine two different scenarios in which purpose links

are used. In the first scenario, the deductive system is given just the data flow part of a deep

plan. and the purpose links are generated automatically as a by-product of the
verification

procedure. In this case, the purpose links truly constitute a complete justificatIon of the plan.

since the original proof detail may be recreated at will. In a less ambitious sc enar io, the

purpose links are supplied explicItly by the programmer himself as part of his design, in which

case they are used by the reasoning system as an outline of what to try proving in order to

verify that his Intentions are beIng met. In this scenario, It Is possible that the purpose links

the programmer supplies constitute a necessary but not sufficient justif ication of the plan.

Both of these proposed scenarios are elaborated in Chapter Five.

- - - - - - ---

—-5— -5.’ — - -5——--- —--~~~~~~
- — - ‘ - 5— —“-5— ——--—---—---5 -——-~~~~~~~~~~~ — .-“— -- ~~~~~~ .- — ----5’---- -—-- - --- -------

57

I I
key-S table-6

GET-BUCKET I
(key key-5) (table table-’6)

~~~~~~~~~ 
PREREC

I key-13

— — 

~(key key-13) (table table-14 )4

HASH-i

— (hash key-13 table-14 lndex— 15)

- — (index-of table-14 index-15)

( 

ThdJx-l5 

/
index— lb array— 17

~~ (index-of array-17 index-18) (array array-l7)4

ARRAYFETCH-2

(Item array-li index-lB Item-22

I
I tem-22

ACHIEVE

(bucketpart te~. ,e •6 [hash table-6 key-5) bucket-lO)

1—
bucket-10

Fi gure 9. Deep Plan for GET-BUCKET.

LL .  
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



—-5—— —--5-5——-— —-5- _-._ _,-5__

58

Purpose Links and Control Flow

Purpose links form a set of constraints on sub-segment ordering (similar to Sacerdoti’s
<1975> procedural nets). For example, a PREREQ link between two sub-segments constrains one

to precede the other, since a segment may not execute correctly until Its prerequisite condition
has been established.

A single segment may have several segments which establish prerequisites for it. For
examp le. consider a plan (Figure 10) for Intersection which takes two lists, sorts each one and
then passes the two sorted lists to a fast-interesect segment which repeatedly compares the first
items of each list. The fast-intersect segment has two input objects (the two lists) and two Input

expectations, namely that each list be sorted- Each of these expectations is satisfied by an

output assertion of one of the sort segments.

Notice that although the two sort segments each have a prerequisite link to the fast-Intersect
segment, there at-c no purpose or data flow links between ~~~~~~~~ and thus no constraints on their
relative ordering. Viewed from this level of abstraction, these two segments might execute In
any order (or in parallel, though we are not for the moment giving any attention to the general
issue of parall elism in programs), as long as they both precede the execution of

FAST-INTERSECT Thus purpose and data flow links do not always determine a unique total

ordering of sub-segment execution; they form a partial ordering which is necessary (and if the

purpose links constitute a complete justification, sufficient) for correct execution of the overall

plan. Of course, once a program is actually coded, some totally ordered control flow must be
chosen. For this reason we consider control flow in general to be part of the surface plan of a

program, which will be described In Section 2.4.

A Relation Between Specs and Plans

The form of specs for a segment often gives a strong hint to the structure of a plan to

implement those specs. For example, the main output assertion of GET-BUCKET is formed of a
composition of relations. This form of specification is often implemented by plans which have
a cascade of data flow, as Is the case In the present plan example . Knowledge of such
correlations between particular forms of specifIcation and typical plan structures to achieve

them can be used by the apprentice to aid in understanding programs and , eventually , to

— - 5 - - — - - -  -5 -~~~~-~~~~ - -5



59

I I
list• l li~t -2

1
SORT-I 5ORT-2

(sorted list—3) (sorted lis t-4)

1’ I
list-3 llst-4 PREREQ

PREREc /
ll~t-5 ii t—6

(sorted list-B) (sorted llst—6)

FAST-INTERSECT

Figure 10. Plan With Multiple Purpose Links

-5 

.



-5 --5-5-5~ --5 ‘~~~ —

60

- I generate plans automatically. For example, the use of certain qsantIfIers In specs strongly

- suggests certain types of loop’ plans: existential quantification ~s often achiev ed by search

loops; universal quantification Is achieved by ‘visit-each’ loops. Hewitt c1975a> makes much

the same observation in his proposal of a ‘behavioral semantics for logic’. Further discussion

- of the apprentice’s stored knowledge of general plan types appears in Section 2.5

Deep Plans as Levels of Abstraction

- Deep plan struct ure is an important abstraction which allows a program to be

conceptualized independently of certain syntactic and implementation details. For example. the

data flow links of a deep plan only state which objects move from one segment to another, not

what programmi ng language construc ts are employed in realizing the data flow.

The use of specs to summarize the important behavior achieved- by a given plan is also a

kind of abstraction. When a segment Is used In a larger plan, only its specs are relevant; Its

internal plan can be ignored. Furthermore, when specs are written using very general relations

like membership, whose specific definition depends on implementation decisions, additional

abstraction Is obtained.

While omitting certain information about a program through abstraction, deep plans also

contain additional knowledge which is not explicitly present in the fully coded program. One

-1 example of such knowledge is the segmentation of the code into conceptual units. (This point

will be amplified in Section 2.4.) The teleological structure embodied In purpose links Is also

not always obvious from the program Implementation. Finally, as we have seen, purpose links

often refer to backpound knowledge of data structure, implementation choices, etc.

I Thus to summarize, it should be clear that deep plans are not just a different way of

:1 representing the information already contained in a program, but rather a slgnflcantly deeper

form of knowledge . We believe that plans capture a programmer’s underlying
- 

- 

conceptualization of program structure — the skeleton upon which code Is eventually hung . A

deep plan is i-ealized as a concrete program by choosing a total ordering which is consistent 
- 

-

with the constra ints of the data flow and purpose links , and by using the available

programming language primitives to Implement lowest level segments, along with the control

-

- 1

LL~ - -
~~~ 

-

_________________ —
‘~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- -,.

~~~
, ~~~~~~~~~~~~~~~ 

-_
~~~~ ..- _, ,, - - - n——-- — _________________

64
- I

- .~ and data flow between them. To emphasize this distinction between the underlying conceptual
structure of a program and the more superficial structure influenced by the programming
language, we have called the plans of this section deep plans, In contrast with surface plans,

- which will be described In the following section.

~~~~ ~~~ - ~~~~~~~~~~~~~~~~~ 
- - _—--_--5-5_

- — —--~~~~——----.~~~~- -—--_- -.-_ -__-. — - - -  —
~~~-- -_ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

—-5—..--— --5—.— —--5

‘.‘
~“.“VW .,. ~

—
~~~

—.
~~~

——--“— — —~~~ -—--——-

62

2.4 Surface P1an~

In this section we show how the apprentice represents the relationship between the

underlying conceptual structure of a program. as expressed by the deep plan. and the structure

of actual LISP code that is the realization of the program.

Why Have Code?

Given deep plans, which describe the programmer’s intentions in a much more perspicuous

- - form than raw code, one might be tempted to banish traditional programming langua ges
-

-

- entirely in favor or programming solely In deep plans or something similar. However, this will

not be possible in the near future because of serious Inadequacies in the current state of the art

-

- in specification languages (see Chapter Six). The search for specification techniques that

encompass all the important design criteria used by practicing programmers is still going on.

Furthermore, our deep ‘plan representation Is intended to be a level of abstraction which

ignores many Implementation efficiency issues. Until we have a theoretical basis for dealing

with time-space trade-of fs and such, we cannot give the programmer any better way of

expressing his efficIency-determined design choices than letting him actually write the detail of

the code in the manner he wishes, as long as it is compatible with the deep plan. We feel this

Is the only realistic approach to building a usable programmer’s apprentice system in the near

F ? future.

In order to be a useful !~!~~
programmer’s apprentice. our system must have significant

knowledge of how LISP programs in particular are crafted. Thus, whereas deep plans are

intended to be programming language Independent1 the surface plan representation in this

section is tailored for LISP code. However, the basic approach used here could equally well be

applied to constructing surface plan representations for programs written in other languages

(see for example Waters’ 4976> work on FORTRAN programs).

-
-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- 5 — -5•~~~~~~~~~~~~~~~~~~~~~~~
-5 -5 -5 -5-5-••-5~~~~ ~~~~~~~~~

- -~ - —-- ----5——-- -5- --- -
—

65

J I
Building a Surface Plan sad a CPD -

A surface plan is created by auxmentlng the deep plan of a program with information on
how parts of the deep plan are realized using features of the available programming language
(in this case LISP). In this section we are primarily concerned with defining the surface plan
representation. Chapter Four describes an algorithm for deriving surf ace plan information
from given LISP code.

In general the building of a surface plan can occur in two ways , depend ing on the
programmer’s mode of interaction with the apprentice. With the most primitive apprentice, a
programmer must provide both the deep plan and all the actual LISP code. In this mode, the
apprent ice first analyzes the LISP code bottom-up. as described in Chapter Four, and then
attempts to reccgnize the correspondence between the deep structure and the surface structure,
as described In Section 5.2. A more advanced apprentice, however, moves closer to automatic
programming wherein, for some parts of the program, the programmer supplies only the deep
plan and the apprentice generates the LISP code. In this mode, the surface plan is simply a
record of how the apprentice made use of the programming language constructs to realize the
control flow and data flow in the plan.

The net result of either of the above modes of Interaction with the apprentice is what we
call ch ’ complete program description (CPD). The CPD Includes everything the apprentice
knows about a program: the deep plan at all levels (which refers to data structure descriptions
and other background knowledge), the surface plan, and the actual LISP code (including
comments).

Code Segments and Plan Segments

—

The notion of a ~~~~~ Is as fundamental to the surface description of a LISP program as

it Is to the description of the underlying conceptual structure. Part of our Implicit model of a
programmer Is that he will write a code segment corresponding to each segment In his deep
plan. A code segment Is simp ly a meanlngfu l aggregation of program cod e, such as a

function definition, a function Invocation expression, or several lines of open code. A

particular aggregation of code Is ‘meanlngfu l in our system if It is considered by the
programmer as a unit of behavior, I.e. If ‘It corresponds to a segment at some level in the deep

—-—-—~~~— —--5-— - .- —‘~~~~ —— ~~~~~~~~~~~ —~~~~~—~~~~~~~~~~ —— ——— —~~~~—~~ -——-5—s— - —

plan. Since each plan segment has a corresponding code segment which Is Its realization, we

will often use the unmodified term segment” when the ambiguity Is not confus ing.

Code segments must be hierarchical in the same way that plan segments are, i.e. there are
segments withIn segments, and sub-segments may be shared between larger segments. The
possible sharing of plan segments means that code segments may also overlap. A particular
code segment may be large or small, according to the level of detail required. For example it
may be appropriate for some purpose to consider the entire volume of code for a large system
to be a single code segment. A more refined description, however, would break the code Into Its
major sub-systems with a plan showing the links between them. This description could be
successively refined until IndIvIdual code segments become very primitive operations, such as
CAR and COR . Furthermore , the code for a segment need not appear contiguously on the
standard program listing; for Instance, a group of related function definitions, though
scattered throughout a code listing, may at some level of description be considered a single code
segment

Since the goal of the apprentice Is eventually to integrate its understanding of a program at
all levels , surface plan Informat ion is represented as extra annotation distributed on the
corresponding parts of a deep plan. To begin with, the code correspolnding to each plan
segment is recorded as follows:

((segment-Id> SEGMENT LAMBDA-EXP <name> <cods -entry> <code-entry) ...)
FUNCALL
OPENCOOE

The <segment-Id> above thus identifIes both a deep plan segment and a corresponding
code segment. The <cod.-entry)’s are pointers to actual LISP s-expressions. In examples we
will indicate code-entries by enclosing the LISP s-expression in brace brackets thus:
((PROG ...) } .

We distinguish three kinds of code segments in LISP: lambda-expressIons (named :.nd
unnamed), function Invocation segments (uses of named lambda-expressions), and open c~de

- 1
groupings. These are ind icated respectively by the three alternative keywords LAMBDA-i ~P,

I

- -
-

FUNCALL, and OPENCODE above. For’ named lambda-expressions (I.e. function definitions), and

-- —-5 ~~~~~~~~~~-— ~~~~

~~~~~~~~~~~~~~~~~-



- ~~~~~~

‘

~~~~~~

- - . - - ~~~~~~~~~~~~~~~~~~~~~~
-

~~~~~~~~--~ - -

for FUNCALL segments, the <name> field in the statement above is filled In with the appropriate
atomic function name, to aid cross-referencing.

Instantlations of a particular segment type. e.g. HASH-SEGMENT, may be coded In any of
these forms. For example:

(i)

(DEFINE HASH (K)

(ABS (REMAINDER (SIZE TBL) K)))

(hash-88 SEGMENT LAIIBDA-EXP hash ((define hash (Ii) ... )))

(it)
( ... ( HASH X) ... )

(hash-96 SEGMENT FUNCALL hash ((hash x )))

(Iii)
( ... (ABS (REMAINDER (SIZE TBL) X)) ... )

(hash -90 SEGMENT OPENCODE nil ((abs (remainder ... ))))

Each of the above segments has the same behavior at the deep plan level , i.e. the same
- .1 specs. The differences between them are Important only for the surface stru cture of a

particular program. For Instance, in a single program there Is usually only one DEFINE (E s.
named LAMBDA-EXP) segment for a given segment type all FUNCALL segments have the same
specs as the DEF INE segment with the same function name.

- I

~~~~~~~~~~~~~~~~~~~~~ - — —--~~~~~~~ ~~~~~~~~~ — -5, _______________


- -~~~
-

66

Surface Plaits sad C.naectlve Tissue

The surface structure of a LISP program has two components: control flow and surface
data flow. The control flow specifies which code segments follow one another in sequential
execution, which segments are invoked as part or the execution of another (enclosing) segment,
and which segments return control to another (enclosing) segment. The surface data flow in a
program comprises the use of f ree variables, argument binding, and return values to achieve
the f low of data ob,rcts between segments The particular combinations of control flow and
data flow that are possible In a given program are determined by the programming language.

In LISP some control sequencing, such as the left-to-right order of evaluation of arguments,

Is built into the definition of the basic interpreter. However, other control flow facilities, such

as PROG and COND, are implemented so that they appear syntactically as function calls; similarly
for surface data flow primitives such as SETQ and RETURN. The PA. views these special forms

as connective tissue between the code segments In the program which actually Idou something

4 (i.e. have specs). Thus, the P.A. never builds a FUNCALL segment for PROG, COWl), SETQ. RETURN,

etc. As will be shown in the followIng sections, these special forms serve only to determIne the
control and data flow relationships between actual program segments.

Surface Control Flow

The apprentIce’s representation of su rface control flow between segments is based on three
relationships:

~~!
invokes, and returns. These particular concepts were chosen because they

are the ones most human programmmers naturally use to describe control flow in slngle-procesL

recursive languages like LISP. The fo llowing LISP program il lustra tes surface control

structure.

I’.’


~~~ -~~~ - -~~~~~-—--—- -

67

(DEFINE UPDATE (KEY DATA)
(PROGN

(DELETE KEY)
(INSERT KEY DATA)))

Surface Control Flow: -

[UPDATE—1]( 
I I

~invokes Ireturns

-
~~~ V I

(DELETE-3}---next--->(INSERT-5)

In the PA’s data base the above information Is encoded as part of the plan for UPDATE-i: —

(upd ate-i SEGMENT LAM BDA-EXP update ((define update (...) ...)})

(delete-3 SEGMENT FUNCALL delete ((delete ...)})

(insert -5 SEGMENT FIJNCALL Insert ((insert ...)})

(PLAN-FOR : update-i
(SUB-SEGMENTS : (delete-3 insert -5))

(INVOKES: d.lete-3)
- ? (NEXT: delete-3 insert -5)

(RETURNS : insert-5)
...)

Connective tissue for control flow generally fall s into two categories: sequencers and
group ers. A sequencer is a special form such as PROGP4 or GO which causes sequencing of
execution between LISP forms that are not nested. A uouper is a special form , such as

LAMBDA or DEFI NE , which allows the execution of a number of sub-forms to be grouped
together for net effect. Of course, many special forms are both sequencers and groupers.

--~~~~~~~ ~~— - - ~~~~~~~~~~~~~~~~~~~~~~~~~~

— _ _ _ _ _ _ _ _ _ _ _ _ _ _

68

4

1 FIgure 31 illustrates more complicated control flow, which is part of the surface plan for the

fo llowIng program. (This particular example will be returned to in Chapters Four and Five).

(DEFINE LOCKUP (KEY)

-
(PROG (BKT)

- (SETQ BKT (TIL (HASH KEY)))

LP (OR BKT (RETURN NIL))
(CORD ((EQ (CAM BKT) KEY)

-

i (RETURN (CAR BKT))))
(SETQ BKT (CDR BKT))

- (GO LP)))

In this example , some of the control flo w in the plan depends on cases. Optional case

identifiers are added to NEXT and RETURNS statements to signify that- the indicated control flow
- takes place only for a given case of the sub-segment involved. To indicate control flow wh ich

pertains only to a given case of the super -segment , the PLAN-FO R expression itself can be

broken into cases, Just like a SPECS-FOR. For example, from Figure U:

-v ?

I

—~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~ ~~~



- 

- -.-‘-,-.-- • -

~ 

—- --- .--------- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-.--- --
~~

- —~
-----•

~~~~
.-.-

~~
--•----—-•-•-

~
-- -

69

SEGMENT-S

hash-6
~

arrayfetch -7
NEXT

NEXT
NEXT

LOOP-8 ________ L
~~~INVOK~~~~-..~~ •‘

~

‘

~

_nulltest-9

NEXT

N7

/
~~TL

I
~~~~

,,
J

fr
~~~~

Iconst~t.~5J ~~~~~~~~~~~~~~~~

RETURNS RETURNS

J
RETURNS RETURNS ~~~~

Figure 11. Control Flow for LOOKUP.



- ~~~~~~ — 
— -----,-.--.-•-•—- - - - 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

‘10

(PLAN-FOR : loop-I

(INVOKES: nulltest-9)
(CASE-i

(NEXT: nulltest-9 constant-i5 case-i)
(RETURNS : constant-15))

(CASE-2

(NEXT: nulltest-9 car-ID case-2)
(NEXT : car-lO car-13)
(NEXT: car-13 equal-14)
(NEXT: equal-14 car-il case-i)
(RETURNS: car-li))

(CASE-3

(NEXT: equal-14 cdr- i2 case-2) -

(RETURNS: cdr -12))) -

Surface Data Flow

WE now recons ider the three types of data flow as they are realized In the code for a
program: data flow in and out of a single code segment, data flow between code segments at
the same level of descript ion, and data f low between sub-segments and the enclosing main
segment.

In LISP there are four basic techniques for moving data between code segments: variables
(I.e. SETQ), nesting of s-expressions (i.e. return values and argument binding), property lists, and
side effects on CONS cells (RPLACA and RPLACD) or arrays (STORE). Of these we have currently
fully treated only the use of variables, arguments, return values, and the use of arrays. Our
current reasoning system (Chapter Three) Is able to deal with side effects on list structures In a
quite powerful way, but we are still not sure of the best way to represent the surface plans of

-—

‘
~

‘ - - ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
_

~~~~~
._ - --

—

71

programs using RPLAC’s. We have not yet paid any attention to property lists, but it seems to us
that they should not be any harder to handle than RPLAC’s.

Thus In the subset of LISP we are working with, there are syntactically two ways that a
data ob ject may be input to a code segment, and two ways it may be the output. A data object
can be input either as the value of a free variable or , if the segment is a FUNCALL or a
LANBDA-EXP, as the bound value of a argument. On output, a data object can either be the
value of a free variable after the segment has executed or the return value of an s-expression.
Different instances of the same segment type can differ in the surface data flow of their input
and out put objects. For examp le. consider the Input and output objects of a segment typ e 

- 
-

which computes the hash of a key.

(SPECS-FOR : hash
(INPUTS : key-13 table-14)
(OUTPUTS : Index-iS)... )

The followin g two LISP code segments are alternative instantiations of this segment type which
differ In their surface data flow. (Of course, only one of the following definitions would
appear In a given program.)

(DEFINE HASH (K) (DEFINE HASH (K 1)
(ABS (ABS

(REMAINDER (SIZE TBL) (REMAINDER (SIZE L)
K)) )  K) ) )

(hash-88 SEGMENT LAIIBDA-EXP hash ((define hash (k) ...)))
(hash-92 SEGMENT LAMBDA-EXP hash ((define hash (k 1) . . . ) } )

In th. cod e on the left , the hash table is Input to the segment as the value of the free
.arssb~ T$L~ ~ the code on the right , however, the same data object is Input as the bound

of the ~~ssd lambda argument. L In both of them the index is output as the return
ihe kii*da~.ea tee.aon It ~s important for the apprentice to keep track of this sort of

~~~~j ~ iu.4ace date P~~ . inca K is th. cause of many careless programming bugs. This
s ~ ~ .~~. .m-.wsr~ in the input and output statements o~ the specs for

-
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ —

~ ---- - - -- - ~~~~~~~~~~~~~~~~--- — - -- -~~~~~~~~~~~

t
-

~~~~~~~~~~~~~ •- ‘.- ..-~~~--.y

‘72

a segment . (Note here that each input object is specified In a separate specs clause, a slight
variation from the initial definition of specs in SectIon 2.2.)

(SPECS-FOR: huh-AS
( INPUT: key -AD ARC (k})
(INPUT: table-DO FREE-VAR (tbl))
(OUTPUT: index-91 RETURN -VAL ((define ...)fl)

(SPECS-FOR: hash-92
(INPUT : key-93 ARC (k))
(INPUT: table-94 ARC (1))

(OUTPUT: index-95 RETURN-VAL ((define ...)}))

The brace brackets in each line above show the relevant code: for FREE-VAR data flow , the
variable involved; for ARC inputs , the argument position; for RETURN-VAL’s, the s-expression
whose return value Is the data object.

~ 
j FUNCALL code segm ents derive their sur face input and output data flo w from the

correspondIng function definition. Thus in a program wh ich used the left hand definition

f above , HASH-AS, a function caN would appear as follows:

• (HASH ... )

(hash-96 SEGMENT FUNCALL hash ((hash ...)))

(SPECS-FOR : hash- CA
( INPUT : key-Cl ARC (...))
( INPUT : table-98 FREE-VAR (tb fl )

-j (OUTPUT : index -99 RETURN-VAL ((hash ...)))) 

-- - --- -~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - -



-~~ —~~~~~~~~~~~~ - -~~-—- ----- - - - -  —- ----- - -- r ~~~~~~~~-—~~ 
- -- - -  fl ~~~~~~~~~

73

Data Flow Between Segments

Surface data flow between segments at the same level of description is achieved by
matching data flows in and out of code segments. For example, in LISP two code segments can
communicate data by using the same free variable. Nestings of s-expressi ons (I.e return values
and lambda-binding) is the other common way to move data between segments in LISP. Each
data flow link in the deep plan for a program will have a corresponding surfac e data flow
mechanism in the surface plan. Let us first consider the two sim ple cases which do not require
extra connective tissue:

(I) Same Free Variable

When the same free variable is used for “both ends” of a data f low link, the two segments
communicate d’rectly. To continue the above example, suppose the function call HASH-CA was
used in a program together with a function call segment CREATE-TABLE-lOl which has the
following surface data flow:

- 

- 
(SPECS-FOR: create-tab le-lOl

(OUTPUT: tab~e-i02 FREE-VAR (tbl})
...)

(create--table-lOl SEGMENT FUNCALL crtable ((crtable ...)))

In the code then we would see the following:

(CRTABLE ...)

(HASH ...)

These are two FUNCALL segments which have an output-input data flow link between them.

Just as the surface mechanism for- data flow into and out of a single segment is recorded as

extra annotation on the correspondIng INPUT and OUTPUT statement in the specs, surface data
flow between segments Is recorded on the corresponding DATAPLOW statement In the plan of
whIch they are sub-segments. For the present example, let SEG$ENT-33 be the unspecified 



~- _ 4.__~~~ ~~~ -~~~~~-~~~
- -- -~~~~~~~~~~~~~~~~~~~~ --- -~~~~~~~~~~ 

-.-
~~~
-

74

segment which the above code Is a part of.

-
-

. (PLAN-FOR : segment-33
(SUB-SEGMENTS : (create-table-lOl hash-CA ...))
(DATAFLOW : (expand-table401 OUTPUT tab~e-iO2 FREE-VAR (tbl})

(hesh-96 INPUT table-CA FREE-VAR (tbl))

SAME-FREE-VAR)
• . .)

(Ii) Nested S-Expressions

The other simple way to achieve outpu t-input data flo w between segments is by nesting the

correspond ing s-expressions and arranging that the desired data object Is output as the return

value of one segment and Input as an argument to the other. Expanding on the current

example

(HASH (KEYPART .

(hash- 96 SEGMENT FUNCALL hash ((hash ...)))

(keypart-65 SEGMENT FUNCALL keypart ((keypart ...)))

(SPECS-FOR: keypart-65

(OUTPUT: key-AS RETURN-VAL ((keypart . . .f l)

(PLAN-FOR : seg..nt-33
(SUB-SEGMENTS : (... hash-CA keypart-65 ...
(DATAFLOW : (key part-AS OUTPUT key-AS RETURN-VAL ((keypart ...)))

(hash-Cl INPUT key-Cl ARC ((key part ...)))

NESTED-SEXP)
...) .

_
~~~-

_
~~

_ 9  r - - - r w .~~-~~~ -r--.--n - -~~~ 
- - w~~~-~~~ Sr~~~~~~ ’ 

-
~

73

Data Flow Coupling

Often when formulating a plan using existing code segments the surface input and output
data flows of two segments will not match directly. For example, two code segments might use
different t ree variables for the same data object. In such cases, the programmer will typically
use data flow couplers in LISP such as SETQ and -RETURN to match the segments. (The term

“coupling” is by analogy with the interfacing of electronic modules in circuit design.) Data
flow couplers are part of the connective tissue of a program.

To illustrate coupling, suppose the programmer of SEGMENT- 33 had already written the
function definition for HASH which expects the table as the value of the free variable TBL , and
a different definition of CRTABLE which used the free variable TABLE. The surface data flow
can be coup led using SETQ as follows:

(CRTABLE ...)

(SETQ TBL TABLE ) -

(HASH ...)

(PLAN-FOR: segment-33

(DATAFLOW : (create-table-201 OUTPUT tabls-ZOZ FREE-VAR (table))
• (hash-DO INPUT table-CA FREE-VAR (tbl))

COUPLING ((setq tbl table)))
Li

Obviously there are numerous ocher kinds of data flow coupling, corresponding to other
possible cases of mismatch between the surface inputs and outputs of two code segments .
Examp les of a few more of the common cases should suffice.

When an output object Is the return value of a code segment and it Is not possible to nest
5 s-ex pressions , a common coupling technique is to use a variable to store the output object.

Then If the object is input to the destination segment as an argument, the variable Is used in —

approprIate position. For example, the surface data flow between KEYPART and HASH In the
— earlier examp le could have been:

H



— 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —7_ - _ .- ’--,r ~~~~~~~~

76

(SETQ X (KEYPART . .))

(HASH X)

(PLAN-FOR : segment-33

- - (DATAFLOW : (keypart -OS OUTPUT key-SO RETURN-VAL ((keyp art ...)))

(hash-CO INPUT key-Cl ARC (x))
COUPLING ((setq x (keypart ...))))

...)
All the examples of surface data flow thus far have been between segments at the same

plan level. There is also data flow between a segment and its sub-segments. For examp le,

-
— suppose the code for SEGMENT-33 is being used in a larger surface plan in which its return

value should be the hash table. The hash table is available Inside SECMENI-33 as the free
variable TBL In such a situation , the programmer typically uses PROS - RETURN as the coupling
mechanism:

-
_

~
-.- - -

~~~~~~~~~~~ ~~~~~~~ — -- •-- -- -,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~ -

(PROG (...)

