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wave. The Mer’kltnger model is found to give good results at low levels , and the
Rudnick model at high levels. The measurement generally confirm the theoretical
predictions . Dispersion due to the tube wall boundary layer is not included in
either of the theoretical models. Its effect was analysed separately and found
to be not great for the fundamental component. Certain aspects of the propaga-
t ion of spherically spreading waves of finite amplitude were also studied . A
graphical method for assessing the importance of nonlinearity on spherical waves
is discussed . New theoretical results for weak waves and for strong waves were
found . In the first case a high order perturbation solution of Burgers ’ equatio’
was obtained . In the second, the Rudnick model equation for the fundamental
component of a sawtooth spherical wave was solved. In both cases, measurements
taken in two outdoor propagation experiments confirmed the theoretical results.

)

UIcLASSIP’ lED

SECURItY CI. AUIPICAtION OP tHIS PAOEr*Sia. fla.ja.o.d)
• a a ’,-’ - ~ . .W~~~~~~

,, ‘ a ’ ’~~ ~~~~~~.. ~~~~~~~~~~~~~~
--
~~~~~~~~~~

—..——--.-- 
.•
~
. , - .- - - --— —



— 

- - .- - .-—— ‘- • - - . • ,

~~

— - . 

V .

~~~~~~~~-TR4~~~~~
IY, t

~ATURATlON OF..,PLANE 6~OU$TlC3AvEs AND ~OTES ONT~i\
~ROPAGATtON OF FINITE.AMPL,rIjDE SPHERICAL WAVES .

~~~~~~~~~~~~~~~~~~~~~

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATIONGront 04 .5 .022 . 12
AIR FO 

446 .76.C. 
TIFIC RESEARCH

NATION SPACE ADMINISTRATION

APPLIED RE SEARCH LABORATORIES
T H E  U N I V E R S I T Y  OF T E X A S  AT A U S T I N

AUStiN, TWS 7S713

l~~3
APPROVED FOR PUSUC
RELEASE DISTRIIUTION
UNLIMITED.

~ 

- , -~~ •‘.~ frntaj.~~ a&~~~~~~~a.—.~~*r— ~•._._.S.Ws_,._.,__ ,. •~.. .-•.•-~~~~~~ ‘•t• . .

— 

- ‘- ,,• -



FOR~MORD
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of 8pbsricaLl,y Spreading Periodic Acoustic Waves of Finite Amplitude .”
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as Applied Research Laboratories Technical Report ARL-TR-77-~ (January
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4ie saturation of plane acoustic waves in an air-filled tube.~4a-~~

-~nveet4gate42 SaturationT~3ihAeh-4? a state in which the signal amplitude

at a field point approaches a limiting value, independent of source anipli-

tude~~~s caused by nonlinear propagation d,istortion .kW~- observed it in a

30-rn long, ~.-crn i.d. progressive wave tube . Measured saturat ion curves

were obtained for the following source conditions: sound pressure levels

from 110 to 163 dB, frequencies from 500 Hz to 3500 Hz. The model equa-

tions of Merk].inger and Rudnick were adapted and solved to give theoretical

predictions for the fundamental component of the wave . The Merklinger

model is found to give good results at low levels, and the Rudnick model

at high levels. ~~I~~ asurement s generally confirm é~~~eoretical
( V- e  e I c ,C.

pred.tctioni~~ ~~tspersion due to the tube wall boundary laye is not

included in either of the theoretical models . Its effect~~as analyzed

separately and found to be not great for the fundame ntal component .

Certain aspect s of the propagation of spherically spreading

waves of finite amplitude were also studied. A graphical method for

assessing the importance of nonlinearity on spherical waves is discussed.

New theoretical result s for weak waves and for strong waves were found.

In the first case a high order perturbation solution of Burgers ’ equation

was obtained . In the’ second, the Rudnick model equation for the funda-
~~~ ~

‘
mental c~~~onent of a s~~~ooth spherical wave was solved . In both cases, Ia -I ~~~~~

measurements taken in two outdoor propagation experiment s confirmed the ..._.... _ -
theoretical results I
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GI~DSSARY OF IMR~RPANT SYMEQIS

a tube internal radius

B nornialize~ particle velocity amplitude of the nth harmonicn I u
component corrected for=~spherical spreading (= 

L

~ 
r0 u10

email-signal sound speed

f freq uency

k vavenumber (= ~?—
‘ C
‘ 0

p acoustic pressure

pressure amplitude of the nth harmonic component

~nO pressure amplitude of the nth harmonic component at x=O

P peak pressure amplitude of a sawtooth wave

P Prandtl number

r range (spherical waves)

shock and sawtooth formation distances ( spherical waves)

~~~~ range at which the rates of finite-amplitude and small-signal

attenuation are equal ( spherical waves)

r0 a reference distance

:: ~~~ded time (= t - ~ -. for plane waves , = t •(~; °) for

spherical waves)

u~ particle velocity amplitude of the nth harmonic component

u~0 particle velocity amplitude of the nth harmonic component at x=O

normalized nth order perturbation solution of Burgers’ equation
1 rcorrected for spherical spreading (= ~— ~j —
\ o l O

x distance (plane waveB)

ix



shock and sawtooth formation distances (plane waves)

distance at which the rates of finite-amplitude and small-signal

attenuation are equal ( plane waves)

y phase (= wt ’)

a absorption coefficient at angular frequency w

absorption coefficient at angular frequency nw

parameter of nonlinearity 
(= ‘

~~ 
1 for air)

ratio of specific heat s
/ 2 1/2

boundary layer thickness 
~= (~~

)

€ the acoustic Mech number 1= 2p c
0 0

wavelength

v kinematic viscosity

p0 ambient density

a dimensionless distance (= ~€kx for plane waves, = ~€kr0ln(~—)

for spherical waves)

a dimensionless reference distance (= ~€l~~~)

a phase angle

the angular frequency

I

x
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CHAPTER 1

INTI~ DUCTION

In linear acoustic theory the amplitude of the received signal

at a fixed point varies in direct proportion to the source amplitude . As

the source amplitude is increased, however, losses due to finite amplitude

effects develop. The received level increases less rapidly than the

source level. Eventually the finite amplitude losses, or extra attenua-
*tion , become so severe that the received signal approaches an upper

limit , independent of source amplitude . The wave is said to have

saturated.

The terminolo~ r used to describe the development of acoustic

saturation may be made clear by Fig. 1-].. What is plotted here is the

received sound pressure level ( SPL) at a fixed distance versus the source

SPL. Such a plot is commonly re ferred to as an amplitude response or

input-output curve. At sufficient ly low source levels the wave propagates

as a small signal and the input-output curve ( solid curve ) has unit slope .

Eventually the curve begins to bend over and depart from the extrapolated

small- signal curve (dashed line), Bigni f)ring that the approach to satu-

ration has begun. The extra attenuation in decibels, conisonly called

EXDB, is the difference between the extrapolated small-signal curve and

the input-output curve . The saturation level is the asymptotic value of

the received level in the limit of high source levels. In practice , of

Extra attenuation here is defined as attenuation over and above that
observed for a small-signal wave.

1
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course , the asymptote can never be attained. It is therefore useful to

define a point at which the received level differs from the saturation

level by some prescribed amount ( for example , 1 dB ) . This point defines

the beginning of the plateau region, where the input-output curve is

nearly horizontal. In this region the wave is practically saturated.

~~ EXTRA
ATTENUATION

~ 
SATURAT

,

EVE

,

~~~

.

/

1
~
..

~..._.. .. ... 11. J.~~~~~~~~~~ IIUIIIIIII.lI.

LINEA EGION SATURATION i REGION

SOURCE SPL

FIGURE 1.1
THE DEVELOPMENT OF SATURATION

The extra attenuation, which is responsible for saturation, is

caused by a transfer of the wave’s ener~ r to higher frequency components

where it ii more efficiently dissipated. The energy transfer may be

traced to the dependence of the propagation speed dx/dt of the wave on the

local particle velocity u. The propagation speed of a particular wavelet

(hence a. particular value of u) ~~~ 

— ——- -- ———— —-------- - -- -- - — ------.———-
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~~ Ju=constant = c0 + ~u . (1-1)

Here c0 is the small-signal sound speed and ~ is the parameter of

nonlinearity (~=(7+l)/2 for gases, where 7 is the ratio of specific heats).

The dependence of dx/dt on u is a consequence of two phenomena. First,

since sound propagates longitudinally, the wave is carried along by the

motion of the medium (i.e., the sound wave is convected). Second, because

of the nonlinearity of the pressure-density relation, wavelets associated

with the compression phase of the wave travel faster than wavelets asso-

ciated with the rarefaction phase. These two effects reinforce each

other and cause a cumulative distortion of the wave as it propagates.

For example, in the absence of ordinary dissipation, a sinusoidal wave

will distort into a sawtooth wave. The harmonic distortion necessary to

produce the sawtooth comes at the expense of the fundamental component .

In other words, energy transfer takes place.

Most of the work that has been done on acoustic saturation

concerns spherically spreading sound waves. Allen ,2 who made measurements

on spherical waves in air , reported the first experimental evidence of

acoustic saturation in 1950. Allen ’s measurements of the first six

harmonics of the received signal show a definite approach to saturation .

At a distance of 2 m from the source Allen found that an increase in

source SPL* from 158 d.B to 2.61 dB yielded only a 0.5 dB increase in the

received level. An experiment on saturation of spherical waves in water

is given in Ref. 3; this reference also contains an excellent historical

review of other work relating to acoustic saturation of spherical waves.
*In the remainder of this work unless otherwise noted the SPL reference
pressure 1. 0.0002 ibar .

I1.
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Little experimental work has been done on saturation of plane

waves. Plane waves are usually achieved either by generating a collimated

beam in an open medium or by confining the sound wave in a tube. Lester14

made measurements on a collimated ultrasonic beam in water . His measure-

ments confirm the plateau region shown in Fig. 1-1 though the plateau

turns down unexpectedly at the highest amplitudes .~ Although much work on

plane finite-amplitude waves has been done in tubes ( see , for example ,

Refs. 5-9) , a specific investigation of acoustic saturation has not been

made. Pernet and Payne,9 for example, made measurements of intense sound

in tubes, but they, as many others, were primarily interested in the

harmonic growth with distance and. hence did not investigate saturation

explicitly.

