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Abstract

Several scattering-theoretic formulations of the theory of solids

are used to discuss the energy levels associated with imperfections,

surface states, and electron energy levels in highly disordered sub-

stances. The theoretical bases are thoroughly deve loped and illustrated .
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INT1~ DUCTION

This Progress Report concerns the theory of Imperfect solids, with

emphasis on:

‘(I) atomic imperfections (and their optical properties),

(II) effects of proximity to a surface on these Imperfections (e.g.

“recombination centers”),

(III) the nature of surfaces proper, and fin~ily,

(IV) transport in Imperfect solids. 
V

It is In the nature of a technical foray into solid state theory, to

illustrate current applications of scattering-theoretic techniques to

the study of vacancies, electron states in highly disordered solids,

the mathematical formulation of surface states, etc. Other applica— I -

tions: small polaron, excitons, impurity bands etc. viii be examined

in subsequent reports. - V -

Additionally, a forthcoming report will deal specifically with more

practical aspects of this research: the study of the photoelectric de-

composition of 1120 (“photolysis”) by means of n-type T102-based 
so-tar V

cells or by similar other materials. The topics treated In the present V

report have been inspired by the study of these “more practical” aspects. V

Other liasediate applications: the study of catalysis and corrosion be-

V gins with a model foreign atom or molecule or defect proximate to a sur-

- 
- face; such models can be analyzed by the methods illustrated in Part 

-
~~

III below, as we shall show. 
-

1
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I. ATOMIC IMPERFECT IONS D~ AN IN SULATOR

In the Wannier-function representation, a foreign atom at site

Introduces a diagonal perturbation V0 as well as a change in the over-

lap matrix elements to the nearest-neighbors. If the magnitude of

the former is sufficiently great, or of the latter sufficiently reduced,

a bound-state is formed .* If V0> 0 the state comes out of the top of

the valence band , the bound state known as an acceptor-level. If

V0 < 0 it condenses out of the bottom of the conduction band and creates

a donor-level. If the point-group symmetry of the solid is lowered by

the Impurity, the conduction and v ience bands may both contribute to

the bound state level and create a “recombination—center” or trap. The

symmetry may be lowered either spontaneously, or by a Jahn-Teller dig-

tortion, or by proximity to the surface (cf. Chapter II, below), each

having different optical consequences. - -
- -

The vacancy may be treated (albeit , unconventionally) by the same

methods as apply to impurity a.tom.~~ Consider the F-center (a missing

Cl atom in NaCI crystal): while conventional studies have created the

bound state out of Na orbitals on atoms In the vicinity of the vacancy,

we find it simpler to postulate the continued existence of Wannier or- 
V

bitals centered at the position of the vacancy R , shifted upward by

an amount V due to the modification of the Madelung potential at that

- - - 

~ long-range potential such as the Coulomb potential has an Infinitenumber of bound states; the occupancy being by one or at most two
— electrons, the extra states are not usually of crucial Importance .

Thus we use the zero-range model, in which the perturbation Vj  is lo-
calized at the impurity, in this work.

1~ Thia point has been Independently noted by others : cf .Jaros and Brand , -

Phys. Rev. Bl4 ,.4494 (1976).
I
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site, and having overlap integrals modified from the values appro-

priate to the levels of an ordinary Cl atom. The vacancy Wannier-orbi-

tal will be Is-like rather than 3p—like (there is no core of occupied

states at the vacancy, hence no exclusion-principle requirements).

The 0 vacancy in reduced Ti02 is equally a color center, although V

more complicated because it is required to accotnodate 2 electrons . The

problem of 2 Interacting electrons orbiting a conu~on attractive well

has been solved exactly ,* and it has been found that if the 2-body re-

pulsive potential U exceeds a critical value Uc both electrons cannot

be bound. But even when U < U , the first electron is easier to ionize

than the second.

Thus taking as a simple model of an impurity or vacancy the one

first studied by Slater and Koster some 20 years ago** (V0 ~1 0,

same as in the absence of the Imperfection) we have: -

~
‘
~
‘
~ni,mj ~ ~~~~ 

G (r-R~) H’(r) øm(t~
1(
j) 

- 

V

- 
— ~O for i or j~~~o (1.1.)
~n,m 1 if i j 0  ‘

beca use H’, ~~ Ø~ are highly localized. Moreover, if H’(r) is reason-

ably constant in the atomic cell at I then g 5 , is approxi-o n ,m n n,m
mately diagonal in the band index (a constant potential doesn ’t mix

atomic levels)-. (We ’ll also cons ider the consequences of band mixing

which are very interesting). Let g
~ 
e coupling constant (strength of

*DC Mattis and EJ1. Lieb, J. Math. Phys. 7, 2045 (1966).

~~G.F. Xoster and J .C. Slater , P1~ys. Rev. 95 , 1167 (1954) .
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perturbing — potential, previously denoted V0) .  If a substituional

impurity is more attractive to electrons than a regular hos t atom that

it replaces , then g< 0; if less attractive, g > 0.

We can use definition of Wannier functions to find matrix repre-

sentation in the Bloch states (nk ,mk’) :

(H’) , — g  enk,mk- N. nm

1 i(k’—k).R
- V — 

~ 
g~6~~~ e 

V 
~ for diagonal. (1.2)

We shall now do the following:

1. Obtain bound states of 11 + H’
0

2. Obtain scattering states of H0 -i- H’

3~. Obtain Scattering Cross Section of these (“niobility”)

4. Obtain Optical matrix elements connecting the bound states

with any of the conduction states , and obtain resulting optical spec-

trum , tha t is , do a complete analysis of “acceptor” (g> 0) or “donor”

(g < 0) levels. At the end, we’ll consider cm not diagonal, for an

exactly solvable theory of recombination centers or trap.~~
- For now, let’s start with- bound state (if any) which takes the

form : -

n ~~~ 
linear combination of all Bloch states V

in nth band

- ~ 
F’n,k tnk~~ 

- (1.3)

We use Schrodinger equation:

(H
~ 
+ H’)I

~~ 
E~0~~0 (1.4)

V 
V

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -_~~~~~~ —- ~~.
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to get the coefficients Fuk and eigenvalue E~0
- 

- 
- 

R I  = E Enk Fflk ~nk

1 i(k’--k) .R
+ R’I~~ — 

N3’2 c kk’ e ° 

~~~~~~~ (1.5)

— E~0I 0 = E F kE * k 
V

As the are orthonormal , the coef f icients must be equal on both sides

of the equation.

1 i(kt _k) .R0F k(E 
- E k) c ~ e Fflk~ 

(1.6)

V 

So:

ik.R0 g - V

e Fnk = E~~~E k n

where

ik’ .R1 - oV A
fl 

m N~~ , e

— - 8i~ A 
~~
‘ Enkt~

•Eno 
(1.7)

A S (E ) V —

-n n n no

which serves to define S~ (E) . Either I — —çS (E 0) is satisfied (de—~

termining E~0) or

— 0 (trivial solution)

is generally a complex function of its argument . Us ing -

ha — uS  (X) we have :

I

H 5

______________ - -V —-~ .-  ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _______
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I~ (w) IuiS (w) - up~(u~ -

and also -

.R (w) ReS (w) = p.p. dw’ ~~~~
,

— (1.9)

- 

€ min

~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(ta)

Thus A1~ equation has no solution for E~ 
in continuum , because r-h-s is

— complex. If g < 0, there is a solution below continuum, 1. —gR ~ at

“A” provided -

kni > R (R i ~..
R(E i

))
m m

If 0 there ’s a solution above continuum if

i ic> 1 11max

Analytical Example:

To fix ideas , let

V p~ w — ~ ~~~~~~ I ml < ~~ (1.10)

• 

- 
proper behavior near band edges

but omits van Rove singularities

/ ~~~~~~1 //~ Bandwidth I — unit of energy.

Then for -

V 

- 
- •

‘I
6
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• —mecos e , S(w) -4e

and we verify

- I 4sinO irpn n

Forw *¾ cosh A, -

S(w)~~~~F 4 e~~~” , with 1 m S 0.

The eigenvalue equation becomes: -

4 e~~~~)

l x i  = ln (*4g~) for k~l > ¾.

th ~ cosh X = ± (g~ ~~~~~~~~~ 
and after throwing out unphysicbl root,

- = + for ci > ¾. (1.11) V

-V -~~ -V — 
_
~
, 

~~
- - 

- 
- No solution in

V - — shaded region

End of Example .
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For the continuum solutions we take

- nk — An ,k ft nk + ~~ 
L

I~,k’ nk ’~ (1.12)

where Ak = normalization constant ,

Ak = ~l + 
1~ I L k k ’1 = 1 + 0(i) (1.13)

Equating coefficients of on both sides of the Schrodinger equation - V

[ yields :

: 1 Enk Enk + N 1(g + g N ’ E, Lkk t) (1.14)

For many purposes Enk = E k + 0(1/N) can be replaced by E k 
— i.e. the

con tin uum of exact scattering solutions “interlaces’! the continuum of

unperturbed Bloch states. Next , equate coefficients of

-

~~ ik.R 
- - 

ik”.R -ik’ R
Lk ,(E -e ,) = g (e ° 

+ N ’ E L ,, e °)e ° (1.15)n U U k” k ,k

A series of obvious steps follows (solve for Lk k’ in terms of

—l ik” .R0D • N V 

~~~
,, Lk,k,, e then solve for D self-consistently using the

value of Lk k” obtained previously) easily leading to:

i(k-k’).R -

- 0_ e (1 16),k’ Enk - Eflk, 1 + &nSn(Enk)

Then , (14) becomes-: -

g
E E +~~ ‘I llnk nk N 1 + c~n~~nk~

We now verify that the bound state is orthogonal to the scattering

states, and that the latter are orthogonal to one another.

_  
8 
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(a) Orthogonality of to

The integral of (I.3)* X (1.13) yields: (recalling 
~nk~~ 

are

orthonormal) :

ik• R0 ik’ .R i(k-k’).R 0
- c e e 1

- Ek~Eo 
- 
N k’ Ek,~

Eo Eki - Ek 1 + gfl
Sn (Enk)

ik.R0
Ek~E ~ - 

1 + csU (EUk) • n~~n~~~~n~~o~
11

+ çS~ (E0)
= Ek-V•E 11 + cS(~~k) 

= 0 
-

This vanishes by virtue of the eigenvalue equations (1.7), (1.8) which

determ ine B .no
(b) Orthogonality of one scattering state with another:

* 

- i(k-k’)-R
Lk k ~ + L k ’k + 

~i ~~ “ 
Lk,k,~

Lkk,, = e X

1 
V 

g V

• 1Ek~Ek, t 1 + clsfl
(Eflk ) -- I + g

fl
s

fl 
(Enk,) 

1
V 

— I I ~* 
_ _ _ _+ J~ + çS(E~~) I + cSfl

*(E flk ,) N 
~~~~~~~~~~~ ~

Enkl~
•Enk~ 

I — 0

assuming appropriate infinitesimal inaginary parts In each denominator

- 

- (according to the prescription: Ek + 10+ , Ek, - (0+ for Lk,k, and

sImilarly for the others, satisfying the requirements of causality

• thus) . 
-

Scattering by Impurity

The differentia l scattering cross-section ck(e) = l f 1j . where

— limn rN ’ E 
~~ k’ 

$ ,(r) (1.18)
, k

9 . 
-

~ 

~~~~~~~~~~~~ V~ 
V~~~~ V - - - -~ - V~ 
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In which cos e i~.i~’/kk’ . We neglect the periodic component Unk of the

Bloch functions, and perform the sum over the phase factors only. After

integrating over angles and approximating Ek by k
2 we have left:

1 + gS(E~) •f
dkk 

k’2—~~ 

sin,
k’r 

V 

(1.19)

which yields:

V 

~~~~ 1 + gS(Ek) 
eikr (1.20)

As this is independent of e the total scattering cross-section is:

2
°k = const. x 2 (1.21)

( 1+ g R )  + (gl rp) -

The scattering time is related to the scattering cross-section by

= V
k

O
k~~ 

amid the mobility (the conductivity per carrier at a given

energy) is e2rk/m
*, where vk = 7kEk and l/m* — V

kVkEk (suitably aver-

J aged). For a parabolic band approximation, vk p(Ek) and in~ const.

This is sufficient for our purposes. For N
1 impurities (concentration

C1 
— Ni/N) we have:

- 2,T g2 p(Ek) 
- V

• — —  122
- k (1+ gR (E~)) + (g-rl p (E k)) -

after juggling the multiplicative constants to obtain agreement with

the first Born approximation (Fermi’s Colden Rule) at g 0. An (den-

tical result is obtained directly from the relation:

• - ~~r- N1 ImIE
fl ,k I (1.23)

10
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-
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with Enk given in (1.17). The general dependence of scattering time on

energy is indicated in the figure below. Several remarks are also in
V 

order:

(1) the Born approximation is very bad when there exis ts a bound

state, even at the band edge, where p -. 0. The denominator, instead
V 

- of being I is (1 + gR)
2 g2(R(E )-R(E ))2 which can be either much

larger or much smaller than 1; for a bound state,E0, very close to the

V 
band edge (as for a typical donor or acceptor level), this expression

will tend to be very small at the band edge, resulting in true scatter-

ing being much enhanced over the approximate Born value.

(2) At the resonance energy (E~~ 
- Emin ~ ~~~~ 

- E0) the term

(1 + gR)2 in the denominator vanishes entirely , and the scattering time

becomes extremely short; the coupling constant g2 in the denominator

and the factor g2 in the numerator cancel. We have there (l/1•)max•

• (3) When the potential is repulsive so that there is no bound state

below the conduction band and no resonance at low energies, the effec-

tive scattering strength is g2/(l + gR) 2 at the lower band edge, which

may be considerably reduced from the Born value g2. Thus a repulsive

potential which may be strong enough to create at~ acceptor level near

the valence band may Induce very little scattering in the conduction

band . -

V 
-

These remarks summarize some important aspects of scattering

theory , which can be explicitly verified for our soluble model.

_ _   

V 

_  
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Some Optical Properties:

The energetics for an insulator + I impurity is the following:

- - P% TTTT~~EV E~ 0~~~~~~~~~~~~~~~~ 

V

(E0~~o)

assuming an attractive potential (g < 0). The level can be occupied

or empty: thus the impurity introduces two new processes for the ab-

sorption of light, labeled A and B:

- ,
~~~~~~~~~V h  > - E

V A - g -  o
• 

_ _ _

,
_•-V ,

For light polarized in the z-direction the optical matrix element is:

• H
el_opt  

— - 
~~

— (A eiWt + A* e~~
Wt) p~, A~ 

= 
~~~~~~ 

(1.24)

-
- - 

-

• This weak coupling Hamiltonian is currectly treated in lowest B~rn ap-

proximation. For long wavelength light (not K-rays) we may assume

to be constant in space , and obtain for the probability per unit time

of process A or B occuring:

~~ 2 2
v — IL (e~~2 ( u’ ° 

~ fi~al ’ (finali P~ 
I initial) 1 2 8(E ± *W4

f~ f l 1
)

(1.25)

- 
V
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with (+) for emission of photon and (-) for absorption. For the sake

of definiteness we treat the absorption spectrum only, the reader can

make the necessary modifications to obtain the emission spectrum. Be-

cause the spatial dependence of the electromagnetic field is ignored,

we require only the matrix elements of p~, which are:
*

~ !d3
r $~ ‘k,(r)pZ $flk

(r)

V (1.26)
—~~~ ,N , (k)k,k n n

(Note : conservation of i~)

For n 1 n , we have the simple result:

Mn n  ~~~~~~~ 
- 

- - (1.27)

where v is the z-component of-- the vclocity: -

-4
v(n,k) = 

A
V k En,k 

(1.28)

For n’ ~ ii there exists an f-sum rule relating the matrix elements of

to one comnpoent (zz-component) of the effective mass tensor:

2
1 - E — E f , (1.29)-; - A 2 

~k 2 n,k n’~
1n n ,n;-z

V - -

where

2 1 
~
‘z~n’kLnk ’ (1.30)n ,n;z m Efl ik - Eflk

*A H  Wilson, “The Theory of Metals”, Cambridge University Press, p. 46,
H 1954.

14
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The other components and a proof are given in Wilson, op. cit. In an

approximate model where only 2 bands are considered, this sum rule re-

latea the curvature of the bands to the optical matrix element; so the

parameters in the model are closely related and are not to-be chosen

V 
arbitrarily. 

-

Now, either M~, (k) is zero at k 0 (forbidden transition, e.g.

from an s-like band ~o a d—like band , both of which have the same par-

ity), but it won’t be zero at k ~1 0: thus M~,~ (k) constant x k
~ 
is a

good estimate for its value at k = 0. Or, N ,~~(O) is non-zero at

k = O, as for transitions between an s-like and a p-like band . In the

case of such allowed transitions, we shall approximate Mnin (k) 
~

M~~~~(O) by its vale at k = 0, for simplicity, and treat the matrix

element as a constant.

In the study of optical properties, it is frequently helpful to

use the identity

— m (E , -E

V 

IM , l  — J$d3r tn’k Z 
~nk ’ t 

n k nk

— Ij’d3r tn’k Z 

~nk ’ mI mi (1.31)

where the last result uses energy conservation, and is therefore only

correct for use in equation (1.25).

We can now study process A . Label the initial states (v) for “val—
- 

- ; ence band”, the f inal states (c) for “conduction band”. They are, re-

spectively:
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0vk = 

~vk + N ~~~, 
L k,kl tvk’

- i(k—k’).R 
-

h (v) e °

w ere L k,k’ Evk 
- E k~ 

l_
~ ,
S
v

(E vk)

(Note : see (1.16)) (1.32)

and

0c ,o = 

~ii E Fck ~ck 
- (1.33)

if where
—tk .R g t~

~
‘ck = e 

E —E , (by (1.7)
o ck

______

~c c

Thus, the matrix element is: -

-ik R 
-

~~~~ ~~l ~~,) = e ~ (~S(E ) ThE) ~~ N~~ ~

M (k) M (k’)
1 v c 1 1 * ~v cv
‘Eo~E Ck N k’ E k~

E k, l_j
vS(Evk) Eo~Eyk,

If the transition is forbidden , N (k’) is odd in k ’ and the second

term in curly brackets (the sum) :111 vanish by symmetry. Even if the

-

- 
transitions are allowed , for g < 0 (as we are assuming) there is no

:1 i resonance near the top of the valence band , so the second term contri—

butes little to the absorption near threshold. We drop it for simplic-

ity, obtaining for the transition rate per impurity atom:

— 
2~T (~~)2 kwl 2 x ØS (E )ThE )~~ x

M_ (k) 2

~ 
8(Eo~*w~

E k) (1.35)
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wh ich is readily seen to behave as (w
~

wT)
~ 

nea r threshold when the

transitions are allowed , and . (w_aQ 3~
2 when forbidden, rising to a peak

before falling off as w~~. Before this happens, absorption at the

fundamental absorption edge *Wg 
- Eg has already obscured the line.

From (1.25) and (1.26) the fundamental absorption is given by

= 
2ii (e ) 2 h~ I 2 E M~~

(k) l
2 
6(Eck - - Evk) (1.36)

- 

- 
It starts at Eg~ also rises as 

(w_w
g)

½ if M~ , is constant, or as

(w_w
g)
3/’2 if the transition is forbidden, but the overall absorption

rate is a factor N/N 1 larger than the total impurity absorption (every

site in the crystal contributes to the fundamental edge, whereas only

the N1 impurities contribute to the impurity process; thus -the impurity V

is visible only in the range of frequencies where the pure crystal is

otherwise transparent) .

We next turn to process B; if the bound level is close to the con-

duction band , the optical line associated with this process will be

- 

- 

reasonably narrow and quite low in frequency as compared to the funda-

mental absorption , thus this process will be more distinguishable from

the background .

The absorption matrix element is: Mnn ~~~ 
q~~tb0n (1.4)), 80

the absorption rate ~~~ impurity becomes:

- 2 2
V f  m y  (k)

w — ~~ (~~) I
~w i (~ S ( E ) ThE) - N k (Eo-E ck~

2 6 (Eck~AW~
Eo) 

-

V 

Tb. st.mied term in the matrix element , E  Lkk ,vz(k’) (Eo~ECk,) ’

I — 

-V - -  _____________________ ~~~~~~~~~~~~~~ - - - -
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vanishes identically, by symmetry . Replacing Imv 2 by 1/3 E ck — 
-

E ) ,  to which it is equal on the average, we find:

2 (Aw+E)
w = ~ (—j) k~I (~~~~~~~~) 3 ~ 

P~QlW + E0) (1.37)
mm o (Aw)

V 
V also satisfying a (w_w0) 3/’2 law at threshold . The various results are

plotted in the figure on page 19.

We note that while all the formulas in this section have been ob—

tam ed without any significant approximation, never the less the model

is not accurate. At the least we should include the modification In

overlap integrals discussed on page 3, as well as 2-electron repulsion

to have a reasonable model with which to compare optical properties of

O vacancies in Ti02 for example . As this requires no fundamental de-

parture from the methods of computation given here, we shall no expand

on this but shall merely give the results in a subsequent report.
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II. EFFECTS OF SURFACE PROXIMITY

Proximity to a surfa ce will be seen to affect  the binding energy ,

to cause structure in the optical absorption spectrum, and to lower the

point-group symmetry of the impurity site to where it can act as a re—

combination center. V

For the purpose of this chapter, we shall assume that the boundary

condition typifying a surface is $ = 0 at z — 0. The solid will con-

sist of atomic planes at z = na0, n 1,2,3,... . An impurity at a depth

d pa0 from the surface can be rendered soluble by the artifice of an

“image” impurity at —pa . The eigenstates , whether bound-state or

scattering states , are then computed for the infinite solid (-~ < n

but only functions odd under reflection about z = 0 are retained , thus

automatically satisfying the boundary condition.

We examine the bound states of the impurity and its image, follow-

ing the procedures of chapter I. ~~~~~~~~~~~~ equation assumes the

form :

H~ 0 — Fk lE k$k(r) - ~~~~~~~~~~~~~ + e~~~~~
_
~~~

d
)$k,I

t — -6(d) E 
~
‘
k~k 

- (11.1)

:~ r
In which A (d) is the distance-dependent binding energy (i.e. ~~

c
~)

1E0I). Equating coefficients of$ k yields:

Fk(6 + Ek) — ~~E, Fk, 2 coa(k’-k).d — g(e il
~~ ~(d) + c.c.) (11.2)

‘

~~~~~~~

-
-, - 

I 

• - 3
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V
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V

Ii

V 
All eigenfunctions are required to vanish on the surface of the

solid, defined by z 0. We extend the solid to z < 0 but retain only

the solutions that are odd under inversion about z = 0. This procedure

requires introduction of an “image” impurity potential at z — -pa0 to

balance an impurity at z — pa0.

• 

- 

• 

• 

4
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In which we define

~(d) ~~E Fk, ~~~~~ (11.3)

The self-consistent solution of (11.2) and (11.3) yields:

~(kd) — g[ (~(±d)T(O) + E~(~d)T(*2d))] (11.4)

where -

- 
ik’.x 

- 

-

- - T (x) ~ 
~~~
, 

~~
d)+Ek, 

(11.5) 
V

The pair of equations (11.4) can have a solution only if the secular

determinant vanishes:

lll-gT(o) - gT(2d)
- Det - — 0 (11.6)

- 

—gT(-2d) 1-gT (O)

V which is equivalent to 
-

I — g(T(0) 
-
± T(2d)) (11.7)

Only the solution belonging to (—) is physically acceptable , as it

alone satisfies the boundary condition; it corresponds to ~(d) -~(-d)

and thus Dk = 0 at d 0 accordIng to equation (11.2). The (-i.) solu-

tion is even at about the plane z = 0, and must be discarded. Thus the

etgenvalue equation reduces to:
: 1  2ik-d1 1  I—c

g — 
N 
~ ~

(d)
~
f
~
Ek 

- (11.8)

We shall now establish that it is entirely possible for g to satisfy the

condition for the existence of a bound state in the bulk, yet fail to

satisfy (11.8) near the surface .

H 

- 
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For this purpose , it is sufficient to calculate g (d), the min imum

g which will yield a bound state according to equa t ion (11.8) above .

• Deep in the bulk, at d — ., upon setting 6 — 0 we have :
0

— 
~~~

- E ~~— — S(O) — R(O) - (11.9)

I - 
- with S(w) previously defined in chapter I. The change upon nearing the

surface, formed by setting 6(d) 0 in (11.8), is:
- 2ik.d -

g ( c~) 
- 

g (d) 
= E 

e 
Ek 

= 41-TI 2d1 
(11.10)

in which m = effective mass of electrons, and the integrand is recog—

nized as the Fourier transform of the Coulomb potential. Solving this

equation for g
~
(d), we have:

V g ( c ~) -

- g
~
(d) = l-~~~~~)m~1d] • 

(11.11) -

The results are shown in the figures. The binding energy decreases as

the surface is neared , and may even vanish for impurities located within

the first severa l atomic layers .
F 

-

The effects of proximity to a surface on the optical absorption

spectrum are even more dramatic. We obtain them by first solving for

Dk.

