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I. INTRODUCT$ON

Radar returns are generally characterized as signals which possess
doppler dependent frequency and unknown phase. Such signals can be non-
coherently processed to yield optimum detection performance within the con-
straints of unknown phase. However, if these constraints are removed, the
performance of such a system is inferior to that of a coherent processor wherein
the phase is exactly known. A signal processor configuration is considered In
this report which Is an approximation to the optimum coherent processor In that
it employs a number of phase “bins,” one of which approximates the phase of
the return signal. In this context, this signal processor might be termed
“quasi-coherent.”

The work reported here was undertaken In support of an on-going Army

program for development of a “quiet” radar system.’ The signal format of
interest is a pseudo-noise (PN) coded CW signal. In particular, the analyses
and results which are presented pertain to biphase, PN coded signals. Maxi-

- mal length PN code sequences are assumed. Performance of a signal processor—
detector configuration as referred to in this report is defined as a measure of
detection probability for a given probabili ty of false alarm , with signal-to—
noise (S/N) ratio actin g as a var iable parameter.

Accounting for range , doppler and phase , a potentially large number of
processor channels might be required to achieve near optimum performance.
Objective s of this reported work include determination of the tradeoffs which

- are available between implementation complexity and performance. It is
envisioned that many of the pr ocessor operations can be best accomplished by
digital means. For this reason , attention is given to configur ing a processor
which is conducive to the use of digital techniques.

Evolvement of the quas i-cohe rent detector is outlined in the discussion
which follows. A series of modifications to the basic correlator configuration
as employed to process video signals are described and analyzed. It is shown
that with some restrictions /modif ications of the convent ional corre lator con—
figuration can be effected to yield near optimum detector performance. Still ,
the ability is preserved to employ digital processing techniques which are
simple , fast , and within the state-of-the-art.

0~~~

4 -  1Boothe , R. et al. , Quiet Radar! Missile Guidance Technical Assessment,
Final Report , US Army Missile Command , Redstone Arsenal , Alabama,

-: TR-RE—76—12 , September 1975.
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II. PROCESSOR CONFI GURATION

The signal processor configuration of intere st here is shown In
Figure 1. This figure illustrates L x M x N processor chann els which perform
corre lation operations between the return signal and locally generated wave-
forms. There are L range channels , where L is the length of the PN sequence
employed to code the transmitted signal. This number is determined in part by
operational requirements of the radar system. In addition, there exist M
dopp ler channels per range channel. Associated with each doppler channel ,
there are N phase channels. Given the number L, it is desired to determine
the number M x N channels required to achieve a specified level of perform -
ance for the detector. The primary objectives of the analyses which follow
are to assess detector performance as a function of the number , M X N, of
processor channels and S/N ratio, and to dete rmine the interdependence of
value s of M and N. It is desirable to minimize M X N while maintaining an
acceptable level of performance.

ge l— — — —— 0 2
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Figure 1. Processor cbannel structure.

~~• . Restricting attention to one particular doppler-phase cbannel, the video
processor configuration shown in FIgure 2 forms the basis for fUrther con-
aidera tion . With reference to this figure, a PN coded bipha.e signal with
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Figure 2. Processor block diagram.

additive white gaussian noise is Input to the mixers shown. The received
signal is

8(t) Ac(t) cos [(w , wd) t+0 1 +n( t) • (1)

where the noise is

n( t) = n
~

(t) cos (w ct) — fly(t) sin (w 0t) • (2)

and c(t) repre sents a maximal length PN code sequence with values ±1. Doppler
frequency shift is denoted by The mixer output s are filtered to produce
In-phase and quadrature (I and Q) channel video signals. Figure 2 indicates that
the PN code is removed at the mixers by multiply ing by a shifted local replica
of the code sequence , c(t + r) ,  where r takes on discrete values corresponding
to each range bin or channel. It is not necessary to decode at this point; but
rathe r , decoding could be accomplished at video, using digital techniques.

I
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The video signals in the I and Q channels of the processor now have the
form

x( t) = Ac(t)c(t+ r) cos (codt+  a) + c(t+ ‘r)n (t) (3)

and

y(t) = Ac(t)c(t+ r) sin (wdt+ 0) + o(t+ T)fl
7
(t) . (4)

In the in-range channels, r equals zero, and ideally

c(t)c(t + T) 1 . (5)

These signals are next multiplied by locally generated waveforms, denoted by
and g

7
(t) . The locally generated waveforms for each doppler-p hase

channel represent doppler frequency and phase estimates of the received signal.
In this report, the three multiplier waveforms shown in Figure 3 are considered.
The sinusoidal waveform is considered because it provides optimum perform-
ance if the frequency and phase estimates are exact, while the square wave and
rectangular pulse waveform are conducive to the use of digital signal process-
Ing techniques.

The I and Q channel signals are summed as indicated by Figure 2, and
then input to an Integrator to complete the correlation process. Finally, at
time T, the Integrator is sampled and the sampled value is compared to a
threshold for the purpose of maidng a detection decision.

In the following sections, results of analyses relevant to detector per-
formance are presented for the three multiplier waveforms of Figure 3. Var-
ions methods of comparing the sampled Integrator output to a threshold are
possible. The appendix presents some of these for comparative purposes.

r
- 

III. PROCESSOR ANALYSIS

Analysis of the quasi-coherent video signal processor is presented
- In the following paragraphs for each of the three multiplier waveforms. Equa-

tlona (3) and (4) represent the signal input to the I and Q channel video
multipliers. The slnuaoidal waveform of Figure 3 is first considered.

