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FOREWORD

This report is an adaptation of Don A, Webster's thesis,
"Saturation of Plane Acoustic Waves and Notes on the Propagation of
Finite-Amplitude Spherical Waves," which was written for the degree
of Master of Science in Engineering at The University of Texas at
Austin. Mr. Webster was enrolled in the Department of Electrical
Engineering, and his degree was granted in December 1976.

The research was carried out at the Applied Research Laboratories
and was supported by the Air Force Office of Scientific Research under
Contract F44620-T6-C-0040, by the National Aeronautics and Space
A;ministrstion under Contract NAS1-14160, and by the National Oceanic

Yond
and Atmospheric Administration under Grant O4-5-022-12., Technical

monitors were Lt. Col. R. C. Smith and Lt. Col. L. W. Ormand for AFOSR,
Dr. J. M. Seiner for NASA, and Dr. F. F. Hall for NOAA.

Readers particularly interested in the outdoor propagation
measurements reported briefly in Appendices B and C may wish to consult
Mark A. Theobald's thesis, "Experimental Study of Outdoor Propagation
of Spherically Spreading Periodic Acoustic Waves of Finite Amplitude."
This thesis, which is Ref. 28 in the present work, is soon to be issued
as Applied Research Laboratories Technical Report ARL-TR-T7-5 (January
1977) and subsequently, in somewhat different form, as a NASA Contractor
Report. Experimental details as well as several additional outdoor
experiments are given in Theobald's thesis.

David T. Blackstock
Supervisor
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e / ABSTRACT
> T his Poyey In v(s'hﬁa Yes
Ahe saturation of plane acoustic waves in an air-filled tube da-<=

-tnvestigated . Saturation;:nh&eh—i-?a state in which the signal amplitude

at a field point approaches a limiting value, independent of source ampli-
tude;\;\is caused by nonlinear propagation distortion. Ai;raol;:eﬁed it in a
30-m long, 5-cm i.d. progressive wave tube. Measured saturation curves
were obtained for the following source conditions: sound pressure levels
from 110 to 163 dB, frequencies from 500 Bz to 3500 Hz. The model equa-
tions of Merklinger and Rudnick were adapted and solved to give theoretical
predictions for the fundamental component of the wave. The Merklinger
model is found to give good results at low levels, and the Rudnick model
at high levels. ‘ﬁsz‘%eaeurements generally confirm ﬁﬁoﬁxeoretical
The e f oF

predictions.] Pispersion due to the tube wall boundary layer,is not
included in either of the theoretical models. Its effect(a; analyzed
separately and found to be not great for the fundamental component.

Certain aspects of the propagation of spherically spreading
wvaves of finite amplitude were also studied. A graphical method for
assessing the importance of nonlinearity on spherical waves is discussed.

New theoretical results for weak waves and for strong waves were found. R

In the first case a high order perturbation solution of Burgers' equation
e L Y A
was obtained. In the second, the Rudnick model equation for the funda- SERRESISE
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mental component of a sawtooth spherical wave was solved. In both cases, w tuia

measurements taken in two outdoor propagation experiments confirmed the ... .
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normalized particle velocity amplitude of the nth harmonic
component corrected for;épherical spreading | = L ;E-
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retarded time (= t - %= for plane waves, = t - 2) for
% i
spherical waves)
particle velocity amplitude of the nth harmonic component
particle velocity amplitude of the nth harmonic component at x=0

normalized nth order perturbation solution of Burgers' equation

r u

n)
corrected for spherical spreading <f £z )
o 10

distance (plane waves)




shock and sawtooth formation distances (plane waves)

distance at which the rates of finite-amplitude and small-signal
attenuation are equal (plane waves)

phase (= at')
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parameter of nonlinearity (= z ; " for air)
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2y 1/2
boundary layer thickness (= (ETJ

2

P10
the acoustic Mach number (=
oo

wavelength

kinematic viscosity

ambient density

dimensionless distance (= Bekx for plane waves, = Bekroln(f—)
for spherical waves)

a dimensionless reference distance (= Bekro)

a8 phase angle

the angular frequency
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CHAPTER 1

INTRODUCTION

In linear acoustic theory the amplitude of the received signal
at a fixed point varies in direct proportion to the source amplitude. As
the source amplitude is increased, however, losses due to finite amplitude
effects develop. The received level increases less rapidly than the
source level. Eventually the finite amplitude losses, or extra attenua-
tion,* become so severe that the received signal approaches an upper
limit, independent of source amplitude. The wave is said to have
saturated.

The terminology used to describe the development of acoustic
saturation may be made clear by Fig. 1-1. What is plotted here is the
received sound pressure level (SPL) at a fixed distance versus the source
SPL. Such a plot is commonly referred to as an amplitude response or
input-output curve. At sufficiently low source levels the wave propagates
as a small signal and the input-output curve (solid curve) has unit slope.
Eventually the curve begins to bend over and depart from the extrapolated
small-signal curve (dashed line), signifying that the approach to satu=
ration has begun. The extra attenuation in decibels, commonly called
EXDB, 1s the difference between the extrapolated small-signal curve and
the input-output curve. The saturation level is the asymptotic value of

the received level in the limit of high source levels. In practice, of

e
Extra attenuation here is defined as attenuation over and above that
observed for a small-signal wave.
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course, the asymptote can never be attained. It is therefore useful to
define a point at which the received level differs from the saturation
level by some prescribed amount (for example, 1 dB). This point defines
the beginning of the plateau region, where the input-output curve is

nearly horizontal. 1In this region the wave is practically saturated.
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THE DEVELOPMENT OF SATURATION

The extra attenuation, which is responsible for saturation, is
caused by a transfer of the wave's energy to higher frequency components
where it is more efficiently dissipated. The energy transfer may be
traced to the dependence of the propagation speed dx/dt of the wave on the
local particle velocity u. The propagation speed of a particular wavelet
(hence a particular value of u) 18t
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Here LR is the small-signal sound speed and B is the parameter of
nonlinearity (B=(7+1)/2 for gases, where y is the ratio of specific heats).
The dependence of dx/dt on u 1s a consequence of two phenomena. First,
since sound propagates longitudinally, the wave is carried along by the
motion of the medium (i.e., the sound wave is convected). Second, because
of the nonlinearity of the pressure-density relation, wavelets associated
with the compression phase of the wave travel faster than wavelets asso-
ciated with the rarefaction phase. These two effects reinforce each
other and cause a cumulative distortion of the wave as it propagates.

For example, in the absence of ordinary dissipation, a sinusoidal wave
will distort into a sawtooth wave. The harmonic distortion necessary to
produce the sawtooth comes at the expense of the fundamental component.

In other words, energy transfer takes place.

Most of the work that has been done on acoustic saturation
concerns spherically spreading sound waves. Allen,2 who made measurements
on spherical waves in air, reported the first experimental evidence of
acoustic saturation in 1950. Allen's measurements of the first six
harmonics of the received signal show a definite approach to saturation.
At a distance of 2 m from the source Allen found that an increase in
source SPL' from 158 dB to 161 dB ylelded only & 0.5 dB increase in the
received level. An experiment on saturation of spherical waves in water
is given in Ref. 3; this reference also contains an excellent historical

review of other work relating to acoustic saturation of spherical waves.

*In the remainder of this work unless otherwise noted the SPL reference
pressure is 0.0002 pbar.

N



Little experimental work has been done on saturation of plane
waves. Plane waves are usually achieved either by generating a collimated
beam in an open medium or by confining the sound wave in a tube. Lesteru
made measurements on a collimated ultrasonic beam in water. His measure-

ments confirm the plateau region shown in Fig. 1-1 though the plateau

“‘turns down unexpectedly at the highest amplitudes.j Although much work on

plane finite-amplitude waves has been done in tubes (see, for example,
Refs. 5-9), a specific investigation of acoustic saturation has not been
made. Pernet and Payne,9 for example, made measurements of intense sound
in tubes, but they, as many others, were primarily interested in the
harmonic growth with distance and hence did not investigate saturation
explicitly.

The object of this research is to investigate saturation of
plane acoustic waves in tubes. Several model theories for the fundamental
component of the wave are discussed. Solutions of the differential
equations based on these models are compared with data taken in a plane
wave tube in air. A numerical algorithm developed by P\estorius8 to com-
pute the wave shape at any propagation distance is also compared with data
from the plane wave tube.

Although we have been mainly concerned in this research with
plane waves, some new results have been obtained for spherical waves.
These results are given in the appendices. In Appendix A a graphical
method for assessing the importance of nonlinear effects on spherical
waves 18 described. This method, which is a simplification of one
described in Ref. 3, allows one to classify nonlinear effects as weak,

moderate, or strong. A perturbation solution useful for weak waves is




presented in Appendix B. A solution valid for strong waves is presented
in Appendix C. Both the weak and strong wave solutions are compared with

data from freefield propagation experiments.




CHAPTER 2
REVIEW OF THE LITERATURE

A. Introduction

In this chapter we review several of the theoretical methods
which may be applied to the problem of propagation of plane acoustic waves
of finite amplitude. Our goal is to find an expression for the funda-
mental component of an initially sinusoidal wave. Both nonlinear effects
and ordinary dissipation are taken into account. The specific problem we
consider is the propagation of progressive waves contained in a gas-filled
tube. The analysis in Section C of this chapter shows that for our
experimental conditions only boundary layer absorption is important. We
shall, however, in two cases present results valid only for a thermo-
viscous gas. These results are included because the methode used may, in

some cases, be recast in terms of boundary layer absorption.

