
AL) AO i~ 786 PRC DATA SERVICES CO MCLEAN VA FIG 9/2
A REVIEW OF DATA COMPRESSION ALGORITHMS. (U)
MAY 76 C HOLPOROW , U MCNEMAR, P STONEBURNER DCA100—73—C—0015

UNCLASSIFIED - 
CCTC TM 122—76 NL

~H.



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* 

TECHNICAL MEMORANDUM

C TM 122.76
1 MAY 1976

C */ ~~
* ,~~~~~

..

COMMAND
& CONTROL
TECHNiCAL
CENTER

A REVIEW OF
DATA COMPRESSION

ALGORITHMS

COMMUNICATIONS 
~~~~~~~~~ T ~~~~~

Lu~~~~6U~tJLL~
fThISThIBUTION STATEMkN~ A

fri pu~’1i: Tet as.
L : r ~i~ ;’~~ n Urtlinuted

-- - -  _ _ _ _ _  _____—‘



~~~~~~ 
- .

~ . ..-. .- .-...

COMMAND AND CONTROL TECHNICAL CENTER(7’ TECHNICAL MEMOM~~~~~~ 2 2-76

,,1 MaY Ø76

6
A REVIEW OF DATA COMPRESSION ALGORITHMS ,~

~~~~~~~~~~~~~~~~~~7 ~~~~~~~~
SUBMITTED BY : APPROVED BY:

‘2 ~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~

R. Marion Dr. J.A. Painter
Proj ect Officer Techn ical Director

CCTC WAD

- .- .. ~~~
... 

~ç’~2~ ~~~~~~ ~

~~~~~ 

- 

- .  
-

-~~~~~~~

~~~f l 

~~~~~~~~~~ 
J

. . . 

—~~~~ _ _ _  
_~_ .__.._.__..._.. — _ _ __ ._.~ .. — , — . — . —~ ~. — . ..



__________________ — . ,  
,—.-~~--., ~~.— ~~~.-—- --.--.,. .~~..--- - .~ . , - -~ -—..--.~~- - - -~~. —  ~- .  - -, ,---—.-,-.. - --- —

~~1

ACKNOWL EDGMENT -

This document was prepared by C. Holborov,J. MeNemar and P. Stoneburner

of Planning Research Corporation , Data Services Companl, under Contract

Number DCA100—73—C—0015, Task 613. Technical assistance was provided by

the CCTC Project Officer, Robert A. Marion. ~~. \ . 1 ,  ~~~~

~~~~~~~~~~ 

i .  
.
__~~~~~~

_ )

I 
-

~~fle : S~1k~1~I1 C~ 

~~~~~~ ~“~~‘ 

— . 
. 

