AD-AD3S 723 BELFER GRADUATE SCHOOL OF SCIENCE NEW YORK F/6 20/12
ELECTRONIC ENERGY LEVELS IN IMPERFECT SOLIDS.(U)
JAN 77 D C MATTIS N00014-76-C-0690
UNCLASSIFIED TR=1

....... E

r|rﬂl

S]]




LT SRR S

s sedEE TR LA R

ADAO35723

;

TECHNICAL REPORT i1

CONTRACT NO0014-76-C-0690
Project NR 392-015
ELECTRONIC ENERGY LEVELS IN IMPERFECT SOLIDS
: it 1
Daniel C, Mattis :
;
BELFER GRADUATE SCHOOL OF SCIENCE . i
Yeshiva University !
New York, New York 10033

|
;

Prepared for Office of Naval Research

January 1977

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

GOPY AVAILABLE TO DDG DOES. NOT
PERMIT FULLY LEGIBLE PRODUCTION




,
L HNCLASSTAIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Fntered)
Lore REPORT DOCUMENTATION PAGE szgﬁg”c'gagfgggg"fo“
MBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
4. 'ﬂfl.E (and Subtitie) RIOD COVERED ! 4
=
- ‘ 1
EJECTRONIC ENERGY LEVELS IN IMPERFECT SOLIDS, nierie Tedmiant) e ;
z - REPORT NUMBER
{3 7. AUTHOR(s) 8. CONTRACT OR GRANT Nunlﬁ)
w (/O Wﬁaniel C.[Hattis ] /£ NW14-76-C-66
A 1 v
i 9. PERFORMING ORGANIZATION NAME AND ADDRESS > 10. PROGRAM ELEMENT, PROJECT, TASK
15 AREA & WORK UNIT NUMBERS
SR Belfer Graduate School of Science,
A Yeshiva University
| New York, N.Y. 10033
: - 11. CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research .
Department of the Navy > NUMBER OF PAGES ’
Arlington, Virginia 22217 86 |
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 18. SECURITY CLASS. (of this report)
% 2 ) '8... DECLASS,IFICAT!O'O DOWNGRADING ,
SCHEDULE !
16. DISTRIBUTION STATEMENT (of this Report)
Approved for Public Resease; Distribution Unlimited
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
. Lly. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Imperfections, Surfaces, Electrons, Solids
* ABSTRACT (Continue on reverse side If necessary and identify by block number)
3 N Several scattering-theoretic formulations of ‘the theory of solids are
[ used to discuss the ererpgy levels associated with imverfections,
‘ gsurface states, and electron energy levels in highly disordered
1 substances. The theoretical bases are thoroughly developed and
illustrated.

DD ,an'7s 1473  €oimion OF 1 WOV 68 1S ousOLETE UNCLASSIFIED 65 3 é Z 5)/[’¥
a Bntered) g

$/N 0102- LK 014- 6601 . SECURITY CLASSIFICATION OF THIS PAGE (When




e o TN

TABLE OF CONTENTS

Introduction

1.

II.

III.

1V,

are used to discuss the energy levels associated with imperfections, : i
‘surface states, and electron energy levels in highly disordered sub-

stances.

Atomic Imperfections in an Insulator
Scattering by Impurity

Some Optical Properties

Effects of Surface Proximity

Band Mixing ;
Concerning Electron States near Surfaces
Surface-Theoretic Hamiltonian
Example

A Conjecture

2D Briliouin Zone

Ad-Atoms on Surface

Appendix to Chapter III

Transport in a Random Medium
Appendix to Chapter IV

Abstract

Several scattering-theoretic formulations of the theory of solids

The theoretical bases are thoroughly developed and fllustrated.

Page y :

13
20
25
29
32 3
32 :
= 2 o

39
40
51
52

ACCISSI0N for %
NUS Wiite $ecn
poé fuff Sl
UNARECW "7

JUSTIFICATION. ... coommeannensninrnsines

BY it .
DIRTRIAGTION AVANERITY EF

s Al e " S':_g.ll_{l_

|

- ca——

-
|

m
Ld

“e8 |

«




B B SRGP S SR B PO

L v e e AN ST

INTRODUCTION

This Progress Report concerns the theor; of imperfect solids, with
emphasis on:

(I) atomic imperfections (and their optical properties),

(II) effects of proximity to a surface on these imperfections (e.g.

"recombination centers"),

(III) the nature of surfaces proper, and finally,

(IV)'transport in imperfect solids.

It is in the nature of a technical foray into solid state theory, to
illustrate current applications of scattering-theoretic techniques to
the study of vacancies, electron states in highly disordered solids,
the mathematical formulation of surfacé states, etc. Other applica-
tions: small polaron, excitons, impurity bands, etc. will‘be examined
in subsequent reports.

Additionally, a forthcoming report will deal specifically with more
practical aspects of this research: the study of the photoelectric de-.
composition of H20 ("photolysis') by means of n-type TiOz-based solar
cells or by similar other materials. The topics treaéed in the present
report have been inspired by the study of these "more practical" aspects.

Other immediate applications: the study of catalysis and corrosion be-

.giha with ‘a model foreign atom or molecule or defect proximate to a sur=-

face; such models cen be andlyzed by the methods illustrated in Part

III below, as we shall show.
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I. ATOMIC IMPERFECTIONS IN AN INSULATOR
In the Wannier-function representation, a foreign atom at site Rb
introduces a diagonal perturbation va as well as a change in the over-

lap matrix elements Ko to the nearest-neighbors. If the magnitude of

3
the former is sufficiently great, or of the latter sufficiently reduced,
a bound-state is formed.* If Vo > 0 the state comes out of the top of
the valence band, the bound state known as an acceptor-level. If

V; <0 it condenses out of the bottoﬁ of the conduction band and creates
a donor-level. If the point-group symmetry of the solid is loﬁered by
the impurity, the conduction and valence bands may both contribute to
the bound state level and create a '"recombination-center" or trap. The
symmetry may be lowered either spontaneously, or by a Jahn-Teller dis-
tortioﬁ, or by proximity to the surface (cf. Chapter II, below), each
having different optical consequences.

The vacancy may be treated (albeit, unconventionally) by the same
methods as apply to impurity atom.** Consider the F-center (a missing
Cl atom in NaCl crystal): while conventional studies have created the
bound state out of Na ofbitalq on atoms in the vicinity of the vacancy,
we find ;t simpler to postulate the continued existence of Wannier or-
bitals centered at the position of the vacancy Ro’ shifted upward by

an amount Vo due to the modification of the Madelung potential at that

*A long-range potential such as the Coulomb potential has an infinite
number of bound states; the occupancy being by one or at most two
electrons, the extra states are not usually of crucial importance.
Thus we use the zero-range model, in which the perturbation V; is lo-
calized at the impurity, in this work.

*frhis point has been independently noted by others: cf. Jaros and Brand,
Phys. Rev. Bl4, 4494 (1976).
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site, and having overlap integrals Koj modified from the values appro-
priate to the levels of an ordinary Cl atom. The vacancy Wannier-orbi-
tal will be ls-like rather than 3p-like (there is no core of occupied

states at the vacancy, hence no exclusion-principle requirements),

e

The 0 vaéancy in reduced T102 is equally a color center, although
more complicated because it is required to accomodate 2 electrons. The
problem of 2 interacting electrons orbiting a common attractive well |
has been éolved exactly,* and it has ﬁeen found that if the 2-body re-
pulsive potential U exceeds a critical value Uc both electrons cannot
be bound. But even when U < Uc, the first electron is easier to fonize
than the second.

Thus taking as a simple model of ;n impurity or vacancy the one

dok
first studied by Slater and Koster some 20 years ago (Vb ¥ 0, Ko

|
same as in the absence of the imperfection) we have:
gu')ni,mj s Idsr G:(r-Ri) H'(r) Gm(r-Rj)i ]
ol ; {0 for ior j#o (1.1) i
R s feg ®

because H', Gi, @, are highly localized. Moreover, if H'(r) is reason- 1

3
-—d
ably constant in the atomic cell at Ro then gn’m ool Gn,m’ is approxi-

mately diagonal in the band index (a constant potential doesn't mix
atomic levels), (We'll also consider the consequences of band mixing

which are yery interésting); Let g, = coupling constant (strength of

*D.C. Mattis and E.H. Lieb, J. Math. Phys. 7, 2045 (1966).

**G.F. Koster and J.C. Slater, Phys. Rev. 95, 1167 (1954).
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perturbing — potential, previously denoted Vo) . If a substituional
impurity is more attractive to electrons than a regular host atom that
it replaces, then g < 0; 1if 1es§ attractive, g > 0.

We can use definition of Wannier functions to find matrix repre-
sentation in the Bloch states (nk,mk'):

i(k"k)-llo

]
H )nk,mk~' Enm
1(k'-7k) -_Ro
gnan,m e for gn,m diagonal. (1.2)

Zj= 2=

We shall now do the following:

1. Obtain bound states of H + H'

2. Obtain scattering states of H_+ H'

3 Obtain Scattering Cross Section of these ('mobility')

4. Obtain Optical matrix elements connecting the bound states
with any of the conduction states, and obta.in resulting optical spec~-
trum, that is, do a complete analysis of "acceptor" (g > 0) or "donor"
(g < 0) levels. At the end, wé'll consider &m not diagonal, for an

exactly solvable theory of recombination centers or traps.

For now, let's start with bound state (if any) which takes the
form: ‘

.n o(;) = linear combination of all Bloch states
» in nth band

1 , = ;
= 7N E Fn,k Vo () - : (1.3)
We use Schrodinger equation:

L =
(uo o )’no Euo’no (1.4)
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to get the coefficients Fnk and eigenvalue Eno

1
l'lo§no o /Tf § Enk Fak ¥nk
i(k-'--k) 'R
'
+ H Q 7 * kk' nk'* ' (1.5)

=EF &

1
no no /NEF

nk no*nk

As the 'nk are orthonormal, the coefficients must be equal on both sides
of the equation.

L
i(kt=k) 'Ro

sl
Fox oo ~ € = & E' o Pk LE-5
So:
eik.R F,= i A
nk Eno-enk n
where
1 1k'-R°
by = EE Fok!
: 1 1
ol ey 8= o (107)
& nN E' Enk' Eno

=g An sn <Eno)

which serves to define Sn(E). Either 1 = '-gnsn(Eno) is satisfied (de-

termining Eno) or
(108)

An =0 (trivial solution)

sn(m) is generally a complex function of its argument. Using

Im %- n8 (X) we have:

PN ST SN R 3 0 e i, g




L (@) = ImS (w) = mp (W)

and also
€ P, (w*)
max do’ n.

‘R () = ReS_(v) = p.p. j

W -w

€min

(1.9)

Thus An equation has no solution for En in continuum, because r-h-s is

complex. If g, < 0, there is a solution below continuum, 1 = -gan at

“A" provided
1 o
lgnl % R (Rmin =1Rh(€min))
min

If 8, >0 ;here's a solution above continuum if

g, > ||

max

Analytical Example:
To fix ideas, let

@ =8 A, el <y

proper behavior near band edges
but omits van Hove singularities

Bandwidth = 1 = unit of energy.