The object of this research is to investigate saturation of

plane acoustic waves in tubes. Several model theories for the fundamental

component of the wave are discussed. Solutions of the differential

equations based on these models are compared with data taken in a plane

wave tube in air. A numerical algorithm developed by Pestorius8 to com-

pute the wave shape at any propagation distance is also compared with data

from the plane wave tube.

Although we have been mainly concerned in this research with

plane waves, some new results have been obtained for spherical waves.

These results are given in the appendices. In Appendix A a graphical

method for assessing the importance of nonlinear effects on spherical

waves is described. This method, which is a simplification of one

described in Ref. 3, allows one to classify nonlinear effects as weak,

moderate, or strong. A perturbation solution useful for weak waves is



r

• presented in Appendix B. A solution valid for strong waves is presented

in Appendix C. Both the weak and strong wave solutions are compared with

data from freefield propagation experiments.
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REVIEW OF TRE LITERATURE

A. Introduction

In this chapter we review several of the theoretical methods

which may be applied to the problem of propagation of plane acoustic waves

of finite amplitude . Our goal. is to find an expression for the funda-
mental component of an initially sinusoidal wave . Both nonlinear effects

and ordinary dissipation are taken into account. The specific problem we

consider is the propagation of progressive waves contained in a gas-filled
tube. The analysis in Section C of this chapter shows that for our

experimental conditions only boundary layer absorption is important . We

shall, however, in two cases present result s valid only for a thermo-

viscous gas. These results are included because the methods used may, in

some cases, be recast in terms of boundary layer absorption .

B. Review of Weak-Shock Theory

Because extensive use is r~ de here of weak-shock theory, an

outline of its basic features is appropriate. The exact one-dimensional

equation for plane progressive waves in an ideal lossless gas is1

+ [c + ~uJ ~~ = 0 . (2-1)

Given the boundary condition

u(0,t) = g(t) , (2-2e.)

Poisacm~~ found the solution (generalised here for an adiabatic gas) to be

_ _  - -‘



H

u = ~(t - 
~ 

. (2-2 o)

As Challis11 later found , however, the Poisson solution leads to multi-

valued waveforms. The multivaluedness indicates the presence of shocks in

the waveform) To see this consider the propagation speed of a given

wavelet (Eq . 1-1). Applying Eq. 1-1 to the wave pulse in Fig. 2-1 we see

that point b will catch up to point a , (x=x1),  and eventually pass it,

( x=x2 ). The multivaluedness comes about because we have ignored dissipa-

tion up to this point. At higb waveform gradients (such as those occur-

ring at a shock, for example), dissipation is of paramount importance.

Dissipation prevents the wave from folding over on Itself.

b DISTANCE

_ !~ III~
_ _... x S

_ cI~~3h_._ ... x z ~ 0

~i x : x 2~~ x 1

FIGURE 2 1
PROPAGATION OF A PULSE
WHEN Eq. 1 .1 IS APPLIED

a t — $ THI UTA1DED TIMI]

I

_~~_ - -  —- ..~ .-— ..-— ~
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An extension of the Poisson solution (Eq. 2-3), weak-shock theory enables

us to calculate the wave shape when shocks are present. Through the use

of the Rankine-Rugoniot shock relations, which state conservation laws,

shock dissipation is included. An excellent account of weak-shock theory

is given by Blackstock.~~ We give here a brief account of’ the solution

corresponding to a sawtooth wave shape. The inclusion of this solution

is essential here , since it is the formation of the sawtooth wave shape

which ult Imately leads to saturation . We consider a source excitat ion of

the form

p(O ,t)  = 
~1o sin wt . (2-3 )

Here p, w, and p10 are the acoustic pressure, angular frequency, and

pressure amplitude , respectively, of the source . A discontinuity In the

wave (a shock) i~ first formed at a distance ~ given by~~

(2-14)

Here €=p1~/p0c0
2 , p0 Is the static density, and k=w/c0 is the wave number.

An approximate solution of Eqs. 2-1 and 2-5 valid in the more remote

region x)~3x is~~

_____ 
1. , (2-5)

where a=x/i. Equation 2-5 is the Fourier series representation for a

sawtooth wave of amplitude ItP1(/(1+u). The distance x=5~ (a 3) is

co~ sonly called the sawtooth distance, and the region of validity of

Eq. 2-5 is called the sawtooth region.
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As will be shown in Chapter 3, Sect ion B, Eq. 2-5 may be used to

indicate the developaent of saturation. In many cases, however, ordinary

absorption must also be taken into account . In the following section we

examine the role of ordinary absorption and dispersion in our experiments.

C. The Role of Ordinary Absorption and Dispe~rsion

Ordinary absorption may be expected to be important in our
8measurements. Indeed, Pestorius found it necessary to include both

absorption and dispersion In his analysis of finite-amplitude propagation

in tubes. Some of the effects of absorption and dispersion on a small-

signal wave are discussed here 00 that the role of each in the nonlinear

case may be better understood.

The problem of absorption and dispersion of plane sound waves in
15 *tubes was first solved by Kirchhoff. For a wide tube one finds that the

absorption coefficIent a and phase velocity cph are given by

and 

a = 
~~~~~~~ 

+ (2 6)

cph 1 + 
. (2-7)

*A wide tube is a tube for which the boundary layer thickness ~ is small
compared to a. We define the boundary layer thickness t~ as the distancefrom the tube wall to the point where the particle velocity amplitude has
reached a_value equal to lie times its mainstream value. It turns out
that ~~ V~2y/cn. The requirement ~<<a thus imposes a lower limit on the
frequencies for which the wide tube formulas may be used. The tube must
not, however, be so wide that losses in the fluid mainstream are compara-
ble to the boundary layer losses. The latter requirement may be stated as
a<<1/k2A. ~5 Hence a wide tube must meet the requirement that ~<(a<<1/k2L~.For example, to be classified wide over the frequency region 100 Hz to
50 kHz, the tube must have a radius In the range 0.02 cm <<a << 50 cm.
The pipe we use for our experiments (see Chapter 14) has a radius of 2.5 cm.
Our pipe, therefore, is a wide pipe from 100 Hz to 50 kHz .
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Here a is the tube radius, v is the kinematic viscosity, and Pr is the

Prandtl number . Prom Eqs. 2-6 and 2-7 we see that c~~ decreases with

frequency, asymptotically approaching c0 in the high frequency limit.

The absorption coefficient a varies as the square root of a. Prom these

observations we conclude that a nonsinusoidal signal propagating in a tube

will suffer both phase and amplitude distortion.

The importance of ordinary absorption in our experiment s Is

easily seen from Eq. 2-6. The tube we use for our measurements has a

2.5 cm radius , and the ( fundamental) frequency range of Interest Is 500 Hz

to 4000 Hz . At a frequency of 5.5 kHz , for example, the absorption

coefficient a is about 0.072 Np/rn . Therefore, for the available measure-

ment dIstance, 26 m, we could expect 16.3 dB of small-signal attenuation

alone. We conclude that a reasonable theory for ow’ experiments must

include the effect of ordInary absorption.

The importance of dispersion may be seen from an examination of’
the phase distortion suffered by a nonsinusoidal signal. Since we are

concerned with saturation in our experimental work, the main waveform of

interest besides the sine wave is the sawtooth . McKittrick et al.~~ were
able to explain asymmetric waveforms observed in a high intensity tube

experiment by considering the propagation of a small-signal sawtooth wave.

We present an analysis similar to theirs here because It makes clear the

effect of absorption and dispersion on the overall wave shape. We assume

a sawtooth wave of peak-to-peak amplitude p0 exists at x=O. The nor-

malized acoustic pressure p/p0 may then be expressed as the Fourier series

~~~~~~~~~~~~~~~~~ 

- sin n~it . (2-8)
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• If Eqs. 2-6 and 2-7 are applied, ~/p0 is given at distance x by
l6

• -~~~x
p/p = 

~
. sin n (wt ’_ f ~ rx) . (2-9)

Figure 2-2 shows the sum of’ the first one huiidred terms of Eq. 2-9 for

three cases. The top waveform is one in which there is no absorption or

dispersion, i.e., ax has been set to zero. Note the Gibbs’ overshoot at

both peak and trough. For the middle and bottom waveforms the value of ax

is 0.3. In the middle waveform absorption is included but not dispersion,

i.e., the phase angles I~xx are ignored. The result Is that the waveform

Is rounded symmetrically at both peak and trough. In the bottom waveform -

both absorption and dispersion are included. The wave asymmetry is clear;

the peak is rounded while the trough remains sharp.

We now ask what effect dispersion will have on a wave of

finite-amplitude. Dispersion clearly alters the wave shape in the linear

case and, as McKlttrick et al. found, causes the waveforms to be asymmet-

ric in the finite-amplitude case as well. What we are mainly concerned

with, however, are the harmonic amplitudes. For a small-signal wave,

dispersion does not alter the harmonic amplitudes, I.e., the spectra of

the middle and bottom waveforms in Fig. 2-1 are Identical. The propaga-

tion of a finite-amplitude wave, however, is highly dependent upon the

wave shape.8 Consider , for example , the propagation of two waves, one a

sawtooth and the other an inverted sawtooth. Although both have the same

• initial Bpectra, the finite-amplitudc distortion of the two waves is

vastly different. The reason is that the phases of’ the Fourier components,

and therefore the wave shapes, are different. This is admittedly a rather
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ax~~ O
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FIGURE 2-2
EFFECTS OF ABSORPTION AND DISPERSION

ON A SMALL -SIGNAL WAVE
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drastic example, given merely to point out that dispersion will probably

have some effect on the propagation of the wave. A qualitative discussion

of the effect of dispersion is given in Chapter 6. The discussion given

there is based on the bottom waveform of Fig. 2-2.

The effects of both dispersion and ordinary absorption are

usually Included in a theoretical analysis In one of two ways, both of

which are treated briefly in Section D. In the first method the effects

are included as specific terms In the differential or integral equation

governing the wave motion. Unfortunately, however, the equation is

generally very difficult to solve. Another method is to include the

effects stepwise in a computer algorithm that is based on a mathematical

model of the wave distortion process. Such an algorithm has been described

by Pestoriua.8 Although the algorithm is not efficient for computing

saturation curves, we do make use of it in Chapter 6. There a quantita-

tive discussion of the effects of dispersion are given.

A completely different approach is to ignore dispersion entirely.

Several ad hoc models have been proposed in which ordinary absorption is

accounted for but not dispersion. Perhaps surprisingly, several of these

models have enjoyed considerable success. Appropriate ones are discussed

in Section D.