~1. ~~~ :~ 

.L I
ii



_ _ _ _ _ _ _ _  - -— ~~~~~~~~~~~~~~~~~ w.-- ~~-- ~~~~~~~~~~~~~~~~~~ ~ - ~~.. 
~~~~~~~

ABSTRACT

his memorandum describes various methods for compressing digital computer

data files. The objective of the methods described is to reduce the physical

space required to store data while maintaining a compl.ete representation of

the information. There are several potential benefits as’-’ciated with com-

pression. It provides more efficient use of storage devices, it improves

data transfer rates (through shorter message packets) and it permits faster

data base access (through greater data density per I/O storage 1ock).

The document first discusses logical compression techniques and identifies some

data base methods which minimize storage. Next, the document describes methods

which achieve compression through various encoding schemes. The concepts for

the development and operation of these methods are discussed , and guidance

is provided for their appropriate application. Performance characteristics

are delineated when operational statistics are known.
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INTRODL’CT ION

The Problem

Computer files tend to grow. In fact, a modified form of Parkinson ’s law

seems appropriate: “Computer files expand to fill the storage available.”

Some bounds can be placed on user files by strictly 1imi~~.~g the space

allocated to each user. However, this is not possible with a data base to

which new data is constantly being added faster than old data is being do—

leted . The only way to contain such files within a fixed physical space is

to find some way of packing the data into the available physical space mor9

efficiently. The high cost of redesigning a data base and rewriting the pro-

grams to accommodate the new design usually makes this an impractical solution.

Recently , there has been some interest in thc less drastic alternative of coin—

pressing the data. The compressed data occupies less space but is still a

complete representation of the original data. The original file or parts of

it can be completely reconstructed when needed . The need for “information re-

taining” compression clearly separates the problem from telemetry data com-

pression, where the reconstructed data is only an approximate representation

of the original data.

The interest in computer data compression has been stimulated by several

factors, including:

o The increasing installation of large on—line data bases which

has involved more people in the problem.

o The realization that in such systems the processor is often only

lightly loaded and a major factor in determining performance is

I/O time.

o The publication of several descriptions of successful compression

schemes which both saved on equipment costs and yielded improved

1 
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performance due to the reduced I/O time required to transfer the

compressed data.

Within the WWMCCS environment there appears to be considerable application for

data eompression . As well as compressing data files there is the possibility

of reducing time spent in transmitting information across a network by sending

a compressed version of the Information.

This report is the result of an extensive literature search and contains de-

tailed descriptions of all the compression techniques found. Only the algo-

rithms are discussed here. Other reports describe the compression software

and test results.

Organization of this Document

The compression techniques are described in the section titled Compression

Techniques. The same format is used for each discussion to facilitate corn—

parisons between the methods. For each algorithm , there are two sections:

General and Detailed Description.

The General section is subdivided into:

1. Technique: The technique is classified and the method is briefly

described.

2. Data Types: The type of data that the routine is designed to corn—

press (alphanumeric, binary, text, etc.).

3. File Types: The kinds of files for which the technique appears

suitable (active, index , back—up , etc.)

4. Relative Effectiveness: This section summarizes available performance

data and gives rough estimates of the resources used.

It compares each technique with other competing tech—

niques and gives recommended applications.

2
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The Detailed Description contains:

1. Algorithm: A detailed description of the algorithm.

2. Tuning : A description of how the algorithm can be tuned to

optimize its performance on a specific file , where

this is possible.

3. Performance Details: For a few routines, a detailed description

c-f their performance is given. This section is used

to give details of the performance figures summarized

in the Relative Effectiveness section for those routines

where these details would unnecessarily clutter up the

Relative Effectiveness discussion.

The references for each routine are listed with the description of the routine.

All these references (plus some others) are accumulated in the Bibliography .

The routines described under Compression Techniques have been grouped ac-

cording to type, as is apparent from the table of contents.

The section titled Variable Length Codes describes in detail several variable

length binary codes. The best known of these are Huffman codes, and the most

efficient ways to generate and use these codes are described . Possible modi—

fications to Huffman codes are described . These trade a slight loss in coin—

pression for some reduction in overhead. Gilbert—Moore alphabetic codes are

also described.

3
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COMPRESSION TECHNIQUES

Log ic a I Cornp res~ ion

General

Most data , if put in a data base , in original form , tends to make very in-

ef f i c ien t  use of storage space. By reducing the physical size of the da ta ,

substantial savings in storage cost can be obtained. Also , reduced size re-

duces the amount of I/O time required to physically transfer data between

- : secondary and primary memory. Since I/O time tends to be the pacing factor

when processing large data bases, the lapse time for programs using the data

base can often be reduced by compressing the data.

One of the first steps in designing a data base should be to provide for as

much data reduction as possible in the basic design of the data. The various

methods for achieving this “precornpression” are called logical compression.

Logical compression is composed of the myriad methods available for data re-

duction in the design phase. There are too many specific methods to describe

in a paper of this scope, and the methods are very data dependent. Therefore,

several representative techniques will be described here to identify the main

concepts and thus provide the basis for Implementing logical compression in

a particular application.

Logical Compression Techniques

A simple example of logical compression is the use of the single character

“M” or “F” in a field to indicate sex. This technique both reduces the size

of the field and makes the field a fixed length. However, since the field

can only be one of two choices, the size can be reduced further by allocating

only a single bit to indicate sex. Thus, an on bit can indicate male and an

off bit female. In order to encode and decode the sex field , a table must be

created which describes the coding scheme. The table contains such information

4 
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as field name, beginning position in record , length of field , and the code

(F=O , M=l).

Another field which occurs frequently in data bases is a date field. Many

data bases contain more than one date per record. It is usually not prac-

ticable to insert a date into a data base in its longhand form (e.g., March 7,

1976) so usually provision is made to insert the numeric equivalents of each

of, the three subfields, month, day, and year (030776). This data field can

be further compressed into 14 bits using a binary numbering scheme.

The minimum size of each of the subfields is [log
2
N] (where [x] is the least

integer greater than or equal to x) where N is the number of values permitted

in the field. For example, four bits are needed for the month and five bits

each for the day and year (using 20—year span) subfields. The bit codes used

could be as follows:

Month Code Day Code Year Code

01 0000 01 00000 70 00000

02 0001 02 00001 71 00001

12 1011 31 11110 89 10100

The codes are concatenated in left to right order giving the appropriate date.

Total field length is 14 bits. In order to extract the year, month, or day

value In the date field, the appropriate subfield is isolated using AND oper—

ators and a mask for the subfield.

A faster access coding scheme can be generated for a 13—bit date field. In

this case, a large compression coding table is generated. It specifically

enumerates each one of the 7,305 dates that actually occur in the 20—year

period. Compression and decompression are very rapid. However, this new

5

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . - ~~-- -~~~~~-.--— —— 



scheme requires a large compression table and is not amenable to readily

extracting a specific month or day subfield. Thus, it would be more dif—

ficult to extract , for instance, all relative dates occurring in December

of the last 5 years. With appropriate modifications, the techniques above

can be used for fields other than date fields.

In cases where very large data bases are used there may be a significant

amount of redundant information. For example, a file used by the Navy may

have multiple fields within each record containing the name of a ship or

port. The most feasible method of removing this redundancy is the use of a

code for each ship or port. The code rather than the entire name of the

ship is placed in the records. A table in core contains each code and the

ship or port which the code represents. This technique eliminates using

redundant data values in the records and the wasted space which occurs when

a short data value must have spaces added to it to fill out the fixed field

size.

When some data values occur much more frequently than other data values, it

may be feasible to use a variable length compression code for that field.

For example, consider an inventory file with a field for manufacturer. Four

thousand manufacturers are specified in the inventory. If a fixed length

coding Is chosen, 12 bits are required to specify this field. If , however,

48 manufacturers are responsible for 80% of the items in the inventory, then

2 different field sizes are appropriate. A short 6—bit field is used to

represent the 48 frequent manufacturers and a long 12—bit field is used to

represent the 3,952 remainIng manufacturers. To these fields must be added

a single bit to indicate whether the field is short or long. Thus, the final

- 
field sizes are 7 and 13 bIts respectively. However, the average field size

is 7 x .8 + 13 x .2 = 8.2. This is significantly less than the 12—bit fixed

length field.

Variable length fields can be used in many other applications as well ,

yielding further reductions in space used . Name, address, and comments

fields are all amenable to variable length field type compression. 
Field6



extraction algorithms are more complicated when variable length fields are

used. However, in some applications , the size reductions permitted by var-

iable length codings may offset the field extraction cost.

Difference encoding is a method to record sequences of related numbers or

dates. In this method an initial value for the date or number is set up

and the data fields reflect only the difference in values. For example, if

there is a field containing a date or a transaction and the earliest trans-

action recorded is 030755, then this date is the initial value. The encoding

for the date 030855 (the day after the initial value) would simply be a 1 and

030756 would be encoded as 366 (1956 was a leap year). Recording sequential

numbers can be accomplished by this technique or by averaging. In averaging,

the possible numbers are averaged and this average value is the initial num-

ber for differencing.

In conclusion, there are many techniques available for logical compression

which should be considered during data base design. By applying these methods

a significant reduction in space, I/O time, and retrieval time can be realized,

resulting in greatcr overall data base efficiency.
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Alsberg, P. A.

SPACE AND TIME SAVINGS THROUGH LARGE DATA BASE COMPRESSION AND

DYNANIC RESTRUCTURING; Proc. of the IEEE, August 1975

Martin, J.

DATABASE ORGANIZATION; Prentice—Hall, 1975, Ch. 31

Mulf ord , J.E. and Ridall, R.K.

DATA COMPRESSION TECHNIQUES FOR ECONOMIC PROCESSING OF LARGE COMMERCIAL

FILES; Proc. of the Symposium on Information Storage and Retrieval, ACM,

pp. 207—215, 1971.

7

- - -.--‘--~
-.

~.- ——~
--— —.-



- - - . ----~ -
- ,

Fixed Length Coding For Character Strings

Character Repeat Suppression

General:

1. Technique: Character repeat suppression is a simple method of corn—

paction which yields appreciable savings in certain cases. This

technique consists of replacing a string of repeating characters

with a code which describes the character string composition. The

code usually consists of three characters. The first is a special

character which is unused in most data samples (such as an under—

line or backward slash). This character indicates that this is the

beginning of a character suppression code. The next character of

the code is a copy of the repeating character in the data which is

being suppressed. The last character of the code is the number of

times the character is repeated. A binary count occupying one char—

acter position is used.

2. Data Types: Mostly used with character encoded data, but can be

used with Huffinan codes (see section titled Variable Length Codes)

and elsewhere where advantageous.

3. File Types: Any file may use repeat suppression. It is especially

useful in formatted files such as report files and program source

files which are known to have many long strings of blanks.

4. Relative Effectiveness: The effectiveness of the technique is highly

dependent on the type of file being compressed. In general, files

which compress well with this technique also compress well with inter—

record comparison techniques (see Interrecord Word Comparison (Bit

Mapping)). These latter methods give slightly more compression and

require less CPU time than character repeat suppression. However,

8
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character repeat suppression is such a simple and basic technique

that it should be considered for any file which is being compressed.

One possibility is to suppress repeated characters and then apply other

compression techniques to the resulting partially compressed output

file. Core requirements are small (about 100 words) and execution is

very fast, since there is little processing involved.

Detailed Description :

1. A1&orithm: The input record is scanned character by character. Each

character is compared with the previous character and, if the same,

the repeat count is incremented. If they are different and the pre—

vious character is not part of a repeat string, the previous character is

written out. If the previous character is the last character of a re-

peat string, the repeat string is encoded and written out. If there

are two or three characters in the repeat string, the two or three re-

peated characters are written out. If the repeat string consists of

four or more characters, a special character (rarely or never appear-

ing in the input data) is written, followed by the repeated character

and a binary count of the length of the repeated string. This count

occupies one character position. If the repeated string is longer

than the number of repeats that can be defined in one count, further

repeat suppression strings must be written out. One detail remains

and that is what to do when the repeat special character (e.g. back-

ward slash) is encountered in the data. This problem is overcome by

encoding it as a repeat of one, e.g., a backward slash is encoded as

\\i. This uses three characters to encode one, but the problem

should occur so rarely that the loss in compression is negligible.

An alternative is to double each occurrence of the special character,

e.g., a\b is encoded as a\\b.

A variation of the algorithm may be useful on certain files where most

repeated strings consist of only a few characters such as blanks

and zeros. A different repeat suppression indicator is used for each

of the repeated characters, and the repeat suppression string con—

9
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sists of just two characters — the suppression indicator and a

count. For example, if / indicates blank suppression, \indicates

zero suppression and @ indicates suppression of anything else, the

string A$$$$$$$XYYYYYYMN/P00000000 (27 characters) can be written

as A/7X@Y6MN@/1P\8 (15 characters). Note that the character I in

the original string is represented by @11 in the compressed string.

It could not have been replaced by 1/, since the second character

would be interpreted as a count. Occurrences of @ in the original

data could be replaced by either @@ or by @@1. The choice can be

based on which substitution gives the simplest program.

2. Tuning: Tuning is not possible, apart from selecting appropriate

special characters to indicate repeat suppression.

Subs,itution For Character Pairs

General:

1. Technique: This method (Snyderman and Hunt, 1970) makes use of the

fact that, for some code sets, the number of bit codes available is

a great deal larger than the number of characters in the standard

character set. These unused codes are substituted for the more fre-

quently occurring pairs of characters in a string of data. The set

of actual characters used is defined to have three subsets. Master

characters (MC) are used as the first character of a combined char-

acter pair, while combining characters (CC) make up the second character

of the pair. The noncombining characters (NC) are always stored in

their original form. Whenever a valid MC—CC character pair appears

in the data string it is replaced by the unused character which is

assigned to that MC—CC character pair. The pair substitution algo-

rithm (see Detailed Description below) can easily be combined with

substitution for frequently occurring 3—character and 4—character

strings.

10 
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2. Data Types: This method is desigred for text compression. It is

based on the fact that text uses standard composition rules and

spelling. Therefore, the choice of character pairs which occur

frequently can be applied to almost any text file to give substan—

tial compression, regardless of the actual subject matter of the text.

This method can, however, be tuned to any type of data by changing the

character pairs that are replaced.

3. File Types: This method appears to be well suited for use on active

files. The compression and decompression routines are relatively

fast and require little core (a few hundred words for the routines

:~ and tables) which makes it applicable to active files where overhead

must be kept toa minimum. Backup text files are also suitable for

this type of compression.

4. Relative Effectiveness: This method does not give quite as much

compression as Huffman coding, but it executes faster. In partic—

ular , decompression is much faster than with Huffman coding. This

makes it more suitable than Huffman coding for files which are read

much more often than they are written.

A problem involved in this method is the generation of effective

codes. Unlike Huffinan coding, where the code generation procedure

is well defined, the code generation process for this algorithm is

mostly a process of educated guesswork, based on whatever statistics the

user chooses to collect. In spite of this drawback, good codes are not

difficult to find provided the user spends a little time experimenting.

The compression factor achieved is normally in the range 1.5 to 1.8 for

text data. It can never be better than 2 since only pairs of charac-

ters are being substituted for. It is easy to combine this algorithm

with a fixed substitution for a small number of common character

strings longer than two characters.

11
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Detailed Description:

1. Algorithm: Many machines use an 8—bit code to represent data.

Others (particularly machines with a 36—bit word) use a 9—bit code

for ASCII data. Since there are only 128 ASCII characters, it is

obvious that in such machines many codewords are unused. For files

which used a subset of the ASCII character set (nearly 1/4 of the

ASCII characters are used almost exclusively for communications pur—

poses), the number of unused codewords is even greater. In this corn—

pression technique, these unused codewords are used to represent char— -:

acter pairs. The calculation of a substitution code for a character

pair is very fast and does not involve searching a table of all pairs

for which substitutions are possible.

We define several character sets:

L set of characters occurring in the file

MC — set of “master characters”

CC set of “combining characters”

CP set of all ordered pairs (MC , CC)

MC and CC are subsets of L. They can have common members. The logic

of the compression routine is slightly simpler if MC is a subset of

CC, but this is not necessary. Assume there are M characters in the

MC set and N characters in the CC set. We will denote the members of

the MC set by MC1, MC
2
,..., MC

M
. Assume there are C characters in

set L.

• The algorithm assigns codes thus:

0000

C codewords: one per character

C—l

12 
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C

N codewords for the character pairs (NC1, CC)
C+N-l

C+N

N codewords for the character pairs (NC2, CC)

C+2N—1

C+2N 
—

C+(M-l)N

C+ (M-l)N

N codewords for the character pairs (MCM, CC)

c+MN-1

Obviously, MN+C must not exceed the total number of codes available.

The algorithm is very simple. the input record is examined character

by character. If a character is not a master character, it is trans-

lated into a single character code. (If L is the whole source alpha-

bet, then no transliteration is necessary.) If it is a master char-

acter, the next character is examined to see if it is a combining charac— 1
ter. If not, the first character is written out in its single char—

acter code and the second character is checked against the set of

master characters. If the second character is a combining character ,

the NC—CC pair is encoded into a single character. The substitution

code for the pair (NC1, CC~) is:

C + (I-i) N + J—l l~ t~~M

l�J~ .N

13
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The only code tables necessary are lists of the master characters

and combining characters. If transliteration of the single char-

acters is performed, it is usually a fixed subtraction from their

original code, so a code table is not required. The implementation

of Snyderman and Hunt is for an IBM 360, and their set L contains

88 characters: 52 upper and lover case aiphabetics, 10 numerics

and 26 special and punctuation symbols. The remaining 168 codes are

used to code 8 MC x 21 CC combinations. The character sets are:

MC = space, A,E,I,O,N,T,U

CC space, A thru I, L thru P, R thru W

It is usually desirable to have a “copy code.” This is a special

codeword (often the largest possible codeword) which indicates that

the character following was copied as is from the source file. This

preserves rare characters in the source file which are not in the

set L being used.

It is simple to combine this algorithm with a table search for common

3— and 4—character strings. The substitution codes for these strings

should be at the top end of the code set, and to avoid unnecessary

table searching they should all begin with a (MC, CC) character pair.

The code assignment for this more complex version are:

0

Single character codes

C—l

14 
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C

N codes for (NC1, CC) pairs
C+N—1

C+N MN codes for code pairs

C#~~ —l

C+MN

codes for P trigrams (3—character strings) of the type
(MC, CC, — )

C+MN+P-l

C+MN+P

b
odes for Q 4—character strings of the type (MC, CC , — , — )

C+MN+P+Q-]i

C+MN+P+Q copy code

The CHSS routines writ ten by PRC use tables of this form.

2. Tunin~g: Extensive tuning of this algorithm is possible , but it must

be done by trial and error. The size of the various sets of charac-

ters and their membership can be varied. Usually, the number of

master characters should be smaller than the number of combining char-

acters, and the numbers of three and four character strings should be

small. These measures keep unnecessary table searching to a minimum.

References:

Knight, J. N., Jr.

EVALUATION OF A TEXT COMPRESSION ALGORITHM AGAINST COMPUTER-AIDED

INSTRUCTION MATERIAL ; NTIS: AD 759 162 , July 1972
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Snyderman, M. and Hunt B.

THE MYRIAD VIRTUES OF TEXT COMPACTION; Datani~stio*, Dec. 1, 1970,

pp. 36—40

Coimnon Phrase Suppression

General:

1. Technique: In this method a string of data is searched for repeating

phrases (character strings) of any length. These phrases are then

removed from the data and a reference numbet for the phrase is in-

serted in its place. This method is similar’- to the COPAI ( compressor

(see COPAK Compressor below). The major differences are that COPAK

deals with bit strings and its output is a self—defining binary

string, whereas conunon phrase suppression compresses character strings

using a separate dictionary of phrases.

A table in core contains the reference numbers and their associated

phrases. For example, the input string ‘ABCXABCYABCZXA BCY ’ contains

the following phrases occurring at least twice.

Reference 1/ Phrase Frequency Characters Saved

1 XABCY 2 8

2 XABC 2 6

3 ABCY 2 6

4 ABC 4 8

5 XAB 2 4

6 BCY 2 4

7 AB 4 4

8 BC 4 4

9 XA 2 2

10 CY 2 
- 

2
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There are two separate problems in using this method. The first

is to find a good set of phrases to use in the substitution process,

and the second is to use the phrases in a way that will give maximum

compression. Using the above set of phrases, replacing ‘XABCY ’ first

and ‘ABC’ second yields:

ABCXABCYABCZXABCY length = 17

ABC (1) ABCZ (1) length = 9

(4) (1) (4)Z(1) length = 5

while replacing ‘ABC ’ first yields:

ABCXABCYABCZXABCY length = 17

(4)X (4)Y (4)ZX (4)Y length = 9

It is assumed that the substitution algorithm is not iterative., i.e.,

that it does not recognize that X(4)Y is the same as XABCY and can be

replaced by (1). While the algorithm could be made iterative, the

processing overhead would increase drastically since each record

must be scanned until a complete scan occurs with no substitutions.

An algorithm to determine how each data string should use the available

phrases to minimize its storage requirement will be given in the de-

tailed description. (See Detailed Description below). Note that

substituting for the longest phrase first does not necessarily give

the most compression. An algorithm to choose the phrases is also

given.

2. Data Types: This method can be used on all types of data.

3. File Types: Active files could be compressed with this technique as

well as backup or stable files. 
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4. Relative Effectiveness: The following publ ished figures demon-

st rate tha t his technique is very effect ive. However , the over-

head is very high. The greatest amount of overhead is in the corn-

pression time. This is a result of the algorithm which is needed

for finding the optimal phrases to be suppressed. Once the set of

phrases has been obtained , the analysis routine need not be run

again unless the file is extensively modified.

An 11,221 byte file consisting of PL/C compiler diagnostic messages
p 

was compressed to 8,194 bytes (a compression factor of 1.37). This

included the space required for the common phrase table. This ex-

periment used a fixed length 8—bit code for the phrase references.

(Wagner, 1973).

It is possible to use this method with variable length codes.

McCarthy (1974) c~mpressed material from 8—bit bytes using Huffman

codes for his phrase references and characters. His compression

factors (original size divided by compressed size) were:

English test 2.38 (3.36 bits/character)

Name and address list 3.25

COBOL Source 5.91

360 Object Module 1.68

Detailed Description:

Algorithm: Two algorithms will be described in this section. 
- 
First , McCarthy ’s

method of selecting the set of phrases to be used in t~e encoding process will

be described. This will be followed by Wagner’s algorithm to maximize the corn—

pression by making the correct series of substitutions.

Phrase Selection Algorithm: McCarthy used the following algorithm to select

his set of phrases.

18

_ _ _ _ _ _ _  
_ _ _ _ _  — ---—. - _ _



1. Set m to be an upper limit on the length of the phrase to be con-

sidered. Set n to the number of characters to be used in the

sample which will be analyzed. The sample Is denoted by c