— g~(d) 
2j sln k d (11.12)

Normalisation requires: 
V

1 E IFkI
2 2.21!(d)1 2 ~ E 1~~ os 2~~d

2 (11.13)
- (Ek + h(d))
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Plot of g (n)/g (~) as schematically obtained from equation (11.11).

For a typical attractive potential g a bound state may be produced in

the bulk but not in the surface ; for the illustrated value , the criter-

ion for a bound state is met only for the surface layers n > 3, no bound

states exist if the impurity is within either of the first two atomic

planes.

H

- 
V 

-

I -
~~~~~~~~~~2. 3 r ‘

Binding energy in units of bulk bind ing-energy 6c~ 
a A (cD) for a

- 
I typical potential , such as illustrated above.

I

• • S
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By use of (11.8) this can be written as:

= ~g
2 ~A (d) (11.14)

and can be used to calculate the absorption matrix element:

2-’-~
-
= ~ ~g

2 ~~(d) 4 a m  
Ek; 

(11.15)

thus yielding for the optical absorption:

- 

w = w0,(l - 

~~~~~~~ 
(11.16)

in which w,~ is the transition probability/unit time given in chapter I,

with Md) replacing f(c~). The extra structure comes from the trigono—

metric , term, which in the effective-mass approximation has the value

k = (2rn)~ (W ~E
g + A (d))~~. (11.17)

Band Mixing: 
-

A second important effect of the proximity of a surface relates to

the lowering of symmetry . Where a symmetric perturbing potential would

not mix valence and conduction- bands (particularly if these have in-

trinsically opposite parity) the impurity “molecule” (imperfection +

- mirror imperfection) near the surface generally has a lower symmetry .
fr -V 

-

Valence- and conduction-band states are mixed into the bound level,

• which now becomes equally accessible to electrons and to holes — i.e.

a recombination center.

A model for this starts with the following perturbing Hamiltonian:

11 n ’k ’ ,nk — 
~~

- ~~~~~~~ + ~~~~~~~~~~~~~~~~~ k•R0 sin k’.R0 (11.18)

25
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Restrict n to 2 bands “c” and “v” and obta in the bound state if any.

The bound state wavefunction must take the form:

= N~~ 
~k 

F k $fl ,k(rRO) (11.19)

-j in which $n k (r) is the linear combination of two Bloch functions,

(k
~~
k
~~
k) minus that at (k

~
,k ,_k), which vanishes on the z —O plane.

• Schrodinger’s equation now reads:

= 
~ Fvk Evk ~vk + E Fck Eck ~ck

2g 2g
+ 

N3/2 kk’ 
k.R sin k’ R F k$ k’ + 

N3
~~ kk ’ 

k.R0 sin k’

- •  - 

÷ 
:3/2 kk’ 

k.R sin k’ R Fck$ k’ + 
:~~

2 kk’ 
k.R0 sin k’~

RoFck$vk~

• 0 0 (11.20)

and we equate coefficients of 
~vk 

and 
~ck 

in turn. For the first:

(Eo~
Eck)Fvk — 2 sin k3R0tg~ ~ 

EFvk,sin k’.R + g~~ ~ ~,
Fck,sin k’.R0]

V :

i 

2 sin k•R [g D+ g D ]  (11.21)

which serves to define D . For the second:
- n -

V -
V

(E
~~

E k)F k = 2 sin k.R f g D  g D~~ (11.22)

Evaluating D~ using the definitions above :

D~ ~ ~,
(EO-ECk,Y’i(2 sin

2k’.R0)(g D +g~~D)I ~~~~~~~~~~~~~~~~ 
-

- 

- (11.23)
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where

2 sin2k.R
S~ (E) — N E E~(k) - 

(11.24)

by analogy with (1.7). Similarly for Dc:

D~ = _S
~ (E0)[g~D~ + ~~~~~ (11.25)

These homogeneous equations (11.23) and (11.25) have a solution iff a

secular determinant vanishes. A special case of this is trivially sol-

uble : let all g’s be equal (i.e. strong interband mixing), then the

condition for the bound state (recomb inatior center) to exist within 
-

the energy gap reduces to the simple algebraic form:

- 

g~~ = _tS
~
(Ec,) + S.(E0)] (11.26)

We plot the r.h.s. of this equation as well as the d.o.s. functions of

the two bands in the Figure:

~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~Ul -e

Graphical analysis of (11 26): shows solution exists if (h g)

(h g) > 
~
11
~~min 

(hatched line represent real part when r.h.s. is complex).
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V The bound state eviden tly has a dipole moment if the two bands

have opposite parity. The magnitude of the dipole moment can be ob-

tam ed through (1.31) as a function of M
~~
(k). We omit this calcula-

tton,but note: a first-order Stark effect is implied . That is, the

bound state will respond linearly to an applied electric field ~ while

the bulk state , in which the bands are not mixed , is affected only to

- O(~
2) in such a field. This should help to identify recombination cen-

ters optically, by the techniques of electro-reflectance .

- 
- 

V
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III. CONCERNThG ELECTRON STATES NEAR SURFACES

The study of surfaces has become a very important and active

branch of solid state physics. Surface physics is particularly intpor-

taut In the understanding of solid state devices, including solar cells,

also for the study of heterogeneous catalysis, including photolysis, all

for a variety of reasons. The methods by which surfaces have been

studied are typically: numerical computation of a desired quantity

(e.g. band structure) for a thin slab of N atomic planes, varying- N and

expanding the property as XN°+ YN1. Clearly , Xis the surface-related —

property . Just as clearly, this procedure is tedious and does not lend

itself to rapid insights. We illustrate in this chapter a scattering-

theoretic method designed to focus specifically on the surface—related

properties in a solid where N Is immediately taken to be large or in-

finite. By way of illustration we shall determine, under what condi-

tions will electronic surface state energy bands be created.

Our model problem starts as follows: we find the linear corn-

blnation of Bloch functions to satisfy the boundary conditions $ 0 at •

a < 0, and evidently , the Schrodin ger equation within the solid . This

analysis is extremely illuminating and has, apparently, not been done

before. We find it important to ana lyze the amplitude of the eigen-

‘ functions nea r the surface , especially near the energy minima and maxima - -

of the band structure. We then apply a perturbation: in the simplest

case , only on the firs t at omic plane (i.e . the surf ace plane) . If we

ask the following question : unde r what condition s will an in f inite simal

perturbation (g << either E
8 

or width of ene r gy bands) prod uce surface 
V

states? , we obtain a remarkably simple answer : only when , in the 2D -

“Vi.
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Brillouin zone of the surface, there exist points or lines along which

a certain component of the inverse-effective-mass tensor, 
~~~~~~~~

, vanishes.

When the surface perturbation is large, there always exists sur-

face states, and our method permits a relatively simple evaluation

thereof. In any case , having obtained the surface bound states and

the scattering bulk states of the terminated solid , we can proceed to

study the effects of an added perturbation at the surface. (This per—

turbation could be done to a molecule undergoing heterogeneous cata-

lysis or photolysis.) We shall see that the effects of such a pertur-

bation are qualitatively different than if, as in the usual analysis,

the bulk wave functions and band structures were used .

In the periodic solid the complete oz-thonormal. set of Wannier

functions is related to the complete orthonormal set of Bloch functions

(eigenfunctions of the unperturbed , periodic H ) as follows :

ik.R -ik•R

~nk~~ 
N E e ~ Øn

(r_R
j) and Ø (r_R~) = N E e

(B loch) (Wannier

- 

(111.1)

Thus they are Fourier transforms of one another over the N discrete

values of or k (in the space or reciprocal lattice , respectively).

The introduction of one or more surfaces and/or perturbations has the

-
~~~~ effect of replacing exp ± ik.Ri by the components uk(Ri) of a unitary

V 

~~ansformation . As we intend to retain the as the basis, it is fin-

portant to reformulate the operator H0, initially given as

2H0 
— -(* /2m) V2 + vperiodic(r) (with A = I henceforth) .

One readily obtains: - 
V

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

30

__________________ -V -—.- — V ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~
-V

~~
-V-V

~ 
—- 

~~~— - —-—- —~~
--- - - , -V— - —- - - -‘- —-- —-- ‘————-- -

~ 
- 

~~~~~~~~~~~~~~ 
- ,. _. ~~~~_ 

•rd3
r ø

fl
*(r_R

j)110
f(r )  = ~~~~~~~~~~~~~~ (111.2)

where F(R~) is the coefficient in the expansion of f, i.e.:

f(r) E F(R )Ø (r-R ) (111.3)
j j n

Equation (111.2) is valid for arbitrary f(r) (not necessarily an eigen-

function of H0 or of any other Hamiltonian). -

- V To-introduce diagonal (in the Wannier-representation) potentials

::~~:rt~~1~~tb0n5~ we merely add : Em Vm ~~~~ to H and finally ob-

H Uk(R
j) EkUk(Rj) (111.4)

as our new , pseudo-Schrodinger equation , subject to the boundary condi-

tions Uk(Rj) = 0 for Z~ < 0 (for the study of surface phenomena ; note

that periodic b.c. could be used if we were not concerned with surfaces;

indeed , we shall use p.b.c. for the coordinates X~ and Y~)~ in which

Ek is the new energy eigenvalue (which may or may not interlace the

old) k is a quantum number which adiabatically reduces to the crystal

omentum when H -. H0 and p.b.c.. are restored~
Uk(R

J
) is the “wavefunction ”

defined on the N points R~ only, and finally :

- 

- H - E~(-i~/~~ ) + E V (111.5)
m j

is the Hamiltonian, a matrix defined only on the N lattice points. It

should be emphas ized that despite the explicit dif fe rential operator ,

this H incorporates only discrete translations by integer multiples

of primitive translation vectors.

- 
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- 

—-V.-



— -~~ -~--x~~~~~~ ,~~~~ - -~- -~~~~--~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~V- V-V ’V-V V -V - - - V -V~~- V - V V - V~~•

Surface—Theoretic Hamiltonian:

- 

For surfaces which retain the bulk translation vectors in the X—Y

plane the above simplify somewhat:

- - 
H Uk(Zj) EkUk(Zj) - 

(111.6)

- in which -

- - H = 
~~~~~~~~ 

-i~Thz~) + ~ ~~~~~~~ (111.7)

and Zm ma , m=l,2,3,... Note that we have a different “linear chain”

having N = N”3 distinct eigenvectors and eigenfunctions, for each of

the N21~ values of the 2D vector (k ,k). This vector we denote k~

henceforth.