D. Contributions of Other Researchers

1. A Computational Method - Pestorius’ Algorithm

In a computer algorithm developed by Pest orius , explicit account

is taken of nonlinear effects, ordinary absorption, and dispersion.
8 In

this algorithm the source wave is “computer propagated” a short distance



Ax; the basis of the computation is weak-shock theory. The resulting t ime

waveform Is then transformed to the frequency domain, where corrections

are made for small-signal absorption and dispersion . After a transfer

back to the time domain, another short propagation step is made. In this

way the time waveform may be computed for any propagation distance. The

validity of this algorithm has been verified by Pestorius for both

initially sinusoidal waves and noise.8 As was mentioned In Section C , we

make use of this algorithm in Chapter 6 to find the effect of dispersion
on the harmonic amplitudes. The algorithm was not, however, used to

compute amplitude response curves because a separate computer run would

have been required for each increment in source SPL.

2. Burgers’ Equation

a. Mainstream Absorption

Lighthill17 reduced the equations of motion for progressive

plane waves in an unbounded thermoviscous gas by a series of approxima-

tions to Burgers’ equation . ?4endousselS cast Burgers’ equation in the

following form , which is equally valid but better suited for boundary

value problems :

, (2..10)

0

where a Is the thermoviscoua absorption coefficient at angular frequency

It will be seen that the left-hand side of Eq. 2-10 is an approxi-

mate form of Eq. 2-1. The right-hand side is the dissipation term

appropriate for mainstream absorption. Though exact solutions of Eq.. 2-10

are known, they are not relevant for our problem because In our case the
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attenuation is due to boundary layer effects, not mainstream effects. The

spherical wave version of Eq. 2-10 Is, however , treated In Appendix B by
a perturbation method.

b. Boundary Layer Absorption

Blackstock1 found a “Burgers-like” equation for finite-amplitude

waves subject to boundary layer attenuation,

- —~ u ~~~~~~~~ 
= a 

~~ 
~~ (x~~~’-~.) 

~~~ 

. (2-il)

Here a is the boundary layer absorption coefficient at angular frequency
w; see Eq. 2-6. Solutions of Eq. 2-1]. would be ideal for our work.
Unfortunately, however , only low-order perturbation solutions have been

• found and they are not applicable in our study.19 Evaluation of Eq. 2-11
by numerical means was not pursued. Coppens and Sanders2° also found a
“Burgers-like” equation for tubes. Their equation is , however , less
general than Eq. 2-11 in that it is limited to periodic waves.

3. Ad Hoc ~.bde]s

A great body of the literature regarding plane propagation of

finite-amplitude waves In a loasy medium Is devoted to the subject of

ad hoc models. The models ~resented here illustrate some of the methods

of blending nonlinear effects and ordinary dissipation. No one has yet ,

unfortunately, found a way to include the effects of dispersion.

_ _ _ _ _ _ _
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a. Mer klinger ’s Method
21 , 22Nerklinger applied Westervelt a equation

dl
— - ~~lh l - (p(x ,t ’)q(x ,.t ’)) (2—12 )

to the problem of plane wave propagation in a viscous fluid. Here is

the intensity of the f’~ndamental frequency component at distance x , a14

is the absorption coefficient (appropr iate for a viscous flu id) at the

fun damental frequency. The angled brackets indicate a time average over

one period of the wave, and q is the source function given by

q(x,t) = ~&—~ ~. [p(x,t)J~ . (~-i~)

Merklinger assumed that the nonlinear decay of the fundamental pressure

component p1(x ,t’) is primarily due to work that it does on the second

harmonic pressure component p2(x,t’). That is, Merklinger approximated

p as

+ p~(x ,t’) . (2-11i.)

For p2(x ,t’), Merklinger used a second order perturbation solution9 of

the nonlinear wave equation for a viscous fluid. The boundary condition

ta given by Eq. 2-3 .

~ 
2~~ -2a1x -1ia1x

p2 (x ,t ’ )  = 

~~:co
’ [

~~ ] 
sin 2wt’ (2-15)

*We here define p~ to be the pressure amplitude of the nth harmonic. If’
the time dependence is to be included, we shall use the form p~(x,t’).
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Writing p1(x,t’) as

p1(x,t’) p1(x) sin wt’ , (2—16)

-2a x
and reinterpreting p10

2e 1 in Eq. 2-15 as p1
2(x), we may write p2(x,t’)

as

2 ~~~c 
/

p2(x,t’) = p1 (x) , (1 - e 1 sin 2o~ ’ . (2-17)
‘#p0

C0 a1 \ /

The differential equation for p1 may be found from Eqs. 2-12 through 2-17.

The result is

dp1 2 / -2a1x\
= a1p1 - -

~~ (~l - e 
) 

p~
3 . (2-18)

lo o

The solution of Eq. 2-18 consistent with the boundary condition p1(O)=p10
is -aixp10 e= 

[~ + ~~ (1 - e~~
Z1~C)] 

‘ (2-19)

where Fi l/a~~. The assumptions inhei e~it in Eqs. 2-1~4 and 2-15 should be

expected to limit the validity of Eq. 2-19. This problem Is addressed in

Chapter 3, SectIon B. We note In passing that )Ierklinger has found

Eq. 2-19 to be in good agreement with an exact solution of Burgers ’

equation for a wide range of source aaplitudes.2~
In using Eq. 2-1~ for ~~ (x ,t ’)  we have assumed a viscous fluid.

To make use of Merklinger ’ s method for the case of boundary layer absorp-

tion we must find an appropriate expression for i~ (x ,t ’) . Thuras, Jenkins,
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and O’Nei125 derived an equation In which no assumption is made of a

specific absorption mechanism . Their method is presented in the following

section .

b. Method of Thuras, Jenkins, and O’Neil

Thuras et al. suggested an approximate method to take account

of ordinary absorption In the initial growth of p
2
. The basis for their

method is the second order perturbation solution of Eq. 2-1,

~kp10
2x

2 (2-20)
2p0c0

The spatial growth rate (dpg/dx)g is, from Eq. 220,

/ ~ 2
,dp~~ ~kp

~dx ) 2 221
‘~ ~g 2p

0c0

Thuras et al. reasoned that in the presence of absorption , p10 should be

replaced by p10exp(-a1x) where cz1 Is the absorption coefficient at the

fundamental frequency. From this reasoning Eq. 2-21 becomes

(
~

.) ~~~~~ ~~~~~ 
• (2-22)

g 2p0c0

Thuras et al. reasoned that opposing the spatial growth rate represented

by Eq. 2-22 was a spatial decay (dp
~/
dx)d=~

a2p2 due to ordinary absorption.

Here a2 is the absorption coefficient at the frequency of the second.

harmonic • The total growth rate dp
~/dx was taken to be

L I _ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Ill
dp2 

- 

fdp2\ fdp2
dx ~d x J ~~~~~dx

\ Id ‘.~ g
(2-23)

2 e
= a 2p2 + 22p0c0

The solution of Eq. 2-23 which satisfies p2=O at x=0 is

~~ 
-(a2-2cr1)x

p2 = e 
~~~~~ [ ~a; - 

~~l ] • (2-2k)

In Chapter 3, Section B, we shall make use of’ Eq. 2-2&4 for the

• expression for p2 required by )lerklinger ’ a model. It is interesting to

note that if we set a2=~a1 (as would be the case for a viscous fluid)

Eq. 2-15 results.

c. Rudnick Model

Rudnick
2hl proposed a model for describing the decay of sawtooth

waves in a tube. He assumed that the total decay rate of the peak

pressure P~ is the sum of the decay rate due to small-signal absorption

and the decay rate due to nonlinear effects (found from Eq. 2-5). Thus

his model is similar to Thuras, Jenkins, and O’Neil’s for p2. Rudnick

obtained

= - cz0P~ - 
~
CP:

C
O
2 , (2-25)

where a0 is a “ zero order ” coefficient for the tube wall attenuation of

the wave. 2M The solutIon of Eq. 2-25 consistent with P~=P~(o) at x=O is
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-a x
P (o) e

= P 
/ -a x\ • (2-26 )

1+ p 
2 R e  °

,~~~p c  \

A modified version of Eq. 2-25 Is discussed in Chapter 3 as the theoretical

model for the decay of the fundamental component of a sawtooth wave, and

also in Appendix C for the spherical wave problem. Equation 2-25 is quite

appealing physically and also yields simple solutions. As is always the

case , howeve r , the telling test Is the experiment.

~4. Suinn~ ry

We have discussed several theoretical approaches that might be

used in the description of saturation of plane waves in a tube. The

Burgers’ equation method, though certainly applicable, suffers from a lack

of appropriate analytic solutions. The computational method of Pestorius ,

though appropriate, is not efficient for computing saturation curves. The

ad hoc models do not include the effect of dispersion but they have yielded

analytic solutions. The models pertain to the fundamental component p1.

Merklinger ’s model is based on an intensity equation, and Rudnlck’s model,

on an amplitude equation . We shall use the ad hoc models for our theo-

retical models for p1. The telling test of the models is, of course, the

experiment.
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THEORETICAL DEVELOPMENT

A. Introduction

In this chapter the theoretical models used to describe the

approach to saturation are presented. Attention is focused on the funda-

mental frequency component p1 of the wave , though saturation is the

ultimate fate of all the Fourier components. First, weak-shock theory is

used to obtain formulas for saturation and the approach to saturation.

We then endeavor to include the effects of tube wall dissipation.

Although dispersion should be expected to play a role in determining the

harmonic amplitudes, we have found no means to include it analytically.

We do, however, make use of the algorithm of’ Pestorius to give an estimate

of the effect of dispersion. This algorithm is not used to compute actual

saturation levels because of the computation t ime required.

B. Estimates of the Approach to Saturation

1. Weak-Shock Theory

An estimate of the saturation amplitude may be found from

weak-shock theory. The expression for the fundamental pressure p1 in the

sawtooth region is , from Eq. 2-5,

- • 2p
, a 3 . (3—].

The saturation amplitude 
~lsat ’ found by letting the source amplitude p10

become large (i.e., a>>].), is

21
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22p0c0

~1sat 
= (5-2 )

Thus 
~lsat 

is predicted to decrease with both frequency and distance. The

inverse first power dependence of on both frequency and distance is

found only in cases where absorption over the entire waveform is unimpor-

tant . It is generally true, however, that the saturation level does

decrease with increasing frequency and distance.