(CITABLE ...)

(RETURN TBL))

(segnent-33 SEGMENT OPENCODE nil ((prog ...)))

(SPECS-FOR: seg.ent-33

(OUTPUT: table-34 RETURN-VAL ((prog ...)))... )
(PLAN-FOR: segment-33

(SUB-SEGMENTS : (create-tab le-lol ...))
(DATAFLOW : (create-table-lOt OUTPUT table-102 FREE-VAR (tbl))

(seginent-33 OUTPUT table-34 RETURN-VAL ((prog ...)))
COUPLING ((retur n tbl))))

Some special forms in LISP have “built-In” coupling, e.g. P10GM returns the value of Its last
form. Thus an akernatlve coding of the above might be

(P10GM

(CITABLE ...)

TBL)

(PLAN-FOR : segment-33

-1 (DA TAFLOW: (.xpand-segment-102 OUTPUT tab)e-103 FREE-VAR (tbl))
(segment-33 OUTPUT table-34 RETURN-VAL ((progn ... tbl)))
COUPLING ((progn ... t b l ))))

L — ~~~~~~~~ —



--—

7$ -

More complicated coupling situations are represented by more complicated constructions
following the keyword COUPLING.

Knowledge Specific to LISP

- -  Figure 12 is a summary of our current representation for the surface structure of LISP
programs. As mentioned previously, the specs and deep plan formalism developed In Sections
2.2 and 2.3 are intended to be independent of particular programming languages The basic
idea of a surface plan as presented in this section Is also quite generaL In other languages,
such as FORTRAN, ALGOL and COBOL, we expect to find the same notions of control
sequencing. grouping, data flow coupling, and connective tissue recast In different syntactic
forms.

In order to understand LISP programs. the apprentice needs two classes of LISP-specific
knowledge. First it should be initiali zed with the specs and surface data flow information for
built -in sefments like CAR, CDR, CONS, PLUS, EQUAL and many other functions that are
considered a part of basic LISP. Notice that these bulk-in segments are ~~~~~~, 

treated as
primitives; rather they are described using specs in exactly the same way as user-defined
segments.

Another large body of LISP-specific knowledge Is Implicit In the procedures the apprentice
uses far building the surface plan far new LISP programs. Knowledge about the operation al
the LISP Interpreter and the meaning of special (FEXPI) forms such as PROG and COUP fa~ Ni

this category. We currently have no th i~kaNy motivated discipline for encoding this kind al
knowledge.

Implementation Note: The Code Table

The P.A.’s use of surface plans requires having the ability both to point at arbitrary
s-expressions in LISP code from statements In Its knowledge base and, given an s-expression. to
retrieve any comments or knowledge assertions referring to it. These requirements, coupled

with our decision to make the PA. transparent to the standard LISP Interpreter, dictated the
Implementation of an auxiliary lnde*ing structure called the code table.

.
~

— _I____—_~~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ___4_ — s - -— —.&-—- —



—
~~~~--~~~~~ -~~~~~~ - —~—~~~ ~~~~~~~~~

- H
- .

~ I
(SPECS-FOR: (segment-Id)

(INPUT: (object-Id> JFREE.VMk (cede-entry>)

ii ~~ AAG J
(OUTPUT: (object-Id> JFIEE-VM k (cede-entry>)

- ~IETusN.vAq
-)

(PLAN-FOR: (segment-Id)

(DATAFLOW : ((segment—Id) 4INPUT i...)
~ouTPuTç

((segment-Id> JINPUT i...)

~OUTPUT~

$MlE-FREE-VAR~ (cede-entry))
NESTED-SUP
COUPLING

(NEXT: (segment-Id) (s~~~~t-Id) (case-Id>)

(INVOKES: (segment-Id))

(RETURNS : (segment-Id> (case-Id)))

- Figure 12. Summary of Surface Plan RepresentatIon
I

_ _ _ ~~~~~~~~~~
--

~~~—----~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~--- - —~~~-—--~~ ~~~~~~ — -~~~~~~~~
----

~ ~~~~
— --- -  -~~~~~~~~~-~~~~~



~.,.— ~~~~~~~ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _  ~.— -—-- -~~~~- ~~

-.-.---.

80

As a new LISP program is read Into our current apprentice. an entry in the code table (a

code-entry) Is created In a recursive fashion for each s-expression in the code. A code entry has

three fields : the first field is a pointer to the actual s-expression, wh ich is used as the key to

retrieve the entry from the table ; the second field points to the code -entry of th e paren t

s-expression , which facilitates the P.A~s moving aroun d locally in the LISP cod e, and the third

field Is one bit, denoting whether the current s-expression is the CAR or CDR of its parent.

Thus whenever statements in the surface plan refer to something in the code, such as a

function name, a lambda-argument, etc., the apprentice always points to the code indirectly

using the corresp onding code-entry . This Indirection has been indicated syntactically in this

report by enclosing the code in brace brackets (...).

I

I

- - S

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ —S 
-

. S

ti~ — —
~~~ -.——~-~~~~~ _±____ -— - —-.~-- ____— 5- - — _______1.l,



— —--s-- S c~~~~~~~~~~~~ s~~~~~~ - ’ W ~~’ 
-
~~~ 

-
~~

81

2.5 The Organization Of Programming Knowledge

The elements of program descript~on outlined above provide a conv enient language for
representing the structure and behavior of particular programs. However , a useful
programmer ’s apprentice will also need a large knowledge base of common and general
programming concepts. We do not yet completely understand how to build this knowledge
base; nonetheless, we feel that the descriptive elements already developed for particular
programs will provide an adequate basis for representing more general knowledge as well. In
this section we present our current thoughts on the design of such a programming knowledge
base.

Our design has two major considerations: first, the knowledge base should contain most of
the stand ard programming concepts , ob ject types , segment types , and plans In common use
second, it should be structured so as to capture the significant generalizations of the domain.
Our discussion will concentrate on the issues of overall organization, ignoring many technical
problems of large-scale data base design which are currently being researched elsewhere.

Programm ing Concepts

-

- There seems to exist a general hierarchy of programming concepts which may be used as
the basis for structuring part of the knowledge base. Within this hierarchy, as much
knowledge as possible is to be captured at the most general level. For example, a very abstract

5 1 concept is data-structures, which subsumes all object types that contain a varying number of
members. This general concept also Includes the membership relation and the most general
specs for lookup, insert and delete.

Moi t concepts are specializations of more general concepts. For examp le,
!i.! ~~~~

is a

specialization of data-structures. Some knowledge about lists comes from the fact that lists are
data-structures , wh ile some of It is particular to lists. The parts decomposition of lists into

• FIRST and REST, and a definition of the MEMBER relations is particular to lists, while the specs
for Insert, lookup and delete are essentially the same for lists as for data-structures in general
(see Figure 13).

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - - - —— -5---S-~~~---~,-.., —. - -

82

DATA-STRUCTURES LISTS

(SPECS-FOR: insert-se gment (SPECS-FOR : insert-se gment
S 

( INPUTS: object-i object-2) (INPUTS: object-i object-2)

- 4 (EXPECT: (data-structure object-i)) (EXPECT: (list object-i))

(OUTPUTS: object-3) (OUTPUTS: object-3)
(ASSERT: (ASSERT:
(data-structure object-3) (list object-3)

- f 
(member object-3 object-2) - 

(membsr ob.ject-3 object—2)

(for—all (member object-i zobject) (for-all (member object-i zobject)

(member object-3 object)))) (member object-3 object))))

f (PART list first)
(PART list rest )

(RELATION data-structure member) (RELATION list member )

• (RELATION DEFINITION
(member list object) (.)

(or (first list object)

(member (rest list] object)))

Figure 15. LIsts as a Specialization of Data.Structures.

-



-~~ S - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -,

83

H objects

data-structures numbers

/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~linear-structures

/ / N
associative-structures generic-structures recursive—structu res

/\ \ /
hashing arrays lists

\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a-lists

:~ 
- . - FIgure 14. Partial Hierarchy of ProgrammIng Concepts

-- - - ~~~~ —.- -.-



- I General concepts can be specialized In a multiple-level, tree-like fashion (see Figure 14). For
- example, one specialization of data-structures is associative-structures. Associative-structures

contain members called entries which are decomposed into KEYPART and DATAPART. The specs
for lookup and delete operations on associative-structures differ from those on data-structures

- 
-
~ In general, in that associative retrieval is usually performed given only the KEYPART of an

- 

S 

entry. (Hash tables and a-lists are associative-structures.) A second possible specialization of
the data-structures concept is linea r-structures. Arrays and lists are examples of

linear -structu res, since they both have natural total orderings of their member objects. Notice
in Figure 14 that we expect the hierarch y of programming concepts to be “tangled , i.e. some
concepts may have several possible generalizations.

Plan Types

In addition to the hierarc hy of concepts there also seems to be a hierarchy of plan types
which captures generalizations of procedural structure. An obvious example of a very general

- 
- plan type Is the plan for a loop (see Figure 15). SpecIfic kinds of loops, such as search ioops or

approximation loops , can be considered to be refinements of this general plan.

In its most abstract , a ioop has four essential segments (see Figure 15): a TEST on the

• current loop object to see if the loop is done, a BUMP which calculates the loop object for the
-
‘ next iteration from the current one; the BODY , which does something to the loop object; and

the tail recursion segment , LOOP- i in the diagram, which achieves the iteration. The actual
specs for these sub -segme nts are not shown , since they are too abstact to be usefu l -- for
example, the BODY has no particular Input or output condItions at this level.

However, If this plan Is refined to be a search loop, the specs for the body become the test
for a sucesstu l match. Thus the follo wing specs, together with the plan In Figure IS, express
the most general structure of iteratIve searching.

~ s 

-

___________________________________________- - - -

~

-

~ 

--



I AD—A 035 943 MASSACHUSETTS INST OF TECF. CAMRR !DGF ARTIF ICIAL INTF——ETC FIG q,2F INITIAL REPORT ON A LISP PROGPAMMERIS APPRENTTCF.Cu )
DEC 76 C RICH. H E SHRORE NOOOlle—75—C~ Qfl3UNCLASSIF lID AI—TR—554

I •
I I
I I

~~~~~~~~~~~~~~~ EOE! O9~QR


I 1111 1.0 12.8

~~L L

_ _

~~~~~

i

~~~
I l

~~~~~IIIII ~ 
LI
LI ..

I 1.25 114 ~ I.6

MICROCOPY RESOLUTION TEST CHART
NATI OIIAI. SUNCAU Oc S1ANOA~OI IL$3 A



— 
~~~~~~~~~~~~~~ r~~’ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

85

I
‘oop-obJect

LOOP

test

/ PREREG

/ body

( I~~m p 1

1oop-~
ACHIEVE

Figure 15. Most General Plan for Loops

I

I i ,
- —



~W’

T

88

/ I j :
the-space the-goat

SEARCH-LOOP ____________________________________

f test

I
PREREQ

[

search_bodY

bump

ssarc h-~oop-

—
1-/ I

-
If’

Ta1 lw.-1 foumd-obJect
4

11
Fipn II PlaN foi Search Loop.

‘1
_ _ _ _  —~~~ ~~~~~~~~~~~~~~~~ •• ~~~~~



‘.‘~~-

87

(SPECS-FOR: search-loop
(INPUTS: the-specs the-goal )
(EXPECT: (linear-structure the-space))

(CASE-i
(EXPECT: (there-Is-a (member the-space sobj ect )

• such-that (aatchtsst the-goal obj ect )))
(OUTPUTS : found-object)
(ASSERT: (member the-s pice found-object)

(.atchtest the-g oal found—object)))
(CASE-2
(EXPECT: OTHERWISE)
(OUTPUTS: failure-i)
(ASSERT: (for-all (meeter the-space sobject)

(eat (.stdutest the-goal obj ect ))))))

(SPECS-FOR : search-bod y
• ( INPUTS: the-space the-goal)

(EXPECT : (linear-structure the-s pace)) 4
(CASE-i

(EXPECT: (matchtest the-goa l (front the-space]))
(OUTPUT: the-object)
(ASSERT: (front the-space the-object)

(matchtest the-goal the-object)))
(CASE-2
(EXPECT: OTHERWISE)
(OUTPUTS: failure-i)
(ASSERT: (not (matchtest the-goal (front the-spice])))))

• Notice that since the search space Is known to be a linear-structure, there must be a total
ordering of its members. Therefore, we may talk about its front element, even though we have
not yet chosen a particular linear-structure. We will talk about how such design choices Interact “

1

with plan st ructure after a few other remarks.

LL __



• - 
~~~~~~~~~~~~~~~~~~~~~~~ — , .  ,_—_- ._——— .— - !rr ’.’~~~~” ’

88

ln one sense the plan forasearch loop in Figure l6 ls fufty refined.since allof the PurPOse
links are filled in. Thus the addition of further detail, such as the definition of MATCIITEST,
will not change the teleological structure of this plan. However, further refinement may take
place w ith in the Internal plans of the sub-segments, while the top level purpose links will
remain unchanged .

in another sense , there Is a great deal more that can be said about search plans. For
example, the object to be searched might be a list or an array . in the case of lists, the bump
step is implemented by taking the list’s COR, while the CAR of the list is Its “front member. in

~-! ~ the case of arrays , the bump is Implemented by adding one to the Index , wh ile the front
• member is defined to be the item pointed to by the current index. Similarly , if the search space

Is an associative -stru cture such as an a-list, then the IiATCHTEST will have an internal plan
which extracts the key from the current object and then makes the test for a match. Thus as
an imp lementat ion choice is made for each object in the general plan , the specs for the
sub-segments can be further specialized (in a consistent manner) and somet imes internal plans
can be chosen.

For example, the specs for the sub-segments of a plan to search ~~ are as follows:

(SPECS-FOR : search-body
(IN~1JTS: list-i the-goal)
(EXPECT : (list list—I))

(CASE—I
(EXPECT: (matchtest the-goa l (first list -i)))
(OUTPUTS: the-object)
(ASSERT: (first list-i the-ob~e.t)

(metchtest the-~’mi the-object)))
(CASE-2 •

(EXPECT: OTHERW Q)
(OUTPUTS : ~.Iur.-I)
(A3’~~T; (not (matchtest the—goa l (first list—I])))))

-— _ _

•~
• •

~
_‘__•—••-•-‘•..-~~~~._-~• ~~

•,-.•- — ,. .• ,.— •-• • ~~~
- -

~~~~~~~~~~~~~~~ 
-,~.~ _-—.•—•—-.

— -

89

(SPECS-FOR: bump
(INPUTS: list-i)
(EXPECT: (list list-i))
(OUTPUTS: list-2)
(ASSERT: (rest list—i list-2)))

(SPECS-FOR: test
(INPUTS: object-i)

(CASE-i
(EXPECT: (list object-i)))

(CASE-2
(EXPECT: (emptylist object-i))
(OUTPUTS: fallure-2))

- 

- 

Design Choices

Since we do not yet have a theory of the interaction between the specialization of data
objects and the refinement of plans, our system cannot automatically create new specializations

• and corresponding refinements of plans. However we can compile this information for those
cases which are common and already known. In this pre-compiled knowledge, the appropriate
plan can be selected by specifying the ~~jg~~~oice. Since we intend to Implement the

-~ -
, - 

programming knowledge base using a CONNIVER-like data base, the design choice can be
represented as a context in which the plan is already appropriately refined, Inheriting some
assertions from more general contexts and adding those new assertions which are necessary.

The context mechanism can also be used to represent the existence of several alternative
ways to Implement a concept or several different plans for the same specs. For example, stacks
can be Implemented using arrays or lists. Thus there would be a parent context in which all
the general knowledge about stacks Is kept and two daughter contexts each containing the
statements appropriate to that design choice. Similarly, there would be a daughter context for

- • each of the large number of sorting algorithms. Finally, each of these plans might have
daughter contexts representing their refinements under the choice of specific types for the

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  •~~~~~••~~~~~~~~ • •~~~ • ~~~~~ — ~~~~~ 



• - - 
~~~~~~~~~~~~~~~~ 

~~~~~ ~~~! ~~~~~~~~~~~~ - -~~

~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ —..—-I-- 

~~~~~~~~~~~

:1

objects in the plan. Thus the context tree would encode a range of plans from the most
- • abstract, like that for LOOP, to the completely refined plan of an actual program.

Plan Transf ormatIons

There is yet another form of variation In plans that Is not captured naturally in a
refinement hierarchy. This variation arises from the fact that certain plans are strong ly
equivalent even though thei r plan representations are different. For example, a summation
program which counts up is in manr ways equivalent to one which counts down — the same

essential teleology is involved in both plans, although the data flow and segments are slightly
different. Such variations can be captured in the knowledge base by considering these plans to ~

• -

be equivalence classes, and choosing a canonical plan for each class. This canonical plan can
then be tranformed to any of the ocher equivalent plans by applying a plan tranformatiofl.
(Ruth <1973> has a similar notion.)

For example, consider the plan for searching a list given above. In the specs for the
SEARCH-BOOY segment there is the clause:

(EXPECT: (matchtest the-goa l (first list—I]))

which Implies that the plan for SEARCH-BUOY Is a cascade of applying FIRST-SEGMENT and
- •

then NATCHTEST . - However, since the rIRST-SEGNENT In this little sub-plan depends on
nothing other than the overall input expectations, l~ is possible to tran sform the plan by
moving FIRST-SEGMENT out of SEARCH-BODY, thus reducing its Internal plan to just

-
• PIATCHTEST. The transformed plan for SEARCH-LOOP will then have five internal steps

(FIRST-SEGMENT, MATCHTEST, BUM P, TEST, LOOP) Instead of the four In the original plan.

Another simple transformation Is to combine two sub-segments of a plan Into one segment
whose sub-plan comprises the two original segments. For example, in the plan for a hash table
lookup (see Figure 11) the HASH and ARRAYFETCH could be combined to form a GET-BUCKET
segment. Other simple transformations under certain circumstances is to combine two instances

of the same segment type into a single Instance, or to copy a single instance into twd.

~~_ .~~-• -- - .- • •~.~~- ~~~~~~~~~~~~~~~~~~~~~~~ - _-~~ -_ .

- 1 2.6 Annotation of Program.

In the preceding sections we have outlined a system for describing programs. in later

•
chapters we will show how the representations we have developed are adequate to support
q~iestion answering, reasoning about program correctness, program formulation and evolutIon.

• However, an additional criterion which we desire our descriptive system to meet Is naturalness.
i.e. correspondence to the way people conceptualize the domain. Our Initial beliefs regarding
the conceptual foundations of programming (from an anthropocentric perspective) arose out of
examination of the programming practices of ourselves and other programmers. In this section
we return to the existing practices of human programmers to reaffirm that the commentary
they typically write Indeed IRs Into the descriptive system we have developed.

Understanding previously unseen code can be extremely difficult, even for an expert
programmer. It is precisely for this reason that programmers attach annotation to their code in
the form of mnemonic names and line-by-line commentary, which provide various kinds of
extra information necessary to understand the code.

Annotation of code can be divided into two general categories. First, there are comments
that assume knowledge shared between the programmer and the reader, i.e. that the code
involves some concept the reader Is already familiar with. The other category concerns
precisely the opposite situation: comments which attempt to describe new concepts. Because
this second class of commentary is intrinsically more demanding of the programmer, It is also
the most frequently neglected.

Comments That Invoke Shared Knowledge

When a programmer intends a comment to refer to shared background knowledge, It is
often done most simply through the use of mnemonic identifiers. Thus, for example, the
lookup routine fo r the hash table would typica lly be called LOO~UP, or some variant, rather
than say FUNd . The important point here is that such namings do not convey informatIon
unless there is shared know ledge within which to resolve their sign ifican ce. In a later version
of the apprentice we expect to use the knowledge base described in Section 2.5 in this lexical

•1 role. -

r

- • • -

~~~

- • - • -•—-

~~~~~

-- --

~~~~~~~~

_- 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -.—~ -~~~~~~~-v~~~~!r- - .fl - - --- 

92

Another form of commentary which refers to shared knowledge is comments such as “this is
the hash table lookup routine’ or “the next five functions make up the hash table Typically,
this kind of comment appears preceding a code segment as an Introductory remark. These
comments, like mnemonic naming, serve to set context and supply necessary but otherwise
unstated information. For example, the comment “this is the hash table lookup routine’ would
Ideally have the effect of retrieving the specs for LOCKUP and invoking the contex t of the
HASHING concept for resolving further name references. Similarly, comments can also Invoke a
particular design choice from the knowledge base. For example, ‘using the rehash scheme” has

the effect of telling the reader which of several possible implementation schemes is being used.

New Information Comments
r ~

The second broa d category of annotat ion occurs in those circums tances when the
programmer wants to convey new information that cannot be assumed to be part of the
reader’s basic knowledge. In this case, he has to completely define a new concept on the page.
The comments that programmers use for this purpose fit well into the descr iptive system of our
P.A.: they answer ~~~ ~~~~, and !i~

questions by presenting what are essentially plans, specs,
part descriptions, and various definitions.

The following are examples of comments that answer ~~ questions: “ X Is positive so SQRT
won’t fail’ or ‘set up f or first pass’. What typifies these comments is that they establish a link
between the behavior of the code upon which they appear and some other segment to which
they refer. Thus, they correspond directly to the purpose links In our plans. (These two
examp les are PREREQ links). PREREQ links can also appear in commen ts viewed from the
opposit e direction, e.g. on an invocation of SQRT the comment , ‘X positive because ABS made it

so’.

~ 2!f~
quest ions tend , by and large, to be answered by reference to shared background

knowledge, such as the standard design choices f or implementing a hash table. However when
a new concept is involved in a “how’ comment, a large explanatory block can appear explicitly
on the page for examp le, ‘use the hash routine to get a bucket, then use the a list Insert tO

Insert the item ” . It would be an interesting problem to expand such a desc ription Into a
complete plan.

‘ r ~~ r ~~
-r~ ”~,.1~~~., r---.

-c——

93
I

What comments typically provide all or part of a structural description or a specs. For
example, in an Interactive bibliography program, we observed a half -page comment wh ich
explained the structure and use of an entity called a ‘prompt”~ The details of this are not
relevant here, but It was interesting for us to note that the comment included precisely those
descriptive elements which our PA. uses, namely specs, parts decompostions, etc. The data
structures defined in such situations often have only limited application, I.e. they are used only
in one section of a program and are not likely to be used in future programs .

We have often observed comments that exp licitly give the comp lete specs in a block of
commentary Immediately preceding the code segment, as in: “when given a list , return its third
element if present; otherwise return FOO”. Specs are also sometimes bro ken up into the

- - components pre- and post -conditions and distributed through the body of a code segment; for
example , “assume A negative ” , or ‘now the item is in the table”. The first comment specifies a
condition that is assumed or expected to hold just prior to the execution of the segment of code
which it annotates, presumably because the correct behavior of the code depends on it , I.e. It Is
an EXPECT; the second comment asserts that a certain condition will hold immedIatel y

• following (and usually as a result of) the annotated segment of code, i.e. it is an ASSERT.

Finally, there is a remaining category of very idiosyncratic annotation. We make no
theoretical claims vii a vii such material. Nonetheless, there are several recurrent forms that
might eventually find some realization in our P.A. system , e.g. “this is a kiudge”, ‘missing code
to be Inserted here’, “this needs to be fixed ” , etc.

Annotation in the PA. System

Eventually, a programmer’s apprentice should be able to read all the of the com ments a

- • •~ good programmer puts on code and use them to aid in understanding a new program. As a
step towards this, we are currently trying to develop a formal, machine-understandable
language in which a programmer can write comments. At the moment this language is
extremely prim itive, but we hope that ft will eventually develop to the point where a human
programmer would find it convenient to use in supplying plentiful commentary. Furthermore,
because the PA. has deep expectations of the kinds of things that a programmer is trying to
express In comments, the understanding of comments written in natural language may be a
realistic (though major) goal.

~1

-

~~~ ~~~~ • .L_ _
~._ __ _~~. - -~~ -.-~-~~-—•---“~ - ---------- ---——-—- • -~~~~



- - - ~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ — •—

94

In the current vers ion of our P.A. we have Implemen ted a few straig htfor ward ,

fixed-format comments that give important clues to help the PA. understand a new program.

How these commen ts would actually be used in recognition is suggested in Section 5.t We

currently use percent sign (%) as a special macro character in LISP to attach a comment at the

current point in the code. In the PA. environment, comments are Interpreted according to the

list structure representation of the code, rather than the text string representation. Thus, the

P.A. takes the s-expression ImmedIately following the percent sign as the comment Itself, which

then applIes to the s-expressIon following that. Figure 17 shows the simple comment forms

currently Implemented. Using these, the LOCKUP program might be annotated as follo ws:

%(des ign bucket-l ists)
-
~~ I

(DEFINE IOOKIJP (K)
(PROG (%(object bucket) BKT)

(SETQ BKT (TBL (HASH K)))
• IP (OR BKT (RETURN %(object failure) NIL))

(COND ((EQ (CAAR BKT) KEY)
(RETURN (CAR BKT))))

%(seginent bump)
(SETQ BKT (CDR BKT))
(GO IP)))

A feature planned, but not currently implemented. is for the apprentice to look at the actual

LISP atoms in a program to see if they have any mnenmonic content Thus

(DEFINE HASH ...)

could be equivalent to

I %(segment hash)
(DEFINE HASH ...) . -

- . • •-
~~~~~~~~~~~~ - .----.- -“ ~~~~~~~~~~~~~~~~~~~~~~~~ •• ~~- • - ,—~,-—r-,--’•-.•.- ~~~~~~~~

95

Elab.l>

The label is a unique atomic identifier scoped within each DEFINE,
which can be used in other comments to refer to parts of the code.

%(SEGMENT <segment-t yp e) <label >)

The following code-segment Is a segment of the indicated type.
The label is optional; if included it means the s-expressions from
from the here to the label constitute one code segment

%( OBJECT <object-type))

The following s-expression is the surface realization of a data object
of the indicated type. For example, the following variable has the
object as its value , or the following s-expression has the object as
its return value.

• %(DESIGN <design-switch ))

Indicating the design choice made, so as to faci litate
• understanding the code following.

%(ASSERT <condition>)

The indicated output condition holds after execution of the
following code segment This can aid in Identifying the segment.

%(EXPECT <condition ))

The indicated condition is expected to hold previous to the
execution of the following code segment

Figure 17. Comment Forms.

_ _ _ _ _  
~~~- - ---~~ - - - -~~~-- -- - - -- -• - - - - --- --—- - ——-~~~~~~•— --~~~~~~~ - - •-~~~ ~~ •• - --~~~~ ~~~~~~~


96

CHAPTER THREE

THE DEDUCTIVE SYSTEM

In this chapter we demonstrate how the elements of program description we have outlined
in Chapter Two can be ~~~ to reason about the behavior of programs. There are several
areas of reasoning which might be chosen as the basis for demonstrating such capabilities. In
our present research, we have focussed on program verification.

Given the specs of a segment , we assume the programmer has in mind some deep plan for
achieving the goal assertions of this segment. At minimum, this plan is a network of data flow
links between sub-segments which he believes will achieve the main segment’s goals. His plan
may also include purpose links, which give explicit reasons why a particular sub-segment is
used and, in cases where there is no other convenient way of expressing the constraint, control
flow links which specify a particular order between sub-segments. Verification is the process
of showing that this deep plan satisfies its specs.