1c2

.. . . c .

2. Scan the sample setting up a file , Fl , of n—m+l phrases , each of

length rn characters where phrase1 is the substring c1c1÷1....c 1~~~ 1.

Discard overlapping duplicates in this file, i.e., if phrase1 
=

Phrase~ and I i—j km, discard one of them. e.g., if m 6  then in the

string ABCDABCDABGHIJ.... phrase1 and phrase5 
(both ABCDAB) are over-

lapping duplicates.

3. Sort the phrases in Fl into alphabetical order. This simplifies sub-

sequent scanning of the file.

4. Scan the sorted file of phrases, and, for each phrase of length at

least 2 and its subphrases which start at its left, count how many

times the phrase or subphrase occurs. If the frequency is sufficiently

large (see below), enter the appropriate phrase, together with its

length and frequency, as a record in a new file, F2. The subphrases

consist of the first’ 2,3,... ,m—1 characters of the phrase. There

are up to (n—m+i) x (m—l) phrases to be considered . In deciding

whether or not to enter a phrase into F2 , McCarthy chose to do so if

use of the phrase gave a compression of O.2Z or more. The saving in

space by using a phrase is approximated by:

F(Ls
_l) — N

s
/l500 bytes

where: F is the number of times the phrase occurs

Ls is the length of the phrase

N5 is the length of the string to be compressed

N5/1500 allows f or the increase in the lengths of the code—

words due to the necessity of encoding another phrase.

19
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For 0.2% savings or more:

N N
5 1 1’soo F ~L / — 

1500

or approximately, F(L — l) > N /400

This is the selection criterion used.

5. Scan the file F2 to find the phrase which will yield “maximum” com-

pression, i.e. the phrase for which F(L —l) is maximum, and place

it, again with its length and frequency, in file F3 (the final list

of phrases to be used in encoding).

6. Amend the remaining records in F2 as follows:

a. If any phrase in F2 is contained by the selected phrase as a

substring, then that phrase has its frequency reduced by the

frequency of the selected phrase.

b. If any phrase in F2 contains the selected phrase as a substring

its frequency n’ is replaced by ri ’(l—L/L ’) where L and L’ are

respectively the lengths of the selected phrase and the phrase

which contains it.

c. If there is a partial overlap between the selected phrase and a

string in F2, then either rescan the sample to determine the

new frequency or subtract the frequency of the selected phrase

from the overlapping phrase. The latter alternative can save a

lot of computer time (especially for a large sample) with only

a small loss in compression. 

20
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7. Repeat steps S and 6 until  no phrases remain which would give
enough further compression or until the specified number of phrases
has been selected .

Phrase Substitution Algorithm: Wagner assumed that a list of phrases to be

replaced has already been compiled. The file is compressed in sections because ,

as will be apparent from the algorithm , the overhead viii increase beyond reason

if the strings to be compressed are too long.

The algorithm works by starting at the end of the string to be compressed and

- working back towards the beginning, finding the best substitutions possible at

each intermediate step. The compressed string is a string of phrase references

and character strings and is terminated by an end mark. The space taken by

these three items is:

o Phrase reference — 2 bytes (a phrase number and the length of

the phrase)

o End mark - 1 byte -

o Character string — 2 bytes + length of string (the two extra

bytes are the character string indicator and

the length of the string)

The length of the character string is not necessary, but its use speeds proc-

essing because the string does not have to be searched character by character

for the next phrase refererce or end maker. There does not seem to be any

need to store the phrase lengths in the compressed string — this information

should be in the phrase dictionary.

Let P denote the set of phrases to be suppressed , and. p a phrase in P. /p/ is

the length of the phrase p. Let Q(j) be the subset of P for which the phrases

match the j, j+1,...., j+/p/—l characters of the string to be compressed. j
i.e., p€ Q(j )~~~ p is identical to the j, j+l , j+ /p/—l characters of the

string. Let the string have N characters. Define the functions:

21
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G(j) The least space needed to store character j , N of the

string provided that the final form of the compressed string

begins with a character string.

H(j) The least space needed to store characters j , N of the

message regardless of the form of the first component of the

compressed string.

The algorithm finds 1-1(1). Provided the steps to finding it are retained , the

- ‘ 
string can be compressed to this value. The function G(j) is needed to account

for the effect that the leading component of the message has when prefixed by

another character. If that leading component is a character string, the

added cost of absorbing a single character is one byte whereas if it is a

phrase reference it costs three bytes to absorb a preceding single character

by encoding it as a separate character string.

The algorithm is:

1. Set: j N

G(N+1) = 3 H(N+1) = 1

2. Find the set Q(i)

3. Calculate: G(i) = mm [G(i+1)+1, H(i+1)+31

H(i) mm [H(i+/p/)+2, G(i)]

where the minimum for H(i) is over all p ~~Q(i)

4. If I = 1, stop. Else decrement i by one and go to step 2.

Example of Phrase Substitution Algorithm

String to be compressed = PAUL$RUN

N = 8

P = PAUL, AUL, AUL$, L$, BR , $RU , RUN , UN }

22
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— 1 — 8  S t r i n g= N

C(9) = 3

H( 9) = 1
Q(8) null
G( 8) = mm 14,41 = 4
H (8)=4

1 = 7  String = UN

Q(7) ~[JN }

C( 7 ) = mm 15 ,7) = 5

H(7) = mm [H(9)+2,5] = 3

i = 6 String RUN

Q(6) = 
~RUN~

G(6) = mm (6 , 3+3] = 6
H(6) = mm [H(9)+2 , 6] 3

i = 5 String BRU N
Q(5) = 

~$R, $RU~
C(S) = mm [7 , 6) = 6
H(S) = mm [H(7)-.-2, H(8)+2, 61 = 5

I = 4 String L$RUN

Q(4) = ~LB~
G(4) = mm [7 ,7] = 7
H(4)  = m m  [H(6)+2 , 7] — 5

- - I 3 String — UL$RIJN

Q(3) = null
G(3) = mm 18, 8) = 8

H ( 3 ) = 8

23
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p

I - 2 StrIng = AUL$RUN

• Q(2) = AUL , AUL$}
G (3) = miii [9, II] = 9

H(3)  = mm [H(5)+2 , I t (6)+2 , 9) = S

i = 1 String = PAUL$RUN

Q(l) = {PAUL~
G(l) = mm [10, 8] 8

H(1) = mm [H(5)+2, 8] = 7

The compressed st ring is:

PAUL + BR + UN + end marker

2 bytes 2 bytes 2 bytes 1 byte

References:

Wagner , R. A.

COMMON PHRASES AND MINIMUM—SPACE TEXT STORAGE ; Comm . of the ACM ,

V. 16, pp. 148—152 , 1973

Weaver , A. C.

DATA COMPRESSION FOR CHARACTER STRINGS; Univ. of Illinois, July 1974,

NTIS: PB 234 775

McCarthy, J. P.
AUTOMATIC FILE COMPRE SSION

In: International Computing Symposium, 1973 (eds A. Gunther , B. Levrat ,

and H. Lipps) American Elsevier N.Y., 1974, pp. 511—516
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Adaptive Character String Substitution (Pattern Substitution)

General:

1. Technique: The main feature of this technique is tha t It adapts

itself to the data is compressing. Since this is obviously a

much more complex process than a fixed substitution, the overhead

in both processing time and memory required is an order of magnitude

greater than fixed substitution techniques. The compression achieved

is very high and no preliminary activities, such as generation of a

code table, are necessary.

The compressor starts with its code tables empty, except for one

entry for each character in the source character set. The compres-

sor scans the input data and keeps count of the occurrence of each

character pair. When the count for a character pair reaches a

threshold value (which may be settable by the user) the compressor

defines a substitution code for that character pair. The definition

is passed to the decoder as a special instruction in the compressed

data. The process is iterative in the sense that counts are kept for

the use of defin~’d substitution codes in combination with other sub-

stitution codes or characters. Thus, although each substitution

code is defined in terms of two other characters or substitution

codes, it may represent a long string of characters in the original

data. For example , a long string of X ’ s in the input data will re-

sult in the definition of a code for XX (say @), then the definition

of a code for @@ (say $) which represents XXXX in the input, data,

then the of a code for $$, representing XXXXXXXX in the input data,

and so on. Obviously, the compressor requires some large tables and

spends a considerable amount of time searching and managing them.

The decompressor is much simpler. It only has to recognize a new

substitution code definition and update its table accordingly. De-

compression consists of substituting the correct character string for

each code in the compressed data.

25 
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• From the above description , it is clear that the compression

achieved depends on how regular the data is and how much data

has been processed. Initially, very little compression is achieved

because only a few substitution codes have been defined . After -i

few thousand words, many substitutions will have been defined (un-

less the data is random) and compression will approach the maximum

possible with this method.

2. Data Types: This method is extremely effective on any data which

is not purely random. 
-

3. File Types: Due to the “warm up” required , the method is suitable

only for files of several thousand words or longer. The very high

overhead of both compression and decompression probably makes it

unsuitable for active files unless a high compression factor must

be achieved.

4. Relative Effectiveness: This is an extremely effective compression

technique. On most large files it gives 1 1/2 to 2 times as much

compression as an optimal Huffman code. The price for this performance

is that compression and decompression respectively take about 10 and

5 times as much CPU time as Huffman coding, and the routines occupy

several thousand words of memory , compared with several hundred words

for Huffman coding.

Detailed Description :

The only implementation of this algorithm known to the authors is

a package written by the Lambda Corporation for the Government. Only

a user ’s manual was available to PRC, so no detailed description

can be given.

Only one detail can be added to the general description given earlier.

The package assumes that the input data is BCD, and reads it as

26
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6—bit characters. The output , however , is in 9—bit codes so that

512 substitution codes are available . In spite of the fact that

the input is read in 6—bit characters , the package does effectively

comp ress ASCII files. However , unless the file is very long, the

advantage over Huffman coding is not as great as with BCD files.

The performance with ASCII files demonstrates the power of the

algorithm.

References :

Lambda Corporation

DATA COMPRESSION SYSTEM FOR WORLD-WIDE MILITARY COMMAND AND CONTROL

SYSTEM , USERS MANUAL (DRAFT )

March 15, 1973 , Arlington, Virginia
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Variab 1e—Len~th Coding For CLir~~- t e r s  And Character Strings

Huffman Codes

General:

1. Technique: Huffman codes are variabli- length codes which take

advantage of the statistical prob~bi1ities of occurrence of message-

units (characters) so that short representations are used for char-

acters which occur frequently, and longer representations for charac—

H ters which occur infrequently. When variable length codes are used

there must be a way to tell where one character ends and the next

one begins. This can be done if the code has the prefix property ,

that is, that no short code group is dup licated as the beginning

of a longer group . Huffman codes have this prefix quality and in

addition are optimum in the sense that data encoded in these codes

could not be expressed in fewer bits by any code based on the same

source alphabet.

2. Data Types: Business type data files have been the most frequent

type of data compressed with Huffman codes. However, text and al-

most any other highly redundant data can be compressed effectivtiv

as well.

3. File Types: Huffman codes lose effectiveness if the statistical

properties of the file change over a period of time. Thus, a new

code may be needed for a file if the character frequencies have

changed considerably. This is unlikely to be necessary unless the

type of data in the file has changed or the file size has more than

doubled . Apart from this, there are no limitations on file types.

4. Relative Effectiveness. Huffman coding is very effective , particu—

larly when combined with repeat suppression. It is effective on

28
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unformatted files such as text files. On formatted files, it is

only slightly more effective than interrecord comparison techniques

and the extra CPU time required by Huffman coding may not be just-

ified by the small amount of extra compression obtained. The only

type of data on which it is not effective is data like compressed

decks, where the use of the source characters is quite uniform.

Detailed Description:

1. Algorithm: For a detailed description of how Huffman codes are en—

coded and decoded refer to the section of this document titled Var-

iable Length Codes. The most important factor toward developing suitable

Huffman codes will be described here.

This factor is the careful selection of the base character set used

to derive the codes. If a file consisting of only text data is to be

compressed, the selection is straightforward. In this case the

English alphabetic characters, spaces, and punctuation marks are used

as the character set from which the code is derived. If, however,

the file is not pure text , but say, an inventory fi le , a more detailed

analysis of actual data is desirable. An inventory file would prob-

ably have a greater proportion of numbers, repeated blanks, and proper

names that a text file. Thus statistics derived from text would not

be accurate and a code derived from text statistics would not be

optimal.

In the Ruth and Kreutzer study, many character sets were tried

before an acceptable compression ratio was achieved. Ruth and

Kreutzer considered strings of 2 , 3, 4 and 5 BCD zeros, binary

zeros and blanks to be single characters for the purpose of encoding.

The additional patterns of zeros and blanks took advantage of the

fact that when default values occurred in the file , they tended to

occur in contiguous field sized units. Only by including these

patterns in the source character set did Huffman coding provide a 2

to 1 compression ratio.

29
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An alternative to having separate codewords for repeated strings

of various lengths is to build repeat suppression into the encoding

algorithm. A special codeword indicates a repeat string , and this

is followed by the codeword for the repeated character and a I i ;-:~-d

field count of the number of repeats. For files where there are a lot

of zero runs and blank runs, special codewords can be used indicating

these two types of repeats. They need only be followed by a repeat

count.

If a Huffman code is based on a subset of the possible character set ,

a copy code should be provided . This is a special codeword which is

used to indicate that the character following it is reproduced

exactly as it occurred in the source file. This allows characters

which rarely occur in the data to be excluded from consideration

when the Huffman code is derived .

2. Tuning: Ideally, Huffman coding uses an optimum code derived for

each file to be compressed . In this case, tuning is not really

carried out. Once the type of encoding algorithm (with or without

repeat suppression and a copy code) and the base character set are

chosen, the remaining processes are fixed procedures. Tuning in-

volves only the trial of various encoding algorithms and base char-

acter sets to determine which ones are most effective.

In fact, it is possible to use one code table on similar files with

very little loss in compression. For example, card image source

language programs can be compressed with one table , irrespective of

the language. Tuning in this case involves deriving several similar

codes and finding which one gives the best overall performance.

If repeat codewords are used , the statistics gathering and code

generation procedures should reflect this fact. The character

counts used in code generation are those that will occur in the com-

pressed file, not those that occur in the original file. Repeat

30
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codewords and the copy codeword , if used , should be Huffman code-

words , not special fixed length codewords which are guaranteed
to not occur in the Huffman encoded file.

Example: The following Huffman code was derived using the procedures

described in Chapter 3. The data file was a small single case ASCII

text file. The character counts and the Huffman codeword for each

character are shown. A.l1 numbers in the table are octal. Characters

not found in the source file are assigned the copy code (17777), which

is listed as character 201. Character 200 is the repeat codeword

(only one is used). Most codewords start with a binary 1, so the

length of most codewords is the minimum number of bits needed to

express the octal number; e.g., 35 is a 5—bit codeword (11101). Where

the codeword starts with a zero, the length is given in parentheses.

Character (Octal) Count (Octal) Codeword (Octal)

00 2 3776

01—05 0 17777

06 1 17776
07—37 0 17777

40 1734 0 (3 bits)

41 0 17777
42 14 766
43—45 0 17777

46 2 3775
47 5 1773
50 

• 

11 773
51 11 772
52—53 - 0 17777
54 31 367
55 27 370
56 66 

- 167
57 12 770

31
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Character (Octal) Count (Octal) Codeword (Octal)

60 40 364
61 43 171.
62 25 371
63 33 366
64 13 767
65 6 1771
66 0 17777
67 20 765
70 4 • 1774
71 6 1770
72 2 3774
73 3 3772
74—76 0 17777
77 1 7776

- 

- 
100 0 17777
101 504 07 (4 bits)
102 76 166
103 176 64
104 267 25
105 1106 1 (3 bits)
106 132 70
101 104 164
110 263 26
111 521 05 (4 bits)
112 20 764
113 11 771
114 230 31

• 115 152 66
116 436 24

- 117 437 11
120 142 67
121 34 365
122 454 10

32
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Character (Octal) Count (Oct~~) Codeword (Octal)

123 511 06 (4 bits)
124 636 04 (4 bits)
125 242 30
126 55 170

- 

127 126 71
-

• 
130 5 1772
131 76 165

132 2 3773
133—176 0 17777

177 246 27

200 (repeat codeword) 156 65

201 (copy codewordO 0 17777
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Word Dictionary Techniques

Split Dictionary Encoding

General:

1. TechniQue: This section covers word dictionary encoding methods

with the characteristic that the dictionary is divided into several

distinct sections. This allows the synthesis of long words :nstead

of having a separate entry for each word to be encoded , as occurs in

an integrated dictionary. These techniques may be regarded as a

sophisticated extension of the nonadaptive character string sub-

stitution methods already discussed.

In a single dictionary encoding, the list of “words” (character

strings) is stored in a table and each has associated with it a

unique code. The input string is scanned and , whenever one of the

words in the dictionary is found, it is replaced by its associated

code. In a split dictionary, there are several dictionary tables.

In a stem and suffix system, there are separate dictionaries for word

stems and suffixes. The input string is scanned and whenever the

stem of a compound word is found in the stem dictionary , the suffix

dictionary is searched to see if it contains the suffix of the com-

pound word. It it does, the word is replaced by codes for the stem

and suffix. In a simple encoding program, only complete substitutions

are made for compound words; i.e., both stem and suffix must be in

the dictionaries for any substitution to be made. If only one or the

other is in the dictionaries, no substitution is made. The suffix

dictionary contains many entries such as —e , —ly, --lly, —able , —ible ,

ed, —y, —d , —ing, le, so that virtually all compound words with stems

in the stem dictionary will have suffixes in the suf f ix  d ic t ionary.

Schwartz (1963) shows that using a split dictionary with separate

sections for stems and suffixes allows more words to be encoded for
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a given dictionary size that could be encoded with an integrated

dictionary. An integrated dictionary allows more compact and faster

encoding than a split dictionary , so one can attempt to have the

best of both worlds by includ ing some compound words as separate

entries in the dictionary. For example, “under” and “understand”

could both be stems and “stand” could be the suff ix  dictionary.

Then “understand” could be encoded either as a single stem or as a

stem—plus—suffix.  The search routine has to be carefully designed to

ensure that “understand” will be encoded as a stem, since this gives

more compression. Having a spearate stem entry for “understand” allows

such words as “understandable” and “understanding” to be encoded as

stem—plus—suffix. This allows the synthesis program to be simplified

to create only stem—plus—suffix words without losing the ability to

synthesize words with multiple suffixes.

The binary code used to represent the words may be fixed length or

variable length. t~~i 
- 

(1967) used a fixed length code, but calcu—

lated that he could -
~~ obtained about 4% more compression if he had

used a Huffinan code.

These techniques do not have a dictionary entry for all possible

words, so they include a spelling mode in which words which cannot

be synthesized using the dictionary are spelled out character by

character . Special codes in the compressed data tell the decoder to

switch modes to follow the changes in mode of the compressor. The

spelling mode is terminated by a special character which is inter-

preted by the decouipressor as an instruction to switch to the sub-

stitution mode. Similarly, the substitution mode is terminated by

a special code which acts as an instruction to start the spelling

mode. The spelling mode is also used for punctuation and special

characters. Frequently used character strings can also be included

in the character part of the dictionary.
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2. Data Types: These techniques are primarily intended for text corn—

pression. They should be effective on program source provided the

dictionary is correctly chosen. They may be effective on data files

with a large number of frequently used fixed length data items.

The encoding program can be written to gather word use statistics.

These statistics can be used to modify the dictionary to improve

compression or to adapt it to a specific file if statistics are gen-

erated for a sample of the file. If a fixed length code is being

used for dictionary entries, limited dynamic tuning can be accom—

pJ.ished by starting compression with part of the dictionary empty

and filling in the empty spaces with words appearing in the early

part of the file which are not in the dictionary.

3. File Types: There is a considerable overhead in storing the dictionary,

so the techniques are most effective on rather large files. However ,

if a dictionary with 1,000 entries is used, the dictionary storage

overhead is much less than that required for a complete dictionary

(as in the section Intermediate Dictionary Compression) so these

methods could be used on files too small for Intermediate Dictionary

Compression.

A fixed code is used throughout the file, so the file can be searched

while still compressed by compressing the query. If the file is corn—

pressed a page at a time, and a page dictionary is stored at the

front of the file, updates are also possible without decompressing the

entire file. Thus, these methods are suitable for active files. They

are not suitable for index files because the mixed word and character

encoding makes it impossible to do magnitude comparisions or alphabetic

comparisons on an item without decompression. Only a match/no match

query can be answered in the compressed state.

4. Relative Effectiveness: White reported a compression factor of

approximately 2:1 on a series of news stories taken from the Associated
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Press wire service. The input character set consisted of 64

characters , so the compressed text used about 3 bits per character.

Schwartz and Kleiboemer (1967) report on a test of Schwartz’s dic—

tionary of over 5000 words, suffixes, symbols , and characters. On

19,170 words of general text taken from magazine articles they

achieved a compression to 3.19 bits per character.

Both core requirements and processing overhead are strongly dependent

on the total size of the encoding dictionary. Dictionary size can

range from 500 entries to 10,000 entries, and some special appli-

cations may use dictionaries outside these limits. White used dic-

tionaries of approximately 850 and 1,350 entries and Schwartz used a

dictionary with 5,208 entries. Using more than 1,000 words in the

dictionary does not appear to improve the compression greatly for

most text data.

Using a variable length encoding of the dictionary will in~rease

the overhead and Improve compression by about 5%. 
-

It appears that an encoding program using a 1,000 word dictionary

could be implemented in 5—10 K words of core. The decoding program

would require somewhat less core and would operate much faster than

the encoding program.

These techniques give performance slightly better than Huffman

coding, but at a considerably higher cost in both memory and CPU

resources used. They use fewer resources than adaptive character

string substitution, but they don’t achieve as much compression since

they cannot follow changes in the input data characteristics. These

routines provide a compromise in compression and resources used

betweed Huffman coding and adaptive character string substitution.

This -compromise appears unlikely to suit many users.
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Detailed Description:

1. Algorithm: The total size of the dictionary (stems, suffixes,

special characters, individual characters and frequently used char-

acter strings) is an important parameter in these systems. Schwartz

(1963) analyzed several studies and concluded that “a vocabulary of

between 500 and 1,000 unique words can constitute the basis of a

dictionary which will cover approximately 75% of any word sample.”

In one study, 590 words made up about 80% of the 4.26 million words

of text examined. It appears that fewer than 100 words will match

50% of most word samples (White, 1967 , figure 2). Thus, the extra

compression attainable by extending the dictionary becomes smaller

as the dictionary gets larger. Furthermore, a larger dictionary

requires a very efficient search routine to avoid unnecessary proc-

essor overhead. Schwartz, with a 5,000 item dictionary, used a

• table—lookup to find the range of addresses in which to do a binary

search. This initial address range was found by matching the first

three characters of the word to be encoded. Once a match is found ,

the resulting binary search of dictionary entries with this trigram is

always limited to less than 100 items. This required adding all com-

pound words to the dictionary which have one and two letter stems,

since these stems cannot be used in the synthesis procedure. (The

alternative is to spell out such words in character mode.) White,

with a much smaller dictionary of 1,340 entries, based his search on

matching the first letter of the word.

The dictionary can be built by collecting statistics for the file

to be encoded, or by using standard word counts and counts of suf—

fixes and conungn character strings. (Pratt, 1942; Thorndike and

Lorge, 1944).

In order to keep the programs fairly simple, only one suffix is
- 

- added to each stem. Multiple suffixes can be accommodated by adding
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a compound word to the dictionary as a separate item, as described
previously.

Dictionary searching is facilitated by left justifying the words

so that each dictionary word starts on a machine word boundary.

The words can then be compared in binary, since in both BCD and

ASCII codes the letters are numbered consecutively.

Most words of greater than 12 characters are complex and can be

synthesized. They are also not very common, so little compression

is lost by limiting dictionary entries to 12 character words and

spelling out the words that cannot be synthesized.

The exact encoding algorithm depends on: (1) how big the dictionary

is to be; (2) how complex the program can be; and (3) special char-

acteristics of the source file.

White’s source file was newspaper copy. It contained variable inter—

word spacing, many hyphenated words at the ends of lines, and both

upper and lowercase letters. Both his dictionary and his encoding

algorithm reflected the nature of his source material. A special