6

(1.10)
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w=%cos 0, S(w) = -4e-1e,

and we verify

I =48in 0 =mp
n n

For w =+ % cosh ), ]
-|Al
S(w) = F 4e , with Im S = 0.
The eigenvalue equation becomes: ?
g
1= (g 4 e 1M
or ;
4

Al = In(x4g ) for \gnl > ¥

Eo-= + % cosh A = + (gn = igé;), and after throwing out unphysical root,

Bo = g+ TftTn for |g | > %. (1.11) .
E

A

»
/;"'

No solution in
shaded region

o
Eva v | e

~
A

End of Example. : ; i
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For the continuum solutions we take

1
o ™ Aok * w2 Lk e (1.12)

where Ak = normalization constant,

Ak = {1+ if lLk’kllzi-g =1+ 0(%) | (1.13)

Equating coefficients of *nk on both sides of the Schrodinger equation

yields:

£ -1 -1
E €.+ N (gn + gnN z

nk nk o (I.14)

Ly, k)

For many purposes Enk = Gnk-+ O0(1/N) can be replaced by Enk — i.e. the

continuum of exact scattering solutions "interlaces'" the continuum of

unperturbed Bloch states. Next, equate coefficients of Wnk':

e

ik-Ro -1 1k"-R° -i.k'-Ro
L Eoie€art) = B, (e + N l:»:(" L gk © de (1:15)
A series of obvious steps follows (solve for Lk k' in terms of
3 1k".R ¢
D N 1 E" Lk k" © ® then solve for D self-consistently using the
]

value of Lk K" obtained previously) easily leading to:
3

1(k=k') R

&

e
e 7o (1.16)
e X Ll € ITFESED
Then, (14) becomes:
1 &
B, %€ - (1.17)
nk nk " N 1+ ghsn(enk)

We now verify that the bound state is orthogonal to the scattering

states, and that the latter are orthogonal to one another.
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(a) Orthogonality of Qno to an:

The integral of (1.3)* X (I.13) yields: (recalling #nk's are

orthonormal) :

ik-R ik'-R_ 1(k-k')R

e i G :‘3 = e % e o 1

Ek-Eo N g Ek,-Eo Ek' - Ek 1+ gnsn(enk)
eikiRo { gn }

e 1- [s (€..)-8 (E )]
Ek Eo 1+ gn.sn(snk) ““ntnk/ “n‘o
ikR :

a o 1+ gnSn(Eo)

= = ! =0
Ek Eo gnsn(cnk)
This vanishes by virtue of the eigenvalue equations (I.7), (I.8) which
determine E_ .
no

(b) Orthogonality of orie scattering state with another:

1(k-k') 'R

* 1 * Y o
Ikt ¥ et w e Tt T X
e ety - ey ]

& & 1 1 l_yi-o0

K3
+ e somay L 3L )
1+ &5, € LT 88 ,(Gnk') N gn €ennrt”  Sar~nk

assuming appropiiate infinitesimal inaginary parts in each denominator
- (according to the prescription: Gk-+ 16*, Ek' - id+ for Lk ! and
1 3
similarly for the others, satisfying the requirements of causality

thus) .

Scattering by Impurity
The differential scattering cross-section ak(e) = Ifklz, where

£,(8) = lim ! Z, e,k ¥ (¥) (1.18)
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in which cos 8 = ﬁ-i7kk'. We neglect the periodic component unk

of the
Bloch functions, and perform the sum over the phase factors only. After

integrating over angles and approximating €, by k2 we have left:
k

) g PRl 1 sin k'r
el E Y 0 e T S < s
which yields:
o : ikr
£.(0) ~ e I (1.20)

As this is independent of 6 the total scattering cross-section is:

2
= const. X Agi 3 (I.21)
(L+ g R)” + (gmp)

%

The scattering time is related to the scattering cross-section by

-1
Te = WG and the mobility (the conductivity per carrier at a given

2

energy) is e Tk/m*, where v, = Vkék and 1/m* = vkvkek (suitably aver-

k
aged), For a parabolic band approximation, Ve & p(Gk) and m* = const.

This 1s sufficient for our purposes. For N. impurities (concentration

1
c; = NI/N) we have:
2
2m g~ p(€,)
:—- e . k > (1.22)
k 1+ gREN + (gmp(€)) ~

after juggling the multiplicative constants to obtain agreement with
the first Born approximation (Fermi's Golden Rule) at g = 0. An iden-

tical result is obtained directly from the relation:

1
2—;1: - N, Im{En’k} | (1.23)

10

Lo




with Enk given in (1.17). The general dgpendence of scattering time on
energy is indicated in the figure below. Several remarks are also in
order:

(1) the Born approximation is very bad when there exists a bound
state, even at the band edge, where p = 0. The denominator, instead
of being 1 is (1 + gR)2 = gz(R(ék)-R(Eo))2 which can be either much
larger or much smaller than 1; for a boﬁnd state,E , very close to the
band edge.(as for a typical donor or écceptor level), this expression
will tend to be very small at the band edge, resulting in true scatter=-
ing being much enhanced over the approximate Born value.

(2) At the resonance energy (Ekres. - emin ”Gmin - Eo) the term
1+ gR)2 in the denominator vanishes entirely, and the scattering time
becomes extremely short; the coupling constant 32 in the dénominator

and the factor gz in the numerator cancel. We have there (I/T)max‘

(3) When the potential is repulsive so that there is no bound state

below the conduction band and no resonance &t low energies, the effec-
tive scattering strength is g2/(1'+ gR)z at the lower band edge, which
may be considerably reduced from the Born value gz. ihus a repulsive
potential which may be strong enough to create ar. acceptor level near
the valence band may induce very little scattering in the conduction
‘band.

These remarks sgmmarizé some important aspects of scattering

theory, which can be explicitly verified for our soluble model.
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Some Optical Properties:
The energetics for an insulator + 1 impurity is the following:

N

® 00
*
<
4 e Zych
v jvalence chon
2| band /(,,1;;/’:;\
- ettt 8 o
-f} &, 0
(&,<0)

assuming an attractive potential (g < 0), The level can be occupied
or empty: thus the impurity introduces two new processes for the ab-

sorption of light, labeled A and B:

\ o

E% : h\h 5 Eo

: v, >E 4+ E

A g0

. B,
/;—é./"f / '/

3

d

For light polarized in the z-direction the optical matrix element is:

g it * -iwt sde
Mefogih ™ Do S A e W, K w22 B (12

This weak coupling Hamiltonian is currectly treated in lowest Born épi
proximation. For long wavelength light (not X-rays) we may assume Aw
to be constant in space, and obtain for the probability per unit time

of process A or B occuring:
2c2

-2m 82w
i (mc) ( 2 )

2
1§a1| (final|p, |initial)| A€

£inal)
(1.25)

£ 6(Gfinal .

S ki
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with (+) for emission of photon and (-) for absorption. For the sake

of definiteness we treat the absorption spectrum only, the reader can
make the necessary modifications to obtain the emission spectrum. Be-
cause the spatial dependence of the electromagnetic field is ignored,

*
we require only the matrix elementsof P,» which are:

(pz)nlkl ,nk E fd3r ":ykl (r)Pz Wnk(l')

(1.26)

o bk,k'Mn'n(k)

(Note: conservation of k)

For n'=a, we have the simple result:

Mn,n = mvz(n,k) : - (1.27)
where . is the z~component of. the vclocity:

Ym,k =17 € 1.28
v(n, ) h k n,k ( » )

For n' # n there exists an f-sum rule relating the matrix elements of

P, to one compoent (zz-component) of the effective mass tensor:

2
a2 akzz En,k a'va n',n;z ( )
where
2
2 ' (pz)n'k nk'
b — 1030
n',niz o m Eil " S (1.30)

*A.H. Wilson, "The Theory of Metals', Cambridge University Press, p. 46,
1954.
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The other components and a proof are given in w1lson; op. cit, In an
approximate model where only 2 bands are considered, this sum rule re~-
lates the curvature of the bands to the optical matrix element; so the
parameters in the model are closely related and are not to be chosen
arbitrarily.

Now, either Mn',n(k) is zero at k = 0 (forbidden transition, e.g.
from an s-like band co a d-like band, both of which have the same par-
ity), but it won't be zero at k # O: fhus Mﬁ'n(k) = constant x kz is a
good estimate for its value at k = 0, Or, Mh,’n(o) is non-zero at
k = 0, as for transitions between an s-like and a p-like band. In the
case of such allowed transitions, we shall approximate Mn.n(k) =
Mn,’n(o) by its vale at k = 0, for simplicity, and treat the matrix
element as a constant.

In the study of optical properties, it is frequently helpful to
use the identity

w(€ .. ~€.)
+ k ”~ Snk
b ke s e s e

= |fdyr 41, 2z v | mlo| (1.31)

where the last result uses energy consetvatioﬁ, and is therefore only
correct for use in equation (I.25).

We can now study process A, Label the initial states (v) for ‘'val-
ence band", the final Qtates (c) for "conduction band'". They are, re-

spectively:




' k,k' *vk

1(k-k') R E
(v) e v
where L = ot 5
k,k evk evk' 1 gvsv (Evk)

(Note: see (1.16)) (1.32)
and
: :
Gc,o =N EF vty (1.33)
where
-ik.R g A
o “c c
F, =e = s, (by (1.7)
ck Eo eck
38 (E) _
gA = (——) %
c ¢ BEO

Thus, the matrix element is:

-ikR i '
@, lp, 10 ) =e ° @s,(E)/3E) Byt ox

[ 4
e L £ (—t >* e ol Tk } (1.34)
Eo"eck N k! E -G l-gvs\;(evk) o-evk'

If the transition is forbidden, Mcv(k’) is odd in k'z and the second
term in curly brackets (the sum) will vanish by symmetry. Even if the
transitions are allowed, for g < 0 (as we are assuming) there 1is no
resonance near the top of the valence band, so the second term contri-
butes little to the absorption near threshold. We drop it for simplic-

ity, obtaining for the transition rate per impurity atom:

w-:'—"(;m |6w|2x(as (€ )IBE)
1 M_ (k) :
EE (E _€ ) 6(E -ﬁw-G ) (1.35)

e ) ) e OB i e 1 020
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which is readily seen to behave as (w-wT)lj near threshold W when the
3/2

transitions are allowed, andA(w-mT) when forbidden, rising to a peak
before falling off as w-a. Before this happens, absorption at the
fundamental absorption edge hwg = Eg has already obscured the line.

From (I.25) and (I.26) the fundamental absorption is giwen hy

2n e 2 2 2
ve o e L M, (" 8Ce , - how - €D (1.36)

It starts at Eg, also rises as (w-wg)% if Miv is constant, or as
(w-mg)3/2 if the transition is forbidden, but the overall absorption
rate is a factor N/NI larger than the total impurity absorption (every
site in the crystal contributes to the fundamental edge, whereas only
the NI impurities contribute to the impurity process; thus -the impurity
is visible only in the range of frequeﬁcies where the pure crystal is
otherwise transparent).