6
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A. Sinusoidal Video Multiplication

The .1 and Q alnusotdal multiplier waveforms are expressed
as

= 008 (w1t + °i~ 
(6)

and
- 

g (t) = sin (w 1t + o
~

) . (7)

Above, and 01 represent the best local estimate of the doppler frequency

and the phase, 
~~ 

and 0. Subsequent to multiplication, the signals In the two

channels become

*(t) ~~ c(t)c(t+ ~r) (cos L (co
~ 

— G&)d)t+ 01
— 0 ]

+ cos [(w 1+ wd)t + 01+ oi} + c(t+ r)n (t) cos (u 1t + O
~

) (8)

- and

9(t) ~ c(t)c(t+ r) (~~s (( co~ wd) t +  01— 0 ]

_ cos f ( w l + w d) t + 0 l + 0]}+c(t+ r)n (t) sln ( co1t + 0 1) . (9)

- The purpose of both an I and a Q processor channel can now be seen by con-
- sideration of Equations (8) and (9). The first term in each equation represents

the desired signal , whereas the second terms are a form of self—interference.
- 

The latter terms actually represent the upper sideband resulting from the
mixing (i. e. , multiply ing) operation in each processor channel, and they can be
removed by summing the I and Q channel signals. Further, it is recognized
that summing the two signals provides coherent addition of the desired signal ,
while the noise In the two channels adds Incoherently, since the noise corn-

‘

~~~~ : ponents are Independent. Defining the error In the estimation of doppler
frequency and the phase as

-
. w - w  A w  (10)

1 d

sr
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and

01
_ 0 =

~~
0 , (11)

the signals of Equations (8) and (9) are summed to give 
—

~(t) + 9(t) = Ac(t)c(t+ r) 008 ( Aw t +  t~o)

+ c(t+ ‘r) {n (t) cos (cü 1t+ 
~~~ 

+ n (t) sin (co1t + °1~ 
. ( 12)

Digressing briefly, the Integrator of Figure 2 is considered for the pur-
pose of presenting its frequency response characteristics. It is noted that this
device integrates only over a finite time Interval; or it performs the operation
of Integrate and dump. With a gain factor l/T , and an Integ ration Inte rval of
T, the Integrato r has the frequency response

IH(f) = 
sin (irfT) ( 13)

irfT

This function is sketched in Figure 4. It can be shown that the two-sided noise
equivalent bandwidth is l/ T. Further, with white Input noise of two-sided
power spectral density ij/2 , the output power becomes

N0 =~~~ . (14)

Recalling the foregoing discussion concern ing the presence of self—
interference in the I and Q pro cessor channel s, the following observation can
be made . With the aid of Figure 4, it is seen that this interference would

- - appear at the output of the integrator, except In a case where the frequency
Wd + has a period which is some integer multiple of T, the integration

interval.

H Returning now to the Input of the Integrator shown In Figure 2, and to
Equation (12),  attention is restricted to consideration of the in—range channels.

— The relat ion of Equation (5) is assumed , and this leads to the following
expression for the integrator output at time T.

-

—~~~ —~~~~~~~~~~~~ ---—- —~~~~ _~~~~~~~~~~~~~~
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z(T) =
~~~~T (sin (~ .wT+~~~0 ) - sin(~ .0)}

+ 
~ 

Ic~t+ r) {n (t) cos (w1t + 01) + n (t) sin (c ,1t + °1~~

_ U (
~~wT , A 0 ) + n ~

( T ) + n
7

(T) . (15) 
—

The desired signal component, U(~~wT , M), is first conSidered. In the
absence of frequency and phase estimation errors,

lim {U( i~.w T, A9)}aA (16)
A.w’F_slO

To gain some insight Into the effects of estimation errors upon signal degrada-
tion, It is assumed that both errors are independent random variables uniformly
distributed with probability densities

f(~~wT) = -13 ~~ A coT � 13 (17)

and

f(A0 ) = , —a � i~o ~~ a . (18) 1 
-

Degradation In signal level is now defined by I

D = 
u (A wT , A0 )  ( 19)

Averaging on both ~ wT and t40 gives the average degradation, -

- - 1 3 a
5 = r~ I f  U( Aw T ,A9 )d( ~~0)d(~ .coT) 

-

- 1 3-a 

, (20)
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with the sine Integral defined by

si(~) J 8111 (t) dt . (21)

Prior to completing -the discussion on the effects of signal degradation,
the noise components in Equation ( is) must be considered. Multiplication of
the noise by the locally generated replica of the PN code acts to spread the
noise spectrum, at best; and it leave s the noise unchanged, at worst. Which of
these two possibilities actually occurs depends upon the bandwidth at the point
where multiplication takes place. To avoid this question, it is assumed that
after being multiplied by the PN code, the noise has two-sided spectral density
of~~/2 , at the input to the video multipliers in each channel. This assumption
can be made without loss of generali ty In the analyses. Next, multiplication
by the unit amplitude sinusoidal waveforms in the video reduces the noise power
density by a factor of two . ( The signal suffers the same loss. ) With refe rence
to Equation (14), the total noise variance at the output of the Integrator is t i/2T
after summIng the variances of the I and Q noise components. Further, the
output noise is gaussian .

Data obtained from Equation (20) appears in Figure 5 in the form of con-
tours of average degradation. Although this development does not guarantee
that detector performance degradation obeys Figure 5, it has been shown via
computer simulation that these data are valid at 50% probabili ty of detection ,
and approximately so below this value (Figure 6). At higher detection prob-
abilitie s, corre sponding to relatively large values of S/N ratio , degradation in
detector performance is greater than Figure 5 would imply. This is an inter-
esting result, since Equation (20) was derived for an infinite S/ N. However ,
Equation (20) gives the average value of signal degradation. If values of A.wT
and ~0 are selected from the set of permissible values corresponding to 1-dB
degradation ( for example, AwT = 1 red and ~~0 = 0.6 rad ) , it is found using
Equation (15) that the signal component degrades 7.2 dB for this particular set

- 
of values. Such large value s occur with very low probabili ty when the average
degradation is 1 dB. But, at the higher S/N ratios where detection probability
exceeds 90% , only a very few detection misses are necessary to degrade detec-
tor performance significantly. That is, a significantly larger signal level is
required In order to eliminate these detection misses which occur wIth low
probability.
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- Finally, with regards to the use of FIgure 5 at low values of S/N ratio,
corresponding to detection probability below approxImately 10% , it is recognized
that the noise plays an Important part In the number of returns detected. Fur-
ther, it is expected that the data of FIgure 5 will reflect reasonably accurate
detector performance on the average since many detection misses are enoowi-
tered. Figure 6 permits comparison of the performance of an optimum coher ent
detector with that of the quasi-coherent detector operating with 1-dB average
signal degradation. I~robsb11ity of detection for the optimum coherent detector
is derived in the appendix, and appears there as Case 1.

B. Square Wave -Video Multiplication

— - Digital signal processing has its obvious advantages. If the
quasi-coherent signal processor of Figure 2 were digitally Implemented to
proces s the video, It would be expedient to use square wave multiplier wave-
forms with values ±1. Such video multiplications are tantamount to simply
changing the sign of the video signal when it is negative; i.e. , the video signal
is rectified , but the noise is not rectified (a step which would adversely affect
detector performance) . The effect of square wave video multiplication is now
considered.

The square wave multiplier waveforms are shown in Figure 3 as applied
In the I and Q channels of the processor. These waveforms can be expressed

- 

- 
as Fourier series, with the appropriate phasing for I and Q. The series are

n-i
-, ~ 2

= cos (nw1t + nO1) (22)T n=1,3,5,...

and

g (t) — sin (nw1t+ nO1) . (23)
~ n—1,3,5,...

Equations (3) and (4) are multiplied by Equations (22) and (23) , respectively,
~ 

- to give the multiplier outputs. Upon summing the two channels, certain terms
cancel while others add. The composite signal Input to the integrator Is

15
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~(t) + 9(t) ~~~o(t) c(t+ T){ ~~ & cos (f(n _ 1)w 1+ Owl t

+ (n — 1)0 1+ AO) — ~
- cos( [(n + 1)co1— AwIt

n 3 , 7,1i, . . .

+ (n+ i)O~ 
- b.8)

J 
+ c(t+ T) (g (t)nj t) cos (ø1t+  