dictionary contained the spacing characters, shift symbols and nine

special symbols to indicate hyphenation after the first, second 

ninth character. Both White and Schwartz suppressed interword spaces,

since the decoder always knows when a complete word has been decoded.

- 

- White used a given space symbol until a different space symbol was

detected. This new space symbol was used until yet another space

symbol was detected. This mode of operation was suitable because

interword spaces within a line were all the same. (Recall that

White’s data was newspaper copy formatted for newspaper columns.)

White coped with upper and lowercase letters by: (1) having a

special section of his dictionary for words which always began

with capitals and words which frequently appeared with the first

4].
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letter capitalized ; (2) having upper and lower case symbols so a

capitalized word could be spelled out; and (3) having a symbol in

the special dictionary which indicated that the following word

should have its first letter capitalized . This meant that any

word in the dictionary could be capitalized at a cost of one code-

word .

White did not attempt to implement grammatical rules. Capitalized

words were first searched for in the capital word dictionary . If

not found there, the word dictionary was searched. This yielded

at least the first letter (coded as upper case, letter , lower case)

and the remainder of the word w~s searched for in the suffix dictionary .

This yielded the codes for character strings or single characters if

the word had to be spelled out. Uncapitalized words were encoded

similarly, but the search of the capital word dictionary was omitted.

White used a fixed length code for all dictionary entries.

Schwartz implemented several rules in his synthesis program. Schwartz

Huffman—encoded his words and characters separately , and used a

special mode symbol to switch from word encoding to character encoding

(for spelling out words not in the dictionary and which could not be

synthesized). Using separate codes and a mode symbol gave better

compression than using one code for both. ~Schwartz tagged all the

entries in his stem dictionary with one of the following tags:

SYNTAG 0: Word can not appear in complex form; irregular form

appears as word type; or word is regular and suffix is

added without change in word ; e.g., build , field .

SYNTAG 1: Final E of word is deleted upon adding a suffix begin—

ning with a vowel; e.g. file, live.

SYNTAG 2: Final consonant of a word is doubled upon adding a suf—

fix beginning with a vowel; e.g., run, pop.
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SYNTAG 3: Final Y of word is changed to I upon adding a suffix

beginning with ]etter other than I; e.g., fly , modify.

By associating a SYNTAG with each dictionary word and by identifying

the initial letter of each suffix, simple routines for the synthesis

and decomposition of complex words were devised.

The synthesis tags (SYNTAG) were dividied as follows in the dictionary:

SYNTAG 0 
- 

3,819

SYNTAG 1 819

SYNTAG 2 212

SYNTAG 3 303 1,334

5,153

The dictionary search routine had to search on both sides of the

word to be synthesized, since “love” appeared after “lovable” but

before “loving”, and “reply” appeared before “replying” but after

“replies”. Since 74% of the words in the dictionary were SYNTAG 0,

it is debatable whether the effort of programming the routines and

keeping the SYNTAGs was worthwhile. An alternative would have been

to store only the truncated stems of SYNTAGS 1 and 3 and to encode the

original words as stem—plus—suffix by including the letters e, i, y in

the suffix dictionary. Words with SYNTAG 2 could be handled by storing

extra stems with the final consonant doubled. The saving in program

size and SYNTAG bits may have offset the extra dictionary entries.

2. Tuning: Extensive tuning of this method to the data to be compressed

is apparent in the detailed description of the algorithms above. The

numerous special cases and the effects of the dictionary size mean that

careful matching of the three components (algorithm, dictionary and

data) is necessary for efficient performance.
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3. Details of Published Performance: White reports performance figures

for two sizes of dictionaries. His source material was a randomly

selected set of news stories taken from the Associated Press wire

service. The 64 character code used was transliterated into the 64

character computer code set. No attempt was made to remove spacing

and other special symbols in the linotype text, but the dictionary

and encoding algorithm were adapted to cope with the special char-

acteristics of this text.

White optimized his dictionary for 115,000 characters of text and

achieved a compression factor (input/output) of 1.89 for this material

when using a 1340—entry dictionary. Using this same dictionary on a

further 13,000 characters of text gave a compression factor of 1.82.

The dictionary was reduced to 831 entries by eliminating the least

used entries and this smaller dictionary gave a compression factor

of 1.75 on the 115,000 character text sample. White used a fixed—

length code for his dictionary encodings. He estimated that an

improvement of 4% could be obtained by using Huffman code. In this

case, the compression factor would approach 2.0 or 3 bits/character.

Schwartz constructed a dictionary of the 5,153 most frequently

occurring words in approximately 4.5 million words of magazine

articles. To these he added numerals, punctuation marks , geographic

names and 43 suffixes to increase the dictionary to a total of 5,208

entries. This dictionary was used to encode 7 articles from 4

magazines —— a total of 19,710 words. The final data rate was 3.19

bits/character. The total number of different words in this sample

was about 4,200. Of these, almost 2,000 were in the dictionary,

approximately 1,250 could be synthesized as stem—plus—suffix using

the dictionary, and the remaining 950 had to be spelled. In the en—

coded text stream, approximately 80% of the words were dictionary

entries, 12% were synthesized and 8% were spelled (Schwartz and

Kleiboemer, 1967).
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Intermediate Dictionary Compression

General:

1. Technique: This is basically a word dictionary technique. It uses

Huffman coding and run length coding (to compress binary strings with

many zeros and a scattering of ones) as integral parts of the method .

There is no provision for spelling out frequently used words, i.e., all

words used must be in the dictionary. The method could be modified to

include a spelling mode. A feature of this method (which could also

be applied to other compression techniques) is that Huffman codes are

defined algorithmically so that no code table is required . (See

section titled Variable Length Codes.)

45



—- - --—-—-.—— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The entire file is scanned to compile a complete dictionary of

words and break characters (asterisk, period , parentheses , coma ,

etc.). A character count is made for the break characters but

not for the words. Based on this count , the break characters are

Huffman coded . The words are Huffman coded assuming they are equally

probable. This is almost the same as assigning binary numbers to

them. At the cost of more CPU overhead , they could be Huffman coded

based on the frequency with which they occur.

The file is encoded as follows. A string of 1,500 words plus break

characters (total) is taken from the file. A binary “presence vector”

is constructed . It has one bit for every word in the dictionary. If

the word corresponding to a bit is present in the string to be en-

coded, then that bit is set to 1. All other bits are zero. This

presence vector defines the intermediate dictionary, which consists

of all the words corresponding to the bits set to 1. The total number

of words in the intermediate dictionary is counted and each word is

assigned a Huffman codeword based upon its position in the intermediate

dictionary . (As noted above, this is almost the same as assigning a

binary number to each word.) The encoding for the string then con-

sists o f :

a. The compressed presence vector (it is run—length encoded ,

since it contains many more zeros than ones.)

b. The encoded words and break characters comprising the

string in the order in which they appear . These are en—

coded by the concatenation of a 0 bit and the Huffman

codeword for each break character , and a 1 bit and the

Huffman codeword assigned to each word .

The main dictionary is included at the start of the compressed file

and is folloved by the Huffman code for the break characters and then

by the codes for all the strings which are the contents of the ~in—

compressed file.
46
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2. Data Types: This method is intenued for text data. With a suitable

choice of words, it could probably b~ adapted for program source and

may be adaptable for some data. files. it is not suitable for program

object files or binary files.

3. File Types: Due to the considerable overhead involved in storing the

dictionary , the method is only really effective Lor large files. The

entire file must be re—encoded if the original fi~ v is updated , and

any searching must be done sequentially and would be easiest to do

on the decoded file. All these points lead to the cor~:1usion that

the method is most suited to large inactive text files which are not

suI~ject to frequent searching. 
-

4. Relative Effectiveness: On a rather unfavorable source file reported by

Cullum (short words with frequent misspelling) a compression to 2.82

bits/character was achieved . This is good for text compression.

There is considerable overhead in both encoding and decoding . Encoding

involves scanning the entire file twice —— the first scan is needed to

build the dictionary and the second scan is needed to do the encoding.

The processing time during the scans depends on how elaborate an en-

coding one wishes to do. In his experiment , Cullum used several situ—

plifications to reduce processing time without appearing to sarrifice

much in final compression.

Decoding is much faster than encoding. The limiting factor is the

speed at which the decoded data can be written on the peripheral.

A detailed description of Cullum ’s experiment follows in the section

titled Detailed Description .

On an IBM 360/75 Cullum estimates that encoding can be done at “a few

thousand characters per second” and decoding can be done about 250,000

characters per second .
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The core requirements are high. The method uses a dictionary which

must reside in core. The dictionary must contain all words in the

file, so it occupied several tens of thousands of words (see Detailed

Description below). -

Detailed Description:

1. A1~gorithm : The encoding and decoding algorithms will be described

step by step. Alternatives or simplifications for each step will be

described along with that step. Most of these siinplifications are

based on Cullum ’s description of his programs.

a. Encoding: Encoding is a two stage process. In the first stage ,

the file to be compressed is searched and the dictionary is

built. Since most of the overhead in this stage is the time
- 

- spent searching the current dictionary, this should be as ef-

ficient as possible. Cullum split his dictionary into 3 segments

according to word length. There are very few English words
— longer than 20 letters, and none (except place names) longer than

30 letters. Splitting the dictionary into more segments speeds

the search but requires more core. The tradeoff depends on the

available resources. It is reasonable to base the dictionary

segments on the number of characters in a machine word . A

machine with 6 characters per word could have its dictionary split

into 4 segments: words of length 1—6 characters, 7—12 characters ,

13—18 characters, and 19 characters or more. A machine with 4

characters per word could use a three—part dictionary (1—8 char-

acters, 9—16 characters, 17 characters and over) or could improve

its search time by using five segments (1—4 characters, 5—8 char—

acters, 9—12 characters, 13—16 characters, over 16 characters).

Cullum combined dictionary building with an intermediate encoding .

Since he did not sort his dictionary according to usage, he en—

coded the source file on a scratch tape such that each word was
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identified by the section of the dictionary it was in and the

position of the word in that section. The break characters

were encoded similarly.

The second stage of the encoding begins by writing the size

of each dictionary section on to the output file. This is

followed by the complete dictionary (a code more efficient than

ASCII should be used) with the words separated by a blank. The

numb~r of words in the source file, or, in Cu11 tm~s case, the

number of words plus break characters (excluding redundant spac—

ing characters) is written to the output file and this is fol-

lowed by the size of the subtexts into which the file is broken

for final encoding. Cullum Huffman—encoded the break characters

separately, so he next wrote the list of break characters along

with the length of their codewords so that the decoder could re-

construct the code. (Cullum specifies a Huffman code by an

algorithm, as described in the section Variable Length Codes,

so a dictionary of codewords is not necessary.)

The source file is now encoded. Cullum used intermediate strings

of 1,500 wo.ds plus break characters, which corresponded to

about 1,000 words. His theoretical study had shown that, for his

input file, this was close to optimal. The cost curve had a

broad null between 500 and 1,500 words, and even using 250 or

4,000 word segments would only have affected the compression

by a few percent. This does not appear to be a critical para—

meter .

The intermediate string is read and the binary presence vector

(the intermediate dictionary or ID) is constructed . This is

compressed , since it is mostly zeros. Cullum used the fol—

lowing compression method . He recoded the string into a set

of 24 codewords, defined thus:
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For OS i~S14, S1 is a string of i zeros followed by a one.

For l5~~i~~23 , S~ is a string of 15 x 2
i—l5 zeros.

The ID was encoded using as few codewords as possible. A

frequency count was done on these 24 codewords and a Huffman

code was used to represent them. The lengths of the Huffman

codes for each of the S. was written on the output file , followed

by the number of ones in the original ID and then the Huffman en-

coded ID. The encoded text follows. The Huffman code for the en-

coded text is derived assuming that all words in the ID are

equally likely. Because of this, some words will have k bit

codewords and some will have k + 1 bit codewords. If there are
k k+1

n words in the ID then 2 ~~nS2 . We give the first m words
k+lk bit codewords. Then m 2  —n and the i—th word in the ID has

the codeword of length k representing (in binary) the number

i—l if i~~m and if i>m it has a k+l bit codeword which represents

the number m+i—l.

The text is actually written to the output file using an extra

bit on each codeword to distinquish words from break characters.

Break characters are represented by a zero followed by the code-

word for the break character and words are represented by a one

followed by the appropriate codeword.

b. Decoding: Decoding begins by reading in the dictionary and

transliterating it back into the normal machine character repre—

sentation if it was stored using a different character represen-

tation. Cullum constructed his decoding dictionary with the

number of letters in each word (in binary) preceding that word .

The dictionary was packed and a separate table containing the

starting byte address of each word was buil t .

The first compressed ID and its associated text string is then

read in. The ID is decompressed and a table of pointers to the
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main dictionary is built whic, contains the start address of the

i—th word in the ID as the i—th entry in the table. The com-

pressed text can then be decoded and written on the output file.

The Huffman decoding procedure is explained under Variable

Length Codes. A decoding table of all the Huffman codewords

is not needed.

2. Tuning: This algorithm is self—tuning in that d’~riving the Huffman

codes is an integral part of it.

3. Published Performance: The routine was programmed to compress a

section of the Bible which was 75,970 words long. The file contained

many spelling errors as well as numerous special formatting characters.

No attempt was made to correct errors or eliminate spurious characters,

so the dictionary was larger than it would otherwise have been. The

average word length was about 4 characters. Normal English text has

as average word length in the range of 4.5 to 5.5 characters. Both

of these factors undoubtedly caused a loss in compression compared

to what could be achieved with normal text.

The text file coL~ ained 404,970 characters. 98,526 of these were

“break” characters. The eleven break characters are: asterisk,

period , comma, dollar sign, left parenthesis, right parenthesis, equal

sign, dash, plus sign, blank and slash. Whereever two words were

separated only by an asterisk (which was used instead of a blank in the

source file), the asterisk was not encoded. The decoder automatically

inserts an asterisk between two consecutive words. This eliminated

50,439 characters (equivalent to logical compression of about 12%).

The remaining 354,531 characters were encoded into 1,141,185 bits.

Thus the compressed file used 3.22 bits per character for the char—

acters actually encoded , and 2.82 bits per character for the original

file. (This corresponds to a compression ratio of 2.13 since the

original file was in a 6—bit code.) These figures include the space
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required for the dictionary, which was encoded using a 5—bit code

for the characters.

In this experiment -a fairly simple version of the encoding algorithm

was used. Only one ID was used. Theoretical studies indicate that

using two levels of ID would produce about 10% improvement in the

compression and require roughly double the encoding time. The dic-

tionary was not ordered according to word frequency, although the

commonly used words would tend to be at the front of the dictionary.

This meant that a true Huffman code was not constructed for the words.

They were coded in a way tnat was almost the same as binary numbering.

(A Huffman code was used, but it was assumed that all words had equal

probability.)

Another simplification was that break characLers and text were en-

coded separately. Cullum shows that, provided the number of break

characters is within 50% of the number of word occurrences (i.e.,

number of break characters is between 50% and 150% of the number of

words), the loss in compression is negligible. If this is not true,

then break characters and words have to be coded together for maxi-

mum compression.

The presence vector which defines each ID is a sparse binary string

(i.e., it is mostly zeros — the ones are sparsely distributed along

the string of zeros). This is compressed using run length encoding of

some sort. Cullum used an efficient if nonoptitnal encoding. Since

the compressed presence vector is only a small part of the final

compressed file, it is not worth using elaborate compression tech-

niques to compress it as much as possible. Cullum states that the

most elaborate ID encoding will always produce less than 10% improve—

ment in the overall compression.

Culluni ran his experiment on an IBM 7094 computer. Total encoding

time for his 404,970 character file was almost 400 seconds. The
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dictionary search routines were coded in assembly language , and most of

the rest of the program was coded in rortran. Some time savings

could be made by programming more of the code in assembly language,

but most of the time was spent in dictionary searching . Cullum states

that on a machine like an IBM 360/75, encoding could be done at the

rate of several thousand characters per second (or several times

faster than he achieved on the 7094).
I

Cullum calculates that decoding is much faster and a rate of about

250,000 characters per second could be achieved on an IBM 360/75.

This speed is determined by his assumption that the decompressed

output is being written on a tape at the rate of 221 bits per second.

- - Cullum calculates that the CPU can decode at the rate of about 500,000

characters per second.

The core overhead is largely determined by the necessity of having the

dictionary in core. For fast decoding , a pointer table to the start

of each word in the dictionary is also required. For a text of approx-

imately 220 words, a dictionary containing approximately 2
15 

entries

can be expected . The decoding tables will occupy about 3x217 bytes

of core (Cullum ’s figures). Thus the core overhead for decompression

would be in the range 60—100 K words.

Theoretical studies by Cullum indicate that optimum compression using

one ID requires a text of at least half a million words, while optimum

compression with two (Or more) levels of ID requires a text of two

million words or more. This shows that the preceding figures for

core overhead (based on 220 words of text) are typical rather than

minimal for one level of ID encoding .
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For detailed description of Cullum’s implementation of Huffman coding , see

Variable Length Codes.
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Binary Data Compression

Interrecord Word Comparison (Bit Mapping)

General:

1. Technique: This is a machine word based bit—rn ing method . Re-

peated machine words in corresponding positions of consecutive

records are suppressed . A bit—map for each record keeps track of

which words in the record have been suppressed .

2. Data Types: This method is only effective for data with a high

amount of redundancy between records. The routine is insensitive

to the character code of the file. It works well on most files with

formatted records.

3. File Types: The low overhead of this routine makes it suitable for all

active and backup files on which it gives good compression. Files

must be decompressed for any searches or changes, because a record

cannot be decompressed without decompressing all previous records

in the file. (For a modified version of the algorithm, only a portion

of the preceding file must be decompressed — see Detailed Description

below.

It should be noted that a bit map of at least one word is added to

every record , regardless of whether or not compression was achieved

in that record. If there is very little record—to—record redundancy,

it is possible for the method to expand the file, or to compress it

very little but still require the overhead of decompression before the

file can be used. This will not cause problems unless the data is not

suited to this compression technique. —

4. Relative Effectiveness: This method is one of the fastest and most

effective available for files with formatted records, such as card
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image program source files, printer format files and transactions

files. It is usually about as effective as character repeat sup-

pression but , since it handles the data as words or half—words rather

than as characters, the processing overhead is less than with char-

acter repeat suppression. It is not normally as effective as Huffman

coding, but the processing overhead is 1/3 to 1/6 that of Huffman

coding. Huffman coding usually gives about a 20% higher compression

factor than interrecord word comparison.

Detailed Description:

1. Algorithm: The basic algorithm compares a logical record with the

previous record in the data file. If a word In the record is iden—

tical to the word which was in the same position in the previous

record , that duplicated word is not written to the compressed file.

• A bit—map consisting of one word is added to the front of each com-

pressed record. Each bit in the bit—map which is turned on specifies

the position of a word in the compressed record which is present be-

cause it was found to be different from the corresponding word in

the previous record. Thus, each compressed record has a one word

bit—map followed by the nonredundant words of that record . Decom-

pression is achieved by reading each record and using its bit—map

to retrieve from the previous record those duplicated word(s) of data

which must be inserted in the record.

The basic algorithm just described can be enhanced in several

obvious ways. Instead of writing one bit—map per record (which

limits the length of the records that can be handled) a bit map can

be written for every N words in the data record, where N is the num—

ber of bits in a machine word. For example, for a machine with 36

bit words, a bit map is written for every 36 words in the data rec—

ord. This allows the algorithm to handle records longer than N

(36 for our example) words. The bit maps can be collected at the

start of the record or distributed through it, preceding the data

words with which the bit map is associated.
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Another useful enhancement is to allow compression against one or

more “standard” records (such as a record of all blanks or a record

of all zeros) as well as the previous record. The compression pro-

gram calculates the compression possible against each of the candidate

records and chooses the one which gives the most compression. The

processing overhead is increased , but an improvement of 10—20% in the

compression factor is obtained . The decoder is informed of the use

of a certain “previous record” by reserving one or more bits in the

bit map for this purpose. The number of input record words per bit

map must be reduced accordingly. For records which use more than one

bit map, each segment of the record can be compressed independently

of other segments in the record , provided all the bit maps contain

reserved bits to indicate the choice of “previous record”.

The compression is normally improved by using the algorithm on a half—

word basis instead of a full word basis. The number of bit maps will

not double unless the records are all very long, e.g., on a 36—bit

machine with a 6—bit character code, a card image file has 14—word

records. Using a half—word based algorithm still only results in one

bit map per record , and the compression factor can only improve (and

usually does so ~v 10—20%). The processing time increases by about

40%, but is still low compared to any character based compression

routine.

2. Tuning: Tuning this routine consists of selecting the exact algorithm

to the used and, if “standard records” other than the previous record

are candidates for use by the compressor, selecting these other “stan-

dard records.” The programs should be written so that a user can

change his standard records in the middle of processing a file. He

can then use a small number of standard records provided by the pro—

gram to simulate many standard records. This allows him to use a

set of good standard records for each record type that occurs in

his file, if he desires to do so. Managing these changes in the

standard records must be the user’s responsibility.
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Run Length Encoding 
-

General:

1. Technique: Some data tends to be in the form of “sparse binary strings” ,

or “low—density binary strings”, i.e. strings that are mostly zeros

with a few one bits scattered along the string, or mostly ones with

a few zero bits. Such strings arise in some of the compression

methods described in this document. There are many ways to compress

such strings, and some of the possible methods will be described here.

2. Data Types: Low—density binary strings.

Detailed Description:

1. Fibonacci Codes: Fibonacci codes are variable length binary codes

which represent the positive integers. They have the special prop—

erty that no codeword has a run of s conse~cutive ones, where s is

an integer dependent on the code (Kautz, 1965). We represent the

binary string by a sequence of numbers giving the count of zero bits

between successive one bits. These numbets can then be encoded with

a Fibonacci code. The codewords can be separated by strings of s

ones. Since no codeword contains s consecutive ones, this will

allow the decoder to separate the codewords.

An integer x is represented in a Fibonacci code of order s as

(C C ...C)where:
n n—i 1
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x = C
i
w
i

and

— j ~~~ l<j~~ sW
j 

- 

k~~~~~
i— 1  

+ W~~~2 
+ .... + Wi_s

For s 2, the sequence of W ’s is:

- W
1
=l W =2 W

3—3

W
4

5 W
5
=8 W

6
13 etc.

Using this code, we represent the integers as (including the 11 prefix)

0 - ll0

1 ~- 1ll

2 - ‘1110

3 4- 11100

4 *11101
5 — — 

~- 1llOOO

6 —.---- -0-111001

7 — 
~~~