B. Review of Weak-Shock Theory

Because extensive use is riade here of weak-shock theory, an
outline of ites basic features is appropriate. The exact one-dimensional

equation for plane progressive waves in an ideal lossless gas isl

St [eoren] -0 (2-1)
Given the boundary condition
u(o,t) = g(t) , (2-2a)
Poisson™®

found the solution (generalized here for an adiabatic gas) to be
6




u = g(t - = :Bu> i (2-2b)
o
11

As Challis later found, however, the Poisson solution leads to multi-
valued waveforms. The multivaluedness indicates the presence of shocks in
the waveform.l To see this consider the propagation speed of a given
wavelet (Eq. 1-1). Applying Eq. 1-1 to the wave pulse in Fig. 2-1 we see
that point b will catch up to point a, (x=xl), and eventually pass it,
(x=x2). The multivaluedness comes about because we have ignored dissipa-
tion up to this point. At high waveform gradients (such as those occur-
ring at a shock, for example), dissipation is of paramount importance.

Dissipation prevents the wave from folding over on itself.

b DISTANCE
x=0
(-]
b
xzx,>0
o 5
b
v < ::: Xzx,>x,
'.
FIGURE 2-1

PROPAGATION OF A PULSE
WHEN Eq. 1-11S APPLIED

[WERE + = + - X IS THE RETARDED TIME]
o




An extension of the Poisson solution (Eq. 2-3), weak-shock theory enables
us to calculate the wave shape when shocks are present. Through the use
cof the Rankine-Hugoniot shock relations, which state conservation laws,
shock dissipation is included. An excellent account of weak-shock theory
is given by Blackstock.la We give here a brief account of the solution
corresponding to a sawtooth wave shape. The inclusion of this solution
is essential here, since it is the formation of the sawtooth wave shape

which ultimately leads to saturation. We consider a source excitation of

the form
p(0,t) = p, sin at . (2-3)

Here p, w, and Py, are the acoustic pressure, angular frequency, and
pressure amplitude, respectively, of the source. A discontinuity in the

vave (a shock) is first formed at a distance x given by'>
- 1
X = B_€i . (2-4)

Here t='=p:‘_q/pocc2 » Py 18 the static density, and k=u)/c° is the wave number.
An approximate solution of Eqs. 2-1 and 2-3 valid in the more remote
region x>5; 1312

2p
P= T% : %’- sin nat' 3 (2-5)
n=

where o=x/x. Equation 2-5 is the Fourier series representation for a
savtooth wave of amplitude p, (1+40). The distance x=3x (o0=3) is
commonly called the sawtooth distance, and the region of validity of
Eq. 2-5 is called the sawtooth region.




As will be shown in Chapter 3, Section B, Eq. 2-5 may be used to
indicate the development of saturation. In many cases, however, ordinary
absorption must also be taken into account. In the following section we

examine the role of ordinary absorption and dispersion in our experiments.

c. The Role of Ordinary Absorption and Dispersion
Ordinary absorption may be expected to be important in our

measurements. Indeed, Pestoriuta8 found it necessary to include both
absorption and dispersion in his analysis of finite-amplitude propagation
in tubes. Some of the effects of absorption and dispersion on a small-
signal wave are discussed here so that the role of each in the nonlinear
case may be better understood.

The problem of absorption and dispersion of plane sound waves in

13

*
tubes was first solved by Kirchhoff. For a wide tube one finds that the

absorption coefficient @ and phase velocity c oh are given by

=l/“’" 1+ 2=2) 2-6)
a=z 2c02[ +\/;r- (

c
O

®oh = T+ c ofw ¥ (2-7)

and

*
A wide tube is a tube for which the boundary layer thickness Alu is small

compared to a. We define the boundary layer thickness A as the distance
from the tube wall to the point where the particle velocity amplitude has
reached a value equal to 1l/e times its mainstream value. It turns out
that A=\/277w. The requirement A<<a thus imposes a lower limit on the
frequencies for which the wide tube formulas may be used. The tube must
not, however, be so wide that losses in the fluid mainstream are compara-
ble to the boundary layer losses. The latter requirement may be stated as
a<<1/k2A.15 Hence a wide tube must meet the requirement that A<<a<<l/Xk2A.
For example, to be classified wide over the frequency region 100 Hz to

30 kHz, the tube must have a radius in the range 0.02 cm << a << 30 cm.
The pipe we use for our experiments (see Chapter 4) has a radius of 2.5 cm.
Our pipe, therefore, is a wide pipe from 100 Hz to 30 kHz.
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Here a is the tube radius, v is the kinematic viscosity, and Pr is the
Prandtl number. From Eqs. 2-6 and 2-7 we see that c - decreases with
frequency, asymptotically approaching c - in the high frequency limit.

The absorption coefficient & variee as the square root of w. From these
obgervations we conclude that a nonsinusoidal signal propagating in a tube
will suffer both phase and amplitude distortion.

The importance of ordinary absorption in our experiments is
easily seen from Eq. 2-6. The tube we use for our measurements has a
2.5 cm radius, and the (fundamentsl) frequency range of interest 1s 500 Hz
to 4000 Hz. At a frequency of 3.5 kHz » for example, the absorption
coefficient @ is about 0.072 Np/m. Therefore, for the available measure-
ment distance, 26 m, we could expect 16.3 dB of small-signal attenuation
alone. We conclude that a reasonable theory for our experimente must
include the effect of ordinary absorption.

The importance of dispersion may be seen from an examination of
the phase distortion suffered by a nonsinusoidal signal. Since we are
concerned with saturation in our experimental work, the main waveform of
interest besides the sine wave is the sawtooth. McKittrick et a1.16 were
able to explain asymmetric waveforms observed in a high intensity tube
experiment by considering the propagation of a emall-signal sawtooth wave.
We present an analysis similar to theirs here because it makes clear the
effect of absorption and diepersion on the overall wave shape. We assume
a sawtooth wave of peak-to-peak amplitude P, exists at x=0, The nor-

malized acoustic pressure p/po may then be expressed as the Fourier series

(p/po)x_o = %g 3 otn oot . (2-8)




11
16
If Eqs. 2-6 and 2-7 are applied, a/po is given at distance x by
2 e'I;bx
p/po = ;!. : - sin n(wt'-rr-ux) . (2"9)
n=

Figure 2-2 shows the sum of the first one huudred terms of Eq. 2-9 for
three cases. The top waveform is one in which there is no absorption or
dispersion, i.e., ax has been set to zero. Note the Gibbs' overshoot at
both peak and trough. For the middle and bottom waveforms the value of ax
is 0.3. In the middle waveform absorption is included but not dispersion,
i.e., the phase angles Fxxx are ignored. The result is that the waveform
is rounded symmetrically at both peak and trough. In the bottom waveform
both absorption and dispersion are included. The wave asymmetry is clear;
the peak is rounded while the trough remains sharp.

We now ask what effect dispersion will have on a wave of
finite-amplitude. Dispersion clearly alters the wave shape in the linear
case and, as McKittrick et al. found, causes the waveforms to be asymmet-
ric in the finite-amplitude case as well. What we are mainly concerned
with, however, are the harmonic amplitudes. For a small-signal wave,
dispersion does not alter the harmonic amplitudes, i.e., the spectra of
the middle and bottom waveforms in Fig. 2-1 are identical. The oropaga-
tion of a finite-amplitude wave, however, is highly dependent upon the
wave shape.e Consider, for example, the propagation of two waves, one a
sawtooth and the other an inverted sawtooth. Although both have the same
initial spectra, the finite-amplitudc distortion of the two waves is
vastly different. The reason is that the phases of the Fourier components,

and therefore the wave shapes, are different. This is admittedly a rather
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FIGURE 2-2
EFFECTS OF ABSORPTION AND DISPERSION
ON A SMALL-SIGNAL WAVE
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drastic example, given merely to point out that dispersion will probably
have some effect on the propagation of the wave. A qualitative discussion
of the effect of dispersion is given in Chapter 6. The discussion given
there is based on the bottom waveform of Fig. 2-2.

The effects of both dispersion and ordinary absorption are
usually included in a theoretical analysis in one of two ways, both of
which are treated briefly in Section D. In the first method the effects
are included as specific terms in the differential or integral equation
governing the wave motion. Unfortunately, however, the equation is
generally very difficult to solve. Another method is to include the
effects stepwise in a computer algorithm that is based on a mathematical
model of the wave distortion process. Such an algorithm has been described
by Pestoriua.8 Although the algorithm is not efficient for computing
saturation curves, we do make use of it in Chapter 6. There a quantita-
tive discussion of the effects of dispersion are given.

A completely different approach is to ignore dispersion entirely.
Several ad hoc models have been proposed in which ordinary absorption is
accounted for but not dispersion. Perhaps surprisingly, several of these
models have enjoyed considerable success. Appropriate ones are discussed

in Section D.

D. Contributions of Other Researchers

1. A Computational Method - Pestorius' Algorithm
In a computer algorithm developed by Pestorius, explicit account
8
is taken of nonlinear effects, ordinary absorption, and dispersion. In

this algorithm the source wave is "computer propagated" a short distance
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Ax; the basis of the computation is weak-shock theory. The resulting time
waveform is then transformed to the frequency domain, where corrections
are made for small-signal absorption and dispersion. After a transfer
back to the time domain, another short propagation step is made. In this
way the time waveform may be computed for any propagation distance. The
validity of this algorithm has been verified by Pestorius for both
initially sinusoidal waves and noise.8 As was mentioned in Section C, we
make use of this algorithm in Chapter 6 to find the effect of dispersion
on the harmonic amplitudes. The algorithm was not, however, used to
compute amplitude response curves because a separate computer run would

have been required for each increment in source SPL.