Wé next turn to process B; if the bound level is close to the con-
duction baﬁd, the‘optical line associated with this process will be
reasonably narrow and quite low in frequency as compared to the funda-
mental absorption, thus this process will be more distinguishable from

the background.

The absorption matrix element is: Mﬁn = mv, (equation (I.4)), so

the absorption rate per impurity becomes:

. 2 2
i mv_ " (k)
i ?! g(n;)z L |2 (asc(Eo)/an) : %E -——z_—_f 8 (€ hw-Eg)
5 Eo€er)

m d ; -1

TR
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vanishes identically, by symmetry. Replacing Imvz2 by 1/3 Fck

%(hw-+ Eo), to which it is equal on the average, we find:

BS " (hw+ E)
w=20 (—-) & |2 G5 Ll o, e+ E) (13D
o (hw)

also satisfying a (w-w°)3/2

law at threshold. The various results are
plotted in the figure on page 19.

We note that while all the formﬁlas in this section have been ob-
tained without any significant approximation, nevertheless the model
is not accurate. At the least we should include the modification in
overlap integrals discussed on page 3, as well as 2-electron repulsion

to have a reasonable model with which to compare optieal properties of

0 vacancies in TiO, for example. As this requires no fundamental de-

: " parture from the methods of computation given here, we shall no expand

on this but shall merely give the results in a subsequent report.
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II. EFFECTS OF SURFACE PROXIMITY

Broximity to a surface will be seen to affect the binding energy,
to cause structure in the optical absorption spectrum, and to lower the
point-group symmetry of the impurity site to where it can act as a re~-
combination center.

For the purpose of this chapter, we shall assume that the boundary
condition typifying a surface :i.s V= 0 at z = 0. The solid will con-
sist of afomic planes at z = na_, n=1,2,3,... . An impurity at a depth
d = pPa, from the surface can be rendered soluble by the artifice of an
"image'" impurity at -pa . The eigenstates, whether bound-state or
scattering states, are then computed for the infinite solid (= < n < =),
but only functions odd under reflection about z = 0 are ‘retained, thus

automatically satisfying the boundary condition.

We examine the bound states of the impurity and its image, follow-

ing the procedures of chapter I, Schrodinger's equation assumes the T
form:
e b % 1(k'-k)-d = _-i)k'-k).d i
e, = o LRy e @ - L (e +e MWk v
1
= =A(d) 75 z Fk’k : (I1.1)

in which A(d) is the distance-dependent binding energy (i.e. A(®) =

|E°|). Equating coefficients of *k yields:

-ik-d

g
Nﬁa Fk

Fk(A + Ek) = v 2 cos(k'=k)-d = g(e E(d) + c.c.) (I1.2)
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All eigenfunctions are required to vanish on the surface of the
solid, defined by z = 0. We extend the solid to z < 0 but retain only
the solutions that are odd under inversion about z = 0. Tﬁis procedure
requires introduction of an "image" impurity potential at z = -pa, to

balance an impurity at z = pPa,.




in which we define

’.
| g@ = £ F, e (11.3)
: The self-consistent solution of (II.2) and (II.3) yields:
f E(xd) = g[ (E(xd)T(0) + E(Fd)T(x2d))] (11.4)
{
§ where
3 1 ik'.x
T = 5 F, rae (11.5)

The pair of equations (II.4) can have a solution only if the secular

determinant vanishes:

it b B9 S DR

l1-gT(0) - gT(2d)
Det : =0 (11.6)
-gT (-2d) 1-gT(0)
which is equivalent to
| ; 1 = g(T(0) £ T(2d)) (11.7)
E
f : Only the solution belonging to (-) is physically acceptable, as it
4 . :
3 . alone satisfies the boundary condition; it corresponds to E(d)= -€(-d)
. L 4 S
_4 ‘ and thus Dk-= 0 at d = 0 according to equation (II.2). The (+) solu-

§ - : tion is even at about the plane z = 0, and must be discarded. Thus the

eigenvalue equation reduces to:

| | : 3ol 1-g2iked
: , g N A@+e,

(11.8)

We shall now establish that it is entirely possible for g to satisfy the
condition for the existence of a bound state in the bulk, yet fail to

satisfy (II1.8) near the surface.
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For this purpose, it is sufficient to calculate gc(d), the minimum
g which will yield a bound state accordiﬁg to equation (II.8) above.

Deep in the bulk, at d = », upon setting Ao = 0 we have:

l__.Lls.1 . .
@ "N Ee " 5O = RO | (11.9)

with S(w) previously defined in chapter I. The change upon nearing the
surface, formed by setting A(d) = 0 in (11.8), is:
2ik-d 2m

€, 4n| 24|

Sl
zc(w) g, (d)

“ %z e (11.10)
in which m = effective mass of electrons, and the integrand is recog-
nized as the Fourier transform of the Coulomb potential. Solving this

equation for gc(d) , Wwe have:

8. (=) -
.4 = e (mg (=) /4wl d|

The results are shown in the figures. The binding energy decreases as
the surface is neared, and may even vanish for impurities located Withil‘;
the first several atomic layers.

The effects of proximity to a surface on the opt;lcal absorption

spectrum are even more dramatic. We obtain them by first solving for

Dy - |
i 21 sin k-d
P = &@ T8+ €, €, (11.12)
Normalization requifes:
1=15p|? = 2¢8gc@)|? § g Aocos 2hed (11.13)

€, + 2@n°

(I1.11)
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Plot of gc(n)/gc(m) as schematically obtained from equation (II.1l1).
For a typical attractive potential g a bound state may be produced in
the bulk but not in the surface; for the illustrated value, the criter-
ion for a bound state is met only for the surface layers n > 3, no bound
states exist if the impurity is within either of thé first two atomic

planes.
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Binding energy in units of bulk binding-energy Ao 2 A(®) for a

typical potential, such as illustrated above.
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By use of (II.8) this can be written as:
d
|g€(@)|? = xg? a%é—)- (11.14)

and can be used to calculate the absorption matrix element:

g 2 = =
2 _1,2 oA(d) 4 sin” k-d
|(vk|§o).‘ g B+ &Y (11.15)
thus yielding for the optical absorption:
sin 2kd
w wco(l - —ETJ—) (11.16)

in which w_ 1s the transition probability/unit time given in chapter I,
with A(d) replacing A(®). The extra structure comes from the trigono-

metric term, which in the effective-mass approximation has the value

k = (Zm)% (w-Eg'+ A(d))%. (1I1.17)

Band Mixing:.

A second important effect'of the proximity of a surface relates to
the lowering of symmetry. Whére a symmetric perturbing potential would
not mix valence and conduction bands (particularly if these have in=~
trinsically opposite parity) the impurity 'molecule' (imperfection +
mirror imperfection) near the surface generally has a lower symmetry.
Valence- and conduction-band states are mixed into the bound level,
which now becomes equally accessible ;o electfons and to holes — 1i.e.

a recombination center.

A model for this starts with the following perturbing Hamiltonian:

L = & - . '
Bt ok ™ & {gnén’n, + gge (1 %,n‘”““ kR sin k'.R  (II.18)
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Restrict n to 2 bands '"c" and 'v" and obtain the bound state if any.

The bound state wavefunction must take the form:

& A
Qo N Ek Fn Kk n k(r -R ) . (I1.19)
in which wn k(r) is the linear combination of two Bloch functioms,
’
(kx’ky’kz) minus that at (kx,ky,-kz), which vanishes on the z =0 plane.

Schrodinger's equation now reads:

B
HQ /N k Fok 6vk ka /N z Fck Eck ch
A
] ]
-7§ kE'sin k. R sin k R F kka' + -—7— kE'sin k. R sin k'R kaﬁ k!
2g ng
+ = £ sin k'R, sin k'*R F_ ¢ I, zsmkR sin k'*R F_ ¥
N3/2 kkl ck Ck' 3/2 kkl Ck Vk'
R (11.20)

and we equate coefficients of Vi, @d ¥, in turn, For the first:

l‘ . .]; L4
(Eq€ 1 0Fyy = 2 sin kR [g & k Foe8in k'R + g & E'Fck.sin k'-R_]
T k.RO [gva + gchc] (11-21)

which serves to define Dn' For the second:

(Eo-Gck)Fck = 2 gin k-R° [gchv f chc] (1II1.22)
Evaluating Dn using the definitions above:

(Bg€eie) 1@ stn’i! R ) (g D48, D) = 5, (B (8D 48, D]

(II.235

v L

P
D, = X E




where

o 2 stlkeR
Sn(E) = N E —qaa—:—g (11.24)

by analogy with (I.7). Similarly for Dc:

R U 57 9N B T B

D, = -Sc(Eo)[chc + gchv1 (I1.25)

These homogeneous equations (I1.23) and (II.25) bave & solution iff a

secular determinant vanishes. A special case of this is trivially sol-

uble: 1let all g's be equal (i.e. sﬁrong interband mixing), then the
condition for the bound state (recombination center) to exist within

the energy gap reduces to the simple algebraic form:

5 R

.-1_
g = s ® )+ 8. ¢EY] (11.26)

We plot the r.h.s. of this equation as well as the d.o.s. functions of

the two bands in the Figure:
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Graphical analysis of (1I.26): shows solution exists if (1/3’)max >

(1/3) > (1/g)min.(hatched line represent real part when r.h.s. is complex).
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The bound state evidently has a dipole moment if the two bands
have opposite parity. The magnitude of the dipole moment can be ob-
tained through (I.31) as a function of MVc(k)' We omit this calcula-
tion, but note: a first-order Stark effect is implied. That is, the
bound state will respond linearly to an applied electric field & while
the bulk state, in which the bands are not mixed, is affected only to
0@72) in such a field. This should help to identify recombination cen-

ters optically, by the techniques of electro-reflectance.




III., CONCERNING ELECTRON STATES NEAR SURFACES

The study of surfaces has become a very important and active
branch of solid state physics. Surface physics is particularly impor-
tant in the understanding of solid state devices, including solar cells,

also for the study of heterogeneous catalysis, including photolysis, all

for a variety of reasons. The methods by which surfaces have been

studied are typically: numerical computation of a desired quantity ;

(e.g. band structure) for a thin slab of N atomic planes, varying N and
expanding the property as xn° + YNl. Clearly, X is the surface-related
property. Just as clearly, this procedure is tedious and does not lend
itself to rapid insights. We illustrate in this chapter a scattering-

theoretic method designed to focus specifically on the surface-related

T

properties in a solid where N is immediately taken to be large or in-
finite. By way of illustration we shall determine, under what condi-
tions will electronic surface state energy bands be created.

Our model problem starts as follows: we find the linear com-
bination of Bloch functions to satisfy the boundary cpnditions v = 0 at
z < 0, and evidently, the Schrodinger equation within the solid. This
analysis is extremely illuminating and has, apparently, not been done
before. We find it important to analyze the amplitude of the eigen-
functions .nenr- the surface, especially near the energy minima and maxima

of the band structure. We then apply a perturbation: in the simplest

case, onli on the first atomic plane (i.e. the surface plane). If we

ask the following question: under what conditions will an infinitesimal
perturbation (g << either E‘ or width of energy bands) produce surface

states?, we obtain a remarkably simple answer: only when, in the 2D




Brillouin zone of the surface, there exist pgints or lines along which
a certain component of the inverse-effective-mass tensor, a;z, vanishes.