The linear chain problem thus defined is far from trivial, as the

following example will indicate . 
V 

V

V 
Example:

— Suppose the potential perturbations V to be absent, and consider
— 

the solutions of (111.6 and 111.7) when the band structure takes the

I form : -

E~
(k
~
,k
~
) — —2K cos k2a - 2L cos 2k

~
a (111.8) 

-

I in which K and L are presumably functions of k~. A plot of E (kz) is 
- I

- 
- given below(k~1 

is fixed ; only positive k are shown as E is symmetric). V
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We may always pick K> 0; consider various signs and magnitudes

for L:

(c2 ) ( J ~~~)

L < - 4 K ’ ~o L >~ K> °

I 
4’. 4

E~,,= 2(k 4-L )
V 

k €z e.o�-’(15.._
)

- 

- 
- —4’L

- 

/ ~~~~~= 2 ( I < - L . )
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We wish to solve the eigenvalue equation:

H U(a) — 1-2K cosh a~ /~z — 2L cosh 2a~ThzIU(z) = E U(z) (111.9)

on the lattice points z — ma , m l ,2 ,... subject to the b .c. U — 0 for

in — 0 ,-I ,... and U = finite as m -. +~~. We can construct such a solu-

tion us ing the set of k’s which satisfy E(k~) 
— E; label them k ,

q 1,2 ,3,4. We then have: 
V

- - V ikz
- U = ~ Aq (111.10)

and need only determine the Aq which satisfy the b.c. The solutions

have different character in cases (a)-(c) pictured above. We start

with:

Case a:

Fc--. E in the range -2(K+ L) < E  <-- 2(K — L) there are 2 real

solutions ± k and 2 complex roots ± (k1 + ik2). One of the latter - 
-

• grows exponentially as m -. +~ and must be discarded . We find, after

some algebra: V 

-

-1 -K L K 2 2L~E ½ka cos 1~~
- + i-i:i- r ( ~~~) + 4L

and

a(k1 + ik2) ~(L+1L1 + i lnfl~~~l + [(K )2 + 2L-E

• 
• 

- 

+ [(
~~~ 

~ ((K )2 + 
2L~E)) 2 1]

¾
1

Thus:

ik ma -ik ma 1k ma-k ma
13(m) Ae ° + Be + Ce 1 2

:~

-H 
- 

- 

V
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satisfies the difference equation (111 9) everywhere except at m 2

and 1. However , imposing U(O) = U(-l) = 0 enables us to satisfy the

equation there also . The vanishing condition at rn 0 is:

A +B -f- C = O

while that a t  in = —l requires: -

—1k a +1k a -i(k + 1k )a 1 2 aAe +Be +Ce =0

Normalization of the “wavefunction” U for a chain terminating at N.

yields:

+ ~BI 2 
= 1/N (in the limit N >> l/k2a)

These uniquely determine a single solution for each value of E. The

reader may work out the elementary algebra for the coefficients A , B,

C and also verify that when L = 0 this. solution properly reduces to

U (2/ N ) ½ sin k0am , where k a  cos ’1’ (-E/2K).

We next turn to:

Case b:

This case is “non-standard ”, in the sense that the energy minimum

occurs not at k = 0. In the range < E < the analysis is exactly

that of case (a), and a unique solution with 3 components is again

found. However, for E in the range E < E 
~ c 

which encompasses the

neighborhood of the energy min imum , there are found 4 real wavevectors

± k0 and ± k1 at each energy. Imposition of the two b.c. at m 0 and

- J -l reduces this number to 2 (except precise~~ at E = E where only a

single solution survives — howevew, this is a minor technical point).
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Let E(k0) E(k
1) 

= E (cf. Figure b).  As the k’s are all real, we use

sin and cos functions instead of exponentials , and guess: —

sinka +-cr sin ka
U1(m) ~~~

— 

~sin k0ma+~~ sin k1ma+ ( cos k a  - cos ~~~~~~~~~~ k ma — cos k
1
ma)~

as the first solution , and 1J
2
(m) same, with k and k1 permuted-. Note

that sin(kma) vanishes at in = 0 and so does cos(k ma)’- cos(k1ma). The

coefficients have , furthermore, been chosen to satisfy the second b.c.

U = 0 at in = —I . It follows that U2 
also satisfies both b.c.’s It

remains to obtain the normalization constants

N s i n k a +~~~sinka
= 

~~~~~~~~~~~ ~i + ~
2 + 2( cos k - cos k1

a

with C
2 
obtained by the permutation of k

0 
and k1. Finally , the para- 

-
~

- meter o~ is chosen to ma ke U1 orthogonal to U2. We obtain :

a = - [2 stn ka sin k1a)~~~x

[sin
2k afsln2k1a4-(cos k a-cos k1a)

2+{tsin k a-sjn k1a]
2+[cos k s-cos k1a1

2
~~ x

r itsin k a4-sin k1a]2 
+ [cos k a-cos k1a]

2
}~ 3

Finally, we turn to:

Case C: - 
-

V Treated as (a) in the range < E < E,1. From El! to Em we follow

(b).

It is now important to examine the solutions near the energy minima

- and maxima. We shall illustrate only the minima : the maxima are treated

analogously , so their analysis would be redundant.
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We consider the plane index in to be finite, and allow the energy

to approach the minimum in case (a) to obtain:

(a) U 1(2/N 
~~ 

sin kma (as k -. 0) V

It is important to note that 1u1
2 vanishes proportional to k2 as k -. o

for any finite in, but fails to do so if the limit in — ~ is taken first.

Conclusion: square of wavefunction amplitude near energy minimum at

surface vanishes, due to b.c. This effect disappears deep within the

bulk. 
- -

The case (b) is more complex. Defining 8 e ½ (k1 
- k0)a and pro-

ceeding to the limit 6 -e 0, we obtain:

(b) - U -. 2N~~~ cos k a  sin kam sin 8m (6 -. 0)

in which k a  cos~~(-K/4L) (cf. F±~u~e b). 111 and 1.12 cannot be dts-

- - 
tinguished at any finite value of the index in (although presumably one V

of the two solutions has an extra node at in ~N as compared with the

other, to ensure orthogonality). Note that, once again, as we approach

the energy minimum, 1 111
2 

-4 o, now proportional to 8
2, at finite in.

Similar results obtained at the minimum of (c), and at the maxima in

all cases. We conclude that the vanishing of the square of the wave—

function amplitudes near the band extrema at the surface of a i~3lid is

• 
-
~ a general feature of this band structure (first- and second-nearest

neighbor overlap). V

A Conj~cture : 
•

We believe that the above conclusion is a general feature of ar-

bitrary band structures, required because of some as-yet-undiscovered

_
_

_  

- 

- 
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theorem. A heuristic proof may be given as follows : an arbitrary band

structure having a minimum at k = 0 may be approximated by case (a)

near the minimum , and the analysis above is then applicable . An arbi-

trary band structure with a min im um at k ~ 0 may be approximated by

(b) near the minimum, and the analysis appropriate to that case then

applies. In both instances , the square of the amplitudes 1u 1
2 

—. o pro-

protional to (E -E 1). Computations carried out on several different

examples of band structures have confirmed these heuristic arguments.

2D—Brillouin Zone : -

For each (k~~k~) there is one k at which the energy is a minimum

and a second at which it is a maximum. Denoting these by k (k )
z mm /max

we have for the points k11 in the nth band , the functions :

E (k1~,k (k,) . ) e € . (k11) and E (k,k (k ) ) E (k )n z ~~~~~~~ II -ii ’ 2 max max

defined on a 2D-Brillouin Zone spanning all allowed va lues of kit
(kx~

ky)• This is, the largest possible cross-section of the 3D-Bril-

b u m  Zone, as intersected by a plane parallel to the physical surface .

In the accompanying paper , Ap pend ix to this Chap ter , the ques tion of

the stability of the band structure against the formation of bound

states (surface energy bands) is treated . It is seen that under cer—

tam conditions , related to the vanishing of a particular component of
1 ’

V the bulk inverse-effective-mass tensor , ~ = 0, surface states are
- 

ZZ

• formed even for infinitesimal surface perturbations . The Brillouin

Zone of surface states may cover only a small portion of the maximal

2D—Brillouin Zone. For large surface perturbations , a bound state will

V 
form below each energy minimum E in~

’9P 
or for repulsive perturbations ,

I _ _ _ _ _ _ _  
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above each ~ (ki)) and the Brilbouin Zone of bound states will coin-max

bide with the maximal size of a 2D-Brillouin Zone. The reader is re-

ferred to the Appendix of this Chapter for examples of the calculational

method . 
-

Ad -Atoms on Surface:

We consider the effects of an atomic perturbation on a surface in

the presence of surface energy bands . A perturbing potential always

has a bound state in I or 2 dimensions ; however , the bound state here

— may coincide with the continuum of bulk states , and is broadened into a

resonance. This leads to the possibility of the following possible en-

ergy levels :

/ tj; ~ c% o.)

I.’
I, j

/ ~~ I S

~~.

The bulk d.o.s. is shaded , sur&ce states cross-hatched , atomic

level dashed line . (a~is broadened atomic level,(b~is bound state below

surface band (broadened by resonance with bulk band) and (c) is bound

state above both bands , an unbroadened sharp level.
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- . APPENDIX TO CHAPTER III

*ELECTRONIC INSTABILITY OF SURFACES OF SOLIDS

Daniel C. Mattis

- Belfer Graduate School of Science
Yeshiva University

New York, N.Y. 10033

Abstract: -

We study the effects of a surface perturbation on a semi-infinite

solid. The 3D energy band structure is found to determine whether or

not there is an intrinsic instability against the formation of surface:4 ~- - -

- bands. A criterion, involving one relevant component of the inverse-

- effective mass tensor , is derived .

~This research suppor ted by a grant N000l4-76C-O690 of the Office of- 

Naval Research.
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Experimental 1 and theoretical2 analyses have by now established

3that the surfaces of solids often differ in crystallographic class as

well as in electronic properties4 from the bulk. The fact that not all

surfaces have been found to be reconstructed led me to seek a criterion,

— 
and ultimately to pose a simpler problem: under what circumstances will

an infinitesimal perturbation produce a band of surface states? We V

shall denote this an intrinsic instability, for while any arbitrary

material may or may not have surface states, those with intrinsic instabil-

ilities always mus t~ In the present work, we shall prove that a surface

- 

lying in the x-y plane is intrinsically unscable if a~id only if a compo-

nent of the bulk inverse-effective mass tensor 
~ 

vanishes at an appro-

priate point or set of points in the Brillouin Zone. It is thus the bulk

band structure and the surface orientation that primarily prede termines

the intr insic surface instabil ity -- the nature of the surface perturba tion

potential is of secondary importance.

Our prototype material consists of atomic planes at z = na, with

n = 1~,2,. . .,N the plane index. It is terminated by the two surfaces at

n = 0, w
~
+l, with the x and y coordinates continued periodically at N

~
+l

and N~+l respectively. Proceeding to the limit N ,N and N all —~~~~, we

concentrate on the one surface at n = 0. Consider the “unperturbed”

Hamiltonian H~, having the following matrix structure within a single

Bloch band:

$ 
d3r ~~ 

(
~

) H0 L (~ ) = E~, 6 (1)
k’ k k k,k’

in which is the appropriate linear combination of Bloch functions

~ 

-

~~ 
- which satisfies the boundary condition = 0 for ~ 0. In the case

of a simple band structure having E., (at fixed k ,k ) a minimum a t k  a = 0
- x y  Z

or Ti1 this linear combination is merely:

41
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Ck 1i ~ ~k ,k ,k (r) - øk~,k~,
_k
~
(r)] (2)

and the first layer amplitudes are C1~(x ,y,a) = X~(x ,y-)f(k
~
a) with

f(k a) = sin k a,a a

In cases when the band structure E(kx~
ky~

kz) has a minimum at

k~ a ~ 0 or TI (with k11 (k
x~
k
y
) fixed), the amplitude near the surface

may be obtained from a solution of the SchrHdinger-tike equation:

E(k11 , i~~) f(z) = E(kJl , k~
) f(z), for z >0, (3)

subjact to the boundary conditions f(z <0) = 0. We have established6

that for k near the energy minimum f~~. sin(k -k . )z, and obtained az z zmi n

similar result, f ~~sin (k -k )z, near the energy maximum. These arez Ztfl.Q~ -

basically the only properties we shall require.