~~~

i- g (t)n~(t) sin (w 1t+ 
~~~~ 

. ( 24)

Restricting attention to in-range channels where Equation (5) holds, the inte-
grator output at time T is

z(T) 
~~ n i ,~~~ , . ..  nI (n - 1)w 1+~~.ct,IT {smn(((n - 1) w1

4~~~ 1T 
—

+ (n — i)O
~~

+ A O )  — sin ((n — i)O
~~+ Mi)

- nI(n + 1)cü
n-3, 711, .. .  1

+ i 
((n + 1)O i

_ A 8 l }+ f lx( T ) + f ly(T)

— U( ~c~,T , A e)  + n (T) + n (T) . (25)

The higher harmonics of which appear (i. e. , 4, 8, 12, .. .th harmonics)

are a form of self-interference. The power in each reduces as 1/n4 as a
function of the harmonic number. With reference to the sketch shown In
Figure 4, it is noted that location of the harmonics at zeros of the Integrator
frequency response appears advantageous. That is, let

40mT 1
~~ , r — 1 , 2, 3, ... (26)

Li
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wheremls cne of the doppler channels appeartng jn pigure l. (For purposes - -‘ 
-

of the foregotng disoussion, r n - i ) .  If Equaticn (28) Is satisfied for the 4th
harmonic, all higher harm onics will also be located at zeros of the Integrator
frequency response. Under such conditions, the self-Interference is minimized
and that which remalns isafunctIon of~~~T.2

Under the conditions of Equation (26) , the signal at the output of the
integrator In the absence of doppler frequency and phase estimation error is
given by

-: lim {U(à4,T , i~e)) — ±~. 
• (27)

1o.~dr-.~o

The subject of average signal degradation due to frequency and phase estimation
errors is of inter est here as in the case of sinusoidal video multiplication.
Here, using the same symbol as before to denote dQgz*datIOn,

U D U(A~ T,A ~ ) 
128)4A/ ir

Again, assuming uniformly distributed probability densities for these erro rs ,
Equation s ( 17) and (is) give the assumed densities. Following the approach

- 

- indicated by Equation (20) , the average signal degradation is obtained after
• considerable mathematical manipulation. The resulting expression is

- 

~~~~1 sin (a)  
~

n 1 , 5, 9,...

- Si((n - 1) W1T - p J J _ s 1 n [ ( n _ 1)9 1J [cb [(u 1)~~1T+~~J

— cm [(n — 1) w1T — P1 ])

2~~~ so-called self-Interference apparently occurs as either constructive or
- -

~ destruct ive Interference. If these two possibilities are equally likely, then
the restricting condition of Equation (26) might not be necessary. This point
has not been Investigated.

p.- -~ -

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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-~~~~ sin(a)  
~- (cos ((n + 1)O 1J (Si[(n + 1)c~,1T + $J

n—3,7,11,. .

— Si((n + 1)co1T — $ ) ) — s l n ((n + 1)e1j L cIn I(n + 1)ci,1T +p J

— cln [(n + 1)w1T — p J j} . (29)

The sine Integral appearing in Equation (29) is defined by Equation (21) , while
cm n ( . ) i s deflned by3

( 30)

Equation (29) has been studied under the restriction given by Equation
(26) . Under such conditions, the aver age signal degradation is Independent of
the doppler frequency while dependence upon the initial phase is very small .
It is, therefore , the case that Figure 5 provides a very good approxImation of
average signal degradation when the conditions of Equation (26) are satisfied.

Returning to further consider Equat ion (25) , the noise components there
- 

are easily analyzed. Since the multiplier waveform has equally probable value s

of ~1, the presence of the multipl ier does not affect the noise. 4 Denoting the
- 

- 
two-sided noise spectral density in each video channel by 77/2 , the variance of

• the noise at the output of the integrator is ~/T.