When the surface perturbation is large, there always exists sur-
face states, and our method permits a relatively simple evaluation
thereof. In any case, having obtained the surface bound states and
the scattering bulk states of the terminated solid, we can proceed to
study the effects of an added perturbation at the surface. (This per-
turbation could be done to a molecule undergoing heterogenebus cata=~
lysis or photolysis.) We shall see that the effects of such a pertur-
bation are qualitatively different than if, as in the usual analysis,
the bulk wave functions and band structures were used.

In the periodic solid the complete orthonormal set of Wannier
functions is related to the complete orthonormal set of Bloch functions

(eigenfunctions of the unperturbed, periodic Ho) as follows:

% 1k-Rj =5 -1k-Rj
tnk(r) =N ? e ¢n(r-Rj) and ¢n(r-Rj) =N \E e wnk(r)
(Bloch) (Wannier
(I11.1)
Thus they are Fourier transforms of one another over the N discrete

values of Ri or k (in the space or reciprocal lattice, respectively).

The introduction of one or more surfaces and/or perturbations has the

‘effect of'replécing exp + 1k-R1 by the components Uk(Ri) of a unitary

transformation. As we intend to retain the Gn as the basis, it is im-

portant to reformulate the operator Ho, initially given as

B, = -2 /2 + v (vith & = 1 henceforth).

periodic(r)

One readily obtaina;




* —
'rdsr ¢n (r-Rj)Hof(r) = Gn(-ia/de)F(Rj) (I11.2)
where F(Rj) is the coefficient in the expansion of f,'i.e.:
f(r) = '31 F(Rj)Gn(r-Rj)' (111.3) .1

Equation (III.2) is valid for arbitrary f(r) (not necessarily an eigen-
function of Ho or of any other Hamiltonian).

. To.introduce diagonal (in the Wannier-representation) potentials
as perturbations, we merely add: Emvvm 6§m’§j to Ho and finally ob-
tain:

H Uk(Rj) = EkUk(Rj) (I11.4)

as our new, pseudo-Schrodinger equation, subject to the boundary condi-

tions Uk(Rj) = 0 for Z, < 0 (for the study of surface phenomena; note

] ]

that periodic b.c. could be used if we were not concerned with surfaces;

indeed, we shall use p.b.c. for the coordinates xj and Yj)’ in which

i k Ek is the new energy eigenvalue (which may or may not interlace the
old) k is a quantum number which adiabatically reduces to the crystal
omentum when H - Ho and p.b.c. are restored,Uk(Rj) is the '"wavefunction"

defined on the N points Rj only, and finally:

H= en(-ia/anj) + g v s-ﬁm’-ﬁj (III1.5)

is the Hamiltonian, a matrix defined only on the N lattice points. It

Yy
o e i

should be emphasized that despite the explicit differential operator,

' { this H incorporates only discrete translations by integer multiples

TR T

of primitive translation vectors.
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Surface-Theoretic Hamiltonian:

For surfaces which retain the bulk translation vectors in the X-Y

plane the above simplify somewhat:

H uk(zj) = EkUk(Zj) . (I11.6)

in which

= En(kx,ky, -i3/0z.) + § Vm 6Z )z (1I1.7)

J w*Z§

and Z = ma, m=1,2,3,... Note that we have a different '"linear chain"
having Nz = Nll3 distinct eigenvectors and eigenfunctions, for each of
the N2/3 values of the 2D vector (kx,ky). This vector we denote k“
henceforth.

The linear chain problem thus defined is far from trivial, as the
following example will indicate.
Example: |

Suppose the potential perturbations Vﬁ to be absent, and consider

the solutions of (I11.6 and III.7) when the band structure takes the

form:
Gn(k“,kz) = -2K cos kza - 2L cos 2kza (III.8)

in which K and L are presumably functions of kj. A plot of € (k) is
2 A n'z

given belov(k“ is fixed; only positive kz are shown as € is symmetric).

32
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We may always pick K > 0; consider various signs and magnitudes

for L:

(b)
Lc-4K <o

>

1
-+

1

N
S

e 1 "///,
m

¢,= -2 (k)

e TR T S I SRR T Pk

(¢)
L>iK>o0

(2
: fbﬂb//

e"‘T

Kﬂ-
&, = 2(6—Z~ +L)
k a= aos-'( K
-qL

€ = 2(K-L)

* Bl g

33

Al Tfll}a
ks 7

Rt =T- &0 -YK)

TN e YRR TV g g e T T B S s AT TR




S e e il Ty i

s m

i

7o

v . T
b i et et a

P AN e PPN GO, N RACN 5w 0+ g

e e e

We wish to solve the eigenvalue equation:
H U(z) = {~2K cosh a3/dz - 2L cosh 2a3/3z|U(z) = E U(z) (111.9)

on the lattice points z = ma, m=1,2,... subject to the b.c. U = 0 for
m=0,-1,... and U = finite as m = +»., We can construct such a solu-

tion using the set of k's which satisfy €(k,) = E; label them kq,

q=1,2,3,4. We then have:
ik z
U s g (1I1.10)
%% ;
and need only determine the Aq which satisfy the b.c. The solutions

have different character in cases (a)-(c) pictured above. We start

with:
Case af
Fo: E in the range -2{K+ L) < E <+ 2(K = L) there are 2 real . 1

solutions kb and 2 complex roots % (k1 + 1k2). One of the latter

grows exponentially as m - +» and must be discarded. We find, after

some algebra:

koa = cos-lii%+ ]'%T' [(%)2 2L E] }

4L
and
atk, + 1k) = nd&E 4 ¢ 1f|R 4 (¢ + 2L:E 4%
1 2 2L 41, 41
K K 2 2
+ (5 +(@% + FB»2 l
Thus:
ikoma -1koma iklma-kzma
U(m) = Ae 4+ Be + Ce

34
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satisfies the difference equation (I1II.9) everywhere except at m = 2

and 1. However, imposing U(0) = U(-1) = O enables us to satisfy the

equation there also. The vanishing condition at m = 0 is:

A+ B+ C=0

e

while that at m = -1 requires:

gl v A0 ok st

-ik a +1ik a -i(k, + ik,)
Aa Qg met e b 2’8 . 9

Normalization of the '"wavefunction" U for a chain terminating at N.z

yields:

12+ |12 = 1/, (in the limit N_>> 1/k,a)

f These uniquely determine a single solution for each value of E. The
reader may work out the elementary algebra for the coefficients A, B,

C and also verify that when L = O this. solution properly reduces to

%

U= (2/Nz) sin koam, where koa = cos-l (~E/2K) .

We next turn to:
Case b:

This case is '"non-standard", in the sense that the energy minimum

occurs not at k = 0, In the range 60 <E S_éﬂ the analysis ié exactly
that of case (a), and a unique solution with 3 components is again
found. However, for E in the range Gm <E S_GO, which encompasses the
neighborhood of the energy minimum, there are found 4 real wavevectors
}‘ & k° and k1 at each energy. Imposition of the twq b.c. at m = 0 and
=1 reduces this number to 2 (except precisely at E = Em where only a

single solution survives - howevew, this is a minor technical point).




Let E(ko) = G(kl) = E (cf. Figure b). As the k's are all real, we use

sin and cos functions instead of exponentials, and guess:

1 sin k°a+-a sin k,a
U, (m) = -(-:-1- {sin k ma+ o sin koma+ (—— ks = cos kla, (cos k ma - cos klma)!

as the first solution, and U2 (m) = same, with ko and kl permuted, Note
that sin(kma) vanishes at m = 0 and so does cos (koma)'- cos (klma). The
coefficients have, furthermore, been chosen to satisfy the second b.c.
U=0atm= ~1. It follows that u, also satisfies both b.c.'s It
remains to obtain the normalization constants

sin k a + a sin kla

=(NZ 1 2
Cl (E—)§+Ol+2(

)2!]%

cos k a - cos k,a
(o) 1

with C2 obtained by the permutation of ko and kl' Finally, the para-

meter « 1s chosen to make U orthogonai to U2. We obtain:

.

¥
e -1
o [2 sin k a sin kla] x

[sin2k°a+s:ln2k18+ (cos k a-cos kla)2+{[sin k a-sin kla]2+[cos kos-cos kla'lzlas x

{[sin k a+sin kla]z + [cos k a-cos kla]zl%]

Finally, we turn to:
Case c:

Treated as (a) in the range Go <E< Gﬂ. From €_ to Gm we follow
(b) .

It is now important to examine the solutions near the energy minima
and maxima. We shall fllustrate only the minima: the maxima are treated

- analogously, so their analysis would be redundant.
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We consider the pleane index m to be finite, and allow the energy

to approach the minimum in case (a) to obtain:
(a) U - 1(2/Nz)%'sin kma (as k = 0)

It is important to note that |U|2 vanishes proportional to k2 as k-0
for any finite m, but failslto do so if the limit m —» « is taken first.
Conclusion: square of wavefunction amplitude near energy minimum at
sﬁrface‘vanishes, due to b.c. This effect disappears deep within the
bulk.

The case (b) is more complex. Defining 8 = %(k1 - ko)a and pro-

ceeding to the limit § - 0, we obtain:
5 e U 2K " cos koastn k amista b (6 = 0)
4 m m

1 and U2 cannot be dis~

tinguished at any finite value of the index m (although presumably one

in which kma = cos-l(-K/éL) (cf. ftﬁure b). U
of the two solutions has an extra node at m = %Nz as compared with the
other, to ensure orthogonality). Note that, once again, as we approach
the energy minimum, |U|2 - 0, now proportional to 52, at finite m.
Similar results obtained at the minimum of (c), and at the maxima in
all cases. We conclude that the vanishing of the square of the wave-
function amplitudes near the band extrema at the surface of a e£olid is
a general feature of this band structure (first- and second-nearest
neighbor overlap).

A Conjecture:

We believe that the above conclusion is a general feature of ar-

bitrary band structures, required because of some as-yet-undiscovered

B
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theorem. A heuristic proof may be given as follows: an arbitrary band
structure having a minimum at k = 0 may be approximated by case (a)
near the minimum, and the analysis above is then applicable. An arbi-

trary band structure with a minimum at k # O may be approximated by

(b) near the minimum, and the analysis appropriate to that case then

applies. In both instances, the square of the amplitudes |U|2 - 0 pro-

protional to (E-Em ). Computations carried out on several different

in

examples of band structures have confirmed these heuristic arguments.