2. Merklinger ’s t.t~del

As was mentioned in Chapter 2 , Merklinger ’s model may be

reinterpreted so that it applies to more than just viscous fluids. To do

so, we make use of Thuras, Jenkins, and O’Nei l’ s expression for the second

harmonic pressure p2 (Eq . 2-2k). Substituting Eq. 2-2k for Eq. 2-15 and

following the same analysis as In Chapter 2, Section 3.a., we find the

differential equation for p1 to be

d 2
_ _ _ _  

1 -c  I 3
dx — - a p1 - 2 11- a - 2 ap0 c0 2 1 j

The solution of Eq. 3-3 subject to the boundary condition p
1(0)=p10 is

simply

-a1x
p10 e 

Ii)= 

+ 

k - 
(~~ - e~~~lX) - (1 - e 2

x)1J2 

3-

If the small-signal attenuation Is mainly due to tube wall effects,
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• a2= ,f2a1. Note that if a2=14a1, as would be the case for a viscous fluid,

Eq. 3_ 1# reduces to Merklinger ’s result, Eq. 2-19.

What about the region of validity of Eq. 5-3? We should ex’pect

that use of the approximation p~p1+p2 (Eq. 2-10) and the perturbation

result for j~~ (Eq. 2-21) would limit the use of Eq. ~-k to weak waves.

Equation 5-~+ seems to have wider validity, however. Let us examine, for

example, the saturation level found from Eq. ~ -k . The result is

r 2 ~~1/2
2 1 a22 p c  I — - a a

0 0 1  2 12pleat - 
~k a~ ~

‘ -~~1x~ ~ -a2xl
I _ I l ~~~

e J - ( 1~~~e 
JL

al

Now let a1,a2-.O. The weak-shock theory expression, Eq. 3-2, is recovered.

• We conclude that although several of the assumptions leading to Eq. ~-k

are not valid for strong waves, the saturation level is an appropriate

strong-wave limit.

3. The Rudnick ?‘bdel

We describe here a generalization of the method Rudnick used to

obtain a formula for the peak amplitude of a sawtooth wave • The “Rudnick

assumption” is that the decay rate of the fundamental pressure component

dp1/dx is the sum of the decay rate due to absorption

and the decay rate (dp1/dx )~ a due to finite-amplitude effects. The

latter decay rate is, from Eq. 3-1,

- 
2~ €kp~~ 

= ~~~ 2 (~-6)\dx /f .a. 
- 

( l+a)2 2p10 
P1



2k

The total decay rate dp
1/d.x 

Is then

+ ( ~~~\ = - a  ~~~~ 2 (, 7)dx \dx /abs. \dx /f.a . l~l 2p
10 ~l

The solution of Eq. 3-7 is

-aix
p (o) e

= 
~kp (0) / -a x~ 

(3-8)
1+  1 

2~~l - e  1
)

where p
1(O) is the fundamental pressure amplitude at x=O. If we require

that Eq. 3-8 reduce to the weak-shock solution (Eq. ~-i) as cz1-.O, then

p
1(0) must have the value

p1(0) = 2p10 . (3 9)

This may seem a rather surprising result , since we have previously speci-

fied that the source amplitude is p
1~, 

not 2p
10. The discrepancy is only

apparent , however , and not real. If we extrapolate the sawtooth solution

(Eq . 2-5) back to x=O we obtain ,

p(0,t) = 2p10 sin nwt , (3-10)

which represents a sawtooth wave of amplitude np10. This suggests that

for distances a>3 the acoustic signal produced by a sine wave of amplitude

p10 at x=O Is the same as that produced by a sawtooth wave whose funda-

mental has amplitude 2p10 at x=O. Clearly this will be the case only If

absorption is not import ant over the initial propagation distance of three
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shock formation lengths. We shall presently investigate the conditions

under which this assumption is reasonable .

The equation for p1 may be found by combining Eq. 3-8 and

Eq. 5-9. The result is

-a1xe
p1 = -a1x • (3-li)

l - e

a1x

Again, as the source amplitude p10 increases (i.e., ~-,o), the saturation

amplitude 
~lsat 

is obtained,

• 22p c a e
0 0  1

-ax  -
~k(1 - e ~ 

)

It is seen that the saturation amplitude still decreases with increasing

frequency and distance , though not in the same inverse relation given by

the weak-shock formula, Eq. 5-2 .

We now investigate the conditions under which the Rudnick model

should be valid. In general, since the model equation, Eq. 3-7, is

partially derived from the sawtooth solution, an inherent assumption is

that the wave be strong enough to form a sawtooth. But when, in the

presence of’ ordinary absorption, is sawtooth formation likely? (See

Appendix A for a similar discussion for the spherical wave problem.) The

shock and sawtooth format ion distances in the absence of absorption may be

easily computed for a given set of source and medium parameters. What is

needed is an estimate of the distance x5~~ beyond which small-signal

dissipation effects are more important than nonlinear dissipation effects.
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Blackstock~~ computed the distance at which the decay rates due to

nonlinear effects ( found from Eq. 3-i) and small-signal effects are equal.

For plane waves the value of x5~~ is

x I • (5-13 )

The question of shock and sawtooth formation may thus be answered by

analyzing the various possible relations between x , x , and x m~~.5 If the

relation between x and. x ismax

x < ~ , (3-1k)

shock formation is precluded. The high frequency components damp out

before a shock can form. The inequality

X < X < X  (~ -i~ )

indicates that shock formation is possible. Ordinary dissipation domi-

nates, however, before a sawtooth can form. Sawtooth format ion is likely

if the relation is

X < X . (~-i6)

We see that the Rudnick mode l shou ld be valid if Eq. 3-i6 is satisfied.

That is, Eq. 3-11 should be valid if x is less than 1/a.
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EXPERIMENTAL APPARATUS AI4D PROCEDURES

A. Introduction

In this chapter the equipment and procedure s used in the

experiment s described in Chapter 5 are discussed. Individual equipment

listings are given in Section B along with a general schematic of the

experimental apparatus. In Section C the experimental procedures are

discussed.

B. Experimental Apparatus

Figure k—i shows a generalized schematic of the experimental

apparatus . The system has been used in several previous experiment s ( see ,

for example, Refs. 8 and i5). The microphone nearest the driver , called

a source or monitor microphone, is used to measure the source waveform.

This microphone also provides an input to an automatic gain control (AGC)

circuit, which is used to stabilize the source SPL. The second micro-

phone is the receiving microphone, which is variable in 5.7 m steps

relative to the source microphone .

The experimental apparatus is divided into three systems:

a transmitting system, the plane wave tube, and the receiving system.

The specific pieces of equipment used in each of these systems are listed

in the following three sections .

27
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1. The Transmitting System

The following pieces of equipment were used in the transmitting

system.

(i) Oscillator . B&K type i022 or H-P 5500A with 3302 A

trigger/phase lock plug-in.

(2) Counter. H-P 5300 B.

(3) Gate. GR lk96.

( 1i.) Amplifier. Altec model 250 B power amplifier .

(5) Oscilloscope . Tektron ix 532 .

(6) Driver. JBL model 375-H. This driver is commercially

available with either a phenolic or aluminum diaphragm.

Because of its much better high frequency response, the

driver with the aluminum diaphragm was chosen for this

experiment . A typical frequency response of one of the

drivers is shown in Fig. ~i-2. The response was taken

+10 , I I I I I I I

H “ I I I’

0 1 2 3 4 5 6 7 8 9 1 0
FREOUENCY — kHz

FIGURE 4-2
TYPICAL FREQUENCY RESPONSE

OF JBL 375- H DRIVER
(CONSTANT VOLTAG E INPUT)
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with a constant voltage input to the driver. For

this measurement the driver was coupled to the plane

wave tube shown in Fig. k-l. What is plotted in

Fig . k-2 is the relative SPL measured at the monitor micro-

phone , which is approximately 13 cm from the driver throat.

The response of the driver is flat within a 3 dB range from

approximately 500 Hz to 8~oo Hz. The maximum input power

to the driver is specified as 30 Wrms . It was found,

however, that driver failure occurred much less frequently

when the input power was limited to 25 Wrms . At 25 Wrms

input the maximum SPL at the monitor microphone was 157 dB

at 500 Hz. To attain higher levels, provision was made for

parallel operation of four 375-H drivers. The maximum SPL

at the first microphone was then 165 d.B at 500 Hz.

(7) laboratory constructed predi stort ion network (not shown in

Fig. 14._l). This network was used to predistort the elec-

trical input to the driver to compensate for driver

distortion and for finite-amplitude propagation distortion

over the 13 cm path to the monitor microphone . The network

is discussed in detail in Chapter 5.

2. Plane Wave Tube

The tube used in this experiment was originally constructed by

McKittrick; see Ref. 16. It consista of eight 5.7 m sections of aluminum

pipe joined by microphone-holding flanges. The pipe has a 2 in long fiber-

glass termination .8 A typical flange assembly is shown in Fig. k-~, taken

from Ref. 15. The i/k in. microphone fits through the white teflon collar



51

FIGURE 4 .3
EXPLODED VIEW OF FLANGE ASSEMBLY WITH

MEASURING MICROPHONE AND PLUG
(THE PROTECTIVE GRID SHOWN ON THE MICROPHONE

WAS REMOVED BEFORE THE MICROPHONE WAS
INSERTED IN THE HOLDER AND FLANGE)

Tak.n from R.f. 15
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to mount flush with the inside surface of the tube wall. When the

microphone was not used, an aluminum plug (shown directly below the micro-

phone in Fig. k-3) was installed. The termination was designed by

Williams ,8 on the basis of a paper by Burns.25 The first part of the

t .€~rn~ination was a tapered section about 1 in long. The second part , also

1 m long, completely filled the pipe cross section . The reflection

coefficients of the termination were measured by a pulse method ; the

result s are given in Chapter 5.

5. The Receiving System

The following pieces of equipment were used in the receiving

system .

(i) Microphone. B&K type I4~i36, 1/li. in. The pressure response

of this microphone is flat to within ±0.5 dB from 50 Hz to

70 kHz . When flush mounted in the tube wall , however , the

microphone acts as a baffled circular piston receiver .

Because the sound waves are incident at 90° to the piston,

the 5 dB down frequency response of the microphone is

limited to 50 Hz to 28 kHz. All other components in the

receiving system have a 3 dB down response of at least

20 Hz to 200 kllz. The microphone is therefore the limiting

element in the receiving system .

(2) Preamplifier. B&K type 2619.

(3 )  Preampli fier and Power Supply. B&K type 2803 dual channel.