In the current implementation of the deductive system, the PA. Is given the complete data
flow of a plan , and the specs it is intended to achieve. The verification proceeds roughly as
follows: first the apprentice asserts the pre-conditlons (EXPEC1’s) of the overall segment In a
situational data base similar to that of QA4 c Rulil son 1972> or CONNIVER
<McDermott & Sussman , 1972>; then for each sub-segment in the plan, it must be shown that

-
1 its pre conditions are met in the situation resulting from the execution of all the sub-segments

that provide its inputs, and if so its post-conditions are asserted in its output situation; finally,
the goal assertions (ASSERT’s) of the main segment must be proven to hold after the execution
of all the sub-segments. If all these proofs succeed, the programmer has formulated a correct
plan for the segment.

Thus verification In our system is a combination of symbolic evaluation and proof (as In
<Hewitt &Smith, 1975>). Proof is required to show that the pie-conditions of each segment are
satisfied. Symbolic evaluatIon , or specs application , as we call it In the deductive system, is the
process of assert ing a segment ’s output cond itions when its input condi tions have been met.

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _



—~ -

~~~~ - ,—-— —-~.---—— ~~~~~~~~~~~~~~~ ~
. —•—-~~~~ -—‘—-‘-~~‘-----—‘-‘——

Ii

I

97

In a more advanced implementation, the deductive system will, as a by-product of successful
verification, explicitly generate ~~ the purpose links In the plan, amounting to a complete
justif ication of program correctness . These purpose links , along with the data f low links
provided by the programmer, form the complete deep plan of the program , which would be

• used by other parts of the apprentice.

Structure Of The Deductive System

The deductive system makes use of several data bases. First there Is the programming
knowledge base, described in Section 2.5, which contains data structure descriptions, definitions,
plans , and specs. New information can be added to this data base during design. During
verification , however , the information in the programming knowledge base is essentially static ;
it Is used primarily as a reference for defi nitions , etc. by processes involved in the dynamics of
reasoning.

The second main data base Is a situational data base, which consists of several smaller data
bases called situations each representing the state of the computation at a particular instant.
(Our notion of time here Is a partial order of moments preceding and following the execution
of each segment.) Each situation contains assertions about the data objects of the program and
the relationships which hold between them. Sit uations are causally related by the action of
some segment. Causal paths in a program may join as well as split. Thus each situation has
(one or more) parent situation (s), from which It was produced by specs application, and one or
more daughter situations that are similarly produced from it.

Futhermore, there are procedures in the reasoning system responsible for maintaining the
consistency of the situational data base and for the assimilation and propagation of new
information. To accomplish this, our system uses demons which are kept in an ancillary demon
data base. These demons watch for any changes in the situational data base which might need
further expansion or propagation.

Finall y, there is a group of procedures In the system which can attempt to prove assertions
about data objects in a particular situation or relationships between data objects in different
situations. These procedures typically make use of information present in both the situational •

data base and the programming knowledge base. - -:

_ _ _ _ _ _ _ _

— ---—,—“ .----————w ~ — -..- -~~ —.-.--—- ~
-
~—w -~~~~~~~ ,,.- ~~~~ .~—~~-‘—.-•-~- ,—•---—.—“ -.~~~~——~~~ -~

F I ~~~~

98

Although this is a rather elaborate structure, the reasoning system does not in fact resort to
techniques which would make It difficult for the human user to understand its proofs .

__________ AL~

-~ .,-
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- ,,. . - . -,. - W ’  r. ’n rr.r - - - - - - - - - -~~-~-,---—- - — --- • - - - - —

99

3.1 MechanIsms

We have not attem pted to produce a general purpose reasoning system; rather we have set
the less ambitious goal of developing specia liz~ed techniques for the task of program
verification. One example of this tailoring Is that the system currently allows only six types of
assertions In the situational data base. Although an unlimited number of specific facts may be
expressed in this manner, each assertion must belong to one of the six categories, each of which
is handled in its own special fashion. The six assertion ty pes are shown in Figure $8.

One consequence of this limitation of assertion types Is that sophisticated pattern matching,
such as in CONNIVER <McDermott & Sussman, 1972>, is unnecessary. The pattern matching
used In our deductive system Is therefore very rudimentary one-level matching, without pattern
variables.

Each instance of one of these assertion types is a fact about a particular object in a
particular situation. These particular facts in the situational data base are also related to more
general information about objects in the programming knowledge base. For example, if a
particular object, LIST-i , Is a list and we learn that OBJECT-2 is its FIRST part , the deductive
system can use the relation definition for list membership In the programming knowledge base
(see Section 2.1) to deduce that OBJECT-2 is a MEMBER of LIST-i. Much of this kind of
deduction is organized around knowledge of the object ~~~ involved.

Uncertainty and Anonymous Objects

Programmers often attempt to design programs with the greatest possi ble generality, i.e.
requiring as few Input expectations and guaranteeIng as many output assertions as possible.
For example, it Is often desirable to allow the input to a segment to be any object of type LIST,
without regard to its length or other properties.

This means that the deductive system must be able to reason under conditions of - 
-

- 
~• uncertainty. There will be many possible facts about a given object that It does not know. For

this reason the apprentice has three possibilities for the truth value of an assertion. Facts that
- I ~I 

are known to be ~~ 
are explicitly asserted in the data base. A fact that is known to be ~~~ is

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • •~~~~~~~~~~~~~~~~~~~~~~ - -  - - _____



- ~~~~~~~ -~~--—~~~~-- - -- - •- ---—•~~~~~~~~

$00

Type AuertionE ((obj .ct-typ.) (obj ct-Id))

e.g. (LIST OBJECT-i)
OBJECT-i Is a list.

Part AssertionE (<partnane) (object- Id-i) (obj .ct- ld-2))

e.g. (FIRST LIST-i OBJECT-2)
The first part of LIST-i is OBJECT-2.

Generic Part Assertlons (<partn aas > (obj ect -Id-i ) (index > (obj ect -Id-2))

e.g. (ITEM ARRAY-2 5 OBJECT-i)
OBJECT-i is the fifth item of ARRAY-2.

Property AuertionE ((property-na il.) (object -Id-i ) (obj ect- ld-2)J

e.g. (LENGTH LIST-i 7)
The length of LIST-I Is 7.

Relation AuertionE (<relatIon-na’..) (object-Id-i) <object—id-2))

e.g. (MEMBER LIST-i OBJECT-4)

1 OBJECT-4 Is a member of LIST-i.

I
Figure 18. AssertIon Types i’. the Situati onal Data Base.



- -~~~~~—-~~~~~~~--—,- ~~~~ -- -~ -~~~ ---—- -~- —~---~~~~~~~ - - —-.~~ -- -.- ~—— -~~ 
-
~~ 

-- -
~
--- —-~

-- —w~~
__ 

— 
-- - —,———

10I

explicitly (or Implicitly ) denied; that is, either its negation is asserted or a fact implying its
negation is asserted (for example, asserting that the length of a list is 5 denies that its -length is
4). Finally, uncertainty is represented by absence from the data base.

A second method of representIng uncertainty is by the use of ~~~ymous ob Iects (or Skoleni
constants) <Hewitt , 1973>cSussman, 1973>cMoore, 1976>. An anonymou s object is an object
whose true identity is unknown. Therefore , gIven an anonymous object and any other object
in the system, it is a priori unknown whether or not they are identical. Assertions can be added
to the data base which specify some property of an anonymous object, and It might even be

- 
- possible in some situation to ascertain the identity of such an object.

Anonymous objects contrast with identified objects. While particular properties of an
identif led object may be unknown, its Identity is always definite and unique, i.e. no two
Identif led objects are ever identical. Furthermore , two anonymou s objects may be discovered to
be distinct without discovering their individual identities; this fact must be represented by an
explicit assertion .

As an example, suppose we wish to represent the situation in which a particular hash table
has a buck et which has a member whose data part is the number 75. The following assertions
state exactly this much:

(TABLE table-i) ;an Identi fied table
(BUCKET table-i Index-2 bucket-3) ;with some anonymous bucket
(MEMBER bucket-3 •ntry-4) ;wIth some anonymous entry
(DATAPART entry-4 75) ;whose data part Is 75

In the above, and in the remainder of this chapter, we use under lininE to denote

-- •~ anonymous objects. in the current implementation the property list of the object name carrIes
th is information.

The main advantage of anonymous IndIviduals is that they allow us to state relationships
between objects without having to commit ourse lves to the particular identity of these objects.
In addition , this technique can be used effectively In conjunctIon with hypothesis formation.
For example, suppose the system knows of two lists whose lengths are related as follows

- - -- Z~. ~~~~~~~~~~~~~~~ — •  -



-~~~~ —
— -~ 

. _ _ _

(lENGTH list-i Integ.r-2)
(LENGTH lIst-3 j~~!~~ -~

)
(EQUAL integer-4 (TIMES 2 Inte~er-2 ))

If ft Is then learned (or hypothesized) that the length of’ LIST-i is, say 7, the system can
then deduce that the length of LIST-3 is 14. Thus the use of anonymous objects allows a
general statement to be made, from which more specific Information may be deduced at a later
time.

The deductive system also uses anonymous objects as ‘place holders’ for facts which it does
not yet know. For example, whenever a new instance of an object with part structure is
created, anonymous objects are also created to represent its parts, or If the data object has
generic parts, an anonymous object Is created to represent its size.

Similarly, the expansion of the square-bracket functional notation in specs can also lead to
the creation of anonymous object s. For example, the length relation between LIST-i and
LIST-3 above could be wr ltten in specs as

(length llst— 3 (tImes 2 (length list—i]])

The deductive system resolves bracketed expressIons as follo ws: first the partial assertion in
brackets is matched against the current situation to see If the designated object is already
known; If no match Is found, a new anon ymous object Is created and used to make an
assertion by adding It on the end of the bracketed expression; In either case, the resolved
object (anonymous or ident ified ) Is then substituted for the brack eted expression to allow
interpretation of enclosing expressions.

In general, if an unknown fact is needed for the current reasoning , the system can create an
anonymous object of which the fact Is true, In the hope that at scene future point it may be
able to deduce the actual Identity of the anonymous object ~~~~

- - -

I • .~

—-- --—--~~ ---~~~ -~- - ~~~~~-— ~— ---- .—~- _— - -



— -P--- -- 
~~~~~~~~~~~~~~~~ 

--— ---
~~~~~~~

-- 
-
~~~~~

I

‘Os

identification

One particularly simple, yet important way of deducing the identity of anonymous objects is
by employing the constraints Implicit In certain assertion types. In particular, both part and
property assertions uniquely Identify their second arguments. For example, If we had both:

(FIRST list-i object-2)
(FIRST list-i object-3)

then It must be the case that the anonymou s OBJECT-3 is identical to OBJECT-2. The system can
now ascribe to OBJECT -2 all the pro perties and relations which are known to be true of
OBJECT-3 , and remove the name OBJECT-3 fr om the data base . This process Is termed
identification.

Identification can take place either between two anonymous objects , or between an
anonymous object and an ident if led object. If an anonymous object is discovered to be
identical to an Identif led object, as In the example above, all occurrences of the anonymous
name (i.e. In all situations) are replaced by the name of the Identif led object. In the case of two
anonymous objects being Identif led, one of the names Is arbitrar ily chosen to replace all
occurrences of the other.

A check for possible identifications is currently the first operation performed by the
deductive system whenever a new assertion Is added to the situational data base.

—
Identification is also possible on the basis of generic-part assertions, where the first two

argument uniquely determine the third. For example,

(ITEM array-i index-2 ite.-3)
(ITEM array-i index-2 Item-4)

Implies that ITEM-3 and ITEM-4 are Identical.

4

- -— - - -

~

-- - -- --- --- - ---— --

~

- ~~~ ~~- ---—.- -— ~~---.- - -~------ ----‘ ----.- -- ‘-p ~~~~~~~~~~~~~~~~~
— ---- ______

104

Quant ification

Program specs often need to contain various forms of quantificatIon . The deductive system
currently uses the three quantIfIers shown in FIgure 19, which are extensions of the standard
quantifiers of predicate calculus. Note that the quantifi ed variables in a <CLASS-DEF) are
Indicated by a “ prefix.

Significantly, the PA’s quantifiers also include explicit situational dependence. Since all

-
I the clauses and situational tags except for the <CLPSS-DEF> are optional, and are appropriately

defaulted If omitted, the standard forms may be obtained as degenerate cases.

These quantifiers have the intu itive meaning which is suggested by their names. For
examp le, the intuit ive meanIng of the followin g form is that in situat ion S-2, TABLE-2 will
contain all entries of TABLE-i in S-i, except those whose key part was KEY-3, which will be
members of LIST-4:

FOR-ALL (member table-i sentry) IN s-i
(member table-2 entry) IN 5-2

EXCEPT-FOR (keypart entry key-3) IN s-i

FOR-WH ICH (member llst-4 entry) IN s-2

Thus class definition s are constructed from the various assertion types by var labil ization of
one argument. For example, in part or property assertions varlabilization of the first argument
defines the class of objects which have a particular part or property. The set of all lists whose
FIRST is OBJECT-21 is denoted by:

(FIRST s lu t objeet-21)

There is no other way to form a class definition from a part or property assertion, since the

second argument Is unique ly determin ed by the first. Binary relation assertions, however, can —

- -
be used to form two different class definitions. For example. we could quant ify over either the

set of all members of TABLE-i, or the set of all tables of which ENTRY-2 u s a member.
-

-

respectively:

S

~~~~~~~~~~~~~~~~~~ -~.. - ---— . .— — - ——--—————--—~~ —~ .- -‘_ -‘-— ~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~ -—



— —‘--—- — ~~~~~~~~- .. -.--

105

THERE-IS—A <class-del’> IN <sit-i>
SUCH-THAT <pred> IN <slt-2> .

:~ 
THERE-IS A UNIQUE <clasa de?> IN (sit-i)

SUCH-THAT <pred> IN <slt-2> .

FOR-ALL (class-de l’> IN (alt —i>
(prad— i> IN <s it-2 >

EXCEPT-FOR <exce pt-pr ed> IN (s lt-3>
FOR-WHICH <pred -2> IN <s lt -4>

where:

(CLASS-OFF> is an assertion with a single quantified variable,
which defines a set of objects , such as the members
of a table or the entries with a particular key.

<SIT-n> names some situation in the situational data base.

I <PRED-n> is a predicate, i.e. an assertion involving the quantified
variable from the class definition.

(EXCEPT-PRED) Is the exception predicate, i.e. an assertion involving
the quantified variable which further restricts the set
of objects defined by the class definition.

in Deductive System. 

-

~~~

- -- —-—- - - ——— —-P.,-- —, - -

106

(MEMBER table-i sentry)

(MEMBER stable ent ry-21)

Class definitions are typically made out of gener ic-part assertions In only one form, e.g.

(ITEM array-21 sindex sobject)

which defines the set of all indices and corresponding objects In ARRAY-21. For example, the

following quantifier specifies the action of a segment which divides the items of an array

(which are PAIR’s) between two lists according to whether they have a given LEFT part

FOR-All (Item array-23 s index sobj ect)
(member list-i object)

-

- EXCEPT-FOR (first object special-i)

FOR-WHiCH (member lls t-2 object)

F- I
Asserting Quantifiers

For each of the three typ es of quantification, there is a p~ cedural semantics which specifies

how to change the data base when the quantifier Is asserted. For example1 to assert a

THERE-IS-A quantifier the deductive system creates an anonymous object and asserts of it both

the class description and the predicate. Thus,

THERE-IS-A (member table-i sentry)
SUCH-THAT (keypart entry key-i)

molts in the creation of a new anonymous object ENTRY-fl and the assertions

(ENTRY entr y-22)
(MEMBER table-I .ntry-22)

-
(KEYPART entry-22 key-i).

I
li ~ ____

_ _

W - ~~~~~~~~- r -” - — -~~-. --.---- -~~
- W ~~~~~~~~~~

- ‘ ? ‘ - - -
~~

-
~~~~~~~

107

THERE-IS-A-UNIQUE quantifiers have a similar proce dural semantics except that , in
addition , the deductive system records the fact (In the ancillary demo n data base; see
implementation note following ) that the anonymous object created Is uniquely quantified by the
class definition and the SUCH-THAT predicat e. If another object Is ever asserted to satisfy these
predic ates, an identification Is performed between it and the anonymous objec t created by the
quantifier

The check for identification of uniquely quantified objects is implemented by creating a
UNIQUE-DEMON with two triggering patterns constructed by replacing the variabilized argument
in the class definition and the SUCH-THAT clause by a udon~t care pattern matching symbol (5).

For example, consider the following quantifier:

THERE-IS-A-UNIQUE (member table-i sentry ) IN s-i —

SUCH-THAT (keypart sentry key-i) IN s-2 — 
-

According to the procedural semantic s for THERE-IS-A-UNIQUE, the following assertions are
made in the situational data base

(ENTRY .ntry-1)
(MEMBER table-i .ntr)~~~
(KEYPART entry-i key-i)

In add ition, the following demon Is recorded in the demon data base

(UNIQUE-DEMON: entry-i
((MEMBER table-i 5) IN s— i)

((KEYPART * key-i) IN s—2))

Now suppose the new assertion is added

(MEMBER table-i entry-2)



—,.~~~ ~~~~~~~~~~~~~~~~~~~ 
—.“,.~ ,,- -~—-~~—.,—.- —.,—- —-~. 

~~~~~~~~ ~~-~ —,‘~~~~~ -~~ ‘, — — -

l08

Since this assertion matches one of the tr igger patterns for the demon above, the system
attempts to verify the other part of the unique quantification (substituting ENTRY-2 for 5). If
this fact Is known to be true, ENTRY-2 is Identified with ENTRY-i; otherwise no action ii taken.
Similarly, the same demon would be triggered by the assertion:

ASSERT: (KEYPART entry-2 key-i)

The procedural semantics of FOR-ALL quantification are more complex. It might appear
• - adequate simply to find all objects currently in the data base which satisfy the class definition ,

determine which of them satis f ies the exception predicate. and then assert the corresponding
pred icate for each of them.

However this Ignores the possibility that facts related to the quantification might either be
learned or hypothesized at a later time. Thus , the full procedure for asserting FOR-ALL’S is as
follows (where the meta-identifiers refer to Figure 19). For each assertion matching the
(CL ASS-DEF) in <SIT-i), the tTuth value of the exception predicate is determined in <SIT—3>
(substitutin g the object in the current assertion matching the quantified variable for the
quantified variable In the exception predicate). If the exception predicate holds, then the

-
; predicate (PRED-2> is asserted in (SIT-4> (again substituting the actual object in the current

assertion). If the exception predicate is false, <PRED-1> (appropr iately substit uted) is asserted

4 In <511-2>. Furthermore If the truth value of the exception predicate Is unknown, then any
-

assertions which would contradict either (PRED-1) or (PRED-2> are made unknown (erased) In
their respective situations, and an EXCEPTION-DEMON Is established whose job it Is to notice
when the truth value of the exception predicate becomes known In <511-3>. If the exception
predicate becomes known, then the demon asserts either (PRED-i> In <SIT-2) or (PRED-2> in
<SIT-4> as appropriate.

Even the above complIcations are not sufficient procedural semantics for FOR-ALL since at
any later time we might learn or hypothesize that some other object matches the class definition
In (SIT-i). We would then have to proceed just as if the quantifier wer e still activ e, i.e. we
would have to determine If the object mentioned In this assertion satisfied the exception

- - predicate and then act accordingly. Thus the assertion of a FOR-ALL quantifier also leads to
the creation of a FOR-ALL-DEMON, which will watch for new assertions that match the
<CLASS-DEF >. L. ~

:1

~

• ~~~~~ - - -~~~~~~~ ~~~
--
~~

-- . - .
~~

- •
~~~



Let us clarify by an example. Consider the following quantification which is the essential
part of the specs for a DELETE-SEGMENT.

- 
- FOR-ALL (member table-i sentry ) IN s-20

- - 
(member table-i entry) IN s-21

EXCEPT-FOR (keypart entry key-i) IN s-20
FOR-WHICH (not (member table-i entry)) IN s—21

Suppose there is an entry ENTRY-i in situation 5-20 which Is a member of TABLE-i, and
whose key part Is unknown (or anonymous)

(MEMBER table-i entry-i) IN s-20

When the FOR-ALL quantifier above is asserted, ENTRY-i will fall into the class defi nition
and, since the truth value of the exception predicate will be unknown, an EXCEPTION-DEMON
will be created to watch for new assertions bearing on ENTRY-i:

(EXCEPTION-DEMON : ((keypart entry-i key-i) IN s-20)
((not (member table-i entry-i)) IN s—21)
((member table-i entry—i) IN s—21))

This demon could be triggered most sim ply by the asser tion of exactly its exception
condition, i.e.

ASSERT: (KEYPART entry-i key-i) IN s-20

I
If this f act Is asserted, the action of the demon will then be

ASSERT: (NOT (MEMBER table -i entr y -i)) IN s-21

The exception demon Is also triggered by an explicit denial of the exception demon, I.e.

ASSERT (NOT (KEYPART entry-i key-i)) IN s-20



~ - -•~ 
_ _ _

:1
In which case it asserts <PRED-l)-

ASSERT: (MEMBER table -i entry-i) IN s-21

Finally, an exception demon can be invoked by implicitly denying Its trigger assertion, as by

ASSERT: (KEYPART entry-i key-2) IN s-20

which causes the same action as for an explicit denIal. Implicit denials can be detected by way

of the constraints on certain assertion types mentioned previously with regard to functional

notation, e.g. that part and property assertions uniquely determine their second argument.

To complete this example, a demon must also be created which will apply the procedural

semantics of the FOR-ALL to any other objects which are later discovered to fall In t the class

definition. The trigger pattern of this demon Is

(FOR-ALL-DEMON : ((member table-i 5) IN s-20)

...)

while the body just records the entire original FOR-ALL assertion so it can be reapplled.

Thus the invocation of demons in our system may involve specific domain knowledge (as in

the case of Implicit denial of part assertions) in addition to the syntactic pattern matching used

in other systems such as PLANNER. Also, our demons are all Instances of pre-defined forms,

iuch as UNIQUE-DEMON, EXCEPTIO N-DEMON , and FOR-ALL-DEMON , while those In

• 
PLANNER -like systems usually may be arbitrary programs.

Proving Quantifiers

A procedural semantics for proving quantifiers is also required. As with any assertion, the

possible truth values of a quantified assertion are true, false and unknown. Thus there are

three logIcal steps: first an attempt Is made to prove the assertIon true, then an attempt is

made to refute the assertion; if both of these fail , the truth value of ‘he quantifi ed assertion ii

deemed to be unknown.



- —. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— —• - -  __-___-,-——_

111

In order to prove a THERE- IS-A quantifier true , it is sufficient to simply find an object
which in <SIT-i> satisfies the class defin itIon and which in <511-2> satlsifes the predicate. A

• refutation consists of showing that no such object can exist, i.e. of showing that for all objects
satisfying the class definition the predicate is false. This is Implemented exactly as this
suggests , i.e. by provin g a FOR-ALL assertion.

To prove a ThERE-IS-A-UNIQUE quantifier true it is necessary to: (I) find at least one
object which satisfies the class definition In <SIT-i> and the predicate In <SIT—2> and (2)
prove that there cannot be another such object, i.e. that for all objects which satisfy the class
definition exce pt for the one already found <PRED> is false in <SIT—2 >. Again this is
Implemented as the proof of a FOR-ALL quantification.

There are two possible refutations of a THERE-IS-A-UNIQUE assertion. The first Is simply
to find two objects which satisfy both the class definition in <SIT-i) and the pred icate in
<511-2>. The second is to prove that no object can satisfy both requirements. This second
akernative again amounts to the proof of a FOR-ALL assertion.

FOR-ALL assertions are easily refuted by finding a single exception, I.e. an object satisfying
the class definition and either satisfying the exception predicate but not <PREO-2>, or not
satisfying the exception description and also not satisfying <PRED- i>.

Proving a FOR-ALL assertion true requires a different approach. Since we are working
under conditions of incomplete knowledge. there might well be objects which satisfy the class
definition of the quant ifier , but for which the relevant assertions are not currently in the data
base. Thus searching the data base for all objects satisfying the class definition and checking
the other predicates is not adequate .

Instead a new anonymous object Is created which Is asserted to satisfy the class definition In
- 

- <SIT-i >, and to hypothetic ally satisfy the exception predi cate in (SIT-3>. If the FOR—ALL is to
• be true, it must then be possible to prove <PREO-2> of the anonymous object in <SIT-4>.

Then the negation of the exception condition for the anonymous object is hypothetically
asserted in <SIT-3>. For this hypothesis , It must be possib le to prove <PRED-i> In <511-2).

4 Since the anonymous object created has nothing extraneous asserted about it, the proofs must
apply to any possible object. Thus the two proofs using the anonymous object amount to a 

. 

-

validation of the FOR-ALL



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - —..— -~ - - •--

112

Imp lementation Note: Contexts and Demons

The situational data base is implemented as a CONNIVER-like context-layeTed data base

in which each succ eeding situation Is represented as a pushed-context of its parent. This allows

Incremental updating rather than reconstruction of each situation. There are however two

major differences between our implementation and CONNIVER: the implementation of

demons (corresponding to if-added methods in CONNIVER), and the relationship between

time and hypothe tical extensions of a situation .

In CONNIVER and other PLANNER-like languag es, demons are antecedent processes

whose presence or absence in various contexts is handled identically to that of normal

assertions. For exam ple, if a demon Is asserted in situation S-i then it will be trIggered by any

assertion matching its pattern which Is asserted in S-i or In any of Its descendants. Th is will
have exactly the wrong effect for our purposes.

To illustrate, let us return to the deletion quantifier given earlier:

FOR-ALL (member table-i sentry ) IN s-20
— • (member table-i entry) IN s-21

EXCEPT-FOR ( keypart entry key-i) IN s-20
FOR-WHICH (not (member table-i entry)) IN s-21

The Intuitive meaning of this assertion Is that any entry which was a member of TABLE-i

In situation S-20 will also be a member of TABLE-i in s-21 , unless its key part was KEY—i , in
-
; which case it is not a member of TABLE-i In S-21. The trigger pattern of the FOR-ALL DEMON

for this quantifier Is:

3 ((member tabl e-i 5) IN s-20)

Now suppose a new entry Is created with key part KEY-2 (an identified object distinct from

KEY-i), and is added to TABLE -i in a descendant situa tion of S-20 (I.e. one which represents a

later point in the computation). Certainly this entry will not be a member of TABLE- i in S-21,

since at that stage of computation the entry has not yet been created. Unfortunately, in a

CONNIVER implementation of demons, the FOR-ALL-DEMON would trigger on this new f act

and Incorrectly deduce that the the entry with key KEY-2 was a member of TABLE-i in S-2i.



r ~~~~~~~~~~~~~~~~~~~~~ 

- - - ——-~~~~—- -  -- 
- - .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- - - -~~--~~——“

113

Alternativel y, suppose S-20 is an immediate descendant of situation S-i9, and that the
segment effecting the transition from S-19 to 5-20 does not Involve TABLE-i. If at some later
time the system should discover the new facts

ASSERT: (KEYPART entry-3 key-i) IN s-19
ASSERT: (MEMBER table-i entry-3) IN s-19

-j ~
- then ENTRY-3 must ~~ be a member of TABLE-i in S-21. Again unfortunately , in the

CONNIVER imp lementation of if-added methods, the FQR-ALL-DEMON would not be triggered
by this new MEMBER assertion in S-i9, since it occurs above (before) the demon in the context
inheritance tree. Thus (MEMBER TABLE-i ENTRY-3) will simply be Inherited automatically into
5-21 , which Is incorrect.

j Thus although the conce pt of an antecedent process, or demon, In our system is the same as
1] in CONNIVER-like languages, our Implementation has important differences. Our demons

are kept in a separate demon data base with parallel stru cture to the situational data base. As
each assertion is added to the situationa l data base, a check is made to see If any demons are
triggered ; if so, they are ordered by situation, most recent firing last. Our demons can be
thought of as looking ~~ the context inheritance tree while those of CONNIVER look down.

The situational data base in our deductive system is also a significant modification of the
usual CONNIVER context-la yer data base. In CONNIVER there is a sing le context
extending mechanism which can be used to represent either time transitions or hypothetical
extensions , or with some care both. In our *ystem , we have separated these into a
two-dimensional context mechanism, in which one dimension represents time and the other

-
, 

• represents hypothetical modifications of situations already present in the time chain.

The two dimensional context facility Is exploited by the deductive system in several ways.
For one, the proof of FOR-ALL quantifiers postulates the required anonymous object in a
hypothetical extension of the Initial situation, propagating the new information in hypothetical
extension s of the corresponding situations. These extensions can then be Ignored , If so desired,
once the quantification is proven or refuted . This avoids the danger of destroying Information

- 
• In the primary sequence of situations by the assertion of contradictory facts arising out of the

attempted proof. - :

~

_ 
--•~~~- •~~~~~~~~~~~~~~~~~~~~~~~~~~ ••-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --•~~~~• - • ----•~~• -  ----.-—



314

A second application of the two-dimensional context facility is in interactive design. A
programmer may use the c~eductive system to build a plan out of variou s segments whose
specifications are subject to revision. In particular , he might want to hypothesize additional
pre-conditlons to see if they would help him achieve his final goal. Again, the use of
hypothetical extension s allows the primary time sequence of situations to be kept intact while
the effects of a hypothesized change can be examined.

We have implemented two-dimensional contexts by generalizing the lairer number In

CONNIVER to a 2-tuple, consIsting of a time-layer number and a hypothetical-layer Identifier.
A context in this system is an ordered chain of such layers, where ordering is according to the
time dimension as primary key and hypothetic al dimension as secondary key. Conceptually at
least, the rest of the context mechanism Is handled analogous to CONNIVER. Notice that in a
two -dimensIonal system , however, inheritance operates in a grid rather than straightforwardly
down a tree.

sit—i ) slt—2 > slt-3

I I I
I I I

sit-i-a ---> slt-2-a ---> sit-3-e Hypothetical A

Demons In this grid are triggered by assertions along the hypothetical dImension In the

standard CONNIVER fashion , i.e. Informat ion added to any hypothetical extension of a

situation which a demon is watching is noticed by the demon. However , new information
deduced by the demon is asserted In a hypothetIcal extension of the appropriate situation

L~ 
-
~ corresponding to the hypothetical wher ein the triggering took place. If the context system is

regarded as a grid with time Increasing to the right and hypothetical ex tensions growIng
downward (i.e., as we have drawn It), then demons can be thought of as looking downward and
to the left, and as acting downward and to the right.

For example, consider again the FOR-ALL-OENON created for the deletion specs -

•

(FOR-ALL-DEMON: ((member table- i *) IN s-20)

- - -~ -- • -~~~~~~~- -



