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Abstract

Certain algorithms concerning coloring graphs involve the partial
exploration of Zykov trees., We investigate the size of such trees, and
prove that a certain class of branch-and-bound algorithms for determining
the chromatic number of a graph requires in probability a number of steps
which grows faster than exponentially with the number of vertices of the

graph.
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A 55 Introduction.

Graph coloring problems arise in many practical situations, for
example in various timetabling and scheduling problems (see for example
[13], [14]). It would be very useful to be able to determine quickly
the chromatic number of a graph. However, it is well known that this
problem is NP-complete, and thus we do not expect to find good algorithms
for the problem ([1], [10]). There has ‘r:een proposed a class of branch-
and-bound algorithms, which we call here Zykov algorithms (see [5]). We
branch on whether or not two non-adjacent vertices have the same color
and bound by using the fact that the chromatic number of a graph is at
least the size of any complete subgraph. Zykov algorithms always explore
at least a 'pruned Zykov tree'. We shall prove in Section 5 below that
for almost all graphs Gn on n vertices every pruned Zykov tree has

at least

cn(log n)l/2

nodes, for some constant ¢ > 1 , It follows that any Zykov algorithm
requires in probability more than exponential time.

E. L. Lawler [1l] has recently noted that a simple algorithm
involving the maximal stable sets of a graph requires only exponential
time. This algorithm is then faster than the Zykov algorithms.

In the next section we give some preliminary definitions, including

!
;
those of Zykov trees and Zykov algorithms, and in the following section ;

we present some preliminary lemmas. After that, in Section 4 we investigate
the size of Zykov trees. The standard algorithm for determining the
chromatic polynomial of a graph involves the exploration of a Zykov tree

{
(see for example [2] Chapter 15). In Section 5 we investigate the size ?
i
1




of pruned Zykov trees and deduce that Zykov algorithms are slow. We also

give a numerical example.

In Section 6 we investigate a backtrack coloring algorithm. We show
that it is essentially the same as a certain Zykov algorithm, and obtain
an upper bound for the time it requires. Then in Section 7 we give an
interpretation of our earlier results in terms of the lengths of certain
proofs concerning the chromatic number. The results in this section are
similar in spirit to some recent results of V. Chvatal [4] concerning
stability numbers of graphs; and indeed the research reported in this
paper was initially motivated by discussions with Chvatal concerning
his results. Finally in Section 8 we consider °‘minimal' coloring
algorithms, which may use more colors than necessary, and investigate
the ratio of the number of coldrs used to the chromatic number. This
last section is not closely related in content to the rest of the paper,

but the results there follow easily from lemmas used earlier.

i ascoal




o 1 Preliminary Definitions.

A proper coloring of a graph G -(without loops or parallel edges)

is a coloring of the vertices of G so that no two adjacent vertices
receive the same color. The color sets in such a coloring form a proper

partition of G . The chromatic number x(G) is the least integer k

such that there is a proper coloring of G using k colors. A graph is
\

complete if every two vertices are adjacent, and the cligue number w(G)
is the greatest number of vertices in a complete subgraph of G .

Let n be a positive integer. We let &, denote the set of all
graphs with vertex set {l,...,n} . Throughout the paper p will be a
constant with 0O <p<1l and q will be 1l-p . A probability distribution
is induced on the set "n of graphs by the statement that each edge occurs
independently with probability p . If k is a positive integer and
0<x <1 abinomial random variable with parameters k and x is the
sum of k independent {0,1} -random variables Xy5+0+5X, such that
Prob{X; = 1} = x for i =1,...,k . Thus the number of edges in a graph
in 4 1is a binomial rendom variable with parameters (’2‘) and p .

We consider also the set J: of all graphs with vertices the sets
of a partition of {1,...,n} . If k is an integer we shall often confuse
k and {k} . Thus for example we may say that ¥ < J«: . The use of
sets to label vertices is simply a notational convenience.

We shall sometimes make statements involving such phrases as 'for
almost all graphs in Jh 's For example Lemma 5.2 below states that

for almost all graphs G, in "n

X(Gn) >1/2n/logn .

This simply means that

Prob{Ged,: x(Gn) >1/2n/logn} -1 as n - o ,




We now move on towards our definitions of Zykov trees and Zykov

algorithms. Suppose that x and y are non-adjacent vertices in a
; graph H in 4 . Following [5] we define the reduced graphs Hy,
and H" . The former H;:y is obtained from H by simply adding an

Xy
edge joining x and y ; and the latter H;':V is obtained from H by

1 AV A TR AN T D M i

replacing the vertices x and y by a single new vertex xUy

adjacent to each vertex to which x or y was adjacent, We say that

H)'cy and H;Y are obtained from H by an 'edge-addition' and a ]
i ;' 'vertex-contraction' respectively. 1In any proper coloring of H either

x and y have different colors or they have the same color. Thus we

have the well known result (see [15]) that

x(H) = min{x(H}'cy) ,X(H;y)} : (2.1)

*
Suppose that we have a graph H in Jn which is itself a leaf in
1 a binary tree. Then branching at H involves choosing non-adjacent
‘ vertices x and y in H and giving H the leftson H;cy and the

'5 » rightson H;y « Of course we cannot branch at H if H is complete.

i el

i Now let G be a graph in "n « If we start with the single node G,
the root of our binary tree, and branch repeatedly we obtain a partial
gkéil tree for G . By (2.1) we know that x(G) is the minimum value
of x(L) over all leaves L of any partial Zykov tree for G .

# A Zykov tree for G 1is a partial Zykov tree in which each leaf is &

complete graph. We give below an example of a Zykov tree for a graph
in &, . (see also [2] Chapter 15, [5].)

% A!‘..-t:x‘- “l-
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We have now described the 'branching' process to be used in our

branch-and-bound algorithms. The 'bounding' process depends on the

obvious result that for any graph G

x(@) > w(G) . (2.2)

A Zykov algorithm is a branch-and-bound algorithm for determining
the chromatic number of a graph, using branch and bound processes as
described above, Such an algorithm has a subroutine for determining
for each graph H a lower bound w'(H) for w(H) (for example by
finding a complete subgraph of H ). Also it maintains a current best

upper bound for the chromatic number, which is always at most the number

daial
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of vertices in any graph encountered. It operates on a graph G as
follows. It begins to (construct .and) explore a partial Zykov tree
for G, starting with the root G . Suppose that at some stage we
have explored a partial Zykov tree T for G and we have an upper

bound b for x(G) . The algorithm chooses a leaf L of T with

‘w'(L) <b if there is such a leaf, then branches at L and updates

the upper bound: if there is no such leaf L the algorithm returns
%x(G) = b and stops. A particular example of a Zykov algorithm is
investigated in [5], and another one in Section 6 below.

It is easy to see that a Zykov algorithm always returns the correct
value for the chromatic number and then stops. Further if say it conducts
a depth-first search of the partial Zykov tree the storage requirement
need only be say O(n3 ) . The problem is that Zykov algorithms are very
slow, even if we suppose that the subroutine can always determine w(H)
exactly and without cost, and that we can always start with the upper bound
at the actual value of the chromatic number. (Both these suppositions are
of course rather unlikely, since we would be solving NP-complete problems
(1].)

Given a Zykov tree Z for a graph G the corresponding pruned
Zykov tree consists simply of the root G if w(G) = x(G) and otherwise
is the unique maximal rooted subtree of Z containing as internal nodes
precisely the nodes H of Z with w(H) <x(G) . Any Zykov algorithm
must explore at least some proved Zykov tree for G . We shall prove
that pruned Zykov trees are usually very large and thus that Zykov

algorithms are usually very slow.




Finally let us establish some notation. We let QN denote the set
of positive integers and #Z the set of non-negative integers. For any
real number x we let [x] denote the least integer not less than x
and | x| denote the greatest integer not more than x . Recall that
q is a constant with 0 < g <1 (except that in part of Section 3 we
allow q to vary). All logarithms are to the base 1/q unless otherwise

indicated.
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3. Preliminary Results.

In this section we present some necessary preliminary lemmas, which
may be of interest in their own right. Lemma 3.1 is well known and is
used only in the proof of Lemma 3.2, which is the most used result in
this section. The remaining results, Lemmas 3.3 to 3.6 concern the
'bound-ed sequential coloring algorithm', and are needed here only for
the 'converse' results in Sections 4 and 5 and for Section 8.

