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The Complete Electromagnetic Fields in the
Focal Region of a Paraboloidal keflector

1. INTRODUCTION

In designing optimum feed systems for Cassegrain reflector systems, it is
highly desirable to have an accurate picture of the electromagnetic fields in the
reflector focal region. In order to study these fields we have considered the case
of a plane wave incident upon a large reflector, as shown in Figure 1, and have
used the physical optics approximation to calculate the complete electromagnetic
field distribution produced in the vicinity of the reflector focus.

2.' THEORETICAL BACKGROUND
Let us consider a plane wave with electric and magnetic fields*
§l-Eo§exp[i(wt+kz)] " (1a)

H =H xexp [ ilwt+kz) ] , (1b)

(Received for publication 29 September 1976)

*In Eq. (1) x, i, and z are unit vectors along x, y, and z. Also k is the wave-
number = 27/A, where A is the signal wavelength.

5




incident from the right upon the reflector in Figure 1. If we assume that the
reflector surface is described by the arbitrary function

z =f(x,y) . 2)

it can be shown! that the magnetic field scattered by the reflector is given, in the
physical optics approximation, by

HO e-ikR
B = > 3 dxdy Xw R , 3)
S
o

where R is the distance from a source point (x,y, z) on the reflector to the field
point (xo.yo. zo). So is the projection of the reflector surface onto the x - y plane
and x,y, and z are unit vectors. E

G (B O ~ ik
(2-3’?::-—y)Xxe1'z

i REFLECTOR

H;

] A o INCIDENT
WAVE

M
i

~Y

D
. L] (xO.Yo,z°|)

Figure 1. Reflector Geometry

1. Silver, S. (1965) Microwave Antenna Theory and Design, Dover (New York).




If we assume that the reflector surface is a parabola with a focus at z = F,
then Eq. (2) becomes

z= &(x2+y2) - (4)

and the projection of the reflector onto the x-y plane is a circle satisfying the
equation

2
x2 + y2 = (%)-) A (5)

where D is the diameter of the reflector. If we now use Egs. (4) and (5) in (3) we
obtain, after some manipulation

< D/2 v(x)
Hg(x Y50 25) = Gn dx dy ¢ (x,y)
-Df2 -v(x)
3 2 2 yy L x -x)y
o T R R

2 2
=ik 4 1 - JX_ L
o (e d)en w25 ]
3 1/2
R = [(:(-xo)2+(y-yo)2+(z-zo)2] d

The electric field distribution can be obtained by employing the Maxwell equation
UX Hg =iwe Eg . (7)

The result for Eg is

D/2  y(x)
<2, 5

H
PRS- S F g -
Ex(xo’yo'zo) 27ive ax /dy (xo x) [yo y""2*"20 E'F(TF ?F)] 6 &x,y).
-D/2 -y(x) (8a)




S

D/2 v(x)

D0
Ey(xo. yo. zo) = —wm dx dy ¢(xny)
-D/2 “-y(x)
(8b)
Ho D/2 y (%) xz _yi -
- 'ﬁTso dx dy 6 (x,y) {a(x,y) [zo-ﬁ - 4F]+ x-x) : -
-D/2 -y (x)
H D/2 v(x)
& o y
Ez(xo' yo'zo) = i_&? dx dy 57 ¢ (x,y)
-D/2 “Y-v(x)
D/2  y(x)
g 2
= m%— dx dy 6 (x,y) {"}F fx =x)"c (yo-y)a(x.y)} , (8c)
°J/lp/2 J-y(x)

where

N

2 yy
= . SO
ate,y) = 2, - 3% t4F “oF

3 s xP 2 3 )
6, 5) sl + 158 CEL L b Vo (R
y {Rs rRY RS . 4F ~4F

Equations (6) and (8) are the formal expressions for the complete electro-
magnetic fields in the physical optics approximation. They represent a quite good
approximation for the entire region z > TIF_ x2 + yz). which is of interest to us.