- ~~~~~~~~~~~~~~~~~~ ~ 
- •

~~~ ‘~~--~ — -~~ ,•, - -—-•--- - —.•—.-.-~~~ - -,-w ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~—•-.-•--~•--~-

I -
-

•— —

Assume further that In a hypothetical extension of S-20, call it 5-20-A, the followIng ii
I asserted:

- ASSERT: (MEMBER table-i entry-4) IN s-20-a

- The demon will check if the key part of ENTRY-4 is KEY-i In S-20-A, and then make the —

appropriate assertion In situation 5-21-A, unless the key part of ENTRY-4 Is unknown, In which

-
case an EXCEPTION-DEMON is established to look at S-20-A for information about the key of
ENTRY-4.

- i ~

~~~~~~~~ --  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -~~~~~~~~~
——-~~~~ ~~~

- 
~~~~~~~~~~~


--.

116

8.2 Specs Application

Specs application Is the most basic operation of the deductive system. It is a kind of

symbolic evaluation in which the effect of a segment on particular input objects is simulated in

the situational data base. In general, the reasoning involved is simple: first the input

expectations are proved In the input situation, and then the output conditions are asserted in

the new output sit uation . If the input expectations cannot be proven, then the segment is

termed inapplicable to the presen t situation , and the programmer Is warned of the possible

error.

Specs application is denoted by the APPLY command, which has as its argument a segment

type followed by an ordered list of Input objects to which the segment Is to be applied. For

example,

APPLY: (HASH k.y-2 tabl.-3)

The system retrieves the specs for the given segment ty pe from the program ming

know ledge base. These prototypical specs are insta ntiated for the particular input objects given

by buildi ng an input association list (a-list) pairi ng the actu al input objects with the

corresponding objects in the prototypical INPUT clause. This a-list is then used to systematically

substitute the actual input objects into the EXPECT conditions of the prototyp ical specs. Thus in

the above example, if the prototypical specs for HASH were written as follows:

(SPECS-FOR hash
(INPUTS: the-key the-table)
(EXPECT: (table the-table)

(key the-key))
- • (OUTPUTS: the-index)

(ASSERT: (index-of the-tabl. the-Index)))

the input a-list would be

• ((THE-KEY .k.y-2) (T1IE-TABLE.table-3)).

P

~

-• -

~

- .. -

~

- ~~~ - - - -

—~~~~~~~~~~~
•
~~~
,-- —--

~~~~~~~~~~

07

The first proof step of specs application is then to prove the expectations, I.e

EXPECT: (TABLE table-3) IN s-i
(KEY key-2)

If this proof succeeds (in a case of type checking like this, typically by simple data base
-: search), then the output clauses are instantiated. This consists of building an output association

list In which each output object from the prototypical specs is paired with a new anonymous
object (except in the presence of side effects or newly created objects), and doing the
appropriate systematic substitution in the ASSERT clauses. For the current example, the output
a-list would be

((THE-INOEX.lndex-4))

A new output situation is created as th e daughter of the input situatio n, to which the
substituted ASSERT’s are added, e.g.

ASSERT: (INDEX-OF table-3 index-4) IN s-2

‘I
Side Effects

If the specs being applied involve side effects, the simple procedure described above will
not be sufficient. Side effects can take place when the same (mutable) data object Is both input
to and output of a segment. This is indicated in specs by an Iii assertion, e.g.

‘- 1 (ID the-array the-new-array)

This assertion says that the identifiers THE-ARRAY and THE-NEW-ARRAY , one of wh ich is an
input and one of which is an output. refer to the same object. Two different IdentifIers are •

required in order to be able to refer to relationships between the object in the Input situation -

-

•

and the output situation.
•

-

it - -~~~~~ -~~~~~~ - - -

_________________________________ -~ — —---- .-•- ,— ••- ••--,• —

_ _ _ _ _ _ _ _ _ _

l’s

For example, consIder the specs for the MRAYSTORE segment type, which may be written as
follows

(SPECS-FOR: arraysto re
(INPUTS: the-a rray the-Index the-ob ject)
(EXPECT: (array the- array)

(Index-of the-array the-Index))
(OUTPUTS: the-new-array) -

(ASSERT: (Id the-sew-arra y the-array)
(Item the-new-arra y the-index the-o bj ect)))

Suppose the system were to apply these specs to the fol lowing input objects

APPLY : (URAYSTORE array-i lndsx-2 obj ect-b)

The Input and output association lists created would be, respecfivel~

((THE-ARIAY .array-i) (THE-INDEX. lndex-2) (THE-OBJECT.obJSCt4))
((THE -NEW-AR*AY.arr.y-1))

Notice that the output a-list binds THE-NEW-ARRAY to ARRAY -i rather than to a new

anonymous object as is done for output objects which are not in ID clauses.

~~ to be proved far this specs application are then:

EXPECT: (ARRAY array-i) IN s-3
(INDEX-OF array-i index-2)

If these proofs are successful, the output assertion Is entered into the data base

ASSERT: (ITEM array-i Index-2 objsct-6) IN s-4

- Li

- — - - ~~~~ — -—,-—-- • -—----.—- --— - ‘~~~~~ , - -

~~~~~~~

,j

119

- 

‘1 When this last assertion is entered Into the data base, the system notices that It is making an
assertion about a side-effected object. Therefore, a check Is made to see if the current assertion
contradicts information already present. For part, property, and generic-part assertions this
Involves checking to see If the indicated part or property is already known. If so, the old
information is erased in the new situation . For example, suppose

(ITEM array-i lndex-2 object-5) IN s-3.

Since the output situation S-4 is the daughter of 5-3 this assertion Is also present In 5—4
and would contradict the output assertion of the ARRAYSTORE. Thus the s7.L~m takes the action

ERASE: (item array-i Index-2 object-5) IN s-4

In the application of specs involving side effects, wherein a single real object is referred to
by both an input name and an output name, the system must take special care to resolve
bracketed expressions (...] in the correct situation. If a bracketed expression refers to a
side-effected object by its input name, then the expression must be resolved in the input
sItuation, and vice versa. The necessity of this Is illustrated by the following specs:

(SPECS-FOR: swap
(INPUTS: the-pair)
(OUTPUTS: the-new-pair)
(ASSERT: (Id the-new-pair the-pair) 

-

(left the-new-pair [right the-pair])
(right the-new-pair (left the-pair])))

Consider the application of these specs to a particular object. say PAIR-75. In the Input
and output a-lists for this application, both THE-PAIR and THE-NEW-PAIR are bound to
PAIR-iS. Thus, after substituting the real objects for the local names in the specs, we would
need to resolve the brackets In:

(left paIr—iS (righ t pair—iS ])

I —



-~ -.------ -—~ - .-,— ~~— -~--- --- - 

120

If the bracket is resolved in the output situation, as one might first assume since the
expression is In an ASSERT, we would then be saying that the LEFT of PAIR-75 and the RIGHT
of PAIR- 75 were identical in the output situation. However, the intention of the specs is to say
that the LEFT of PAIR-is in the output situation Is what the RIGHT of PAIR-75 had been In
the Input situation. Thus (LEFT PAIR-i 5] must be resolved in the input situation because the
Input name of the abject is employed in the specs.

When the specs of a segment include a NEW assertion , onl y a minor adjustment of the
simple specs application procedure Is required . Since a new output object may never be
identical to any other existing or hypothesized object, this output object should be created as an
Identified, rather than an anonymous Individual

Side Effects and Cite-keepers

Since most relations and properties are defined in terms of the part structure of the objects
involved (see Section 2.I)~ side effects on the parts of an object may change its properties or the
relations It enters Into. Therefore when a side effect occurs, it is necessary not only to erase the
obviously contradictory part assertions, but also to re-cakulate certain properties and relations.

A simple example of this effect is the RPLACD operation in LISP which replaces the REST
part of a list. If the REST of a list Is changed, obviously the length must be re-calculated.
However, this in itself is Inadequate because the list might be a sub-list of another list, and so
on. Thus the re-calculation at properties and relations must be recursive, propagating up the
chain of objects which are parts of other objects.

Furthermore, we cannot assume that all this re-calculation can be done at the time of the
specs application. As always, there is the problem of Incomplete knowledge. At some later time
the system may learn or hypothesize a new property or relation in the Input situation, which

would be affected by the side effect. The solution to this problem is to create a demon called a

~~~~~~~~ 
which watches for such assertions.

I

-- - ~~~~~~~~~~~~~~ - ~~~~~~~~ .
- - - - ~

— “rr

H . 121

A gate-keeper contains four pieces of information : the name of the object that was
side-effected, the input situation name, the output situation name, and the list of side effects .
For example, the gate-keeper demon created by the application of ARRAYSTORE to ARRAY-i
wouldbe

(GATE-KEEPER: array-i s-3 s-4
(Its. array-i index-2 obj.ct-6))

A gate-keeper is triggered whenever a new property, relation, or part is asserted for Its
trigger object, I.e. the side-effected object. A triggered gate-keeper first checks to see if the new
assertion Is visible in its Input situation; only if so is It actually applicable. There are two cases

wherein a gate-keeper is applicable, but does not have to do anything. The first case is if the
new assertion is an immutable property or relation, i.e. one that does not depend on part
structure. For examp le the relation INDEX-OF between an index and an array is Independent
of side effects on the array.

The second case where no special action is required is when the new assertion Involves a
part that was not changed in the gate-keeper’s side effect, or a property or relation that is
defined in terms of parts other than the particular part(s) changed in the side effect. The
length of a list, for example, is independent of side effects on the FIRST part of the list The
dependency of properties and relations on part structu re can be derived from the definition s of
the properties and relations. For efficiency in the triggering of gate-keepers our current system
pre-com piles this Information In the form of DEPENDS-ON assertions in the programmIng
knowledge base, e.g.

(RELATION-DEFINITION
(member list object) (‘>

(or (first list object)
(member (rest list] object)))

(DEPENDS-ON (first list) (member list object))
(DEPENDS-ON (rest list) (member list object))

_
_ _ _ _ _ J- - - - - - - S-—rn— —-- -- -~~~-—--—-. ~~~~~~—- -- .- ---S — -~ - ——----- - - - —

122

Since relation definitions and DEPENDS-ON assertions in the know ledge base are written in
terms of object ~~~ retrieval of this Informa tion by a gate-keeper Is achieved using the type
assertions of its triggering abject. Recall that this may require searching up the hierarch y of
object and concept types (see Section 2.5) to Find a type for which there Is a relation defini tion.

Hav ing determined that it is applicable and that the new assertion depends on its side
effect, the gate-keeper now tries to determine the truth value of the new assert ion in Its output
situation. (Remember that demons look “backwards in time and thus must decid e whether new
assertions in earlier contexts can pass through.) To do this, it erases (makes unknown) the
assertion in the output situa t ion, asserts the expans ion of the relation or property according to
its definition in the input situati on, and then attem pts to prove the relation or property
assertion in Its output situation (also expanding the definition if necessary). If the proof
succeeds, the new assertion is passed through the gate”, i.e made true , in the output situation;
otherwise a refutation is attempted ; if both of these fail, the truth value is left unknown.

An additional complication arises in the case of generic-part assertions. For objec ts with
generic parts, the gate-keeper must determine whether the index in a new generic part assertion
is identical to the index in its side effect assertion. If the indices can be proven identical, then
the appropriate action is to erase the new assertion in the output situation, since it contradicts
the side effect. If the ind ices can be proven distinct, no action is required . Finally, ii the
Identity of the Indices is unknown a exception demon must be created which will take the
appropriate action if the unknown fact ever becomes known.

I
I

I I
_

- - - -

‘~~~~~~~r’~ ~~~~~~~~~~
-,

~~~~
.-- 

~~~~~~~~~~~~~ -~~~~~~~~~ -~~- ‘ .~-- - -~~~ -- -~~~~

123

3.3 A Comp lete Verification

This section shows the complete step-by-step verification of a plan for a hash table Insert
routine. The heart of the verification process is the specs application procedure described in
the preceding section. The example plan In this section is a very clean design with evenly
layered conceptual levels, using only the concepts of hash table, hash, bucket, entry, and key. In
SectIon 3.4 we will show how the deductive system has been extended to handle plans which
are stated with uneven levels of description.

The specs for a hash table insert routine may be written as:

(SPECS-FOR: Insert-segment
(INPUTS : the-table the-ke y the-data)
(EXPECT: (table the-table)

(key the-key)
(OUTPUTS: the-new-table the-entry)
(ASSERT: (table the-new-table)

(entry the-entry)
(keypart the-entry the-key)
(datapart the-entry the-data)
(Id the-new-table the-table)
(member the-new-table the-entry)
(for-all (member the-table *entry)

(member the-new-table entry))))

The programmer’s plan for achieving this routine could be stated In words as follows:

Given a key, data, and the hash table hash the key to get an index.
Fetch the corresponding bucket from the table. Build a new entry from the
key and the data, and then build a new bucket from the old one by adding
this entry. Insert the new bucket into the table In the position indexed by
hashing the key.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

—— ~~WW’ ~~~~~ v ey~~

- ~~~~~ ~~~fl-W, te -e’,~-.- - - - :

124

(SPECS-FOR hash
(INPUTS: the-key the-table)
(EXPECT: (table the-table)

(key the-key))
(OUTPUTS: the-Index)
(ASSERT: (Index-of the-table the-Index)))

(SPECS-FOR: bui ld-entr y
(INPUTS: the-key the-data)
(EXPECT: (key the-key))
(OUTPUTS: the-entry)
(ASSERT: (entry the-entry)

(new the-entry)
(keypart the-entr y the-key)
(datapart the—entry the-data)))

Figure 20. Segment Types in Plan for Insert (cont’d next page).

125

4

(SPECS-FOR bucket -fetch
(INPUTS: the-table the-Index)
(EXPECT: (table the-table)

(Index-of the-table the-Index))
(OUTPUTS: the-bucket)
(ASSERT: (bucket the-bucket)

(bucketpart the-table the-Index the-bucket)))

(SPECS-FOR: bucket-store -

(INPUTS : the-table the-Index the-bucket)
(EXPECT: (table the-table)

(bucket the-bucket)
-

.
(index-of the-table the-index))

(OUTPUTS: the-new-table)
(ASSERT: (Id the-new-table the-table)

(bucketpart the-new-table the-Index the-bucket)))

(SPECS-FOR bucket-Insert
(INPUTS : the-bucket the-entry)
(EXPECT: (bucket the-bucket)

(entry the-entr y))
- ‘ (OUTPUTS : the-new-bucket)

(ASSERT: (bucket the-new-bucket)
(member the-new-bucket the-entr y)
(for-all (member the-bucket sentry)

(member the-new-bucket entry))))

FIgure 20. Segments in Plan for Insert (cont’d).

I
_

_ - --- ,

126

Specs for the segment types mentioned in this plan are shown in Figure 20. The data flow
of the plan is given in Figure 21.

• (PLAN-FOR: insert-segment
(SUB-SEGMENTS : (hash- I bucke s-fetch-l build-entr y-i

-

I - bucket-Insert-i bucket- sto re-i))
...)

In our current implementation of the deductive system, a plan such as the one above is

entered by the programmer one segment at a time (with data flow links). A step of symbolic
- - evaluation occurs after each plan segment by applying its specs. However it Is a trivial

extension to allow the system to be given an already constructed plan with data flow links (e.g.
as output from recognition; see Chapter Five), and have the steps of specs application take
place automatically. In terms of the way this example Is presented in the fo llowin g pages, the
difference between these two mod es amounts essentially to whether the APPLY commands are
typed in Interactively by the programmer, or generated automatically as the system symbolically
evaluates an already constructed data flow plan. Figure 21 shows the data flow p lan for this
example, with the situation numbers to help follow the verification .

The verification begins In an init ial situation 5-0 In which the expectations of
I

INSERT-SEGMENT are asserted of newly created anonymous input objects.

SITUATION s-S

Ii ~

-

(TABLE table-i)
(KEY key-i)

The first step in the verification is to apply the specs of NASH to the Initial situatIon.

APPLY (HASH key-i table-i) IN s-S

EXPECT: (TABLE table-i)
(KEY key-I)

_ _

- •- -~
--~ ---. ~-- - . - - -~ -~~~~ —~~r~~~~~~r

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~ 

— - - .~~—

V - - ~~~V_~~ 
- 

~~~~~~~~~~

1

127

~~~~~IIO~j -0
I I

table-i key1-1 data-i
INSERT-SEGMENT I•1

•
_ 

___________________________

I HASH-i]

I

index-
S-i

:4 _ _

I BUCKET-FETCH_ij [ BUILD-ENTRY~j  \
I I

bucket-i entry-i I

/ 8
I BUCKET-INSERT-i

buc et-I~
H

I BUCKET_STORE-i]

table-i

Figure 21. Data Flow for Insert with Situation Numbers

LL.~ ~ _ _ _  _ _  _ _ _ _  _
- V -- -- --- 

~~~
-- -

~~~~
-
~~~~~~~~

- -- V— -- - -— -- -
~~~~ — ___ _ __-_ _s~~~~~~~~~_



- -

128

These expectations are satisfied trivially, since the facts are explicitly present in S-S. A new
output situation Is created, in which the output assertions are added:

SITUATION s-I

ASSERT: (INDEX-OF table-i Index-i)
(HASH table-i key-i Index-i)”

Accord ing to the data flow in the plan, the BUILD-ENTRY segment is also applied to the
V inputs in S-S. 

-

APPLY : (BUILD-ENTRY key-i data-i) IN 5-0

EXPECT: (key key-i)

The input expectation is agaIn satisfied by being present in S-0. A new output situation Is
created:

SITUATION s-2

ASSERT: (ENTRY entr y-i)
(KEYPA RT entr y-i ‘key-i)
(DATAPA RT entry- i data-i )

Notice that since THE-ENTRY Is declared to be NEW in the specs of BUILD-ENTRY. ENTRY-i Is
created as an Identified, rather than as an anonymous object.

Next the system symbolicall y evaluates the cascade of BUCK ET-FETCH, follo wed by
BUCKET-INSERT , followed by BUCKET-STORE . The justIfI catIon for each EXPECT clause Is

shown as a comment to the right.



- —- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
V _ ‘~ 

V_ V V • V •~~_~~~V

29

- 1 APPLY : (BUCKET-FETCH table-i Index -i) IN s—2 V 

-

• EXPECT: (TABLE table-i) present in s-S
( INDEX-OF table-i Index -i) present In s-i

SITUATION s-3

V 

ASSERT : (BU~KETPART tablá-i Index-i bucket—i ). V

(BUCKET bucket -i)

4 APPLY : (BUCKET-INSERT bucket-i entry-i) IN 5-3

EXPECT: (BUCKET bucket-i ) ;present In s— 3
(ENTRY entr y-i) ;present In s—2

SITUATION s-4

ASSERT : (BUCKET buck et-2 )
I (MEMBER bucket -2 entry-i)

(FOR-ALL (member bucket-i ..ntry ) IN s-3
(member bucket-2 entry) IN s-4)

Recall that the assertion of a FOR-ALL quantifier creates a FOR-ALL-DEMON to watch for new
MEMBER assertions In 5-3

APPLY : (BUCKET-STORE ~~~~~ Index i buck.t-2) IN s-4

I EXPECT: (TABLE i)js j ) present In i-S
- ( INDEX-OF j

~~ 
j~~~~j ) ;prssent In a-I

(BUCKET 
~~~!~~

) present In s-4

~
. •
~
,•

SITUATION $ 5

ASSERT: (BUCKET table-i Index-i bucket-2)

Since there has been a side-effect on TABLE-i, a gate-keeper is created:

(GATE-KEEPER: ‘ tab le-i s-4 s-B
(bu ck.tp.rt tab le-I index-i bucket-2))

This completes the sym bolic evaluation of all the sub -segments in the plan for
INSERT-SEGMENT. It remains now only to prove each of the output assertions of
INSERT-SEGMENT. Of these, most are trivial type checks which are satisfied by assertions
already present In the data base:

PROVE: (TABLE table-i) present in s-S
V (ENTRY entry -i) ;present in a—2

(KEYPAR T entry -i key-i) ;prsunt In s-2
- I (DATAPART entry-i data-i) ;present -In s-2 V

The first non-trivial output assertion to be proven asserts that the newly created entry Is a
member of the table after the insert

V V 4 PROVE: (MEMBER table-i entry-i) IN s-5

This relation assertion is not explicitly present In any situation In the data base. Therefore

V the system uses its standard strategy of expanding the relation according to its definition, and

4 crying to show the definition Is satisfied. In order to retrieve the appropriate definition from
the programming knowledge base the system uses the type assertions of the objects involved.
In this example, the relevant membershi p definit ion states that entries which are members at
tables are members of the bucket part of the table which is hashed to by the key of the entry

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- V~ V V___ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ V~~~_~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r ,.~~~~ .— ..

V -

V 

1S1

(RELATION-DEFINITION
(member table entry) (s>

(member (buck.tpart table
(hash table (keypart entry]]]

entry))

The assertion to be proven is expanded into simpler assertions by substituting the specifIc
objects for the object types in the above definition, and resolving the brackets using
Information in the situational data base

(member table-i entry-i) (‘>
(member [bucketpart table-i

- 
(hash tab le 1 (keypart entry-i]]]

entry-i)
L

(KEYPART entry-i key-i) ;resolved In s-2
(HASH table-i key-i index-i) ;resolved In s—i
(BUCKETPART table-i Index-i bucket-2) ;resolved In s-S

PROVE: (MEMBER bucket-2 entry-i) ;present In s-4

The remaining simple assertion to be proven above is present in situation S-4 as an output
assertion of BUCKET-INSERT. O~E.D.

Proving the FOR-ALL Assertion

The second non-trivial output assertion of INSERT-SEGMENT asserts that all entries that
were present In the table before are In the table after.

PROVE: (FOR-ALL (member table-i ‘entry) IN s•0
(member table-i entry) IN s-B)

-;

I



V ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
- •

132

In preview, the PA’ s strategy for proving this assertion can be paraphrased as follows.

Consider an arbitrary entry that was in the table before the inser t was
performed. There are two cases: either that entry is in the same bucket as
the new entry being inserted, or it is in a dif ferent one. In the fir st case,

BUCKET-INSERT guarantees that any entry in the old bucket will be in the
new one, and hence In the table aft er the insert. In th e other case,

BUCKET-STORE g~arantees that all the buckets not involved in the store are
not changed . Therefore the entry continues to be a member of the table.

Thus the proof begins by creating an anonymous object ENTRY-2 which is a member of the

table in the hypothetical Input situation S-S-A (see Figure 22):

V ASSERT: (ENTRY entry-2) IN s-O-a

(MEMBER table-i entry~1)

The first assertion triggers automatic expansion of anonymous parts:

ASSERT : (KEYPAR T entry-2 key-2) IN s-S-a
(DATAPART entry-2 data-i)

The assertion of the member relation in S-S-A Is visible in 5-4 and therefore triggers the

gate-keeper which is watching for side-effects on TABLE-i:

(GATE-KEEPER : table-i s-4 s-S
(bucketpart table-i Index-i bucket-2))

This gate-keeper checks to see if the new relation being asserted depends in any way on the

side effects which it represents. The MEMBER relation for cables does depend on BUCKETPAR1’I;

therefore the gate-keeper performs three steps of action. First It erases the relation assertion in

the matching hypothetical extension of its outp ut situation

V ERASE: (MEMBER table-i entry-2) IN s—S-a

- ‘1
LL~~~~~~~~

- 
_  _  

- 
V 

V

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V 
_ _

I’S

4

SITUATION s-C-a (laltial)

J table—i

Indsx-2

- - 

SITUATION s-3-a (after HASH and BUCPZETFETCH)

I table-i
I —

entry- i

- 

,

7”~nd.x~i ..
~~

F e t ’r1

— 
entry-2

(hash (keypart entry-i) table-i Index-i)

Figure ft Uacertsiaty in Identities of INDEX-i and INDEX-2.

-
. 

-L ~~~~~~~~~~~ —~~~~ -~~—- ~~~~~~~~~~~~~~~~~~ ~~ V. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



__________________________________ 
- -

134

Second, the gate-keeper expands ci,. relation definition In Its Input situation:

ASSERT: (member (bucketpart table-i
[hash table-i (keypart entry-fl]]

entry-2) IN s-4—a

where the bracketed expressions are resolved as:

(KEYPA RT entry-2 key-2 ) ;present In s-S-a
(HASH table-i key-2 lndex-2) ;generated In s-4-a
(BUCKETPAR T table-i index-2 bucket-3) ;generated In s-4—a
(MEMBER bucket-3 entry-2) ;generated In s-4-a 

-

Notice here that two new anonymous objects have been created, INDEX-2 and BUCKET-3.
BUCKET-3 is the buck et in the INDEX-2 position of the table, of which ENTRY-2 Is a member.
At this point In the proof, It is unknown whether the new entry, ENTRY-i , and the anonymou s
old entry, ENTRY-2, hash to the same Index or not (see Figure 22). Thus BUCKET-2 (see Figure
23) represents the bucket in which ENTRY-i is Inserted, and BUCKET-3 represents the bucket in
which ENTRY-2 is inserted . Notice that INDEX-i being identical to INDEX-2 would make
BUCKET-2 identical to BUCKET-3.