Let mnefN and let Q= (sl, «.e»8 ) be a family of pairwise
disjoint subsets of {l,...,n} . We say that Q is proper for a graph
G in J'n if no two adjacent vertices of G are in the same set Si
in Q . For each graph G in Jn we define a 'contracted' graph GQ

as follows: the graph G, has vertices Sl"“ S b and an edge between

Q

the vertices Si and S:j if and only if there is an edge in G Dbetween

some vertex in the set Si and some vertex in the set S,j « Clearly GQ
may be formed from G by a sequence of vertex-contractions if and only
if Q is proper for G .

Now let myne N and let Q be a partition of {1,...,n} into m
sets. It seems reasonable to think that we are likely to have more edges
in GQ, the more equal in size are the sets in Q . We prove below that
this is true.

For any random variable X we let FX denote its distribution

function, that is

Fx(t) = Prob{X < t}

for each real number t . Given two random variables X and Y we

write X <Y in distribution if

(t) > FY(t) for each real number t .

Fy
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Lemma 3.1. Suppose that X, Y, Z are random variables, that X <Y
in distribution, and that toth the pairs X, Z and Y, Z are independent.

Then X+Z < Y+Z in distribution.

Proof. For any real number t ,

Fx+z(t) = J' Fx(t-u) sz(u)

> j‘ FY(t-u) dFZ(u) = FY+Z(t) # a

Let mneMN and suppose that m is fixed, For each real number q

with 0<qg<1l, let N(q) be a binomial random variable with parameters
(2) and (1-q) , and for each partition Q of {l,...,n} let N(n,Qq)

be the number of edges in the contracted graph G, for graphs G in Jh

Q

with edge-probability (1-q) .

Lemma 3.2. For each partition Q of {l,...,n} into m sets we have

PR

N(n Q (n/m)2 2 i n
»@q) < N(q ) in distribution. (3.1)

Proof. We may of course assume that m >2 . We shall prove first

that for each partition @ of {l,...,n} into m sets we have

2
N(n,Qq) < N(qrn/m-] ) in distribution. (3.2)

by Let Q= (sl,...,sm) be a partition of {1,...,n} into m sets;
let s; = |S;] for i=1,...,m ; and suppose that 5;*1 < sl . Let
Ve 52 and let Q' Dbe the partition obtained from Q by switching v

from S5 to Sl . In this part of the proof of the lemma both n and

q will be fixed. Denote N(n,Qq) and N(n,Q',q) by NQ and Nq,

respectively. In order to prove (3.2) it is sufficient to prove that

Ny SN in distribution. (3.3)

Q'




Consider first the case m = 2 , when NQ and Nq, may take only
the values O and 1 , Clearly
55, (s l+l) (s 2-1)
PI'Ob{NQs l} = 1-q <1l-q = Pl‘Ob{NQ,=l} ’

and (3.3) follows.

Suppose now that m >3 . Let R and R' be the partitions Q
and Q' respectively with the last set deleted. By induction we may
assume that Np < Np, in distribution (in an obvious notation). Let
D and D' be random variables giving the degree of the 'last' vertex

in GQ and GQ' respectively. Then NR and NR' are independent of

D and D', and NQ= No#D and Nq, = NR,+D' . Hence by Lemma 3.1 in

order to prove (3.3) and so (3.2) it is sufficient to prove that

D < D in distribution. (3.4)

For i =1,.00,m-1 1let xi=1 if Si and S’n are adjacent as

vertices ix% GQ and let xi = 0 otherwise. Define random variables Xi

from Q' in a similar manner. Then the random variables )Ll,... ’xm-l

are independent and sum to D ; the random variables Xi,...,)%_l are
independent and sum to D' ; and xi = Xi for i=3,.,..,m=-1 . Hence
by Lemma 3.1 in order to prove (3.4) (aad so (3.3) and so (3.2)) it is
sufficient to prove that

X)+X, < Xj+X)  in distribution. (3.5)

Note first that X;*X, and X! +X! may take only the values

0,1,2 . Now

(sl+32)a
Prob{X+X, >1} = 1-q ™ = Prob{x; +Xx5 >1} .




Prob{X;+X, > 2} = Prob{X; = 1}Prob{X, = 1}

S S.8

s

1lm 2m

= (X=q ™ "Hi-q" )
8,8, 5,85, (s 155 )sm :
= 1l-q - q +q , |

and similarly

Prob{X; +X} > 2} = Prob{X] = 1}Prob{X} = 1}

i il q(sl+l)sm)(l A q( sa-l)sm)

(sl+l)sm (sa--].)sm (sl+s2)sm
=1l-q S i, | .

S
Nowlet t=q" , sothat 0<t<1l. Then

Prob{X] +X} > 2} - Prob{X; +X, > 2}
1 -1
5 . tsl+ts2 -t(sl+ )-t(sz )

3 ..l
' -ty o2

b

! and this last expression is non-negative, since S < s2-l . But this

completes the proof of (3.5) and so of (3.2). We now use (3.2) to

prove (3.1).

4
Given a set S of positive integers and a positive integer k let
; - kS be the set of positive integers i such that [i/k1 isin §.
¢ Given a partition Q = (Sl’ Sps eees Sm) of {1,2,...,n} for some integer n
iy let kQ be the partition (kS ,KS,,...,kS;) of {1,2,...,kn} . For ]
*
k< example if Q is the partition ({1,2},{3}) of {1,2,3} then 2qQ is
B 3
, ‘@ the pmition ({1,2,3’1"'}’ {5)6}) Of {1,2,000,6} .
7 AR
gl ';:
4 ’«.'.'j
ol
356
- & ','"-'
B 1
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Let neN , let Q be a partition of {1,2,...,n} into m sets
and let q be a real number with 0<g<1, Let Jh, 1-a denote the
set J with edge-probabilities 1l-q . Then N(n,Qq) is the sum of
() independent {0,1} random variables X;3 (11<j<m) such
that

Prob{xidsl] = Prob{G e"'h,l-q: some vertex in §; is adjacent to some
vertex in S;j]

AL

2 ;
Let k be a positive integer. Then N(kn, kQ, ql/k ) is the sum of (g)

independent {0,1} random variables Y, j (1 <i<j<m) such that

PrOb{Yij = l}

Prob{G e & p: some vertex in kS, is adjacent
1/K

kn,1-q
to some vertex in kSJ}

2 |ks, ||ks,]|
R e

ALY

Hence for each positive integer k ,

2
1/

N(n,Qq) = N(kn, kQ, q in distribution. (3.6)

By (3.2) and (3.6) for each ke N we have that in distribution

2
N(n)QJQ) = N(kn » kQ, ql/k )

l{kn s n e
But —5[.71?-' "(E) as k -« , and so clearly (3.1) holds. This
k

completes the proof of Lemma 3.2, (O




We define an algorithm related to the sequential algorithm (SA) for
coloring graphs (see [8], [9], [13]) and which we call the bounded
sequential algorithm (BSA). We shall look at graphs G in % for
same n in N . Suppose that we have a positive integer s . The
BSA (bounded at s ) acts on each graph G in the same way as the SA,
except that we allow each color set to contain at most s elements.
Thus the BSA (bounded at s ) colors vertex 1 with color 1 and then

3 : colors the remaining vertices in increasing order, coloring vertex i

| with color j if j is the least positive integer such that vertex i

is not adjacent to any vertex already colored j and such that there
are at most (s-1) vertices already colored j .

Suppose now that we have also a positive integer t . For each

graph G in J we shall be interested in the family Q(G) (= Q 1_'(Gr))
)
consisting of the first t color sets constructed by the BSA (bounded

% at s); and more interested in the contracted graph G' = G We

a(e) °
say that a family Q(G) as above is full if each of the t sets contains

1 the full s elements. 4

E - ‘ ¢ t
E ___Mnaé Let N be a binomial random variable with parameters ( 5)
B . " and qs « Then for each non-negative integer k

5 : ‘ Prob{G) misses at most k edges} > Prob{N < k}Prob{Q(G, ) is full} .