(
~+) Microphone Cables. B&K type AD0029 30 m cables.

(5) Microphone Calibrator (not shown in Fig. ~i-i) . B&K type

11220 pistonphone. The output of the calibrator is a 240 Hz



33

sinusoid with a SPL of ]23.8 ±0.2 dB.

(6) Spectrum Analyzer. H-P model 3580A.

(7) Oscilloscope Camera (not shown in Fig. 4-1).

H-P model 197-A.

(8) Voltmeter . H-P model 400EL.

(9) Oscilloscope. Tektronix model 5115B.

(10 ) Oscilloscope Camera (not shown In Fig. 4-i). Tektronix

model 125.

( i.l) Preamplifier. This preamplifier was constructed for use

as a videband amplifier with negligible phase distortion.

The 5 d.B down frequency response of this amplifier is 7 Hz

to 700 kHz . There is negligible phase di stortion above

100 Hz. The gain of the amplifier is 20 ±0.1 dB from

500 Hz to 200 kHz .

C. Experimental Procedures

Three experiments were conducted in this investigation. The

procedures are discuseed below.

1. Measurement of Small-Signal Attenuation Coefficients

The procedure here was to generate a low level ( SPL = 115 to

]20 dB) sinusoid at the source and observe the decay of the signal with

distance. The attenuation coefficient at a particular frequency was then

obtained from a least squares fit of the plot of measured loss versus

di stance.

I
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2. Measurement of Pipe Termination Reflectivity

The pulse method was used to measure the reflectivity of the

pipe termination. The receiving microphone was placed approximately 1.7 in

from the beginning of the pipe termination. The direct 
~~~ 

and reflected

~~~ 
pulse amplitudes were observed on the oscilloscope arid their respec-

tive values recorded; the amplitude of the reflected pulse was corrected

for the round trip loss caused by tube wall attenuation. The reflection

coefficient B was determined from the expression

20 log10 [ ;d 
] . (4-i)

5. Measurements of Received Acoustic Signal versus Prqpagation

Distance and Source Level

With the availab le appar atus we could , in principle , vary

u , and x. The most convenient way of testing the various theoretical

predictions of saturation was to fix x and w and vary p10. In this way a

fami ly of amplitude response curves was obtained. For the purpose of

investigating certain other effect s, such as dispersion, it was preferable

to bold p10 and w fixed and to vary x. In any case the procedure was to

measure the received signal as a function of x or p10. Each measurement

consisted of recording an oscillogram and spectrum of the received signal.

4. Measurement Accuracy

The accuracy associated with the measurement of SPI , f , and x

was estimated from the various uncertainties in the response of the trans-

mitting and receiving system. The SPL measurements are believed accurate
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to ±0.5 dB. The frequency stability of the B&K oscillator was observed to

be ±0.2%. Distance measurements are accurate to ±1%.