When the BUCKETPART assertion above is asserted, the same TABLE-i gate-keeper Is
Invoked recursively. In this instance , however, the invoking assertion matches the side effect
which the gate-keeper represents, i.e. the change of a BUCKETPART of TABLE-i. The problem is
that both INDEX-i and INDEX-2 are still anonymous, so the gate-keeper cannot decide whether

j to let this assertion through or not. Therefore a exception demon is created to wait for further
Information to become available, and meanwhIle the BUCKETPART assertion is erased In the
output situation , since an unknown truth value is better than one that could later be proven
wrong:

ERASE: (BUCKETPAR T table-i Index -2 bucket-3) IN s-S-a

(EXCEPTION-DEMON : ((-Id Index-i Index-2) IN s-4-a)
nfl
((bucketpart table-I lndex-2 bucket-3) IN s—S—a)) 

~

L_ 
_ _



~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ -~~~~~~~~ -~~~~~~~~~~

I-  $35

V 

-

SITUATION s-4-a (after BUCKET-INSERT, before BUCKET-STORE)

I
I

V 

Index-i Index-2) (NOT (ID Index-i index-2))

bucket-2 
i bucket-2I—i I I I  I I I  I

V I 
I I I  I ‘- ‘ 

-

V V Ientry-i entry-2 entry-i

I

bucket-3

I I I
~~~~~~~

I . 1

: t
I entry-2
I
I

— t

Figure 23. Uncertainty in Identities of BUCKET-2 and BUCKET-3.

~

•

~

_ ~V~•• ~~ V
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~~~~~~~~~~~ V V_~~

_ —



Irr -—
‘I’

$36

This demon says th at If INDEX-i and INDEX-2 are discovered to be ident ical then no
further action Is required (since the BUCKETPART assertion for INDEX-i is already in S—S)
However if it is discovered that the Indices are distinct, then the demon will assert the
BUCKETPART assertio n for INDEX-2, which then would not be affected by the side effect.

At this point , control has popped back to the first gate-keeper invoked. As its third and
final step, this gate-keepet attemp ts to prove the MEM8ER relation in its output situation by
expanding Its definition:

PROVE: (MEMBER table-i entry-2) IN s-5-a
(R>

(member (bucketp art tab le-i
(hash table-i (keypart entry~i]]]

V 
ent ry-2 )

(KEYPART entry-2 key-2) ;resolved In s—S—a

- ~
- (HASH table-i key-2 Index-2 ) ;resolved In s-4-a

• (BUCKETPART table-i Index-2 bucket-4) ;generated In s -5-a

PROVE: (MEMBER bucket-4 entry-2 ) IN s-5-a

Notice that ex panding the MEMBER definition has led to the creation of yet anothe r

anonymous bucket , BUCKET-4. BUCKET-4 represents the BUCKETPART of the table indexed by
INDEX-2 in situation S-5-A after the BUCKET-STORE has been performed. This anonym ous
object is necessary since, as noted befor e, the gate-keeper for the BUCKET-STORE side effect V

could not tell whether or not INDEX-2 and INDEX-i were identical. Thus BUCKET-4 represents

our uncertainty as to the real iden tity of the bucket which is hashed to by the keypart of

ENTRY-2 (see Figure 24). This turns out to be critical to the proof, since if the sys tem knew the
identity of BUCKET-4 , then It would know if that bucket was the one involved In the V

BUCKET-STORE, and then might be able to conclude whether or not ENTRY-2 was still a member .

I 

~~~~~V


—
, -

~~~~—-~~~~~~~~ 
-

~~~~~~~~~~~~~~
--—- -

~~
-w-~~~-~ - — ~~ ~~~~

-- -•-
•

~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V - V - - - -,

~
V_

~
_  V V ~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~ 

-

13’7- -

SITUATION s-S-a (after BUCKET-STORE)

(ID Index- i Index-2) (NOT (ID Index-i Index-2))

table-i table-i

bucket-2
Index-i bucket-2 ,bucket-4 Index-i

~~~~ I 1
Index-2 _... 

— _ _ _ _ _ _ _ _ _

— I entry-i
entry-i entry-2

V 

— 
bucket-4

- 
- Index-2 — —uui-

~— I
.ntry-2

(ID bucket-2 bucket-4) (NOT (ID bucket-2 bucket-4))

FIgure 24. Uncertainty in Identity of BUCKET-4.

IV
-V ~~~~~~~~~~~~~~~~~~~~~~ •~

V - 
— —~~~

—-——-——---V - ~~~~~~~~~~



— - - —

138

- .4 The Hypothetica l Case Split Heuristic

When the deductive system hits a road blockTM such as the above inability to either prove
- or refute (MEMBER BUCKET-4 ENTRY-2), it can resort to various heuristic strategies. The

• expansion of a relation according to its definition is an example of such a strategy that we
have already seen in operation.

Another important general strategy for unblocking inconclusive proofs is to try to sp11t the

world into two hypothet~cal cases and prove the goal assertion separately in each. For example
when the - current deduktive system is blocked, as in the proof above , it looks for except ion
demons that were created in the course of the proof attempt. The exception condition of an

V 
exception demon provides a good heuristic for splitting the world into two hypothetical cases:
one in which the exception is asserted true, and one in which it is denied. The demon can then

• assert the corresponding result predicate in each hypothetical output situation, providing new

~ 
information which may advance the proof.

In the current proof of INSERT-SEGMENT, there is such an exception demon:

(EXCEPTION-DEMON : ((Id Index -i Index-2) IN s -4-a)
nIl

• 

- 

((bucketpart table-i lndex -2 buc ket-3) IN s—5-a ))

- 
V 

Accordingly, the system now splits situation S-4-A into two hypothetical extensions S-4-B and
- 1 5-4-C. in which the exception condition is respecti vely asserted and denied. As we will see, a

flurry of identifications and demon invocations is triggered by these asser tions , leading

eventually to the assertion of (MEMBER BUCKET-4 ENTRY-2) in both S-S-B and 5—5—C.

I SITUATION s-4-b

ASSERT : (ID Index-2 Index-I F

This identification replaces all occurrences of INDEX-2 with INDEX-i:

--4



V~~~~~~~~~~~~~~~~~ fl~~~~~~~~~~~~ V V~~~_V~~~~___  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V 

—
~~~~~

- V •-—-~~~~~~~~-

139

(BUCKETPART table-i Index-i bucket-4) ;In s-S-b
(HASH table-i key-2 Index-i ) ;In s-i-b
(BUCKETPART table-i Index-i bucket-3) ;In s-i-b

Furthermore, the first assertion above triggers another round of Identification since

(BUCKETPART table-i Index -i bucket-2) ;In s-5

V 
is visible in s-S-B. Therefore the identification of BUCKET-4 with BUCKET-2 is carried out at
the B hypothetical level. In particular, this applies to the the FOR-ALL-DEMON in situation
5-3, which now becomes:

(FOR-All-DEMON: ((member bucket-i *) IN s-3)
(FOR-ALL (member bucket-i .entry ) IN s-3

(nsub r bucket-4 entry) IN s-4))

V Yet another round of identification is triggered by the second BUCKETPART assertion above
in S—i— B since it is visible in S-3 where

(BUCKETPART table-i Index-i bucket-i) ;In s-3

The identification of BUCKET-3 with BUCKET-i yields

(MEMBER bucket-i entry-2) ;In s-i—b

V 
- triggering the FOR-ALL-DEMON in S-3 above, which puts its out put assertion in S—4-B:

I

ASSERT: (MEMBER buc ket-4 entr y-2) IN s-4-b

• wh ich is, of course, what we wanted to prove In situation S-S-B, where it is also visible. (End
ot proof for case one.)

V - - -



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — .~~,- ~~~~~~~~~ •. - ~~~~~~~~~~~~~~~~~~~~~~~~~~

H 
140

The second hypothet ical case is much simpler:

SITUATION s-4-c

ASSERT: (NOT (ID Index-2 Index-i ))

Since this is the denial of the exception condition of the exception demon, it asserts Its second

result predicate in the output situation:

ASSERT: (BUCKETPA RT table-i Index-2 bucket-3 ) IN s-S-c

This assertion triggers an identificaton of BUCKET-3 with BUCKET-4, since

(BUCKETPART table-i Index~~ buc ket-4) ;In s-5-a

yielding the following assertion

(MEMBER bucket-4 entr y-2) ;ln s-i-c

V 

which Is visible In S-S-C. Thus the proof has succeede d In both hypothetical cases and the

plan INSERT-SEGMENT is now verified to satisfy its specs.

:1



141

V 1 3.4

In this section we discuss several important extensions to the deductive system described
above that have been implemented or are about to be Implemented.

Building Purpose Links

As a by-product of verifying a data flow plan, it should be possible to abstract the
teleological structure of the program , i.e. the purpose links , w hich explain how this
arrangement of segments accomplishes the desired goals. A few simple extensions of the

• current deductive system (which have not been implemented at this time) would provide the
basis for this feature.

The basic idea is to annotate each assertion with an record of how it was entered into the
situational data base. For example , an assertion may be an input expectation of the main

V segment; or it may have been asserted as an output assertion; or finally it may be the result of
expanding of another assertion, as in the creation of anonymous objects to represent parts.

Purpose links are just a record of how assertions are used in the verification. Thus for
examp le, if an assertion used to satisfy the input expectations of a segment was entered into the
data base as the output assertion of another segment, a PREREQ link should be created between
the two. Similary, if an assertion used to prove the output assertions of a segment was entered
into the data base as the output assertion of a sub-segment , an ACHIEVE link should be created
between the two segments.

V Reason ing with Mixed Implementati on Levels

In Section 3.3 all the specs In the plan are at a uniform level of description in which many
V 

Implementation decisions are still unspecified. However it would be unnatura l and pedantic
— 

I for the apprentice to force programmers to always formulate plans at such a uniform level .
For example, in the plan for INSERT-SEGMENT, if the programmer had already decided to
implement the hash table as an array and the buckets as lists, he might fi nd it more natural to

~ 



- ~~~~~~~~~~~~~~~~ - _ _ _ _ _ _ _

$42

- 1 use ARRAYFETCH , LIST-INSERT, and ARRAYSTORE in his plan, rather than BUCKET-FETCN,

BUCKET-INSERT and BUCKET-STORE.

V 

- In general this means that mixed levels of plan descriptio n must be allowed , which forces
V the deductive system to do a little more work. For one thing, it must be able make use of

assertions in the programming knowledge base which represent the implementation of the
progra mmer ’s conceptual objects in terms of implementation parts and the relations between
them. Consider the example of a queue imp lemented as an array with front and back pointers .
which Is discussed In Section 2.3. (To bring rut the importa nt issues here, it is necessary to
show an abstract object having several implementation parts , rather than the implemen tation
of a hash table as an array .)

( PART queue front)
(PART queue back)

( IMPLEMENTATION-PART queue queue-array)
• ( IMPLEMENTATION-PART queue front- pointer )

( IMPLEMENTATION-PART queue back- poInter )

( IMPLEMENTATION-DEFINITION
V (front queue object ) (a>

(item (queue-arra y queue)
(contents (front- poInter queue)]
obj ect ))

( IMPLEMENTATION-DEFINITION
(back queue obj ect ) (a)

(Item (queue-arra y queue]
: 1 (contents (back-poInter queue]]

obj ect ))

Given the above information in the knowledge base, the deductive system must be able to
Interpret changes in the part structure of implementation objects in terms of the part ~~~~~~~~~~~ 

V

of the Implemented ob ject. For example , changing the CONTENTS of the FRONT-POINTER
changes the FRONT part of the queue. This is very similar to the problem with relations and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-~~ ~~~~~~~~~~~~~~~~~~~~~~~

— t
145

their definition In terms of part structure. Thus the deductive system compiles dependency
V

Information from implementatIon definitions also: V

(DEPENDS-ON (contents (front-pointer queue]) (front queue))
(DEPENDS-ON (contents (back-pointer queue]) (back queue)) V

When a new object which has an Implementation is asserted in the current deductive V
V

system, implementation part assertions are created for it just as part str ucture is automatically
expanded.

ASSERT: (QUEUE object-55)

(QUEUE-ARRAY queue-55 array-56) ;generated
(FRONT-POINTER queue-55 cell-57) ;generated
(BACK-POINTER queue-55 cell-58) ;generated
(CONTENTS cel l -57 Index- 59) ;generated
(CONTENTS ce ll -58 Index- SO) ;generated

Now If a change is made to one of the Implementation objects , the pre-comp iled

V
dependency information is used to trigger the recomputation of affected parts of the
Implemented object. For example, suppose the contents of the front -pointer above is changed :

ASSERT: (CONTENTS cell-Si lndex-99)

The FRONT of the queue now needs to be recomputed . This is done by retrievIng the
implementation definiPion for FRONT parts of queues and expanding in the same way that
relation definitions are expanded. In this examp lo:

(front queus-55
(Item array-SO (contents cell-Si]])

(IT~~ array-SO Index-99 object-100) ;Ia data base

ASSERT: (FRONT queue-SB object-lOB)

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V V ~~~V~~VV -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~

144

When this last assertion is added to the data base it is processed like any other assertion;
i.e. it may cause the creation of a gate-keeper. an Identification, or it may trigger a demon.

With this extension to the deductive system, the plan for the insert routine given earlier
could also have been given in terms of its implementation structures, while the verification
Itself wou ld remain virtually unchanged. This is because, as shown above, changes at the
implementation level are eventually translated up to the conceptual level. Thus the actual
proof proceeds as much as possible at the highest conceptual level, keeping implementation
detail hidden.

Case Splitting

In general, segments may have case structur e in their specs. The symbolic evaluation of
segments with cases requires some extensions to the machinery presented thus far .

Each case of a specs has three possibile applicabilities (i) definitely applicaW!, i.e. its input
expectations can be proven in the situation of its invocation; (H) definitely inappl1cab,~ I.e. a
refutation of the expectations can be constructed; (iii) unknown applicability, if the
expectations can be neither proven nor refuted.

If all the cases of a specs to be applied are definitely inapplicable, obviously there Is a bug

:1
By virtue of the definition of specs, in which the cases must be mutually exclusive, there

may not be more than one definitely applicable case and if one case Is def initely applicable,
all the rest are definitely inapp licable. In this situation specs application is straightforward —

the specs for the applicable case are applied together with any specs which are shared between
all caes.

V V 

FInally, suppose all the cases are of unknown applicability. To handle this, the reasoning
can be 

~~~ 
into pairs of possible execution paths for each unknown cue. To represent this,

the deductive system creates pairs of daughter situations of the current situation for each case
(these are daughters along the time dimension, not hypothetical extensions). in eads, eli. case

V V V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ~~~ V • V  - 
~~-~~~~~‘ ~~~~~~~~~~ ~~~ V —~~~ Th “, ‘nrr -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

145

of unknown applicab ility is asserted to to be definitely app licable in one situation and
definitel y inapplicable in the other. Verification proceeds on each path independently .

All splits eventually join, if only at the top levi enclosing segment. Furthermore, the ~~~ ,
will usually be manifested as a joining of data flow, with output objects from two (or more)
different segmen ts becoming the input or output object of a single segment. In the joining
situation, the deductive system will assert of the single object only those facts that are true of
both (or all) the joining output objects. From this situation forward, all proofs are first
attempted on the single joined object. If a proof attempt fails on the sing le joined object , then
the system must prove the required assertion of both (all) the joining output objects in both
(all) the pre-join situations.

Obviously if many segments have many cases of unknown applicability there is a potential
for combinatorial explosion of situations. However this problem exists for the human
programmer as well as for our programmer’s apprentice, which leads both to avoid overly
complicated designs. 

_ _  ~~~~~~V i



— ~
.

- t 
V

146

CHAPTER FOUR

SURFACE ANALYSIS OF LISP PROGRAMS

As a long term goal, we would like our PA . to behave in a way similer to that of a person
when presented with the code for a program it has never seen before. A human programmer,
according to our observation s, fir st tries to block out the overall structure of a novel program,
using the comments and mnemonics In the code to make connection with his own background

knowledge about typical programming techniques. A person can then analyze particular parts

V 
of the code to any detail required , guided by his understanding of the overall plan and

V conceptual basis of the program. We call this process of discovering the plan and conceptual
basis of a novel program reco~nition.

V We expect the recognition process to include both algorithmic components, such as Indexing
and flow analysis, and heuristic components. Our first simple design of an apprentice has V

V separated these components into two distinct phases. The purpose of this chapter is to describe 
V

the algorithmic first phase, called surface flow analysis, in which a surface control flow and
data f low plan is constructed for arbitrarf LISP code. Algorithmic techniques for flow

analysis are already well understood from a graph -theoretic standpoint (e.g.
V <Allen and Cooke, 19’76>).

Ii
Furthermore , recognition may take place incrementally. As each function definition of a

large program is encountered, the apprentice may both surface flo w analysis and higher level
recognition, if possible. -

V

Our current design philosop hy generall y opposes the use of algorithms that are

fundamentally different f rom those used by humans working in the programming domain,
since this can impede close communication and cooperation between the apprentice and a
human programmer. For example, if the PA detects an error, it must be able to express the

V problem to the programmer in terms of ~~ conceptualizations. The use of non-intuitive V

algorithms and represenathons creates an extra proble m for the apprentice of translating

between its representation and what the programmer find s natural. This principle has been
V V

L I



V 

V 
147

applied elsewhere In the PA., icr eaample in the dsc*Nsuu not to base the PA’s reasoning
component on a uniform resolution procedure.

SymbuMe Evainatis.

The most natural way to view surface flow analysis, I.e. the one which corresponds most
closely to human behavior on the some task, Is as a kind of symbolic evaluation. A human
programmer when praunsid wish novel cede, will often trace through the program wlth his
fingsr , following the control flow and data flow paths of interest without using real values.

- Thus symbolic evaluation has emerged as a useful and pew.1 ful concept In both the
deductiv, system (Clapter Three) and th e recognit ion system. In the deductive system,

4 5)rnbOlk evaluation takes place in the d~ nain of specs and plans generating pu~po.. links as a
by-product In surface flow analysis, symbolic evaluation mimics the operation of the usual
LISP itisirprelsr (with special provisions for splits, joins and leap.) creating a surface plan as

- I a by-product. In a recently reported work, king d976, has combined ~~~~~ evaluation of
code with some deductive capabilities to ferns a unified system for pingram verification and —

testing.

q

_ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _  ~~~~~~~~~~~~ V V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ V V ~_  ~~~~~ 

148

4.1 Operation of the Symbolic Eva luator

The symbolic evaluator mimics the operation of the usual LISP interpreter . At every level
it examines the current s-expression: If the CAR is an atom, it is taken as either a function
name or a special form (i.e. a FEXPR in MACLISP) if it is a special form, the evaluator calls

the special procedure associated with that form to symbolically evaluate the s-expression ,
otherwise the remaining top-level items of the s-expression are evaluated and the symbo lic V

values passed as arguments to the lambda form defined as the body of the named function. If
the CAR of the current s -expression is non-atomic, it must be a lambda form which is used only
in this place and is therefore not given a name.

The major difference between a symbolic evaluation and a ~real evaluati on arises with
conditional branches. Since it is not possible in general to decide on the basis of a symbolic
value which branch to take, a symbolic evaluator must ~~~ 

the control flo w and follo w both

paths, leading to an eventual ~~ Split paths must always Join at some point, if only at the

top level. Program loops are handled in our symbolic evaluation by proceeding forward

normally until a oop is detected, and then taking special corrective action. Thus loops are
really viewed as a special case of split and join, wherein the join occurs at a point in the code
which has already been executed.

In the following sections, we describe the operation of the symbolic evaluator In more detail,

starting with the simple case of evaluating programs with no splits or joins. The purpose of V

the symbolic evalution is to build a surface plan. This entails three kinds of action that take
place as side-effects of the actual execution: creation of segments, recording of control flow V -

links, and recording of data flow links. A diag ram of the full surface plan built during the
evaluation of an example program is given at the end of the chapter.

Initial Segmentation of the Code

Surface flo w analysis breaks up LISP code into the smallest units of description used by the
apprentice, which are the FUNCALL (and certain implicit OPENCOOE) segments. The rest of the

code, such as PROG’s, SETQ’s, COND’s, etc. are part of the connective tissue that tell the apprentice 
V

how the real code segments are connected to each other by control and data flow.

1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-~~ - ~~~~~~~~~~~~~ - ~~~ -~~~~

149

The initial segmentation is also very ‘flat . There are only two kinds of grouping that
occur at this level: the segments in a LAMBDA body, wh ether a top level DEFINE or an unnamed
LAMBDA ex pression , are grouped into a single segment and the body of each loop, as it is
detected, Is grouped into a single segment. However the symbolic evaluation of certain special
forms, such as COND, does leaves a record of suggestions for likely groupings. Later in the
recognition process these suggestions, together with deeper knowledge of programming and
plans, are used to further group the initial small segments to form larger, more meaningful
segments. The~ initial segmentation however makes use only of LISP-specific knowledge.

On the basis of surface flow analysis alone, the input and output data objects for each code
segment can be determined. However , the rest of the specs for a user -defined function V

(EXPECrs and ASSERT’s) will not in general be known at this stage of processing. Thus the
segment and its input and output objects cannot be given identifiers that are more specific
than SEGMENT-<n>, and OBJECT-(n)’s, respectively. In the following examples , we will
sometimes use more mnemonic identifiers , such as KEYPART- 65, KEY-66, etc. this is cheating a
bit , but it will make the examples more understandable.

The system is Initialized with dummy DEFINE’s for all the built-in functions such as CAR,
CDR, etc. The segments for these functions have complete specs attached to them as part of the
PA’s initial knowledge.

When the evaluator encounters a function call s-expression, a FUNCALL code segment is
created, with the surface input and output statements and specs copied from the LAMBDA-EXP

V segment with the corresponding name. For example, supp ose the definition of a KEYPART

function has already been seen and fully recognized by the appren tice. The following
Information would be recorded:

(ksypart-i SEGMENT LAMBDA-EXP ksypart ((define keypart (entry) ...)))

(SPECS-FOR: keypart-1
(INPUT: entry-i ARG (entry))
(OUTPUT: key-? RETURN-VAL ((defies ...)))

V

V
(ASSERT: (keyp .rt entry-i k.y-2)))

p
i~ A . - ~~~~~~~~~~~~~~~~~~~~ V ________ ____ V V V ~~~~~~~~~~~~~~~~~~~ VV V ~~~~~~~~~~~~~~~

V

V

,

V V V ~~~~~~ V V V~~~ .-~~~~~ -~~~
-~~ V~~~~~~~~~~

V 150

The symbolic evaluation of a function call to KEYPART results In the creation of another
Instance of this segment type:

(KEYPART ...)

(k.ypart-65 SEGMENT FUNCALL keypart ((keypart ...)})

(SPECS-FOR: keypart-65

V

(INPUT : entry-67 ARG (...))
(OUTPUT : key-66 RETURN-VAL ((keypart ...)})

V (ASSERT : (keyp art sntry-67 key-66)))

Notice that when specs are copied from a DEFINE segment to a FUNCALL segment . the
identifiers are systematically changed. Furthermore, the surface inputs and outputs of the

V
FUNCALL segment are also different.

The invocation of a currently undefined function causes the evaluator to build a dummy
definition for the function, having input and output objects compatible with the current
FUNCALL Furthermore the function name is added to a global UNDEFINED-FUNS list. When V

the actual definition of the function is encountered, It Is substituted for the dummy definition,
after checking that its specs are compatible with the dummy specs (and therefore with the
existing FUNCALL’s). This same mechanism also takes care of self-referential function

V
definitions.

Building Control Flow Links

The building of control flow links Is Implemented in the symbolic evaluator as follows.
Evaluation always commences on a DEFINE, which Is an implicit lambda form. The segment
identifier (segment -id) of the lambda expression is recorded in a global variable called
SUPERSEG. As evaluation proceeds on the body of the lambda expression, segments are created

.

V

as described above. Each segment -id created is added to a global SUBSEGS list for later V

generation of a SUB-SEGMENTS statement. Furthermore, the evaluator keeps another global
-

V

variable called LASTSEG, whose value is the segment-id(s) (and optionally case-id’s) of the last
segment (s) executed. (There can be more than one LASTSEG because of splits and Joins see

_
H

-~ ,~~~ - - r~~~~ rW ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - V~ ~~~~~~~~~~~~~~~~

~1
-

V

151

later section). When the next segment is created (which may not be the next s-ex pression
because of the exi stence of connective tissue), a NEXT link is recorded between each LASTSEG
and the present segment. As a special case, an INVOKES link from SUPERSEG is recorded for the

-

first segment In the body of the lambda form. When evaluation of the body is completed.
V

RETURNS links are recorded for each LASTSEG to SUPERSEG.

Building Data Flow Links

• The symbolic evaluation keeps track of only two of the four basic techniques for passing
data around in a LISP program: the use of free variables, and the the use of return values.
This is because the other techniques involve side effects on data structures (lists, arrays, or
property lists) and thus require global reasoning to resolve the actual data flows involved . (See
subsequent section on data flow using side effects.)

Each s-expression in the code has a symbolic return value , even though each s-expression is
not necessarily a code segment. The special evaluation proced ures for the connective tissue

V
forms pass up the appropriate return values from the segments inside , according to their

V standard LISP semantics. For examp le, the special procedur e for LAMBDA returns as its own
symbolic value the value returned from the evaluation of the last s-expression in its body.

The symbolic return value f rom the current s-expression is always available in a global
variable called RETURNVAL So, after the evaluation of the following form:

(KEYPART ...)

RETURNVAI z ((keyp art-65 OUTPUT key-66 RETURN-VAL ((keypart ...)}))

When this symbolic value is used, say as the argument to an enclosing s-expression, the
V

evaluator builds a data flow link , e.g.

- - 1

I .

~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _

t T
- V - ~~~~~~~~~~~~~~~~~~~~~~~ _, .

~~~~~~~~~~~~~~~~~~~~~~~ ~~ .V.•__V_.~_~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

152 V

(HASH (KEYPART ...))

(hash-96 SEGMENT FUNCALL hash ((hash ..
(PLAN-FOR:

(DATAF LOW : (keypart-65 OUTPUT key-66 RETURN-VAL ((keypart ...)))
V (hash-96 INPUT ksy-97 MG ((keypart ...)))

NESTED-SEXP)
...)

Corresponding to the a-list of a standard LISP interpreter, which records the current (real)

value of variables , the symbolic evaluator has a symbolic a-list (ALIST) which records the

current symbolic value (s) of variables. A symbolic value is a surface plan sta tement which

Identifies the segment-id, object-id, and case-id that last assigned a value to the given variable

In the current control path. Multip le symbo lic values arIse due to the existence of splits and
V joints in the control flow. A simple example

(DEFINE F® (...)
( PROG (X)

(SETQ X (KEYPART ...

The ALIST following symbolic evaluation of the SETQ above would have the following

binding for the variable X

(X . ((keyp art-65 OUTPUT key-66 RETURN-VAL ((keypart ...))

(COUPLING ((setq x ...))))))

In this examp le, the action of updating the ALIST is performed by the special evaluation
V 

subprocedure associated with SETQ. . Notice that optional inform ation to be used later in

V building a data flo w link (in this case COUPLING Information) is also recorded at the trailing

end of the symbolic value.

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ V

- ~~~~~~~~~~~~~~~~~~~~~~~~ -

: ‘

-— - - - —-— --——-- __-_--_ - -,-- -- -~~~~ -- -~~ - • V V ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

IS,

V -
When the variable X Is subsequently used, Its sym~.iolic value is looked up In the ALIST ,

just as a real value woul d be, and a data flow link is built using the informat ion in the
symbolic value, e.g.

(DEFINE F® (...)
(PROS (X)

(SETQ X (KEYPART ...))

(HASH X)

V
. . .))