3 ,‘; Proof. Let R (= R(n,s,t)) be the collection of all the families

E Q(G) for graphs G in ¥, . Thus R is the collection of all families

‘ :z (Sl"“’st) of t disjoint subsets of {l,...,n} each of size at most s
and such that for each index i in {l,...,t} and each vertex v in a

ﬁ i set with index greater than i , if |Si| <s or v<u for same vertex

u in S, then v >u' for some vertex u' in 8 -

Pk | 13
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Let Q= (Sl"“’st) be a family in R . Let X be the set of
graphs G in & such that no two vertices adjacent in G lie in the
same set Si 5 and let Y be the set of graphs G in Jh such that
for each index i in {l,...,t} and each vertex v in a set with index
greater than i , if lsil <s or v<u for some vertex u in 8;
then v is adjacent in G to some vertex u' in Si with v >u' .
Then

{Geg: QG) =Q} = XnY .
Now clearly in distribution we have
|E(GQ){ < |E(GQ)| given GeY ,
and conditioning on X does not affect the distribution of the number

of edges in G Thus in distribution

Q L]
|E(GQ)| < |E(Gg)|  given Q(6) =Qq . (3.7)
But now for each ke Z ,
Prob{G' misses at most k edges}

= Prob{|E(G')| > (;) -k}

= Z pron{|5(6y)| > () -k | Q(6) = a}Prov{a(c) = Q}
QeER

e Prob{lE(GQ)| » (g)-k}Prob{Q(G) =Q} (by (3.7))
QeR :

> QZR Prob{( ;') - |E(6Q)| < k}Prov{a(e) = Q}
€
Q full

= Prob{N < k}Prob{Q(G) full} . a

14




Lemma 3.4, For any positive integers n,s,t with st <n

Prob{Q(Gn) not full} < n(1- qs-l)n/s =V

Proof, For each graph G in % and for i=1,...,t let Si(G)

denote the i-th set in Q(G) . Then
t
{Q(G,) not full} = iulilsi(cn)l <8}

, Now for each k<n in N and each graph ¢ in & 1let o (c,)
- n n k
| denote the number of vertices of Gn amongst the first k which the SA

colors with the first color (see [8]). Then

t
Prob{Q(G, ) not full} < 12‘1 Prob{lsi(Gn)l < s}

t

£ i?l PrOb{‘,n-(:!,-l)s,(Gn) <%}

R i i

%
< T s-g*Ly/s-(1)  (gee [8])
1al

| < st(1- qs-l)n/s - (t-1)
: < n(- qs-ZL)n/s -t+l . O
- Lenma 3.5. ILet ¢ >0 and let s and t be functions from N
" 4
- to N such that s(n) < (1-e)log n and s(n)t(n) < (1-¢)n for each

n in N . Then
Prob{Q(G ) full} =1 as n=e , (3.8)

If further s(n) > (2 log n):l'/2 for each n in N then

i A b A

Prob{G) complete} - 1 as n-w, (3.9)

15




Proof. By Lemma 3.4

log Prob{Q(Gn) not full} < logn - en/log n « log e n'(l't)
- -® as n -« ,

and so (3.8) holds. Now suppose that s(n) > (2 log n)1/2 for each n

in N . If N is as defined in Lemma 3.3 then
0 > log Prob{N = 0}

2
(5) log(1-o%)

2

> 5isg log( - 1/n%)
- 0 88 N »o ,
Hence
Prob{N = 0} - 1 as n -wo , (3.10)

Now (3.9) follows from (3.8), (3.10) and Lemma 3.5. O

Lemma 3.6. Let ¢ >0 . Then for almost all graphs G in 4 there
is a proper partition R of G into at least (1-¢)n (2 log n)-]'/2

sets such that the contracted graph GR is complete,

Proof. Let s(n) = [(2 log n)l/a'l and t(n) = [(l-¢)n(2 log n)-l/e-l
for each n in N « Then by Lemma 3.5

Prob{G' complete} - 1 as n =o , (3.11)

Now with each graph G in Jn we shall associate a proper partition
R(G) related to the proper family Q(G) , and the contracted graph

c* = GR(G) related to the caontracted graph G' = GQ(G) « Consider a
graph G in "h . Suppose that the vertices of G not in any set in

Q(G) are VireensVy in increasing order. For i = l,...,J in turn

16
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add the vertex vi to the first possible set in Q(G) (that is, to the
first set in Q(G) such that v; 1is not adjacent to any vertex in the
set) and if we cannot add v; to any already present set in Q(G) then
we add to Q(G) a new singleton set {vi} . In this way we construct a
proper partition R(G) of G with at least t sets. Let G be the

contracted graph GR(G) o Then clearly the number of edges missing in

G* is at most the number of edges missing in G' . Hence in particular

we have by (3.11) that

Prob{G; complete} - 1 as n-o ., [

Lermas 3.5 and 3.6 are in convenient forms for the present purposes:

they clearly are not in their strongest forms.




gy g

o

,
4

L.  Zykov Trees.

In this section we investigate the sizes of Zykov trees. We have
three main reasons for doing this. Firstly the sizes of Zykov trees are
of interest in their own right, for example if we wish to determine the
chromatic polynomial of a graph ([2], Chapter 15); secondly some knowledge
of the sizes of Zykov trees helps us to interpret results on the sizes of
pruned Zykov trees; and thirdly some of the arguments which we use here
are similar to those we use for proved Zykov trees in the next section,

There are two theorems in this section. The first shows in particular
that every Zykov tree for a given graph has the same size, that is the
same number of nodes. Given a graph G let us denote by C(G) the
number of proper partitions of G (that is, the number of colorings

of G with 'color indifference'),
Theorem 4,1, Every Zykov tree T for a graph G has 2C(G)-1 nodes.

Proof. It is not hard to check that the vertex sets of the leaves of

T are in 1-1 correspondence with the proper partitions of G . (O

The next theorem gives asymptotic results which by Theorem 4.1 above
may be stated in terms either of the size of Zykov trees for a graph G
or of the number C(G) of proper partitions of G . We choose to state
them in terms of the latter. It is convenient to separate out part of
the proof as a lemma.

For every n in § and f,r in Z 1let T (£,r) be the set
of graphs G in "n such that in every Zykov tree for G if we start
at the root G we can always make ((n) left turns and r(n) right

turns without reaching a leaf. If a graph G is in Tn(l,r)

18



then certainly every Zykov tree for G has at least ( l;r) nodes, We

wish to choose the functions ¢ and r so that Prob Tn(z, r) -1

+r

% ) is as large as possible.

as n -o and (

Lemma 4.2. There exist functions ¢ and r from N to N such
that
Prob Tn(l,r) -1 as n - o (4.1)

and
1og( ;7) > n(logn - 5(% 1og n)?/)

for n sufficiently large (4.2)

For example we may take { and r so that

(o) = n2-@ /7 +0(2))(10g )73 (1.3)
and
@) = Lo@-(3 lgn)P)) . (.4)

Proof. Let £ and r be functions from N to N , such that

£(n) < (g) and r(n) < n-1, which we shall choose below. For each n

in N let m(n) = n-r(n) , let x(n) = n/m and let k(n) = (g) .

We shall choose r so that x(n) == as n - o but x(n) = o((log n)l/2) .
Let R, denote the set of partitions of {1,2,...,n} into at least m

non-empty sets. Then the complement 'i‘n(t,r) of Tn(l,r) in "'n satisfies

’I‘n(l,r) = U {Ged : Q proper for G and G, misses at most £ edges}

Qer, .
€ U [Ge}n: GQ misses at most f edges} . (4.5)
QeR,
x2

Let N be a binomial random variable with parameters k and q . Then

by Lemma 3.2 for each partition @ in R, Wwe have

s e S O
s e s " " "




Prob{G e : G, misses at most { edges} < Prob{N < £} . (.6)

Q
Now clearly g, contains at most n” partitions and so by (4.5) and (4.6)

Prob 'I'n(l,r) < n” Prob{N < ¢} . (%.7)
We shall use (4.7)to ensure that Prob ’f‘n(t,r) -0 as n -o, and so

clearly we must take ! < E[N] (at least for large n ). We let

2
tm) ~ 5 EIN] = 2kd® ~n2o@) (4.8)

Now

/5 2 2
wiE 2t} o T (P& a-g )t
1l=

2 2
< (#1)()a" -t ) (4.9)

(for n sufficiently large that £(n) < E[N] ).