2. Burgers' Equation

a. Mainstream Absorption

Lighthilll7 reduced the equations of motion for progressive
plane waves in an unbounded thermoviscous gas by a series of approxima-
tions to Burgers' equation. Mendousae18 cast Burgers' equation in the
following form, which is equally valid but better suited for boundary

value problems:

u_B_ . u _a Fu ; (2-10)
= COQ“E" &£ n®

where & 1s the thermoviscous absorption coefficient at angular frequency
.17 It will be seen that the left-hand side of Eq. 2-10 is an approxi-
mate form of Eq. 2-1. The right-hand side is the dissipation term
appropriate for mainstream absorption. Though exact solutions of Eq. 2-10

are known, they are not relevant for our problem because in our case the

S S —
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attenuation is due to boundary layer effects, not mainstream effects. The

spherical wave version of Eg. 2-10 is, however, treated in Appendix B by

a perturbation method.

b. Boundary Layer Absorption

Blackstock™ found a "Burgers-like" equation for finite-amplitude

waves subject to boundary layer attenuation,

du du 2 du(x,t'-\)
- Fugr-o m/: =3

c
(e}

& (2-11)
N

oy
Here a is the boundary layer absorption coefficient at angular frequency
w; see Eq. 2-6. Solutions of Eq. 2-11 would be ideal for our work.
Unfortunately, however, only low-order perturbation solutions have been
found and they are not applicable in our study.lg Evaluation of Eq. 2-11
ty numerical means was not pursued. Coppens and Sander520 also found a
"Burgers-1like" equation for tubes. Their equation is, however, less

general than Eq. 2-11 in that it is limited to periodic waves.

3. Ad Hoc Models

A great body of the literature regarding plane propagation of
finite-amplitude waves in a lossy medium is devoted to the subject of
ad hoc models. The models jpresented here illustrate some of the methods
of blending nonlinear effects and ordinary dissipation. No one has yet,

unfortunately, found a way to include the effects of dispersion.

it e £t AL St o . =
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a. Merklinger's Method
Merklinger21 applied Westervelt's equation22
dIl
o = - oI, - (p(x,t")alx,t")) (2-12)

to the problem of plane wave propagation in a viscous fluid. Here Il is
the intensity of the fundamental frequency component at distance x, aud
@, is the absorption coefficient (appropriate for a viscous fluid) at the
fundamental frequency. The angled brackets indicate a time average over

one period of the wave, and q is the source function given by
) 2
a(x,t) = -—QE-E 3 [p(x,t)] . (2-13)
p.C
o o

Merklinger assumed that the nonlinear decay of the fundamental pressure
component pl(x,t') is primarily due to work that it does on the seccnd
harmonic pressure component pb(x,t'). That is, Merklinger approximated

»*
D as

P = py(x,8") + py(x,t") . (2-14)

9 of

For pb(x,t'), Merklinger used a second order perturbation solution
the nonlinear wave equation for a viscous fluid. The boundary condition
is given by Eq. 2-3.

TS Bt 1
py(x,t') = 3 — sin 2uwt' (2-15)

c
pOO

¥
We here define p, to be the pressure amplitude of the nth harmonic. If
the time dependence is to be included, we shall use the form p,(x,t').
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Writing pl(x,t') as
p,(x,t") = p,(x) sin wt’ > (2-16)

2-20x

and reinterpreting Pp © * 4 Eq. 2-15 as plz(x), we may write p2(x,t')

-20
By(x,t') = p%(x) —BL— (1 -e 1x> ein 2at' .  (2-17)

dp, ey

The differential equation for p, may be found from Eqs. 2-12 through 2-17.
The result is

dp 2 -200. x
r K i >
& “HhC —L2——E <1 .8 ) i . (2-28)

1% %
The solution of Eq. 2-18 consistent with the boundary condition p1(0)=p:LO
is
. e-alx
10
pl - 1/2 > (2'19)

2
-20
1+1'§<1-e lx)

where r=1/a1§'. The assumptions inhereat in Eqs. 2-1% and 2-15 should be
expected to limit the validity of Eq. 2-19. This problem is addressed in
Chapter 3, Section B. We note in passing that Merklinger has found
Eq. 2-19 to be in good agreement with an exact solution of Burgers'
equation for a wide range of source mplitudes.al

In using Eq. 2-15 for pa(x,t') we have assumed a viscous fluid.
To make use of Merklinger's method for the case of boundary layer absorp-

tion we must find an appropriate expression for pa(x,t'). Thuras, Jenkins,
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and 0'Neil®’

derived an equation in which no assumption is made of a
specific absorption mechanism. Their method is presented in the following

section.

b. Method of Thuras, Jenkins, and O'Neil

Thuras et al. suggested an approximate method to take account
of ordinary absorption in the initial growth of 1% The basis for their

method is the second order perturbation solution of Eq. 2-1,

2
Pkp,y x
P, = 5 p (2-20)
Epoco
The spatial growth rate (dpa/ﬁx)g is, from Eq. 2-20,
2
dp Bkp
_g. = ¢ ; (2-21)
dx 2p o 2
€ oo
Thuras et al. reasoned that in the presence of absorption, Pio should be

replaced by ploexp(dulx) where . is the absorption coefficient at the

1
fundamental frequency. From this reasoning Eq. 2-21 becomes

-20. X
2 1
dp Bkp e
<__f’-l) o el | (2-22)
g

dx 2

2poc°

Thuras et al. reasoned that opposing the spatial growth rate represented
by Eq. 2-22 was a spatiasl decay (dpa/dx)d=<zapb due to ordinary absorption.
Here Oé is the absorption coefficient at the frequency of the second
harmonic. The total growth rate dpb/hx was taken to be
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300 e G
dx ~ \dx dx
d 8

(2-23)
=20, X
2 1
Pkp,, e
=-Cxp+ .
%2 an o 2
Po%o
The solution of Eq. 2-23 which satisfies p2=0 at x=0 is
-(o,y-2a, )x
- Wi Wl & 0 N
P =Py © - ; (2-2k)
2p°co 2 1

In Chapter 3, Section B, we shall make use of Eq. 2-24 for the
expression for Py required by Merklinger's model. It is interesting to
note that if we set a2=ha1 (as would be the case for a viscous fluid)

Eq. 2-15 results.

c. Rudnick Model

Rudnick?u proposed a model for describing the decay of sawtooth

waves in a tube. He assumed that the total decay rate of the peak
pressure Pp is the sum of the decay rate due to small-signal absorption
and the decay rate due to nonlinear effects (found from Eq. 2-5). Thus

his model is similar to Thuras, Jenkins, and O'Neil's for 1% Rudnick

obtained
dP " 2
—Rdx = - aoPp - —2—2 Pp » (2'25)
npoco

where a is a "zero order" coefficient for the tube wall attenuation of

the vlve.au The solution of Eq. 2-25 consistent with PpaPp(O) at x=0 is

oot
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-x X
P (0) e .

. Yo BkP (T j
1+ l-e
b0 p c

A modified version of Eq. 2-25 is discussed in Chapter 3 as the theoretical

(2-26)

model for the decay of the fundamental component of a sawtooth wave, and
also in Appendix C for the spherical wave problem. Equation 2-25 is quite
appealing physically and also yields simple solutions. As is always the

case, however, the telling test is the experiment.

. Summary

We have discussed several theoretical approaches that might be
used in the description of saturation of plane waves in a tube. The
Burgers' equation method, though certainly applicable, suffers from a lack
of appropriate analytic solutions. The computational method of Pestorius,
though appropriate, i1s not efficient for computing saturation curves. The
ad hoc models do not include the effect of dispersion but they have yielded
analytic solutions. The models pertain to the fundamental component ;-
Merklinger's model is based on an intensity equation, and Rudnick's model,
on an amplitude equation. We shall use the ad hoc models for our theo-
retical models for 128 The telling test of the models is, of course, the

experiment.




CHAPTER 3

THEORETICAL DEVELOPMENT

A. Introduction

In this chapter the theoretical models used to describe the
approach to saturation are presented. Attention is focused on the funda-
mental frequency component Py of the wave, though saturation is the
ultimate fate of all the Fourier components. First, weak-shock theory is
used to obtain formulas for saturation and the approach to saturation.
We then endeavor to include the effects of tube wall dissipation.
Although dispersion should be expected to play a role in determining the
harmonic amplitudes, we have found no means to include it analytically.
We do, however, make use of the algorithm of Pestorius to give an estimate
of the effect of dispersion. This algorithm is not used to compute actual

saturation levels because of the computation time required.

B. Estimates of the Approach to Saturation
y 5 Weak-Shock Theory

An estimate of the saturation amplitude may be found from
weak-shock theory. The expression for the fundamental pressure Py in the

sawtooth region is, from Eq. 2-5,
2p
10

Mgt ng ML | B Vet

The saturation amplitude Pleat’ found by letting the source amplitude P10
become large (i.e., o>>1), is

21
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2p ¢
0 0
Pleat =~ Bix = (3-2)
Thus plsat is predicted to decrease with both frequency and distance. The
inverse first power dependence of plsat on both frequency and distance is
found only in cases where absorption over the entire waveform is unimpor-

tant. It is generally true, however, that the saturation level does

decrease with increasing frequency and distance.

2. Merklinger's Model

As was mentioned in Chapter 2, Merklinger's model may be
reinterpreted so that it applies to more than just viscous fluids. To do
so, we make use of Thuras, Jenkins, and O'Neil's expression for the second
harmonic pressure P, (Eq. 2-24). Substituting Eq. 2-24% for Eq. 2-15 and
following the same analysis as in Chapter 2, Section 3.a., we find the

differential equation for 12 to be

ap o -(aa-aal)x
=% = - gp, - —BK 1-e p,° (3-3)
ax 17 a. - 2a 1 -

po co 2 1

The solution of Eq. 3-3 subject to the boundary condition pl(0)=plo is
simply

P10
L 75 g . O=N

If the small-signal attenuation 1s mainly due to tube wall effects,
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ay= faal. Note that 1if 02=hal, as would be the case for a viscous fluid,
Eq. 3-4 reduces to Merklinger's result, Eq. 2-19.