(seg.nent-33 SEGMENT LAHBDA-EXP too ((define too . . .)J)

(PLAN-FOR: segment-33

(DATAFLOW : (keypart-65 OUTPUT key-66 RETURN-VAL ((keypart ...)))
(hash-96 INPUT key-97 MS (...))
COUPLING ((s.tq x ...) })

Evaluation Procedures for Special Forms

Most of the Important work of surface flow analysis occurs within the symbolic evaluation
procedures for the special forms. This is where the majority of the P.A.’s LISP-specific
knowledge is currently embedded. Writing the code for these procedures turned out to be a
fairly delicate task, leading us to believe it would be desirable to have a more declarative way
of expressing programming language specific knowledge in the apprent ice. However , for the
moment we can give the following Informal description of what happens in the special
procedures.

V

_ _ _ _ _ _
- - - - - — - — -~~—-.~~~~~~~~ ~~ _ _V V V V

~~~~~~~~~~~~~~~~~

J

~~~~~~


~—~~ - ~~~~~~~~w_ -~~~~~~~~~~~~~~~~
__—_ _

~~~~
__

~~~~~~~

154 V

There are four general characteristics that categorize special formt sequencing, grouping,
splitting, and joining. Many special forms combine several of these characteristics, for example

- COND has all four. A further general characteristIc shared by all special forms except GO and
QUOTE is that they invoke the symbolic evaluator recursively, usually modifying the contents of

V its global state variables.

Sequencer forms, such as PROS, PROGN, LAMBDA, and the bodies of COND clauses invoke the

F evaluator on each consecutive s-expression in their body. This takes care of getting the NEXT
links recorded for each sub-segment. The sequencers like PROGN, LAMBDA , and COND, also return
as their symbolic value the return value from the evaluation of the last s-expression in their
bod y in accord ance with the standard semantics for LISP. The symbolic evaluation procedures

V for LAMBDA and PROS push and pop their arguments on the symbolic a-list just as in a real

evaluation.

Grouping forms, which Include PROS, PROGN, LAMBDA, and COND, bind the SUBSEGS list in
V

order to record all the segments that are created inside their scope. Before they return, they
leave a record of this information for use by the heuristic second phase of recognition. A

major activity in recognition is trying different ways of grouping small segments into larger

segments that correspond to the expected deep plan. The use of a grouper form In the code is

I
taken as a syntact ic clue to a potentially meaningful grouping of sub-segments. For example,

COND leaves a suggestion for grouping together the segments in each of its test conditions and
each of its consequent bodies.

Some special forms create extra segments that are not explicit in the code. For example,
- COND creates a NULLTEST segment for each clause, which splits control flow on the result of

evaluating the test cond ition. AND and OR do similarly .

The special procedure for SETQ updates the symbolic a-list with the symbolic result of

V
evaluatin g of its second argumen t. analogous to its operation in normal evaluation.

~; j There are also special procedures for QUOTE and constants like 1. NIL and numbers, which

create a segment of type CONSTANT with the appropriate specs.

V
—

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -

155

Splits. Joins , and Loops

V A split in evaluation takes place whenever a conditional branch (e.g. in a COND) is
encountered. Generally speaking, what the special procedures for Nsplittln(forms do is make
copies of the ALIST, bind the global state variables, and then call separate instantiations of the
evaluator for each path. The subsequent joining entails merging the ALIST’s, LASTSEG’s, and
RETURNVAL’s from the separate paths. Thus the net effect of splits and joins is to cause there
to be multiple symbolic values for LASTSEG, RETURNVAL and variable bindings in the ALIST.
To illustrate, Figure 25 gives a word description of the full procedure for COND. Notice in this
procedure that mergin(of a-lists is a set union operation that does not result in duplicate
symbolic values for any variable.

The last major special procedure to be described in detail is PROG, which is also the most
V complicated because of its interaction with the procedures for RETURN and GO. Similar to COND,

the procedure for PROG binds the global state variables RETURNVAL SUBSEGS, LASTSEG, and

ALIST. The following paragraphs describe two simple forms of using PROS, GO, and RETURN
that do not involve loops.

When a RETURN is evaluated inside of a PROS, the effect of the special procedure is to add
the return value and LASISEG resulting from the execution of the argument of RETURN to the
RETURNVAL and LASTSEG respectively of the enclosing PROG. Then the RETURN procedure itself
returns a special value which causes the current evaluation to terminate immediately.

When the PROC procedure encounters a ~g in its body it takes special action against the
eventuality that a backward jumping GO may subsequently be encountered with the tag as its
target. A special entry is pushed onto the current ALIST which records the tag and the current
LASTSEG:

V ((TAG <atomic tag>) . <lastseg>)

This information is pushed onto the current ALIST because the important question when
evaluating a GO is whether the target tag has been encountered on the current ~~~ As shown

V in the procedure for CON!), path environments are preserved as separate ALIST’s.

- k

A V V ~~~•~~~~

-

~~~~~~~~~~~~~~~~~ 

-_

156

Save old value of globa l variables: set *RETURNVAL to RETURNVAL
*IJ.STSEG to LASTSEG

*SUBSEGS to SUBSESS

Do for each clause:
Bind SUBSESS to NIL;

-~ Evaluate test condition ;
Create NULL-TEST segMent , adding data and control flow;

Record grouping suggestion for SUBSEGS;
Add SUBSEGS to *SUBSEGS;
Unbind SUBSEGS;

Set LASTSEG to CASE-i (non-null) of NULL-TEST;
Set *ALIST to copy of ALIST;
Bind ALIST to *ALIST;
Bind SUBSEGS to NIL; V

Do for each s-expression in consequent body :

Evaluate s-expression .
End;
Add return value of last s-expression to *RETURNVAL;

Add LASTSEG to ~LASTSEG;
Record grouping suggestion for SUBSEGS;
Add SUBSEGS to *SUBSESS;
Unbind SUBSEGS ;
Merge ALIST into ~ALIST;
Unbind ALIST;

Set LASTSEG to CASE-2 (null) of NULL-TEST;

End.

Add LASTSEG to *LASTSES.
Set LASTSEG to ~LA5TSEG .
Set SUBSEGS to *SUBSEGS. 

- 

V

Mer ge *ALIST into ALIST.
Return ~RETURNVAL .

Figure 25. Word Description of Evaluation Procedure tsr COND.

L

_ _ _ _ _ _ _  __ _ _  _  j

~ 

~~~~~~~~~~~~~ V_ - ~Vj~~~~V


____ —
—.

-.- ~~~~~-—-~~~~~~~~~
- V - V~ ~~~~~~~~~~~~~~~~~~~~~~

157

When a GO is encountered, the special procedure checks the ALIST to see if the target tag
has already been encou ntered on the current path. If the tag is not present in the ALIST the

V

current GO is a forward jump, which is the simple case. The GO procedure then returns a
-

special value which causes the evaluator to search the current PROS body for the tag. and
T continue evaluation at that point.

We have now dealt with all cases except GO’s which jump to a tag that has already been
1 encountered on the current evaluation path. This GO forms a !~ 2~

and triggers special action
based on the following observation: the only thing wrong with the way the loop body has

-

V I already been evaluated is that potential data flow between the outputs of the loop body and the
Inputs of the loop bod y has been missed. Corrective action begins by grouping the segments in
the body of the loop into a single segment. The segments that are in the body can be

V discovered by starting with the segment which is NEXT after the LASTSEG(s) recorded in the V
ALIST with the Larget tag.

V As will be exp lained in Section 5.2, part of the effect of a grouping operation is to calculate
the ~~ inputs and outputs of the group of segments. Thus, in the case of the loop body
segment, all that needs to be done to correct the data flow is to merge the symbolic values of
any free variable outputs that are also inputs, adding the corresponding data flow links. To
complete the control flow, a NEXT link is added from the appropriate case of the loop to itself.

V

V
1 Notice that this algorithm for analyzing loops results in a plan that Is essentiall y a

recursion, i.e. the outputs of the segment feed back into the inputs. This should not be
1 surprising since it is a well known fact that iteration and tail recursion are semant ically

equivalent. This fact is exploited in both the deductive system and in recognition. In the
-
~~ deductive system, reasoning about TMloops’ is implemented as reasoning about the corresponding

recursions. In recognition, plans can be transformed between the two forms in order to
facilitate matching against stored knowledge.

A Comp lete Example Using LOCkUP

Figures 26 and 27 show the output of surface flow analysis for the LOCkUP program . For

V
ease of presentation, the data flow and control flow are shown in separate figures. Together
they constitute the complete surface plan for the following code

~~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~


- ~~~~~~~~~~~~ ~~~~~~~~~~~~~~

158

-
(DEFINE LOOKUP (KEY)

(PROS (BKT)

-

(SETQ SKI (TBL (HASH KEY)))
LP (OR BKT (RETURN NIL))

(CON!) ((EQ (CAAR SKI) KEY)
- V (RETURN (CAR BKT))))

(SETQ BKT (CDR BKT))
V (GO LP)))

The dotted lines in Figure 26 indicate grouping suggestions generated during symbolic

evaluation of special forms. HASH-6 and ARRAYFETCH-7 are grouped by a heuristic in the

special procedure for PROS which suggests grouping the segments in each sequential step.

CAR-iD, CAR- 13, and EQUAL- 14 are grouped by CON!) as shown in Figure 25.

- Data Flow by Side Effects on Data Structures

The evaluation algorithm described above cannot detect data flow between segments
V achieved by side effects on data structures, except for two special cases. We first describe the V

V special cases, and then indicate why the general case is unsolvable by a local flow analysis

procedure such as ours.

The first special case is the use of arrays in LISP. The special evaluation procedure for

-~ STORE takes advantage of the f act that the name of the array can be treated as a free variable

output which carries the array object as its value. Thus, it builds the following surface plan

V and updates the ALIST:

I

~~~~~~~~~~~ —  

V



~~V V

‘59

SEGMENT-S

— 
_ — — e — — —V 

iNVOKES~~..._~ 
_ _ _ _ _  

Ihash-6 
INEXtI 

arrayfetch-7
I 

j

NEXT
V 

LOOP-8 /
INVOKES~~~ i-

nulltest— 9

- i /EXT

H 
/

~~::~~_U [~~~r-~~J ~~~~~~2

/ _ _

I~ EXT Ica~
13 Il I NEXT J

NEXT$
:J

1 
- 

[e~ua1 -13J}4~ExT ~~~~~~ RETURNS

Iconstant 15IL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-. 

-~ 
IRETURNS RETURNS

I I I 
\ttt,i,J

RETURNS RETURNS

I

Figure 26. Surface Control Flow for LOCKUP. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VVV ~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -


~—--—- -- -~~~~~~~

160

I I
obj ect-i obj ect-2

SEGMENT-S

j /
~~~~

rayfetch_ 7 I

object-3 object-4
LOOP-8 J

_ _ _ _ _ _ _ _ _  

V

( 
~ 

car-lO 

~ 
r_ ~~ j  I cdr -12J

I 
_ _ _ _ _ _ _ _

\ Ic a r _13 I
• \ J

[ 

equal-13

I const.nt-151
objebt-16 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I

object-Il object-i8
I I

Figure 27. Surface T~ at~ Flow for LOCKUP. 4.

~ 1
-~~~~~~~~~~~~ _ _ V~~ - - -

—- ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _ _ _ _ _ _ _ _V~~~~~~~~~~ - - V V

$1

~ I (STORE (TBL ...) ...)

(arraystore-77 SEGMENT FUNCALL tbl ((store (tbl ...) ...)))

(SPECS-FOR: arraystore-77
(INPUT : array-78 FREE-VAR (tbl})
(INPUT: ind.x-79 ...)
(INPUT : object-80 ...)
(OUTPUT : array-81 FREE-VAR (tb I})
(EXPECT: (Index-of array-78 lndex-79))
(ASSERT: (Item array-lB index-79 object-80)

(Id array -lB array-81)))

ALIST s ((tbl . ((arraystore-77 OUTPUT array-81 FREE-VAR ftbl)))) ...)

The evaluator keeps a global ARRAYS list with the names of all arrays that have been
declared. When an array access form is encountered, a special evaluation proc~iure La also
called, which simply looks up the array name in the ALIST just as any other free variable.
Then, as is usual when a variable Is used, a data flow link is built

(TBL ...)

(arrayfstch-88 SEGMENT FUNCALL tbl f (tb~ . .
(PLAN—FOR : ...

(DATAF LOW : (arraystore-77 OUTPU T array-Bi FREE-VAR (tbl))
(arrayfetch-U INPUT array-89 FREE-VAR (tbl})
SAME-FREE-VAR)...

j

-~~~

H

162

The special procedures for RPLACA and RPLACD work analogously to STORE In the case

where the first argument to the functions (the list structure to be modified) is a var iable. This
variable is then also treated as an out~ut of the RPLAC . Subsequent segments using that

variable, e.g. CAR’s and CDR’s, then gratuitously have the correct data flow links bulk. However,
If the programmer is using several free variables to hold pointers to different parts of a single

shared data structure , as is quite common In certain types of prog ramming, global reasoning is

required to derive all the data flo w relationships actually present.

The general case of data flow by side effect wh ich requires global reasoning (I.e. for wh ich
none of the above hackse works) is illustrated by the fol lowing code

V

(RPLACA (COP X) (F® ...))

(BAR (CADR X) ...)

F:~4
Figure 28 shows the surface data flow plan (solid lines only) that is built for such code by

symbolic evaluation. The first clue that there is something wrong is that the conceptual output
object of RPLACA, i.e. the modified list, has no surface realization. Furthermore, the data flow

V

link shown by a solid line into BAR-lOS is incorrect. The correct data flow link into BAR-lOS is

the dotted line. Discovering this data flow link entails complicated reasoning, as described in V

• Chapter Three, about the identity of objects and the changing of subparts. Furthermore, it 15
obvious that this reasoning is not possible until the entire network of data flow links has

already been built; thus it does not belong In the initial surface flow analysis. However, It will

be necessary to look for such hidden data flows during recognition in order to recognize an
expected plan that has been implemented using this side effect technique.

The use of property lists is similarly a kind of data flow that requires global reasoning on

the completed surface plan.

4 -

_______ ________

_~V~_V VV ~~~V — - ~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,-~VV_ ~~~~~~~~ V~V•V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - ~~~ V~V~ V~ -~~~~~~~~

V 4 _

U

163
V

V

FREE-VA R (x}

-

V
cdr- 100 [foo_ 1O~ J

rplaca-102
1~

I I ii

I
I cdr-103 J

1

e

L ca;~io4j..#/

Fbar-105
L

Figure 28. Data Flow by Side Effect on Data Structure.

I

U t

_ V~~ ~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ V. ~~

I
164

CHAPTER FIVE

PROPOSED APPRENTICE ENVIRONMENT

V
- The ultimate goal of our work on program description, reasoning, and flow analysis

described in the preceding chapters is to build a unified programming environment in which
the programmer is aided by the apprentice in the design, coding, and maintenance of LISP
programs. The foundations of this cooperation between the programmer and apprentice are
the notions of the

~~~ 
and ~~~ of a program, as defined in Chapter Two. In this chapter we

are more explicit about how plans and specs are used in the various phases of programming;
however this chapter is essentially speculation, since no implementation or partial
implementation exists for any of the facilitLes described.

The chapter is divided into three sections dedicated to the topics of design, coding, and

maintenance. Each section outlines the operation of an apprentice facility in the respecti ve
area.

One basic scenario for the combined use of all three of the three sub-systems described In
this chapter is the following:

The programmer first engages the design and plan formulation system. The result of this

Interaction is a verified deep plan for the program. Then the programmer writes LISP code 
V

which realizes the segments in the deep plan, annotating them with comments that refer to the
design concepts. This cod e is submitted to surface analysis (Chapter Four), and then to the
recognition system. In the recognit ion, discrepancies between the intended desig n and the 

- -

realized program are detected by the apprentice and corrected by the programmer . Successful 
V

recognition implies that the LISP program Is a valid realization of the deep plan, and thus
satisfies the specifications of the design. Furthermore a complete program description (CPD)
has been built , which is the final documentation of the program. The CPD supp orts a V -

question answering facility which helps the programmer maintain consistency of the program
and design as changes are made in the future.

3 
~~~~~~~~~~~~~~~~~ V~~~V - - - -


~ V V V V — V~
__

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - -- ,— - -- ~~~~~~~~~~~~~~~~~~ 

165

5.1 Program Design

In this section we examine how the deductive system of Chapter Three can be built upon to
produce an interactive design facility to be used by an expert programmer. Since this chapter

V 
is only a guide for future research, we will merely outline several ex tensions which lead in this
direct ion.

Use of Stored Plans

The basic deductive system described in Chapter Three can derive the teleo logy of a
program given its data flow. However, in some cases describing a desig n by enumerating all

V the segments and data flow links is cumbersome. We would like to extend the current system to
V allow a programmer to use higher level plan descriptions, whose meaning is looked up in the V

the system ’s programming knowled ge base. In particular, we would like the design system to be
able to retrieve a general plan, such as SEARCH-LOOP, from the knowledge base and then refine
It according to the programmers choice of data structures.

For example , suppose a programmer is engaged in the design of a hash table lookup
routine. Lacking higher level plan concepts, the programmer would express the plan for this
routine in terms of the following six segments: HASH, ARRPYFETCH, NULITEST, FIRST-SEGMENT,
PIATCHTEST, and REST-SEGMENT. However it would be more natural if he could firs t specify
the plan in terms of the two major steps: GET-BUCKET and SEARCH-BUCKET. The refinement
of the first step, GET-BUCKET , is simply to specify its two internal segments, HASH and
ARRAYFETCH, and the data flow between them. However the second step, SEARCH-BUCKET, can

then very conveniently by specified as a refinement of the general plan for SEARCH-LOOP.

V 
The refinement of the general plan for SEARCH-LOOP depends on the programmer’s design

choice for the implementation of buckets in the hash table. There are three standard schemes 
V

for doing this: hash -rehash , overflow array , and linked lists. The last of these is the most
ty pical for LISP application s, so let us assume the programmer has made that design cho ice

(IMPLEMENTATION-PART bucket bucket-list ) 
V

(MUST-BE bucket-list bucket list)

_ _ _  
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~ . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~V V~ 



166
3 -

V This design choice also implies that the FRONT of the search-space Is implemented by the
FIRST of the list, that the BUMP step in the search loop is performed by taking the REST of the

list, and that the end test is a test for NIL As explained in section 2.5, this Information should
be pre compiled in the know ledge base so that once the programmer states his design choice,
the refinements can be made automaticall y.

To complete the design of the lookup rout ine, the plan for SEARCH-BUC KET requires one

additional refinement: the MATCHTEST inherited from the general SEARCH-LOOP plan needs to
be specialized. This requires a choice of implementation for ENTRY’s, e.g. as PAIRS

P (IMPLEMENTATION-PART entry entry-pair)
(MUST-BE entry-pair entry pair)

P (IMPLEMENTATION-DEFINITION
— (keypart entry key) <z)

(left (entry -pair entry] key))
( IMPLEMENTATION-DEFINITION

(datapart entry object) (=>

V (right (entry-pair entry] object))

Given th is design choice, the appropriate specs for the MATCHTEST are

(SPECS-FOR : matchtest-39
(INPUTS : key- i entry-2 )

(CASE-I
(EXPECT: (keypart entry-2 kay-i))
(ASSERT: (keypart entry-2 key-i)))

V (CASE-2
(EXPE CT: OTHER WISE) V

(ASSERT: (not (keypart •ntry-2 key-i)))))

At this point the programmer would quite likely want to stop refining the design plan and
V - simply write the code. The final verified deep plan arising out of this design example ~

shown in Figures 29 and 30. In section 5.2, we will see how a recognition system might bridge
the gap between this plan and the actual code.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
-
~~~~~— V


- ~~ _ V ~~ V
7 ~~ ~~~~~~~~~ ~ ~•V~_fl%~~~~ VV~

V

V - 167

key-31 table-32
LOOKUP-SEGMENT-30

GET-BUCKET-33

[hash-44 ~~~~~~~~~~~~~~~ 1
I

bucket-34

S RCH BUCKET 35

E~
uh1t

~
t36 I

~~[c ~ar-37 cdr-38

matchtest -3~1
I

I~~~
nstan

, , j,,
sear ch_ bucket_4O

fal iure-42 entry-43
I I

Figure 29. Data Flow in Deep Plan for LOOKUP-SEGMENT.

-_ _ - _ _ _ _ - ~~ ~~~~~~~~~

- -~~
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ VV•V~#V — V~

168

LOOKUP-SEGMENT-30

GET-BUCKET-33

I hash-44] [arraY fetch~45]

SEARCH-BUCKET-35

V [ nulltest-36
~

tPREREQ V

1 car_37]” 
“

~~[~ lr~38 I
vnatchtest-39

~
[

~
onstant

~
41]\,Lsearc

~
.rt

4o 
i 

-j

ACHIEVE I
— 

XACHIEVE ACHIEVE\0~~ ”

V 

Figure 30. Purpose Links In Deep plan for LOOKUP-SEGMENT.
(Omitting Type Restrictions)

— V 
______  _ _ _ _S —



~ V VV~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -

169

Perturbation Analysis

V A second desirable Improvement of the deductive system would be greater flexibility in the
handling of mistakes. In the current system, when a bug is found in the programmer’s design,
I.e. when the system is unable to prove an expectation or an output assertion, it can warn the
programmer; but there is no facility for recovering from the error. We would like to allow the
programmer to intervene at this point by modifying the specs of a sub-segment or of the main
segment so as to rectify the problem.

For example, if a main segment’s output assertion cannot be proven, there are three possible
interventions (other than giving up and starting again). One is to weaken the assertion and see
if the less stringent condition can be proven (it may be that this weaker condition is all the rest
of the program requires of this segment). A second approach is to strengthen the input

expectations of the main segment while leaving the unprovable output assertion unchanged. It

V 

is possible that under this stronger input condition the output assertion is provable. Finally, a
sub-segment’s output assertion might be strengthened so as to make it possible to prove the
main-segment’s assertion.

Each of these interventions requires a significant amount of fix-up work by the deductive
system. The changed expectations or output assertions must be propagated throughout the
current plan appropriately. Furthermore any of the segments whose specs have been modified
might well be used in other plans that have already been verified. 

V

• A similar perturba tion capability is required for changes in implementation choice, as when
certain data structures in the plan are extended or restructured to deal with new domain
requirements. Since purpose links in the deep plan frequently depend on suc h choices, the
system must be able to see which proofs are possibly affected and attempt a new proof using
the new design choice. Such perturbation analysis will be a valuable tool during a program’s
evolution, allowing an orderly and consistent transition from one version to the next.

- V



— 
-___

~~~V - - - -~~~ - -

170

V Plan Transformations and Modularity

V A final category of additional design aids has to do with plan transformations and

V
canonical forms for plans. Thus far in our discussion of the programmer’s apprentice, we

have viewed the drawing of segment boundaries (I.e. rnodularization) entirely as a matter of the
programmer’s discretion. However, if the apprentice makes use of stored plans as explained
earlier, it becomes advantageous to modularize programs in a way that corresponds with the
canonical form of the most general stored plan. For example, the hash table insert routine in
Chapter Three takes the key and the data as separate input objects, building the entry in an
internal sub-segment. By drawing different segment boundaries it could just as easily take an
entry as its input, extracting the key internally for use by the hash routine. (See Figure 30.

Moreover, there is a significant argument that the second form of plan is more natural in
terms of the hierarchy of programming knowledge described in Section 2.5. Hashing is a
specialization of the associative-structures concept, which is in turn a specialization of the

data-structures concept. The specs for a hash table insert are therefore a refinement of the
specs for a general data-structure insert. The specs for the most general INSERT-SEGMENT do
not take parts of an object as inputs1 but rather the whole object to be inserted. (In fact, at this
general level the object to be inserted does not necessarily have a parts sub-structure.)

We therefore envision a ucleanup u facility of the apprentice which would apply plan

transformations to improve the modularity of programs, in accordance with its built-in criteria, —

e.g. correspondence with canonical plans in the knowledge base. In the insert example, the plan

transformation is called Nexterna lization of initia l segmentsu. An initial segment is a

sub-segment all of whose EXPECVs are also EXPECTS’s of the super-segment, and whose only
inputs are also inputs of the super-segment. it is always possible to transform a plan to remove
an initial sub-segment. This is done by eIim~nating all expectations of the super-segment that
are used only by the initial sub-segment and by replacing them by the output assertions of the V

initial segment that other sub-segments depend on. This is equivalent to drawing the

super-segment boundary so that the Init ial sub-segment is outs ide (see Figure 31).

Of course, the transformation of plans must not occur automatically or without control by V
-

the programmer, since the programmer may have intentionally designed an messy plan for
efficiency reasons that cannot yet be explained to the apprentice. V

- ~~~~~~~~~ V~~~VV V
rn _V V

_ _ _ _ _ _ _ _ _ _ _ _

•~V~~~~~~V~~ V ~~~~~~ ‘lU ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - - V V•__ ~ _ V~V~~_~ •V ______ ~~~~~~~~~~~~

V - -• I
V 171 V

: I
I Itable key data

INSERT-i

HASH [BUILD_ENTRY I
I I I

Index entry

I : I
I I

V table entry
-

-
I INSERT-2

V

¶ (j’GET KEY]

J
HASH

J
Iindex

Figure 31. Externalization of an Initial Segment

- ~~~~~~~~~~~~~~~~~~~ -~~~~~ _~~~~• •~~~~~~~ — V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~ V V -‘~~

V
V i~~~~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

~~~~_ V~ VVV 
¶V~

VV

~
VV?_fln ~F 

V_ ~V~

172

5.2 Plan R.oogrJ tion

This section is concerned with how to make connection between a surface plan, which is the

output of flow analysis (Chapter Four), and a deep plan. We call this process reccgnition by

analogy with visual recognition, to which it bears some similarity.

A surface plan is typically made up of many small segments all at the same level of

description (except for grouping of loop bodies and lambda expressions), connected by data
V flow and control flow links. The segment and object types that appear in a surface plan are

very low level concepts such as CAR, COP., LIST , ARRAY , etc.

In contrast , a deep plan Is typically a more hierarchical structure with many levels of
• segment nesting and grouping. Furthermore, segments and objects in a deep plan are described

in terms of higher level programming concepts such as buckets, table, lookup, etc. In addition

to data flow (and instead of control flow), deep plans typically have purpose links between

segments. These purpose links express teleological dependencies between segments that

V 
constrain possible control flows in a corresponding surface plan.

Recognition entails merging these two kinds of plan for the same program into a single

CPD. This is achieved by adjusting the structure of the surface plan until its segments

correspond one-for-one with the segments of the deep plan, with the same data flow between

them and control flow compatible with the purpose links. Adjusting the surface plan involves

two basic processes: grouping and plan transformation. Grouping is simply the operation °~ V

V 
V drawing a segment boundary around a number of segments at the same level in the surface

plan, thereby creating a new segment, and calculating the net data flow and control flow

between the new segment, its sub-segments and other segments now at the same level. 
V

Examples of plan transformations are given in Section 2.5.

Recognition can be thought of as a heuristic matching process with data flow being the

major criterion, since it appears in both surface and deep plans. Only when both data flow

and segmentation are matched is the control flow checked for compatibility with the purpose

links. The two simplest constraints between control flow and purpose links are that a segment

must precede all segments to which it has a PREREQ link, and that an ACHIEVE link implies

nesting. The constraint relationships between a more complicated network of purpose links and V

-- ~~~~~~~~~~~~~ 
— V ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - ~

- • 
- V



V -~~ ~~~~~V — V ~~~~~ ‘V V - - 
V~~~ _ _ VV_ ~~~~~~~~~~~~~~~~~~~~~~~~~ V~ ~~~~~~~~~~~~

V 

V 

V

allowable control flow have been studied (in a different formalism) by Sacerdoti .cI97Sa>.