—.- 111010

8 .1110000

A second order code (s 2) is best if the proportion of ones in the

binary string is greater than 2%. A third order code is optimum

if the proportion of ones is in the range 2% to .001%. Below .001%

a code with 8 4 should be used. (Kautz, 1973)

An integer is encoded by diminishing it by whichever weights in the

sequence W , W1~_ 1,..., W1 
will not produce a negative result, where

the integer is less than Wn+l• For example, for X = 19 and s=2
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19 — 1 3= 6  ) c6 = 1

6 — 8  <0 ) C
5~~~0

6 — 5  = 1  > C~~= 1

1 — 3  <0 —,, C
3

= O
1 — 2  <0 —

> 
C
2
= 0

1 — 1  = 0 “ -
~~~ C1

= l

19 = 13 + 5 + 1
= -W

6 
+ W

4 
+ W

1

Including the 11 prefix, 19 is represented by 11101001.

Example: Original String :

OOl00000000lOl000000l000llOl0000000l

We represent the string as a series of counts of zeros between the

ones. The ones themselves are omitted .

2/8/ 1/6/3/ 0/1/7/

The Fibonacci representations for these numbers are found. For an

order 2 code , they are (omitting the 11 prefixes):

lO/10000/l/l001/100/0/l/lOlO/

These codewords are now concatenated into one string, separated by

11 (a string of ones of length s, where s 2).

lOlll0000llllllOOllllOOllOllllllOlOll

The original string of 36 bits is now repr-~sented by a string of

37 bits. This is not surprising, because the original string con—

tam ed 8 ones (over 20%) and this technique is intended for low
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density (<10%) strings. Decoding is exactly the reverse of en-

coding. We know that (1) no codeworu can contain two consecutive

ones, (2) all codewords are separated by two consecutive ones, and

(3) all codewords except 0 start with a 1 (if the 11 prefix is iii—

cluded , this means all codewords start with 111, and all except

codewords for 0 and 1 start with 1110 from item (1)). This knowledge

allows us to split the encoded string up into individual codewords,

and these codewords are decoded into integers. (The reader should

convince himself that this is true by decoding the example above.)

The original string is reconstructed by writing strings of zeros of

length specified by the Integers, and inserting a 1 in between each

string of zeros. A zero string of length 0 represents 11 in the

original data —— see :he example above. Fibonacci codes are one of

the most compact ways to encode sparse binary strings.

2. Exponent—Mantissa Encoding: This is a alternative way to encode the

counts of zeros between successive ones. We encode each integer as

an r—digit exponent (r is fixed for the code) followed by a mantissa

having a number of digits equal to the binary value of the exponent.

For r = 2, the code is:

Integer Exponent Length of Mantissa Code

0 00 0 00

1 01 1 010
2 01 1 011

3 10 2 1000
4 10 2 1001
5 10 2 1010

6 10 2 lOll
7 11 3 11000
8 11 3 11001

14 11 3 11111
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The maximum value that can be encoded is 2 — 2. The value of

r must be chosen to accommodate the maximuip ;ero run expected or

else the largest codeword must be reserved to indicate that the

zero string is not ended. For example, 23 could be encoded using

the above code as 13 + 10, with 11111 representing 13 and Indicating

that the value of the following codeword is to be added to 13.

This cod ing technique is about as effective as Fibonacci encoding.

Example-: We shall use the r = 2 code above to encode the string used

in the Fibonacci code example. The counts of zeros are:

218/l/ 6/3/0Jl/7/

In this method , no codeword separators are necessary because the

exponent defines the codeword length. The codewords are just con-

catenated to give the encoded string. The encoded string is:

OllllOOlOlOlOlll000000lOll000

The encoded string is 29 bits long, so this method has done better

than Fibonacci coding on this particular string.

3. Asynchronous Compaction: This method applies the following trans-

form to the original binary string:

00 >0

01 >11

1 >10

The transform reduces the number of zeros in the string and is

applied repeatedly until no further compaction results. Since the

transform has a unique inverse, the original string can be recon—

structed provided the number of times the transform was applied is
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known. This could be supplied in a control field, along with the

length of the compacted string.

This method works well when the original string is not very sparse.

Long strings would have to be compressed in sections.

Example: We will use the same string as in the previous two examples.

The slashes show how the string is partioned for encoding. Original

string (length 36):

00/l/OO/00/0O/O0/l/01/00/OO/O0/l/O0/Ol/1/01/O0/00/00/Ol/

Apply transform once (resulting length 28)

Ol/00/00/Ol/0l/l/00/Ol/00/l/l/1/Ol/l/00/01/1/

Apply transform again (resulting length 29)

llOOlllllOOllOlOlOlOlllOOlllO

The encoded strit~0 used is the one achieved after one application /
of the transform.

4. Block Encoding: This method encodes the counts of zeros between

successive ones into b—bit blocks. Each integer <2
b...1 ~s encoded

into its b—bit binary representation. Integers~~~2~
’
~1 are coded as

the b—bit code 11 ... 1 followed by the code for (integer _ 2b + 1).

For b 3, the code is:
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0 > 000 1 > 001

2 > 010 3 > 011

4 >100 5 )l0l

6 > 110 7 > 111000

8 .> 111001 9 ~ 111010

13 >111110 14 >111111000

15 > 11111100 1

To find what value of b to use, we solve

p = 0.7 b 2
-b (2.5.2.1)

for b , where p is the fraction of ones in the binary string. The

/ ‘ less dense the string, the larger b should be. (Kautz , 1973).

This method is very simple and quite effective.

Example: We use the same string as before. The zero runs in this

string are :

2/8/1/6/3/0/1/7/

For this string, p ÷ .22

The following table gives the right hand side of equation 2.5.2.1.

b 0.7 b2
b

2 .35

3 .26

4 .18

5 .11

6 .07

We shall use b = 3.
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The encoded string is:

OlOlllOOlOOlllOOll00000llll000

The 36—bit string has been compressed to 30 bits. Note the encoding

for 8.

5. Huffman Coding of Binary Strings: This method was used by Culluni

(1972) who had very long strings to encode. First, he encoded the

binary string into 24 codewords. These codewords, designated s
1,

were :

a. For 0�i~~l4, s~ Is a string of i zeros followed by a 1.

— b. For i�l5, 5~~ is a string of 15 x 2~~
l5 zeros.

This set of codewords allows very long zero runs to be encoded with

only a few codewords. Each string was encoded into as few codewords as

possible and then a Huffman code was derived for the codewords based

on their use. The codewords s~ were rep laced by their Huffman codeword

-j 
and a compact description of the Huffman code (see Variable Length

Codes) was added to the string.

This method allowed efficient encoding of the long, very low density

strings Cullum was using.

References:

Cullum, K. D.

A METHOD FOR THE REMOVAL OF REDUNDANCY IN PRINTED TEXT;
NTIS: AD 751 407, September 1972

65 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - - - _ -

Kautz, W. H.

FILE COMPRESSION FOR SIMPLE ASSOCIATIVE SEARCH;

November 1973, AD 771 314

Kautz , W. H.

FIBONACCI CODES FOR SYNCHRONIZATION CONTROL; IEEE Trans. on

Information Theory, V. IT—li, pp. 284—292, 1965

Kautz , W. H. and Singleton , R. C.

NON—RANDOM BINARY SUPERIMPOSED CODES; IEEE Trans. on Information

Theory , V. IT—lO, pp. 363—377, 1964

Schaltwijk, J. P. M.

AN ALGORITHM FOR SOURCE CODING; IEEE Trans. on Information Theory,

V. IT—l8, pp. 395—399 (1972)

COPAK Compressor

General:

1. Techniques: The COPAX (combined compressor) is a multistage com-

pressor originally developed for use in the Self—Organizing Large

Information Dissemination System (SOLID System). The alphanumeric

compression component of COPAI( is discussed here because of its

widespread applicability.

The COPAK alphanumeric compressor is a recursive bit—pattern recog-

nition technique. It is fully automatic and stores all control infor-

mation necessary for decompression with the compressed data. The input

can be any arbitrary string of characters , numbers , codes or bits.

Compression is achieved with two basic bit—pattern recognition rou-

tines (Type I and Type II) which operate in one of two modes (SLOW—

MODE and FAST—MODE).
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In Type I compression , a code word is substituted for a recurring

bit—pattern in the data string to be compressed . A code word is a

6— or 8—bit (BCD or ASCII) character which does not appear in the

input string. Depending on the data, (unused) punctuation and -

arithmetic characters may be available for use as code words. In

Type II compression, code words are removed from the string, and

their locations are indicated by bit—maps. A bit—map is a bit

string with one bit for each character position in the input string.

Each bit that is turned on discloses a position In the dara string

where the particular code word is to be inserted during decompression.

e.g., The string “eat berries evenly” could be represented as “e(lOOOO

1000100101000) at brris vnly”. Note that the final three zeros in the

bit map can be omitted. If we do this, and also use a bit map for r,

the string becomes “e(lOOOOlOOOlOOlOl)r(OOOOll) at bis vnly”. In de— -

coding, the substitution for r must precede the substitution for e,

since the bit map for e has positions for r’s in the string.

The control information stored with the compressed data string con-

tains the code words, the bit patterns they replace, and the bit-

maps for the code words if used. Thus, decompression is accomplished

by stepping back~drds through the control information of the string.

In SLOW—MODE compression, the input data is searched to determine

the most frequently recurring bit—patterns to be replaced by code

words. If the recurring bit—patterns are supplied to the COPAK com-

pressor by the user, this step is eliminated , giving FAST—MODE compres—

- sion. The differences in processing time of these two modes can be

very great. SLOW—MODE can take several hundred times longer than

FAST-MODE.

2. Data Types: The COPAK compressor Is effective for nearly all types

of data since it is based solely upon recognizing bit—patterns. The

composition of the data is transparent to the compressor. Some

tuning to the data is possible if the user supplies the recurring
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bit—patterns to be suppressed (FAST—MODE). However, the SLOW—MODE

procedure for compression is essentially a self—tuning mechanism in

which the data is searched for recurrent patterns.

3. File Types: Any files which do not require frequent updating or

searching are suitable for COPAK compression. Files which are up-

dated or searched frequently would undergo the compression and de-

compression procedure constantly. The considerable processing over-

head entailed is the prime consideration in deciding whether such

files should be- compressed.

4. Relative Effectiveness: The amount of core required to encode and

decode data appears to be relatively small (2—4K). The processing

time constitutes the greatest amount of overhead. This can be

greatly reduced by operating in the FAST—MODE. Tests Indicate that

FAST—MODE is between 200 and 300 times faster than SLOW—MODE. With

alphanumeric data, decompression is between 1.5 and 5.0 times faster

than compression. A typical 2400 foot reel of business data (New York

Personnel Records) was compressed at the rate of 9,000 bytes/second

to give a compression factor of 3. Decompression occurred at the rate

of 14,000 bytes/second. English and German language texts (Calvin’s

Nobel Prize Address) yielded compression factors between 1.7 and 3

at a throughput rate of 10K bytes/second. Experiments with about

250,000K bytes of information produced the following compression

factors:

Business Data 2.2—4

Natural Language Texts 1.7—3.3

Machine Language Programs 1.3—2

Higher Language Programs 5—20
(viz . COBOL , FORTRAN , etc.)

It should be noted that these compression factors are based on com-

pressing an 8—bit byte. Therefore, a compression factor of 2 yields

a file encoded with an average of 4 bits per character.
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This routine is one of the most effective compression routines

found in this study. Its main drawback is its high processing time.
In general, its performance appears to be comparable with the pat-

tern substitution routine described under Adaptive Character String

Substitution. -

Detailed Description:

Algorithm: There have been two separate implementations of the COPAK corn—

pressor. The first version is the one originally used and second has minor

modifications which greatly simplify the processing. The first version is

described in detail since it is better suited to a 36—bit word machine and

is the more general algorithm. This first version was implemented on the J
experimental PILOT computer which had a word length of 68 bIts. Attempting

to efficiently use the long word length made the algorithm quite complex.

The newer version, which was implemented on the System 360, is considerably

less complicated because the 360 is byte oriented and has a shorter word length.

The 360 version is different in the following ways:

o The number of binary units in a CODE WORD is fixed. The 8—bit

byte is used as ..“e coding basis. Thus there are 256 different

possible code words . Fixing the length of the codeword greatly

simplified the algorithm.

o A CORD contains up to 12 consecutive bytes (or code words) in the

segment of information that is being compressed. CORDS, which are

also called bit—patterns, found in the SLOW—MODE, are stored in

the PCORD ’s table.

o The new version can operate either in the FAST or SLOW MODE . In

the SLOW—NODE, the computer finds those cords which viii yield

savings. Each cord which makes a savings in the SLOW-MODE is

stored in the array PCORDS. In the FAST—MODE only cords in the

PCORDS table are used to compress the segment of information . There
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are provisions in this new version for entering cords into PCORDS

from cards, and for automatically going from the SLOW to the FAST—

MODE after a specified number of segments of information have been

compressed in the SLOW—MODE.

1. Definitions

It is supposed that a string of JI machine words of Ni bits is to be

compressed. Here the string will be considered a single word (T) with

N2 (= Jt . Ni) bits. The following definitions are associated with

the procedures.

A Code contains 2~~ code words , each with CW bits. Nl/CW must

be a positive integer. Thus T can be regarded as a sequence

of code words .

CWA Lexicon (TL) discloses which of the 2 code words have been

used to achieve compression and in what manner.

A Cord (CD) contains R code words consecutive in the string T.

N3 (=R .CW), the number of bits in the cord , cannot exceed Ni;

R is a positive integer.

A Bit Map (BM) of one of the 2~~ code words discloses the

positions of that code word in the string T. Terminal zeros

in a bit map are omitted, e.g., for T=iOl/Oli/OlO/l0l/0l0/lOO/

010/000 the bit map of 101 is 1001, meaning that 101 is the first

and fourth (and only these) of the successive code words of length

CW in T. (Note: Bit maps are used only in Type It compression).

In Type I Compression, an unused code word is substituted for a

cord.
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In Type It Compression, code words are removed from the string ,

and their locations are designated by bit maps.

A string is irreducible if compression cannot be achieved.

2. Compression Procedure

Step I: The smallest value of CW is computed from Ni and the in-

put information. For numeric information, the initial value of CW

is the smallest number greater than four which divides Ni exactly.

For alphanumeric information, CW is set equal to six, eight or nine.

Six is for BCD data, eight is for ASCII data (16 or 32 bit word

length) and nine Is for ASCII data on 36—bit word machine.

Step It: The lexicon (TL) associated with the CW—bit code is con—

structed as follows. An array Y is constructed which consists of

2~~ consecutive machine words, initially set equal to zero, corre-

sponding in a definite order to the 2~~ possible CW—bit binary words.

The code words of string T (the input data string) are examined , and

the Ith machine word in Y is used as an indicator of the presence of the

Ith binary word (in the specified ordering) as a codeword in T. Then

the zero words rc~~ining in array Y are tallied in NRL , and the corre—
sponding unused code words are stored in the array TL.

Example: Suppose that T (the input string) is in BCD code. Then
CWCW~6 and 2 = 64. The array Y is simply 64 consecutive words cor—

responding to the BCD characters octal 0 through octal 77. The string

T is scanned , and each character found has Its corresponding word in

Y set to some non—zero value. After the string has been scanned ,

NRL # zero words in Y and TL contains the BCD characters not found

in T (there are NRL entries in 11).

Step III: The value of R is set to its maximum. The search begins

with the longest cord, i.e. maximum R,so that shorter cords which
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are contained In the long cord are not replaced by a code word first.

If this did occur , the savings achieved would be smaller. However,

it is realized that this somewhat arbitrary choice of beginning with

maximum R may result in less savings in certain cases. (See section

Common Phrase Suppression for an optimum solution to this problem.)

Step IV: NR , a counter, is set equal to zero. (Counts iterations

of step V.)

Step Va: If NRL # 0, Step Vb is executed . For NRL = 0, both R and

NRL are set equal to one, and Step Vb is executed.

Step Vb: The N3—bit cord , CD
N3 

(where N3 = R . CW), is set equal

to bits (NR . CW + 1) to (NR . CW + N3) in string T.

Example: Assume Rl0 , N R O , CW6 and the input data is BDC. If the

input string is: 
—

THE*BROWN*FOX****J*U*M*P*E*D****OVER*THE*BROWN*LOG

then N3 60 and CD
60 

= THE*BROWN*

Step Vc: A search of string T with CDN3 
discloses whether or not a

compression can be achieved. (The criterion for successful compres-

sion is that the number of bits which can be removed from the string

must be greater than the number of bits which must be added to the

string to permit automatic decompression.) In this searching pro-

cedure, if there is a match between CDN3 and the N3 bit cord in the

string, the next attempted match will be with a cord in the string

beginning CW bits (the code word length) further along. If R>l ,

compression is achieved by substituting the first unused code—word in

TL for CDN3 wherever it occurs (Type I Compression). For R = 1, a

bit map for CDN3 (here the code word) is constructed and the string
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is compressed by removing the cord wherever it is found and NRL

is decreased by one (Type II Compression). If a saving is achieved ,

a composite code word (CCW
1
) in the array TL is constructed in one

of the following forms:

Type I flode word substituted for cord) (R>l)

Code Word (CW bits) R (four bits) Cord (N3 bits)

Type II (Bit map of code word) (R = 1)

Code Word (CW bits) K (four bits) No. bits in Bit Map Bit Map
(NB) (five bits) (NB bits) -

Example: Continuing the previous example, we can use the symbol Q

(which doesn’t appear in the data) for CD60 and do Type 1 compression.

The entry in TL is:

Q 10 THE*BROWN*

6 bits 4 bits 60 bits

and the compressed string is

QFOX****J*U*M*P*E*D****OVER*QLOG

The saving is 38 bits (18 characters eliminated minus 70 bits for the

lexicon (TL) entry).

Step Vd: If compression was achieved, the above procedure beginning

with Step IV is repeated with the compressed string. If no compres—

sion was achieved, NR is incremented by one and control goes to Step

V. If all N3—bit cords (CDN3) have been examined 
(i.e., NR . CW + -

N3 ~ N2), control goes to Step VI.
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Step VI: R is decreased by one. If R> 1, control goes to Step IV;

for R 0, control goes to Step VII.

Example: Continuing the previous example, control will go to Step

IV , Step V and Step VI until R4. (An eyeball check indicates that

no further compression will take place until R4.) At R 4 , NR=4 a

substitution will take place for ****• We can assign the symbol A

to stand for **** • The entry in TL is:

A 4

6 bits 4 bits 24 bits

and the compressed string is

QFOXAJ*U*M*P*E*DAOVER*QLOG

This substitution results in a saving of only 2 bits, since 6 ch~r—

acters (36 bits) are eliminated but 34 bits are used in the TL entry.

At R—l a bit map for * will save a further 4 bits. The entry in TL Is:

* 1 000000lOlOlOlOl000000l

6 bits 4 bits 22 bits

The compressed string is: -

QFOXAJUMPEDAOVERQLOG.

Step VII: If compression was achieved , control goes to Step VI II

for the new string assembly. If no compression was achieved , CW is

incremented by steps of one until Nl/CW is again an integer. If

Nl—CW, the compression is complete and control goes to the calling - -

system. Otherwise, control goes to Step II, where the lexicon associ—

ated with the new code is constructed .
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Step VIII: The irreducible string (T1) and its associated lexicon

(TL) are combined in a compact self—defining string (I) thus:

BJI
1 T1 ND1 CW

1 
TL
11 

TL
21 

TL
1 

(I)

Here , BJI i, is the number of bits in the irreducible string (T1).

ND
1 
is the number of composite words in the lexicon for the code with

bits; these composite words (TL
1~ . 

TL21, etc.) are arranged _in

the reverse order from that in which the~ were constructed. NAP (the

number of successful compressions with different strings link I) equals

i. The new string I is processed, beginning with Step II, with the

value of CW unaltered.

Example: The string I from out continuing example is:

120 QPOXAJTJMPEDAOVERQLOG 3 6 * 1

~ -.-—-* < > 4—~ < > 4—~ ~—>
18 bits 120 bIts 5 bIts 5 bits 6 bits 4 bits

~~
O0000i01OiOlO1OOOOO02

~> < 
A 

> 
4 

< 
****

> ~~~~~~~~~~~ ~~~,
22 bits 6 bits 4 bits 24 bits 6 bits 4 bits

TRE*BROWN*

60 bits

CW incremented to 9 (if Nl 36) and control returns to Step II with

this string as the input data string. Notice that in our example

the final string is 284 bits long compared with an input string of

300 bits. The small savings during compression (totalling 44 bits)

more than offset the control fields BJI1, ND1 and CW1 
(a total of

28 bits).

This procedure (with newly defined strings) is repeated until no

further saving can be achieved. (See Step VII), The final form

of the compressed information consists of a single string like I
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plus one word (NAP) which gives the number of values of CW for

which compression was achieved.

3. Decompression Procedure

To regenerate the original string T the following procedure is

executed :

Step I: If NAP = 0, no compression was achieved and control returns

to the calling system, otherwise it goes to Step II.

Step II: The string ~~ with I = NAP, is expanded by using the ND.

composite words consecutively in the reverse order from that in

which they were constructed. (They are arranged in this order in

the compressed string.) This means that I is first split into its

components BJI , T , and ND., CW ., TL ., TL . ; then T. is ex—I i 1 1 ii. 2i 1

panded to T
i
’ with TL11. Next T.’ is expanded , in turn, with TL 2.

and so on. This procedure is repeated until the lexicon associated -

with the CE
1
—bit code has been used.

St~p III: NAP is decreased by one, and if NAP # 0, control goes
to Step II, with Ti_i in place of T , .

Example: We shall decompress the string compressed in the previous

section. We begin with NAP 1. We substitute in turn using the

bit map, and then the composite words for A and Q. The resulting

strings are:

a. Substitute using bit map .

QFOXAJ*U*M*P*E*DAOVER*QLOG

b. Substitute ~~~~ for A.

QFOX****J*U*M*P*E*D****OVER*QLOG

c. Substitute THE*BROWN* for Q.

THE*BROWN*FOX****J*IJ *M*P*E*D****OVER*THE*BROWN*LOG 

. -- - --~ 
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In step III NAP = 0 and we terminate with the original string.

Notice how the compressed string is self—defining. BJI~ tells us

the length of T
i
. It is followed by fixed field entries for the

number of substitutions (ND
1
) and the length of the code words (CW

i
).

These define the Th1 terms . Within the TL~ terms, R
u 

tells us

whether the following field is a character string (R.j>l) or a fixed

field count followed by a bit map (R
11 

= 1). In the latter case,

the fixed field count gives the length of the bit map.

- i 4. Structure of Compressed Information

The compressed information consists of a single compact self—defining

string, like I , with a mixture of fixed and variable fields. The

lexicon of composite code words (TL
11
) associated with the code with

bits and NAP = I, also contains fixed and variable field infor-

mation thus:

Type I Compression (R
11 

= 1)

ACWJ1 R
11 

CD
11

Here ACW
11 

is the jth code word associated with the CW
1
—bit code

and NAP 1. CD
1i 

is the cord which was n-~laced by ACW11
; R

11 
is

the number of code words in cord CD~~.

Type II Compression (R
11 

= 1)

ACW
11 

= 1 NB
1~ 

BM
11

Here BM
11 

is the bit map associated with the code word ACW
1~
. NB

11
indicates the number of bits in the bit map (BM

11
) ,  which has no

terminal zeros. The bit map actually defines the locations of the

code word ACW
11 

in the string.

The fixed fields in I, (B311, ND~. CW~~ R11
, and NBji), are de-

fined thus:

77

_ _ _ _  ~~~~~—-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - - 



- -

(18 bits) is the number of bits in the string T
i
.

(5 bits) is the number of composite code words in

lexicon TL. associated with the CL—bit code.
Ji 1

(5 bits) is the number of bits in the code associated

with NAP = I.

(4 bits) is the number of code -words in the associated

cord (CD. ).

~~ji 
(5 bits) indicates the number of bits in the bit map

(BM..) if R .. l and type II compression was achieved .

Although this figure appears in more than one place in

NBS—TN413, the author does not say why a bit map of

only 31 bits is sufficient. If the number stood for the

number of length CW characters in the bit map, then

5 bits would be sufficient for most files. In the 360

version of the compressor, the bit map length is given

in bytes.

The variable fields (T
1
, ACW

11
, and BM

Ji
) are defined next:

Is the irreducible string obtained by compressing the

string which precedes I. This may have been the original

string (i 1) or may itself have been constructed from an

irreducible string and its lexicon (1> 1).

ACW Is the jth code word associated with the CW. bit code.—ii 1

CD Is the cord assocIated with ACW .—ii . J i

Is the bit map associated with the code word ACW
Ji
.
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Irreversible Compression Codes

Introduction

The codes described in this section are intended for use in information re-

trieval. They are suitable for creating directories to large data files.

The usual problem is to transform sets of variable length words into fixed

length codes that will maximally preserve word to word discrimination. The

encoding is specified by an algorithm which is applied to the file entry to

derive the directory and to the input query . Code tables are not used. The

different codes described have specific uses and careful selection is neces—
- 

sary to ensure that the code chosen has the desired attributes. The fol-

lowing four examples are cases in which these codes are useful. The codes

mentioned are discussed individually in the following sections.

1. Create a file key for extraction of words In approximate file order.

A typical code construction rule is to take the first six letters.

- - 2. Create a file key for extraction of records under conditions of

uncertainty of spelling (the so—called airline reservation problem).

Typical codes used are Vowel Elimination and Soundex.

3. Create a file key for extraction of records from accurate input ,

with the objective of maximum discrimination of similar entries

(catalog searching problem). Suitable codes are Recursive Decom— —

position Codes and Transition Distance Codes.

4. Create a file key for human readability and high word—to—word dis—

• crimination. Alphacheck Coding or truncation plus a terminal

check are suitable codes .

Good discrimination in these codes is achieved by equalizing the use of the

letters in the alphabet through the use of some randomizing algorithm to map

the source letters into the code letters . Letter selection codes cannot do

this well because they cannot increase the usage of the lower frequency char—

acters.
80
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Transition Distance Coding

General:

1. TechniQue: Transforms a variable length word into a shorter fixed

length alphabetic or alphanumeric string such that there is a very

low probability that different words will map into the same code-

word. The code is formed from the modulo product of primes associ-

ated with transition distances of (i.e., distances between) permuted

letters. It is an irreversible encoding.

2. Data Types: Alphabetic strings. Algorithm is simple to modify to cope

with alphanumeric data.

3. File Types: The code is intended to create a file key with maximum

discrimination between similar entries. The key will not be meaning-

ful to a human reader.

4. Relative Effectiveness: Converts variable length input words to

fixed length code words with more discrimination than the other

methods described in this chapter. A relatively complex algorithm

is used, and it is not suitable for manual calculation.

Detailed Description:

Algorithm:

• 1. Permute the characters of the natural language word. Take the

middle letter (or the letter to the right of middle for words with

an even number of letters), the first, the last, the second , the

next—to—last , etc.

EXAMPLE: JOHNSEN —~~NJNOEHS
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2. Determine the transition distances of the characters as follows .

Assign letters a position value corresponding to their norma l

alphabetic positions (A= l, B=2, etc.) except assign 0 to Z. Measure

distance unidirectionally In alphabetic order and cyclically from

Z to A. Thus BX has transition distance 22 and XB a transition

distance 4 (note that 22 + 4 = 26).

EXAMPLE: Continuing the processing of JOHNSEN

NJNOEHS —~~(14,lO,l4,15,5,8,l9) letter numbers

> (22,4,1,16,3,11) distances

3. Associate with each transition distance a corresponding prime number

from table 1. The primes in the table start at 5 so that they

are all relatively prime to 26 and 36.

EXAMPLE:

(22,4,l,16,3,11)—~——-———--——~~(89,l3,5,6l ,11,4l)

distances primes

4. MultIply these primes, modulo the capacity of the computer (i.e., inte-

ger multiply ignoring overflow).

EXAMPLE: Assume a 16—bit machine . The maximum integer

representation possible is:

2
16 

— 1 = 65,535 -

89 x 13 x 5 x 61 mod (2 16_i) 352 ,885 mod (2 16_ i)

= 25,210

25 ,210 x 11 mod (2 16_ l) 277 ,310 mod (2 16_ i)

= 15 , 170

— 15,170 x 41 mod (2 16_ i)  621 ,970 mod (2 16_ i)

— 32 ,155
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5. Express the number derived above as an integer base 26 (al phabetic

form) or base 36 (alphanumeric form) using a 4—digit code. In the

case of alphabetic representation , use the letters to represent the

numbers of their original position (A= l, B=2, etc.), and use Z as

zero . In alphanumeric form , use the digits 0 to 9 to represent this

range , and use the letters A to Z to represent th~ range from 10 to

35.

EXAMPLE: We will use the alphanumeric form -md use a

- : 3—digit code (i.e., ignore the multiplier of 36~).

32,155 = 24 x 362 + 29 x 361 + 7 x 360

(24,29 ,7) >(O,T,7)

The resulting code is 0T7. Ignoring the multiplier of 36~ results in

very little loss in discrimination since it can be only 0 or 1. To

obtain a 4—digit alphabetic code, the number at the end of step 4 is

expressed as:

32,1 5 5 .lx 2 6 3 + 2 l x 2 6
2 +14 x 26 + 19

The code is AtJNS.

The range of 4—digit alphabetic representation extends to (26
k 

— 1) =

456,975; the range of 4—digit alphanumeric representation extends

to (36k — 1) = 1,679,615. Hence, the 4—bit alphabetic representation

is sufficient for up to 18 bit machines (with little loss for 19

bit machines) and the 4—bit alphanumeric representation is sufficient

for up to 20—bit machines.
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Tab le 1

Letter Positions and Primes Used In

Transition Distance Coding and Alphacheck Coding

Letter Position and
Letter Distance Value Prime -Number

A 1 5

B 2 7

C 3 11

0 4 13

E 5 17

F 6 19

C 7 23

H 8 29

I 9 31

J 10 - 37

K ‘ 11 41

L 12 43 —

M 13 47

N 14 53

O 15 59

P 16 61
— 

Q 17 67

R 18 71

S 19 
- 

73

T 20 79

U 21 83
- 

V 22 89

W 23 97

X 24 101

Y 25 103

Z 0 - 107

I: :- - 
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Alphacheck Coding

General:

1. Technique: This is a compromise coding technique. It attempts to

maintain both readability and randomness. The first five characters

of the key are retained and a sixth check character is generated

using a method very similar to Transition Distance Coding (see

Transition Distance Coding section).

2. Data Types: Alphabetic strings or alphanumeric strings.

3. File types: The code is Intended to create a file key where both

readability and randomness are desired.

4. Relative Effectiveness: The code has a 50% chance of uniquely re-

solving in the aiphacheck symbol seven otherwise identical five—letter

truncations of source words.

Detailed Description:

Al&orithm : The algorithm to derive the aiphacheck symbol is similar to

Transition Distance Coding (TDC) which was described in Section 2.6.2. The

steps are: -

1. If word is six letters or less , take whole word ; otherwise , take

first five letters and compute an Alphacheck character for the

sixth , based on omitted letters.
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EXAMPLE: JOHNSTEN

First 5 letters: JOHNS, Remainder : TEN

2. Take transition distances of the omitted letters (as in TDC).

EXAMPLE:

TEN )-(20 ,5,l4) ) (ll ,9)

positions distances

3. Associate with each transition distance a corresponding prime

number (as in TDC). If only one transition distance exists, ad-

ditionally associate prime numbers with the remaining letters. If

only two transition distances exist , additionally associate a prime
number with the last letter.

EXAMPLE: Use Table 2.6.1

1l—.-—-~ .4l, 9 >31, N—>53

The prime for N is used because there are only two transition dis—
tances.

4. Multiply these primes , modulo the capacity of the computer (as in
TDC).

EXAMPLE: For a 16—bit computer ,

41 x 31 x 53 mod (216 
— 1) = 67,363 mod (65,535)

= 1828

5. Convert to alphanumeric form in 1 symbol, modulo 36 , in which
O > 1 , 9— ~’9 , 10 >A , 11 )B , 35 >Z.

EXAMPLE : 1828 mod (36) = 28
Check symbol is S

J0HNSTEN —~~’JOHNSS
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Recursive Decomposition Coding

General:

1. Technique: This method is an alternative to Transition Distance

Coding (see Transition Distance Coding section). The code uses a

frequency ordering of the letters, and selection or rejection of a

particular letter Is based on that letter ’s relative order in the

table with respect to the previous letter.

The frequency ordering used may be any of the standard ones, such

as that contained in Pratt (1939). The resolution of the code is

not sensitive to minor variations in the frequency ordering.

2. Data Types: Alphabetic strings. Using an appropriate frequency

ordering would allow alphanumeric strings to be encoded.

3. File Types: The code is intended to create a file key with maximum

discrimination between similar entries. The key will not be meaning-

ful to human readers.

4. Relative Effectiveness: The prime advantages of the method are its

computational simplicity and its resolution. The elimination requires

only table lookup and no multiplications, and the compression is

readily done manually. The resolution is apparently as good as one

can get with a selected letter compression code. If effectively

flattens the high portions of the letter frequency curve, though ,
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unlike a randomizing code such as Transition Distance Coding, it

canno t totally equalize the distribution . The resolution , however,

is quite good . Specifically,  in a test of 4 ,862 words (chosen from

the secretary ’s handbook “20 ,000 Words ” ) ,  only 30 of the 6—letter

ciphers (about 0.61%) were nonunique and of nonunique ciphers all were

simple pairs except for one instance of three occureences. The method

compresses quickly ; since all noninitial  letters have a .5 probability

of being retained , the expected length , L , of an n letter word af ter

r recursions is: -

- : 
L = l +

This indicates that a 43—letter word may be expected to compress to

six letters in three recursions.

Detailed Description:

Algorithm: — Choose some frequency ordering of letters, such as Pratt’s (1939):

ETAONRISHDLFCMUGYPWBVKXJQZ

The algorithm is: If a source word is longer than six letters, select the

first  letter and subsequent letters of lesser or equal ordering that the prior

letter , and continue the process recursively until six letters remain. Words

of six letters or less are reproduced in full and filled out with null symbols,

where necessary, until a total of six characters is reached. For words of more

than six letters, the algorithm may be stated in steps:

1. Select the second/next letter in the word.

2. Compare this letter with the preceding letter, even if the preceding

letter is marked for deletion. If the preceding letter is to the

right of the selected letter in the frequency ordering , mark the

selected letter for deletion. (Note that if the two letters are the

88
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same, the selected letter is not marked for deletion.)

3. If the selected letter is not the last letter in the word, go to

step 1.

4. If there are no letters marked for deletion , truncate the string

to six letters. (Use of this step will be ext. ~.aely rare.)

5. Delete marked letters from left to right until only six letters remain.

If all marked letters are deleted and more than six letters remain,

go to step 1. Otherwise end.

Several examples will illustrate the system. Omitted letters are shown bracketed,

- 
and successive cycles are shown by arrows.

- 
- 1. B[I]BELIO]G[RA]P (HJER >BBGPER

2. I[NJF[O]RM[ATJI (OIN >IFRMIN

3. SH E A I K [E]SP [E I A R E E ]  > SHK[S]PAR > SHKPAR
4. SMITH —)-SMITH ~
5. K[IN]G[SJF[O]RD(-S]M[IT]H > K[G]FRDMH

KFRDMH 
-

6. K [RJI SH[NA JM [OJ OR[T JH[ I J— > K [II SHM[ OIRH
KSHMRH

In some very rare cases, an emerging cipher may have more than six letters in

descending sequence, so that it will not decompose further. In such cases the

final letters are eliminated until six remain as stated in step 4.

Most words, however, will reduce in one or two cycles. In a test of 55,000

words only one was found requiring four cycles . A few extreme cases do exist ,

however: the longest ever found required six cycles:
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7. ANET)ID(I]S[E]SET)AB[UISHM[E)N (TJARI(AINISM -)

ANID[~]S[A]B [S]HM[NA]RI[N]IsM

ANIDIS]BIH]M [R)IISM )

ANIDB[MI]ISM

ANIDB[I]SM

ANIDB[SJM —

ANIDBM

Even Mary Poppin’s sesquipedalian ecphonesis crumbles to six letters in
three recursions:

8. SUP[E]RC(AJL[I]F[RA)G[I]L(I)S[TJIC[E]x[PIA]L[I)

DIOJC [OJUISJ

SUPRCEL]FCLLSI]CX [LDICU

SUP [ CF]G [CIX [C]U

SUPGxU

References:

Nugent, V. R.
COMPRESSION WORD CODING TECHNIQUES FOR INFOR~1ATION RETRIEVAL;
Jnl. Library Automation, V. 1, pp. 250—260, 1968.

Pratt, F.

SECRET AND URGENT, THE STORY OF CODES AND CIPHERS;

Blue Ribbon Books , New York, 1939

t~~

90

- .  —-- — --- . -- — -  —~~ — -- - . - - -- .s— ~~~~~~~~~~ - -  .