2D-Brillouin Zone:

For each (kx,ky) there is one kz at which the energy is a minimum

and a second at which it is a maximum. Denoting these by kz(ku) 3

min/max

we have for the points k“ in the nth band, the functions:

Gn(k“’kz(k“)min) - €min(k',!l) anq-gnfk’kz(k")max) I 6max

(k“)

defined on a 2D-Brillouin Zone spanning all allowed values of k” =
(kx,ky). fhis is, the largest possible cross-section of the 3D-Bril-
louin Zone, as intersected by a plane parallel to the physical surface.
In the accompanying paper, Appendix to this Chapter, the question of
the stability of the band structure against the formation of bound

states (surface energy bands) is treated. It is seen that under cer-

tain conditions, related to the vanishing of & particular compdnent of

the bulk inverse-effective-mass tensor, azz = 0, surface states are
formed even for infinitesimal surface perturbations. The Bxillouin
Zone of surface states may cover only a small portion of the maximal

2D-Brillouin Zone. For large surface perturbations, a bound state will

form below each energy minimum Emin(k") or for repulsive perturbations,




above each Cmax(k")) and the Brillouin Zone of bound states will coin~-

Sl i A RIS o 5

‘cide with the maximal size of a 2D-Brillouin Zone. The reader is re-
ferred to the Appendix of this Chapter for examples of the calculational |
|
method. g
i
3 Ad-Atoms on Surface: ?

We consider the effects of an atomic perturbation on a surface in
the presence of surface energy bands. A perturbing potential always

has a bdund state in 1 or 2 dimensions; however, the bound state here

may coincide with the continuum of bulk states, and is broadened into a

2l resonance. This leads to the possibility of the following possible en-

ergy levels:

T €

The bulk d.o.s. is shaded, surface states cross-hatched, atomic
i i level dashed line. (a)is broadened atomic level,(b)is bound state below
E | surface band (broadened by resonance with bulk band) and(c)is bound

, ! state above both bands, an unbroadened sharp level.
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ELECTRONIC INSTABILITY OF SURFACES OF SOLIDS

Daniel C. Mattis

Bl5 P : Belfer Graduate School of Science
: Yeshiva University
New York, N.Y. 10033

G Al W T R, S S e AT

Abstract:

O S

We study the effects of 'a surface perturbation on a semi-infinite

solid. The 3D enétgy band structure is found to determine whether or

not there is an intrinsic instability against the formation of surface

T T SR T

bands. A criterion, involving one relevant component of the inverse-
e 1 # :

| 1 . effective mass tensor, is derived.

g
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Experimenta'l1 and theoretical2 analyses have by now established
that the surfaces of solids often differ in crystallographic class3 as
well as in electronic propertiesa from the bulk. The fact that not all
surfaces have been found to be reconstructed led me to seek a criterion,
and ultimately to pose a simpler problem: under what circumstances will

an infinitesimal perturbation produce a band of surface states? Ve

shall denote this an intrinsic instability, for while any arbitrary
material may or may not have surface states, those with intrinsic instabil-

i 5
ilities always must. 1In the present work, we shall prove that a surface

"lying in the x-y plane is intrinsically unscable if aud only if a compo-

nent of the bulk inverse-effective mass tensor o o vanishes at an appro-
priate point or set of points in the Brillouin Zone. It is thus the bulk
band structure and the surface orientation that primarily predetermines
the intrinsic surface instability ~- the nature of the surface perturbation
potential is of secondary importance.

Our prototype material consists of atomic plamnes at z = na, with
n = 1,2,...,Nz the plane index. It is terminated by the two surfaces at
n=0, Ni+1’ with the x and y coordinates continued periodically at Nx+1
and Ny41 respectively. Proceeding to the limit Nx,'Ny and Nz all = =, we
concentrate on the one surface at n = 0. Consider the "unperturbed"
Hamiltonian Ho, having the following matrix structure within a single

Bloch band:

J dyr CE,.(?) H, G ()= €, 6

k kL&'

in which Ck is the appropriate linear combination of Bloch functions dk'
which satisfies the boundary condition Q( = 0 for  £0. In the case

of a simple band structure having €_ (at fixed kx,ky) a minimum'at_kza =0

or m, this linear combination is merely:

i o

G atila i sy
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and the first layer amplitudes are Ck(x,y,a) = xk(x,y)f(kza) with

f(kza) = ein kza,

In cases when the band structure E(kx,ky,kz) has a minimum at
k a # 0 or m (with k" = (kx,ky) fixed), the amplitude near the surface

3 may be obtained from a solution of the SchrBdinger-like equation:

€k i) £G2) = €k, £G2), for z >0, 3)

%; subject to the boundary conditions f(z < 0) = 0. We have established6

that for kZ near the energy minimum faC sin(kz-k in)z, and obtained a

Z m

similar result, f &Csin (kz-kzmax)z’ near the energy maximum. These are
basically the only properties we shall require.

We next assume that, either as a result of a nonzero change in
Madelung potentialS at small values of z, or because of a small displace-
ment of the surface atoms from their ideal positions, or a result of any

other physical requirement, a perturbation Hamiltonian H_ exists near

W
-

the surface. Explicitly factoring out the amplitudes f(kza) of the

T

3 i scattered waves, as dictated by geometric considerations, we may without

-

loss of generality write the matrix structure of Hs in the form:

4
o4 3
g ‘ 5
j i -r — — - -1
b B - N '
| ] J d5r cl?m H, (r) cl_(.<r) N e Y]] £ £, @)
] ¥
! diagonal in k” because of tramslational {mwvariance inx and y. If the
i perturbation is restricted to the first surface layer (z=a) the coupling

constant is a function only of k||, and is denoted g(kyp). If the pertur-
Il Il ~

bation affects several surface layers the coupling constant will depend

E
{
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also somewhat on kz although for simplicity in the ensuing calculations
we approximate it by its value at kz‘ln(for attractive perturbations) or
kznax(repulsive) so that gk,k' is then just a function of k", again
denoted g(k"). In fact our criterion for inherent instability does not
depend on the value of g, merely on its sign and on the fact that at
k . the coupling constant is neither identically zero nor infinite.
zmin/max
Ultimately, i f our procedure is found to lead to interesting results, it
may be rendered quantitative by obtaining Bl k" self-consistentlys.

L

We first study the bound states of the joint Hamiltonian Ho +H,

which if they exist, constitute the much discussedl’4 "surface energy

bands'". They must be of the form

-k _
=N Z F(ky,k
s =M ZFOPRD G, )
z
in which we use "s" as a subscript to distinguish these surface modes
from the continuum of bulk states. Schr8dinger's equation (H°+Hs) 's

= Es *s yields the following equation for the coefficients F:

1 ' '
(GI_(.-ES)F(k”,kz) + ,E'z Z gf(kza)l"(k”,kz)f(kza) =0 (6)

k.
2

In order for this equation to have a nontrivial (F # 0) solution, the

following secular equation must be satisfied:

g ) = T g ik %

in which ii 1 is a special case of a more general function:
9
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' on the surface orientation which defines the z-axis relative to the

invariant crystal axes. It is convenient to write the bound state emergy

in the following analogous form:

2 E = & § .
[ o " S %y Ry, (L-cosh 2) ats
i | Now, Eq. (7) simplifies to:

sin” (6) -l
cosh A 4+ cos ©

(12)

s ek e d fnde
g 2zz "’zmin o

Thus the r.h.s. of Eq. (12) fails to diverge when A ~ 0 (in fact,

approaches a maximum limiting value of 1). There may nevertheless be

an incipient instability against the formation of surface-states at

arbitrarily small Ig' provided there exists a locus in 2D Elll-space for which
o el 0. Exémples of this include the elementary tight-binding s-bands

€, = -K(cos k a cos k a cos k_a) for b.c.c. and -K(cos k a cos k a
E x y z X y

4+ cos kxa cos kza 4+ cos kya cos kza) for f.c.c. crystal structure, both
having a minimum at kza = 0 or m. For each there are rectilinear segments,

along which Q. ('I-c.",O) = 0. Therefore, (12) will have solutions along a

neighborhood of these lines, over a surface, the area and geometry of which

will be functions of the magnitude of g. Conversely, for the s.c. tight-

binding band structure -K(cos kxa 4 cos kya 4 cos kza) for which the minimum

is also at kz = 0, there exists no curve over which Xy ™ 0, and therefore

no region of l-c."-space inherently unstable against the formation of surface
states.
The analysis for g0 is similar. The Bloch energy is expanded about

its maximum, the effective mass parameter is now non-positive, and.the bound

state lies above the continuum. With the aid of
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z f(k'na) £(k'ma)
Z'n’m(E;k") s Nz1 Z { 3 .

. 4
z E - €k”’kz.-10

T~

-2 f}a dk' £(k' na) £(k'ma) {—bE 4 inb (E- ] (8) |
o L . e E-Gkn K me X Ek",kz') (
"z

Normalization of the wave function requires:

-%
o f(k a) -3 E k)
By =t [ Ela;s‘ g (9
s 1'" s

As Es approaches E(k”,kzmin) from below (for attractive potentials,
or as Es approaches G(k",kzmax) for repulsive) the denominators become
arbitrarily small. However, the numerators also vanish (cf. discussion
following Eq. (3))6 and thus the integrals remain finite unless — due
to the peculiarities of the band structure — the denominator vanishes
as (kz-kz;n)a. The conditions for this to occur are now examined. For

g <0, we start by expanding the Bloch energy about.its minimum:

~ 2 2 4
ek"’kz— ekll’kzmin+ % %z (k"’kzmin) (kz-kzmin) s 0((kz-kzmin) )
or, more compactly, with 9‘ & (kz-kzmin)a’ i
~ 4
‘i",ki- ek",kzmiﬂ+ a;z(k”,kzmin)(l-cos 8) + 0 (8 (10)

kool =22 2
in which azz(k"'kzmln) = (m )zz = a .6 G‘_“ /Bkz is the zz-component of the
inverse-effective-mass temsor. Because it is evaluated at a minimum,

o, 2 0 necessarily; its magnitude depends both on the band structure and ]
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3

G ﬁ(n,k e azz(k”,k Y(1 4 cos 8) 4+ 0 (94)

Zmax :
4
and

Allily

B ek”,kzmmc»‘r azz(k”:kzmax)(l-cosh N, ' (13)

A T, ook ¢+ AT =i

é 3 Eq. (7) once again reduces to (12), after the substitutiop of oiz(k"’kzmax)
for oéz(k”’kzminz in the 1.h.s. Because of the change in sign of the
effective-mass parareter, the bound-state solutions now exist only for

g > 0, but aside from this, the discussion given after Eq. (12) applies

R

for this case also. It should be nmoted that the loci of aiz = 0 are

not necessarily the same for k as for k. , although in the two
zmax zZmin

e W

examples given (b.c.c. and f.c.c.) they do coincide because of symmetry.

e e R

The s.c. tight-binding band structure provides an example of the
importance of surface orientation. Inherently stable against the
formation of surtace bands when the surface is a (100) plane, it demonstrates
an inherent instability along a (01l) direction: in the new coordinate

system ay- g aZ-%,ax= a, and the Bloch energy takes the form

SN e o+

éﬂ = =K (cos k a + 2cos k a + cos k a)
i x yy z z

For kzmaza 0,7 the equation Oéz = 0 has a solution along the straight-line

e ol d o bl S

segnents kx = arbitrary, ky =4 ﬂ/Zay, indicating an instability against

the formation of surface states in the neighborhood of these lines.