We next assume that, either as a result of a nonzero change in

Madelung potential5 at small values of z, or because of a small displace-

ment of the surface atoms from their ideal pos itions , or a result of any 
V

other physical requirement, a perturbation Hamiltonian H
~ 

exists near

the surface. Explicitly factoring out the amplitudes f(k
~
a) of the

V 

V 
scattered waves, as dictated by geometric considerations , we may without

loss of generality write the matrix structure of H
~ 

in the form:

$ 
d3
r C~,(~) ll~ (~ ) L6~

) = N 1 
~~~~~~~~ 

6
k11,k’II 

f(k~a) f(k~
a) (4)

diagonal in k because of translational invariance in x and y. If the

perturbation is restricted to the first surface layer (a—a) the coupling

constant is a function only of kj j~ and is denoted g(kjj ) .  If the pertur -

bation affects several surface layers the coupling constant will depend

H -
- 42 -
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also somewhat on k although for simplicity in the ensuing calculations

we approximate it by its value at k5 1 (for attractive perturbations) or

k
~~~~

(repulsive) so that is then Just a function of k11, again

denoted g(k11). In fact our criterion for inherent instability does not

depend o~ the value of g, merely on its sign and on the f act that at

k 
- 

the coupling constant is neither identically zero nor infinite.zinin/max

Ultimately, i f  our procedure is found to bead to interesting results , it

may be rendered quantitative by obtaining 
~~~~ 

self-consistently8.

We first study the bound states of the joint Hamiltonian H0 + H9,

which if they exist, constitute the much discussedt’4 “surface energy

bands”. They must be of the form

~kII ,s 
= 

~~~ 
E F ( k II , k~

) 
~kII,k (5)

in which we use “s” as a subscript to distinguish these surface modes

from the continuum of bulk states. Schr8dinger’s equation (H +H 5 )  $

= E5 4’~ yields the following equation for the coefficients F:

(E. _E5
)P(kJj,k~

) 
~~~~~~~ 

gf(k a)F(kjj,k’)f(k’a) 0 (6)

Z

In order for this equation to have a nontrivial (F ~ 0) solution, the

I following secular equation must be satisfied:

g
1
(k11) = ~~~1(E5;kj1

) (7)

in which is a special case of a more general function:

V

-

V ‘
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on the surface orientation which defines the a-ax is relative to the

invariant crystal axes . It is convenient to write the bound state energy

in the fol lowing analogous form:

- 
E5 Ek,,k + ~ (k,i, k ) (1—cosh X) (ill)

I~ 
zmin zz fj zmin

Now, Eq. (7) simplifies to: 
V 

-

- 
~ (i~~,k ~ =

1 
TI 
d6 sin2(8) 

— = e l x i  (12) 

-

- 
g zz ami n TI cosh X + cos e

Thus the r.h.s. of Eq. (12) fails to diverge when X -. 0 (in fact,

approaches a maximum limiting value of 1). There may nevertheless be

an incipient instability against the formation of surface-states at

arbitrarily small ~g ( provided there exists a locus in 2D k11-space for which
— 0. Examples of this include the elementary tight—binding s-bands

E — -1C(cos k a cos k a cos k a) for b.c.c. and -K(cos k a cos k ax y z x y
+ cos k a  cos k a  + cos k a  cos k

~
a) for f.c.c. crystal structure, both

having a minimum at k
~
a — 0 or 17. For each there are rectilinear segments ,

along which cr~ ~~,l,
0) — 0. Therefore, (12) will have solutions along a

neighborhood of these lines, over a surface, the area and geometry of which

will be functions of the magnitude of g. Conversely, for the s.c. tight—

binding band structure -K(cos k a + cog k a + cos k a) for which the minimumx y a
is also at k

~ 
0, there exists no curve over which — 0, and therefore

V no region of k 11-space inherently uns table against the formation of surface

states. V

The analysis for g ~ 0 is s imilar . The Bloch energy is expanded about

FP~ its maximum, the effective mass par ameter is now non-positive, and .the bound 
V

state lies above the continuum. With the aid of

- 
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f(k’na) f(k’ma)
- E (E;k 11) N 1 L_. — Z Z —

n,m ~ ~ k’ - +a E
~~~

E.KI k’’°‘a -

- 

- iT/a

— 

~~ 

dk~ f(k~ na) f(k~ma) 1E ,  + in6 
(E_E

kJI,k~) 
(8)

V Normalization of the wave func t ion r equires :

V 

f(k a) -
~~~ (E ;k11)

I, ,’’ 
Z r .~~ - S II 1 (9)r

~.
ftJ E - E  L 

~EV S S

As E approaches E(k11 k ~. ~ 
from below (for attractive potentials,S

or as E approaches E(k11,k1 ) for repulsive) the denominators become

arbitrarily small. However, the numerators also vanish (cf. discussion

following Eq. (3) ) b and thus the integrals remain finite unless — due 
V

to the peculiarities of the band structure — the denominator vanishes

as (k -k )4
• The conditions - for this to occur are now examined. For

g < 0 , w: star t by expanding the Bloch energy about.it s minimum:

E
1(Ili~1(z~ ~ lI~

1(zmin4 
~ %z~ 9J~kzmtn)0~z

_k
zmin)

2 
a
2
+ 0((k z

_k
zmi )4)

- 

or, more compactly, with e (k~
_k

j )a, 
V

~~jj ,k~~~ + ~zz~~ Jj~
kzminXt_C08 9) + 0 (94) (tO)

1 1 1  . -

in which orzz (k JI~kzmj n) ~ ~~~~~ ~ a
2a
2E., /~t~ is the as—component of the

inverse-effective-m ass tensor. Because it is evaluated at a minimum,

> 0 necessarily; its magnitude depends both on the band structure and

- H
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•r—~-V --V -V V V -V

~~~~ EkI,k + a (k ,k )(l + cos 8) + 0 (e~)k zmax zz zmax

and 
-

- 
E
~ 

= E
kJ1 k -1. cra Jl~

kzax
)(l_cosh A) -(13)

— 
Eq. (7) once again reduces to (12), after the substitution of a z(kiJ~

kz )

for a (ki ,k . ) in the l.h.s. Because of the change in sign of the
zZ ( zmin.~

effective-mass parai’eter, the bound-s tate solutions now exist only for

g > 0, but aside from this, the discussion given after Eq. (12) applies

for this case also. It should be noted that the loci of a = 0 arezz
not necessar ily the same f or k as fo~ k . , although in the twozmax z ra3.n
examples given (b.c.c. and f.c.c.) they do coincide because of symmetry.

The s.c. tight-binding band structure provides an example of the

importance of surface orientation. Inherently stabl e against the

formation of surtace bands when the surface is a (100) plane, it demonstrates

an inherent instability along a (011) direction: in the new coordinate

sys tem a
y
= a = a2 ½,a =  a, and the Bloch energy takes the form

E -K (coska+2c o s k a  c o s k a )
j~ 

x y y  z z

For k a 0,17 the equation a = 0 has a solution along the straight-line
V ama zz

- 

- 
segments k = arbitrary, k ± rr/2a , indicating an instability against

the formation of surface states in the neighborhood of these lines.

A surface perturbation scatters bulk states , and modifies the surface

density of states g affecting optical absorption at the surface, etc.,

even when there are no states bound to the surface . The contributions of

bound— and scattered- states are combined in the calculation of the

“perturbed” local density of states f unc t ion2 on the n-th plane. After some

algebra , one obtains:
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~~~~ ~ xNy~~
’ 

~~ ‘ 
~,n~~s

;k
IIP 

(-~E11 (E;k11)/~E)~~ 6(w.E )

+ 2 (NxNyNZ ) 1 

~~ 
k1., n (

~~ 1
2 

6(w-E) (1.4)

- - where E is the surface—band energy, and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 — g(k j~) Z~~1(E_ ;k j 1 ) (15)

- 
In the bulk limit n -. ~ we drop the exponentially decaying and/or rap idly

oscillating terms to obtain the liuiting behavior p0,(w) = (N
XN N

~
)1 

~k 
1 ’

6(w - E.), which is exactly the usual bulk value . Thus, the existence
-
~~~ k -

of the surface is “forgotten” deep within the bulk. For small n

however, the local density—of-states given by (14) is sensitive to the

- - sign and strength of the perturbing potential, and to the existence of

bound states. -

The modified charge distribution is conducive to -th e phenomenon of

“surface reconstruction”3’8. We have seen that the surface states (if any)

do not necessarily occupy the full 2D surface Brillouin Zone, but just a

small area near the locus of the instability oç
~2~
= 0. The narrowness of

- this area in i~—space suggests a Large resultant cell size in real space, t

as is indeed experimentally observed in some reconstructed surfaces. The

predicted absence of inherent surface-state instability in other cases

(e.g. the model s.c. with (100) surface) suggests the absence of surface
V 

reconstruction there . In all cases,~~ analysis of ~~ 
(k I,,k~~

) to determine

where (or if)  c r =  0 migh t usefully precede any full-blown study of a sur-

face, to pin-point the a-priori instabilities . -

I thank bra. Rafael Pens and Barry Simon for helpful collaboration.
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Editors, Academic Press, N.Y., 1975.

2. The theoretical. analyses and concepts (e.g. “local density—of—states”)

are reviewed in J.R. Schrieffer and P. Soven, Physics Today 28, 24 (1975).

- (Note that they number the first atomic plane n=0, whereas in the present

work it is n1). See also Chapters by R.O. Jones and by F. Berg in
V Scott and Reed , 9J~. £.&i~

3. p.j. Estrup, Physics Today 28 , 33 (1.975).

- 4. such as, the forma tion of bands of energy levels conf ined to the

— neighborhood of the surface ; see J.A. Appelbaum and D.R. flamann,

V Phys. Rev. Letters 32, 2~ 5 (1974) , as well as Eqs. (4)-(ll) in the

-
~~~ present paper.

- 5. Because surface perbutatioris alw~~s exist. For example, the ubiquitous

- 
Madelung potential necessarily ~deviates from its bulk value in the

neighborhood of a surface, as emphasized by A. Clark in his “The

Chemisorptive Bond”, Academic Press, New York, 1974 ~9.3.
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2
6. We have comp letely solved two examples: E = + k2 )2, withzmn

the helpful collaboration of Prof. Barry Simon, and

E = -A cos a f + B cos 2a . In both instances f(z) has the

behavior indicated in the text, and we have compell ing reason to

— 
believe that its vanishing near kzmjn ( or kzm~~) is a very

general property; a full account will be published elsewhere.

7. Mathematically, the problem of obtaining bound- and scattering—states

of H0+ 11~ remains exactl
y soluble for any 8kk ’ which, while an

a~bitrary function of k11, is of the - - V V

separable form ø(k )ø(k ’) in k
~
, or is a finite sum of each terms.

Instead of (7) we obtain a secular determinant containing the quantities

E . The condition for the existence of a bound state when 1g 1’ 0n,m

remains precisely cr = 0 in this case. In the most general case,

an arbitrary function of k and k~, we once again recover the same

criterion using a variational solution for the bound state. This

requires only that be suitably bounded — neither zero nor infinite

atk zm
8. As, for example, in the work of M. SchlUter, J.R. Chelikowsky, S.C. Louie

and M.L. Cohen , Phys . Rev. Letters 34, 1385 (1.975). In our method,

the calculation of a self-consistent surface perturbing potential H5

would involve the perturbed density-of-states Eq. (14) and Poisson’s
V 

equation.