-

~~~~~~~~~~~~~~~

The Soundex Code

General :

1. Technique: The Soundex Code, attributed to Remington Rand, is a

phonetic code that tends to create identical codes for similar

sounding names. It is useful for name searching under conditions
of uncertain spelling.

2. Data Types: Proper Names.

3. File Types: Files with a key of proper names.

Detailed Description:

Algorithm — The code has five steps:

1. Retain first letter of name as first letter code.

2. Eliminate vowels, plus W, Ii, and Y.

3. Eliminate the second consonant of a double conso-

nant pair. e.g., JTTK >JTK

4. Replace the foll owing letters by numbers (except
when the letter is the first letter of the name):

B,P,F,V 1
C,G,J,K ,Q,S,X,Z,SC ,CK 2

D,T 3
L 4
M,N 5

R 6
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5. Take the first three or four symbols, and add

zeros If insufficient phonetic sounds.

EXAMPLE:
JOHNSEN ) JNSN .> J525 > J52

JOHNSON > JNSN >J525 > J52

JOHNSTON )-JNSTN )-35235 )J52

JOHNSTONE ) JNSTN >J5235 ).J52

References:

Nugent, W. R.

COMPRESSION WORD CODING TECHNIQUES FOR INFORMATION RETRIEVAL;
Jnl. Library Automation, V. 1, pp. 250—260, 1968

Ruecking ’s Bibliographic Retrieval Method

General:

1. Technique: This method was developed in an attempt to automate the

searching of the card catalogue of a large library. A large library

may contain several million volumes. These are shelved according

to the number assigned to them. Most large libraries use the Library

of Congress numbering system. To find a book or to determine its

status if it is not on the shelves, one needs to know the number . This

is usually found by searching the card catalogue. The catalog contains

several cards for each book and is arranged alphabetically. There is

one card for each author and at least one card for the title. There

may be several title cards depending on whether the title splits

into parts. For example, a title such as “SICOPS 1969: Progress in

Signal Processing” may have title cards under “SIGOPS” and “Progress
in Signal Processing.”

The problem in searching such a large catalog is that reference

data (author, title, publisher , date of publication, edition number,
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or , for periodicals, the journal title and volume) may be Inaccurate
or incomplete. Many bibliographies “ite only an author last name

and title. Typographical errors can cause spelling mistakes and

volume numbers or dates may be incorrect. The person conducting

the search can often compensate for such errors in the reference

by checking possible alternatives and determining which card best

matches the supplied Information. This involves considerable dili-

gence, judgment and experience on the part of the person conducting

the search. Ruecking attempted to automate this search process. He

states his hypothesis thus:

“It is hypothecated that retrieval of correct bibliographic entries

can be obtained from unverified , user—supplied input data through

the use of a code derived from the compression of author and title

information supplied by the user. It is assumed that a similar code

is provided for all entries of the data base using the same compression

rules for main and added entry, title and added title information.

It is further hypothecated that use of weighting factors for Individual

segments of the code will provide accurate retrieval in those cases

when exact match~ ig does not occur.”

2. Data Types: User supplied bibliographic references. Only author

and title were automated in Ruecking’s experiment but the inclusion

of date, publisher and edition would be simple extensions to implement.

3. File Types: The file to be searched is assumed to be a compressed

file of library card catalog information containing up to several
million items.

4. Relative Effectiveness: The algorithm appears to have promise for

this very specialized application, but it needs considerable refinement
before it can be used as a routine tool. Whether it can ever totally

replace manual searches is open to serious doubt. See the section
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below titled Published Performance for details of the tests con-

ducted.

Detailed Description:

Algorithm: The following words are deleted from the title: a, an, and, by, if,

in, of, on, the, to. Each remaining word in the title is compressed to four

characters. Four 4—character abbreviations are retained for the compressed

title. The rules for compressing the title words are:

• 1. Delete all suffixes and inflections which terminate a title word.

(see Tabl e 2)

2. Delete all vowels from the end of the Stem until a consonant is located

or the stem is reduced to four characters.

3. If the stem is longer than four characters, take the final consonant

string and, if this is less than four characters, fill it out to four

characters with letters from the initial character string.

EXAMPLE 1: “BUILDING LIBRAR\~ COLLECTIONS”

Step 1 yields “BUILD LIBR. COLLECT”

Step 2 gives no change, since all stems end in consonants.
Step 3 yields “BULD LIBR COCT”

Final result is BULDLIBRCOCTB$$$

EXAMPLE 2: “ANCIENT HUNTERS OF THE FAR WEST ”

Step 1 yields “ANd HUNT FAR WEST”

Note that even though lENT is in table 2 .6 .2 , the i is

retained to keep the stem four characters long. ENT

is also in the table.

No further compression of this title is needed.

The final result is ANCIHUNTFAR$WEST
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Table 2 — Deleted Suffixes and Inflections

—ic — lye —in —Ct

—ed —ative —a m —e at
—aged —ize —on —an t
—oid —ing —ion —ent
—ance —og —ation — ient
—ence —log —ship —ment

—ide —olog — er —ist
—age —ish —or —y

—able —al —s —ency

—ible —ial —es —ogy
—ite —ful —ies —ology
— m e  —j am —ives —ly
—ure —urn —ess —ry
—ise —ium —us —ary
—ose —an —ous —ory

—ate  —ian —ious — ity
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EXAMPLE 3: ‘ ANALYZING PHILOSOPHICAL ARGUMENTS”

Step 1 yields “ANALYZ PHILOSOP}L ARCU ”

Step 2 gives no change

Step 3 yields “ANAZ PUPH ARGU ”

The final result is ANAZPHPHARGU $$B$

Note that Y is regarded as a vowel in step 3.

Author names (both personal and corporate) are compressed by the algorithm

above , with some modifications. Meeting names (symposium, conference , e t c . )

are considered as a secondary subset of nonsignificant words . Names of organ-

izational divisions (bureau, department, etc.) are treated similarly.

Rules 1 and 2 are applied to corporate names but not personal names, whereas

rule 3 is applied to both types of author names. Only the last name of an

author is compressed.

EXAMPLE 1: POIJRADE, RICHARD F.
Only the last name is compressed. Steps 1 and 2 are not applied to a

personal name. Step 3 gives POUD.

EXAMPLE 2: HEINRICHS
Step 3 gives HCHS

Searching is accomplished by comparing the compressed bibliographic information

supplied by the user to entries in the compressed catalog file. A “retrieval

value” is calculated based on how well the two items being compared agree.
If the retrieval value is greater than or equal to a threshold, a match is

declared and the search terminates.

The rules for calculating the threshold are not described clearly. They

appear to be: For a title which compresses to three or four 4—character words

use a threshold of 12, for a title which compresses to two 4—character words
use a threshold of 10, and for a single 4—character word compressed title use 6.
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The retrieval value is calculated by adding / 
‘-“ the retrieve total for

every 4—character word in which the query and catalog title entries agree,
and adding 2 to the total for every agreement in the author field . The

search a;gorithm reorders the title words in an attempt to obtain a match

and raises the threshold by an unspecified amount when it does so.

EXAMPLE 1
Catalog entry: ANALYZING PHILOSOPHICAL ARGUMENTS,

MCGREAL

Query entry: ANALYZING PHILOSOPHICAL ARGUMENTS,

MCGREAF

Compressed catalog entry : ANAZ PHPH ARGU MCGL

Compressed query entry: ANAZ PHPH ARGU MCGF

Threshold 12 —

Agreement in 3 title fields gives retrieve contribution of 12.

Disagreement in author field gives retrieve contribution of 0. —

Total retrieve value = 12

Retrieve is successfui (retrieve value 2 threshold)

EXAMPLE 2

Catalog entry: THE AMERICAN THEATER TODAY , DOWNER
Query entry: THE AMERICAN THEATRE TODAY, DOWNER

Compressed catalog entry : AMER THET TODA DOWR
Compressed query entry: AMER THTR TODA DOWR

Threshold 12
Agreement in 2 title fields gives contribution of 8.

Agreement in author fields gives contribution of 2.

Total retrieve contribution — 10

Retrieve fails.
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This example illustrates the problems of the method as described here. Webster

lists both spellings of “theater” as correct. The thresholds seem high, and

there does not appear to be a good reason to weigh the retrieve contributions

from the author and title fields differently. In catalog searching, false hits

are much less severe faults than retrieve failures, since in the latter case

a full manual search must be undertaken to verify that the reference is not

present. If the search procedure lists all matches found , the false hits can

readily be eliminated by a short manual inspection of the entries.

Published Performance: Ruecking used a source file containing 4,800 titles.

His query file contained 2,874 items. Of these, 1,392 were actually in the

data base of 4,800 titles. The search algorithm recorded 1,184 correct hits

and 16 false hits. Thus it correctly located 1,184 titles , failed to locate

192 titles and incorrectly located 16 titles. In this test the algorithm was

successful about 85% of the time and its accuracy was 98.7%. The accuracy could

have been improved to over 99% by rectifying some oversights in the compression

routines. Ruecking concluded that the effect of spelling errors had been re-

duced by 30% and that the use of added author and title entries was essential to

good performance of the algorithm.

A severe limitation of Ruecking’s experiment was the small size of his source

file (less than 5,000 titles). As the size of the source file grows it is

inevitable that more false hits will be recorded , reducing the accuracy.

Lipetz et al ran a small scale test of Ruecking’s algorithm on a large source

file (3.5 million books). For a “rigidly randomized” sample of library users,

they recorded the original bibliographic information available to the searcher .

They selected the 126 manual catalog searches in the sample which had been

successful. The original bibliographic information was hand encoded according

to Ruecking’s algorithm and compared with the hand—encoded catalog card infor—

mation. They could then determine whether a machine search would have success—

fully retrieved the correct catalog entry or not. This was all that could be

determined — no attempt was made to see if false hits were likely for those

cases where the correct card would not have been retrieved .
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Of the 126 searches in Lipetz ’s sample , Ruecking ’s algorithm would have been

successful in 88 cases. This is a recall rate ot 70%. Some of the 126

searches involved foreign language references. However, 106 searches were

for English language references and 77 of these were retrieved — a recall

rate of 73% . The compression coding had “healed” mismatches of data and

allowed retrieval in 11 cases out of the 49 cases where there were data mis-

matches. The recall rate could have been raised to 76% making some simple

modifications to Ruecking ’s algorithm.

References:

Lipetz, B., Stangi, P. and Taylor, K.F.

PERFORMANCE OF RUECKING’S WORD COMPRESSION METHOD WHEN APPLIED

TO MACHINE RETRIEVAL FROM A LIBRARY CATALOG ; Jnl. Library Auto-

mation, V. 2, pp. 266—271, 1969.

Ruecking, F. H., Jr.

BIBLIOGRAPHIC RETRIEVAL FROM BIBLIOGRAPHIC INPUT: THE HYPOTHESIS

AND CONSTRUCTION OF A TEST: Jnl. Library Automation, V. 1, pp. 227—

238 , 1968.
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VARIABLE LEN GTH CODES

Introduction

Several of the compression techniques discussed in this document can be

implemented with either fixed length codes or variable length codes. If

the statistics describing the usage of the source alphabet are known accurately ,

the use of a correctly chosen variable length code will always produce additional

compression over that obtainable with a fixed length code, unless the source

letters are all used with equal frequency. The use of a variable length code

involves additional processing overhead in the encoding and decoding operations.

Whether this extra processing time is worth the compression achieved is a matter

fo r the user to decide . The improvement in compression tends to be greater if

the probability distribution of the source alphabet is highly skewed.

If the source letters are used wIth about the same frequency,  l i t t le  extra com-

pression will be achieved by using a variable length code. From this point of

view, character string substitution with a fixed length code may be regarded as
a method of transforming the original source into one which has a reasonably

uniform probability distribution of its source alphabet. The character strings

which are mapped into a single codeword in the fixed length code are chosen

so that the probability distribution of the codewords is as uniform as possible.