Now by (4.7), (4.8) and (4.9)

log Prob 'i'n(l,r)
2

5nlogn+llogk-llogl+tloge-x21-(k-t)logeqx + 0(log n)

n logn - £(log e - log 2 + o(1))

- - as N = ®
Hence (4.1) holds. It remains to choose r . Now

i+
log( ".")

v

(n-m)(log £ - log n)

n(l-x'l)(log n-2logx - € + o(1))

> n(log n - x 1 log n - 4+ x(L+0(1))) . (4.10)

n log n + £(log k - (- log2+logk-x2)+loge-x2-210ge+o(l))




Let y(n) = (% log n)l/3 and m(n) = (n/yl . Now x =n/m and so

y > x >n(/y+ l)-l 5

log n/x + x < (log n)/y + (log n)/n + y2

3y° +0(1)

Hence by (4.10)

Log( ;) 2 n(log n - 3(§ log 0>/ + (277 +0(2))(20g n)*/°)

> n(log n - 3(3 1log n)?/)

for n sufficiently large. Thus we have proved (4.1). From the above
we may easily check (4.3) and (4.4). This completes the proof of

Lemma 4.2, O

Theorem 4.3. (1) For every graph G, in &
log C(Gn) < log C(jbn) = n(log n-log log n-log e+o(1l)) ,
where ¢n is the graph on n vertices with no edges.

(2) The expected value E[Cn] of C(Gn) for graphs G, in & satisfies

1/2

log E[Cn] = n(log n - (2 log n) - él- log log n+0(1)) .

For almost all graphs Gn in Jn

n(log n -3(% log n)2/3) < log C(Gn) < n(log n - (2 log n)l/2)

Proof. (1) The first part follows easily from the observation that C(¢n)

is simply the number of partitions of ({1,...,n} .
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(2) We first show that

1/2

log E[Cn] > n(log n - (2 log n) - -;'— log log n+0(1)) . (4.11)

Let d be a function from N to N such that d(n) == as n -«
but say d(n) = O(n/log n) . We shall choose d below., Let R, be the
set of partitions of {1,...,n} into k = |n/d] sets each of size d
and (possibly) the (n-kd) singleton set {kd+l},...,{n} . Then the

number of partitions in Ry equals

(ka): (n-d)}
ki(@)* = (n/a):(as)™?e

and the probability that a partition in Ry, is proper equals

(g)k %nd
q > q s

Hence the logarithm of the expected number of proper partitions in Ry, is
at least
(n-d) log(n-d) - (n/d) log(n/d) - (n/d)(4d log d) - %- nd + 0(n)
= n(logn - logn/d - logd - 34+ 0(1)) . (k.12)

Now let

£ ( -

n(¥) = log n/x + log x + 5 x
for x>0 . Then fn(x) achieves a unique minimum for x > 0 at

x = (2 log n+1)l/2 -1 and this minimum equals

(2 1og n)l/2 + %‘- log logn + O(1) . (4.13)
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We set d(n) = [ (2 log n)1/2_| for ne N and find that the right hand

side in (4.12) equals
n(log n - (2 log n):l‘/2 - %‘- log log n + 0(1)) .

Hence certainly (4.11) holds.

We now show that

log E[Cn] < n(log n - (2 log n)]'/2 - % log log n + 0(1)) . (4.14)

The inequalities (4.11) and (L4.14) of course prove the second part of
the theorem.

Let k = k(n) be an integer i such that the expected number of
proper partitions into i non-empty sets is a maximum. Then clearly
E[Cn] is at most n times the expected number of proper paxrtitions
into k non-empty sets., Let 4 = d(n) = n/k . (Thus d(n) is not
necessarily an integer.)

Let Q = (51"“’Sk) be a partition of {1,...,n} and let
s; = |si| for i=1,...,k . Then as in [8 ] we see that the probability
that Q@ 1is proper equals

ﬁ_ q% si(si-l) i q% (Z s?-n) . q%’- n2/k -n) :
i=1
Also the number of partitions of {l,...,n} into k non-empty sets is at

most k /ki . Hence

@ 5 (/K -n)

E[Cn] Snk q )

o=

and so

23
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2
logE[Cn] 5nlogk-klogk--;- gi—+ 0(n)

= nlogn-nlogd-%logn-%nd*- 0o(n)

= n(log n ~ fn(d) + 0o(1)) .

But by (L4.13)

fn(d) > (2 log n)l/2 + %log log n + 0(1)

and so we have proved (k.1h4).

(3) The left hand inequality in part (3) follows immediately from

Lemma 4.2 and the discussion preceding it. Now clearly

1/2

log E[Cn] >n(log n - (2 log n)™/ <) +1log Prob{log C(Gn) > n(log n - (2 log n)

and so by part (2)
log Prob{log C(Gn) > n(log n- (2 log n)l/e)}
< n(- % log log n + 0(1))
o il as n -o ,

This proves the right hand inequality in part (3), and thus completes the

proof of the theorem. O

There is a fairly large difference between the left and right hand
sides in the third part of Theorem 4.3 above. The second part suggests that
the right hand inequality in the third part may be quite good. It thus
seems quite possible that the left hand inequelity is rather weak. Recall
that the left hand inequality follows from Lemma 4.2. Proposition 4.4 below
shows that Lemma 4.2 is in a sense best possible. Proposition L.k
corresponds to Proposition 5.7 in the next section. We do not prove
Proposition 4.l here: it may be proved along the lines of the proof of
Proposition 5.7, using the results in Section 3.

2k

1/2
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Proposition 4.4, ILet £ and r be functions from N to N such

that

log( t:r) > n{log n-(3+ o(l))(%‘- log n)2/3} 5

Prob Tn(l,r) -0 as n-o .

Note that (4.15) above means that for any function f such that

f(n) = n{logn-(3 +°(1))(%’- log n)2/5}
we have

log( l;r) > f(n) for n sufficiently large.

(4.15)




5. Pruned Zykov Trees.

In this section we investigate the size of pruned Zykov trees. We
do not manage to find out as much about pruned Zykov trees as we found
out about (unpruned) Zykov trees in the last section, but we are able to
prove a greater than exponential lower bound. This result shows that
Zykov algorithms for determining the chromatic number of a graph usually
require more than exponential time,

We have seen that every Zykov tree for a given graph has the same
size. Thus certainly if we have to construct a Zykov tree there is no
point in spending time choosing a 'best' way of branching. The situation
is quite different when we look at pruned Zykov trees. Two pruned

Zykov trees for a given graph may have different sizes.

Example. Two pruned Zykov trees for .
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For every graph G let r(G) be the ratio of the greatest size

to the smallest size for pruned Zykov trees for G ; and for each n
in N let r(n) be the maximm value of r(G) over all graphs G
on n vertices. Thus r(n) is a measure of the possible variation

in sizes of pruned Zykov trees for graphs on n vertices.

For each graph G on at most four vertices we have x(G) = w(G)
and so every pruned Zykov tree for G has exactly one node. Thus
r)=r(@2)=rB)=rl) =1 . :
The example above shows that r(5) > 1, and by adding isolaied vertices
to a graph it is easy to see that r(n) (strictly) increases from n = 5
onwards. Thus
r(n) > 1 for a>k .,

In fact r(n) grows dramatically with n .

5 (1+0(1))
Proposition 5.1. r(n) >n v

We prove Proposition 5.1 by constructing for each integer n >7
a graph H;l on n vertices such that

5 (1+o(1))
-1l = n . (501)

r(g) >2c(p . )
He
Here C(¢k) is the number of partitions of a set of k distinct elements
(see Theorem 4.3),

First for each integer k >5 let H, be the pentagon C5 plus (k-5)
vertices adjacent to each other vertex, Thus Hy is a 'wheel with (k-5)
axles': see the example below for }17 « It is easy to check that w(Hk) = k-3
and X(Hk) = k-2 ; and that every pruned Zykov tree for Hk has exactly three
nodes. Now for each integer n >T let Hl'l be the graph H

HE

together with | n/2)-1 isolated vertices.

27
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Example. Hj, is H, plus L isolated vertices.

By branching within the large component of 1-];1;1 we see that the

smallest size of a pruned Zykov tree for Hr'1 is 3. Now
Ln/2j-1 < n/21-1 = x(8)) .

Hence by branching first amongst the Ln/2 J-1 isolated vertices in I—Ir'1
we see that the greatest size of a pruned Zykov tree for 1-&'\ is at least
the size of an unpruned Zykov tree for the graph ¢L n/2 yk consisting

of Ln/2 J-1 isolated vertices. But by Theorem 4.3 every Zykov tree

for this graph has 2C(¢Ln/2J .1)-1 nodes. We have now proved (5.1)

and so completed the proof of Proposition 5.1. (O

Note that if the isolated vertices are listed first then the marked
Zykov algorithm will explore at least the large pruned Zykov tree for HI'1 ’
and so the backtrack coloring algorithm will also do badly (see Section 6).