Since we have not yet Implemented a recognition system, the best description of Its control -

structure we can currently give is in the form of a illustrative example. -

An Example Using LOCKUP - 

V

Consider the programming of a hash table lookup. Suppose the programmer used the -

design system described in Section 5.1 to formulate the deep plan shown in Figures 29 and 30.
Then the following code is written: - 

V

%(design bucket -list)

(DEFINE LOOKUP (K) 
V

(PROS ( %(ob.ject bucket) BKT )
(SETQ SKI (181 (HASH K)) )

H LP (OR BKT (RETURN %(ob,ject failure) NIL))
(CONO ((EQ (CAAR SKI) KEY)

(RETURN (CAR SKI)))) -

V %(seginent bump )
(SETQ SKI (COP. SKI))

(GO LP)))

The result of surface data and control flow analysis of this code is shown in Figures 26 and
27 of Chapter Four. What remains In recognition is to Identify the higher level type of each

- ;  object and segment in the surface plan and group segments to match the deep plan. V

A first source of informa Uon is the explicit commentary prov ided by the programmer.
From the annotation In this example (including Interpretation of the mnemonic func t ion  name I -

LOCKUP) the apprentice can Immediately conclude -

- 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - -


-- -~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~ V - V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ -i i

I

174

4
(LOCKUP-SEGMENT seg.snt-5)
(BUCKET obj. ct-4)
(FAILURE object-16)

V (BUMP cdr- 12)

V V Object types propagate along data flow links since the object type at one end must be the
4, same at the other end. Furthermore, once a segment type Is known, Its specs determine the

-

~ V types of its input and output objects. Applying these propagations to the Information
recognized above leads to the following:

(KEY object-i) 
V

(KEY object-3)
(TABLE obj ect -2 )
(FAILURE object-I?) V

(ENTRY object-18)

Notice that by propagation along data flow links It could also be concluded that

(ARRAY object-2)

V since this object becomes the input to ARUYFETCH-7. Whether this fact or (TABLE OBJECT-2 )
is discovered first depends on the particular control structure of the recognizer. In any case,

~ I the two facts are reconciled by referring to the design knowledge base in which the compatible

implementation decision is recorded:

(TABLE-ARRAY table-32 array-33)

The surface plan for SEGMENT-S has three segments at the first level of nesting Inside of it,
whereas the deep plan has two thus a grouping is required. If there were no grouping clues
available from the syntax, the apprentice might have to try each of the three possible
groupings until It found a successful one. In the present example, however, there Is a grouping

- suggestion left over f rom the surface flow analysis, which is shown as a dotted box In Figure
26. A new segment, SEGMENI-19 Is created which groups HASH-6 and ARRAYFETCH-7. This

V 

allows the immediate recognition of GET-BUCKET and SEARCH-BUCKET, thereby completing



- V V~ __VV~•__ •~~V~•~~~~V_ V_ ~ V~_~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~ V V_•~~~ —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ - V ~~~~~~~~~~~~~~

- - - - --- V

175

recognition at this leveL

V (PLAN-FOR : segment-19

- 

V (SUB-SEGMENTS : (hash-6 arrayf.tch-7))
... ) 

V

(GET-BUCKET segment-i9) 
V

(SEARCH-BUCKET loop-B)

Recognition is now applied to the surface plan of LOOP-S versus the deep p lan of
SEARCH-BIJCKET-35. Since these are iterative plans, the first order of business is to find the
corresponding self-references or control jumps to the beginnIng of the loop. Deep plans, such
as that for SEARCH-BUCKET-35, are typically represented self-referentially, whereas LOOP-B
comes out of surface analysis as a control flow loop. For the purposes of recognition It is
necessary to transf orm control flow iocp plans into the self -referential form. ApplyIng this
transformation to LOOP-B results in the plan shown in Figure 32. SEGMENT-20 is then another
segment with the same specs as LOOP-B.

(SEARCH-BUCKET segment-20)

Now the main features of the deep plan loop can be matched against the surface plan 1oop
— (we envisage a matching expert for loops). Since there is only one occurrence each of

NULLTEST, CDR, and CONSTANT in the surface plan, these are easily recognized as the 
V

V 
V corresponding segment types in the deep plan. This leaves the three CAR’s in the surface plan

and the EQUAL to be matched against HATCHTEST-39 and CAR-37 in the deep plan. At this
point the following syntactic grouping suggestion suggested by COND (indicated by dotted box
in Figure 26) mIght be tried: 

V

(PLAN-FOR : segment-21
(SUB-SEGMENTS : (car-lO car-13 •qual-14))

• I (NATCHTEST segment-21)

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ V” - -



~~~~~~~~~ —~~—~-— -~
V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

176

LOOP-B

nulltest-9

_ _ _ _ _ _

11 car-H)] 1 car-l i -I L cdr-12

NEXT
~

car -131 NEXT) \,,
,
.~ 1N

EXT

I
e~ua~_ 1~~

j,
/~

i
sewient_20_

j

I
NEXT

RETtA4S
_ _ _

~
car-iD j car-il J ~

cdr— i2

Mca~
131 \~/Th ‘b

(equal-14 segment-20

_ _ _

_ _ _

constant-15

I 1
Figure 92. Control and Data Flow in Transformed Plan for LOOP-B

-~~~~~~~~~~~~~ - — —~~~~~~~~~~ -~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



V ~~~~ ~~~~ V ~~~~~~~~~~~~~~~~~~~~~ V~_ ~~~~~~~~~~~ ~~ VV__ V~~V•~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V- ~V~~~~VV VV ~~V~ r V V. .~~~~V •V VV V~~ V~Ifl ~~~~ V -~~~~~

177

This grouping leaves CAR-li as the match of CAR-37. Unfortunately this fails, since the
data flow out of CAR-il does not go into SEGPIENT-2i (the HATCHIEST). The grouping of
SEGMENT-2i is undone.

Another kind of transformation that can be applied to the surface plan in this example Is
V the elimination of redundant segments. By this transformation CAR-il can be eliminated by

adding an extra data flow link out of CAR-b . Given this transformation, the recognition
V problem is simplified to a matter of deciding which of the two remaining CAR’s in the surface

plan now corresponds to CAR-37 in the deep plan. The simplest distinguishing constraint in
this situation is the input-input data link from the BUCKET-34 object of the loop to CAR-37;

- only CAR-b has the corresponding data flow in the surface plan.

With NULLTEST-9, CAR- b , CDR- i2, and SEGMENT-21 recognized, the two remaining
segments, CAR-13 and EQUAL- 14, must be grouped to match MATCHTEST-39

- • 
( PLAN-FOR : segment-22

V (SUB-SEGMENTS : (car-i3 equel-14))

V 
... )

V 

Since only the specs, but not the plan, for MATCHTEST-39 was given in the program design,
the apprentice must use the reasoning system to verify that SEGMENT-22 is a valid realization
of MATCHTEST -39, rather than simply applying recognition recursively. The verification is
achieved by the following steps: assert the pre-conditions of MATCHTEST-39; symbolically
evaluate the plan for SEGMENT-22, starting in this situation; prove the post-conditions of

.1• MATCHTEST-39 in the resulting situation.

Now that segmentation and data flow have been matched, the control flow in the surface
plan is checked against the purpose links in the deep plan and they are found to be compatible.
As a final step, the purpose links are copied from the deep plan to the now-recognized surface
plan, which then becomes part of the CPD for the program.

_ _ _  _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 
- V V V -

V 178

Control Structure

I
From this example, several general control structure features are clear

(I) propagation of discovered Information
(it) bottom-up grouping
(iii) goal-directed grouping and plan transformation
(iv) hypothesis generation and testIng

Propagation of object type information takes place along data f low links, and the discovery
of a segment type leads to the propagation of further object types. Bottom-up grouping is
done on the basis of syntactic clues discovered In surface flow analysis. Goal-directed grouping
and plan transformation occur when the deep plan is used as a guide to how to group the
surface plan . When there are no successful syntactic grouping clues, and the goal-directed
strategy does not indicate a unique grouping, search behavior takes place by the generation and

V 
testing of alternative grouping or transformation hypotheses. A mechanism such as contexts
will be required to facilitate the undoing of incorrect hypotheses.

- 1, Matching of data flow between the deep plan and surface plan may not always be as
- - straightforward as in the example. As explained at the end of Chapter Four, programs can be

V written in which data flow is achieved by side effects on data structures. Discovering this sort
V of data flow in the surface plan requires use of the reasoning system.

The recognition procedure described here has a significant advantage over other
V approaches based on the use of pre-compiled schemata, such as Gerhart <1975a>. The stored

schemas in Gerhart, for example, are patterns to be matched directly against program code.
V 

V 

Recognition in the P A., however, takes place with ~~~ which makes the formulation of the
stored information and the matching process Itself independent of the syntactic details of the
programming language involved.



V~~~~~~~~~~~~~~~~~ • V -~~~~~~~~~~~~ --~~~~~ - - -

179
V VI

What About an Incorrect Program?

It was claimed that the apprentice approach to verification results in improved feedback to
the programmer in the case of an incorrect program. To illustrate this, let us take two
examples of incorrect LOOKUP programs and identify where the recognition breaks down. Some
liberty will be taken in the paraphrasing of an error message in each case, based on the
knowledge state of the apprentice at the failure point in the recognition.

V 
The first example, shown in Figure 33, is a simple coding bug. We suppose that the

V programmer typed CAR instead of CAAR in the fifth line. The first phase of data flow and
control flow analysis proceeds smoothly on this program, leading to a surface plan identical to
Figures 26 and 27, except for the absence of CAR-i3 . Surface analysis fails only if there is

V V 
some violation of LISP language constraints.

V 

The first level grouping of the plan into a GET-BUCKET and a SEARCH-BUCKET also
succeeds as before. In the recognition of the SEARCH-BUCKET however, the underlined CAR
(CAR-b ) is taken as corresponding to CAR-13 in the deep plan, leaving only EQUAL-14 as the

V realization of MATCHTEST-39. The recognition then breaks down when the P.A. attempts to
show that EQUAL- 14 achieves the specs of MATCHTEST-39.

(SPECS-FOR : matchtest-39
(INPUTS: key-i entry-2)

V (CASE-i
(EXPECT: ( keypart entry-2 key-i))
(ASSERT: (keypart entry-2 key-i)))

(CASE-2 
V

(EXPECT: OTHERWISE )

(ASSERT: (not ( keypart entry-2 key-i))))) V

To paraphrase a plausible error message based on the mismatch of specs, and also using design
Information from the knowledge base:

Where you intended to test whether the given key was the key part of each V ;  
-

entry, you are testing whether the entry itself is equal to the key. To extract
the key part of the entry, take the car. V

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV
V VVVV - V V V~~~~~~~~ V~~ VVVVV VVVV VV V V V V V V V  ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ V



-- ~~~~~~~~~~~~ 
- -

~ 
— ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~V V V~ ~~~~~~~~~~~~~~ - _ - ~~~~~~~~~~ - - -

180

I

(DEFINE LOOKUP2 (KEY)
(PROG (BKT)

(SETQ BKT (-TBL (HASH KEY)))
LP (OR BKT (RETURN NIL))

(COND ((EQ (~~~~ 
BKT) KEY ) (.s.

V 

(RETURN (CAR BKT))))

(SETQ BKT (CDR BKT)) V

(GO LP)))

Figure 33. Program with Coding Error.

V 

(DEFINE LOOKUP3 (KEY)
1 (PROC (BKT)

(SET BKT (TBL (HASH KE Y) ))
LP (COND ((EQ (CUR BKT) KEY)

(RETURN (CAR BKT))))
(OR BKT (RETURN NIL))

~ V V V~ 
(SETQ BKT (CDR BKT))
(GO LP)))

- FIgure 34. Program with Fencepost Error. V 

-~~ ~~~~~~~~~~~~~~~~~~~~~~~~ —~~~ ~~~~~~ —— — —~~~~~~ ~~~—m—-~~~ - _____



A0 A035 fl3 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTl—ETC F/S 9/2
INITIAL REPORT ON A LISP PROGRAMMER’S APPRENTICE.(tJ)
DEC 76 C RICH. H E SHROBE N0001le—75—C—0643

UNCLASSIFIED AI—TR— 35’e NL

3.!F 3

F ND

F M-

~



1.0 ~~L L

I i
11111.8
n~I~~

1.25 111 1.4 111111.6—- 
~JJ~~~~ fl~JJ~~~ ~

MICROCOPY RESOLUTION TEST CHART
NAT IONAL SU~€*U oc ST*1~~~~D$—IIS3 A



— ~~~~~~~~ -__~~ 
-. -

~ 
— ~~~~~~—‘—‘—-- 

~—.~~~———— — —— r—~- — — ‘~~~~

-
~~~ ____________________ ~~~~~~~~~~~~~~~~~~~~~~~~~

181
S

Figure 34 shows a program with an error of the type known generically as “fence post
bugs”. The programmer has put his match test before the end test in the loop, meaning that
on the last element of the list his program will attempt to take the CAR of NIL To see where
the recognition breaks down , refer to the purpose links in the deep plan for
SEARCH-BUCKET-35 shown In Figure 30. Notice that the data flow for LO0I(UP3 is the same as
for LOCKUP. Thus the recognition proceeds successfully up to the point where the control flow
is checked against the purpose links. It is then discovered that the PREREQ links from the
non-EMPTYLIST case of the NULITEST to the LIST Input expectations of the CAR’S and COR’s are
violated because the NULITEST segment does not precede the CAR and COR segments In the
surface control flow of LOOKUP3. This could lead directly to the following error message:

In your loop to search the bucket, the null test should preceed the car’s and
cdr’s because these operations expect their inputs to be non-nil.

1

~
-
~1

S

i

-. ~~~~ ---~~ - .-..-—- -- - - -—-—- .---— ~~ -. ~~~~~~~~~~~~~~~~ S . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~



p — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~ ~~~~“~‘~~~~~~~~~~~ ‘“  
~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ç~_5tJJ5~~ L~ ~~~~~~~~~ 5, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

$82

5.3 Answering Questions from the CPD

S

The deep plan and surface plan representations are intended to contain explicit answers to

most questions that might be asked about a program. Qjiestions of a strictly design nawr e can

be answered without reference to the surf ace plan at all. In such cases, the surface plan may be
S used simply to f ind a concrete referent In the cod e, such as a variab le name, to facilitate the

PA’s discussion of a design concept Descriptions of data str ucture are also part of the CPD.

This means tha t the implementa tion of a basic quest ion answering fac ility Is mostly a

matter of informati on retrieval f rom an assertional data base contain ing the specs plan. and

structural descriptions employed in the program under consideration. Of course, it Is not tr ivial

to decide how best to communicate the desired informat ion; deciding how much to say, using

natura l English , and other conventions of discourse are problems we have not studied .

We now consider representative examp les from several classes of questions, and show how
they are answered directly from the CPD.

Answers to ~~~ questions are typ ically provided by the specs of a segment. For example ,

If the program mer ask s, “what does the insert do?”, the apprentice could answer directly from

the specs that It makes an entry (composed of a given key and data) member of the table.
S

When the segmen t in question is also part of a plan , the apprentice could supp lement the

Intrinsic description of the segment (i.e. specs) with a descripti on of Its role In the plan. For

I example , what CDR-12 in the preceding section does intr insically is take the REST of the given
S

list, its role in the loop plan, however , is the BUNP.

Where and when questi ons actua lly ask for similar infor mation , namely an account of

:~
which segment perfor ms the questioned action. For examp le, if the apprentice were asked.

“where is the list bumped? ” . it might answer , “by CDR-12 in the search loop”. In order to

answer this it would merely have to search the plans in the CPD for a segment whose specs

achieved the quest ioned act ion. If the question is phrased as a “when” , an appropria te answer S

• would prov ide reference points fo r the act ion , e.g. the name of preceding . follow ing, and

enclosing segments. In both cases, however, ft is also importa nt to determ ine the approp riate

level of abstraction for the answer. For example, an answer like “somewhere in the hashi ng
S system ” can be either very appropriate or Inappropriate, depending on the questioner ’s current

..

~~~~~~ ______



fl

_____—

~~ 

—— ~~—-- S ~~S—— -- —SS,~

$83
4

focus.

~~ ji1 and !!~~ 
questions are direct retr ievals from deep plan structures. A “how” question Is

a request to produce a segment ’s plan. For example, suppose the apprentice were asked , “how
does an entry get inserted Into the table? ” . An answer to this is the follo win g Engl ish
paraphrase of the plan for INSERT: “by cons’ing ft onto the buck et to which its key hashes,
and re-storing the buck et in the table”. “Why ” questions view plan structure from the opposite
perspective. If the apprentice Is asked why a particular segment is employed, the answer is

- typically given by the ACHIEVE and PREREQ links that emerge from it, i.e. a segment is used as a
prerequisite for another segment, or as part of achieving the goals of an enclosing segment.

S General dependency questions are also answered by reference to purpose links. If the
apprentice is asked what routines depend on the definition of a particular segment, It need only
examine all the purpose links which emerge from the output half of its specs. Similarly, which
segments i~ depends on is determined by lookIng at all incoming purpose links.

•1

LLS.S. S . S  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



S 5 r-rn ~~~~~~~~~~~~ - -
r ~~~~~~~~~~~ 

— 
~‘vn~~~~w’- _-_~~~ ~~~~~~~~ ____7_ —n--n- ~~~~~~~~~

CHAPTER SIX

RELATIONSHIP TO OTHER WORK

A great deal of work in Computer Science in the past several years has shared our concern
for bring ing the complexit y of large scale progr amming under control. Many approaches to
the problem have been proposed; most, like ours, suggest utilizing the computer itself to help

S manage the complexity . In Section 6.1 we first present an overview of established research
disciplines that are all aimed, more or less, at the same software problem. These disciplines can

S be contrasted along two dimensions: synthesis approaches vs. analysis approaches , and
- i - knowledge-based vs. non-knowledge-based. Following the overview, we will discuss some of

the work in more detail and in relation to our apprentice.

e.i Overview

vs. Analysis

One way of comparing the various approaches to the soft ware problern ss to consider the S

decomposition of software Into three components: the program spt c~ ications~ the prog ram
code, and the Just ificat ion (or proof ) that the code satisfies the s tJfications. All three of these
are needed for each program. There have trad itionally b~e.a two approaches to achieving th is
goal. One branch of research has concen t rated_ ~‘; smart ly on program sy nthesis , i.e the
generation of correct code from high -level specL~tcations. The other branch , program analysis .

S hMs tended to be more concerned with h~~ to automat ically generate a justIficatIon, given a
particula r progra m and its specIfIr~t9~ms.

‘~ The purest form is” psogram synthe sis Is to go directly from a proof to Its realization as
ode. An exar-~ Ie of this is Darlingron ’s cl973a> system , which automatically generate s S

SN’~BOI ~rc~ rams from formal proofs in the second-order logic. Automatic proerammlni
and si c~ red pr~~rammin~ are also part of the synthesis solution to the software problem. Irs
an automat ic programm ing system , correct code Is produced automatically from specifications.

S I .

—~~ -—



S. -~~ S - . 
~~~~~~~~ 

S - 5 5 -~~~~

$85
j

Although the Justification of the program Is not usually produced as an exp licit output in such
systems , it is presumably imp licit In their internal operation. Structured programming and Its
related methodologies , such as “ to p-down programming ” , “ provable programming ” S

<Good, 1975>, and “stepwise refinement ” .cDahl , 1972>, are the weakest kind of synthes is
solut ions. They Increase the reliability of software by provid ing a more forma l framework in
which the programmer himself can do the synthesis.

Most of the work in the program analysis direction has been under the rubric of program
verification. In this approach , producing the Justification or proof for a program is generally
viewed as an additional phase, following the design and coding. Early program verification
had a strong mathematical flavor. For example , Hoare <1969> was concerned with constructing

S an axiom system within which desired properties of a program could be proven formally.
S

However , the maturation of this field has been marked by the introductio n of heuristics <Katz
and Manna , 1973> and compiled schemata <Cerhart, 1975*> into program proofs.

Of course, not all work aimed at improving soft ware economy and reliabi lity is biased
towards either the synthesis or the analysis approach . For example, underl ying both analysis
and synthesis is the need for better formalisms. Much of curren t research in proerammlna
!~~g~~g~s and specification languages is directed at this need.

Use of Domain Specific Knowledge

A second fundamental distinction between various approach es to the software problem is
whether or not speci fic knowledge about prog ramming and app lication domains is
incor porated . INTERLISP .cTettelman , 1972, 1974> is an example of a system that is highly

S developed in the non knowledge-based direction. The code manipulation tools and syntactic
bookkeeping faci lit ies of INTERLISP, such as Indexers , editors , spell ing corr ector s , and so on,
are undoubtedl y a boon to orderly programming. However , there Is little potential for
significant improvement In this direction unless the programming system has deeper levels of
program representation which Include the programmers’s intentions and design strategies.
Steiger 4976> has proposed a system which extends synta ctic cross-referencing to Include simp le

S design dependencies between modules.

Li _
--—55 - - ~~ S __I

S S . S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S S S
_~~ _~~ 5 S . n - 5~V ~~~~~~~~~~~~~~~~~~~~~ 5

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - • - -
~~~~~~~1

5

186

Also on the side of non-knowledge -based approaches are the new programming languages
which arise periodically in the artificial intelligence and structured programm ing communities.
These new languages usually have particular programming methodologies and special formal
techni ques assoc iated with them. For example, the PLASMA language <Hewitt, 1973> is based

S on a methodology for the modu larizatlon of knowledge which uses the “actor ” concept. Special
techniques for symbolic evaluation <Hewitt , 1973a cYone zawa , 1975>, protection , and
synchron ization <Hewitt , 1974>cGrief , 1975> have been developed using actors. Simila rly, the

5 CLU language cLlskov , 1974, 1974a> draws Its streng th from theoretical work on the
specification of abstract data types cLiskov , 1975>cZilles, 1976>.

The non-knowledge -based approaches described above all have potential applicabi lity to
any programming problem. In contrast , some researchers have invested a large amount of
effort into learning how to represent specialized knowledge about application domains and
programming tech niques, so that i~ can be used in automatic systems. Most automatic
programming research <Balzer, 1973> falls into this category. Program analysis research has
also been moving towards the incc~rporatlon of more specific knowledge, as in Green <1975*>
for sorting programs. Set in a larger context, questions of how to represent domain specific

5 and procedural knowledge are the m.~jor content of most cur rent work in artific ial intelligence
<Winston , 1974>.

Program Understanding

We use the term “program understan ding ” to identify a comparatively new approach to the
software complexi ty problem that has its roots in the work of Sussman 4973> and Goldstein
<1974>. TheIr theses emphasized th e necessity of program annotatio n and ex plic it
representation of a program’s goal structure in order fo r there to be a real breakthrough in
programming met hods. Based on this v iew, Winograd 4973>, in an influent ial surve y paper,

S proposed a unified programm ing environment called “ A” in wh ich synthesis and analysis are
mixed usin g significant amounts of specif ic programming and domain knowled ge where
necessar y. This has been followed in recent years by a spate of projects <Hewitt and
Smith , $975>, <Green, 1973a> <Goldstein and Miller , 1976>, including our own <Rich and
Shrobe, 1975>, aimed at t rying to actually construct parts of the ideal system described by

1
~S 5

S~

— - ____

___ ~~~~~~~~ s~~~~~~~~ 5 5 S S S S~~SS ~~~~5 5s s s S ~~~~~~~~~~~~~~~~ ~~~ _ S

-_~- - - S~~~~~~ S S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~ S

:1 ~ 187

6.2 Limitations of Oth .r Appro aoh.s

Program VerifIcatIon

S 

An early attempt to solve the problem of expensive and unreliable software came from an
approach to program verification based on mathematical logic. The aim of early work In
program verification was to develop formal systems in which desired properties of a program
could be proven as theorems. By transforming the software problem into these terms, 

S

S experience and techniques from formal mathematics could be brought to bear on It.

The most significant development of this early mathematical period of program
verification was the “axiomatic” approach of Floyd <$967> and Hoare <1969, 1971, $972>. In this
approach, the desired behavior of a program module is specified by pre- and post-conditions,
which are restricted to be first order predicate calculus formulae relating the values of the
program variables before and after execution. The program code is then written in an
axiomatically defined programming language such as PASCAL cHoare and Wirth, 1973>. The
axiomatic definition of the programming language specifies formulae (or formula schemata)
that are true before and after each command primitive in the language, and rules for =
combining these formulae according to the control primitives of the language. For programs
without loops, verifying that a program satisfies its specifications is entirely transformed into
the problem of proving that the post-conditions are theorems in the theory of the program,
taking the pre-conditions as axioms. Thus, under the axiomatic approach, automatic program
verification is equivalent to automatic theorem proving. Verifying programs with loops
requires additional techniques such as structural induction cBurstafl, 1969>, or inductive S

assertIons on each loop cKnuth, $968, Sec. 1.2.1>. A good example of an automatic verification
S S J  system based on this approach is King <197$>.

There are major difficulties with the formal axiomatic approach to program verification.
First of all, the state of the art in automatic theorem proving Is not able to handle the
complexity and length of proof arising out of the formalization of non-trivial programs. Even S

If automatic theorem proving techniques evolve to the point where the computation becomes
feasible, there Is the the remaining problem that the first order predicate cakulus is not a
natural (or perhaps even adequate) language in which to express program specifications and
describe computations. Furthermore, the type of proof given by formal verification systems S

5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 
~~~~~~~~~~~~~~~~ ~: ~

:~~~~~5 ~ 5 S 5 ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F-
S~~S______

188

I (e.g. using resolution) is not usually understandable by typical human programmers. This
problem Is especially crucial when a proof fails, i.e. when the code does not agree with the

~ J specifications. A useful verification system must be able to give the programmer feedback In a
form that will help him make appropriate corrections

Recent research in program verification has matured in several directions that attempt to
overcome the difficulties described with the early mathematical work. For example, in order to
help control the computational explosions inherent in automatic theorem proving, heuristics
<Katz and Manna, 1973> cWaldinger and Levitt, $974> cfloyer and Moore, 1975> and
interaction with the user cDeutsch, 1973> have been introduced into the proof process. Gerhart

5

5
5 .c1975a> has worked on the use of pre-compiled program and proof schemata to help overcome

proof complexity. In order to make automatic proof systems easier for programmers to use,

Wegbreit <1973> has deve loped some heuristic methods for automatically deriving the inductive
assertions required for program loops. All of these elaborations of the axiomat ic approach

5 amount In essence to the addition of more specific knowledge about programming in the form
of either heuristics or comp lied patterns. We believe that this Is indeed the only way to
significantly improve the performance of verification systems.

S There has also been act iv ity towards developing better specification formalisms than the
first order predicate calculus. Llskov and Zilles 1975> have developed a formal technique for
specifying data abstractions In terms of possible operations on them. Parnas <1972> Is working

S
on a particular approach to writing Input-output specifications. Scott <$972> has proposed a

S

new fundamental semantics for programming based on lattice theory to replace traditional
Floyd -Hoare axiomat ics. Hewitt <1973> is also working on a new alternative semantic basis for
program description. As this work on the foundations of verification matures, we feel It will
also move into the problems of embed din g more domain -spec ific knowledge in the
programming semantics.

The approach to verification In our programmer’s apprentice shares many features with the
later, heuristic-based program verification systems described above, with two major differences .
In our research , reasoning about programs and specifications is v iewed as part of a complete

programmer’s apprentice environment, encompassing design, coding, and periodic modificatIon.
5

Thus the deductive mechanisms we use depend on the exist ence of a rich and diverse
knowledge base. The second distinguishing feature of our apprentice is the use of plans. We S

have found plans an extremely useful level of progra m description for organizing and S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 S S • •  5 •S U



S ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 5~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ S ~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~ ~~~~~~~~~~

~~.~~~~~~ S S 5 S S S S ~~~~~ S

I
189

S 

recording program Justifications. From the standpoint of design, plan representations allow us
to conveniently reason about partially developed programs. For completely coded programs,
maintaining two levels of representation, i.e. code and plan, allows us to express programmIng
and application domain specIfic knowledge in a more abstract form. Gerhart’s d975a> work,
for example , suffers from the fact that her compiled schemata have to match programs at the
raw code level.