What about the region of validity of Eq. 3-37 We should expect
that use of the approximation pépl+p2 (Eq. 2-10) and the perturbation
result for P, (Eq. 2-21) would limit the use of Eq. 3-4 to weak waves.
Equation 3-4 seems to have wider validity, however. Let us examine, for

example, the saturation level found from Eq. 3-4. The result is

> 1/2
2 o
= o Al % (3-5)
Pleat = "Bk | & -20.x . X :
2 |, 1 D
— -e -]l -e
o

Now let al,aa-oo. The weak-shock theory expression, Eq. 3-2, is recovered.
We conclude that although several of the assumptions leading to Eq. 3-4
are not valid for strong waves, the saturation level is an appropriate

strong-wave limit.

A The Rudnick Model

We describe here a generalization of the method Rudnick used to
obtain a formula for the peak amplitude of a sawtooth wave. The "Rudnick
assumption" is that the decay rate of the fundamental pressure component
dpl/dx is the sum of the decay rate due to absorption (dpl/dx)aba.'—"alpl
and the decay rate (dpl/d.x) f.a due to finite-amplitude effects. The

latter decay rate is, from Eq. 3-1,

dpl) 2PekP)y ek 2
i = - == p . (}-6)
(d.x f.a. (11-0)2 2Py 1
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The total decay rate dpl/dx is then

dp dp dp
1 b il k 2
ax (H') * (—dx) il e %‘ B3 ' (3-7)
abs. T8 10

The sclution of Eq. 3-7 is

-alx
p,(0) e
P1 = T Bkp, (0) X\ (3-8)
L + (l - e )
2a (o] e
lpo o)

where pl(O) is the fundamental pressure amplitude at x=0. If we require

that Eq. 3-8 reduce to the weak-shock solution (Eq. 3-1) as a@.»0, then

o
pl(O) must have the value

This may seem a rather surprising result, since we have previously speci-
fied that the source amplitude is P1o? not 2p10. The discrepancy is only
apparent, however, and not real. If we extrapolate the sawtooth solution

(Eq. 2-5) back to x=0 we obtain,

p(0,t) = 2p10 g % sin nat 5 (3-10)

which represents a sawtooth wave of amplitude TPyge This suggests that
for distances 0>3 the acoustic signal produced by a sine wave of amplitude
P3p at x=0 is the same as that produced by a sawtooth wave whose funda-
mental has amplitude 2p»1o at x=0. Clearly this will be the case only if

absorption is not important over the initial propagation distance of three

e e
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shock formation lengths. We shall presently investigate the conditions
under which this assumption is reasonable.
The equation for p, may be found by combining Eq. 3-8 and

Eq. 3-9. The result is

2p,, €
10 (3-11)

Again, as the source amplitude P1o increases (i.e., ;40), the saturation

amplitude Pigat is obtained,

- X
200002(11 e .

plaat = qalx
ﬁk(l - e )

It is seen that the saturation amplitude still decreases with increasing

a (3-12)

frequency and distance, though not in the same inverse relation given by
the weak-shock formula, Eq. 3-2.

We now investigate the conditions under which the Rudnick model
should be valid. In general, since the model equation, Eq. 3-T7, is
partially derived from the sawtooth solution, an inherent assumption is
that the wave be strong enough to form a sawtooth. But when, in the
presence of ordinary absorption, is sawtooth formation likely? (See
Appendix A for a similar discussion for the spherical wave problem.) The
shock and sawtooth formation distances in the‘abaence of absorption may be
easily computed for a given set of source and medium parameters. What is
needed is an estimate of the distance . — beyond which small-signal

dissipation effects are more important than nonlinear dissipation effects.
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Blackstock12 computed the distance Bty at which the decay rates due to
nonlinear effects (found from Eq. 3-1) and small-signal effects are equal.

For plane waves the value of Xax is

s
B W (3-13)

The question of shock and sawtooth formation maey thus be answered by
—_ ~ =
analyzing the various possible relations between x, x, and xmax'/ If the

relation between x and x is
max
X <x 5 (3-1k4)

shock formation is precluded. The high frequency components damp out

before a shock can form. The inequality

L < (3-15)

indicates that shock formation is possible. Ordinary dissipation domi-
nates, however, before a sawtooth can form. Sawtooth formation is likely

if the relation is

x < . TS " (3-16)

We see that the Rudnick model should be valid if Eq. 3-16 is satisfied.

That is, Eq. 3-1l should be valid if ; is less than 1l/a.
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CHAPTER 4

EXPERIMENTAL APPARATUS AND PROCEDURES

A. Introduction

In this chapter the equipment and procedures used in the
experiments described in Chapter 5 are discussed. Individual equipment
listings are given in Section B along with a general schematic of the
experimental apparatus. In Section C the experimental procedures are

discussed.

B. Experimental Apparatus

Figure 4-1 shows a generalized schematic of the experimental
apparatus. The system has been used in several previous experiments (see,
for example, Refs. 8 and 15). The microphone nearest the driver, called
a source or monitor microphone, is used to measure the source waveform.
This microphone also provides an input to an automatic gain control (AGC)
circuit, which is used to stabilize the source SPL. The second micro-
phone is the recelving microphone, which is variable in 3.7 m steps
relative to the source microphone.

The experimental apparatus is divided into three systems:

a transmitting system, the plane wave tube, and the receiving system.
The specific pieces of equipment used in each of these systems are listed
in the following three sections.

a7
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BLOCK DIAGRAM OF THE EXPERIMENTAL APPARATUS




system.

The Transmitting System

The

(1)

(2)
(3)
(4)
(5)
(6)

RELATIVE SPL - dB

following pieces of equipment were used in the transmitting

Oscillator. B&K type 1022 or H-P 3300A with 3302 A
trigger/phase lock plug-in.

Counter. H=-P 5300 B.

Gate. GR 1496.

Amplifier. Altec model 250 B power amplifier.
Oscilloscope. Tektronix 532.

Driver. JBL model 375-H. This driver is commercially
available with either a phenolic or aluminum diaphragm.
Because of its much better high frequency response, the
driver with the aluminum diaphragm was chosen for this
experiment. A typical frequency response of one of the

drivers is shown in Fig. 4-2. The response was taken

FREQUENCY - kHz

FIGURE 4-2
TYPICAL FREQUENCY RESPONSE
OF JBL 375-H DRIVER

(CONSTANT VOLTAGE INPUT)

it < < W e
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from Ref. 15.
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with a constant voltage input to the driver. For

this measurement the driver was coupled to the plane

wave tube shown in Fig. 4-1. What is plotted in

Fig. 4-2 is the relative SPL measured at the monitor micro-
phone, which is approximately 13 cm from the driver throat.
The response of the driver is flat within a 3 dB range from
approximately 300 Hz to 8500 Hz. The maximum input power
to the driver is specified as 30 Wrms. It was found,
however, that driver failure occurred much less frequently
when the input power was limited to 25 Wrms. At 25 Wrms
input the maximum SPL at the monitor microphone was 157 dB
at 500 Hz. To attain higher levels, provision was made for
parallel operation of four 375-H drivers. The maximum SPL
at the first microphone was then 163 dB at 500 Hz.
laboratory constructed predistortion network (not shown in
Fig. 4-1). This network was used to predistort the elec-
trical input to the driver to compensate for driver
distortion and for finite-amplitude propagation distortion
over the 13 cm path to the monitor microphone. The network

is discussed in detail in Chapter 5.

2. Plane Wave Tube
The tube used in this experiment was originally constructed by
MeKittrick; see Ref. 16. It consiste of eight 3.7 m sections of aluminum
pipe joined by microphone-holding flanges. The pipe has a 2 m long fiber-

glass termination.a A typical flange assembly is shown in Fig. 4-3, taken

The 1/4 in. microphone fits through the white teflon collar
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FIGURE 4-3
EXPLODED VIEW OF FLANGE ASSEMBLY WITH
MEASURING MICROPHONE AND PLUG

(THE PROTECTIVE GRID SHOWN ON THE MICROPHONE
WAS REMOVED BEFORE THE MICROPHONE WAS
INSERTED IN THE HOLDER AND FLANGE)

Taken from Ref. 15




32

to mount flush with the inside surface of the tube wall. When the
microphone was not used, an aluminum plug (shown directly below the micro~
phone in Fig. 4-3) was installed. The termination was designed by
w1lliams,8 on the basis of a paper by Burns.25 The first part of the
termination was a tapered section about 1 m long. The second part, also

1 m long, completely filled the pipe cross section. The reflection
coefficients of the termination were measured by a pulse method; the

results are given in Chapter 5.

o The Receiving System

The following pieces of equipment were used in the receiving
system.

(1) Microphone. B&K type 4136, 1/4 in. The pressure response
of this microphone is flat to within 0.5 dB from 50 Hz to
70 kHz. When flush mounted in the tube wall, however, the
microphone acts as a baffled circular piston receiver.
Because the sound waves are incident at 90° to the piston,
the 3 dB down frequency response of the microphone is
limited to 30 Hz to 28 kHz. All other components in the
receiving system have a 3 dB down response of at least
20 Hz to 200 kHz. The microphone is therefore the limiting
element in the recelving system.

(2) Preamplifier. B&K type 2619.

(2) Preamplifier and Power Supply. B&K type 2803 dual channel.

(%) Microphone Cables. B&K type ADOO29 30 m cables.

(5) Microphone Calibrator (not shown in Fig. 4=1). B&K type

4220 pistonphone. The output of the calibrator is a 240 Hz



sinusoid with a SPL of 123.8 #0.2 dB.

(6) Spectrum Analyzer. H-P model 3580A.

(7T) Oscilloscope Camera (not shown in Fig. 4-1).
H-P model 197-A.

(8) vVoltmeter. H-P model 4OOEL.

(9) Oscilloscope. Tektronix model 545B.

(10) Oscilloscope Camera (not shown in Fig. 4-1). Tektronix
model 125.

(11) Preamplifier. This preamplifier was constructed for use
as a wideband amplifier with negligible phase distortion.
The 3 dB down frequency response of this amplifier is 7 Hz
to TOO kHz. There is negligible phase distortion above
100 Hz. The gain of the amplifier is 20 0.1 dB from

500 Hz to 200 kHz.

C. Experimental Procedures

Three experiments were conducted in this investigation. The

procedures are discussed below.