Of course, they are inaccurate for 2z < 0; over part of that region the geometrical
theory of diffraction must be employed.

By observing Eqs. (6) and (8) it is clear that the scattered electric and
magnetic fields possess certain symmetry properties. These are (for a fixed zo)

H &x . -y,) =H & ,y) . (9a)
Hx(-xo. yo) = Hx(xo.yo) > (9b)
Hy(xo. = -Hy(xo. yo) i (9¢)
Hy(-xo. -Hy(xo.yo) » (9d)




L A BT 1:'

Hz(xo. V) = H & .y) . (9e)
H (x_,y,) = -H,(x,.y,) - (o)
Ex(xo. -yo) = -Ex(xo. yo) : (10a)
Ex(-xo.yo) = -Ex(xo.yo) A (10b)
Ey(xo. -yo) = Ey(xo.yo) ‘ (10c)
Ey("o' o g Ey(xo.yo) ) (104)
E (x,.-y,) = -E,(x_.y,) . (10e)
E,(-x,y)=E & ..y) . (10f)

Because of the aforementioned symmetry properties we have calculated
E and H only for positive values of x, and Yo the values for negative x Yy follow
immediately from Eqs. (9) and (10).

3. RESULTS

We have developed a computer program to calculate the field components
given by Eqs. (6) and (8). As an example of typical results of our program, we
have studied a reflector such that

ol

)
s (11a)

L2 -60 , (11b)

where A is the signal wavelength, and have calculated the field distribution in the
planes z, = 0.95F, 0.967F, 0.983F, and 1. 0F. In Figures 2 and 3 we show* the
amplitude and phase of the electric and magnetic fields in the plane z, = 0. 95F.
The fields shown are those along the line y, = 0, for differing values of x,. In
Figures 4 and 5 we show the fields along the line x, = 0 for differing values of Yor

*In all the results of Figures 2 to 11 we have assumed H, = 27.
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We note, upon comparing Figures 2 and 4, that if the results are known along the

p 5 = 0 axis we can immediately obtain those along the axis x K 0 by replacing

|H | by IE l/z,. IH, | by |E,| /2, and IEyI/Z by |H |, where Z_ is the
1mpedance of vacuum. Because of thia duality, in the remainmg ﬂgurea we will
only show results along either the X, = Oor they = 0 axis. In Figures 6 and 7

we show the fields in the plane z = 0. 967F; in Figures 8 and 9 we show the results
in the plane z = 0. 983F, and finally. in Figures 10 and 11 we show the results 1
in the focal plane The components E and H are now shown bec_uase they

i

are both zero.

There are several observations which should be made regarding our results:

(1) The results of Figure 10 for the transverse fields in the focal plane
agree with those calculated earlier by Minnett et al. 2 (see Figure 11 of Minett's
paper, for our case 9 ~ 7490),

(2) The cross-polarlzed fields |E l/ Z and IH l are generally of the same
order as IHx| and |E |/Zo. except very near to the z, axis. This is true even
in the focal plane, and even holds within the focal spot (that is, we call the trans-
verse dimension of the first null in Figure 10 the focal spot size, and this is of
order A F/D) as can be seen from Figure 10, where |Ez| /Zo is small near the
center of the focal spot (y, near zero) but is large near the outer edge (yo o~ 0.51).

{ (3) In Figures 2 to 11 we have shown the fields on the x and y axes where

j B, = Hy 0. This should not imply that E, = y = 0 off these axes. In Figure 12
we show the field distribution along an axis (see Figure 13) oriented 45° relative
to the x axis in the plane z,. Note that both Ey and Hy are nonzero, although they
are considerably smaller than the other field components.

2. Minnett, H. C. and Thomas, B. (1968) Fields in the image plane of symmetrical
focusing reflectors. Proc. IEEE, 115:14 19-1430.
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Appendix A

In this appendix we present a Fortran listing of the computer program used 4
to calculate E and H. Note that the quantities printed out for E are actually the
electric field normalized by Z, rather than E. The inputs to the program are:

D = diameter of reflector,

H F focal length,
K = wavenumber = 27/X,

X0,Y0,20 = coordinates of observation point,

XTOL = YTOL usually set to 10™°.