A surface perturbation scatters bulk states, and modifies the surface

density of states g affecting optical absorption at the surface, etc.,

. even when there are no states bound to the surface. The contributions of
bound- and scattered- states are combined in the calculation of the
"perturbed'" local demsity of states‘func,t:ion2 on the n-th plane. After some

algebra, one obtains:

46 o
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-1 Z' .2 AL : 2.
(= NDTE Ly () (3 | @k s(wE,)

=
w9

‘ +2 (NN Z I @ b(wee) ' (14)

g : : x'yz' | ka4 Al,n g

§-~ where Es is the surface-band energy, and

£0_na) [(L-g DT, | (st FeCRPEGk ) (Eak )
ot T (15)

Al,ndc') =

PSR

In the bulk limit n = «® we drop the exponentially decaying and/or rapidly

oscillating terms to obtain the limiting behavior p _(w) = (NxNyNz)-l z

| .
? 6(w =~ €), which is exactly the usual bulk value. Thus, the existence 5 ;
of the surface is "forgotten'" deep within the bulk. For small n i

however, the local denmsity-of-states.given by (14) is semsitive .to the ! 3

sign and strength of the perturbing potential, and to the existence of
0

bound states.1

The modified charge distribution is conducive to -the phenomenon of
"surface reconstruction"3’8. We have seen that the.surface states (if any)
3 do not necessarily occupy the full 2D surface Brillouin Zone, but just a
small area near the locus of the instability °Ez= 0. The narrowness of

d > £ Y
}% - this area in k-space suggests a iarge resultant cell size in real space,

as is indeed experimentally observed in some reconstructed surfaces. The

o
Y

predicted absence of inherent surface-state instability in other cases
] i (e.g. the model s.c. with (100) surface) suggests the absence of surface

} i reconstruction there. In all cases,aﬁ analysis of . (k”’kzm) to determine

where (or if) @." 0 might usefully precede any full-blown study of a sur-

g ~3nv“ﬂ—?"' -st-'mm" .

face, to pin-point the a-priori instabilities.

oy

3 I thank Drs. Rafael Pena and Barry Simon for helpful collaboration.
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Footnotes and References

See the various articles on surface physics in Physics Today,

vol. 28, No. 4, April 1975. Also: J.A. Appelbagm and D.R. Hamamn,
Revs. Mod. Phys. 48, 479 (1976). A}so, "Surface Physics of
Phosphors and Semiconducto}s", C.G. Scott and C.E. Reed,

Editors, Academic Press, N.Y., 1975.

The theoretical analyses and concepts (e.g. '"local density-of-states')

are reviewed in J.R. Schrieffér and P. Soven, Physics Today 28, 24 (1975).

(Note that they number the first atomic plane n=0, whereas in the present
work it is n=l). See also Chapters by R.0. Jones and by F. Berg in
Scott and Reed, OD. Cit.

———

P.J. Estrup, Physics Today 28, 33 (1975).

such as, the formation of bands of energy levels confined to the
neighborhood of the surface; see J.A. Appelbaum and D.R. Hamann,
Phys. Rev. Letters 32, 225 (1974), as well as Eqs. (4)-(11) in the

present paper.

Because surface perbutations always exist. For example, the ubiquitous
Madelung potential necessarily deviates from its bulk value in the

neighborhood of a surface, as emphasized by A. Clark in his "The

Chemisorptive Bond", Academic Press, New York, 1974 §9.3.
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6. We have completely solved two examples: € = (é_f + k2
oz

2
zmin) , with

; i the helpful collaboration of Prof. Barry Simon, and

Fate

z
!
!
5
§

€ = =A cos a %; 4+ B cos 2a %; . In both instances f(z) has the
behavior indicated in the text, and we have compelling reason to

believe that its vanishing near k. ( or k ) is a very
- zmin zmax '

RN S iy RN S Al et M

general property; a full account will be published elsewhere.

;4 _ 7. Mathematically, the problem of obtaining bound- and scattering-states

of H°+ Hs remains exactly soluble for any g k' which, while an
3

arbitrary functiom of k”, is of the

o B

separable form ¢(kz)¢(kz') in kz, or is a finite sum of each terms.
Instead of (7) we obtain a secular determinant containing the quantities
Z% i The condition for the existence of a bound state when Igl* 0

$ ]

remains precisely A 0 in this case. 1In the most general case,

8 k' an arbitrary function of kz and k;, we once again recover the same
9

g ep

criterion using a variational solution for the bound state. This

requires only that B k' be suitably bounded — neither zero nor infinite
’

at k.
zm

ff { 8. As, for example, in the work of M. Schliter, J.R. Chelikowsky, S.G. Louie

1 : and M.L. Cohen, Phys. Rev. Letters 34, 1385 (1975). In our method,

Lo "A‘_

the calculation of a self-consistent surface perturbing potential Hs

k| would imvolve the perturbed density-of-states Eq. (14) and Poisson's

equation.

9. as observed in photoelectronic spectroscopy: see D.E. Eastman and

M.I. Nathan, Physics Today 28, 44 (1975) and R.L. Park, ibid., p. 52.
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10. The reader should note that the continuum of surface states in

general overlaps the bulk band continuum of Bloch energies. Thus
the surface bands, if any, may lie entirely within the Bloch-state
band (this is the case of an intrinsically unstable surface under

= the influence of a very weak surface perturbation), or may only .3

T

partly overlap it (somewhat stronger perturbing potential) or

- may indeed lie entirely outside the bulk band (as happens when the

perturbing potential is large,regardless of whether or mnot the

S o RT3y /0 5 3 15 s AT

surface is intrinsically unstable in the semnse of the present work.)
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2 IV. TRANSPORT IN A RANDOM MEDIUM
Impur;ty-band conduction and electron energy bands in random al-
loys ﬁay be studied by similar techniques. The best single method of
the past decade has been the CPA, which suffers from a basic weakness:
' inability to take short range order (SRO) into account. A'relatively

simple method, yet one that can account for SRO, and LRO if necessary,

is outined in the Appendix to this Chapter. Extension of this to the

Hubbard model (2-body forces) is actively underway, the SRO being de-

1
|

termined self-consistently.

i
%
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APPENDIX TO CHAPTER 1V

ELECTRON STATES IN RANDOM ALLOYS WITH SHORT-RANGE ORDER

#t
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Abstract:

b We present an accuratc and economical iterative method of :

calculating the energy levels of a disordered or partly ordered

random alloy. Results presented for 1-D and 3-D simple-cubic

lattices compare favorably with exact calculations. We also

e

R 55, 90 e g o

present the systematic effects of partial short-range order in

3-D. A theory of the one-particle propagators is presented,
and the theory of electrical conductivity is developed in the

context of our new method. Our formulas satisfy the exact

conservation laws.

* Supported by AFOSR Grant #73-2430B.

# This research is supported by a grant from the Office of Naval
Research #N0G014-76-C-0690 '
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I Introduction

The study of electronic and vibrational spectra of disordered

alloys is currently one of the principal concerns of solid state

(i b SN

ok : :
physics , stimulated by the outstanding successes of the coherent

2,

potential approximation i (CPA), now ending its first decade.

Although efforts to improve our understanding beyond the CPA have
4 not all met with the same good fortune, there have been recent

: 4
exceptions. Cluster methods have been devised which are accurate

enough to reproduce the '"peaky'" structure of the density of-states

Stiddied

p(w), which they sometimes do (notably in one dimensiona) with

startling fidelity. We have been working along such a cluster-type

approach, and have found an extremely simple method translating

¥ : directly into a computer algorithm. While unsuited to the theoretical

e s '
studv of Lifshitz tails, our method has permitied us to reproduce

many of the other known results over the theoretically permitted

i

range of energy7, even near the energy maxima and minima, and
additionally, permitted to study of the effect of short-range order }
(SRO). Along with Lifghitz, we envisage tails in p(w) at the energy

; 1 maxima and minima as arising from accidental correlations in increas-

o
ey
bk o

ingly large clusters, of a size that for practical reasons we are not

5 | at present capable of handling; however, the simplicity of the present 1

G S0
method may suggest a natural extension to cover this .

The basic outline of our paper is as follows: In Section II
we present a method for the calculation of the single-body Green
function in the presence of an arbitrary number of impurities. We
then discuss how our procedure can be implemented by the use of a

convergence factor, Z. Section III is devoted to an analysis of the

PO 3 g TS L SR v Ve Y




meaning and uses of the complex self-cnergy Z within the context of

a disordered medium. Results from our method are presented in

Section IV, including the effects of SRO. Beyond this in Section V we make
further approximations that allow us to determine E{:f:(ub.

Section VIis concerned with the development of a tr:n:port theofy

i 9
compatible with G, along the lines of Baym and Kadanoff.

II Cluster Green Function

Let the Hamiltonian for the electrons within a single tight

binding band in a hypercubic lattice in D dimensions be:

H=z2 T, 0]+ V|| =T+ 1y
£33 i

with Tij = (ZD)“1 for i,j nearest-neighbors and zero otherwise,

~ |i) the Wannier state at the lattice point R, and V. the potential

i
which takes on one of two values depending whether atom A or B
occupies the i site. We construct the resolvent operator G(z) and

its various matrix elements:
-1 -1
G(z) = (2-H) ~ =[z - (T4) - (V - )] (2)
in which we reference the operators to a complex "optical potential"

£(z) .merely as a device to enhance the convergence of subsequent

expansions, with z = frequency w,extended to the complex plane.

R s i et X apiias
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é L for those readers familiar with the CPA, it is important to
note that our new departure consists principally in dissociating the
complex self-energy parameter T(w) from the site-diagonal averaged
Green function 6;;(w). Whereas in CPA, knowledge of the one.implies

the other, via the relationship:

O RC I CR Topa (2917 () . 3)

our experience indicates that it is better to treat ¥(m) merely as a convergc

parameter, one to be cﬁasen as én_aﬂ:hng_aid in the calculations

rather than by tedious and unnecessary self-consistency conditions. As by

3 2 Eq. (2) the exact Gnm(z) are al} independent af ©(z), in ary accurate approx‘

mation to 6;;(z) we have latitude in our choice of £(z), as discussed below,

4 and we pick the simplest possible Z(z) for which our calculated G is

approximately stationary.

e We next define a modified resolvent operator, G(l), appropriate

to the case in which one sets HV; = 0, where we define Vi = (i|(v-z)i|i)

X,

2 . and, indicating the elimination of the localized fluctuation poteﬁtial
3
41 ; at this site by ( );, we have:
i -

i ¢y afz- @ -wemy gt %)
|
1l
~-§ The full resolvent (2) can be expressed in terms of the modification
3 ’ . .
, ; in (4) by the use of the operator identity (A-B) 1. A-; +-A-1 B(A-B)’l;
o .

6(z) =Mz + My (v - £), 6(z). (5
; 55
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Because the perturbation is diagonal in the Wannier representation, the

matrix elements are easily found:

(i) (i)
dy . Cpi (2) V; 657(2)
G (2) =6 (z) +

: . (6)
(1) ~e
1- Gii (2) Vi

For the calculation of the density of states function p(w)g-% Imé;;(w+ie)
only the configurationally-averaged Gnn(w+ie) is required.