The specification language and underlying semantic model of programming we have been
using In our research thus far are non-innovative. This Is in keeping with our desire to stay as
close as possible to the natural way programmers think about their programs. Our overall
model of a program is one of data flow between operations (as for instance in <Dennis, 1975>).
The description of data structures in our current system includes only the traditional technique
of naming subparts. Furthermore, the only fundamental difference between input-output
specifications for operations in our system and those in the traditional Floyd-Hoare approach is

S 

that the variables in our specification conditions denote program data objects rather than
S literal program variables, as in Floyd-Hoare. An additional minor difference Is that, since we
S are using a specially tailored deductive system, we have modified the standard quantifiers of

S predicate calculus to more convenient forms.

Automatic Programming

Automatic programming cBalzer, $973> is another major approach to the software problem
that has not fulfilled its initial promise. The goal of automatic programming research has
been to create a system which, given “high-level” application oriented specificatIons for a
program, will automatically generate correct and reasonably efficient code that satisfies the
specifications. If such a system could perform over a wide range of applications it would be an
appealing solution to present problems in programming. Unfortunately, automatic

I programming in this most ambitious form has foundered. It appears that the only way to
succeed in building a totally automatic syStem is to highly restrict its domain of applicabIlity. 

S

J However, doing this loses most of the appeal of the automatic programming solution, since a

~ rge amount of effort must be repeated every time a new programming domain Is

j 

encountered

S 
~S~~S S~SI~~~ ~~~~~ ~ S SSS ~~5__~5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -~~~~~ ———-~~~~ ——- _ 5~_55_•~~~~ 5~~~~~~~~ 555_ 

S S S



190

In addition to a demonstrated lack of technical progress in automatic programming, we
believe the approach suffers from Important conceptual difficulties that preclude Its success in

S 

the near future. Most crucia lly, a totally automatic system uepends on the user being able to
give a complete specification of his needs. This is unrealistic for two reasons. First of all, it Is
an observed fact that computer users are seldom, if ever, able to spontaneously generate a

S complete set of specifi cations . In non-automatic programming, there is almost always
S 

Interaction and further specification during the design phase. Secondly, even If a user Is able
S to make all of his needs explicit at one time, the specification languages currently available to

express them in are not adequate or convenient. (Letting the user express himself In
unconstrained natural language is no answer either -- It only adds one more problem: the
translation from natural language Into the underlying representation used for specification.)

Another fundamental problem with the automatic programming approach Is that It is not
well-suited to partial performance. An automatic system that generates eighty or ninety percent

correct programs is useless; more so even than a human programmer with the same error rate,

since the automatic system’s internal operation Is usually unintelligi ble to its users. The way out
of this morass is to aim for an appropriate division of labor between man and machi ne In the

S task of programming. Our research has begun with the assumption that an apprentice will
S only perform with partial success. Therefore, the internal operation of our system is based as

much as possible on th e same principles that human programm ers use. Certai nly, the
descriptive tools we are building will figure into the eventual development of real automa tic
programming systems. However, in the short run we feel the apprentice approach is much
more promising.

I

SS
5
~~~~

5
S~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1’ S S S S S ~~~~~~~~~~~ 5 5  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

191

S 6.3 Program Und. rstsnding

Program understanding Is an approach to the software problem which has its roots In
artificial intelligence theories of planning and debugging rather than formal mathematics , and
which is committed to incorporating domain specific knowledge wherever necessary in

S automated systems. In the next section, we briefly trace the origin of the important theoretical
S Ideas on planning and debugging that are used in our apprentice project. Following that, we

will review a number of concurrent and sim ilar efforts at program understanding.

Planning and Debugging

The theoretica l crux of planning and debugging research is the relationship between
actions and their teleology. Two pioneering works in this field were the Ph.D. theses of
Sussman <1973> and Goldstein <1974> at M.I.T.

Sussman chose the application domain of moving and stacking toy blocks on a table top
(the then popular “blocks world”). His aim was to build a system which could automatically

S write programs to achieve goals in this simple domain, such as building a tower of three blocks.
Sussman’s main contribution was his beginning formalization of the debugging approach to
program writing. His system first proposes a simple program to achieve the desired goal. It

S then runs the proposed program In a “careful” mode in which annotation Is checked and a
complete history is maintained in the form of process snapshots. Typically, the program fails

S the history and annotation Is then analyzed to find the “bug”. Bugs are fu rther classified Into
4

bug types, each type suggesting a characteristic fix to the program.

In order to achieve the debugging scenario described above, Sussman had to develop a way
of describing the teleological structure of programs. In Sussman’s view, each step In a program
has some role in relation to other steps and the overall goal of the program. He called these

I relationships purpose links, which is the origin of our use of the term. Sussman identif led two
important types of purpose links In his thesis prerequisite links and main-step (we call them
achieve) links.

H
LL~~ . S M. S __5~~ S — ~ ~~~~~~ ~~~ 5 5 5~~~~~~~~~~~~~~~~~~ 5 ~~~~~~~~~~~~~~~~~~~~~~~~~ A

S
~5 S5~~~~~~ S 55 S•SSS S ~~~~~ ~S S S S ~S~SSS ~~~~~~~~~~~~

192

Closely related to Sussman’s thesis is Goldstein’s <1974> work on understanding programs in
the domain of computer-drawn stick figures. Programs in Goldstein’s domain are composed of

a sequence ol movement commands to a tv-screen drawing cursor. Like Sussman, Goldstein is S

S Interested in finding and correcting bugs in programs. though in Goldstein’s case the programs
are written by school children, rather than as the first pass of an automatic programming

S system. Goldstein came up with the same theoretical result as Sussman: debugging a program
requires knowing the teleological relationship between the temporally ordered actions In a

S program (e.g. the primitive movements of the cursor) and overall desired result (e.g. the stick
S drawing of a house). Goldstein introduced the word ~~~ to describe the network of purpose

S links that relate a program and its goal specifications a usage which we have continued.

Furthermore, Goldstein began the important task of classifying plan types. In his thesis he

originally identified three very abstract categories: round plans (which we call “loops”), linear

plans (which he now calls sequential plans), and insertion plans (formalizing the use of

interrupts and state-transparent constructions). This classification has been elaborated and

S
refined in Goldstein and Miller <1976>.

S
Thus our major debt to Sussman and Goldstein lies in their establishing the correct

S
conceptual foundation f or understanding programs. However , we use plans and purpose links

in a somewhat different fashion than they originally proposed. Our apprentice project puts

S more emphasis on providing a convenient repository for programmer-supplied plan and
S purpose annotation during design and coding, rather than automatic programming or

S automatic debugging. Part of the reason for this Is that we are aiming towards programmIng

S domains which are much more complicated than those that Sussman or Goldstein dealt with.

We therefore find ourselves much more often In a siwatlon of partial know ledge, In which

Interaction with the programmer becomes essentIaL
S

An Important extension of Sussman’s and Goldstein’s work has been Sacerdoti’s <1975>

careful analysis of the interaction between temporal and causal constraints in plans, using a
representation called “procedural nets”, which are very similar to our plans. Although

S Sacerdoti’s research Is not framed in terms of a programmer’s apprentice, we hope to make use

of his results as our needs develop. Waldlnger 4975> has also been working on ways of doing

careful reasonIng with plan-like structures. Hewitt c19’lSa> has shown the utility of considering
S constraints derived from carefully analyzing the goal In the planning process. S

.

LL~,

~S_S?.S)~~S__S 5 .S~•çS S
~~~~~~~~~~~~~~~~~~ •55 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

193

Programmer’s Apprentices

S The earliest definitive description of a programmer’s apprentice like the one we are trying
S 

to build was by Winograd <1973>. He suggested that the way to overcome “the complexity
S 

barrier” was to construct a programming environment unifying editors, debuggers,
programming language systems, and a knowledge base. (In an earlier paper, Floyd <1971> also
proposed a unif led programming environment which, however, did not include a data base for
storing implementation and domain-dependent knowledge.) Furthermore, Winograd suggested
the use of program annotation to help the system understand the goals, purposes and methods
which the programmer is employing. What was tacking in Winograd’s description is any idea
of how to implement these various features. Our relation to Winograd has been to develop the
theoretical and technical foundations from which it will be possible to build the tools he
Imagined.

A concurrent effort to lay the foundations for buIlding Winograd’s vision is the
programmer’s apprentice project of Hewitt et al. <Hewitt and Smith, 1975>. There is a large

S amount of common ground between our two projects. For example, we both have settled on
use of intrinsic behavioral descriptions (Hewitt’s term is “contracts”) as the building blocks for

S representing program structure. Also, the symbolic evaluation in our deductive system is very
close to Hewitt’s notion of “meta-evaluatlon”.

S However, there is a crucial difference between Hewitt’s approach and ours. As we see it,
Hewitt is attempting a radical solution to the software problem. His apprentice will be built
around a new programming language (PLASMA) and a new model of computation (“actors”).
Hewitt’s approach is based on the belief that this innovation will facilitate the construction of a
good programmer’s apprentice, particularly for programs involving communication between
parallel processes, and that the existence of such an apprentice will then encourage people to
convert to the new methodology. In contrast, our project is aimed towards the evolution of a
programmer ’s apprentice within the traditional programming environment of LISP, with
innovations such as the use of machine-understandable comments, extended data declaration
features, and so on. However these two approaches supplement each other since, as we have
seen already, much of the underlying theoretical content is transferable. S 

5 — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—.5. 
~SS5 5 5 ~~SSS • 5S S5 . 5

S~5

194

Other Program Understanding Systems

In a recent M.I.T. thesis, Ruth <1973> constructed a program understanding system whIch
S successfully analyzed correct and near-correct programs from an Introductory programming

class, giving specific comments about the nature of the bugs detected in the incorrect cases.
Like us, Ruth attempts to capture in his system the commonality between programs which do
the same thing. He represents a class of such programs as an augmented formal grammar
which generates possible programs in a very high level programming language. Then, to
analyze a student’s program written in, say PLI1, Ruth has written specialized procedures which
can recognize the occurrences of the high-level actions as local constructs in a student’s
program.

Although we agree with Ruth that understanding programs requires significant
pre compiled knowledge, his representation scheme is unsuitable for the type of programmer’s
apprentice we wish to build. As Ruth himself points out, his representation can only do well
when there is a minimum of interaction between the parts of a program; this directly excludes
the kind of situation we are most interested in.

A number of researchers are currently working on the problem of how to codify various
types of programming knowledge. Green and Barstow 4975> have developed a system of rules
which describe how to write sort programs. Their work seems to be thorough with respect to
this particular domain of programming; however their rules are still written quite informally.
Goldstein and Miller <1976> have accumulated a significant body of knowledge about types of
plans in the stick-drawing world and are currently exploring the use of an augmented
transition network grammar as a representation. Wi lczynski <1975> has developed a
production-like formalism, which he shows Is natural to the domain of game playing programs.
Also, M ikelson <1915> is working on a network data base representation to support automatic S

consulting on the use of a large subroutine library. 
S

At M.I.T., Waters <1976> has proposed a system for analyzing mathematical FORTRAN S

programs. which uses a plan representation similar to ours. Genesereth <1976> is also currently
using plan represencauons similar to ours as part of the knowledge base for an online advisor ,.

‘

facility for MACSYMA, a large symbolic mathematics system. Finally, in a recent Ph.D. thesis,
Brown <1976> has applied the knowledge-based planning and debugging approach to the
domain of electronic circuits and has concurrently arrived at very much the same plan

5-



S 
F~~~~~~~ ’ S~ .S~~ ~~~~ 5~~~~S 5 S 5~~~S 

~~~~ .s ~~~~~~~~~~ 
55 55 5 5 _5~~~~~~

5,

representations as we use.

Two current areas of research potentially related to program understanding that we have S

not yet developed In our own work are synchronization of parallel processes and specIfIcation
by examples. Grief <1915> and Owicki <1975> have proposed two dissimilar formal systems for
talking about communicating parallel processes. Bauer <1975>, Hardy <$975>, Shaw <$975>, and
Siklossky <1975> have been working on various approaches to the specification of data

S

structures and procedures by way of examples. S

Reasoning Techniques
S

The design of the deductive system in our apprentice has been influenced by a number of
recent and concurrent works on general reasoning techniques, and the symbolic evaluation of
programs. In the category of general reasoning techniques, our use of situational tags can be S

traced back to McCarthy and Hayes <1969>, and is reiterated with modification in HewItt
4975a>. The notion of using anonymous and identif led individuals for reasoning about
quantifications is explained clearly in Hewitt .c1973a> and Moore <$976>.

The concurrent work of Yonezawa <1975, 197$> on symbolic evaluation Is also attempting to
deal directly with the problems of reasoning about side-effects and shared data structures.
Thus, there is a great deal of underlying simIlarity between our two systems despite the lack of
superf icial resemblence due to the fact that Yonesawa Is working within the actor formalism of
Hewitt et al. Also, Boyer and Moore <1975> have developed a powerful system for proving
properties of simple LISP programs by means of symbolic evaluation. However , their

S~
Sj techniques do not seem to be developing In the direction of accepting domain-specific

knowledge and user interaction

S
5
~~

~~~~~~~~~~~~~~~~ S 5.~~~~ S5.5.S S S S ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5- S~~~ -— — —  ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 55~~5 5 ~~~S S S~~~~55 ~~~~ ~~~~~~~~~~~~~~~~



5 S~~~~ S S S  ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
5 5 5 S

SS __ •~~~ ,~~~ S~~~ S~ 5.~~5

S i ’  H
S 

BIBLIOGRAP HY

Allen, FE and Cocke, J. (1976) A Program Data Flow Analysis Procedure”~ CACM, Vol. $9,
No. 3, pp. 137-147.

S 
Balzer, (1973) Automatic Programmin(, Institute Technical Memo UnIversity of Southern

California ! Information Sciences Institute, Los Angeles, Cal.

Bauer , M. (1975) A Basis for the Acquisi tion of Procedures from Protocols , Fourth
International Joint Conf. on A.L, U.S.S.R.

Buyer. Robert and Moore, Strother (1975) ~Provlng Theorms About LISP Programs . Journal
of the ACM January 1975, pp. 129-144

Brown , AL. (1976) “Q,ualitative Knowledge . Causal Reasoning, and the LocalIzation of 
S

Failu res” , Ph.D. Thesis to be publ ished, M.I.T. AL Lab.

S 5 Burstall, R. M. (1969) Provlng Properties of Programs by Structural induction”, Comput. JI.
vol 12, pp. 4-8

S 
Bursta ll, R. M. (1972) “Some Techniques for Proving Properties of Programs Which Aker Data

j Structures , Machine Intell Igence 7, Edinburgh University Press.

DahI, O.J., et. at. (1970) “T he SIMULA 67 Common Base Language Publication S-22.
Norwegian Comput ing Center, Oslo.

Dahl, O.J., Dijkstra, E., And Hoare, C. A R. (1972) Structured ProtramminL Academic Press,

$972.

Darllngton, j . and Burstall, R.M. (1973) “A System Which Automatically Improves Programs”,

Third International Joint Conf. on A l., Stanford U.

- -~~~~~~~~ —~~~~~~-~~~~~~~~~~~~~~ —-  _ _ _  _ _ _ _ _



55 _S~_~~55S ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
S~~S_~~’I~~~5 

~~~~~~~~~~~~~~~~~~~~~~

-
-

5.5S5.~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘97
4

Darlington, Jared L. (1973a) “Automatic Program Synthesis In Second-Order Logic”, Third
International Joint Conf. on A.!, Stanford U.

Dennis, J.B. (1975) “First Version of A Data Flow Procedure Language”, M.LT. Project MAC
Memo 6$.

Deutsch, Peter (1973) ‘An interactive Program Verifier”~ Xerox PARC Report • CSL-73-l. Palo
Alto, Ca.

- I Donzea-Gouge, V., Huet C., Kahn, C. Lang, B., and Levy, J.J. (1975) “A Structure-Oriented
Program Editor: A First Step Towards Computer Assisted Programming”, Report $14,
Instisut de Recherche en Informatique et Automatique, France.

S Floyd, R. W. (1967) “Assigning Meaning to Programs”, Mathematical Aspects of Computer
Science. J.T. Schwartz (ed.) vol. 19, Am. Math. Soc. pp. 19-32. Providence Rhode Island.

¶ Floyd, R.W. (1971) “Toward Interactive Design of Correct Programs”, IFIP, 1971.

Gerhart, S.L. ($975) “Correctness-Preserving Program Transformations”, Proc. of 2nd Symp.
on Principles of Programming Languages, Palo Alto.

Gerhart, S.L. (1975a) “Knowledge About Programs: A Model and Case Study”, S1GPLAN S

Notices, Vol. 10, No. 6, Proc. of International Conf. on Reliable Software.

Genesereth, M.R. ($976), ‘Problem SolvIng with Imperfect Knowledge”, submitted to Conf. on
A.l. and Simulation of Behavior.

Genesereth, M.R. (l976a), “An Overview of the MACSYMA Advisor”, unpublished progress

S
report, M.I.T. Laboratory for Computer Science.

Goldstein, Ira ($974) “Understanding Simple Picture Programs” PhD. Thes1s~ M.I.T. Al. Lab.
S

- Technical Report 294.

~.L_ L1. ~~~~~~~~~~~~ 5 5 5 5 5 ~~~~~~~~ 5 55._S - ~~~~~~~~~~~~~~~ - S~~~~~~ —S ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ S ~~S5.~ - —

S 5~~~~~~~~~~~~~~~ s 5 5 . S~ ___

r

S

~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S

GoldsteIn, 1. P. and Miller , ML . (1976), “IntellIgent Tutoring Programs: A Proposal for
Research”, M.I.T. Al. Lab. Working Paper 122, Logo Lab. Working Paper 50.

5 Good, Dl. (1975) ‘Provable Programming”, ACM SICPLAN Notices, Vol. 10, No. 6, Proc. of
International Conf. on Reliable Software.

Green, C. and Barstow D. (1975) “Some Rules for the Automatic Synthesis of Program’, Fourth
International Joint Conf. on A.l, U.S.S.R.

S

Green, C. and Barstow D. (1975*) “A Hypothetical Dialogue Exhib iting a Knowledge Base for a

Program-Understandi ng System”, presented at NATO Advanced Stud y Institute on Machine
RepresentatIons of Knowledge , Santa Crus, Cal.

Grelf, 1. (1975) “Semantics of CommunicatIng Parallel Processe’ , M.I.T. Project MAC TR-154.

Hardy, S. (1975) “SynthesIs of LISP Functions from Examples”, Fourth International Joint
Conf. on A.!., USS R.

Hewitt, Car%.(197l) “DescrIptIon and Theoretical Analysis (using Schemata) of PLANNER: A

Language for Proving Theorems and Manipulating Models In a Robot”, M.I.T. A.!. Memo
No. 251.

Hewitt , C.. Bishop, P., And Steiger , R. (1973) ‘A Universal Modular Actor Formali sm for

U Artificial Intelligence”, Proceedin gs of IJCAI-73, Stanfo rd California.

Hewitt , C., et *1 (1973a) “Actor Induction and Meta-evaluatlan”, ACM Symposium on Principles S

of Programming Languages, Boston.

Hewitt, C. (1974) “Protection and Synchronization In Actor Systems’, M.I.T. A.!. Lab. Working
S

S Paper 83.

Hewitt, C. and Smith , B. (1975), ‘Towards a Programming Apprentice”, Proc. of IEEE Trans. S

an Software Engineeerlng, Vol. 1, No. I, pp. 26-45. -

U

S

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
L[I



5 .55 S55~~~S5.~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 5 15 5 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ S__S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S S5~~~~~~5_~5_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

5 5 5  —5--_ _———,~~~~~~~~ 

S

199

•
54 S

Hewitt, C. (1975*) “How to use What You Know”, Fourth International Joint Ccnf. on A l.,
U.S.S.R.

Hoare, CA R. (1969) “An Axiomatic Basis for Computer Programming”, CACM Vol. 12, No.
5 , 10, pp. 576-583.

Hoare, C.A.R. (1971) “Procedures and Parameters: An Axiomatic Approach’, Symposium on the
Semantics of Algorithmic Languages, E. Engeler, ed., Springer.

S Hoare, C.A.R. (1972) “Proof of Correctness of Data Representations”, Acta Informatica,~ 1,4, pp.
271-281.

Hoare, CA R. and Wlrth, N. (1973) “An Axiomatic Definition of the Programming Langugae
PASCAL” , Acta Informat ica, 2,4, pp. 335-355.

Katz, S.M., and Manna, Z. (1973), “A Heuristic Approach to Program Verification”, Third
International Joint Conf. on A.!., Stanford U.

King, J.C. (1971) “ProvIng Programs to be Correct”, IEEE Trans on Computers, C-20, II, Nov.

King, J.C. (1976) “Symbolic Execution and Program Testing”~ Comm. of the ACM, July, Vol.
19, No. 7,p. 385.

S 
Knuth, D.E. (1968) The Art of Computer Programming, Vol. 1, Addison-Wesely.

Llskov , B. (1974) “A Note on CLU”, M.I.T. Computation Structures Group Memo 112.

Llskov , B. and Zilles S. (1974a) ‘Programming with Abstract Data Types”, Proc. of Conf. on
Very High Level Languages , SIGPLAN Notices, Vol. 9, No. 4.

-

~ 
. Liskov , B. and Zilles S. (1975) “SpecificatIon Techniques for Data Abstractions”, IEEE Trans.

on Software Engineerin g, Vol. SE-I, No. 1.

- _ -~____ 1 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——5. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



London , R. (1975) “A View of Program Verification”, ACM SIGPLAN NotIces, Vol. 10, No. 6,
Proc. of International Cant. on Reliable Software.

Manna , Z. and Waldinger, R. (1975), “Knowledge and Reasoning in Program Synthesis”,

S 
Artificial IntellIgence 6, pp. 175-201

McCarthy . J. and Hayes, P. (1969) Some Philosophical Problems from the Standpoint of
Artificial Intelligence”, Machine Intelligence 4, American Ebevier, N.Y.

McDermott, D. V., and Sussman, C.J.Q972) “The CONNIVER Reference Manual”~ M.I.T.
Artif icial Intelligence Laboratory, Memo 259.

Mikelsons, M. (1975) “Computer Assisted Application Definition”, Proc. of 2nd ACM Symp. of
Principles of Programmings Languages, Palo Alto.

Miller, ML. (1976) “CognItive and Pedagogical Considerations for a Tutorial LOGO Monitor~
An Investi gations Into the Evolution of Procedural Knowledge”, unpublished SM. thesis,
M.I.T. Dept. of E.E. and CS. 5

Moore, Robert (1976) “ Reasoning From Incomplete Knowledge in a Procedural Deduction S

S System”, M.I.T. A.!. Lab. Technical Report 347.

Moore , J.S. (1974), “IntroducIng PROC into the PURE LISP Theorem Prover”, Xerox PARC
Report CSL-74-3.

S 

Owicki , S. (1975) ‘Axiomatic Proof Techniques for Parallel Programs”~ Dept. of Computer 
S

Science TR 75-251, Cornell U. S

S Parnas, D.L. (1972), “A Technique for Software Module Specification with Examples”, CACM
Vol. I5~ No. 5.

Rich, C. and Shrobe HE. (1975) “UnderstandIng LISP Programs Towards a Programmer’s
Apprentice”, M.I.T. A.!. Lab Working Paper 82. 4

~~~~~~~~~~~~ S~~~~~~5S S 55 S 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5~~~~~~~~~ 
S S S SS

— ~~~~~~~ —~~~~~~
- S ~~~~~~~~

-

~~~~~~~~~~p 
—~~~~ ~~~~

_._ ~~~~~~~~~~~~~~~~~~~~~~

201

Rulif son , J.F., Derksen, J.A., and Waldinger , U .  (1972) “Q~~ 4: A Procedure Calculus for
S Intu it ive Reasoning”, Stanford Research institute, Artificial Intelligence Center, Technical 

S

Note 73, Menlo Park , Ca. S S

Ruth , Gregory (1973) “Analysis of Algorithm Implementations” M.I.T. Ph.d. Thesis, Project
MAC Technical Report 130

Sacerdot i, Earl D. (1975) “The Non-Linear Nature of Plans” Stanford Research Institute A.!.
Group Technical Note 101

Sacerdot i, E. D. (l975a) “A Stru cture for Plans and Behavior ”, SRI Technical Note 109.

Scott , D. (1972) “ Lattice Theory, Data Types and SemantIcs ” , In Formal Semantics of
Programming Languages, Rustin (ed), Prentice-Hall, p. 65.

S Shaw , D., Swartout , W., and Green, C. (1975) “Inferrin g LISP Programs from Examples ”,
Fourth International Joint Conf. on Al, U.S.S.R. S

Siklossky, L. and Sykes D. (1975) “Automatic Program Synthesis from Example Problems”,
5 Fourth International Joint Conf. on A.I., U.S.S.R.

Steiger , R. (1976) Interdependency Management in a Programming Environ ment’, unpublished
paper, M.I.T.

Suuman, C. J., (1973) “A Computational Model of Skill AcquiMtion”~ PhD. Thesis, M.I.T. Al.
Lab. Technical Report 297. Cambride Mass.

Sussman, C. J. and Brown, A (1974) ‘Localization of Failure in Radio Circuits, A Study In
Causal and Teleological Reasoning”, M.I.T. A.!. Lab. Memo 319.

Teftelman , Warren (1972) ‘Automated Programmering - The Programmer’s Assistant’,
- Proceedings of the 1972 FJCC, pp.917-921.

55 55 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -SS~~_S_ S S S SS - -



~~~ Ir~ S S~~~ S~?S_5 
~~~~~~ 

5_5 5_ 55_S~~~ S SS ~5S S~~-••~~ r~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~ r—” ‘‘~ —5- cr—’-YS-

.1 

_ _ _ _ _  

. 
S

Teitelman, Warren (1974), INTERLISP Reference ManuaL Xerox, Palo Alto, Ca

g R. and Leyitt, K.N. ($974) “ReasonIng About Programs ”, Artificial Intelligence 5, pp.
S 235-316.

Waldi nger , Richard (1975), “Achieving Several Goals Simultaneo usly ” Stanford Research 
S

Inst itute A.!. Group Techn ical Note 107.

Waters, R.C. (1976) “A System for Understanding Mathematical FORTRAN Programs ”. M.LT.
A.!. Lab Memo 368.

S 

S

S Wegbreit, B. ($973), “Heuristic Methods for Mechanically Deriving Inductive Assertions’, Third

International Joint Conf. on A.I., Stanford U. 
S

Weinberg, G.M. (1971) The Psycholoty of Computer Proarammjnx, Van Nostrand Reinhold.

Wilczynski, D. (1975) “A Process Elaboration Formalism for Writing and Analyzing Programs”, - S

U. of S. Cal. Information Sciences Inst., ISIIRR-75-35.

Winograd, Terry ($973) “Breaking the Complexity Barrier (Again)” Proceedings of the ACM

SIGIR-SIGPLAN Interface MeetIng, Nov. $973.

Winston, P. (1974) Ed. “New Progress in Artificial Intelligence”, M.I.T. A.!. Lab. TR 310.

Yonezawa. Aki ($975) “Mesa-Evaluation of Actors with Side-Effects” M.I.T. Al. Working Paper

10$. June, l9’lS

Yonezawa, Aki (1976) “Mesa-EvaluatIon for Verification and Analysis of Actor Programs”.
Draft paper. M.I.T. A.!. Lab.

Zilles, S. (1976) Data Algebra A Spocif icatIon Technique for Data Structures”, PhD. Thesis 
S

forthcoming, M.I.T. Project MAC, Cambridge, Ma

1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5555 5 5