At this point, some insight into the performan ce of the detector using
square wave video multiplication can be provided . In the absence of degra da-
tion, the signal given by EquatIon (27) is seen to be 4/ ,r times that given by

- ‘ ~~i,raniowitz, M. and Stegun , I. A., Handbook of Mathematical Functions,
National Bureau of Standards Applied Mathematics Series, Vol. 55, June 1964,

— p. 231.

tThI s is true only if the frequency of the square wave is less than twice the
* preintegrator video bandwidth. Otherwise, the noise spectr um i~ spread by

- :- square wave multiplication.

r

t
I 

- 
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Equation (16) , the latter actually representing optimum coherent detection.
However, the noise variance in the square wave case is twice that for coherent
detection. These numerical values show that the S/N ratio for square wave *

video multiplicati on is 0.9 dB below the same ratio obtained for the coherent
detector. hi the absence of estimation errors , computer simulation of the
processor using square wave video multiplication confirms that 0. 9-dB degrada-
tion in detection probability exists. Simulation data were also obtained with
the processor operating in the presence of frequency and phase estimation
errors. Representative results are presented In Figure 7 corres pondIng to
1-dB average signal degradation (M = 0.6 rad and ~~wT -1 rad). As pre-
dicted, at 50% probabili ty of detection, performance is 1. 9-dB Infer ior to
optimum coherent detection . Pronounced deterioration is noted at the higher
values of detection probability.

Next, rectangular pulse video multiplication Is considered and compared
with the two cases previously presented. Due to the similarity in the waveforms ,
the material previously presented can be used in presenting the next case. This
is fortunate for all concerned.

C. Rectangular Pulse Video Multiplication

The rectangular pulse waveforms appearing in Figure 3 are
now considered as the video multiplier waveforms. The significant charac-

- 
teristics of this waveform Include the ~~ct that it (i. e. , the notch) removes

• noise from the input of the integrator during portions of the cycle of the video
signal where the signal level is low (i.e. , in the vicinity of zero crossings in
Figure 8). In addition, the notch occurs such that it aids In reducIng the
effects of doppler frequency and phase estimation errors. The question to be
addressed first concerns the width of the notch.

With reference to Figure 8, where the notch width is defined as 2* red,
- ,

- a first attempt to determine the notch width is to maximize the Integrator output
S/N ratio in the absence of estimation errors. The quantity to be maximized
Is