The choice of a source alphabet depends in part on the number of codewords

available. Within limits, a large source alphabet will give more compression

than a small one . (Schwartz and Kleiboemer, 1967) The extra source symbols

(character strings to be encoded into one codeword) must be chosen to maximize

the compression. Choosing an appropriate source alphabet is separate from but

related to the problem of choosing a code to use. In this chapter , some of

the available variable length codes will be described. It will be assumed that

the source alphabet has already been chosen and that a sample of the file has

been used to generate a probability distribution for this source alphabet
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The codes considered here will be instantaneously decodable codes, or codes

with the prefix property (often just called pref ix codes). A binary string

is 3 prefix of another binary string if the second string is just the first

string with some digits added on the end of it. For example, the prefixes

of 1001101 are 1, 10, 100, 1001, 10011, and 100110. If a prefix code con-

tained 1001101 as a codeword, then none of its prefixes would be codewords

and 1001101 would not be a prefix of any other codeword . This restriction

means that a codeword can be recognized as soon as it is received — there is

no decoding delay. Nonpref ix codes can be found which will giv~ more com-

pression than prefix codes, but there is no systematic way to construct them.

Decoding them is also more complex because a delay is usually involved —— the
decoder cannot decode a received codeword until it has checked the following

received digits to make sure that the codeword recognized is not in fact the

prefix of a longer codeword. For some codes, it is not always possible to

decode them because there exist sequences for which the delay is infinite.

Because there is no systematic way to construct a very effective nonprefix

code with a known maximum delay, only prefix codes will be considered further.

The best known variable length compression codes are Huffman codes. (Huffman ,

1952; Abramson, 1963) These codes are optimal in the sense that for a given

source alphabet with a given probability distribution, Huffman codes provide

the maximum compression achievable by a prefix code. (Note that a different

source alphabet for the same source might give better compression. This is

why the source alphabet must be chosen carefully.) There are some tricks that

can be used to reduce considerably the overhead involved in using Huffman

codes. These will be described in the section titled Huffman Codes.

Although Huffman codes are optimum, there are other codes which are only slightly

less effective and which present some advantages. Gilbert and Moore described

a way to generate a code which is “alphabetical” in the sense that the codeword

for source letter j represents a larger binary number than the codeword for

source letter i if j)i. For example , the codewords for b and c may be 10

and 110 respectively. The Gilbert—Moore codes are “strongly alphabetical” in

the sense that sorting the left—justified encoded words into numerically in-

creasing order is equivalent to alphabetically ordering the source words.
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See Gilbert—Moore Codes for a discussion of these codes .

It is possibly to modify a Huffman code in ways which make it easier to de-

code, and only affect the compression slightly. The two principal modifica-

tions are:

1. Limit the maximum length of the codewords.

2. Make all codewords of a given length have the same prefix.

For example, the codewords may be limited to be 12 bits or shorter, and all
codewords longer than 4 bits may be chosen so that the first 4 bits are char-

acteristic of the length of the codeword. The first action in decoding will be

to examine the first 4 bits of the codeword and jump to the appropriate de-

coding table. Provided these two restrictions are not used too stringently,

compression will be nearly optimum. The effectiveness of the second restric-

tion depends on the decoding algorithm used. For the efficient decoding algo-

rithm in the section entitled Huffman Coces , this restriction does not

provide a useful gain in decoding speed.

The remainder of this chapter considers Huffman codes and their implementation,

modifications to Huffman codes , state dependent coding and , finally, Gi lber—

Moore alphabetical codes. Some of the techniques discussed here may be pro-

tected by patents (see references).
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Huffman Codes

The algorithm for generating a }luffman Code is moat easily understood by
following an example. Assume a 7—letter alphabet, with the following prob-

ability distribution:

A 0.3

B 0.15

C 0.1

D 0.15

• E 0.25

F 0.04

G 0.01

Sort the alphabet by probability, as in the left—hand column below:

A 0.3 A 0.3 A 0.3

~ 
} .. _~. I D  ~I:~~~]__~~

_____ 1
~~~~

* 0.05

1*
2* 015

Now merge the two states (letters) at the bottom of the list to form a new

state with probability equal to the sum of the probabilities of the two

merged states. Place this new state in its correct place in the alphabet

according to its probability. If it has probability equal to another state

in the list, place the new state above the old state(s) which have equal prob—

ability. Schwartz (1964) shows that this will minimize the codeword lengths.
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Continue the merging process on the bottom two states in the list until two
are lef t, as shown in the example. This merging process is shown below in
terms of a binary tree.

6*

5* 4*

3* A E 2*

F G

We can use the tree to assign a code. A left branch results in the assign-

ment of a 0 and a right branch results in the assignment of a 1. The code is:

A 01

B 000 -

C 111

D 001

E 10 -

F 1100
C 1101

For decoding purposes, it is more convenient to have a different code with

all the codewords of the same length adjacent to each other , and with the

length of the codewords increasing from left to right across the tree. The

rearranged tree and code are:
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G i].i1

In going from the original tree to the new tree, the only information that is
retained is the length of the codewords. This information can be found from

the original merge graph by counting the number of merges each state undergoes.

A tabular method for doing the merges and determining the codeword lengths is
described by Schwartz and Kallick (1964). For the example just worked, their

merge algorithm produces the following tables:

Rank-Probability Table Combined Probabil~~ y Node Table

Pass 1 R P R P [M R
1 

R2
A 0.3 1* 0.05 Li* G ~~

‘

E 0.25

B 0.15

D 0.15

C 0.1

F 0.04

G 0.01

4
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Rank-Probability Table Combined Probability Node “able

Pass 2 

~ 

.~~~~~ 

_ _ _ _ _ _ _ _ _ _ _ _

I 1* 0.05

Pass 3 R P R P 
— 

M R
2

A 0.3 3* 0.3 T~~ G

E 0.25 4* 0.4 2* 1* C

2* 0.15 3* 0 B

8 0.15 4* 2* E

D 0.15 ___

Pass 4 R P 
- 

R P M R
1 

R
2

4* 0 .4  5* 0 .6  1* ~ F
3* 0 .3  2* 1* C
A 0.3 3* B D

4* 2* E

5* A 3*

Pass 5 R 
- ~~P J R P ] M j R 1 R 2

5* 0 .6  L 6 *  1 1* G F
4* 0.4 2* 1* C

_ _ _ _ _ _  _ _ _ _ _ _ _  I 
- 3* B D

4* 2* E
5* A 3*

- 6* 4* 5*

The initial rank—probability table is transformed into the node table . The
process can be speeded up by merging more than one pair of states in each pass.
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Successive pairs in the rank—probability table may be merged provided that

the greater probability of a pair is less than the sum of the initial com-

bination in the pass. This occurs in pass 3.

The node table is searched with the routine shown in figure 1. This routine

determines the lengths of the codewords for each initial state by finding the

states at which there is a change in the length of the codewords. This

routine examines R
1 

before R2, so in order for it to work correctly the node
table must be filled in by writing the upper state of a combined pair in R

2
and the lower state in R

1
. This makes probability (R

1
)�...probability (R2)

at any M.

The output of the routine is a list of codeword lengths and letters. For

example worked previously, it is:

1,0; 2,E; 3,C; 4,G

The letters are the last letters (going down the initial ranking of the source

alphabet) which have a codeword of the length associated with the letter. Thus

the above list means that:

A and E have codewords of length 2,

B, D and C have codewords of length 3, and

F and C have codewords of length 4.

The routine searches the segment of the node table from M1 to M2 
for the first

occurrence of an unstarred state which corresponds to the last codeword of

length i. The segment is then searched for the first occurrence of a starred

state which is taken as M
1 
for the i+l’th step with M

2 
equal to the previous M

1
.

1. The first code assigned consists of i1 
zeros where i

1 
is the shortest

codeword length.

2. Subsequent codes (if any) of length i1 
are obtained by binary

addition of 1 until all codes of length i
1 
have been assigned.
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Figure 1. Node Table Search Routine
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3. The next code assigned is obtained by binary addition of 1 fol-

lowed by aff ixing i
2 

— i
1 
zeros where i

2 
is the next codeword length.

4. Step 2 and 3 are repeated for all values of i which are codeword
lengths.

These rules generate the code previously obtained using a iearranged binary

tree. This algorithmic definition of a liuffman code allows the code to be

stored very compactly without using a code table. We need only store the seg-

ments of the code alphabet (in the order in which codewords are assigned)

together with the length of the codewords to be assigned to each segment.

Decoding is also very simple with this description of the code. The decoding

algorithm is described by Cullum (1972): -

1. Set I. to the shortest codeword length. Set p = —1.

2. Compare the first i digits in the message with the codeword of that

length. If the i message digits are smaller than or equal to the

codeword, then they represent a codeword of length i and can be de-

coded by finding the (j—p)th letter in the set of codewords with
length i, where j is the binary value of the message digits. Go to

step 4.

3. If the message digits are greater than the codeword in step 2, set

p — one less than the binary value of the first codeword of length

i’, where i’ is the next codeword length above i. (Usually 1’ —

i ÷ 1). Set i i’ and return to step 2.

4. If the message has not been completely decoded, remove the decoded
word from the message and return to step 1.
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This algorithm will be illustrated by decoding the message 111000101 using

the example code developed earlier.

Step 1: i 2  p — —l j — 11
2 

—

Step 2: E has codeword 012, so j> E

Step 3: p — 100
2 

—l — 11
2 

—

i =  3—4 i

Step 2: i = 3 j~~ll12 = 7

C has codeword 110, so j > C

Step 3: p = 1110—1 = 1101
2 
= 13

>1 -

Step 2: i = 4 j  = 1110 = 14
G = 1111, so codeword is (14—13) or 1st in the group of codewords

of length 4. This Is F.

Step 4: Discard 1110.

Step l: i = 2  p — — 1  j 0 0

Step 2: E has codeword 01, so codeword represents the (0—(—l)) or 1st

codeword in the group of codewords of length 2. This is A.

Step 4: Discard 00.

Step l: i — 2  j— 1 0
2

2

Step 2: E has codeword 01, so j > E

Step 3: p ll
2

3

1
1

3 > i  -

110
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Step 2: i 3  j— 1 01
2 — 5

C has codeword 110, so codeword is (5—3) or 2nd codeword in
group with codewords of length 3. This is D.

Step 4: The message is decoded as FAD.

Another algorithm for decoding Ruffniaa codes is described in the section

Gilbert—Moore Alphabetic Codes. This alternative algorithm has a much more

complex set of decoding tables than the method just discussed, but the alter-
native method does not require that the codewords be assigned in order of in-

creasing length as is necessary for the method just given. The method in the
section referred to above is, in fact, applicable to any prefix code.
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Modified }Iuffman Codes

The advantage of modifying }Luffman codes so that all codewords of a given

length have the same prefix is apparent from the decoding algorithm. Once the

length of the codeword is known, decoding is immediate using step 2. Long

searches for the correct value of i can be eliminated if we can determine i

directly from the first few bits in the message. However, the length indi-

cating prefix cannot be too short unless a significant sacrifice in compression

is acceptable. This means that only the longer (less common) codewords will

have a length indicating prefix, so the actual savings will be small.

Limiting the maximum length of the codewords is primarily to avoid excessive

bit stream manipulation every time a very long codeword is encountered . If

we have a source alphabet of N letters, it is theoretically possible to have

codeword lengths up to N—l. Since the average length will be more like log2
N,

such long codewords are inconvenient to handle. Limiting the codeword length to

12 bits barely affects compression for a code with a source alphabet of 100

characters or less.

Two other features are often useful in Huffman codes. These are a copy feature

and a run length coding feature. The copy capability can be used to reduce the

number of symbols to be Huffman encoded . The less frequent symbols are grouped

and their probabilities are added so that only one codeword is assigned to the

group. Each time a letter in t-he group has to be encoded , the Huffman codeword

for the group is written and it is followed by the character to be encoded .

The Euffman codeword for the group is a “copy code” indicating that the character

following is not a Huffman codeword.

Run length coding can be achieved in at least two ways. One of the Huffman

codewords may be designated as a “repeat code.” A string of repeated char-

acters can be encoded as the repeat code followed by the repeated character

and a (fixed field) binary count of the number of repeats. Alternatively, each

character likely to be repeated can be assigned a repeat code of its own. Thus

there can be separate codewords for strings of blanks, zeros, etc. These code-

words need only be followed by a (fixed field) binary count of the number of
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repeats. The two methods can be combined with, for example, separate code—
words for strings of blanks and strings of zeros plus a repeat codeword for
strings of any other character.
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State Dependent Coding

This method, attempts to take advantage of the dependencies between adjacent

letters in a nonrandom character string by using several variable length

codes to encode the string. The code used to encode a letter depends on the

previous letter encoded. In the most elaborate scheme, there is a separate

Hut fman code associated with each of the N letters in the alphabet, considered

as preceding letters. To derive the code for “e,” for example, the file is

scanned and a count is made of the number of times each character immediately

follows an “e.” These statistics are then used to derive a Huffman code for

the alphabet. Similarly, all other letters in the alphabet have Huffman codes

associated with them as preceding characters. Each letter in the N—character

alphabet has N different codewords, and the codeword used to encode it is

determined by the letter which precedes it. For example, when “t” is encoded ,

if it occurs as “at” the code associated with “a” is used but if it occurs

as “at” the code associated with “e” is used. Similarly, if “t” occurs as

“att,” the c~4e assoc
iated with “a” is used and then the code associated with

“t” is used. - - 
- 

-

The reason for using this technique is that it gives substantial additional
compressjon~over simple Huffman 

coding. The frequency distribution of the

character set varies depending on the preceding character. For example, the

frequency distribution of characters as first letters of a word (i.e., following

a blank) is quite different from the overall frequency distribution. (“e,” the

most commonly used character in English, is relatively uncommon as the initial

letter of a word.) As a second example, consider the letters following a “t.” 4
“t” is the second most frequently used letter in English text , but is

relatively rare following another “t .“ “h” and vowels are much more coornon

letters to find following a “t.” Using a separate code for each preceding

character takes advantage of the dependencies built into the language and im-

proves the compression.

The language of the discussion that follows is simplified by the idea of the

State of the encoder. We associate a state with each character and then say

that the process of encoding a particular character leaves the encoder in the
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state associated with that character. If we assign state 1 to a blank, state
2 to “a,” state 3 to “b ,” state 4 to “c ,” etc. then encoding “a” leaves the

encoder in state 2, encoding “f” leaves the encoder in state 7, etc. To say

that the encoder is in state 8 merely tells us that the encoder has just en-

coded a “g.” The usefulneas of the concept of the state of the encoder will 4
become apparent shortly.

Since we originally associated a set of Huffman (or other variable length

compression) codes with letters occuring as preceding charactt±rs, we can

instead associate the codes with the states. Then, instead of saying that the

code used to encode a character depends on the previous character encoded, we
say that the code used depends on the state of the encoder.

The discussion so far has assumed that there is a separate state for each char-

acter. This maximizes both the compression and the overhead. It is possible

to merge states which have similar codes so that the overhead is reduced

without losing very much compression. In general, then, a state may contain

one character, several diff erent characters , or even some character strings
(we will not investigate this last possibility). The fewer the number of

states, the smaller the overhead and the greater the loss in compression. The

state merging process is quite complex, as will become apparent.

To decode correctly, the decoder must know the state of the encoder when it

did the encoding. This is usually accomplished by using a convention such as

starting each record in state 0, a special state to indicate the start of a

record.

The power of this method of compression is illustrated by the following test

results. Mommens and Raviv (1967) compressed a short section of text which

was originally in 8—bit ASCII. Using a single Huffman code, they achieved a
compression ratio of 1.88 (4.25 bits/character). Using two codes (i.e. two

states), they achieved compression ratios of 2.62 to 2.16 (3.05 to 3.7 bits!

character) depending on the size of the decoding tables used.

- 
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— The disadvantages of the technique are that the size of the decoding tables

is increased substantially and generating the codes is a much more complex

procedure than generating a single Huffnian code. (The example later demon-

strates this point.) Encoding and decoding are also considerably slower than

in a simple Huffman code. Unfortunately, there is almost no published data

by which to evaluate this technique. The test cited above was too small to

do more than indicate the desirability of further research. This technique

is an alternative to fixed length encoding of character strings and takes the

dependencies between adjacent letters into account in a completely different
- - way. The theoretical basis for the method is discussed by Ott (1967) and the

implementation Is described in Mommens and Raviv (1974). They describe its

use with Huffman codes, but any variable length compression code could be used.

The description and example which follow are adapted from their report.

We start by assigning a separate state to each letter in the alphabet. Since

some states have a low probability of occurrence, we can use a suboptimal code

and hardly affect the overall compaction. In addition, two or more states may

have very similar conditional probability vectors, i.e., very similar coding

tables associated with them. Therefore, the optimal code for one of these

states may constitute a good suboptimal code for the other , and using one cod ing

table for these “combined” states would not result in a significant loss of

compaction.

In general, we can reduce the original number of states N to a much smaller
number N’ using a step by step clustering procedure. The following is a clus-

tering procedure which is clearly not optimal but is known to give good results.

At each step we combine two states into one in such a way that we keep the loss in

compaction to a minimum. The frequency of occurrence of a character in the new

combined state is equal to the sum of the frequencies of the character in the two

original states. This clustering procedure is illustrated in the example which

follows. At the beginning of the clustering procedure, since we combine either

very infrequent states or states whose conditional probability vectors are

similar, we hardly lose any compaction; but as the number of states diminishes,
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the loss in compaction at each step of clustering gets bigger, while the
gain in encoding and decoding table sizes stays constant.

It is possible to reduce this effec t by ordering the conditional frequency
vectors In descending order before adding them. When we combine states whose
conditional frequencies are ordered, the order is maintafned. The “most

frequent character” in state S1 and state will be the “most frequent char-
acter” in the combined state S12, but their true identity will be lost unless
we keep track of the ordering procedure. Therefore, we have to keep an extra

mapping table containing a mapping vector for each state that we order. Using

this procedure, we reduce both the reduction in the size of the encoding and
decoding tables and the loss in compaction, but the net result is very
favorable, i.e., the reduced loss in compaction outweighs the increase in
coding table storage required to keep the mapping table (see figures 2 and 3).

This two—step clustering procedure can be summarized as follows:

1. Combine states step by step up to a certain number M.

2. Order the conditional frequencies for each of these M states and keep

track of the sorting, i.e., keep M permutations.

3. Resume the clustering procedure, now on the ordered states, to a
final number W of states (we refer to these final combined states

as “coding sets.” The choice of the numbers M and W depends mainly

on the amount of compaction that we are.ready to give up for a

specific reduction in space requirements for the encoding/decoding
tables. -

Note that as long as the main upper curve in figure 3 is steep, i.e., the loss
in compaction is small and the gain in coding table size is large, it does not

pay to reorder the frequency vectors and incur the mapping table overhead.

Clearly, the smaller the number of states left after the first clustering

stage (at the time of reordering) the smaller the mapping table which must

be kept.
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Example of Code Set Reduction By State Merging

The following example uses a short segment of text as the data file t i  be

compressed. Since there are 33 different byte identities in the sampLe,

we have 34 initial states. State 0 corresponds to the first characttr of a

line , state 1 to a character preceded by a blank, state 2 to a char :cter pre-
ceded by an “e”, etc., following the order in which the rows are 1~3ted in
table 3. These statistics are displayed in table 3 where each col tmn repre-

sents a state and each row a -character. The two rows at the bottc~n of the

table represent the number of characters in each state and the to~al number

of bits needed to code all the characters in each state using a separate

Huffman code for each state. If we add up the numbers in the bottom line

of table 3 we obtain 4343 , which is the total number of bits ne~ded to en-
code the sample file using 34 states, yielding a storage requi:ement of 3.05

bits/character.

The clustering procedures are fully illustrated in figures 2 and 3. We shall

show one particular path, consisting of a first reduction to nine states,
reordering and a final reduction to two states.

For each step of the first clustering, table 4 shows the two states which

are combined, the extra number of bits required as a result of this step ,
the total number of extra bits required up to this point of the procedure

and, f inally ,  the size (in bytes) of the encoding/decoding table if we stop

at this point. The details of choosing which states to combine and updating

the tables are given later.

At this point, table 3 has been reduced to table 6, which shows the statistics
for the combined states. In table 7 we have the nine states after clustering

and an indication of which of the original 34 states belong to each cluster.

Af ter the reordering, table 6 becomes table 8 and we have to keep track of the
reordering, with tables equivalent to table 9.
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Table 4 — First Clustering Procedure

states combined extra bits total no. of E/i) tables if clustering
required extra bits up stops

to this point
— 

IS 33 0 0 2213 
- -

23 32 0 0 2203
29 30 0 - 0
II 2” I I 21 1,7

31 2 3 2 111
22 23 2 5 2101
22 2/ 2 7 2071
21 26 3 10 2033
9 19 6 16

21 72 8 2~’ 1903
0 75 9 33 1857
28 29 9 42 1815
16 lB 10 52 1 /81
II 12 I I, 66 1715
9 2 1 17 83 1637

~l, 16 
- 20 103 1585

13 17 21 12’, 151,1o 6 24 148
IS 20 27 1 7.5 11 , 11

• 7 28 28 203 13535 14 33 236
2 15 I,:, 280 12 13
5 13 ‘i6 326 

- 

114 5
4 8 108 1
I 10 60 1,39 1005

Table 5 — Second Clustering Procedure

low states combined extra bits total extra size in bytes of E/D
reaui z~ed bits to this point tables if clustering sto~a

— 0 4 I ‘,~o l0”3
0 5 5 445 -

0 6 5 450 .895
5 8 6 456 851
3 7 8 ‘p6’s 80’,
0 2 18 482 - 68/
0 I 26 508 546
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Table 6 — First Clustering Table 7 — Original State to
Results Intermediate State

Mapping

New States 
New States

0 1 2 3 1 . 5 6 7 8  
0 1 2 3 4 5 6 7 8

b 7 0 6 6 1 7 1 1 2 0 16 6/ 22 VI 0 1 2 3 1 . 5 7 9 1 1t 0 13 I’ 15 4 52 9 1 4 53 6 10 15 8 13 28 21 12T 7 39 I 0 29 6 II 20 0 “ 25 20 - 14 29 22 24A 0 29 3 II 0 28 0 2 19 31 33 17 30 19~ II 533 3 1 8 13 0 0 0 16 260 242 3 3 420 5 0  3 .E 18 27N 15 720 0 38 0 I 0 0  
23I 2 1 7  2 1 2  025 2 5 1 1  0 32S 3 1 3 23 5 1 1  2 5 2 2 -  — ___________________

C 6 27 5 0 18 I 6 0 0 -

H I 16 0 Iii 0 2- 0 2 0o 21 7 6 0 I 6 6 0 0 -
P 6 9 I. I I 1. 0 1. 08 5 11. 1 0 3 3 0 0 0 Table 8 — Reordering ResultsF 12 4 8 0 I 0 0 0 0
1 0 5 2 0 1 0 7 0 0 0
N 3 5 8 0 6 0 0 ) 0VI

W 3 1 9 0 0 0 0 0 0 0
G 1 2 I 0 2 0 11. I 0 

New StatesU 2 5 0 0 0 1 7 0 5  -

0 0 2 0 2 2 1 . 6 0  0 1 2 3 4 5 6 7 8C
U Y 0 1 2 4 1 7 0 0 0  — _ _ _ _ _ _ _ _ _ _ _ _ _ _

• 0 0 2 0 0 3 2 ii 21 42 66 41 38 52 16 67 53V 0 2 3 0 4 0 0 0 0 15 39 33 17 29 28 14 20 22( 0 5 0 0 0 0 0 0 0 I? 29 23 15 lB 25 II 14 198 0 ’ 2 0 0 0 0 I 0 0 11 27 20 12 18 20 9 6 1 1
0 0 3 0 3 0 0 0 0  7 1 9 8 1 1 11 2 0 7 5 5) 0 0 I 0 0 0 0 3 I 7 17 8 5 II 13 6 1. 3.0 0 0 4 0 0 0 0 0 0  - 6 1 6 6 4 1 0 7 6 4 2

C 1 0 0 0 0 0 0 0 0  
~, 6 I 4 5 3 6 7 5 3 I/ 0 0 0 0 0 0 0 1 0  ‘ 5 1 3 4 3 4 6 5 2 1V -• 0 0 0 0 0 0 0 ) 0  
~,, 3 I 3 4 l 4 6 4 2 0

,,
k p  0 0 0  0 0  0 0 0  

~ 3 9  4 0  1. Ii 2 2 0

~ 3 7 3 0 3 3 2 ) 0
~~~ 7 3 0 3 3 1 1 0