For the one-particle propagators QE* the averaged Fourier transforms
k

of all G (v + ig) are needed. Eq. (6) is now iterated. Define G(i’j)(z)

to be the modified resolvent operators with the fluctuation-potentials V

at sites i and j removed. By a repétition of the above, we have:

(i»j) 71 (i:j)
5. B3 271V, G =
GI(;)(Z) # G:‘;;J)(z) s : J jm ; N
: 1-¢lhd g
ij h]

The matrix elements Gnm-decay exponentially with distance an;

thus the expansion (6), (7) is in a symbolic "parameter" y defined as

s
an Vj,

small" at large V

- which is "small" for small V, and "exponentially

h|

j.\ The process (6), (7) is to be repeated any

numer of times, until the largest practical cluster size is

10 e
achieved. Termination, = by truncation, of the series consists of i

approximating the most distant G's, i.e. those with the largest
number of superscripts, by their value in the average optical

potential,’ Thus, if we stop at (7), the approximation

averages over all the explicitly retained V, are then performed, and all G's
obtained, '
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III Choice of T

We now come to our principal point of departure from other

Wi 170

methods - our choice of . Our results would depend crucially npon
Z except for the following observations. Since the behavior of the

local cluster is the dominant characteristic of disordered systems,

SR A sl - - i

we expect results insensitive to the particular choice of L if the

AP

cluster size is sufficiently large. ;

We require a simple functional form for I that allows for states

out to the bands limits. This excludes the use of ZEPA' which is known

to produce bands that are always too narrow. We restrict the range

A i aaiaarhed thba o hdne. i

of possible I's by requiring that it obey dispersion relations, insur-
ing that our approximate G is analytic. Furthermore, a functional

form is desired in which G is accurate in both the weak as'well as
strong scattering regimes. Becanse of the local mnature of highly
disordered systems, our choice becomes more critical for small potential
differences where effects are more extended. Our input is the Im I A
which we take as one or more step functions, non-zero only within the
theoretical band limits. Re I is then determined from the following

dispersion relation

¥ ' £z) =L i [ g BEHEO (8)

This is sufficient to make our approximation to G(z) satisfy causality. ]
.~ 3

o The density-of-states sum rule, f dwp(w) =1 is itself a beneficial
: ot Y :
consequence of the analyticity of our approximate G(z) and its result-

Sl

11
ing 1/z dependence in the asymptotic limit as we discuss elsewhere.

iJ We verified that in all cases studied, the sum rule on p(u) was satisfied
! . -

numerically.
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If we choose the constant, Im Z, to be of magnitude of Im zéPA

then in the weak scattering and low concentration regimes G(z) will

be quite similar to GCPA(z) so that accurate results can be expected

i . in all regimes.
‘( |

Before we proceed, the way in which we use Im Z%PA must be more
clearly outlined. In the accompanying Figure 1 we display the two

12
basic behavior patterns of |Im zéPA' as observed by VKE. It should be 3

. noted that, here also, ReZ ard ImZ are related by the Eq. (8). £ has

to describe evervthing in the CPA; it determines band gaps, peaks in

e

t‘ the density-of-states, and the general overall scale. Most of these

. results (e.g. band gaps and complicated structure) are better obtained

| by our detailed calculations of the correlated scatteripg. We hypothesize
| that the most useful information from CPA is contained in the general
overall magnitude of Im ibPA' Oﬁefé%ionally, in Figure la, we would
.ignore values of |Im zéPAl from the region of its maximum as well as

the extremeties of the band. In the former range of energies, we expect
exceptional scattering because it is easiest for these states to make
transitions due to band overlap, whereas at the band edges the spectrum
will be least disturbed, according to the same considerations. Any

value from the shaded region is then acceptable. In terms of particle

lifetimes, we will obtain the large and small transition rates because
we almost sélve the eigenvalue problem exactly for each configuration

and this is clearly equivalent to a perturbation approach. As for

concentration dependence in :CPA’ we will obtain correct behavior simply
because we weigh each configuration by its appropriate probability. Thus

we are able to include both the dynamical and statistical aspects of .the

problem.
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In case b, the same analysis leads us to ignore the very

large values of |Im Zé IAin both subbands. Here though, the

PA
magnitudes are considerably different leading us to suspect that two
different constants are needed. Further details of this case will

be elucidated in the following examples.

IV Anélygis of Results

We first consider the canonical 1-D tight binding binary alloy for
3 different scattering strengths at a 50-50 concentration.Figure 2
compares the results of 1,3, and 5 cluster calculations for p(w) whén
v, =.i .5 with exact resglts. We see in this example the development of the peaky
structure associated with special clusters of atoms as our cluster size
increases. Proceeding to a larger scattering strength (Vi = +41.0),
we expect that the local configurations will play a more prominent
role because of increased wave function localization. As shown in
Figure3 we successfully reproduce most of the structural details of
p(w) for a 5 cluster. To check the degree of insensitivity in our
5 cluster model we varied |Im Z| within the limits given by Im &

CPA
and found little change in the overall pattern as shown in Figure &

This indicates, numerically that the resulting G is stationary and

that £ is optimum.

The scattering strengths are now increased to V, = + 2.0,

i
providing a critical evaluation of the methods capabilities (larger
scattering strengths are in a sense too easy because wave function

localization iakes a cluster calculation more plausible). Using the

exact scattering off all configurations of 5 atoms, the highly discrete
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spectrum is well reproduced, as seen in Figure 5a. Increasing the

cluster size to 7 atoms, keeping the comvergence factor the same as in

5A, improves our agreement with the exact results as shown in Figure Sb.

In Figure 6 we display the results of again varying IIm Zl within the

limits dictated by Im zéPA; the major details are again'seen to remain

stationary. We have found empirically that if |Im Z| is too small, the

resultant density-of-states is too "peaky" and as such, representative 3
of a molecular cluster, instead of the solid state. If |Im Z| is too

large, then the central site predominates, as is correct only in the

extreme "atomic" limit when potential fluctuations greatly exceed

the band-width. One can see this from Figure © since the sharper

curve is associated with the lowest value of |Im Z| and vice-versa.

In three dimensions the obvious cluster size is 7 sites. Figure 7

compares our calculation with the Monte-Carlo type numerical results
13
of Alben et. al. A constant Im I gave poor results in this case, but

the CPA calculations immediately showed us why : Im Ié was more

PA
than one order-of-magnitude smaller in the majority subband than in

the minority subband. Consequently we changed Im ¥ to the step function
shown in the figure, varying the parameters (magnitudes of the steps)
again guided by CPA. The results now agreed well with the exact

computations and were insensitive to the precisevalue of our parameters

as is evidenced by Figureg in which a 3-step function was used. 1




To illustrate entirely new applications, consider effects.

of SRO on this same alloy. With o the Cowley SRO parameter, A

and cp = 1= N the relative concentrations and gAB the probability

of finding atom A at a given site when a B atom occupies a specified
neighboring site, we have PAA =c, + cp @, PBA = cB(l -a), ?AB = CA(I -a),
and PBB = ¢y ar Cy .In ref. 13, ¢=0. For C\ ® .1, & can vary from
-0.11 to +1.0; negative @ is associated with enhanced tendency of

A atoms to be surrounded by B's (i.e. "antiferromagnetism"), positive

¢ indicates enhancement in the pProbability of either species being
surrounded by atoms of its own kind (i.e. "ferromagnetism"). Using
the same convergence parameters as in our calculation at ¢ = 0, In Pigure 9
we find distinctive features in the minority sub-band density of

states that we interpret in terms of minority-atom clustering:

the single peak of ¢ = -.07 registers the unlikelyhood of finding
-two‘A atoms as nearest neighbors, and the double peaks of ¢ = .7
represent the tendency of the same atoms to form pairs, triplets, etc.

However, due to the sparseness.of A atoms, triplets and higher-order

clusters are statistically insignificant for these values of o-

V Electron Propagation

So far we have developed a i.ethod for calculating the site-diagonal
configuration averaged Green function. We have not indicated, how we
would calculate the non site-diagonal propagators. Ome alternative is
to develop a cluster method for the latter, similar to the method we
used for the former. Another, simpler though less accurate, alternative

will be employed. We first define a mew self-energy A*(z) by the equagion
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1 1 : 9

G,,(2) =y & i ¢
L k z = A%(2) - e
k

This relationship is numerically inverted to obtain A* as a function of

the exact or numerically calculated G&L . From the calculation of

A (w) we obtain A*(Z) in the entire complex plane, as:

A%(2) = (V) +

A [

[T, dv Im p*(utie). (10)

w=-z

If further values of E;;(z) were calculated numerically,then

we would determine A*(ﬁ,z) from

L2 ik« (R -R )
g ! T ‘ gy m
sz(z) G % &

z = A*(—Es Z) - €
: k
and ! (11)

—_— 1
z-h*(k,z)-¢€_
k

The analysis is facilitated by going over to a localized representation

in which we would specify the number of elements A*z (z) that
m
we have determined numerically. For example,if we have avail-

able GL:L(Z) - GL,L+1(Z) , and GL:L+2(Z) , then we would be

able to obtain

* =
A L,m(z) ts“n A (2) + 8p41,m My (2) + 8,42,m M2 (2),

62

o ST TR N TR WA R T g e, BTN s e, ey o RV




by solving the 3 equations simultaneously. In the cése at hand
! ]

i i we will use a site-di - :
_§ | iagonal self-energy since all we have at our
% E disposal are the computed GLL(Z)' We will still use
: S 2 ikK-(R -R)
3 G s 4 m
lm(z) N :2-:0 £ - ’
B hn) -
hence ‘ k
12
: : (12)
Gtﬁ z=-A*(z) - 5
k

as the definition of the off-diagonal elements. The propagators
decay rapidly with distance Rym SO both the one, two, or three point
curve fitting proceedures will probably give reasonably equivalent
results. Now,all the information contained in our previous numeri-
cal work is stored in A*(z), the complex proper self-emergy part.

It is of interest to compare Im A* with Im ZbPA in order to see how
they differ. This is done in Figure 10 for the 1-D alloy of Figures
5 and 6.

In summary we have presented a relatively simple method for calculating

i
S
;V
4
1
4

the eigenvalue spectrum of a disordered system, one that avoids

all the computational pitfalls of self-consistent methods. This

% { quasi-invariant tﬁeory is not only highly accurate, but also
allows the bounds on the frequency spectrum to be naturally

é determined by the correlated scattering of a local group .

We now discuss transport and develop a formalism that allows

i
{
# our numerical output to be used in approximations that con-
f‘ serve particle number and energy. - .
N ! g
63
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VI Transport in Disordered Systems

The linear response of the current to the electric field defines
the conductivity, which we take to be the same along the 3 principal
directions in our simple cubic structure. Following Velick§ we have

in our single-particle mddel

where e , the electric charge, is unity and £ is the fermi function.