S



CH.AP’rER 5

~~~~RI1€NTAL AND THE0~~TICAL 1~ SULTS

A. Introduction

In this chapter the experimental result s obtained are given and

compared with the theoretical predictions found in Chapter 3. These

result s are divided into two sections , the first dealing with the salient

acoustical properties of the pipe , the second with the high intensity

experiment . All computations were made for the measured temperature,

relative humidity, and ambient pressure of 20°C, ~o%, and 160 mis Hg.,

respectively.

Some of the data given here have been previously reported.

Figures 5-5, 5-8, and 5-10 were reported in Ref. 26. Figure 5-3 was

7 eported in Ref. 27.

B. Acoustical Properties of the Pi~~
1. Measurement of Attenuation Coefficients

Figure 5-1 shows the measured frequency dependence of the

attenuation coefficient for the pipe. The points are the experimental

data and the dashed line is a least squares fit to the data. The solid

line is the attenuation given by the Kirabboff formula (Eq . 2-6). The

offset of the two lines is about 10*. This is similar to the findings of

Pernet and Payne,9 ( 8%), and Pestorius,8 ( io%) .

36
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2. Measurement s of the Termination Reflectivity

As was mentioned in Chapter 4, the reflection coefficients of

the termination were measured by the pulse method . A plot of R, deter-

mined from Eq. 4-i, versus frequency is shown in Fig. 5-2. The reflection

coefficients are typical for such a termination. We conclude that for the

frequency range shown the tube is properly terminated.

C. Measurements of Initially Sinusoidal Waves

1. Predistortion

In Chapter 4 it was noted that at high amplitudes the acoustic

signal. at the monitor microphone would, in some cases, be distorted. Thi s

distortion is a combination of distortion in the horn driver itself and

propagation distortion in the 13 ciii separating the horn driver and the

monitor microphone. In all cases the di stortion was primarily second

harmonic. One would expect that the electrical input to the driver could

be predistorted in such a way as to minimize the distortion of the acoustic

wave arriving at the monitor microphone. An electrical network designed

to produce the predistorted signal is shown in Fig. 5-3. The oscillator

produces a sine wave at the second harmonic of the desired operat ing fre-

quency. This signal is fed into one input of a summing amplifier and also

into a divide-by-two counter . The counter drives the phase-locked oscil-

lator . The phase-locked oscillator produces a sine wave at the operating

frequency and serves as the second input to the summing amplifier . The

output of the sumeing ampli fier is then the sum of signals at the funda-

mental and second harmonic frequencies. The phase of the second harmonic
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component may be varied ±180° with respect to the fundamental by means of

a phase control on the phase-locked oscillator .

Typical result s using the predistortion network are shown in

Fig. 5-4. It is evident that although the electrical input to the driver

is a sinusoid the acoustic signal is distorted. Spectral analysis of the

acoustic signal shows the presence of a strong second harmonic component

15 dB be low the fundame ntal. The second column of Fig. 5-~ shows the

results of using predistortion. When the phase and amplitude of the

second harmonic fed to the driver are varied until the second harmonic is

minimized at the monitor microphone , a reduction of 22.5 &B in the acous-

t ic second harmonic is achieved.

The main limitation of using predistortion is the bandwidth of

the e].ectroacoustic transducer. In our case bandwidth is no limitation

because the upper 3 d.B down frequency of the driver Is 8.~ kHz and our

highest fundamental fre quency is 4 kHz. With suitable counters the method

could be used to suppress any harmonic within the transducer bandwidth.

2. Amplitude Response Curves

The phenomenon of acoustic saturation can most easily be seen

from an amplitude response curve taken at a fixed distance . Two such

curves are shown in Fig. 5-5. The received SPL at the fundamental fre-

quency is plotted versus source level for two propagation distances at

several source frequencies. The dashed lines are predictions based on

linear theory, and the solid curves (valid for a>3) are the predictions

based on the Rudnick model (Eq. 3-i2). Saturation is well evidenced by

the bending over of the response c~urves at high source levels . For

example, when f = 3.57 kHz and x = 25.8 in , the extra attenuation is about
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14.1 dB. At this point 96% of the power at the fundamental frequency has

been lost because of nonlinear effects~
At the 14.8 m distance the theoretical curves are in good

agreement with the experimental data. At 25.8 m, however, the theoretical
curves fall a1ight 2~y below the data, the agreement becoming worse as the

frequency increases. The reason for this small discrepancy is discussed

in Chapter 6.
We have thus far discussed saturation in terms of the

fundamental frequency only. Saturation is, however, the ultimate fate of

each Fourier component. Figure ~-6 shows an amplitude response curve for

the first three harmonics of an initially sinusoidal wave. The solid

curves are beat fits to the data. A theoretical curve was not included

for the fundamental component because these data were compared with theory

in Fig. 5-5. We have no theory for the higher harmonics comparable to

that for the fundamental. We may, however, see from the weak-shock

formula (Eq . 2-5) that the higher harmonic components do indeed saturate .

This result is borne out by Fig. ~-6. The approach to saturation of each

harmonic ie evident .

The other models discussed in Chapter 3 were also compared to

data. A typical result is shown in Fig. 5-1. The equation based on weak-

shock theory (Eq. 3-i) yields a curve about S dB above the data. Ordinary

absorption is indeed important here. The small-signal lose for this fre-

quency and distance is about 1.5 dB. The equation based on )ierklinger’s

model provides a good fit to the data in the linear region. In the

plateau region, however, it yields a curve about 1.3 dB above the data.

The equation beied on the Rudniek model fits the data to wIthin 0.1 dB.
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In all cases the Rudnick model equation provided a best estimate of the

approach to saturation . For this reason the Rudnick model was used as our

theoretical model for the rest of this work. The fact that the Rudnick

model is limited to waves strong enough to form a sawtooth is not critical

for our wor k because we are interested in saturation and the approach to

saturation.

3. Time Waveforms of Received Signals

The received waveforms as a function of source SPL are also of

interest. (See Fig. ~-8.) The waveforms at high levels illustrate the

strong distortion that is responsible for the extra attenuation. Satura-

tion is evident by inspection of the last two waveforms. The amplitudes

are almost the same despite a 5.2 dB difference in the source SPL. It

seems likely that the minor “raggedness” in the lower three curves is due

to scattering from small irregularities in the pipe near the microphone .

These irregularities, probably associated with the flange junction end/or

the microphone mounting hole, would be expected to scatter only very high

frequencies. Such an expectation is consistent with the fact that the

raggedness appears only in wave forms that contain shocks. Note the asym-

metry of the waveforms. It begins to show up at 1242 dB and is very

apparent at 148 dB. The asymeetry is caused by dispersion . The aey~ Ietry

is lessened, however , as the source amplitude is increased . See the last

two wave forms . Nonlinear effect s have become so stro ng that “steepening”

of the shock tends to overcome the rounding of the shock peak.

)~4ifled weak- shock theory is used in Chapter 6 to investigate

the effect of dispersion. It is therefore app ropriate here to compare our

experimental wavefOrms with those computed using Pestori us’ algorithm.
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Figure 5-9 shows such a comparison. The top waveform in each column is

the same because the measured source waveform was used as the source

wave form for Pestorius ’ algorithm . The absorption coefficient used in

the computer algorithm is the measured coefficient from Fig. 5-1. We note

that the agreement between experiment and theory is quite good in all

respects. The progressive distortion of the wave with propagation dis-

tance, which is responsible for saturation, is also evident in Fig. 5-9.

At 3.1 m the waveform is a sawtooth, though It is slightly asymsetric.

As the distance increases the asymmetry grows; the shock peak becomes more

rounded while the trough remains sharp. The reason is that as the dis-

tance Increases the wave amplitude is steadily diminished. Nonlinear

effects become too weak to overcom e the rounding of the shock peak caused

by dispersion .

11. . Propagation Curves

Figure 5-10 shows propagation curves for the fundamental

component for several different source frequencies. The solid curves are

predictions based on the Rudnick model (Eq . 3-11), whereas the dashed

curves are those based on weak- shock theo ry (Eq . 3-1). Each of these

curves stops at the left at the distance x=~ because the predictions are

not valid at lesser distances. The dotted line at the top is a small-

signal prediction for the 500 Hz case . The point labeled x~~~ is the

distance beyond which ordina ry absorptio n is more important then shock

dissipation. Beyond ~~~~ weak- shock theory Is clearly not valid. We

note here that for the data shown in Fig. 5-10, the weak- shock formula

overestimates the data by about 5 dB at z.x,~~~. The Rudnick equation

appear s to be a great improvement over the weak-shock formula.
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CHAPTER 6

OONC LtJSIONS

A. Introduction

In this chapter the results are sununarized and conclusions are

drawn. First the role of dispersion is discussed. Then the success of

each of the various models used to predict saturation and the approach top
saturation is examined. Finally, general conclusions about the. research

are given .

B. The Role of Dispersion

In the Rudnick model introduced In Chapter 2, dispersion is not

taken Into account. As shown in Chapter 2, dispersion is responsible for

the asyilusetric waveforms observed in the pipe. The shock peak is rounded

while the trough remains sharp. Since shock dissipation depends on the

actual magnitude of the pressure discontinuity at the shock, the rounding

of the shock peak reduces shock dissipation. In other words, dispersion

inhibits the attenuation due to shocks.8 By ignoring dispersion in our

theoretical model, Eq. 3-11, we have overemphasized shock dissipation and

have therefore arrived at predicted levels that are too low. Furthermore ,

since the phase shift caused by dispersion depends on the parameter ax,

we should expect the discrepancy between prediction and experime nt to

increase with both frequency and propagation distance. This expectation

is qualitatively consistent with the data and curves In Fig. 5-5 and

Fig. 5-10 .

52
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We have argued here that dispersion could, qualitatively, be

resp onsible for the slight discre pancies observed between data and the

Rudnick model at the greater distances and higher frequencies. Pestorius’

algorithm was used to find the quantitative effect of dispera~on on the

received signal. A check on the computer algorithm was made by comparing

the predicted propagation curve with experimental data from the tube.

(See Fig. 6-i. ) The computation was made for the case of a 3.5 kliz plane

wave with a source SPL of 151 ~B; the experimental value of the absorption

coefficient used was a = 0.078 Np/rn. The agreement with the data is

excellent; the maximum deviation is 0.5 dB. To estimate the effect of

dispersion on the signal, an additional computer run was made ignoring

dispersion effects. The propagation curve obtained from this run is not

shown in Fig. 6-1 because it differs at most by 0.1 dB from the curve

shown there . We conclude that for this case dispersion has a negligible

effect on the amplitude of the fundamental component. Since the given

conditions represent the highest frequency and greatest propagation dis-

tance in the experiment , dispersion alone cannot account for the small

discrepancies between the Rudnick model and the measured data.

The higher harmonic components computed in the two runs are

compared in Table 6-i. The harmonic amplitudes with dispersion included

(Ba) are compared to those without dispersion (B’~). The predicted funda-

mental component of the wave is indeed higher when dispersion effects are

included; however, the difference is negligible for the given conditions.

Dispersion does, however , seem to become more important for the higher

harmonics. Thi s finding iB consistent with the observation that the

shape of the waveform in the neighborhood of each shock is strongly
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affected by dispersion. The shock shape is largely determined by the

higher harmonic content .

TABlE 6-1

COMPARISON OF COMPUTED HARMDNIC AMPLITUDES WITh (B )
AND wimou’r (B’~ ) DISPERSION CORRECFIONS

Harmonic Number 20 log10 IBn/B’n I
1 0.1

2 -0.01

3 —0.2

14. -0.3

5 -0.5

6 -o.6

C. Comparison of The Theoretical !‘k,dels

1. ~bdified Weak-Shock Theory

Pestorius ’ computer algorithm was found to give excellent

agreement with the data in all the cases in which it was used. It has

two main attractive features. First, it includes the elements of weak-

shock theory, small-signal absorption, and dispersion . Second, the source

waveform that may be considered is arbitrary. The fact that the algorithm

is not an analytic solution made it poorly adapted to our use, however.

The computation of an amplitude response curve , for example, would have

required a separate computer run for each increment In source level.
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2. ~~dified Merklinger Z~’bdel

The mode l suggested by Merklinger to describe the fundamental

component of an initially sinusoidal plane wave in a viscous fluid was

generalized so that It could be applied to any type of absorbing fluid.

The basis of the model is an intensity equation. The primary advantage of

this model is that it may be used over the entire range of source level.

In all cases near saturation, however, received levels predicted using

this model were higher than those actually measured. Typical predicted

results are shown in comparison to experimental data in Fig. 5-1.

3. The Rudruick Model

This model was originally used by Rudnick to describe the peak

amplitude of a sawtooth wave in the presence of tube wall absorption .

The basis of the model is an amplitude equation. We adapted Rudnick’s

approach to obtain an equation for the decay of the fundamental component

p1. This equation was solved, and predictions were found to be in good

agreement with the experimental data. Small di screpancies were found,

however. These discrepancies increased with increasing frequency and

distance. Dispersion, which was originally thought to be the cause of the

small discrepancies, was found to be insignificant for our experimental

conditions.

D. S111~miRry and Conclusions

The primary result of this research is the experimental proof

of acoustic saturation of plane waves in air . The tendency toward satura-

tion was found to increase with source frequency and/or distance. In one

case it was found that nonlinear effects caused 96% of the power at the
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fundamental frequency to be lost over a propagation path of 26 m. The

transfer of energy to higher frequency component s, which is ret~ponsible

for acoustic saturation, was well evidenced by the formation of sawtooth

waves. Dispersion radically alters the time waveform of the received

signal (as discussed in Section B of this chapter). However, calculations
I

based on modified weak shock theory show that for our experimental con-

ditions dispersion has negligible effect on the amplitude of the fundamen-

tal component .

Another important result of thi s research is the finding that

existing theoretical models, adapted to our experimental conditions, gave

a good quantitative explanation of saturation and the approach to satura-

tion . Though weak-shock theory generally indicated the developa~ent of

saturation, it was necessary to take explicit account of ordinary absorp-

tion. We adapted the methods of Rudnick and )~rklinger to obtain

expressions for the fundamental component p1. In all cases the Rudnick

equation was In better agreement with data.

Some experimental and theoreti ~a1 results for spherical waves

are presented in the appendices.
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APPENDICES

In some cases it was possible to generalize the theoretical

work done for plane waves to the case of spherically spreading waves.

These results are included here as appendices. In Chapter 3, for example ,

the question of whether ordinary dissipation can prevent the formation

of shocks or of a fully formed sawtooth was answered by comparing the

critical distances ~, ~, and x . 3 In Appendix A we discuss a method

for assessing the importance of nonlinear effects on spherical waves

based on a comparison of the critical ranges i , ~, and rmax . This

method leads to a classification of nonlinear effects on spherical

waves as weak, moderate, or strong. A perturbation solution of Burgers’

equation for weak spherical waves is presented in Appendix B. An exten-

sion of the Rudnick model to spherical waves is presented in Appendix C.

The model is appropriate for strong waves.

The weak and strong-wave solutions were compared with data from

freefield propagation experiments . In both the weak and strong wave

experiments the measured quantities were p1 and p2 versus range . In the

weak-wave experiment the source was an acoustic array; for the strong-

wave experiments an acoustic siren was used.

We note here that the material presented in Appendix A was

included in Ref. 27.
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APPENDIX A
ESTIMATES OF THE IMPORTANCE OF NONLINEARITY

ON THE PROPAGATION OF SPHERICAL WAVES

Here we outline a method for estimating the importance of

nonlinear effects on the propagation of spherically spreading sound

waves . The analysis is based on a comparison of the three critical

range parameters r, ~, and rme.x corresponding, respectively, to shock

formation, sawtooth formation, and “old age .” The analysis we present

here is somewhat similar to that of Shooter, Muir, and Blackstock. 3 The

difference between our approach and that of Shooter et al. is the

particular graphical representation of the resulting equations .

The question of when shock or sawtooth format ion is possible

for a plane wave was dealt with in Chapter 3. The analysis for spherical

wave s is precisely the same if we replace ~, ~, and with i , ~, and

tmax~ respectively. To find specific formulas for x , ~, and rmax, we

first consider the case of an omnidirectional spherical wave . That is,

we let the boundary condition be

p = p 10 sin at , a t r = r ~, . (A-i)

‘9
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We assume here that The critical ranges are3

— l/~€krr = r e  0 , (A-2)

3/~€kr
~~= r e  ° , (A-3)

~ € kr

r = a (A-u)max
1 + ~€kr 1n l -.!~~0 ~~ r

\ 0

To simplify the assessment of the importance of nonlinearity,

we now consider a graphi cal display of Eqs . A-2 through A-4 . A direct

approach would be to plot the three critical distances themselves. If

Eqs. A-2 and A-3 are divide d by r0, the normalized quantities i/r0 and

may be plotted versus the single parameter ~ekr . The equation for

rmax/r o, however, depends on two parameters , ~€kr0 and A family of

curves would therefore have to be plotted t represent rmax/ r .  An

alternative approach is as follows: a reference point roughly marking

the threshold of importance of nonlinearity is ~= r ;  far more serious

nonlinear effects are indicated by 
~=Tmax~ 

These two equalities define

the following relations, respectively:

-1/~€kr
, (A-5)

and

-3/~€kr
— r5~~ -

~ 
1ear = ~€icr e 0 (A-6)

Only two dimensionless groups appear in Eqs . A-5 and A-6, ~€kr and

This suggests representing these two equations by plotting, for example,
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~ekr versus CXr . It is easily seen that for a given medium the quantity

~€kr depends only on the source level SL ( farfield SPL extrapolated to

1 in) and f. A convenient measure of ~Ekr0 is the “source-frequency level”

SFL (dE re 0.0002 iibar-kllz-m ) defined as follows:

SFL = SL + 20 log10 f~~ , (A-7)

where is the frequency in kilohertz. The SF1 as we have defined it

here is what Merklinger, Mellen, and Moffet~~ call the “scaled source

level” SL*. The relation between SFL and ~ekr for air at 20°C is

SF1 = 167.2 + 20 log10 ~Ekr . (A-8)

Figure A-i shows plots of Eqs . A-5 and A-6 in terms of SF1 and arc~.

Figure A-i may be used in the following way to assess the

general importance of nonlinear effects on the propagation of spherical

waves in air. Nonlinear effects are expected to be weak, moderate, or

strong if the value of SFL and ar0 defines a point below, between, or

above the two curves, respectively. The reason is this: points below

the two curves define waves for which r <r, i.e., shocks never form;max

points between the two curves depict waves for which r<rmax~~
, i.e.,

shocks form but a sawtooth does not; points above the two curves define

waves for which ~<r , i.e., both shock and sawtooth formation is
max

possible . The points B and C in Fig. A-l represent the operat ing points

for the experiments presented in Appendices B and C, re spective ly, and

are discussed there .

We emphasize here that Fig. A-i contains no information

regardi ng the length scale for the development of the nonlinear effects.

That is, one may, for example, find that for a given set of source

parameters the corresponding value s of 8Th and define a point well
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above the 
~~
rmsx curve. Calculation of the distances r and ~ may,

however, show that r falls well beyond the distance at which experimental

observations will be made. Hence, nonlinear effects would be of little

importance for the given length scale. In summary, if use of Fig. A-i

shows that nonlinear effects may be important, then computation of the

range parameters themselves must be made to set the length scale of the

development of the effects .

In most practical cases the acoustic source is not a vibrating

sphere but a directional radiator, such as a baffled piston or an acoustic

horn. Though we have considered an omnidirectional source, our results

may be extended to directional waves by replacing p10 in Eq. A-i with

p10~~8), where D(e) is the normalized directivity function.3° But the
value of r0, the effective source radius, needs to ~e specified. If

there is no distortion in the nearfield of the radiator, it is appropriate

to take r0=R0, where is the length of the nearfield. Unfortunately,

however, this is seldom the case. Nonlinear effects cause the signal to

distort as it propagates through the nearfield. Several researchers

have investigated this problem empirically and found that choosing r0 in

the range P0J3<r0<3R0/~
4 works fairly well for piston-type radiators.3

Apparently choosing r0 in this range gives about the right weight to 
the

distortion that takes place in the nearfield.

At this point, we include experimental data to illustrate the

validity of using the three critical distances to assess the importance

of nonlinear effects. Unfortunately, the data we have is for plane waves,

not spherical, waves. However, the basic concept is the same, no matter

what the geometry of the wave motion may be. Figure A-2 shows waveforms
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for the case of weak, moderate , and strong nonlinearity. The condition

xme.x~~ 
holds for the first set of wavesforms, Fig. A-2(a). Under this

condition, shocks are not expected. Notice, indeed, that t shock never

forms. The steepening at x=~ is less than that measured at the ~~~~~~~~

distance. The reason is that the high frequency components damp out

before a shock can form. Figure A-2(b) shows measured waveforms consist-

ent with the condition x ’~~. At the second distance (x=~) considerable

steepening is present though the shock is not fully formed. At the third

distance (x=~) the wave is slightly more distorted than at the second

distance, but certainly it is not a full fledged sawtooth. The peculiar

wave shape at x=S~ is caused by dispersion and is discussed in detail in

Chapter 2. Figure A-2(c) depicts the case At the distance x=x

shock formation is very apparent, and the characteristic sawtooth shape

is evident at x=2. We conclude that the critical distance method is in

good qualitative agreement with the data of Fig. A_2.*

In sminary Fig. A-i, used in conjunction with Eqs . A-2 through

A-4, should be quite useful in estimating the importance of nonlinearity

on the propagation of spherically spreading sound waves. While the

approach is not new (see Ref. 3), the particular graphical representation

is.

*Experilnental data for spherical waves is given in Ref. 28.



APPENDIX B
A PERTURBATION SOLUTION OF BURGERS ’ EQUATION

FOR SPHERICAL WAVES

Our purpose here is to obtain a theoretical prediction valid

for weak spherical waves in a thermoviscous fluid. Several other

researchers have obtained results valid for the weak-wave problem.9’ ~~~~~~~~~~~~

Pernet and Payne,9 for example,. extended the phenomenological approach of

Thuras et al.23 to the spherical wave problem. Blackstock and Willette,33

however, obtained a perturbation solution of Burgers’ equation valid to

third order in the source Mach number e. The work we present here is an

extension of Blackatock’s et al. perturbation analysis to fifth order

in € .  We also show a limited test of the theoretical results by com-

parison with data from an outdoor propagation experiment .

The Burgers ’ equation for spherical waves is (see, for example,

Ref. 1)

lO~ru) cx o~~
r & ~~~~~~~~ , -

where a is the thermoviscous absorption coefficient at angular frequency co

and t’=t-(r-rjc0) is the retarde d time. Let the boundary condition be

u(r0,t) = u10 sin at . ( B-2)

66
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It is convenient here to cast Eqs. B-i and B-2 in terms of the

dimensionless quantities V=(r/r0)(u/c0) and y=wt’. t.~king the substitu-

tions for V and y and also defining ~=~kr0, Eqs. B-i and B-2 become

~
2V ,~~, ~V (B-~)

and

V(r0,y) = € sin y , (B-4)

respectively. We seek a solution of Eq. B-3 in the form of a perturbation

series. That is, we suppose a solution of the form

= E ~~~~~ . (B-5)
n=l

Substituting Eq. B-~ into Eq. B-3, we obtain

~n 

[
~v
(
~
) 

- ~2~(n) 
- ~(i) ~~~~~~~~~~~ 

= 0 . (B-6)
n=l ~~2 r i+j=n

In order that Eq. B-6 be satisfied, the bracketed term must vanish for each

value of n. In general the resulting differential equations corresponding

to terms of order e~ (denoted 0(~n)) may be written as

( B-7)o( ~r~) ~~
(n) 

- ~
2
~
(n) 

= 
~~

‘ 

i~~=n 
~ 

i) 
_____

I ’
We see that in general the equations must be solved in sequence. For

example, the source terms for the second order solution v(2) depend on