We now move on towards our main results. We need first a lemma

concerning the chromatic number of a random graph, which is taken
essentially from [8]. Recall that all logarithms are to the base 1/q
unless otherwise indicated. A set of vertices in a graph G is stable

if no two are adjacent, and the stability number a(G) is the greatest

number of vertices in a stable set.

28
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Lemma 5.2. For almost all graphs Gn in jn

1
X(Gn) > §n/logn -
Proof. If x(Gn) < %—‘ n/log n  then certainly the stability number
a(Gn) of G, satisfies
a(Gn) > n/x(Gn) >21logn .
But if we set s(n) = [2 log n] then
s
n ( 2 )
Prob{a(Gn)Zs} < (s)q -0 as n - .
1
Hence Prob{x(Gn) <5 n/logn} -0 as n-o . O

The following conjecture appears essentially in [8].

Conjecture 5.3. If ¢ >0 then for almost all graphs Gn in "B'n

x(6) < (%+g)n/logn .

We need one more lemma in order to prove our main results. Suppose
that we have a positive constant « and functions { and r from N
to Z . For each n in N 1let Tg‘(l,r) be the set of graphs G
in "n such that in every Zykov tree for G whenever we start at the
root G and make £(n) left turns and r(n) right turns we do not
encounter any node H with w(H) >a x(G) . (Compare with the definition
of Tn(t,r) preceding Lemma 4,2 in Section 4.) If G is a graph in
T:( f,r) then certainly every Zykov tree for G has at least ( l;r)
nodes H with w(H) <o x(G) . Thus setting & = 1 we see that if G
is in T:;(l, r) then every pruned Zykov tree for G has at least ( l:r)

nodes, We wish to choose the functions £ and r so that




Prob 'l':(l,r) -1 as n-=o and ( l-;r) is as large as possible.

Lemma 5.4, Let & be a positive constant. Then there exist functions

] £ and r from N to Z such that

Prob 'I'an(z,r) 1 A (5.2)
and )
log( ':r) ~ o n( % log n)/2 | (5.3)
For example we may take
ta) = 0"/ (10g n)3 (5.4)
and
r(n) = |a(12 loga)¥2; . (5.5)

Lemma 5.4 above of course corresponds to Lemma 4,2 for (unpruned)

Zykov trees, and we saw in Section 4 that Lemma 4.2 is in a sense best ]
B possible. At the end of this section we shall prove that Lemma 5.4 is

also in a sense best possible.

Proof. Let f and r be functions from N to N , which we shall

choose later. Let b(n) = | gn(log n)'lJ » let B, be the set of

graphs G in § such that x(G) > b(n) , and let Bn(l,r) be the set
of graphs G in Jn such that in every Zykov tree for G whenever we 1
e start at the root and make /(n) left turns and r(n) right turns we
”, ¢ do not encounter any node H with w(H) >a b(n) . Then ?
T3 ,
k B NB_(1,r) ¢ To(Lyr) . (5.6)
= By Lema 5.2 Prob(B) ~1 as n-w. Hence if Prob B (£,r) -1 as
\: n - » then so does Prob Tz(l,r) o« Thus we wish to choose ¢ and r so
:' that Prob Bn(l,r) -1 as n - and ( l;r) is as large as possible.
K
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We now look at the complement ﬁn(t,r) of Bn(t,r) in & .

Let R be the collection of all families Q = (Sl,..., Sb) of b disjoint
subsets of {1,...,n} with union containing r+b elements. For each
family Q in R let 'I'Q be the set of graphs G in Jn such that the
contracted graph GQ misses at most { edges. Now if G is a graph

in ﬁn(t,r) then some graph obtained from G by performing at most r

vertex-contractions contains a subgraph on b vertices missing at most

! edges; and so GeTQ for family Q (proper for G ) in R . Hence

B (,r) cu {Tg: @R} . (5.7)
Next we find an upper bound for Prob(TQ) . It is convenient to let
m = (g) and X = ﬁTb- . We shall choose r so that x(n) = « as
2

n-o, Let N be a binomial random variable with parameters m and qx .

By Lemma 3.2 for each Q in R,
Prob(T.) < Prob{N <t} . (5.8)

Now clearly { contains at most n" families Q . Hence by (5.7)
and (5.8)

Prob B (4,r) < n" Prob{N <1} . (5.9)
We shall use (5.9) to ensure that Prob ﬁn(l,r) -0 as n =« , and
so of course we need £(n) < E[N] (at least for large n ).

We set
1 R

() = [ 3Em | = | &g T (5.10)

Now

L 2 2
PobiNS 2} = D (D" -t

2 2
S ) A=t ™ (5.11)
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Note that the right hand side above depends only on x (and n ). We

have

log Prob{N < ¢}

2
Sllogm-tlogl+llog<-:‘—x21--(m-l)logeqx + 0(log n)

£(log m - (log%+ log m - x2) + log e - -2 log e + o(1))

£(log 2 - log e + o(1)) .

-1/2

Now suppose that r(n) = | An(log n) | for some constant ) with

G<i< % a say. Then x(n) ~ (2)/a)(log n)l/2 and
log f(n) = (2 - h)‘e/d2 + 0o(1)) logn .
But now by (5.9), (5.12) and (5.13)
Prob ﬁn(t,r) -0 as n -® ,
We next look at the value of ( l-;r) and choose a value for ) .

Now

log( l:r) r{log £ - log r + 0(1)}

(A - W2/ + o(1)) n(log n)/2 .

The maximum value of ) - h)?/ae for A >0 is attained at ) = 1271/

Thus we give )\ this value, and find that
+ =3/2 2
log( ©}7) = 3 3/2 + (1)) an(10g n)*/?

as required. The value we have chosen for r is as in (5.5). Clearly
we may decrease the value of { from that in (5.10) if we do not thus
falsify (5.14). Thus we may set £ as in (5.4). This completes the

proof of Lemma 5.4, U

e

an(log n)'l/2{2 logn - (h}\z/da)(log n) -log n+0(log log n)}

Cl<—(1.
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From Lemma 5.4 and the discussion preceding it we may now deduce

immediately our main results.

T ———

Theorem 5.5. If a is a positive constant then for almost all graphs (}n
in jn s every Zykov tree for Gn is such that the logarithm of the number
of nodes H with w(H) <« X(Gn) is asymptotically at least

a n( 517log n)l/2 .

| The most interesting special case of Theorem 5.5 above is when

ponv e e———

p=q=l/2 and ada=1.

Corollary 5.6. Consider the property for graphs Gn on n vertices
)

that every pruned Zykov tree for Gn has size at least

" 3 1/2
(1.14) e )

The proportion of graphs on n vertices with this property tends to 1

as n-o,

et s —————

Corollary 5.6 shows that any Zykov algorithm as defined in Section 2
'almost always' requires more than exponential time. Thus certainly
there exists a sequence (Gl’GQ""’Gn"“) such that G, is a graph
on n vertices and the time taken by any Zykov algorithm on Gn grows

faster than exponentially with n . No construction is known for such

; a sequence,
;k : M. R. Garey and D. S. Johnston [7] have shown that the problem of
b determining the chromatic number of a graph to within a factor less

'*: than 2 is NP-complete. By analogy one might have expected some effect
5 { in Theorem 5.5 at « = 1/2 say, but none is apparent (see also

? Corollary 7.2 below).
£ 33
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The above discussion is asymptotic in nature, but we may be

interested in applying a Zykov algorithm to graphs which are fairly
large but definitely finite, say to graphs with 500 vertices. Arguments
similar to those above but simpler show that we are already in trouble.
We shall see below that for more than 3/4 of the graphs on 500 vertices
every pruned Zykov tree has more than 1012 nodes,

Set p=q=1/2 so that probabilities correspond to proportions.