ir/ 2
~~A f s in (wt )d ( c ,t ) (
__________________________ 

— 
A

2 
~~~~~ ~~~~ i)

2 ( i r_ 2
) 

2 ( T ;2 )  ‘ (3

- •
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Figure 8. Video waveforms.

where 0. 2 Is the noise variance out of the Integrator when ~ equals zero, and the
factor in parenthesis In the denominator,

R = (32)

is a noise power redu ction factor. Taking the derivative of EquatIon (31) with
respect to ~ and setting the result equal to zero yields the relation

tan ( * ) =  1 
(33) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~ .—~~~~~ - 
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It is easily verifi ed that the solution of this transcendental equation is

•— O . 4O 5 rad . ( 34)

Following the approach established for the square wave case, the Fourier
series representation for the rectangular pulse train (having values of 0 and
~i) is found to differ from Equations (22) and (23) by the multiplicative factor

C cos (n~) , n 1 , 3, 5, ... ( 35)

where n is the harmonic number. This factor carries through the entire analy-
sis of the previous case. That is, it multiplies the signal component terms In
Equations (24, 25, 27, and 29). Therefore, the restrictions of Equation (26)
are equa lly valid, and average signal degradation is again given by Figure 5
to a good approximation.

For the present case , the signal at the output of the integrator in the
absence of estimation errors follows from Equation (27) to yield (n = I)

lim {U( 8.o,T,I~O)} =~~~~cos (*) . (36)
7F

AB—’O

Comparing the present case with optimum coherent detection, this scheme is
seen to be inferior by 0.35 dB when using Equation ( 34) and the noise reduction
factor of Equation (32) in conjunction with Equation (36) . Again, computer
simulation confirms 0. 35-dB degradation in detection probabili ty when the
estimation errors do not exist. Introducing frequency and phase estimation
errors , the results of computer simulation show that Figure 518 useful in
predicting performance at 50% probabili ty of detection and below, illustrative
data are presented by Figure 9. Comparison of Figures 6 and 9 reveals 

—

approx Imately 0. 35-dB difference in performance also exists between sinusoidal
and rectangular pulse video multiplication when estimation errors are present.

IV. DESIGN CONSIDERATIONS

Performance characteristics of the quasi-coherent detector were
presented and assessed in Section III. Here design related considerations
arising from the analytical treatment are presented. In view of the performance

22
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characteristics of the processor which employs rectangular pulse video mdti-
plication, it is the recommended configuration of those studied. With this
waveform, digital techniques can be employed for all video processing opera-
tions, each of which is simple and straightforward.

At the output of the I and Q channel filters In Figure 2, A/D conversion
is assumed . The required operation involving the selected waveform is to
complement the digital bit stream (i. e. , multiply by minus one) dur ing time
lntei-vals when the pulses are negative. Next the I and Q channels are summed.
The integrator shown In FIgure 2 now becomes an accumu lator. Periodically,
the accumulator is sampled and dumped (i.e. , set to zero) , and the sample is
compared with a threshold level.

The separation between doppler frequency channels and phase channels
can be determined through the use of Figure 5. In addition , a re striction on
the “location” of the center of the frequency channels (i. e., the value s, ci, )

is given by Equation (26) . There is no such restriction on phase if Equation (26)
is satisfied. Consideration of Figure 5 shows that detector performance is less
sensitivie to doppler frequency estimation error than to phase estimation error.
However , frequency estimation error is directly proportional to the Inte gration
time, T, and it accumulate s rapidly for higher doppler frequencies (e.g. ,
25 kHz) . Several tradeoffs are available. Fre quency and phase channel sepa-
ration can be varied along the contours of constant degradation In average
signal shown by Figure 5. There also exists a trade between predetecti on
(coherent) integration and post-detection (noncoherent) integration , providing
some flexibility In selecting the integration time , T, and channel separation.
This point deserves further study In an attem pt to optimize performance and
minimize the required number of channe ls.

Finally , it is recognized that phase channels which collectively span 2w
* 

- rad provide a positive and a negative value of the sampled integrator output.
If a small loss (i.e. , several tenths of a decibel ) is acceptable , threshold com-
parison can be made with the magnitude of the output sample. Such an approach
then eliminates half of the phase channels. The remaJning phase channels
cover the range 0-w rad.

- - V. SUMMARY AND RECOMMENDATIONS

This report presents the evolution of a video quasi-coherent detec-
tor having potential application to quiet radar. Results of particular interest
are analyses and data pertinent to the comparative performance of the processing

24
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schemes which employ sinusoidal and rectangular pulse train video multiplica-
tion. It is shown that the latter processor structure performs approximately
0. 35 dB below the former in the pr esence and absence of doppler frequency
and phase estimation errors. The performance of both processors is compared
to that of an optimum coherent detector, which provides a performance bench-
mark. Design criteria are provided for separating the doppler frequency and
the phase channels. The rectangular pulse processor configuration is recom-
mended because it is conducive to the use of digital techniques which offer
fast , compact, and relatively Inexpensive computational capabilities.

Further study of the recommended processor configuration is necessary
in several areas. These areas include Investigation of the operation under
out-of-range conditions, and determination of the tradeoffs available between
predetection ( coherent) integration, and post-detection (noncoherent) inte -
gration. Simulation programs developed during this reported work can be used
to facilitate such future effort.

25
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Appendix. DETECTOR PERFORMANCE FOR VARIOUS SIGNAL PROCESSOR
CONFIGURATIONS AND THRESHOLD COMPARISON SCHEMES

Various video signal processing configurations and methods of mnldng
detection decisions by threshold comparison are considered In this appendix
with the detector performance expressed as the probability of detection In each
case. Curves and data are presented which depict detection probability as a
function of S/N ratio for several values of detector false alarm probability.
These results correspond to a single look, as post detection Integration is not
considered here.

For purposes of general usage In this appendix, the following expressions
of signal plus noise are of Interest :

x(T) = A cos (o) + n ( T )  — u(T) + n (T) (A-i)

y(T) a A sin (8) + n (T) v(T) + n (T) (A-2)

where T is the time at which the integrator is sampled ( Figure A-i). In
Equations (A-i) and (A-2), A isa positive real constant, unless otherwise
specified , and it is representative of the presence of a signal. The phase, 0,
is a random variable which is uniformly distributed In the interval -w to w rad.
The terms n

~
(T) and fl

y(T) represent noise, and these are assumed to be

independent gaussian random variables with zero mean value and variance,

~ 
2 taken from narrowband gaussian noise processes. Further, the constant

A, the phase, and the noise components are assumed to be mutually Independent.
The probability density functions for the noise and signal components are,
respectively, given by

f(n ) = 
1 exp —n2

/ 2ør 2 (A—s)

f(u) = 
1 -A~~ u � A (A-4)

• 1 2  2

I.-

= 0, otherwise,

with exl,ressions of the same form for n~ and v.
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Figure A-i. I and Q channel video signal processor.

The expressions of Equations (A-i) and (A-2) represent sampled outputs
• of a signal processor such as shown in Figure A-i. These experssiona are

modified as necessary to fit the various cases considered In U~ following
— developments.

- 1. Case 1: A Coherent Signal Processor and Optimum Detection

In evaluating the performance of a detector, it is useful to compare
its performance with that of the optimum detector under idealized conditions.
For this reason, this case entails use of a coherent signal processor which

- requires that the received frequency and phase be exactly known. The sampled
processor output then corresponds to Equation (A-i) wIth 9 set equal to zero.
In Figure A-i, this means that the signal is entirely In the I processor channel.
Detection takes the form of comparison of the sampled outputs , x(T) , with some

• threshold level which produces a desired probability of false alarm.

The probability density l~mcdon for x( T) is

f(x) = 
1 exp (—(x - A) 2

/ 2cr 2
1 , -

~~~ ~ x ~ (A—5)

~~ *

;

-
•
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as shown in Figure A-2. To establish the threshold level, t.~, from a deaired
false alarm probabIlity, P~ , the required relationship is —