~~~~~~ 
The source terms for the third order solution ~~~ depend on v

(2)

and ~(1.) . We now proceed to solve the first five such equations .
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The first order equation is

____ 

~2,~(i)
Or - a — 2 = o  . (B-8)

Hence, the first order solution ~~~~ which satisfies the boundary

condition Eq. B-4, is

-a(r-r )
= e ° sin y , (B-8a)

which is the familiar solution of linear acoustics. The second order

equation is

_ _ _ _  - a~~~~
2) 

,~~~(l) _ _ _ _

Or r ày
(B-9)

,,
=~~~ e sin 2y

The solution of Eq. B-9 may be found by assuming V(2)=F(r) sin 2y.

The result is

.Jia(r..r )
= e ° 122 sin 2y , (B-9a)

where

r
122 = f r

o

e 
r ’

We shall have occasion to write down several integrals of the

form ‘mm and adopt the following convention . The integral ‘mm means

the integral which must be evaluated to obtain the contribution to the

nth harmonic from the mth order pert urhat.~on.
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The third order solution ~~~~ satisfies

_____ - a ~
2,~(3) 

= 
~ r(viv2)
r 1  dy

(B-b )

2 -~a(r-r )
=~~~~I22 e ° ( 3 sin 3y - sin y)

The solution of Eq. B-l0 may be found by assuming

V(2)=G(r)sin y+F(r)sin 3y. The result may be written as

~ 
2 -a(r-r ) 2 -9.z(r-r )

v = - ‘
~~~

— 131 
e sin y + ~~~— 133 e sin 3y , (B-lOa)

where
-4a( r ’ -r )

r 122(r ’) e
13]• = J r

o 
r ’

and

~cx( r’-r )
(r  122( r )  e

133 = J r
o 

r ’ dr

We see that the third order solution gives rise to a term which describes

the initial decay of the fundamental and the initial growth of the third

hsxmo~ic.

Tb. fo~arth order equations and solution are listed below
.
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_____  — [(2) ~v
(2) 

~(v~-)v(3)
)J

r 2 

= 
~~ {(13l 

e
_
~~

(r_r
o) 

3133 e
10 r_r

o)) sin 2y

(B—il)

+ 
(122

2 
~~~~~~~~~ + 6133 e

_l
~
a
~~~ 0))

(4) 3 1 -4a(r-r )
V = ‘i.— [,- (142+31’42) e ° sin 2y

(B—lla)
-l6a(r-r )

+ (144+ 61’44) e ° sin 

~II
~~(r ’-r )

r 1 1(r’)e142 
Jr0 

r ’

-6a(r’-r )
r I ?(r ’ ) e  0

I’42 = J r ’

8a( r ’-r )
fr  I~~

2(r ’) e °
144 

Jr0 
r ’ di”

6cz(r ’- r )
f r I  (r ’ ) e  °

I’44 = 
Jr 0 

r ’ ~~~~
‘

Because of’ the rathe r formidable algebra involved, the only

part of the fifth order solution that was calculated was the contribution

to the fundamental. This contribution is denoted V
~~ d .  The results

are listed below.
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____ - a = ~ 
[
~(v ( 1) v(

~ )) 
+ ~(v

(2V3))1
(B-l2)r dy dy j

4 -a(r-r ) 
F - I ’ ] (B-12a)f’und. =

~~ 
e 

1~
l 2 51

-4a( r ’-r )r 122(r) 131(r ’)l 
~151 = f [142

(rt) + 31’42(r’) + 2 _J r ’jr
0

-lar( r ’-r )

I’ Ir 
122(r’) 133(r’) e 

0

dr’51
0

As may be seen from the higher order results, the solutions are easy to

write down in terms of the integrals I . It is the calculation of thesemn
integrals which is indeed a formidable task.

Let us now put our results in terms of the normalized harmonic

amplitudes Bn=(r/ro)(un/uo). Defining ~~~~~ 
we obtain

-a(r-r0) a 2 4

B1 e - 
~~~~ 

13), + ..
~~~~ 

(15l, - 
~ 
1
5i)] 

(B-i))

-

~~~

r_ro)[% ° (142+31
1
42)] ,B2 = e

-9a(r-r0) 13a~
2 1

B
3 

= e 
[.

—i~
-—— 5~j ~ (B-l5)



-l6a(r-r ) I a 3
B4 e ~ 

(,
-f’ (144+611 44)] .

As a check on our theoretical results, we now inquire as to

the behavior of the solutions B~ in the limit of small values of ar.