1. Measurement of Small-Signal Attenuation Coefficients

The procedure here was to generate a low level (SPL = 115 to
120 dB) sinusoid at the source and observe the decay of the signal with
distance. The attenuation coefficient at a particular frequency was then
obtained from a least squares fit of the plot of measured loss versus

distance.
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2. Measurement of Pipe Termination Reflectivity

The pulse method was used to measure the reflectivity of the
pipe termination. The receiving microphone was placed approximately 1.7 m
from the beginning of the pipe termination. The direct (pd) and reflected
(pr) pulse amplitudes were observed on the oscilloscope and their respec-
tive values recorded; the amplitude of the reflected pulse was corrected
for the round trip loss caused by tube wall attenuation. The reflection
coefficient R was determined from the expression
3 eaalx

R =20 log,, rp ¢ (4-1)
d

B Measurements of Received Acoustic Signal versus Propagation

Distance and Source Level

With the available apparatus we could, in principle, vary Pyo?
w, and x. The most convenient way of testing the various theoretical
predictions of saturation was to fix x and w and vary P10 In this way a
family of amplitude response curves was obtained. For the purpose of
investigating certain other effects, such as dispersion, it was preferable
to hold P10 and o fixed and to vary x. In any case the procedure was to
measure the received signal as a function of x or Pio° Each measurement

consisted of recording an oscillogram and spectrum of the received signal.

k. Measurement Accuracy
The accuracy associated with the measurement of SPL, f, and x

wvas estimated from the various uncertainties in the response of the trans-

mitting and receiving system. The SPL measurements are believed accurate




to #0.5 dB.

be *0.2%.
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The frequency stability of the B&K oscillator was observed to

Distance measurements are accurate to *1%.




CHAPTER 5

EXPERIMENTAL AND THEORETICAL RESULTS

A. Introduction

In this chapter the experimental results obtained are given and
compared with the theoretical predictions found in Chapter 3. These
results are divided into two sections, the first dealing with the salient
acoustical properties of the pipe, the second with the high intensity
experiment. All computaticns were made for the measured temperature,
relative humidity, and ambient pressure of 20°C, 50%, and 760 mm Hg.,
respectively.

Some of the data given here have been previously reported.
Figures 5-5, 5-8, and 5-10 were reported in Ref. 26. Figure 5-3 was

1reported in Ref. 27.

B. Acoustical Properties of the Pipe

1. Measurement of Attenuation Coefficients

Figure 5-1 shows the measured frequency dependence of the
attenuation coefficient for the pipe. The points are the experimental
data and the dashed line is a least squares fit to the data. The solid
line 1s the attenuation given by the Kirchhoff formula (Eq. 2-6). The
offset of the two lines is about 10%. Thie is similar to the findings of

Pernet and Payne,’ (8%), and Pentoriua,a (10%).
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2. Measurements of the Termination Reflectivity

As was mentioned in Chapter 4, the reflection coefficients of
the termination were measured by the pulse method. A plot of ﬁ, deter-
mined from Eq. 4-1, versus frequency is shown in Fig. 5-2. The reflection
coefficients are typical for such a termination. We conclude that for the

frequency range shown the tube is properly terminated.

C. Measurements of Initially Sinusoidal Waves

s Predistortion

In Chapter 4 it was noted that at high amplitudes the acoustic
signal at the monitor microphone would, in some cases, be distorted. This
distortion is a combination of distortion in the horn driver itself and
propagation distortion in the 13 cm separating the horn driver and the
monitor microphone. In all cases the distortion was primarily second
harmonic. One would expect that the electrical input to the driver could
be predistorted in such a way as to minimize the distortion of the acoustic
wave arriving at the monitor microphone. An electrical network designed
to produce the predistorted signal is shown in Fig. 5-3. The oscillator
produces a sine wave at the second harmonic of the desired operating fre-
quency. This signal is fed into one input of a suming amplifier and also
into a divide-by-two counter. The counter drives the phase-locked oscil-
lator. The phase-locked oscillator produces a sine wave at the operating
frequency and serves as the second input to the summing amplifier. The
output of the summing amplifier is then the sum of signals at the funda-

mental and second harmonic frequencies. The phase of the second harmonic
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component may be varied *180° with respect to the fundamental by means of
a phase control on the phase~locked oscillator.

Typical results using the predistortion network are shown in
Fig. 5-4. It is evident that although the electrical input to the driver
is a sinusoid the acoustic signal is distorted. Spectral analysis of the
acoustic signal shows the presence of a strong second harmonic component
15 dB below the fundamental. The second column of Fig. 5-4 shows the
results of using predistortion. When the phase and amplitude of the
second harmonic fed to the driver are varied until the second harmonic is
minimized at the monitor microphone, & reduction of 22.5 dB in the acous-
tic second harmonic is achieved.

The main limitation of using predistortion is the bandwidth of
the electroacoustic transducer. In our case bandwidth is no limitation
because the upper 3 dB down frequency of the driver is 8.5 kHz and our
highest fundamental frequency is 4 kHz. With suitable counters the method

could be used to suppress any harmonic within the transducer bandwidth.

2. Amplitude Response Curves

The phenomenon of acoustic saturation can most easily be seen
from an amplitude response curve taken at a fixed distance. Two such
curves are shown in Fig. 5-5. The received SPL at the fundamental fre=-
quency is plotted versus source level for two propagation distances at
several source frequencies. The dashed lines are predictions based on
linear theory, and the solid curves (valid for 0>3) are the predictions
based on the Rudnick model (Eq. 3-12). Saturation is well evidenced by
the bending over of the response curves at high source levels. For

example, when f = 3,57 kHz and x = 25.8 m, the extra attenuation is about
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14.1 dB. At this point 96% of the power at the fundamental frequency has
been lost because of nonlinear effects!

At the 14.8 m distance the theoretical curves are in good
agreement with the experimental data. At 25.8 m, however, the theoretical
curves fall slightly below the data, the agreement becoming worse as the
frequency increases. The reason for this small discrepancy is discussed
in Chapter 6.

We have thus far discussed saturation in terms of the
fundamental frequency only. Saturation is, however, the ultimate fate of
each Fourier component. Figure 5-6 shows an amplitude response curve for
the first three harmonics of an initially sinusoidal wave. The solid
curves are best fits to the data. A theoretical curve was not included
for the fundamental component because these data were compared with theory
in Fig. 5-5. We have no theory for the higher harmonics comparable to
that for the fundamental. We may, however, see from the weak-shock
formula (Eq. 2-5) that the higher harmonic components do indeed saturate.
This result is borne out by Fig. 5-6. The approach to saturation of each
barmonic is evident.

The other models .diacussed in Chapter 3 were also compared to
data. A typical result is shown in Fig. 5-7. The equation based on weak-
shock theory (Eq. 3-1) ylelds a curve about 5 dB above the data. Ordinary
absorption is indeed important here. The small-signal loss for this fre-
quency and distance is about 7.5 dB. The equation based on Merklinger's
model provides a good fit to the data in the linear region. In the
plateau region, however, it ylelds a curve about 1.3 dB above the data.

The equation based on the Rudnick model fits the data to within 0.1 dB.
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In all cases the Rudnick model equation provided a best estimate of the
approach to saturation. For this reason the Rudnick model was used as our
theoretical model for the rest of this work. The fact that the Rudnick
model is limited to waves strong enough to form a sawtooth is not critical
for our work because we are interested in saturation and the approach to

saturation.

3. Time Waveforms of Received Signals

The received waveforms as a function of source SPL are also of
interest. (See Fig. 5-8.) The waveforms at high levels illustrate the
strong distortion that is responsible for the extra attenuation. Satura-
tion is evident by inspection of the last two waveforms. The amplitudes
are almost the same despite a 5.2 dB difference in the source SPL. It
seems likely that the minor "raggedness" in the lower three curves is due
to scattering from small irregularities in the pipe near the microphone.
These irregularities, probably associated with the flange junction and/or
the microphone mounting hole, would be expected to scatter only very high
frequencies. Such an expectation is consistent with the fact that the
raggedness appears only in waveforms that contain shocks. Note the asym-
metry of the waveforms. It begins to show up at 142 dB and is very
apparent at 148 dB. The asymmetry is caused by dispersion. The asymmetry
is lessened, however, as the source amplitude is increased. See the last
two waveforms. Nonlinear effects have become s0 strong that "steepening”
of the shock tends to overcome the rounding of the shock peak.

Modified weak-shock theory is used in Chapter 6 to investigate
the effect of dispersion. It 1s therefore appropriate here to compare our

experimental waveforms with those computed using Pestorius' algorithm.
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Figure 5-9 shows such a comparison. The top waveform in each column is
the same because the measured source waveform was used as the source
wvaveform for Pestorius' algorithm. The absorption coefficient used in
the computer algorithm is the measured coefficient from Fig. 5-1. We note
that the agreement between experiment and theory is quite good in all
respects. The progressive distortion of the wave with propagation dis-
tance, which is responsible for saturation, is also evident in Fig. 5-9.
At 3.7 m the waveform is a sawtooth, though it is slightly asymmetric.

As the distance increases the asymmetry grows; the shock peak becomes more
rounded while the trough remains sharp. The reason is that as the dis-
tance increases the wave amplitude is steadily diminished. Nonlinear
effects become too weak to overcome the rounding of the shock peak caused

by dispersion.