PF P( x>t ~
) x  f f(x) dx , A - O

tb

~~~~ 
tJ~ 

(A-e)

That is, false alarm probability is evaluated in the absence of signal. The
previously mentioned complementary error function is a tabulated function,
and it is defined as

erf c(t) = ~~~ f exp (—r2) dr . (A—7 )

Values of threshold level can be obtained from Figure A-3, where the false
alarm probabili ty expression of Equation (A-6) is plotted as a function of the

• normalized threshold , t.~/ o .

-

: 

• 

!~.

Figure A-2. Probability density function, Case 1.
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With signal present, the probability of detection is expressed by

PD
1 P ( x> t h

) a  f f(x) dx
th

1 /th _ A \
a~~~erfc ( j . (A-8)

For A >  t~11 
it is noted that

erfc( —t) = 2 — erfc(t) , t >  0 . (A—9)

The detection probability given by Equation (A-8) is shown in Figure A-4 as a
function of

A2
SNR ’—~ , (A—b )

- 
2ci

for several value s of false alarm probabilit y. In Equation (A-b ), u 2 is the
variance of the noise out of each integrator in Figure A-i. For the general

— case , where U is not zero, the SNR previously defined represents the S/N ratio
following each integrator of Figure A-b, averaged over all values of 0. It also
represents the S/N ratio of the coherent sum of the two channel s, averaged
over all 0. In any case , this ratio is dimensionally proper to define it as an
S/N ratio.

2. Case 2: A Coherent Signal Processor with Magnitude Threshold

4
- - 

Comparison -j

The signal processor in this case is that considered In the previous
case. However , here detection decisions are based upon comparison of the

- - 
magnitude of the sampled outputs of the processor with a threshold level. The
probability density function of interest is that for

0. z( T)~ ’ Ix(T) I , (A—li)
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wbere x(T) is given by Equation (A~1) with 0 equal to zero. With the i~~~ Ity
function f(x) expressed by Equation (A-5) , the probability density function
correspond ing to the magnitude of x(T) is :-

f i~ i
(x) 1 {exp (—(x - A) 2/2ar 2j +exp (— (x + A) 2

/ 2cr 2J}
o~

0~~~x~~~ (A-12)

as shown in Figure A-5.
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Figure A-5. Prob ability density function , Case 2.
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In the absence of signal, the threshold level is related to the false alarm
proh~bllity by

P( IxI > — f  ~~~~~~ dx = 2 f  f(x) dx , A = 0
th th

erIc . (A—13)

It is noted that the probability density function, 1(x), In the absence of signal
is given by Equation (A-3). The previously mentioned false alarm probability
is graphically shown In Figure A-3.

When a signal is present, the detection probability becomes

~~ xl > t11) = f  
~j x 1~~ 

dx

i ( /t.~~~A\  /t.~+ A \ ~~
— ~ t~erfc ( + erI c )- 

~ 
. (A-b4 )

( \“ ITcr/ \ ‘JT u/ )

The detection probability of Equation (A-14) is plotted In Figure A-4 where the
performance of the detection schemes of Case 1 and Case 2 can be compared.
As noted, the two methods compare favorably for large SNR. This is due to
the fact that the second term above vanishes under large signal conditions
since

Jim erfc(t) = 0

- 

and when A is much larger than both threshold levels, Equati on (A-14) reduces
to Equation (A-8). For small values of SNR , the difference In detector per-
formance is seen to be significant.

0
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3. Case 3: A Modified Coherent SIgit~l Processor with Positive and
Negative Threshold Comparison

In this case, the coherent processor of Case 1 is assumed to be
modified such that it produces a b80 phase ambiguity In its estimation of the
received signal phase. T)~is, 0 In Equation (A-i) is 0 or ~ rad with equal
probability. Alternatively, 0 can be set to zero while allowing A to teke on
positive and negative values with equal probability. Here , two thresholds,

are employed which are symmetrical about zero. The probability density
function is5

f(x) = 1 {exp (_ (x — A) 2/2or 2]+exp t — ( x + A ) 2/2or 2
1} . (A—b5)

cr 2 ”f~~’

In the absence of signal, the relationship between threshold level and
false alarm probabili ty is given by

PF = P ( x > t ~
) + P ( x < _ t .

fl
) = 2 P ( x > t .

fl
)

= 
2 f  exp (—x2/2~ 

2) dx = erIc ( ~~ . (A—i6)
u’~f ~? t~ \ ‘.T~’cT/

The false alar m probabili ty is graphically shown In Figure A—3 , as it is the
same function obtained previously in Equa tion (A-b3) .

The probabili ty of detection In this case is given by the probabilities

PD = P(x >t.
fl
) + P(x .c _t.

fl
) .

5The density function of Equation (A-b5) is obtaine d by convolving the prob-
• ability density function for the gaussian random variable with that for A. The

- -
~ latter density function is

~~~ 
u) = ~ 6( u - A) + ~ ô( u + A) 

j  ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
- 
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Due to the symmetry displayed by the probability density function, the twoprobabilities in the previously mentioned expression are equal. The detectionprobability can be written as

~D f f(x) th+  f 1 (z)  t h -2  f 1(x) dx
th th

( /tJ~ ••4 A\ /th +A ”4)
~ 4~erfo ) + erIc ( —) 

~ 
, (A—17)

‘J T.~,

with 1(x) expressecj by Equation (A-is) . Equation (A-17) is the same expres-sion obtained for detection probability In Case 2, and given by Equation (A_ 14) .Since the threshold levels are also related to false alarm by identical expres-sions, the two detectors perform In an equivalent manner.

4. Case 4: A Modified Coherent Signal Processor with Magnitude
Threshold Comparison

Here, as in the previous case, it is assimied that the cohere ntprocessor is modified such that a 180 phase ambiguity In the estimation of thereceived signal phase results. The detection decision is based upon comparisonof the magnitude of the sampled output with a threshold level. In the absenceof signal , the situation is the same as that In Case 2. Thus, the probability
of false alarm and threshold relationship is given by Equation (A-is) .

The density function for x(T) is given by Equation (A-15) , with signalpresent. Accounting for the magnitude of x( T), the probability density functionbecomes

1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(A—18)
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The detection probability Is, therefore ,

= P( lxi > t~) f I 1 1 (x) dx
th

I /t~~-.A\  /th +A\ 1
=~~Ierfc ( + eric 

( fl 
. (A-19)

L \~ ITcr /

This re sult too Is the same as that obtained In Case 2 for the probability of
detection. Thus , the two detection schemes are theoretically equivalent, and
the detection probabilit y Is shown in Figure A-4 as a function of SNR.

5. Case 5: A Noncohere nt Signal Processor with Magnitude Threshold
Comparison

A nonooherent signal processor consisting of only the I channel In
Figure A-i is considered where the received signal has unknown phase in the
presence of additive gaussian noise. The sampled output of the processor is
described by Equation (A-i), where the parameter A is a positive real con-

4 stant , e rep resents a random vari able uniformly distributed in the range —ir
to ir rad and n (  T) represents a zero mean gaussian random variable with

variance, ~. 2 With reference to Equation (A-i) , the probability densities for

~ ( T) and u( T) are given by Equations (A-3) and (A-4) , respectively.