We shall be talking about graphs in J‘)'OO . Note first that, as in the
proof of Lemma 5.2, we have

Prob{y (G) < 39} < Prob{a(G) > 14}

14
"(2)

IN

e
0 (5.15)

For positive integers ¢ and m let S(f,m) be the set of graphs
G in "SOO which have a subgraph on m vertices missing at most 2

edges. Denote (g) by k and suppose that ¢ Sik . Then

2
k
Prob S(£,m) < (52@0)2'k z (ff)
i=k-t

500 <k, ky keg+l
Sk Ll o

It is easy to check using the above that for example ;

Prob s(53,28) < .01 . (5.16)

Let A Dbe the set of graphs G in J‘SOO such that y(G) >39 and G

is not in 8(53,28) . Then by (5.15) and (5.16)

Prob A > 0.75 . (5.17)

3L
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Now let G be a graph in A and let T be a pruned Zykov tree
for G. Then in T if we start at the root and make 53 1left turns
and 11 right turns we can never reach a leaf; for if H is a leaf

of T then H has a complete subgraph on 39 vertices and at least

39-11 = 28 of them must be original vertices of G . Hence the |

number of leaves of T is more than

TR BT

and so the number of nodes in T is more than .]_Ol2 . Hence by (5.17)

for more than 3/4 of the graphs G in J‘)'OO every pruned Zykov tree

for G has more than 1012 nodes.,

The basic result in this section is of course Lemma 5.4 from which

Theorem 5.5 and Corollary 5.6 follow immediately. We remarked earlier

that Lemma 5.4 corresponds to Lemma 4.2 and we noted in Section L that

Lemma 4.2 is in & sense best possible. We now investigate how good

O

Lemma 5.4 is. Proposition 5.7 below shows that in a (weaker) sense

H Lemma 5.4 is also best possible. This suggests that our lower bound

for the size of a smallest pruned Zykov tree for a graph may not be too

3§ bad. However, our only upper bound for the size of a smallest pruned
by Zykov tree for a graph is very much larger (see Corollary 6.2 in the

next section).

Proposition 5.7. Let a be a positive constant. If { and r are

functions from N to RN such that

log( l:r) > (2+0(1)) an( -217103 n)l/2 (5.18)

Prob T(4,r) =0 as n == . (5.19)




Further if the Conjecture 5.3 holds and if

1/2

Log( ‘;r) > (l+o(l))an(-127].og n)

then again (5.19) holds.

Proof. TFor each n in N 1let &(n) be a real number such that say
1<s(n) <3 . Suppose that ¢ and r are functions from N to N
such that

1/2

Log( "t¥) > (5 +0(1)) an(F1og n) (5.21)

For each n in N 1let d(n) = (5/2) n/logn , let D be the set of
graphs G, in 4 such that X(Gn) < d(n) , and let Dn(l,r) be the
set of graphs Gn in .&n such that in every Zykov tree for Gn whenever

we start at the root and make f(n) 1left turns and r(n) right turns

we do not encounter any node H with w(H) >a d(n) . Then
(4,7) D, € D (4,7) (5.22)

We shall prove that

Prob Dn(l,r)-oO as n-o , (5.23)

Once we have done this we are nearly finished.
Note first that we may assume that £(n) < (g) and r(n) <n-1.
Also if ¢ <r for some n in N then
(l;r) < (2rr) < 2E'n
and so by (5.21) we have log(f+r) = log £ + O(1) .
Now

2r

(%F) g (o) < u

and so by (5.21) again

2(n) 2 (¢, +0(1)) n (10g n) /2

for some constant ¢, >0 . (5.24)
We next show that we may assume that

36




-1/2

r(n) < (c2+o(l)) n (log n) for some constant ¢

5 >0 . (5.25)
For each n in N 1let s(n) = [(2 log n)l/a'l and t(n) = fad(n)7.
Then by Lemma 3.5

Prob{G! complete} — 1 as n-o (5.26)

But we may obtain the graph Gr'1 from the graph Gn by performing at |
most (s(n)-1)t(n) vertex-contractions, and so }.J
1

Dn(O, st) {GI'1 not complete} . (5.27)

3
Now by (5.26) and (5.27) 11

Prob Dn(O,st)—-O as n oo ,

It follows that we may assume that (5.25) holds.

We now show that for n sufficiently large we have '

1) > o2 o(F/d -1)2

Let
x(n) = r(n)(log n)l/e/n
so that by (5.24) and (5.25) we have log x = O(1) . Note that

r/ad = 2x/oz (log n)l/2 -

Now if (5.28) is false then for infinitely many values of n we have

ey nzq(r/ad-l)2

and so

log( l;r) = r(log £ - log r + 0(1))

'1/2(2 log n - ro/ofd® + 2r/ad - log n

IA

x n(log n)
+ -;'— log log n + 0(1))
= (x - 40/P8? + o(1))n (log n)Y/?

1/2

IN

(5 + o(1)) an( -2—,17—103 n)

37




(see the proof of Lemma 5.4). But this contradicts (5.21) and so (5.28)
must hold.

Now for each n in N 1let s(n) = [r(n)/ad(n)1-1 and
t(n) = Nlxd(n)1. By (5.25) and Lemma 3.5

Prob{Q(G ) full} =1 as n-= . (5.29)

Also
(s(n)-1)t(n)

IN

(r/ad -1)(ad +1)

<r
for n sufficiently large that a2d2 >r . Hence as in the derivation
of (5.27) we have that for n sufficiently large

Dn(z,r) = {Gz'x misses more than f edges} . (5.30)

For each n in N let N be a binomial random variable with parameters
2
(;‘) and ¢q° . Then by Lemma 3.3

Prob{G) misses more than ¢ edges}
< 1-Prob{N < £} Prob{qQ(G,) full} . (5.31)

But f(n) == as n -« and by (5.28) ((n)/E[N] - = &s n -w,
Hence

ProbfN< 2} =1 as n-wo . (5.32)

But now (5.23) follows by (5.29), (5.30), (5.31) and (5.32).
Suppose that #=(n) = 2+¢(n) for n in N , where ¢(n) >0
and e¢(n) -0 as n - o sufficiently slowly that by Theorem 8 in [8]

we have

Prob D -1 as n -o (5.33)




P

=
:J-‘:':' o \""L

' b,
:

=
t

Then (5.19) follows from (5.21), (5.22) and (5.33) and so we have
proved that if (5.18) is trﬁe then so is (5.19). Now suppose that the
Conjecture 5.3 is true and that 5(n) = 1+e(n) for n in N , where
¢(n) >0 and ¢(n) =0 as n —» o sufficiently slowly that (5.33)
holds. Then as above it follows that if the Conjecture 5.3 and (5.20)

are true then so is (5.19). This completes the proof of Proposition 5.7.
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6. Backtrack Coloring.

In this section we investigate the 'backtrack' coloring algorithm
(BC algorithm) for determining the chromatic number of a graph. This
algorithm was pointed out to the author by R. Tarjan. Given a graph G
it explores part of the 'backtrack coloring tree' (BC tree) for G,
which is an implicit enumeration of the proper partitions of G . We
shall see that the BC algorithm is essentially the same as a certain
Zykov algorithm, the 'marked' Zykov algorithm. Also we shall give an
upper bound for the number of nodes of the BC tree explored by the BC
algorithme It will follow that it is worth pruning BC and Zykov trees.

We first describe the backtrack coloring tree (BC tree) for a graph

G in ""n . It is a rooted tree with height n-1 . Each node is
colored with one of the colors CrreeesCy o A node colored ¢, at
depth d (distance d below the root) corresponds to an assignment of

color c; to vertex (a&+1) of G . By looking at a node and its

"ancestors we see that a node at depth d corresponds to a coloring of

the first (d+l) vertices of G . To construct the BC tree for G

we first construct a single node (the root) and color it ¢, . Now
suppose that K is a leaf in the tree so far constructed and that K
is at depth d <n-2 . Then K corresponds to a proper coloring C
of the first (d+l) vertices of G . Let io be 1 plus the maximum

index of a color used in the coloring C ; and let Ci seeerCy (where
1

J
J2>0 and iy > eee > i.J ) be the colors used in the coloring C and

such that vertex (d+2) is not adjacent to any vertex of the color.

We let the node K have (j+*l) sons colored Cqy 9C4 seeesCy in order
o 1 d

from left to right.




We have now defined the BC tree for G . It is not hard to see

that there is a 1-1 correspondence between the nodes of the BC tree
for G at depth d and the proper partitions of the subgraph of G
induced by the first (d+l) vertices (see Example 6.1 below). Hence
the number of nodes in the BC tree for G is between C(G) and nC(G) ,
and so Theorem 4,3 gives asymptotic results about the size of BC trees. ;
If ke N the BC tree for G pruned at k is simply the root of ‘
| the BC tree for G if k =1 and otherwise it is the unique maximal

rooted subtree of the BC tree for G such that each internal node is

,, I colored with one of the first (k-1) colors. The pruned BC tree for G

is the BC tree for G pruned at y(G) .

Example 6.1. Take G as the cycle with 5 vertices, numbered as

indicated.