We expect that these limiting forms should correspond to the harmonic

amplitudes found from the Bessei-Fubini solution (see, for example,

Ref. 12), which are given by

B~ = J~ (na) , (B-l7)

where a=~ekr0ln(r/r0). To compare our solution to Eq. B-17, we first

establish the limiting forms of the integrals I~~. In the limit as

cxr-40, the integrals I~~ reduce to the following.

122 = in ~~
-‘ (B-l8a)

131 = ~~2 ~~— (B-18b)

= 
1 ~~2 

~~— (B-18c)

= 1 ~~-. (B-l8d)

= ~~ i~~ ~~.- (B-18e)

‘44 = (B-18f)

= In3 t~
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I,i = .~~ in4 
~— (B-18h )

1
= u ln . (B-18i )

The expressions for the harmonic amplitudes B~ are, in the limit as ar—~0,

2 4
B1 = 1~~ f+~~~ , (B-19)

a a ~B2 =~~~-~~- , (B-2o )

2

- 
B
3
=~~~— , (B-21)

a3
B4 = ~ — . (B-22)

Comparison of’ Eqs. B-19 through B-22 with the series expansion of Eq. B-l7

shows that our results are consistent with the Bessel-Fubini solution to

the orders of a which we have kept. For example, Eq. B-19 is the series

expansion of’ Eq. B-17 to fourth order in a. Hence, the results of the

perturbation solution (Eqs. B-13 through B-l6) do indeed reduce to the

Bessel-Fubini solution as ar—’O.

In many cases where such a perturbation solution is useful,

some distortion is evident in the source waveform v(r0,y). Commonly

thi s distortion is pr imarily second harmonic ( especially if’ it is due to

nonlinear prop agation distor tion in the nearfield). We shall now
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determine how the presence of an “initial” second harmonic signal changes

the lover order perturbation results. Suppose that , in place of Eq. B-4,

the boundary condition is

V(r0,y) = € {sin y + a Bin(2y+~p)] , (B-23)

where a and ~ are the relative amplitude and phase of the second harmonic,

respectively. The first order perturbation solution satisfying this

boundary condition is

~l) 
-a(r-r ) -14a(r-r )

v’ = e sin y + a e ~ sin (2y+~) . (B-24)

The second order solution v(2) has a source term proportional to

v~
1)(~v~

1)/ay). Hence, it is easily seen that v(2) contains contributions

to the first, second, third, and fourth harmonics. The expression for

v(2) j

“ 2 ’ ~ ~~~~~ ) ,, -1~a(r-r )
V~’ 

/ - e ‘21 sin(y+~ ) + e ‘22 ~~rI 2~

(B-2~ )
+ F(r ) sin(3y+~ ) + G(r) sin(4y.~~ )

r -Mcx (r ’-r 0)
where ‘21 r ’ di’

We note here that the second harmonic component of v~2) is not affected by

the “initial ” second har monic . The expressions for B1 and B2 are , then,

to second order
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~1/2
~
cx(r_r

~ ) ( /aao\
2 

2B1 = e 1 + 

~-T-J ‘2~~ 
- aa0 ‘2~~ 

cos ~ , (B-26 )

and

I ~l/2
-1 1 a( r - r) /  ~~2 

2= C ° (1 + —
~~
-. I~~~ + a~, I2~ cos . (B-27)

I
We now wish to compare the results of the perturbation analysis

with data from an outdoor propagation experiment . In particular we wish

to compare the measured valuee of p1 and with the perturbation analysis

for a boundary condition similar to Eq. B-23. The source was an array of

seven electroacoustic drivers with exponential horns.28 A side view of

the array is shown in Fig. B-i. The diameter and transmitting frequency

of the array were 0.5 m and 8.25 kEs, respectively. The absorption

coefficient a was 0.0076 Np/rn . The amplitudes p1 and p2 at the beginning

of the farfield (r0-6.l. a) were 551 i.jbar and 1113 ~bar , respectively,

and the phase angle ~ was observed to be zero. In terms of the parameters

discussed in Appendix A, the operating conditions for this experiment are

SFL=159.8 dB, ar0=O.0i~6. These conditions determine a point on Fig. A-i
(point B) that falls below the xi’~~~~ curve; therefore the perturbation

analysis should be valid . Figure B-2 shows the measured data and theoreti-

cal results. Since the wave is weak, the linear theory result (Eq. B-8s)

describes the behavior of p1 fairly well, though the second order

perturbation result (daihed curve) provides a slightly better fit at the

greater ranges. The lower solid curve is the linear theory prediction

for p2. The dotted curve is the second order perturbation result for

for no initial second harmonic (Eq.. B-9a). Since the phase d.i ference ç
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is zero, the correct second order perturbation result (dashed curve) for

is the arithmetic sum of the dotted curve and the lower solid curve .

The need for taking account of the initial second harmonic distortion is

well illustrated. It is also interesting that although the fundan~ental

is well described by linear theory, the linear theory prediction for the

second harmonic is 10 d.B below the data at the greatest range. The

overall agreement as regards the predicted and, measured second harmonic

is excellent .

In conc lusion we have presented a fifth order perturbation

solution of Burgers’ equation for spherically spreading sound waves.

Though the integra).s involved become increasingly more complicated for

the higher order results , the lower order result s should be useful for a

great many weak-wave problems.



APPENDIX C
SOLUTION OF T~~ RU~)NICK EQUATION FOR SPHERICAL WAVES

Blackstock~~ suggested a spherical wave version of the Rudnick

decay rate equation (Eq . 3-7). By analogy with the plane wave case,

Blacketock assumed that the decay rate dp1/dr of the fundamental pressure

component is the sum of the decay rate due to absorption (dP1/dr)~~~~=~crp1
and the decay rate (dP1/dr)1 a of a spherically spreading sound wave of

finite amplitude . The latter decay rate may be found as follows . Let

the boundary condition be

p1(r01t) = p10 sin at . (c-i)

The value of p1 in the sawtooth region (a~3) in the absence of absorption

is
r 2 p

-

The decay rate (dp 1/dr)f ~ 
is, from Eq. C-2,

r 
~~1O 

~~~~~~ 21io= 
~ + - 

r 2 (1+0)
2

(c-3)

I. 
_ _  

2
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By supposition the total decay rate dp1/dr is then

I~A I dpi\ +
\dl. / \~~ / abs . \dr / f. a.

(c -li)
- 1

10

We now wish to solve Eq. CJ4 subject to the condition that the solution

reduces to the weak shock solution (Eq. C-2) as c~—~O. The form of the

solution for the plane wave case (Eq. 3-11) suggests that we try a solution

of the form

r -cr(r-r )
o A e

~~~~~~ i+ f( r )  C 7

where A is a constant and the function f(r) is to be determined.

Substitution of Eq. C-5 into Eq. C-~ leads to the following form of f(r):

A ~Ekr c~ far -~‘.
f( r )  = ° e ° 

J 

!r. dx . (c.-6)
10

0

As in the plane wave case, the choice of A=2p~~ yields the weak-shock

solution, Eq. C-2, as 3-40. The definition of the exponential integ ral

E1(a ) ( see , for example, Ref. 35) ,

may be used to write the expression for t(r) as fo?~ows :

f(r) = e ~~ (E
1(3r0)-E1(ar)) 

. (c-v)



8i

The expression for p1, found from Eqs. C-5 and C-?, is

• -a( r-r
r 2p10 e °

(c-8)
1 + ~€kr e

Equation c-S is simple to evaluate in practice. The exponential

integral E1(ar) may be read from tables or evaluated by certain series

representations . See, for examj le , Ref. 35. Indeed , in the range

0~crr~l the series representation for E1(cXr) may be written as
3’

5
E1(c~ ) = -ln(czr) + E a1(ar~)~ , (c-9)

i=0

with a maximum percentage error of 9xl0~
5.

The proposed solution (Eq. c-8) was compared to freefield

propagation data taken using a siren operating at 6.1 kHz in air. Two views

of the siren are shown in Fig. C-i. The 20 circular ports in view b are

the sound sources . The siren operates by periodically interrupting the

air flow through the ports by means of a motor-driven titanium steel

rotor located just behind the ports. For further details see Ref. 28.

Because of the relatively high acoustic power output of the siren

(approximately 600 W of acoustic power with a 1400 beamwidth between

the 3 dB down points), the characteristic sawtooth wave shape was already

in evidence at a propagation distance of app roximate ly 2 m. Our measured

boundary condition was, therefore, a sawtooth wave at a given distance

from the source. To use Eq. c-8 we must compute from our measured data

the amplitude p10 and effective source radius r0 of a sinusoid which

would yield the measured sawtooth wave at range r~. This is easily



p.-

82

0

~
.

~~ 

A

I-

—~~~~~ .
. ~~~~~~~~

a b

FIGURE C - i
ACOUSTIC SIREN USED IN THE
STRONG -WAVE EXPERIMENT

(a: SIDE VIEW , b: VIEW FROM ABO VE THE SIREN)

Tok ui from Ref. 28



a I
I
I

I

I



I .0 ~~~~
_ _  

i-L~~~2 2

I . I L~

• __________

111111 .25 

~ima 4 ii~ii~
c ,  ct

l URI Al I j t ~ I !



I
8~

accomplishe d by using the sawt ooth solution (Eq . C-2) . Let p~~ be the

measured value of the fundamental pressure component at range r
~. Then,

using Eq. C-2, we have

r 2p~~
a = 3  , (c-io )
r=r~

and

~p
10ba = 

~~~~ 
= 3 . (c-u)

Equations C-b and C-il mey be solved for p
10 and r0, since all other

quantities are known.

Figure C-2 shows the results of a compari son of Eq. c-8 with the

measured dat a. The value of the absorption coefficient a was found to be

0.O0~9 Np/in from a small-sigual experiment ui~ider similar condition s and is

also consistent with the computed value from Ref. 36. The values of p~~
and r~ were 2.2~~(b0~ ~bar and 2.19 in, respective1~y. The values of p10 and

r0 computed from Eq. C-b were, respectively, 1.IX1O’ ~bar and 0.09 in.

The solid curve is the linear theory prediction; the dashed curve represents

the solution of the “Rudnick model” equation. The latter is seen to

provide a good fit to the data.

In sum.sry the model proposed here, although ad hoc, does seem

to provide a good description of the experimental data. Further experi-

mental verification of this model mey be found in Ref. 28. The model

should be useful in a niaber of spherical wave problem., though iti use

is restricted to strong waves.
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