Assuming independent phase and noise , the probabili ty density function for
x( T) can be expressed In terms of the characteristic functions for the two
densities.

- Concerning 1(u) , the characteristic function is

M ( ~ )= f f(u) exp (j~u) du~~~ f 
7

~~~’~~ du

Maldng the variable change, u - A cos (q~), the integral can be evaluated to
0- produce

M ( ~ ) = J 0(A~) , (A—20)
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where J ( . )  is the zero order Bessel function of the first Idnd. Similarly, the

characteristic function for the gaussian random vari able with probability density
f(n) is

M ( ~ ) i  1 
~~~ (—n 2/2or 2) exp (j~n) dx

0~ 
t4T7~? -~~~

= ex p ( -~ g /2) . (A—21)

hi terms of the two characteristic functions, the density function for x(T) is
given by

f (x )=t  f J0(A~) exp (-~
2

o 2/2) exp(-j4x) d~ , (A-22)

which is identified with the Fourier transform of the product of the character-
istic functions. This integral cannot be evaluated in closed form. One method
of obtaining numerical data representing this probability density is to utilize

the fast Fourier transform algorithm (FFT) •
6

The detector addressed makes decisions based upon the magnitude of the
processor output samples. Since both characteristic functions are even func-
tions , the density function Equation (A-22) is real and even. Thus, the prob-
ability density for the magnitude of x( T) can be expressed in terms of Equation
(A—22) as

• 6Note that Equation (A-22) must be expressed in the proper form when using
• the FFT to evaluate the Integra l. With the discrete Fourier transform (DFT)

defined by

N—i
G(k) ~ ~ g(m) exp (-j2 iiicm/N)

m~ )

Equation (A-22) must be rewritten using the variable change, 3= o~ / 2ir. Here ,
• T is the range of ~ over which the characteristic functions exist, and N is the

- 

- number of sample points entered in an N-point FFT.
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I 1 1 (x) = 21(x) , 0 ~ x ~ (A—23)

Illustrative densities are shown In Figure A-6 as obtained through the use of the
FFT applied to Equation (A-22) . Threshold is set to yield a desired false
alarm probability according to

~F 2 f f(x) dx , O~~~x~~~~ , A = 0
th

0.8 ~
~~-~~

-—— NO SIGNAL

SNR — —lO dB

0.6 -

-

0dB

0.2 —

10 dB

0 I I
0 2 4 6 8

Jib

0. Figure A-6. Probabili ty density function , Case 5.
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where the probability density corresponds to the absenc e of signal. Unde r this
condition , the false alarm probabili ty Is agaIn

/ t  ~2 f exp (-x
2
/ 20

2
)  dx — erIc ( —k 

~~ 
• (A—24 )

F 
~~~~~

This probability appears graphically In Figure A-3 as a function of the normal-
ized thres hold ,

In the presence of signal, the probability of detection is obtained from
Equation (A-23) to yield

P( lxi > t~) 2 f f(x) dx , 0 � x ~ . (A-25)
th

Equation (A-25) has been numerically evaluated using the FFT computations
of Equation (A-22) to produce data from which the curves of Figure A-7 were
prepared for several values of false alarm probability.

6. Case 6: A Noncoherent I-Q Signal Processor with Square Root
of the Sum of the Squares Threshold Comparison

A noncoherent signal processor consisting of in-phase and quadrature
channels as illustrated In Figure A-i is considered. The received signal has
unknown phase in the presence of gaussian noise, and the sampled outputs from
the I and Q channels are expressed by Equations (A-i) and (A-2), respectively.
Further , the detection decision is based upon comparison of the square root of
the sum of the squares of the sampled outputs of the I and Q channels with a
threshold level. Therefore,

r(T) = (x
2
(T) + y

2
(T)]

1/2 (A—26)

and the probability density function of Interest Is denoted by f(r).

It is noted that the random variables which represent the signal corn-
ponents of Equations (A-i) and (A-2), u(T) and v(T), are not independent
since they are related by 0. However, it is important to recognize that the

L
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Figure A-7. Probabili ty of detection , Cases 5 and 6.
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density function for Equation (A-26) is Independent of the values assigned to 8.

I That is, the noise component can always be defined to be In-phase and In quad-

rature relative to any phasor representation of the signal component. 7 Thus,
any convenient constant value of 0 can be assumed which will facilitate deter-
mination of 1(r) . Let 8 equal zero , and the joint probabili ty density function
for the I and Q channel outputs becomes

f(x, y) = f(x)f(y) 1 
2 exp [—(x -A) 2/2cr 2

1 exp (-y2/20
2)

2iro

- 
- 

I 
Using the transformation of random variables

. 

2 2 1/2r ( x  + y )

x 1 r c o s (~~) r~~~0

y.” r s1n (~~) 
ç 

—ir �~~~~~ir

and

d x d y = r d r dq~

leads to the relation

f( r, ~) = r f (  r cos ~~, r sin ~
)

The desired density function is given by

1(r) = f f(r,~~) d~

fe x p{-[(rcos~ -A)
2
+ (rsin~~)

2
J/20

2
}d ~

0.

7Beckmann, P., Probability in Communication Engineering, p. 122.

1-
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2iw 2 exp L— (r 2 + A 2)/2o
2

1 f exp t (rA cos~~)/u 2
1 d~

exp (—( r2 
+ A2)/2o 2~ 10 (th~) , (A—27)

where i ( s )  is the zero order modified Bessel function. The Equation (A-27)

• is often referred to as the Rice-Naka gami density. As a matter of formality,
the joint density function , f(x,y) could be defined as a function of 0 also.
This would leadtoaneed to average over all 0 In order to obtaIn 1(r) . But
with 0 assumed uniformly distributed In the range -ir to ir rad , the resultant
would be Equation (A-27) . The density function given by Equation (A-27) is
graphically illustra ted in Figure A-S.

The false alarm probabili ty from which a threshold level is established
is obtained from Equation (A-27) by setting A to zero. Under this condition ,
I~(0) has unit value , and the Rayleigh density function results. Thus,

PF .’ P ( r > t .
fl

) =  f f(r) dr , A 0

~th

= exp --j . (A—28)
\2o /

This function is shown In Figure A-3, from which the normalized threshold
level can be found for a given false alarm probability.

In the presence of signal, the probability of detection is expressed as

- 

-

. P( r> t.~) — f 1(r) dr . (A-29)
t
h

This integral was numerically evaluated to obtain data from which the curves-T of Figure A-7 were constructed.
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Figure A-S. Probabili ty density function , Case 6.

In the foregoing development, it was asserte d that the received signal
phase could be assigned any value for pur poses of finding the density function,
f( r). This claim was substantiated during this effort by digital computer

- . simulation of Equation (A-26) , with x(T) and y(T) given by Equations (A-i)
and (A-2) . Several simulations were conducted. First , the phase, 0, was
randomly selected In a uniform manner over the ran ge of value s, —ir to ir rad ,
and the simulation was car ried out. In addition , 0 was assigned values of 10° ,
30 and 40° , and three separate simulati ons were carried out. Each simulation

conducted produced data for false alarm probabiliti es of 1O~~, 10~~, and i0
as a function of SNR . Compari son of these data with the detecti on probabili ty
curve s of Figure A—7 showed excellent agreement.
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7. Case 7: A Noncoherent I-Q Signal Proce ssor with the Sum of the -

Magnitu des Thr eshold Comparison

The I-Q signal processor of the previous case Is again consideredwith detection decisions based upon compar ison of the sum of the magnitudesof the sampled outputs from the I and Q channels

z(T) = I x (T) I+  Iy(T) I (A..30)

with a threshold level. Again, x(T) and y( T) are expressed by Equat ions(A-i ) and (A-2), ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The :density functiona for the magnitu des of x( T) and y( T) are both of the form ofEquation (A-22) , but the two random variables are not independent,,

In the absence of signal, the probability density functio n for z(T) isobtained by convolving the magnitude gaussian noise density with itself , sincethe noise In the two channel s is independent. The density function for each noisecomponent has the form of Equation (A-3). Accounting for the magnit ude ofeach gaussian random variable,

f(z) = f f I N l (
~~~,N, (z