9. as observed in photoelectronic spectroscopy: see D.E. Eastma n and

M.I. Nathan, Physics Today ~~~~~~~ 44 (1975) and R.L. Park, ibid., p. 52.
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10. The reader should note that the continuum of surface states in

general overlaps the bulk band continuum of B1.och energies. Thus

the surface bands, if any, may lie entirely within the Bloch-state

band (this is the case of an intrinsically unstable surface under

the influence of a very weak Surface perturbation), or may only

partly overlap it (somewhat stronger perturbing potential) or

may indeed lie entirely outside the bulk band (as happens when the

perturbing potential is large,regardless of whether or not the

surface is intrinsically unstable in the sense of the present work.)
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IV. TRANSPORT IN A RANDOM MEDIUM

Impurity-band conduction and electron energy bands in random al-

loys may be studied by similar techniques. The best single method of

the past decade has been the CPA , which suffers from a basic weakness:

inability to take short range order (SRO) into account. A relatively

simple method , yet one that can account for SRO , and LRO if necessary ,

is outined in the Appendix to this Chapter. Extension of this to the

Hubbard model (2-body forces) is actively underway, the SRO being de-

termined self—consistently . —

H -  

-

-

~~~~~ 
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.
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APPENDIX TO CUAI ’TER IV

ELECTRON STATES IN RANDOM ALLOYS WIT h ShoRT-RANGE ORDER

*Paul Bloom and Daniel Mattis

Belfer Graduate School of Science

Yeshiva University,
New York , N.Y. 10033

Abstract:

We present an accuratc and economical iterative method of

ca l cu l a t i ng  the energy levels of a d isordered  or par t l y ordered

random £ i i oy . R e s u l t s  presented for  i— fl and 3—fl s imple -cub ic

la t t ices  compare favorably  wi th  exact calculat ions . We also

present the systematic effec ts of partial short-range order in

3-D . A theory of the one-particle propagators is presented , 
V

and the theory of electrical conductivity is developed in the - 
-

contex t of our new me thod. Our formulas satisfy the exact

conservation laws .

r . -

* Suppor ted by AFOSR Grant #73-2430B.

# This research is suppor ted by a grant f rom the Off ice of Naval
Research 41N00014-76-C-0690
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I Introd u c t i on

The s tud y of e l ec t ron ic  and v i b r a t i o n a l spectra  of d isordered

alloys is currentl y one of the princ ipal concerns of solid state

physics
1
, stimulated by the outstanding successes of the coherent

potential approximation
2’3 (CPA), now ending its first decade.

Although efforts to improve our understanding beyond the CPA have

not all met with the same good fortune , there have been recent

exceptions . Cluster methods4’5 have been devised which are accurate

enough to reproduce the “peak y ” s t r u c t u r e  of the density of-states

V 
p (w) , which they sometimes do (notab ly in one dimens ion 4 ) with

startling fidelity. We have been working along such a cluster-type

appr oac h , arid have found an ex t remely  simpl e me th od t r an s l a t i n g

dir ect l y into a computer al gori thm . While unsuited to the theoretical

s tudy  of L if sh i tz 6 tai ls , our method has permitted us to reproduce

many of the other known results over the theoreticall y permitted V

range of energy7, even near the energy maxima and minima, and

additionally, permitted to study of the effect of short-range order

(SRO). Along with Lifs”hitz , we envisage tails in p(w) at the energy

maxima and minima as arising from accidental correlations in increas-

ingly la rge cl usters , of a size that for practical reasons we are not

at present capable of handling ; however , the simplicity of the present

method may suggest a natural extension to cover this
8
.

‘H The basic outline of our paper is as follows : In Section II

we present a method for the calculation of the single-bod y Green

function in the presence of an arbitrary numbe r of impurities. We

the n d iscuss how our pr ocedure can be implemented by the use of a

convergence factor , E. Section III is devoted to an ana lysis of the
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meaning and uses of the complex self-energy Ewithin the contex t of

a disordered medium. Results from our method are presented in

Section IV, including the effects of SRO. Beyond this in Section V we make

further approximations that allow us to determine
k k  -

Section VIta concerned with the development of a transport theory
- — 9

compatjble with C, along the lines of Baym and Jcadanoff.

II Clus ter Green Function

Let the Hamiltonian for the electrons within a single tight

binding band in a hypercubic lattice in D dimensions be:

H 

~~~~~~~ 

T1~~~ i) ( i (  + E V1jiXiI a T + V (1) 
-

with T~ . (2D)~~ for i,j nearest-neighbors and zero otherwise,

the Wannier state at the lattice point R~, and the potential

which takes on one of two values depending whether atom A or B

occupies the i site. We construct the resolvent operator G(z) and —

its various matrix elements : - 

-
V

G(z) (z—H)~~ [z - (T4~) - (V - E)]~~ (2)

V in which we reference the operators to a complex “optical potential”

E(z).mere].y as a device to enhance the convergence of subsequent

4 expansions, with z = frequency w,extended to the complex plane.
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I 
- - For those readers familiar with the CPA, it is important to

note that our new departure consists principally in dissociating the

complex self-energy parameter E(w) from the site-diagonal averaged

Green function ~~~(w). Whereas in CPA, knowledge of the one implies

the other, ~~~ the relationship:

- 

°“CPA 
= (n~ [z - (T + EcpA (z)) ~n) , (3)

our- experience indicates that it is better to treat ~(~) merely as a converg

parameter , one to be ch osen as an ...~j-h~c..aid in the calculations

rather than by tedious and unnecessary self-consistency conditions. As by

Eq. (2) the exact ~~~(z) are al.i dep~ nci~~t-~r r
~~ ! ( z ) , in ary accurate appre’:-~

ination to ö (z) we have latitude Ln our choice of E(z), as discussed below,

and we ptck the simplest possible E(z) for which our calculated C is

approximately stationary.

I; We next define a modified resolvent operator, ~~~~ appropriate

to the case in which one sets .V~ 0, where we define V. (iI(V-E) .~~i)
and y indicating the eliminetion of the localized fluctuation potential

at this -site by ( )~~, we have:

a [z — (T + E) — (V E) ‘
~
]
~~ 

. (4)

The full resolvent (2) can be expressed in terms of the modification

in (4) by the use of the operator identity (A-B)~~’ A~~ + A 1 B(A-B)~~~

G(z) ~~~~~~~ + G~
t
~ (z) (V - E)~ C(z). (5)

- 

- .
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Because the perturbation is diagonal in the Wannier representation , the

matrix elements are easily found :

C~9(z) V G~
’
~ (z)

/.1~~ 
- 

~ 3. i im
C (z) = G~ L/(z) + . . (6)

l _ G ~~~~
1)

(z) Vii i

For the calculation of the density of states function p (w)~~~- Imö’T~(w+jc)

only the conf igurationally-averaged ~~~ (w+iC) is required .

For the one-particle propagators ~~~~~~~~ the averaged Fourier transforms

of all G
~~~

(w + i€) are needed . Eq. (6) is now iterated. Define

to be the modified resolvent operators with the fluctuation-potentials V

at sites i and j removed. By a repetition of the above, we have:

- 

J~~~~~~~~~~
’

~~~~~ V
GW(z) = G~~’~~(~ ) + ~ ~ 

jm 
(7)

- 1 — ~~~~~ V .V 

- j J 3

The matrii elements Gnm decay exponentially with distance R ;

V 
thus the expansion (6) , (7) is in a symbolic “parameter” .y defined as

V 
- ~~~~~~~~~~~~~~ 

~~~~~~ . which is “small” for small V~ and “exponentially

small” at large V~.~~The process (6), (7) is to be repeated any

nuzner of times, until l~be largest practical cluster size is

achieved ,0 Termination , - by t runcation , of the series consists of

approximating the most distant C’s, i.e. those with the largest

number of superscripts , by their- value in the average optical

~~ potential. Thus, if we stop at (7), the approximation

consists in replacing G~~’~~(~) by (nI(z - (T + E))~~~ni). The configurational - -

averages over all the explicitly retained V~ are then performed, and all ~ ‘snhtajned. ‘
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III Choice of E -

We now come to our pr inc ipal point of departure from other

method s - our choice of E. Our results woul d depend crucially u pon

E except for the following observations. Since the behavior of the
V 

local cluster is the dominant characteristic of disorder ed systems,

we expect results insensitive to the particular choice of E if the

cluster size is sufficiently large.

We require a simple functional form for Z that allows for states

out to the bands limits. This excludes the use of E
cPA

. which is known

to produce bands that are always too narrow. WE restrict the range

-
~~ of possible E’s by requiri ng that it obey dispersion relations, insur-

tug that our approximate C is analytic. Furthermore, a functional

form is desired in which C is accurate in both the weak as well as

strnng scattering regimes . Bece~ise of the local nature of hi ghl y

disordered systems , our choice become s more critical fo r small potential

differences where effects are more ex tended. Our inpu t is the liii E

which we take as one or more step functions, non-zero only within the

theoretical band limits. Re E is then determined from the following

dispersion relation

- j : -

lXz) ~~~~ 
~2,ij 

J’ dx 
Z(x+j~) 

~ (8)

This is sufficient  to make our approximation to G(z) satisfy causality.

The density—of-states sum rule , 1 is itself a beneficial

consequence of the analyticity of our approximate C(z) and its resul t-

ing l/z depe ndence in the asymptotic limit as we discuss elsewher~ .

We verified that in all cases studied, the sum rule on p(w) was satisfied

numerically. 
. 

.
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If we choose the constant, Im E, to be of magnitude of Im ECPA
then in the weak scattering and low concentration regimes C(z) will

be quite similar to G
cPA(z) so that accurate results can be expected

in all regimes.

Before we proceed, the way in which we use Im EcpA must be more

clearly outlined . In the accompanying Figure 1 we display the two
12

basic behavior patterns of u r n  ECPA I as observed by VKE. It should be

noted that, here also, ReE arid linE are related by the Eq. (S). E has

to describe everything in the CPA; it determines band gaps, peaks in

the density-of-states, and the general overall scale. Most of these

results (e.g. band gaps and complicated structure) are better obtained

by our detailed calculations of the correlated scattering . We hypothesize

that the most useful information from CPA is contained in the general

overall magnitude of In L
CPA. Operationally, in Figure I a , we would

ignore values of IIn~ ECPA I from the region of its maximum as well as

the ex tremeties of the band . In the former range of energies , we ex pect

exceptional scattering because it is easiest for these states to make

transitions due to band overlap, whereas at the band edges the spectrum - V

‘~ 

V will be least disturbed, according to the same considerations . Any

value from the shaded region is then acceptable. In terms of particle

lifetimes, we will obtain the large and small transition rates because

we alnost solve the eigenvalue problem exactly for each configuration

and this is clearly equivalent to a perturbation approach . As for

concentration dependence in Z~pA, we will obtain correct behavior simpl y

-

_ because we weigh each configuration by its appropriate probability. Thus

we are able to include both the dynamical and statistical aspects of -the

problem. 
V 

V 

-

58 
-
~~~~~~~~~~~~~~~ 

_ _ _
—-- V 

— —.V~~
VV ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ - — ,~~~~ 

—



- 

v-V

- -V 
.

--V— V -V 

~~~~~~~~~~~~~~~~~~~~~~ 

-‘-.— -V —V--V V — V 

~~~ ~

_V_ 

~~~~~~~~~~~~ 

~~~~~~~~~ V~-V_~ ~~~~~~~~~~ -

In case b, the same analysis leads us to ignore the very

large values of h i s ECPA I in both subbands. Here though, the

magnitudes are considerably different leading us to suspect that two

different constants are needed . Further details of this case will

be elucidated in the following examples. 
-

IV Analysis of Results

We first considerthe canonical l-D tight binding binary alloy f or

3 different scattering strengths at a 50-50 concentration.Figure 2

compares the results of 1,3, and 5 clus ter calculations for p(w) when

= ± .5 with exact results . We see in this example the development of the peaky

structure associated with special clusters of atoms as our cluster size

increases. Proceeding to a larger scattering strength (V
i = ±~I.0),

we expect that the local configurations will play a more prominent

role because of increased wave function localization. As shown in

Figure 3 we successfully reproduce most of the structural details of

p(w) for a 5 cluster. To check the degree of insensitivity in our

5 cluster model we varied htm El within the limits given by Im ECpA

and found little change in the overall pattern as shown in Figure 4

-

‘ This indicates , a~merically that the resulting C is stationary and

that E is opti.uin.

The scatter ing strengt hs are now increased to V~ = ± 2.0 ,

pr oviding a cri t ical evaluation of the methods capabilities (larger

scattering strengths are in a sense too easy because wave function

localization makes a cluster calculation more plaus ible). Using the

-
~~ exact scattering off all configurations of 5 atoms , the highly discrete

- 

V 
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spec t rum is well reproduced , as seen in Figure 5a. Increasing the

cluster size to 7 atoms, keeping the convergence factor the same as in

5A, improves our agreement with the exact results as shown in Figure 5b.

In Figure 6 we display the results of again varying hIm El within the

limits dictated by In ECPA ; the major details are again seen to remain

stationary. We have found empirically that if hIm ~I is too small, the
resultant density-of-states is too “peaky” and as such, representative

of a molecular cluster, instead of the solid state. If turn El is too

large, then the central site predominates, as is correct only in the

extreme “atomic ” limit when potential fluctuations greatly exceed

the band-width . One can see this from Figure 6 since the sharper

curve is associated wi th the lowest value of u r n  El and vice-versa.

In three dimensions the obvious cluste r size is 7 sites. Figure 7

compares our calculation with the Monte-Carlo type numerical results

of Alben et. al. A constant urn E gave poor results in this case, but

the CPA calculations immediately showed us why : Im ECPA was more

-
~~ than one order-of-magnitude smaller in the majority subband than in

the minority subband . Consequently we changed In E to the step function

shown in the figure , varying the parameters (magnitudes of the steps )

again guided by CPA . The resul ts now agreed well with the exact

computations and were insensitive to the precl~evalue of our parameters

as is evidenced by Figure 8 in which a 3-step function was used.
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-: 

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 
-
~~~~