4

F ~ 15
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600
1

PROGRAM MAINCINPUT, OUTPUT)

IMPLICIT COMPLEX(Q)

COMMON/ONE/ X0, ONEO2F, ONEO4F, 20, K, Y0, DOV2SQ, QCONST
COMNMON/QXI/QXINTEG (6)

COMMON/XTOL/XTOL

COMMON/ZYTOL/ZYTOL

REAL K :

NAMELIST/XINPUT/ Dy Fy Ky 20, X0y Y0, XTOL, YTOL

READ XINPUT ;

QCONST = (1.0, 0.0) /7 CMPLX(0.0, K)

ONEQ2F = 0.5 7 F

ONEOQ&F = 0,25 7 F

pOvV2SQ = (D /7 2,0)**2

X8 = D /7 2.0

XA = -X8

CALL XINTEG(XB, XA)

PRINT #00, QXINTEG

sToP

FOCMAT(6H HX = ,1P2E12.5/76H HY = 42E12.5/6H HZ = ,2E12.5/
€H EX = 42E12.5/6H EY = ,2E12.5/6H EZ = 42E12.5)
END g
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1

10

20

30
40
S0

60
70

Q0

100

SUBROUTINE XINTEG(XB, XA)
IMPLICIT COMPLEX(Q)
CCMMON/QXIZQXINTEG (6)
COMNON/QYI/ZQYINTEG(6)
COMMON/XTOL/TOL

DIMENSION QTWO(6), QFOUR(6)y QENDS(6), QTOTAL (6)
H = (XB - XA) 7 2.0

N =1

CALL YINTEG(H#XA)

DO 10 J=1,6

QTRCtJ) = (0.0. 0.0)

QFCUR(J) = QVYINTEG(J)

CALL YINTEG(XA)

DO 20 J=1,6

QENDS(J) = QYINTEG(J)

CALL YINTEG(XB)

00 30 J=1,6

QENDS(J) = QENDS(J) ¢+ QYINTEG(J)
QTCTAL(J) = (QENDS(J) ¢ L.,0%*QFQUR(J) ) * H 7 3.0
D0 50 J=1,6

QXINTEG(J) = QTOTAL(Y)

Y =H=H/Z 2,0

N=22%*N

DO 60 J=1,6

QTWO(J) = QTHO(J) + -GFOUR(J)

QFOUR(J) = (0.0, 0.0)
I=0
I=1+1

CALL YINTEG(Y+XA)

D0 80 J=1,6

QFCUR(J) = QFOUR(J) ¢ QYINTEG(J)

Y=Y +H+H

IF(I LT, N) GO TO 70

IFLAG = 0

PRINY *

DO 90 J=1,6

QTOTAL(J) = (QENDS(J) ¢ 2.,0”7QTHWO(J) ¢ 4,0®QFOURIJ) ) * H /7 3.0
QDENOM = QTOTAL(J)

IF (CABS(QDENOM) LY. TOL) QOENCM = CMPLX(TOL, 0.0)

IF(CABS( (GXINTEG(J) - QTCTAL(J) )/QDENOM) GT., TOL) IFLAG = 1
PRINT *, CABS( QTOTAL(J) )

CONTINUE

IF(IFLAG .EQ. 1) GO TO 40

D0 100 J=1,6

QXINTEG(J) = QTOTAL(Y)

RE TURN

END
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10

30
40
€0

€0
70

90

100

SUBROMTINE YINTEG(X)

IMPLICIY COMPLEX(Q)

COMMON/ONE/ X0, ONEO2F, ONEO&F, 20, K, YD, D0OV2SQ, OCONST
COMMON/QQQ/QINT (6)

COMMON/QYI/QYINTEG (6)