4.  Propagation Curves
Figure 5-10 shows propagation curves for the fundamental

component for several different source frequencies. The solid curves are
predictions based on the Rudnick model (Eq. 3-11), whereas the dashed
curves are those based on weak-shock theory (Eq. 3-1). Each of these
curves stops at the left at the distance x=X because the predictions are
not valid at lesser distances. The dotted line at the top is a small-
signal prediction for the 500 Hz case. The point labeled X s is the
distance beyond which ordinary absorption is more important than shock

dissipation. Beyond x weak-shock theory is clearly not valid. We

max
note here that for the data shown in Fig. 5-10, the weak-shock formula
overestimates the data by about 5 dB at X=X’ The Rudnick equation

appears to be a great improvement over the weak-shock formula.
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CHAPTER 6

CONCLUSIONS

A. Introduction

In this chapter the results are summarized and conclusions are
drawn. First the role of dispersion is discussed. Then the success of
each of the various models used to predict saturation and the approach to
saturation is examined. Finally, general conclusions about the. research

are given.

B. The Role of Dispersion

In the Rudnick model introduced in Chapter 2, dispersion is not
taken into account. As shown in Chapter 2, dispersion is responsible for
the asymmetric waveforms observed in the pipe. The shock peak is rounded
vwhile the trough remains sharp. Since shock dissipation depends on the
actual magnitude of the pressure discontinuity at the shock, the rounding
of the shock peak reduces shock dissipation. In other words, dispersion
inhibits the attenuation due to shocks.8 By ignoring dispersion in our
theoretical model, Eq. 3-11, we have overemphasized shock dissipation and
have therefore arrived at predicted levels that are too low. Furthermore,
since the phase shift caused by dispersion depends on the parameter ax,
we should expect the discrepancy between prediction and experiment to
increase with both frequency and propagation distance. This expectation
is qualitatively consistent with the data and curves in Fig. 5-5 and

Fis. 5"10.
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We have argued here that dispersion could, qualitatively, be
responsible for the slight discrepancies observed between data and the
Rudnick model at the greater distances and higher frequencies. Pestorius'
algorithm was used to find the quantitative effect of dispersion on the
received signal. A check on the computer algorithm was made by comparing
the predicted propagation curve with experimental data from the tube.

(See Fig. 6-1.) The computation was made for the case of a 3.5 kHz plane
wave with a source SPL of 157 dB; the experimental value of the absorption
coefficient used was @ = 0.078 Np/m. The agreement with the data is
excellent; the maximum deviation is 0.5 dB. To estimate the effect of
dispersion on the signal, an additional computer run was made ignoring
dispersion effects. The propagation curve obtained from this run is not
shown in Fig. 6-1 because it differs at most by 0.1 dB from the curve
shown there. We conclude that for this case dispersion has a negligible
effect on the amplitude of the fundamental component. Since the given
conditions represent the highest frequency and greatest propagation dis-
tance in the experiment, dispersion alone cannot account for the small
discrepancies between the Rudnick model and the measured data.

The higher harmonic components computed in the two runs are
compared in Table 6-1. The harmonic amplitudes with dispersion included
(Bn) are compared to those without dispersion (B'n). The predicted funda-
mental component of the wave is indeed higher when dispersion effects are
included; however, the difference is negligible for the given conditions.
Dispersion does, however, seem to become more important for the higher
harmonics. This finding is consistent with the observation that the

shape of the waveform in the neighborhood of each shock is strongly
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affected by dispersion. The shock shape is largely determined by the

higher harmonic content.

c.

TABIE 6-1

COMPARISON OF COMPUTED HARMONIC AMPLITUDES WITH (B )
AND WITHOUT (B' ) DISPERSION CORRECTIONS

Harmonic Number 20 log,, [Bn/B'nl
1 0.1
2 -0.01
3 -0.2
4 -0.3
5 -0.5
6 -0.6

Comparison of The Theoretical Models

1. Modified Weak-Shock Theory

Pestorius' computer algorithm was found to give excellent

agreement with the data in all the cases in which it was used. It has

two main attractive features. First, it includes the elements of weak-

shock theory, small-signal asbsorption, and dispersion. Second, the source

waveform that may be considered is arbitrary. The fact that the algorithm

is not an analytic solution made it poorly adapted to our use, however.

The computation of an amplitude response curve, for example, would have

required a separate computer run for each increment in source level.
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2. Modified Merklinger Model

The model suggested by Merklinger to describe the fundamental
component of an initially sinusoidal plane wave in s viscous fluid was
generalized so that it could be applied to any type of absorbing fluid.
The basis of the model is an intensity equation. The primary advantage of
this model is that it may be used over the entire range of source level.
In all cases near saturation, however, received levels predicted using
this model were higher than those actually measured. Typical predicted

results are shown in comparison to experimental data in Fig. 5-T.

Be The Rudnick Model

This model was originally used by Rudnick to describe the peak
amplitude of a sawtooth wave in the presence of tube wall absorption.
The basis of the model is an amplitude equation. We adapted Rudnick's
approach to obtain an equation for the decay of the fundamental component
Py- This equation was solved, and predictions were found to be in good
agreement with the experimental data. Small discrepancies were found,
however. These discrepancies increased with increasing frequency and
distance. Dispersion, which was originally thought to be the cause of the
small discrepancies, was found to be insignificant for our experimental

conditions.

D. Summary and Conclusions

The primary result of this research is the experimental proof
of acoustic saturation of plane waves in air. The tendency toward satura-
tion was found to increase with source frequency and/or distance. In one

case it was found that nonlinear effects caused 96% of the power at the
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fundamental frequency to be lost over a propagation path of 26 m. The
transfer of energy to higher frequency components, which is responsible
for acoustic saturation, was well evidenced by the form;tion of sawtooth
waves. Dispersion radically alters the time waveform of the received
signal (as discussed in Section B of this chapter). However, calculations
based on modified weak shock theory show that for our experimental con-
ditions dispersion has negligible effect on the amplitude of the fundamen-
tal component.

Another important result of this research is the finding that
existing theoretical models, adapted to our experimental conditions, gave
& good quantitative explanation of saturation and the approach to satura-
tion. Though weak-shock theory generally indicated the development of
saturation, it was necessary to take explicit account of ordinary absorp-
tion. We adapted the methods of Rudnick and Merklinger to obtain
expressions for the fundamental component 128 In all cases the Rudnick
equation was in better sgreement with data.

Some experimental and theoreti:al results for spherical waves

are presented in the appendices.




APPENDICES

In some cases it was possible to generalize the theoretical
work done for plane waves to the case of spherically spreading waves.
These results are included here as appendices. In Chapter 3, for example,
the question of whether ordinary dissipation can prevent the formation
of shocks or of a fully formed sawtooth was answered by comparing the
critical distances ;, X, and xmax.3 In Appendix A we discuss a method
for assessing the importance of nonlinear effects on spherical waves
based on a comparison of the critical ranges iﬁ £, and AT This
method leads to a classification of nonlinear effects on spherical
waves as weak, moderate, or strong. A perturbation solution of Burgers'
equation for weak spherical waves is presented in Appendix B. An exten-
sion of the Rudnick model to spherical waves is presented in Appendix C.
The model is appropriate for strong waves.

The weak and strong-wave solutions were compared with data from
freefield propagation experiments. In both the weak and strong wave
experiments the measured quantities were 12 and P, versus range. In the
weak-wave experiment the source was an acoustic array; for the strong-

wave experiments an acoustic siren was used.

We note here that the material presented in Appendix A was

included in Ref. 27. 58




APPENDIX A

ESTIMATES OF THE IMPORTANCE OF NONLINEARITY
ON THE PROPAGATION OF SPHERICAL WAVES

Here we outline a method for estimating the importance of
nonlinear effects on the propagation of spherically spreading sound
waves. The analysis is based on a comparison of the three critical
range parameters ?, ?, and rmax corresponding, respectively, to shock
formation, sawtooth formation, and "old age.” The analysis we present
here is somewhat similar to that of Shooter, Muir, and Blackstock.5 The
difference between our approach and that of Shooter et al. is the
particular graphical representation of the resulting equations.

The question of when shock or sawtooth formation is possible
for a plane wave was dealt with in Chapter 3. The analysis for spherical
waves is precisely the same if we replace §, X, and X with ;, ¥, and
T oy’ Tespectively. To find specific formulas for T, ¥, and Toax? Ve

first consider the case of an omnidirectional spherical wave. That is,

we let the boundary condition be

P = Py, 5in ak , 8t r=r N (A-1)
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We assume here that kr°>>1. The critical ranges arej
i 1/aekro
r=r_e = " (A-2)
e 3/ﬁekr°
F=r @ ’ (A-3)
o
Bekr

r

(o]
[¢]
max T 2 (A-b)
1 + Bekr 1n max}
o < e

To simplify the assessment of the importance of nonlinearity,

we now consider a graphical display of Eqs. A-2 through A-4. A direct
approach would be to plot the three critical distances themselves. If
Eqs. A-2 and A-3 are divided by r_, the normalized quantities ;]ro and
?/ro may be plotted versus the single parameter pekr . The equation for
rmax/ro’ however, depends on two parameters, fekr  and or_. A family of
curves would therefore have to be plotted to represent ﬁmax/ro' An
alternative approach is as follows: a reference point roughly marking
the threshold of importance of nonlinearity is ;érmax; far more serious
nonlinear effects are indicated by ?zrhax' These two equalities define
the following relations, respectively:

-l/aekro
- 2or = pekr_ e % (A-5)

¥
= Thax

and

: -3fpers,
r-rm-»haro-bekroe : (A-6)

Only two dimensionless groups appear in Eqs. A-5 and A-6, Bekro and aro.