.-
~~~~~-—~~ - 

~~~~~~~~~~~~~~~~~~~ 
-.-- .---- — __

To illustrate ent irely new app lications , consid er effects.

of SRO on this same alloy. With 
~~

‘ the Cowley SRO parameter, cA
and CB 

= 1 - CA the relative concentrations and the probability

of finding atom A at a given site ~hen a B atom occupies a specified V

neighboring site, we have P~~ CA + C
B a, PM 

= cB(]. 
- 

~~~~‘ ~
‘AB = CA (l - a ) ,

V 
- and 

~BB = CB ÷ C
AcY.Ifl 

ref. 13, aO . For CA ~ .1, a can vary from

-0.11 to +1.0; negative a is associated with enhanced tendency of

A atoms to be surrounded by B’s (i.e. “antiferromagnetism”), positive

~ indicates enhancement in the probability of either species being

surrounded by atoms of its own kind (i.e. “ferromagnetism”). Using

the sas~e Convergence parameters as in our calculation at ~ = 0, In Figure 9

we find distinctive features in the minority sub-band density of

states that we interpret in terms of minority-atom clustering :

the single peak of a -.0? registers tze unlikelyhood of finding

two A atoms as nearest neighbors, and the double peaks of a .7

represent the tendency of the same atoms to form pa irs , triplets,etc.

However , due to the sparseness .of A atoms, triplets and higher-order 
V

clusters are statistically insignificant for these values of ~~~~.

V Electron Propagation

So far we have developed a ~-.ethod for calculating the site-diagonal

configuration averaged Green function. We have not indicated, how we

H would calculate the non site-diagonal propagators. One alternative is

-V to develop a cluster method for the latter , similar to the method we

used for the former. Another, simpler t1~ough less accurate, alternative

will be employed . We f i rs t  define a new self-energy A*(z) by the equation
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k z_A*(z) - e

This relationship is numerically inverted to obtain A* as a func tion of

the exact or numerically calculated G~~ . From the calculation of

A*(w) we obtain A*(z) in the entire complex plane, as:

A*(z) = (V) + ! 
~~ 

dw I~ J~*(w+j ~ ) (10)

— 

w-z

If fur ther values of G
L
(z) were calculated nuxnerically , then

we would determine A*(i~,z) from

— ii~.(~ -~~)- l  inG (z) E ~ E e -

- ,

z — A*(IZ,z) —

- k
and V (11)

-
~~~~~~~~~~~~~~~~~~~ 

_  1 -G~~ = z-A*(k,z)-e , 
V -

• The analysis is facilitated by going over to a localized representation

in which we would specify the number of elements A* (z) that

we have deterinined nurnerically. F.or example, if we have avail-

able GL ,L (z) 
~ 

G
L~~+1(z) ~ and CL,L+2(z) , then we would be

able to obtain

- A*Lm (z) = 

~~~~ 
A*0(z) + 6L+l ,m A* (z) + 6L+2 in A*2 (z) ,

- 62
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by solving the 3 equations simu l taneously. In the case at hand ,
we will use a site-diagonal self-energy since all we have at our
disposal are the computed G~~(z). We will still use

— iTc~.(i~ -~~) 
V

V G (z) 3
~~E etm -

z — A*(z) —
hence k 

- (12)
= z- / t*(z ) -

k

as the definition of the off-diagonal elements. The propagators

decay rapidly with distance so both the one, two, or three point

curve fitting proceedures will probably give reasonably equivalent

results. Z~ow,a1l the information contained in our previous numeri-

cal work is stored in A*(z) , the complex proper self-energy part.

It is of interest to compare urn A* with Im ECPA in order to see how

they differ. This is done in Figure tO for the i-fl alloy of Figures

5 and 6.

In summary we have presented a relatively simple method for calculating

the eigenvalue spectrum of a disordered system, one that avoids

all the computational pitfalls of self-consistent methods. This

quasi-invariant theory is not only highly accurate, but also

allows the bounds on the frequency spectrum to be naturally

determined by the correlated scattering of a local group

We now discuss transport and develop a formalism that allows

our numerical output to be used in approximations that con-

serve particle number and energy. - 

V
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VI Transport in Disordered Systems

The linear response of the current to the electric field defines

the conductivity, which we take to be the same along the 3 principal
- 14

directions in our simple cubic strutture. Following Velickç we have

in our single-particle model

- ~~~~~~ 

dl 
~~
.. ~~~X)] (8(X-H)p

1
6(X-H)p

1
) 

(13)

where e , the electric charge, is unity and f is the fermi function.

The bracke ted term is short hand for

(6(X-H)p16(X-H)p1
) ~~(ct~ (X~H)p1

6(XH)pi
icr) (14)

p
1 
is the momentum operator along an arbitrarily chosen principal axis

and the long bar denotes configuration averaging. Examination of Eq (14)

reveals that we require the two-particle correlation function -

I 

mj
Zl~

Z
2)~ < i i  ~~11

hj)  (m)—~—~ IO (15)

We can relate G2 
to G by the equa tion

V c~~J
(zl)zz)~J (z

l
)G
~~
(z2

)+
k~ 

(z
l
)ö (Z

2)~ kr~~~G~mjr
(Z
1~
Z
2)ø (16)

qr
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~ —,
which define s the ind ex struc ture of the vertex function. This

equation is exac t for the exac t C and we will, use it to

define G
2 
when we have an approximate single particle green function.

V 

We can place restrictions on possible vertex functions by

- requiring the conservation of charge and energy in the presence of

a long—wavelength disturbance. This leads to the introduction of a

new operator -

K(z 1,z2) = z 1
.~U ~

i__
H 

-
- 

- 
(1.7)

It is easy to show that K must satisfy the following Ward-type identity:

- K(z 1, Z2) 
~~~~~~~~~~~ 

[c(z1) 
- 

~
(z2)J (is)

which implies a connection between -V the one-body operator G and the

two-body green function G
2. Also, one can show with the above

-V condition that the linear response of the particle number and energy

to a tong wavelength disturbance is zero, thus ensuring the appropriate

conservation laws. If we use an approximate C , then we mus t cons truct a

p K that- maintains Eq. (1.8) and this allows us to relate C to the vertex
V 

- function in the following way: We let z2 
-. z1, then Eq.(18) becomes

- 

d~~~~ ( z )  -

Ki~
(z j ,z2 ) — - 

dz 1 
~ - (1.9)

The configuration averaged resolvent can be written as

k ~
‘
~~~z~ ) — (i I * 

It) (20)
- Tkjfl~

A
o (z

l)

which leads to the equation

-~~~~~~ -~~~ -~~~~~~~~~~~~~~~~~~~~~ V-- ~~~~~~~~~~
-V- -V
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K~~(z1,z1) = E C~~(z1) G .
L
(zl) + E  ~~~~~~~~~~~~~~~~~~~~~~~~ (21)

But

-V 

- dA*kq(Z1L) 
= •E 

dA*kg(zl) ~_dç(zi)j k~~~1 K (z )

- 

dz 1 rp d~~~(z1) dz1 - rp dä” (z1) 
pr

so that - 

-

K.
L
(zl,zl

)__E 
~~~

(zl)~~~
(zl)+

k
E ö (z1)c (z

1) ~~~kg~~1~ 
Kpr (zi~z1)•

rp dG (z
1) 

(22)

In G
2
,we let in = j and sum over all j with z

1 
= z2:

E G~~~~ (z
1~
z
1
) = E 

~~~
(z
l)~~~

(z
1
) + E  

~~~
(z
i)czi ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V r~
: (23) V

Once we recognize K.
L
(zl,zl) = Z G~,.. (z1,z1),we find that the

vertex must satisfy the equation

~kr ,pq 1~
Zl) kg~~~l~ (24)

-: V 
dGpr(Zi)

We note that not only must this relationship hold for the exact V

vertex function and self-energy but also in any approximation in

1 

_ _ _ _ _ _ _ _ _  
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~~~~~~~~~~ 
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~~~~~~~~ ~~~

in which it is desired that the two-particle correlation function

satisfy the Ward Identity , E q . ( l 8). This means that  once an approximation
*is made to A , we can determine transport functions that allow the

conservation laws to be obeyed. We could make further approxi-

mations to G
2 but we would then have no guarantee of conserving

charge, energy, etc. The Ward Identity is useful to generate a

vertex function only when the frequencies are the same. For

V - the case at hand,Ak*q(zl) = 6kq A*(z1) is a function of the site-

diagonal averaged Green function so the vertex is

dA*(z1)
~kr ,pq l~

Zl) 
= 8kq6rp d~~~z 1) = 6kq6rp ~ (z 1, z1).  (25)

For -z1 ~ z2,we make the approximation

V 

~kr,pq l~
Z2) = 6kq 6rp ~ (z 1,z2). (26)

This is certainly consistent with the Ward Identity,and further-

niore,it allows us to show that contributions to the conductivity

from the vertex correlations then vanish. The two-particle correla-

tion function is now

G~~ . ( z 1,z2)=IT (z1
)G (z2)+ zG .k(zl)G.,~~(z2) ~(Zi~ Z2)EG

~~.njr (Zi~ Z2) . (27)

V To find the conductivity we need, (6(11-H)p1e,(12-H)p2) ,or

— - 112(11,12) = E m(m~
6(12~~)1L> P~j(i~6(X1-H)Ii) (28)

ijZm

-~ - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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~~~~~~~~~~~~~~~~ —.1-V-V.,-- -V-Vp

~ ~~~~~~~~~~~~~~~~~~~ 
--V-V-V-- V 

~~~~

which requircs

~~~~~~~~~~~~~~~~~~ 

P~j ~~~~~~~~~~~~~~~~ 

~~~~ 
P~~ ~7’(x~

) G
mL

(12)

E ~~~ 
ç (x 1) ~, (X2) ~~~l,12

) E G
~mjr

(X l~l2
) T’jm (29)

The second term breaks up into

i~1( 
~~~ 

c~1< (x 1) X2)j~r ~~
h1~

12) c
2

.(x 1,x2) P~~ 
A . B . (30)

Let us transform the Wanniér sum in -VA to a Bloch sum. Then since

and C is diagonal in the Bloch repre-
kk’

sentation,

A = in 2 V2(1~) G ( x 1) G ( 1 2) = rn E 
_ _ _ _  + 

1~ )
• . 

- ~k2 (x 1~J ~*(X 1)~ c)  (X 2 A*(~2
) _ ~_)

The propagators are even under inversion (~ -~) but the velocity v2=~~ eI ~k2

is odd,giving us zero,and all vertex corrections now vanish.

In this case, the fortunate cancellation of vertex corrections -V

comes about as a consequence of the approximation of the proper

self-energy by a site-diagonal quantity, Eq .(12) .

Zero-Temperature D.C. Conductivity

• 1  
- 

We are now in a position to evaluate cr(O). Because the

vertex corrections vanish, V -

112(1,1) 
iJLIn ~~~ (m16(X-}3)~L) p~1 (iIo(x-H)li) 

- 

•

m2 t V1(i~) V2(t) (i~~6(~ -11) 
r~~~~

2 

(32) 
-

- -

- 
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With the definition (k160. - H)~i~) -l Im C~~ (x)  
, we get for

IT kkT = ~~ (o(w) = a11
(w)) -V

a(O) = 2 
r 

dX~~~~~~ ] E- V1ØZ)
2 
t1m~~~(x)]

2 
, 

(33)

where we have included a factor of two for the two pos sible sp in

orientations. At T = 0,- ~~~~ = o (x - 

~) with ~j chemical potential ,

and the conductivity per atom is

_ _ _ _  E V1(i~)~ [In-~~~(t.L)J
2 (34)

01-V

a(O) = 2 r dE 
~~~~~~~~~~~~~~~~~~ I~~*~~~)

2 E V
1(~)

2 
6(E-~~). (35)

This natural separation, only possible for-a proper self-energy

‘ independent of i~ ,isola tes the lifetime and energy shifts of the

single-particle excitations from that part of the conductivity

which pertains to the particular lattice under study. We will

concentrate on a 3-D simple cubic lattice with c 1
~kcosk 4cosk 4cosk ).x y z

Then,V (j~)2 sin2k (1 - cos2k). Consider the functions
1

~-~1 . 
.
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‘ V 
- - nik

1 e X
P~-(E)E— I;N

k

- for vhicfr-.we have

* 

E V1(i~)
2 
6(E~~~ fr— Im [P2(E~) - P ( E ~)). 