COMMON/XXX/XDIFF, XDIFF2, XSQ, EX
COMMON/ZYTOL/TOL

REAL K g

OIMENSION QTWO(6), OFOUR(ED, QENDS(6), QTOTAL(6)
EX = X

XSQ = X**2

XOIFF = X0 - X

XDIFF2 = XOIFF**2

Y8 = GAMX = SQRT(DOV2SQ - XSQ)

YA = =GAMX

H = GAMX

N =1

CALL FIELODS (H+YA)

D0 10 J=1,6

QTWO(J) = (Ce0,4 0.0)

QFCUR(J) = QINT(I)

CALL FIELDS(YA)

00 20 J=1,6

QENOS(J) = QINT(J)

CALL FTIELOS(YB)

NO0 30 J=1,€

QENDS(J) = QENDS(J) ¢ QINTCJ)

QVOTAL(J) = (QENDS(J) + 4,0®QFCUR(J) ) * H / 3.0
DO 50 J=1,6

QYINTEG(J) = QTOTAL(J)

Y =H=H/ 2,0

N=2%*N

00 60 J=1,6

QTHO(J) = QTHO(J) ¢ QFOUR(J)

QFOUR(Y) = 10.0. 0.0)

I =0

I =141

CALL FIELDS(Y+YA)

00 80 J=1,6

QFCUR(J) = QFOUR(J) + QINT(Y)

Y=Y ¢ H ¢H

IF(I LT, N) GO YO 70

IFLAG = 0

DO 90 J=1,6

QVOTAL(J) = (QENOS(J) ¢ 2,0%QTNO(J) ¢+ L, O0®*QFOURIJ) ) ®* H 7 3.0
QDENCM = QTOTAL(J)

IF(CABS(QDENOM) LT. TOL) QDENOM = CMPLX(TOL, 0.0)
IF(CABS( (OYINTEG(J) - QTOTAL(J) )/QOENOM) «GT. TOL) IFLAG = 1
CONTINUE

IF(IFLAG .50Qs 1) GO YO 40

00 100 J=1,6

QVINTEG(Y) = QTOTAL(Y)

RETURN

END
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SUBROUTINE FIELDS(Y)

IMPLICIT COMPLEX(Q)
COMMON/ONE/ X0, ONEO2Fy ONEOWF, 20, K, Y0, D0V2SQ, QCONST
COMMON/QQQ/QINT(6)
COMMON/XXX/XDIFF, XDIFF2, XSQ, X
REAL K

¥SQ = Y®*#2

YOIFF = Y0 - Y

YOIFF2 = YDIFF®*2

TERML = 20 - ONEOLF®*(XSQ ¢+ YSQ)
RSN = XDIFF2 ¢ YODIFF2 ¢ TERM1®#2
R = SQRT(RSQ)

ONECR2 = 1,0 /7 RSQ

ONSOR = 1,0 7/ R

QCEXP = CEXP(CMPLX(0.0, =K®(R ¢ TERM1I - 20) ) )

QPHI = QCEXP * CMPLX (ONEOR, K) * ONEOR2

QTHETA = QCEXP * CMPLX (3,0°*ONECR2-K®**2, 3,0*K®ONEOR) *CNEOR2®ONEOR

TERM2 = 20 = ONEOWLF * (XSQ = Y®(Y = 2,0°Y0) )

QINT(1) = QPHI * TERM2

QINT(3) = -QPHI * XDIFF

QINT(2) = =-QINT(3) ® Y ® CNEO2F

QINT(&) = XDIFF ® (YOIFF ¢ ONEO2F*Y®TERM1) * QTHETA * QCONST

QINT(S) = (2,0*QPHI - QTHETA®(TERM2®TERML ¢ XDIFF2) )*QCONST

QINT(E) = (2,0*QPHI®Y*CNEC2F - QTHETA®* (XOIFF2®*Y*ONEO2F - YDIFF®
TZRM2) ) *CCONST

RE TURN

END
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