The bracketed term is short hand for

(6(x-H)p, 8OA-W)p) = z (a|6(A-H) p 8(A-H) p i (14)

p1 is the momentum operator along an arbitrarily chosen principal axis

and the long bar denotes configuraﬁion averaging. Examination of Eq(s4)

reveals that we require the two-particle correlation function

6 jL(zl,z ' Y e -u 13 (ml— 12 . (15)

We can relate G2 to G by the equation

2
¢; fmgy (P10 72701300080 (2 E G (2B ()%, oG (210%)0 (16)
qr

6%
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which defines the index structure of the vertex function. This

equation is exact for the exact G and we will.use it to

2
define G when we have an approximate single particle green function.

We can place restrictions on possible wertex functions by
requiring the conservation of charge and energy in the presence of
a long-wavelength disturbance. This leads to the introduction of a

" new operator

1 1 ¢
R(z;,2,) = 2 4z, a7)

It is easy to show that K must satisfy the following Ward-type identity:

1
0 o

K(zl,zz) = [E(zl) - E(zz)] (18)

which implies a connection between the one-body operator € and the

two-body green function Gz. Also, one can show with the above

condition that the linear r;esponse of the particle number and energy

to a long wavelength disturbance is zero, thus emﬁring the appropriate
i conservation laws. If we use an approximate E, then we must construct a

| K that maintains Eq. (18) and this allows us to relate G to the vertex

"j : : function in the following way: We let Zy = 2Zys then Eq (18) becomes
N —
, s d G, ,(z,)
3 & : L1
) . 1(M(zl’zz) . dz, ; (19)
The configuration averaged resolvent can be written as
G (z) = & | ! |4)
it71 : z, =T -A* (z,) e
| : 1 kin op'T1

which leads to the equation
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Ty oy~ (2) =
Kiz(zl’zl) = ? Gij(zl) sz(zl) +k§ Gik(zl)[ dtg 1 ]qu(zl).

(21)
1
But
- dp* *
3
o2y wp ¢ (21) dzl‘ S RO B
so that
Kig(zl’zl)=§ Gij(zl)GjL(zl)+k§ Gik(zl)GqL(zl) dpn* (z,) K (zl,zl). 2
22
e rp der(zl) (22)
In Gz,we let m = j and sum over all j with zy =z,
T_
? GlJJL 17 1) 2 2 G (zl)G (zl) £ 2 €y k(zl)G (41) “kr pq Zys 1)2 pJJr( 172 1)
r
! 2 (23)
Once we recognize Kig(zl’zl) = § Gijjz(zl’zl)’we fiﬁd that the
vertex must satisfy the equation
= : = *
wkr’Pq(zl’zl) .__.._q__dA Kk (z];)__ (24)

der(zl)
We note that not only must this relationship hold for the exact

vertex function and self-energy but also in any approximation in

il
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in which it is desired that the two-particle correlation function

satisfy the Ward Identity, Eq.(18). This means that once an approximation

is made to A*, we can determine transport functions that allow the
conservation laws to be qbeyed. We could make further approxi-
mations to—gi-but we would then have no guarantee of conserving
éharge, energy, etc. The Ward Identit& is useful to gen;rate a
vertex function only when the frequencies are the same. For

the case at hand,Aﬁq(zl) = qu A*(zl) is a function of the site-

diagonal averaged Green function so the vertex is

dx(z,)
Ekr,pq(zl’ 12" ®kqd rp dG(Z ) Okqbrp 2(2),2). (25)

For z; # z,,we make the approximation

Zer,pa{#17%2) = biq Srp F(21%)- 26)
This is certainly consistent with the Ward Identity,and further-
more,it allows us to show that contributions to the conductivity

from the vertex correlations then vanish. The two-particle correla-

tion function is now

2
Gimjz(zl’ 2)=G (zl)G (z2)+ EG k(zl)’k (zz) ~(zl, Z)ZT

rnJr(zl’zz) ¢

To find the conductivity we need,(b(ll-H)pls(xz-H)pz) »OT

-t

1
I,(000p) "Slm"jm(m‘“’\z'“) |2 pfiu\a(xl-n) |3 (28)

(27)
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which requires

3 2.3 1 7 -
Pi. B Giiida) "E P P
jm Fgi lmJL L2 £3gm jm 31

z
ijpgm

(xl) G, (12)

2

'i =
+2 Dy T0g) G0p) 20100 B G (0) Pin (29)

ijgm k £

D AR R A, s A\ L A i

The second term breaks up into

-

2 1
ik le le(ll) G (XZ) 2 »«()\1312) G ()\1,)\2) ij = A-B . (30)

Let us transform the Wanniér sum in A to a Bloch sum. Then since 3

X Ry =mv (ﬁ)é , and G is diagonal in the Bloch repre-
4 By ™. 2 L P
sentation,
A-sz(k)c 0 & 6 () -mg ol 1 .
2 KK K = - + (1)
3k, (g Ax(A) =€) O,=A*(,)-¢ )
2 1 1 T 2 2 T

The propagators are even under inversion (K - -X) but the velocity v,= Be/ak
is odd,giving us zero,and all vertex corrections now vanish.

In this case, the fortunate cancellation of vertex éorrections

comes about as a consequence-of the approximation of the proper

self-enérgy by a site-diagonal quantity, Eq.(12).

Zero-Temperature D.C. Conductivity

We are now in a position to evaluate ¢(0). Because the

vertex corrections vanish, e

I,(060) = p?m (m]|6 (A1) | 2) Pfi (i]s(n-1) |3

ijgm
. A ACRACRCIT I
R 2 : (32)
68
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With the definition (K|6(\ - H)|K) =-1 Im G __ (A) , we get for
mw

=2 (o(w) =gy;®))

o(0) = j“’ ar - ]zv 2 (108 (x)’ : (33)

where we have included a factor of two for the two possible spin

4
orientations. At T=0,- A%%) = s(\ - p with p = chemical potential, |
4

and the conductivity per atom is

! 1
o2 s v, &2 (mE_(w7° (34)

nN kk 2 ' : :

1

or ;

g (0} = 2 r o [ Im!\*(u"') 2 1 sV (E)Z 5('13_‘ ) (35)

~ T ueRepr B+ maxeH? T NE L ; |

This natural separation, only possible for'a proper self-energy

£ :- ? independent of k sisolates the lifetix_ne and energy shifts of the

single -particle excitations from that part of the conductivity

which pertains to the particular lattice under study. We will

i b L gy
e o . i i

concentrate on a 3-D simple cubic lattice with e_..=%[coskx-§tosk -I-coskz].
k

Then,V ('lz)2 = sinzkx = -;- (1 - coszkx). Consider the functiong
1

9

e
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Pn(E) = N ?k; E - €, B
“\ k
for whiéﬁ\ye have

~

1 =42 \\‘a‘ % -1-— ‘+ +

s

The imaginary part of both PZ(E+) and Po(E+) vanish outside

the unperturbed band and

+
Hoode Imp* 2 e -
o(0) = 1 Im [, & [ Tﬁlz) 723 [Bp(ED)-R(ED]. (36)
e (u-ReA*(p ) =E) "+ ImA*(n )
We have caldhlated the D.C, conductivity for our 3-D

alloy in order to illustrate our formal results . Generally,

there are two ways in which the D.C. conductivity can vanish.

If the density-of-states at the Fermi level is zero then so is

0(0). In addition, we can have a finite p(u), but a zero mobility
because of wave function localization. Eq.(36)only admits a zero

in 0(0) if p(w) is zero so we cannot take the latter possibility into
account . The conductivity is displayed in Figure 1l against its
respective densit}-of-states. There is a rather direct correlation
between the magnitude of the density-of-states and that of the

conductivity. This relationship is understood in

70
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terms of the availability of states at a given energy to which an
initial state can make a transition. We also find peaks in 0(0)

which we associate with velocity peaks in the cubic band structure.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Figure Captions

Real and Imaginary parts of the complex self-energy in the CPA.
The two sets of curves are indicative of tﬁe type of results
that can be expected from this approximation. In part a, we
have a situation where the alloy bands overlap while in b the

case of split bands.

Comparison of 1,3, and 5 cluster calculations for p(w) using

[Im =

triall = »13 Sith Vt = % .5, c = .5. Background

(histogram) is exact results of Ref. 4.

Comparison of 1,3, and 5 cluster calculations for p(w) in 1-D

using |Im I | = .5 with V. =4 1.0 and ¢ = .5. Background

trial
(histogram) is exact results of Ref. 4.

Curves give p(w) for 3 different values of ztrial for a 5 cluster
ca}culation of a 1-D alloy Qith ¢ - 1.0 and ¢ = 5. The
sharpest peaks are associated with lowest value of |Im zkrial"
4. Other values are .5 and .6.

(a) Density-of—statgs for a 50-507 concentration 1-D alloy with
YA = 2.0, VB = -2f0. Histogram is exact calculations from

Ref. 4. The full band is obtained by reflecting the portion
shown through the origin. These results were computcd from

Im £= -.80 and Re L obtained from Im £ by Eq.(8),including the
exact scattering from all configurations of a central atom and
its 4 nearest neighbors. (b) Extension of the above results

to a cluster of 7 atoms using the same Z(w). This result is

comparable in accuracy and wealth of detail to the best self-

consistent calculation to date, Ref. 4.




Figure Captions

Fig. 6 Curves give p(w) for 3 different values of z%rial for a

5 cluster calculation of a 1-D alloy with V, = + 2.0 and

i

¢ = .5. The sharpest peaks are associated with lowest

value of |Im I | = .4, other values are .8 and 1.0.

trial
Fig. 7 Comparison of 7 cluster calculations of p(w) (dashed line)

using a two step ‘Iﬁ z | (long dashed line), with

trial
numerical work of Alben gg.‘gl.lz (solid line) who solved

the Schrodinger equation for an 8000 atom 3-D tight binding
solid. The potentials are N = 4 .75 with impurity concen-

tration of .1. Small horizontal arrows indicate the height

to which their peaks rise.

Fig. 8 Comparison of 7 cluster calculation of p(w) (dashed line)

using a 3 step IIm Z; (long dashed line) with results

rial'

13
of Alben et. al. (solid line). Vi =4 .75 and ¢c = .1

for this 3-D tight binding alloy. The sharp peak in Fig. 7

i
£
¥
[
¥
2
¢

at w= .86 is absent because of the coarser energy scale

used. Arrow indicates the height to which their peak rises. @
Fig. 9 Density-of-states for ¥, - .75, VB‘= .75 in a 3~D simple

cubic lattice with concentration c, = .1. Cowley short

range order parameter « is -.07, .3, and .7 respectively.

|Im El is the same as in Fig. 7 (dot-dash line) and ReX ’ﬂ

is obtained therefrom by use of Eq. (8). :

{
| 0
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Figure Captions

Fig. 10. Solid line is IIm A*(uDl for the 1-D alloy of Figs. 5 and 6

Fig. 11

in the 5 cluster approximation while the dashed 1line is the

(w) |.

i z
corresponding |Im CPA

Then D.C. conductivity (dashed line) of a 3-D alloy with
Vi =4+ .75 and ¢ = .1. Density-of-states taken from

Fig. 7 is shown in the solid line.
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