In (a) below we show the part of the BC tree for G explored by the BC
algorithm. In (b) we show the same tree structure and indicate at each
node the corresponding partial coloring of G . The letters ayeeeyJ

P indicate the order in which the nodes are first visited by the BC algorithm.
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The backtrack coloring algorithm (BC algorithm) for determining

the chromatic number y(G) of a graph G conducts a depth-first search
of the BC tree for G , keeping to the right. Once we have found a
path from the root to a leaf using at most the first k colors we know
that X(G) <k and so we need not explore the descendants of any node
labelled with a color not in the first k-1 . Thus we 'prune' the BC i

tree. The BC algorithm must of course explore all the nodes of the

pruned BC tree for G .

In order to relate the BC algorithm to the Zykov branch-and-bound
algorithms considered earlier we first give a description of an
implementation of a Zykov algorithm.

Let G be a greph in % for some n in N . We shall define

the marked Zykov tree (MZ tree) for G . It is a certain Zykov tree

for G in which at each node certain vertices are 'marked'. At each
node H the marked vertices form an initial segment of the entire
sequence of vertices ~-- we assume that the sets in each partition of
{1,...,n} are ordered so that we have an increasing sequence of least
integers -- and the marked vertices induce a complete subgraph of H .
The MZ tree of G is defined as follows. The root is of course G ,
and we mark vertex 1 . Suppose that H is a leaf of the tree so far
constructed. If the first ummarked vertex in H is adjacent to each
marked vertex then mark this vertex. Continue doing this until either
every vertex of H is marked, in which case H is complete and is a
leaf of the MZ tree of G ; or the first unmarked vertex is not adjacent
in H to some marked vertex. In this case we branch on the first

unmarked vertex and the first marked vertex not adjacent to it. Marked

Ly
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vertices stay marked in the sons of H and the new contracted vertex
in the rightson is also marked.

The marked Zykov algorithm (MZ algorithm) explores part of the MZ

tree using depth-first search keeping right, and prunes the tree using
the fact that the marked vertices at a node point out a complete subgraph.
The MZ algorithm must of course explore every node in the pruned Zykov
tree corresponding to the MZ tree., It is quite similar to the algorithm

in [5].

Example 6.2. As in Example 6.1 take G as the cycle with 5 vertices,

numbered as indicated.

Then the part of the MZ tree for G explored by the MZ tigorithm is shown
below. The marked vertices are filled in, and in addition we have labelled

the first marked vertex with ¢y s the second with ¢ and the third

2
with c3.
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It should be apparent that the BC and MZ algorithms are really
different forms of the same algorithm. Suppose that G is a graph
in .&n . Then it is not hard to prove that there is a correspondence
between the nodes of the BC tree B for G and the nodes of the MZ

tree Z for G such that

(a) each node in B corresponds to one or two nodes in Z ;
(b) each node in Z corresponds to between 1 and n nodes in B ;

(¢) pruning occurs at corresponding nodes.

The lettering in Examples 6.1 and 6.2 indicates such a correspondence.
* *
Let B and Z ©be the parts of the trees B and Z explored by the

BC and MZ algorithms respectively. Then by the above
2|8°| > |2| aa  nlzf| > |87 .

It follows by Corollary 5.6 that for almost all graphs on n vertices

1/2
n(log n) for some constant

the BC algorithm requires time at least ¢
¢ >1 . The next result yields an upper bound for the time required by

the BC or MZ algorithm.

Theorem 6.1. Let ¢ > 0 . Then for almost all graphs in 4, the
number of nodes of the BC tree explored by the BC algorithm is at most

(5+¢€)n
n . If Conjecture 5.3 is true then for almost all graphs G

1 n
(gte)n
in Jn the pruned BC tree for Gn has at most n nodes.,
Proof, Let k be a function fron N to Z . For each graph G
in & let Bk(G) be the BC tree for G pruned at k . For i,J
in N 1let f(i,j) Dbe the expected number of proper partitions into j

sets of graphs in "i « Then

by




X n k
E[[B7(c )|l < Z Z £(4,3) . (6.1)
izl Jj=1

From the proof of Theorem 3.3 we have

iiQ T
£(1,3) < 3t q2( 4213

and so if i <n and j <k we certainly have

i 1%/ek -5n 'f
q q (6.2) 5

£(1,3) <n

Now let

k(n) = [(1+te)n/logn |
for n in N . Thenfor ieN, i<n

i 12/21:

2
o g nqn/ak

<n
and so by (6.1) and (6.2)

1
=n

2 =
B2 & i

E(|B(e)|] < q

1
n(§ + £ +0o(1))n

IA

Hence

(%+e)n

Prob{]Bk(Gn)I <n -1 as n-o . (6.3)

Now the BC algorithm initially explores the 'rightmost' path in the BC W
tree, and so initially it acts like the sequential coloring algorithm. |

Hence by Theorem 8 in [8], for almost all graphs in 4 the BC algorithm

explores at most n nodes of the BC tree which are not in the BC tree
pruned at k . The first part of Theorem 6.1 now follows from (6.3).
We now prove the second part of the theorem. Let

k(n) = L(i*e) 5 n/logn




for n in N. Then for ieN, i<n

AL
1+
< n]I( o

e
ot ot /2k

and so by (6.1) and (6.2)

5 [8%(e,)|] < (§eoli)in
N S n .

Hence as above

(1Jf+e)n

i Prob{|Bk(Gn)| <n } =1 a n-oo , (6.4)

Denote the pruned BC tree for a graph G by B*(G) « I x(68) £k

then |B (6)| < |B¥(G)| . Thus

(F+e)n (F+e)

* n
{[8"(e)| <n } 2 {1F,)| <n Inx(e) <x} . (6.5)

Now suppose that Conjecture 5.3 holds, so that
q Prob{x(G ) <k} 1 &s n o= . (6.6)

Then the second part of Theorem 6.1 follows from (6.%), (6.5) and (6.6). O

Corollary 6.2. Let ¢ >0 . Then for almost all graphs G, in &

the number of nodes of the marked Zykov tree for Gn explored by the

- 1
i3 (Z+e)n
. marked Zykov algorithm is at most n . If Conjecture 5.3 holds
" then for almost all graphs Gn in Jn the pruned marked Zykov tree
1
( 1;"'5)11
for Gn has at most n nodes.




P TN W S i XN

i i R0

et Lo

7. Lengths of Proofs.

Most of our results so far may be phrased in terms of the lengths
of certain kinds of proof which determine chromatic numbers or which
establish lower bounds for chromatic numbers. We then obtain results
concerning chromatic numbers which are similar in spirit to recent results
of V. Chvatal [4] concerning stability numbers. Indeed this paper was
initially motivated by discussions with Chvatal concerning his results.

If k is an integer at least as great as x(G) then there is a
short proof that X(G) < k =-- namely we may exhibit a coloring of G
using at most k colors. In general such a proof is hard to find but
it must of course exist. However, if k is at most x(G) then it
is not clear if there is necessarily a short proof of this fact.

The following two rules may be used to determine or bound chromatic

numbers (see Section 2 and (2.1) in particular).

(R1) x(G) = min{x(G;w) ) x(G;'cy)} .

(RR) If G is complete then x(G) equals the number of vertices of G .
X

Given a set S of rules like (RL) and (R2) let us call a proof that uses
only these rules an S-proof, and each application of a rule in S a step.
Clearly there is a close correspondence between an {(Rl), (R2)}-proof
determining y(G) and a Zykov tree for G .

From Theorem 4,1 we obtain

Corollary 7.l. If G is a graph in .&n then every {(Rl), (R2)}-proof

which determines y(G) without redundant steps has exactly 2C(G)-1 steps.

Thus by Theorem 4.3 we know quite a lot about the lengths of

{(R1), (R2) }-proofs which determine chromatic numbers. Consider now a
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third rule, which can be used to establish a lower bound for chromatic

numbers (see (2.2)).

(R5) x(G) >w(G) .

Allowing the use also of the rule (R3) corresponds to pruning our Zykov

trees. From Theorem 5.5 we obtain

Corollary T.2. If a is a given constant factor with 0 <a <1 then

for almost all graphs G, in & every {(R1), (R3)}-proof which establishes
a lower bound for X(Gn) exact to within the factor @ 1is such that the

logarithm of the number of steps is asymptotically at least
I 1/2
a n( 57 log n) .

Now set p=q=1/2 and @ =1 in Corollary 7.2 (as we did in

Theorem 5.5).