2 5 3 0 . 2 2 I I 0
2 5 3 0 2 2 0 1 0
1 5 2 0 1 2 0 0 0
1 5 2 0 ) 1 0 0 0

- 1 5 2 0 ) 1 0 0 0
I 1. ‘2 0 I 0 0 0 0
0 2 2 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
0 7 1 0 0 0 0 0 0
O I l  0 0 0 0 0 0
0 0 ) 0 0 0 0 0 0G o  0o o  0
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We are now ready to start the second clustering. The results of this pro-

cedure are illustrated in table 5 (beneath table 4). Notice that the size

of the encoding/decoding table at the top of table S (after the first step

of the second clustering) is slightly higher than the value at the bottom

of table 4. This is due to the fact that now we have to add th~ size of

the “unscrambling tables” table 9. The difference is small, however,

since we keep this information only for the reordered states which are com-

bined with one another (after the first step, we have to remember what

happened to former state 4 only). States are not reordered until they are

merged.

We can see in more detail how the clustering procedure works by looking

at the second stage (where the matrices are smaller). For each possible

pair of states, we compute how many extra bits are needed to code the

sample if these two states are combined. (We can use any other e’1uiv~lent

“distance” for efficiency in computation.) This gives us the triangular

matrix table 10. The minimum value in this matrix tells us which states we

shall actually combine, in this case 0 and 4. Next, we update the matrix.

Updating column 0 requires that we derive a new Huffman code for the combined

state and recalculate how many extra bits are needed if we combine the new

state 0 with one of the other states in the set jl,2,3,5,6,7,8,}. We update

column 0 (corresponding to the new combined state) and ignore line and col-

umn 4 (corresponding to the “absorbed” state). Here we have a symbolic —l

to indicate ignore. Thus we obtain table 11. Then we select the minimum

of the new matrix, 5, which corresponds to the couple 0—5 etc.

In this example we continue the second clustering procedure until two

clusters are left. Now we produce the final codes referred to as coding

set I and coding set II and displayed on table 13.

The last thing we shall show is how to encode, and decode. The data

string is “$IN~GENERAL”.

$ is in the initial state 0 (start of record), state 0 after the first

- 
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Table 10 — Distance Between Table 1,1 — Updated DistanceTables After 0—4 Merge

State 1 3 1 19
2 6 20 2 11 20
3 17 4 3 21 3 17 43 21
4 1 17 8 16 4 ‘-1 —l — J —l
5 5 29 10 9 4 5 5 29 10 9 —1

6 6 12 12 9 4 7 6 6 12 12 9 —1 7

7 38 56 26 7 37 40 33 7 38 56 26 7 —l 40 33

8 43 67 33 6 36 39 34 10 8 43 67 33 6 —l 39 34 10

0 1. 2 3 4 5 6 7 0 1 2 3 4 5 6 7

State State

Table 12 — Updated Distance

After 0—5 Merge

State 1 33
2 14 20
3 16 43 21 -

4 —1 — 1 —1 -‘1
5 —1 — 1 —1 —1 —1
6 5 12 12 9 —1 — 1
7 38 56 26 7 —1 — l 33
8 42 67 33 6 —1 —1 34 10

0 1  2 3 4  5 6 7
State
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Tabel 13 — Final Codes

Cod i ng Set Coding Set II

(1) (2) (3) (4) (1) (2) (3) (4)
I 235 2 ii 1 161 1 I

2 158 3 101 2 59 3 OH
3 118 3 100 3 48 3 010
4 105 3 O Il  4 29 4 0011

5 72 4 0101 5 21 4 0010
6 62 1* 0100 - 6 12 5 00011

7 51 5 00111 7 10 5 00010
8 43 5 00110 8 7 6 000011

9 37 5 00101 9 6 6 000010
10 31, 5 00100 

- 
10 3 7 0000011

II 26 6 000111 1) 2 7 0000010
12 21 6 000110 12 I 8 00000011
13 19 6 000101 13 I 8 00000010
1e 15 6 000100 14 1 B 0000000)

15 14 6 000011 IS I 8 00000000

16 1) 7 0000101

17 10 7 0000100

18 ID 7 00000)1 -

19 8 7 0000010

20 1 8 00000011 Intermediate states 3,8,7
21 3 8 oooo~o 

belong to Coding Set II.

22 3 8 00000001

23 2 9 000000001 -

24 1 9 000000000 
.

Inter~~dIate States 0,4,5,6,2,1 belong to codi ng -

set I.
(I) Character
(2) Relative frequency 

..,
(3) Length of code word
(4) Code word.
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1
clustering (table 7) and after the second clustering in coding set I

(table 13). Looking in table 9, we see that a $ (character 1 in table 3)

occupies the fifth position in state 0. Therefore, we shall use the fifth

code word in coding set I, i.e., 0101. The next character, an ‘V being

preceded by a blank, is in initial state 1, intermediate state 1, coding set I.

After reordering, I (which is the 8th character in table 3) occupies the 6th

position in state 1. We code it as the 6th code word in coding set I. (We

will say that we encode it as a 6 in coding set 1.) Next :

—

N initial state 8, intermediate state 4, coding set I is a 1

B initial state 7, intermediate state 6, coding set I is a 1

C initial state 1, intermediate state 1, coding set I is a 20

E initial state 19, intermediate state 7, coding set II is a 3

N initial state 2, intermediate state 2, coding set I is a 4

etc. which yields

OlOlOlOOllll000000l lOlOOllOlllOllOlOOlllOl 1

To decode, we obviously start with a character at the beginning of a line:

we know that the initial state is 0 — intermediate 0 — coding set I. There—

fore, we decode using the table corresponding to the first group. There we

find that 0101 is the codeword for 5. Referring now to table 9 we find

that the fifth number in row 0 is 1. Finally, using table 3, the char—

acter is a blank. We know that the second character will be in initial

state 1, intermediate state 1, coding set I, so we know which table to use

to decode. We find a 6, which , referring to the row 1, of table 9, leads

us to decode an I; etc.
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GILBERT-MOORE ALPHABETIC CODES

These codes are variable length binary codes which give nearly as much

compression as Huffman codes, but which have an alphabetic property.

Binary ordering of encoded words (left justified) is equivalent to alpha-

betic ordering of the original words. This property makes these codes

suitable for compressing alphabetic lists which are subject to searching,

• such as indexes of n~~es. The following description of the general code

generating algorithm is taken from the paper by Gilbert and Moore (1959).
• It is illustrated by an example which follows the description of the

algorithm. A “prefix set” is a set of letters which have codeword-s

beginning with the same prefix.

In general, the method builds up the best alphabetical encoding for the

entire alphabet by first making best alphabetical encodings for certain

subaiphabets. In particular, the subaiphabets considered are only those

which might form a prefix set in some alphabetical binary encoding of the

whole alphabet. Since only those sets of letters consisting exactly of

all those letterswhich lie between some pair of letters can serve as a -

prefix set, we call such a set an “allowable” subaiphabet.

We denote the allowable subaiphabet consisting of all of those letters

which follow L1 in the alphabet (including Lj itself) and which precede

Lj (again including Lj itself) by (Li ,Lj). When referring to the ordinary -

English alphabet, the symbol # is used for the space symbol. Thus, (#, B)

is the subaiphabet containing the three symbols space, A and B. (A,A)

denotes the subaiphabet containing only the letter A.

If it were desired to find an optimum encoding satisfying certain kinds

of restrictions other than the alphabetical one, different allowable

subaiphabets could be used, with the rest of the algorithm remaining

analogous. This method of building up an encoding by combining encodings

for subaiphabets is analogous to the method used by Huffman except that he

was able to organize his algorithms such that no subaiphabets were used
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except those which actually occurred as prefix sets in his final encoding.

However, we consider all allowable subaiphabets, including some which are

not actually used as part of the final encoding.

The term “cost of an encoding” is used to refer to the average number

of binary digits per letter of a transmitted message, that is,EjpiN1,

• where Nj is the length of the codeword for the i—th source symbol. Since

we are constructing an encoding for each allowable subalphabet, we also

use the corresponding sum for each subalphabet. But, since the prob-

abilities Pj do not add up to 1 for proper subalphabets, the sumEipi
N
i

does not correspond exactly to the cost of transmitting messages, and
so the corresponding sum is called a partial cost.

The algorithm takes place in n stages, where n is the number of letters

In the alphabet. At the k—th stage, the best alphabetical binary en—

coding for each k—letter allowable subalphabet is constructed and its

partial cost is computed. For k=l , each subaiphabet of the form (Lj, L~)
is encoded by the trivial encoding wihich encodes L1 with the null

sequence; it has cost 0 since the number of digits in the null sequence

is zero. For k=2, each subaiphabet of the form (Lj, Lj+i) is encoded

by letting the code for L1 be 0 and the code for Lj+l be 1. The partial

cost of this encoding is P~ + ~
‘1+1~ 

In general, the k—th stage of

algorithm, in which it is desired to find the best alphabetical binary

encoding for each subalphabet of the form (L1, Li+k l
) and its partial

cost, proceeds by making use of the codes and the partial costs computed

In the previous stages.

For each j between 1+1 and i+k—l, we define a binary alphabetical en-

coding as follows: Let C1, Cj~.j , . . ., Cj ...j  be the codes for L1,
Lj+l , . . .,  Lj...1 given by the (previously constructed) best alpha-

betical encoding for (Li, Lj_1). and let C’~~, C’j+i , C’~~ k_l 
be

the codes for ~~ L
j+i~ .. . . ,  L

l÷k l given by the (previously constructed)
best alphabetical encoding for (L ,, Lj+k l). Then the new encoding for
Li, Lj+i , L~_1~ ~~ Lj+1 , Li+k_l will be 0C1, OC1~1 
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OC~~1~ iC’s, iC’~~1,...., lC’j+k..l~ 
Such an encoding is defined for

each j. and the encoding is exhaustive. It follows that the best encoding

for this subaiphabet is given by one of the k—i such encodings which

can be obtained for the k—i different values of j .  The partial cost

• of such an encoding made up out of two subencodings is the sum of the

partial costs of the two subencodings plus p~ + p~41 + . ... +

To perform the algorithm, it is not necessary to ci~.struct all of

To perform the algorithm, it is not necessary to construct all

of these encodings, but only to compute enough to decide which one of

the k—i different encodings has the lowest partial cost. This is done

by taking the sums of each of the k—i pairs of partial costs of sub—

encodings and constructing the best encoding only.

After the n-th stage of this algorithm has been completed for an n—

character alphabet, the final encoding obtained is the best alphabetical

encoding for the entire original alphabet , and the final partial cost

obtained is the cost of this best alphabetical encoding.

EXAMPLE

We wish to encode the following 5—letter alphabet, with the probability

of each letter tn parentheses following the letter.

A (0.3) , B (0.2) , C (O.l), D (O.3), E (0.1)

k 2 For (L1, Lj+i) the partial cost is p1
+p~~1

(A,B) 0.5, (B,C) 0.3, (C D) 0.4, (D,E) 0.4

• - k 3 (A,C) can be encoded (A ,A) (B,C) or (A,B) (C,C). From

here on we denote these splits by A.BC and AB.C. The

sums of the partial costs are: - 
-

A.BC Cost of A subaiphabet 0-

Cost of  BC subaiphabet 0.3

Incremental partial cost 0.3
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AB.C Cost of AB subaiphabet 0.5

Cost of B subalphabet = 0

Incremental partial cost — 0.5

Choose A.BC

Partial cost — Incremental partial cost +

+ + PC

— 0.3 + 0.3 + 0.2 + 0.1

= 0.9

The encoding is: A 0

B 10

C 11

(B,D) can be encoded as:

B.CD (increment2l partial cost = 0.4)

BC.D (increm~i 
• - partial cost = 0.3)

Choose BC.D

Partial cost = 0.3 + 
~B 
+ PC 

+

= 0.9

The encoding is: B 00

- 
C 01

D 1

(C,E) can be encoded as:

C.DE (incremental partial cost 0.4)

CD.E (incremental partial cost = 0.4)

We can use either of these, and choose CD.E
Partial cost 0.9
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The codes are: C 00

D 01

E 1

K — 4 (A,D) can be encoded as:

A.BCD Cost of A subalphabet = 0

Cost of BCD subalphabet = 0.9

Incremental partial cost — 0.9

AB.CD Cost of AB subalphabet = 0.5

Cost of CD subaiphabet = 0.4

Incremental partial cost = 0.9

ABC.D Cost of ABC subaiphabet 0.9

Cost of D subalphabet =

Incremental partial cost 0.9

We can choose any of these, and choose A.BCD

Partial cost 0.9 + + 
~B 

+ PC +

— 1.8

The encoding Is: A 0 -

B 100

C 101

D 1.1

(B,E) can be encoded as:

(incremental partial costs follow the sp1it~)

B.CDE 0.9

BC.DE 0.7

BCD.E 0.9 
.
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S
Choose BC.DE

Partial cost = 1.4

The encoding is: B 00

C 01

D 10

E 11

k — 5 (A,E) can be encoded as:

(incremental partial costs follow the splits)

A.BCDE 1.4

AB.CDE 1.4

ABC.DE 1.3

ABCD.E 1.8

Choose ABC.DE

Total cost of the code = 2.3 bits/character

The codes are: A 00

B 010

C 011-

1, 10

E 11

These codes are implemented by a table look—up procedure. For encoding,

~he ASCII or BCD symbol can be used to generate a table address, since

the letters of the alphabet are consecutive numbers in both those codes.

The table entry must contain the length of the codeword (fixed field)

and the codeword itself. For decoding, several bits (say four bits) of

the incoming stream can be used to jump to one of the 16 tables which

will allow the codeword to be decoded without a long table search. The

table entry must either contain a letter and the number of bits to
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retain or a pointer to another table. In the latter case, one examines

the next few bits to determine the relative address to consult in

the second table. This process continues until a letter is found . This

is the “window” decoding procedure (Mommens and Raviv, 1974). The

following example from Moimnens and Raviv illustrates the method. The

initial window length is four bits , and subsequen t window length s are

two bits.

~ ~~~~~~~~~~ 
i — - — — i , 

- 
~ r

1 ) 1 0 ) 1 0 0 1  1 1 1  I 1 0 0 0 1 0 1  1 ) 0 0 ) )  I i  $ 0 1 0 0 1  I 0 1 0 0 0 1 0 0 0 . . .
__. ‘— . I %_~••~_~ I~•~ I I_ _I ‘. ~~~ %_ . ... .1

first window 1110 — 14: we can decode a blank $ and discard 3 (4—1) bits
next “ 0110 — 6 “ “ “ an 1 “ “ 4 bits

0111 — 7 “ “ ~ “ N “ “ 4 bits
1110 — 15 “ “ “ a bland $ “ “ 3 bits

“ 0001 — 1 points to a subtable starting at location 20;
discard 6 bits.

01 • 1 we can decod e a ‘C’ at 20+1—21 location and
discard 2 bits (2—0) .

Decoding Table Layout 
-

0_ i 2 3 4 5 6 _7 8 9 10 i i  12 13 14 $ 5

1 ( 16 ) 1  ~0) (
~
4)
~
(28)l C ,o f S,o ( ~o 11,0 b . 0 ~ A ,o T,o £ ‘ l E,1 i”’~ I~

i ~

06) 10)10.01 U.o b o ,oi W ,o lPi ,o IL .o lE to IB ,o I~’° ID ,, 

~ 1~ 
IH,1

~ 
- 

-

32 36 40 - 44

• ~~~~~ 
8 .01 (,o V.1 Is’’’ ~

‘ I..i Iv ’i I~’ K ,o ~:.o 11.0 lco~.o l

This scheme for decoding can be used for any variable length codes, in-
cluding Huffman codes.
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Table 14 lists a Gilbert—Moore alphabetical code derived from letter

probabil ities in English text .
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Table 14 — Gilbert—Moore Alphabetical Code Based on Letter

Probabilities for English Text

Letter Probability Alphabetical Code

Space .1859 00

A .0642 0100

B .0127 010100

C .0218 - 010101

• D .0317 01011
E .1031 0110

F .0208 011100

C .0152 - 011101
H .0467 01111

1 .0575 1000

J .0008 1001000

K .0049 1001001

L .0321 100101

N .0198 10011

N .0574 1010

0 .0632 - 1011
p .0152 

. 110000
Q .0008 110001

R .0484 11001

S .0514 1101

T .0796 
- 1110

U .0228 111100
• V .0083 

- 
111101

W .0175 111110

X .0013 1111110

Y .0164 11111110
Z .0005 11111111
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