This suggests representing these two equations by plotting, for example,
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Bekro versus aro. It is easily seen that for a given medium the quantity
Bekro depends only on the source level SL (farfield SPL extrapolated to

1 m) and f. A convenient measure of Pekr  is the "source-frequency level"
SFL (dB re 0.0002 ubar-kHz-m) defined as follows:

SFL = SL + 20 log, kaz A (A-7)

where kaz is the frequency in kilohertz. The SFL as we have defined it
here is what Merklinger, Mellen, and Moffet?) call the "scaled source
level" SL*. The relation between SFL and pekr  for air at 20°C is

SFL = 167.2 + 20 log,, Bekr ; (A-8)

Figure A-1 shows plots of Eqs. A-5 and A-6 in terms of SFL and aro.
Figure A-1 may be used in the following way to assess the
general importance of nonlinear effects on the propagation of spherical
waves in air. Nonlinear effects are expected to be weak, moderate, or
strong if the value of SFL and aro defines a point below, between, or
above the two curves, respectively. The reason is this: points below
the two curves define waves for which rmax<53 i.e., shocks never form;
points between the two curves depict waves for which ?krmax<$, i.e.,
shocks form but a sawtooth does not; points above the two curves define
waves for which ?<rmax’ i.e., both shock and sawtooth formation is
possible. The points B and C in Fig. A-1l represent the operating points
for the experiments presented in Appendices B and C, respectively, and

are discussed there.

We emphasize here that Fig. A-1 contains no information
regarding the length scale for the development of the nonlinear effects.
That is, one may, for example, find that for a given set of source

parameters the corresponding values of SFL and aro define a point well
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above the ?=rmax curve. Calculation of the distances r and T may,
however, show that T falls well beyond the distance at which experimental
observations will be made. Hence, nonlinear effects would be of little
importance for the given length scale. In summary, if use of Fig. A-l
shows that nonlinear effects may be important, then computation of the
range parameters themselves must be made to set the length scale of the
development of the effects.

In most practical cases the acoustic source is not a vibrating
sphere but a directional radiator, such as a baffled piston or an acoustic
horn. Though we have considered an omnidirectional source, our results
may be extended to directional waves by replacing Pio in Eq. A-1 with
plOD(G), where D(6) is the normalized directivity function.’ But the
value of T the effective source radius, needs to we specified. If
there is no distortion in the nearfield of the radiator, it is appropriate
to take r°=Ro, where Ro is the length of the nearfield. Unfortunately,
however, this is seldom the case. Nonlinear effects cause the signal to
distort as it propagates through the nearfield. Several researchers
have investigated this problem empirically and found that choosing ry in
the range Ro/3<ro<3R°/h works fairly well for piston-type radia.tors.3
Apparently choosing r, in this range gives about the right weight to the
distortion that takes place in the nearfield.

At this point, we include experimental data to illustrate the
validity of using the three critical distances to assess the importance
of nonlinear effects. Unfortunately, the data we have is for plane waves,
not spherical waves. However, the basic concept is the same, no matter

what the geometry of the wave motion may be. Figure A-2 shows waveforms
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for the case of weak, moderate, and strong nonlinearity. The condition
xmax<; holds for the first set of wavesforms, Fig. A-2(a). Under this
condition, shocks are not expected. Notice, indeed, that : shock never
forms. The steepening at x=x is less than that measured at the =acond
distance. The reason is that the high frequency components damp out
before a shock can form. Figure A-2(b) shows measured waveforms consist-
ent with the condition §<xmax<$. At the second distance (x=x) considerable
steepening is present though the shock is not fully formed. At the third
distance (x=X) the wave is slightly more distorted than at the second
distance, but certainly it is not a full fledged sawtooth. The peculiar
wave shape at x=X is caused by dispersion and is discussed in detail in
Chapter 2. Figure A-2(c) depicts the case ﬁ<kmax' At the distance x=x
shock formation is very apparent, and the characteristic sawtooth shape
is evident at x=X. We conclude that the critical distance method is in
good qualitative agreement with the data of Fig. A-2.%

In sumary Fig. A-1, used in conjunction with Egqs. A-2 through
A-4, should be quite useful in estimating the importance of nonlinearity
on the propagation of spherically spreading sound waves. While the
approach is not new (see Ref. 3), the particular graphical representation

is.

¥
Experimental data for spherical waves is given in Ref. 28.
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APPENDIX B

A PERTURBATION SOLUTION OF BURGERS' EQUATION
FOR SPHERICAL WAVES

Our purpose here is to obtain a theoretical prediction valid
for weak spherical waves in a thermoviscous fluid. Several other
researchers have obtained results valid for the weak-wave problem.g’jl'33
Pernet and Payne,9 for example,. extended the phenomenoclogical approach of
Thuras et 81.23 to the spherical wave problem. Blackstock and Willette,33
however, cbtained a perturbation solution of Burgers' equation valid to
third order in the source Mach number €. The work we present here is an
extension of Blackstock's et al. perturbation analysis to fifth order
in €. We also show a limited test of the theoretical results by com-
parison with data from an outdoor propagation experiment.

The Burgers' equation for spherical waves is (see, for example,

Ref. 1)
13(ru) a 3% du
;“S?l';zg;rc uFgr (B-1)
(o}

where O is the thermoviscous absorption coefficient at angular frequency w

and t'=t-(r-r o/°o) is the retarded time. Let the boundary condition be

u(ro,t) = u o sin at i (B-2)
66
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It is convenient here to cast Eqs. B-1 and B-2 in terms of the
dimensionless quantities V=(r/ro)(u/co) and y=wt'. Making the substitu-

tions for V and y and also defining §=Bkro, Egqs. B-1 and B-2 become

oV o)
a?'“;ff"

v
’ (B-3)
% Sy

and
V(ro,y) =€ gin y - (B-4)

respectively. We seek a solution of Eq. B-3 in the form of a perturbation

series. That is, we suppose a solution of the form

V= f: emy(®) . (B-5)

n=1

Substituting Eq. B-5 into Eq. B-3, we obtain

*® (n) (n) : (3)
K 3%y [3 (1) v’}
nz=:1 : [ s 8y2 i 1§=n > Sy ] 5 : th5)

In order that Eq. B-6 be satisfied, the bracketed term must vanish for each
value of n. In general the resulting differential equations corresponding

to terms of order €" (denoted 0(e")) may be written as

av(n) % azvén) =§' z V(i) av(.j)

n 4 " (-7)
0 -
(e ) dr ay i+j=n y

We see that in general the equations must be solved in sequence. For

2
example, the source terms for the second order solution V( ) depend on

(3) (2)

V(l). The source terms for the third order solution V depend on V

and V(l). We now proceed to solve the first five such equations.
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The first order equation is

av(1) 0%,(1)
5— - ¢ e »
Yy

0 . (B-8)

Hence, the first order solution V(l), which satisfies the boundary

condition Eq. B-L, is

-a(r-r )

V(l) = e ° siny ; (B-8a)

which is the familiar solution of linear acoustics. The second order

equation is

kB Saayinin b iy
= év( ) T

. R o
* (B-9)
-20(r-r )
PR 0
“«2 ® sin 2y .
The solution of Eq. B-9 may be found by assuming V(2)=F(r) sin 2y.
The result is
-bo(r-r )
2
V( ) = é-e ¢ I,, sin 2y 4 (B-9a)
where
&t aa(r'-ro)
I, = e ar"
22 ™ r
o

; We shall have occasion to write down several integrals of the
f form Imn and adopt the following convention. The integral Illln means
! the integral which must be evaluated to obtain the contribution to the

nth harmonic from the mth order perturhrat!on.




The third order solution V(3 ) satisfies

x® AO) ¢ [5(v1v2)]
or ayg r -3;——- 3

(B-10)
2 -5(r-r ) ;
= é; 122 e [3 sin 3y - sin y]

The solution of Eq. B-10 may be found by assuming

2
V( )=G(r)sin y+F(r)sin 3y. The result may be written as

2 -o(r-r_) 2 -(r-r_)
V(B) S ﬁ_ 131 e © sin y+ 2&— I35 e ©" gin 3y , (B-10a)

“lo(r'-r )
r Iza(r') e °
131 - ' dr' s
r
o
and
bo(r'-r )
r I22(r') e b
s Sel L 3 i
o

We see that the third order solution gives rise to a term which describes
the initial decay of the fundamental and the iniﬁal growth of the third
harmonic.

The fourth order equations and solution are listed below.
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OB T K aabgl sl g
oy “ ay2 i 5 V( ) Ay % L dyv )}
3 -Bot(r-ro) -loa(r-ro)
= ﬁ; -131 e - 3153 e )sin 2y

-8(r-r ) -100(r-r )
+<I222e %6 e °>sin Ly

(B-11)
33

5 -ho(r-r )
v . ﬁ- [} (I,o*31'),,) e e sin 2y

(B-11a)
-16a(r-r )
+ (Ihh+ 6I'hh) e ©" sin hi]

2(r'-r )
r I}l(r') e %
Tyo = / r gl
o
(et -60(r'-ro)
rI..(r')e
I, - / ok o
r
r
o
8a(r'-r
r 1222(r') e e
I = 7 dr'
w= | F
o
6a(r'-r_)
1 r ;DB(r ) e i
I Ll = = dr'
o

Because of the rather formidable algebra involved, the only
part of the fifth order solution that was calculated was the contribution
to the fundamental. This contribution is denoted vg‘?u)xd . The results

are listed below.




S C (v (V) ; a(v(2)(3))
or ay2 e dy Ay

5) L -Ot(r-ro) ]
Vgund.=§e I51"2‘151

(] [} '-ha(r"'r)
r I ()1 .(r") o
I51=/ Tp(x') + 31%(x") + = 2}l A
rO
TP sy
rIakrt )l (e e
R 22 55 '
: 51"./; T o

(o]

T1

(B-12)

(B-12a)

drl

As may be seen from the higher order results, the solutions are easy to

write down in terms of the integrals Imn' It is the calculation of these

integrals which is indeed a formidable task.