-

The imaginary part of both P2
(E+) and P(E+) vanish outside

the unperturbed band and

o(O) = 1 urn dE [ trnA*(~~) 
+ 2~ 

tP2(E~)-P0(E~)). (36)
2 ($j._Re~*(~ )-E) + ItnA*(~1. )

9i’r

We have calculated the D.C . conductivity for our 3-D

alloy in order to illustrate our formal results . Generally,

there are two ways in which the D.C. conductivity can -vanish.

if the density—of-states at the Fermi level is zero then so is

~
(O). In addition, we can have a finite ~~~~ but a zero mobility

because of wave function localization . Eq .(36)only admits a zero

- -in o(O)- if p(~) -is zero so we e~ nnot take the la tter possibility into

account . The conductivity is displayed in Figure 11 against its

- - respective density—of-states. There is a rather direct correlation

between the magnitude of the density-of-states and that of the

-V conductivity. This relationship is understood in

hH .

V -V~~- V- V-V - V- V - - ~~ -V~~V ~~-:: ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

V 

V 

V. 

~

-V• 
-



--V —-V -V-V -V.— — 
~~~~~~~~~~~~~~~~~~~~~ 

— ~~~~~~~~~~~~ 
- — —V--V 

~~~~~~ 
_ -V_V-V

r~~~
— 

- -

terms of the availability of states at a given energy to which an

initial state can make a transition. We also find peaks in a(0)

which we associate with velocity peaks in the cubic band structure.

-j I 
- 

V 

- . 

-
-
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Figure Captions

Fig. 1 Real and Imaginary parts of the complex self-energy in the CPA.

The two sets of curves are indicative of the type of results

that can be expec ted from this approximation. In part a , we

- have a situation where the alloy bands overlap while in b the

case of split bands . -

Fig. 2 Comparison of 1,3, and 5 cluster calculations for p(w) using
- 

u r n  Et i l  = .15 with V~ — + .5, c = .5. Background

(histogram) is exact results of Ref. 4.

Fig. 3 Comparison of 1,3, and 5 cluster calculations for p(w) in l-D

using ~Im E . .5 with V. + 1.0 and c = .5. Background- 
- tr,.al i —

- (histogram) is exact results of Ref. 4.

Fig. 4 Curves give p (w) for 3 4 i fferent  va lues of Ei al for- a 5 cluster -

calculation of a l-D al loy with = ± 1.0 and c ~ 5. The

sharpest peaks are associated with lowest value of u r n  E
~~i i  1 *

.4. Other values are .5 and .6.

Fig. 5 (a) Density-of-states for a 50-507~ concentration l-D alloy with 
-

VA = 2.0 , V8 = -2.0. Histogram is exact calculations from

Ref. 4. The full band is obtained by reflecting the portion

V shown through the origin. These results were computcd from

Im E - .80 and Re ~ obtained f rom Im E by Eq.(8),including the

exact scattering from alt configurations of a central atom and

its 4 nearest neighbors . (b) Extension of the above results V

to a cluster of 7 atoms using the same E(w). This result is
- 

comparable in accuracy and wealth of detail to the best self-

consistent calculation to date , 1(ef. 4.
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Figure Captions

Fig. 6 Curves give p(w) for 3 d’ifferent values of E
~~i 1  

for a

5 cluster calculation of a 1-D alloy with V~ = + 2.0 and

c = .5. The sharpest peaks are associated with lowest

value of u r n  E = .4, other values are .8 and 1.0.trial -

Fig. 7 Comparison of 7 cluster calculations of p(w) (dashed line)

using a two step u r n  Etr i aj i (long dashed line), with

numerical work of Alben et. aL .~~ (solid line) who solved

the Schrodinger equation for an 8000 atom 3-D tight binding

solid . The potentials are V . = ± .75 with impurity concen-

tration of .1.. Small horizontal arrows indicate the height

to which their peaks rise.

Fig. 8 Comparison of 7 cluster calculation of p (w~ (dashed line)

using a 3 step lIm 
~trial 

(long dashed line) with results

of Alben et. al. (solid line). V~ = ± .75 and c .1

for this 3-D tight binding alloy. The sharp peak in Fig. 7

- at w .86 is absent because of the coarser energy scale V

used. Arrow indicates the height to which their peak rises. V

V 
- 
Fig. 9 Density-of-states for V

A 
= .75, VB

-V 
.75 in a 3-D simple

cubic lattice with concentration C
A 

= .1. Cow~ey short —

range order parameter ~ is -.07, .3, and .7 respectively.

V 
utm E j  is the same as in Fig. 7 (dot-dash line) and ReE

is obtained therefrom by use of Eq. (8).
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Figure Captions

Fig. 10. Solid line is u r n  A*(w) ~ for the l-D a l l o y  of Fi gs. 5 and 6

- 

- in the 5 cluster approximation while the dashed line is the

correspond ing tIm ECPA
(w) 

~
.

Fig. 11 Then D.C. conductivity (dashed line) of a 3-D alloy with

V~ = ± .75 and c = .1.. Density-of-states taken from
Fig. 7 is shown in the solid line. 

V-~~ -—- ~~~~~ -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - V ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - -



~~~ -= V4~~~~~~~~~~~~ 
,
~-.—--- - — —--V -V—-V~~~~~~~~~ —.~~~~~~~ —-.—

~,-
wV -—- V V-—

~~ 
-— _,-V__ V—-V—- -V-- -“- -V. -

t~G, .A.

— —— Im I
— Re I

-.-- ‘
_ _ _ _  

‘-I
-

—10 10

(a)
z i-V’I ’

I- 7
4~

V 

-ii 
(h ilT ~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

76
V __ — — — V-V -Vt -V —-V-V _._

~~I. a~ a~._ -.- _.— — - — —-V -V



V--V~~~~ __-V -V~~-V•~~~_~-V-V -V -~~.--. . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-V V -V ~~~~~ V - 

-~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
-
~

-
~ 

-~~~~~~-.,-- ~ —--~------

V

-V

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
-

V

-V

0.00 0.50 1.00 1.50 2.00 2.5D
ENERGY

I

V 

-— 

I -

k~ 
-

- 

-

n--V .~~-, - .. __.~~~-_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ._ 1P _
~~~~ — . - 

- .- V __________



- _ -~ - -.—-- V - V - V -  
. ,—-V—_ T ~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

- -V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - -

0.00 0.50 1.00 
ENEI~~

0 2.00 2.50

I

L 
T ~~~~~ J L~ I ~



-~~~~ 
~ 

-- --
~~--,-“,—~~~~~~~ —~~~~~—,.—- - -- 

~~~~~~~ ••!~
V - V  -V 

~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~ 
~~~~~ - -V-V

S -

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

-

~o
n 

-~~

- 

~~~~. 

V

I
I

8 

V 

— -V
.

I ~~~~~~~~

•

_ 

-I

- 
- -

-~~~~~~~~~~~~~
- - 

-V

0 . -V V - - 
-V -

. V
.

0’.50 1’.OO 
ENEI~~~~~

0 2
1
.00 2

!
.S0 3j~~

-V 

79
— --V-Vt ~~~~~~—VV- V- VVVV~~~~~~~ -V -r ~~~~__ -

__
~~~~ - - -



V-TT 
- 

- 
- V -  -V - V - V  -

. ~~~~~~~~~ 

-V -V - - - V - V —

~~~~~

V - -. -

~~~~~

---- 

-

- 

V 

- 

V
- ‘. 

- 8

. 
. 

.. 
-V. 

.-

- V 

V 

_,-
~~~~~~~~~

--
~~~~~~~~~

L 

-V

. 

_ _

_
- 

-V 

V 

V V 
- _ _

- -V ...O 
~~~~~~~ I O

-V 

.~~�—‘ 
J~~~~~~

- 
. 

_________________________ 0

-V., ‘-
I _ _ _ _ _ _ _

- — — -
~~~ ‘--V

I-V

V -
- 

_

—~~~~
—-

~~
- 

~~~~

- 
_ _  ~~~~~~~~~

I . ~~~~~1_ _ _ _ _ _ _ _ _ _ _ _ _ _

V - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ,.v-
~~~

i i  

— 

- 
I 

-

_ _ _

_ _ _ _ _ _ _ _

_-

~~~~~~~~~

1 1 

~~~~~~~~~~~~~~~

S.. OC~~~~ O~~O Ol’O CO~O

I-

— —



. - 1i~~.G ~~

r 
V

. 

~~

-V -V 
. 

-

,-

-V 

S _________________ 
_ _ _ _ _

I Ion

-
~~

H 
V 

-

Cl)
Ii)

-
V - -

I-.
-V 4

.
. -

- -

I-

d.8o 1E~ RGY 
2’.40 3’.20 4.00

~~~~~ 
.. - -V —-V 

- ‘~rrc i -
________________________________________ -—— - a - -~~~~ — ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 1
I

0 11M T~-~% I
—---- I-

- - I -V ’
~ . 

I -V 
.

I I
I— 1 4 4—

I-
V Cl)

lL_~~
~~~~

I— I .  - 
- . .

~~

— I

I

o
n 

i~~~~~~~~~~~~~~~~~~~

.

0:2.03 -‘1.00 d.oo 1’.OO 2’.OO 300 
V

-V ENERGY

-

~ 
I

-V 
V .,



—-V -V-V ~“1~ q~
-V
~~ -V~~ ~~~~~~~~~~ ~~~~~~~~~ 

-Vfl-V%c•~-Vfl — ~~~~~~~~~~~~~~~~ 
- -- -V- V -V-V -- V--V. - — — - -r -V-V— --V ~~~~~-

- . 
. 

. ‘ ~(..

1: ~~. 
V 

.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -V

-V ~1y~ - 
-V

I -————- V

I I - -

V - V I  I 
-V

I - V 
8 1

H 

. 
V
L~~~~~~~~

.J 

-

-

-A 
V-V 

V

8 — — — _._..__I— i 
V 

V

0
:2.00 -‘1.00 

~~~~~~~ 
i’.oo ~!.oo 3.00

V 
V

V - -



-~~~~~~~~~~~~~ -V~~~~~~~~~~~~~~~~ -V -V - -V -~~~~~~~~~~~

V- -V V—

~~~~~~~~~~~~ 

-V 

.

- - — V -V

~~~~~

S

V 

- 
- 

-V -

(-N 

-V

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 

—2 00 —1 00 0.00 100 2.00 3.00 -

ENERGY V 
-

~~~

_ _ _ _ _  - —---V—- -V -~~~~~~ -. ~~~~~~~~~~~~~~~~~~~
-V -— V



--V —-V— V-V.- __ V -V V -V -V -V —— .V.—~-.-—-- V-V—-V:..—-V V—- V —- V—--.--—V.V’---.—,——— —— -—- V—,-—- .----- - ...—.—--V-— _
~
,_y

~~~
_ ——

F - -

V - 

-V

1~~

V V 

- 
- 

-V

V i a

. 

V -

-V -V

-V

. V

-V

-V

:

-~~~ ~ I I
-0.00 0.80 2.40 3.20 4.00

~~~~~~~~~~~~~~~~~~~~ ~
--:~~~~~~~~

- i - V -V
~~

_

~
_
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~



-V

~~~

8 j I - 
- 

- 
8.

- i ~ ( \ II 
-V

i i  1~~I
I 

I 
-

U) I -  1I i  1~J 1  8~~~~~~ - I  I
I I I -  ~~~~~~

..4

I I’ I i.....

4 - V .
~~~~~~~~~~~~~~~~A - /  I’  

- 

~0

/ 
I - 1:1 ~ J - 9

1 - 

0
0 1 ~~ I -V

I 8~
d / 1 -

. -~~~

/ ~I !A IV~
-

~~~~~~~~~~~~ I 
~~~~~~~~~~~~~~~ 

I 
-

~~~~~

—2.00 —1.00 E~kRCY 1.00 2.00 3.00

V 

- 

-V 
. 

.

V

- -V

_ _ _ _ _  -~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-. - 
~~~~~~~~~~~~~~~


