
irr~~AD—A03 980 ILLINOIS UNIV AT URBANA— CHAMPAIGN COORDINATED SCIENCE LAB FIG 9/2
DESIGN AND OPERATION OF A HIGH LEVEL MULTICOMPUTER COMMUNICATIO—ETC(U)
SEP 76 P B BODENSTAB DAA BO 7—72—C—0259

UNCLASSIFIED R—739

END

—
DATE

:3—77

-

~~~~~ 
p 

-
~~



UNClASSIFIED

~ICURITV CLASSIFICATION OF THIS PAGE (ITh.n ba. ~~~~~~ 
.•

___________________________________________ BEFORE COMPI..ETD(G FORMREPORT DOCUMENTATION PAGE lEAD INITRUCTIONS

I. REPORT NUMBER GOVT ACCESSION NO 2. NECIPIENT’S CATALO G NUR SER

9~SIGN AND ~~ERATI0N OF A HIGH JEVEL ~~JLTI- 
~ 5 £ OF REPORT S PERIOD COVE £0

C
~~~~ 

~~~~~~~~~~ ‘~~~

rER $O~*EJNIC&TI0Ii$ PA~kAGE , 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~

i 
~~~~~~~chnical e~a~t~~~~

(~ i~~ J 18!i~~-7&~72~J

NUM U~~Sfl(~) _ _ _ _ _ _ _ _ _ _ _ _ _ _

P

~

~~~~~P~~l RobertjBodenst ab ~~~

~~ 

S PERF9N~ IN~ pROANI;ATIo~4 NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECT , TASK

~oorainatea Science Laboratory AREA S WORK UNIT NUMBERS

University of Illinois at Urbana -~~han~~aign
Urbana, Illinois 61801 

IS. RCI1~~~~~~?. _
~~~~~~~~

II. CONTROLLING OFFICE NAME AND ADDRESS
iS ep-t I Joint Services Electronics Program

~~~. NUJER0F PAW

II. SECURITY CLASS. (of At. r.pott)AMI I AD S ~~~~ pU

UNCLASSIFIED
14. MONITORING AG EN CY N __________________ Ott o.) 

~~~~~ DECLASSIFI CATION/DOWNGRADING
SCHEDULE—~ ‘1

IS. DISTRIBUTION STATEMENT (.1 CS. R sp r)

I : Approved for ;ublic release; distribution unlimited

I?. DISTRIBUTION STATEMENT (of m. abilract .n .,.d Sn Stock 20. DI dSII.,wt from Riper)

D D C
IS. SUPPLEMENTARY NOTES

(R~rPnnhlI?.r
19T1

_
f [~~ LbU U~~L¶ Is. KEY WORDS (CenIlnu. en ,.ver.. old. it n.c.uery ~~ d ld.nIlS~ by block ni~~ b.r) A

?tilticomputer Coimnunication.
Concurrent Processes
)titual Exclusion
Critical Sections

TRACT (CentInuo en v.v. ,.. .ld. It n.c.... ry en~ I4.nIHy by block ~om,b r)L ZO• ASS
The need for a means of colmmani cation between tasks in either a imaltiprograin
ining or t ime-sharing enviromient becomes necessary when one wants to coordir te
the activities of several real t ime interdependent tasks. Likewise , when a
con~uting system is composed of several interconnected co~~uters the sane ne d
for courmanicat ion among them ar ises . In the Coordinated Science Laboratory t
the University of Illinois , the coi~~uting system is co~~osed of Digital
Equipment Corporation 1. PDP-lO and PDP-ll/40 coI~~uters connected together vi
a recently built high speed (approx. one megabyte per second) channel

DO I
”
~I 1473 :t~

T°’4 OF I NOV 8$ IS OSSOI ETI

SEC~~~ITY CL*SST I~CATION OFI Z ~~~~415 AGE .n 0.1. IntsrS~~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~ • —-- -—- -

-~~ -- -- .-~~-~~rr f l ” -

~~~~~~~

-

SSCU*ITY G~~~$$IPICAT*ON OP THIS PAG~ (PSsui Dill ~~N.Ø

H

20. ABSTRACT (continued)

interface. Due to the Advanced Automation Laboratory’s current interest
in machine vision and industrial robotics which will require the execution
of extensive interdependent control tasks on both computers, the necessity
for a high level communication package which will allow any task on one
computer with any task on the other computer is readily apparent.

r

Li
I-

4

SECU~~I1~Y CLASsIFI CATI O N OF THIS P~~Q~ (WM., 0 •  ~~~~~~~ U
_______________- -.- .- - ~~~~~~~~~~~~~~~~~~ r w  .~~~—. 

- - _ _ —---- - -‘



—

-
~~
• ~ •I.~’•~ II •