Corollary T.3. Consider the property for graphs Gn in Jn that in
every {(Rl, (R3)}-proof establishing the correct lower bound for X(Gn)
the number of steps is at least

e
Gkl

The proportion of graphs in ¥, with this property tends to 1 as n - o,

From Corollary 6.2 we obtain

Corollary 7.4. Let ¢ > 0 . Then for almost all graphs Gn in Jvn

the marked Zykov algorithm yields and {(Rl), (R2), (R3)}-proof determining

1
(5+e)n
X(Gn) with at most n 2 steps. If Conjecture 5.3 holds then for

almost all graphs G, in 4  the marked Zykov algorithm (eventually)




yields an {(Rl), (R2), (R3)}-proof determining x(G,) with at most

( y]f* e)n
n steps.

Consider now a fourth rule which can be used to bound chromatic

numbers.,
(R4) If G has a subgraph H then x(G) > x(H) .

The set of rules {(R1),(R2),(R4)} seems to the author to be as natural
as the set {(R1),(R3)} for establishing lower bounds for chromatic numbers.
The following proposition shows that the two sets of rules are in a sense

equivalent. The proof is straightforward and is omitted.

Proposition 7.5. For any {(Rl), (R3)}-proof that x(G) >k there is an

{(R1), (R2), (R4)}-proof with at most twice as many steps; and for any
{(r1), (R2), (R4) }-proof that x(G) >k there is an {(R1l), (R3)}-proof

with no more steps.
At first sight it might seem to be of advantage to allow also rules
like the rule (R5) below, which is closely related to the rule (Rl).
> £ i = .
() x(6) > ma.x{x(ny) :x(ny)} 1

One would of course not have to know both X(G:'cy) and x(G;y) in order
to use the rule (R5). However, it is not hard to prove for example the

following proposition.

Proposition 7.6. For any {(Rl),...,(R5)}-proof that y(G) >k there

is an {(R1), (R3)}-proof with no more steps.

Another rule which might be considered is the following.
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(R6) If some vertex v in G is adjacent to each other vertex then

x(G) = x(G-v)+1 (where G-v has the obvious meaning).

However, again we may see without difficulty that including this rule
would not lead to shorter proofs.

Yet another possible rule which might be thought helpful is the
'principle of separation into pieces', as described in [2] Chapter 15.
This rule shows how to break our problem into smaller independent
subproblems if the graph has a separating set which induces a camplete
subgraph. It may on occasion help to organize proofs but once again we
may easily check that it does not shorten them.

Finally let us note that all the above discussion falls down if we

are allowed to recognize isomorphic graphs with different vertex sets.

It would be interesting to know what can be said in this case.
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8. Minimal Colorings. ]
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1

Many authors have investigated algorithms A for (properly) coloring
graphs G which are fairly fast but which use a number A(G) of colors
possibly greater than x(G) . (See for example (9], [12], [13], [14].)
Following D. S. Johnson [9] we let R(G) be the ratio of A(G) to x(G),
and let 'A(n) be the maximm value of A(G) over all graphs G on n
vertices. Clearly 1 Si(n) < n and the smaller :A(G) or A(n) is the
better. In [9] it is shown that for several of the most common algorithms
A the function R(n) is of order n . For the best of the known (fast)
algorithms the function A(n) is still of order n/logn .

It is suggested in [9] that the usual behavior of R(Gn) for graphs
G, on n vertices may be very different from the behavior found for A(n) .
We shall see that this is indeed the case.

Consider first the sequential coloring algorithm SA or A (see

1 [8], [9] and Section 3 of this paper). Johnson shows without difficulty
that f\l(n) is of order n , and suggests that, however, the expected
value of 2\1((}“) may be bounded by a constant independent of n . It
follows easily from results in a paper [8] by G. Grimmett and the present

author that for any ¢ > O we have 2\1(Gn) < 2+¢ for almost all graphs i

i‘ f G, in & : also it is easy to prove that the expected value of 2\1(Gn)
b is at most 2+¢ for n sufficiently large (see the proof of Theorem 8,2
- below).

We now look at the usual behavior of R(Gn) for other coloring

algorithms A . A proper coloring of a graph G is minimal if for each

pair of colors used some vertex of one color is adjacent to some vertex ;

of the other color; that is, if no color can be replaced by some other

already used color; that is, if the corresponding proper partition Q
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of G is such that the contracted graph G, is complete. A coloring

Q
algorithm is minimal if it always yields minimal colorings. All the usual

coloring algorithms are minimal, and in any case from an arbitrary proper

coloring one may easily produce a minimal coloring. Thus it seems

reasonable to restrict our attention to minimal coloring algorithms.,

For every graph G let M(G) be the maximm value of A(G) over

TS

all minimal coloring algorithms A . An alternative definition of M(G)

is then that it is the largest integer t for which there exists a proper

| partition Q of G into t sets such that the contracted graph GQ

is complete. For every graph G we let ﬁ(G) be the ratio of M(G)

to x(G) . Thus M(G) is a measure of how badly it is possible to

color G .
It seems that for any fast coloring algorithm A yet proposed there
exist graphs on which A performs very badly ([9]). However, for most
i graphs every minimal coloring algorithm performs not too badly: we shall

prove below that fd(Gn) is in probability only of order (log n)l/ 8

‘ Lerma 8.1. ILet ¢ >0 . Then for almost all graphs G, in &

(1-¢) n (2 log n)~2/2

Further for n sufficiently large the expected value of M(G,) Llies

< MG) < (e)n(ogn)™2 | (8.1

in the above range.

Proof. The left hand inequality in (8.1) follows immediately from Lemma 3.6.
1/2

Let m be an integer at least (1+g¢)n (log n)~ By Lemma 3.2

_',!;,’ L2 L[#‘L

the probability that a given partition Q of {1,...,n} into m sets

yields a complete graph GQ is at most

m
61 -q(n/m)z)(e)




Hence the probability Pm that there exists such a partition Q

(proper or not) is at most

m
nn(l_q(n/m)a)( 2)
But now
log P < nl 4 (n/m)a
b ogn-(a)logeq < en

if n is sufficiently large. Hence for n sufficiently large

Prob{M(Gn) > (1+¢) n (log n)'l/z} <n = R (8.2)

The right hand inequality in (8.1) follows from (8.2), and so we have
completed the proof of (8.1).
The second part of the lemma, concerning expected values, follows

from the left hand inequality in (8.1) and from (8,2). O
Recall that fJ(G) is the ratio of M(G) to x(G) .

Theorem 8.2, ILet ¢ >0 . Then for almost all graphs G, in &
(22 - ) (208 M2 < fi(G) < (eve)(r0g m)H/2 (8.3)

Further for n sufficiently large the expected value of f{((}n) lies in

the above range.

Proof, We know from [8] (see also [6] Chapter 11) that for almost all
graphs G, in Jn
1/2 n/log n < x(G,) < (1+e) n/logn . (8.4)
Now (8.3) follows from (8.4) and Lemma 8.1,
The left hand inequality for the expected value of ﬁ(cn) follows

from the left hand inequality in (8.3). For the right hand inequality

note first that
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E(M(G,)] < ( 1/2 n/log n)™ E[M(G, )]
+n Prob{x(Gn) <1/2 n/log n} . (8.5)
But from the proof of Lemma 5.2
n Prob{x(Gn) <1/2 nflog n} - 0 as N =o , (8.6)
and by Lemma 8,1 for n sufficiently large
EM(G,)] < 1+ ¢/3)n(l0e )2 . (8.7)
Hence by (8.5), (8.6) and (8.7)

EIM(G,)] < (2+¢) (108 n)/2

for n sufficiently large. This completes the proof of this the final

theorem, O
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Some Questions.

The main result has been that Zykov algorithms for determining the

chromatic number of a graph in probability take time at least

1/2
cn(log n) (for some constant ¢ >1 )

on graphs on n vertices. This result raises at least three questions
that merit attention.

Firstly, the best upper bound here for the time taken is very much
greater than the lower bound. Is the lower bound of the right order of
magnitude?

Secondly, all the results here are based on the random graph model
which has constant edge-probability p , and in certain circumstances
the model which has constant average degree say might be more appropriate
(see for example [6] Chapter 16). Are there corresponding results for
this case?

Thirdly, it follows from the discussion in Section 7 that various
'improvements' in the Zykov algorithms do not in fact lead to a decrease
in the time taken. But what happens if say we allow an isomorphism

search?
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