~~n ) t h
0

= 

~~2 I2ir~ o

, 2 
exp(-z2/4o 2) erf(z/2o ) , 0~~ z�. • (A—si)

Above, the error function is defined by

t
erf(t) = _L f e x p (_ r2) cir . (A—32)

The probability of false alarm is

- . 
Pp = P ( z > t h) =  f f(z) d z — i -  f f(z) dz . -

- 
- 

- th

___________________________________ ~



Substituting Equation (A-31) Into the rightmost Integral of the previously
mentioned equation, and making the variable change, r - z/2a , yields

th/ 2o

1 - -~~~— f exp (—r 2) erf(r) dr

This Integral can be evaluated using the method of integration by parts In con-
junction with the relation of Equation (A-32) between the two factors In the
Integrand. Carrying out these steps gives the false alarm probability

= 1 - er? (
~
) . (A-33)

- 

The function given by Equation (A-33) is shown in Figure A-3 for purposes of
determining a desired threshold normalized to a .

Derivation of an expression for the detection probabili ty requires that the
density function for z(T) be known. Lacking such an expression, Equation
(A-30) was simulated on the digital comput er. The phase appearing in Equa-
tions (A-i) and (A-2) was randomly selected from a uniform distribution in
the range of values, -ir to ir rad. The I and Q noise samples were Independently
selected from two Independent gaussian distributions. Results of the simulation
appear in Figure A-9, which depicts detection probability. Each data point In
the figure Is the result of 300,000 sImulated samples of z( T).

8. A Noncoherent I-Q Signal Processor with the larger of the
Magnitudes of I and Q Thre shold Comparison

- 
Once again, the I-Q channel processor of Case 6 is consider ed.

Here, detection decisions are made by comparing the larger of the magnitude
of the l and Q channel sampled outputs

z(T) = Max (Jx(T) I , Iy(T) I) (A—34 )

with a threshold level. The probability density functions for the magnitudes of
x(T) and y(T) are both of the form of Equation (A-22); however, the random

- 
-~~ variables for the I and Q samples are not Independent.

1 - -~
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Figure A-9. Probability of detection, Cases 7 and 8.
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In the absence of signal, the I and Q noise samples are Independent.

Under this condition , the d ensity function is~

f( z) = 2f 1 1 (z) F 1 1 (z) , A = 0

with the cumulative probability distribution

F 1 1 (x) = f f 1 1 (x) dx = 2 f exp (_r 2/ 2or 2) ~i1
0

- 

-. — en ( x \ o~~ ~~~~

- 
- 

Thus, the density function Is

4 2 2 1 Z~~~~~f( z) exp (—z /2o ) erf f

which has the form of the expression of Equation (A-31). The false alarm
probability is then

th
P~~= P ( z > t ~) f f(z) d z ’ l -  f f(z) dz

th 0

With the variable change, r = z/’JTor , and following the derivation of Equation
(A—33) ,

th/’~
I
~
’U

— ~~~ f exp (—r2) erf(r) dr

1 = 1 

~~~~~~~~~~ 

(
~ 

. (A-35) - -

8Papoulis, A., Probability, Random Varia bles and Stochastic Processe s, p. 193.
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This function is shown In Figure A-3, from which values of normalized -

threshold levels can be obtained.

As in the previous case, the detection probability as a function of SNR
for several values of false alarm probability was found by digital computer
simulation. In this case, the resulting data values were found to be in corn—
plete agreement with those data obtained in Case 7. Thus, the detection
schemes of Cases 7 and 8 are equivalent, a result stated by Nathanson.9

9Nathaneon , F. E., Radar Design Pr inciples, p. 474.
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