Let us now put our results in terms of the normalized harmonic

amplitudes Bn=(r/r°)(un/u°). Defining o _=€{, we obtain

ar-r ) © £ o s

B o« Lo, +(1, -3

1 T e TN ey TR N ’
-l r-ro) -Uo 003

Ty T Top - T (Te*3T)|

-9(r-r_) |30 2
B, =e ” ) I
3 N 33 *

(B-13)

(B-14)

(B-15)




the behavior of the solutions Bn in the limit of small values of Qr.
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(B-16)

As a check on our theoretical results, we now inquire as to

We expect that these limiting forms should correspond to the harmonic

amplitudes found from the Bessel-Fubini solution (see, for example,

Ref. 12), which are given by

By

2

= — J_ (no)

no n 4

(B-17)

where c=Bekr°1n(r/r°). To compare our solution to Eq. B-17, we first

establish the limiting forms of the integrals Imn' In the limit as

or-0, the integrals Imn reduce to the following.

Ipp =

r
1n >
o

N+ o=
5 5
JY]

] n'u

N+
5

W

H'H

(B-18a)

(B-18b)

(B-18c)

(B-184d)

(B-18e)

(B-18f)

(B-18g)
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4
I = rl;é 1n :— (B-18h)
(o]
L
e é 1n :— g (B-181)
(o]

2 L
Bl=l-§—+%§-§ ; (B-19)
By=7 - %3' ’ (B-20)
; By = égf ’ (B-21\)
By = ‘3’—5- : (B-22)

Comparison of Eqs. B-19 through B-22 with the series expansion of Eq. B-17
shows that our results are consistent with the Bessel-Fubini solution to
the orders of o which we have kept. For example, Eq. B-19 is the series
expansion of Eq. B-17 to fourth order in o. Hence, the results of the
perturbation solution (Eqs. B-13 through B-16) do indeed reduce to the
Bessel-Fubini solution as ar—0.

In many cases where such a perturbation solution is useful,
some distortion is evident in the source waveform V(ro,y). Commonly
this distortion is primarily second harmonic (especially if it is due to

nonlinear propagation distortion in the nearfield). We shall now




T4

determine how the presence of an "initial" second harmonic signal changes
the lower order perturbation results. Suppose that, in place of Eq. B-U4,

the boundary condition is

V(ro,y) = e[sin y+a sin(2y+¢)] ’ (B-23)

where a and 9 are the relative amplitude and phase of the second harmonic,
respectively. The first order perturbation solution satisfying this
boundary condition is

<a(r-r ) -ha(r-ro)

V(l) =e siny +ae sin(2y+9p) 5 (B-24)

(2)

The second order solution V has a source term proportional to

V(l)(av(l)/ay). Hence, it is easily seen that V(2) contains contributions
to the first, second, third, and fourth harmonics. The expression for
v(®) 44
~a(r-r ) <ba(r-r_)
(2) al o & o
v =-3e I, sin(y+o) + 3e I,, sin 2y

(B-25)
+ FP(r) ein(3y+9) + G(r) sin(4y+29) 5

-M:(r'-ro)

where 121 = 5--35—--— dr' .
rO

We note here that the second harmonic component of V(a) is not affected by
the "initial" second harmonic. The expressions for B, and B, are, then,

to second order

S I S8 D (NS R S A
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1/2

-a(r-ro) g 2 o

Bl =e 14 eps 121 - &g 121 cos @ s (B-26)
and
1/2

-lla(r-ro) 002 o

B, =e 1+ 1, + 0, I, cos @ . (B-27)
\

We now wish to compare the results of the perturbation analysis
with data from an outdoor propagation experiment. In particular we wish
to compare the measured values of 2 and P with the perturbation analysis
for a boundary condition similar to Eq. B-23. The source was an array of

seven electroacoustic drivers with exponential horno.28

A side view of
the array is shown in Fig. B-1. The diameter and transmitting frequency
of the array were 0.5 m and 8.25 kHz, respectively. The absorption
coefficient @ was 0.0076 Np/m. The amplitudes P, and p, at the beginning
of the farfield (r°-6.1 m) were 551 ubar and 143 ubar, respectively,

and the phase angle @ was observed to be zero. In terms of the parameters
discussed in Appendix A, the operating conditions for this experiment are
SF1=159.8 4B, ar °=0.0’l6. These conditions determine a point on Fig. A-l1
(point B) that falls below the r=r, _ curve; therefore the perturbation
analysis should be valid. Figure B-2 shows the measured data and theoreti-
cal results. Since the wave is weak, the linear theory result (Eq. B-8a)
describes the bebhavior of Py fairly well, though the second order
perturbstion result (dashed curve) provides a slightly better fit at the
greater ranges. The lower solid curve is the linear theory prediction

for Py The dotted curve is the second order perturbation result for Py

for no initial second harmonic (Eq. B-9a). Since the phase di:'ference @




FIGURE B-1
ACOUSTIC ARRAY USED FOR
WEAK-WAVE PROPAGATION

Token from Ref. 28
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is zero, the correct second order perturbation result (dashed curve) for
P, is the arithmetic sum of the dotted curve and the lower solid curve.
The need for taking account of the initial second harmonic distortion is
well illustrated. It is also interesting that although the fundamental
is well described by linear theory, the linear theory prediction for the
second harmonic is 10 dB below the data at the greatest range. The
overall agreement as regards the predicted and measured second harmonic
is excellent.

In conclusion we have presented a fifth order perturbation
solution of Burgers' equation for spherically spreading sound waves.
Though the integrals involved become increasingly more complicated for
the higher order results, the lower order results should be useful for a

great many veak-wave problems.




APPENDIX C
SOLUTION OF THE RUDNICK EQUATION FOR SPHERICAL WAVES

Blackstocth suggested a spherical wave version of the Rudnick
decay rate equation (Eq. 3-7). By analogy with the plane wave case,
Blackstock assumed that the decay rate dpl/dr of the fundamental pressure
component is the sum of the decay rate due to absorption (dpl/dr)abs.='apl
and the decay rate (dpl/dr)f'a. of a spherically spreading sound wave of
finite amplitude. The latter decay rate may be found as follows. Let
the boundary condition be

pl(ro,t) = Po sin at . (c-1)

The value of P, in the sawtooth region (023) in the absence of absorption
is

(c-2)

The decay rate (dpl/dr)f a, 18, from Eq. C-2,

2
(ﬁ) 5 :g Who | PeE " By
ar Jea. r . %N fzﬁ* (1+or)2

(c-3)
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By supposition the total decay rate dpl/dr is then
o ed abs. . f.a.
(c-b)
5 o opEE 2
= Wl Py

We now wish to solve Eq. C-4 subject to the condition that the solution
reduces to the weak shock solution (Eq. C-2) as 0=20. The form of the

solution for the plane wave case (Eq. 3-11) suggests that we try a solution

of the form
T e-a(r-ro)
P1='1'.- l+fr 3 (0'5)

where A is a constant and the function f(r) is to be determined.

Substitution of Eq. C-5 into Eq. C-4 leads to the following form of f(r):

a3 A Bekr_ ar_ /’ar N i )
r) = e o “ -
20 ar, A

As in the plane wave case, the choice of A=2p10 yields the weak-shock
solution, Eq. C-2, as 0—0. The definition of the exponential integral

El(a) (see, for example, Ref. 35),

® -
El(a) " /a 'eT’ an )

may be used to write the expression for f(r) as folpows:

ar
£(r) = pexr e ° [E (or )-E (ar)] . (c-7)
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The expression for Py» found from Eqs. C-5 and C-T7, is
AI(r-ro)
8 o © 5
pl-l‘ or s (C")

1 + pekr_ e °[E1ﬂaro)-El(ar)]

Equation C-8 is simple to evaluate in practice. The exponential
integral El(ar) may be read from tables or evaluated by certain series
representations. See, for examgle, Ref. 35. Indeed, in the range

O=ars]l the series representation for El(ar) may be written 3335

p)
Ey(ox) = -la(ar) + 35 a ()t (c-9)

with a maximum percentage error of 9x10'5.

The proposed solution (Eq. C-8) was compared to freefield
propagation data taken using a siren operating at 6.1 kHz in air. Two views
of the siren are shown in Fig. C-1. The 20 circular ports in view b are
the sound sources. The siren operates by periodically interrupting the
air flow through the ports by means of a motor-driven titanium steel
rotor located just behind the ports. For further details see Ref. 28.
Because of the relatively high acoustic power output of the siren
(approximately 600 W of acoustic power with a 4O° beamwidth between
the 3 dB down points), the characteristic sawtooth wave shape was already
in evidence at a propagation distance of approximately 2 m. Our measured
boundary condition was, therefore, a sawtooth wave at a given distance T
from the source. To use Eq. C-8 we must compute from our measured data

the amplitude P10 and effective source radius r, of a sinusoid which

would yleld the measured sawtooth wave at range T This is easily
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FIGURE C-1

ACOUSTIC SIREN USED IN THE
STRONG-WAVE EXPERIMENT

(a: SIDE VIEW, b: VIEW FROM ABOVE THE SIREN)

Taken from Ref. 28
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accomplished by using the sawtooth solution (Eq. C-2). Let Py, be the
measured value of the fundamental pressure component at range L Then,
using Eq. C-2, we have

r 2p
o 10
r=r
m
and
Bp
Mo Y = m( ) (c-11)

Equations C-10 and C-11 may be solved for Pio and ros since all other
quantities are known.

Figure C-2 shows the results of a comparison of Eq. C-8 with the
measured data. The value of the absorption coefficient @ was found to be
0.0059 Np/m from a small-signal experiment under similar conditions and is
also consistent with the computed value from Ref. 36. The values of P
and r, were 2.29x105 ubar and 2.19 m, respectively. The values of Pio and
r, computed from Eq. C-10 were, respectively, 1.1X10° ubar and 0.09 m.

The solid curve is the linear theory prediction; the dashed curve represents -
the solution of the "Rudnick model" equation. The latter is seen to
provide a good fit to the data.

In summary the model proposed here, although ad hoc, does seem
to provide a good description of the experimental data. Further experi-
mental verification of this model may be found in Ref. 28. The model
should be useful in a number of spherical wave problems, though its use

is restricted to strong waves.
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