~~~~ ~~~~. II ~~ $* CI
I

~ ~~1IhIt1tø -

~~~~ I

~ I ~~~~

• UIW-ENG 76-2227!~~~ 

S
e~~~~/$!i~~IuIiT V.0

I — 

*~K.

I - DESIGN A~W OPERATION OF A HIGH ~~~~~MULTICOMPUTEI~ COWUNICATIONS PACKkGE

by

- Paul Robert Bodenstab

‘IH
This work was supported in part by the Joint Services Electronics

-- Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB-07-
72-C-0259.

r

-. 

Reproduction in whole or in part is permitted for any purpose of
the United States Government.

—I

Approved for public release. Distribution unlimited.

~~z I  
_ _



TABLE OF CONTENTS

I Page
1~ IN’I’RODUCTION . .    1

1 2. DESIGN OBJECTIVES AND CONSIDERATIONS  2

3 • SOFTWARE ARCHITECTURE 5

1 4. CONMUNICATION FACILITIES 8
4.1 IPCF .. . .. •I . •.#........... 8

I 
4.1.1 PDP—1O IPCF . .  8
4.1.2 PDP—11 IPCF ••~~~~•• • • • • • • . S . . • . •. . .. . . . •  .. 9

4.1.2.1 Initialization Routjrte .. 14
4 • 1 • 2 • 2 Send Routine . . . . . . . • 1.4

I 4.1.2.3 Query Routine . . . • • •....... • • • • • • .. .  15
4.1.2.4 Receive Routine ............. ..... 15

I 4.2 ICCF •• .• . .•  ••.•. . . . ... ...... . . .  ..... 15
4.2.1 Message Reformatting . . . . • • . . . . . . •.  . . . . . . . •.  . . . . . 16
4.2.2 PDP—1O ICCF • ..•.•... ,.  •. . .. ø  ... 18
4.2.3 PDP—ll ICCF •• • .• . • • .. . . . . .•  .... 21

4.3 PDP—ll User Initialization Routine ....... ........ 22

I s .  PDP—13. IPCF USERS IIANUAL , 23
5.1 IPCF Structure ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 23
5.2 Message Packets •s• e.••••••..~~~ ..... ........... 24

I 5.3 Process ID (PID) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 24
5.4 Queues ... . ..•. .... ,.. . . . .•.•  ~~~~~~~~~~~~~~~~~~~~~~~~ 2.5
5.5 (SYSTEM] INFO • S s I • ø • • • • •e • t . • . . . ø .. • S . . • . . . . . .~~~~....... . 25

5.5.1 [SYSTEM] INFO Request Format ..... ........ .. 25

1 5.5.2 [SYSTEM] INFO Reply Format ...................... 26

5.6 Error Codes •... . . .. .. . . .  • •.•... . .. . .  26

I 5.7 IPCF lnitialization R.outine .......,.................... 26
5.8 Packet Sending Convention ... 27
5.9 Packet Query Convention . . . • . . . . . . . •  . • • . • . . . . • , . 27
5.lO Packet Receiving Convention ................271 5.11 Using the IPCF    28

I 
6. CONCLUSION 32

RE FERENCES • 34

( I

t ‘
_ _ _  -



11
I- I i -

I DESIGN AND OPERATION OF

A RIQI LEVE L MULTICOMPUTER C(Z4MUNICATIONS PACKA(~1 Paul Robert Bodenstab

N 1 • INTRODUCTION

- The need for a means of communication between tasks in either a

multiprogramming or time-sharing environment becomes necessary when one wants

to coordinate the activities of several real time interdependent tasks. Like-

~ 
wise, when a computing system is composed of several interconnected computers

j ‘~~ the same need for coimnunication among them arises. In the Coordinated

- Science Laboratory at the Univers ity of Illinois, the computing system is
- composed of Digital Equipment Corporation ’s PDP-1O and PDP-ll/40 computers

connected together via a recently built high speed (approx. one megabyte

• - per second) channel interface [11. Due to the Advanced Automation Laboratory ’s -

current interest in machine vision and industrial robotics which will require

the execution of extensive interdependent control tasks on both computers,

the necessity for a high level communication package which will allow any

‘Ii task on one computer to communicate with any task on the other computer is

readily apparent .

1”
~

~ ____________________________

[1] See reference 10.

E



1 2

— 2. DESIGN OBJECTIVE S AND CONSIDE RATIONS

The concept for a multicomputer communications package (MCCP)

I is -not new. However , for a particular package to be effective it must

I 
not only exploit as many hardware and/or software features as possible of

the system configuration for which it is intended but it should also inter-

I face well at the user level and with the working environment. There are

problems, however, implementing such considerations.

I I The foremost problem is the difference of computers and the need

of the MCCP to interface with both operating systems . The PDP-1O supports

a large time-sharing system while the PDP-ll/40 supports a customized multi-

I programming operating system (1]. The two computers differ also in their

characteristic word size. Although the PDP-lO handles 36 bit words and

I the PDP-11 uses 16 bit words this difference is not as significant as it

may appear since the channel interface hardware allows several modes of

data packing and unpacking to occur between the two machines [2] .  There

I still exists a problem of efficient preformatting and/or postformatting

of messages once an intracomputer transfer has been made.

I E. Dijkstra (3] has shown that a fundamental condition for

intertask communication requires that they share a common store, i.e.,

I memory location(s) that are accessible by each task. In order to prevent

I deadlocks or other time dependent problems associated with the accessing

of this resource among several competing tasks, Dijkstra has shown that

(11 See references (2) and (7)
(2] See reference (10)

1 (3] See reference (5)

‘I

11 
_ _ _ _ _ _ _  _ _. ‘ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -



p ~~~~~~~~~~

‘

~~

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

I
1 3

T mutual exclusion must be achieved. This idea simply asserts that a sharable

resource must be used exclusively by one task at a t ime. Satisfaction of

this principle requires that no two or more tasks enter their critical

sections [4] at the same time and this further implies that processes be

[queued in regard to the execution of their critical sections. Hansen [5]

r has determined the necessary conditions which any scheduling algorithm must

meet :

;~ 1. The resource in question can be used by one process
at a time at most.

-
, 2. When the resource is requested simultaneously by

several processes it must be granted to one of
them within a finite t ime.

3. When a process aquires the resource, the process
must release it again within a finite time .
Apart from this , no assumption is made about the
relative speeds of the processes; processes may

L even be stopped when they are not using the
resource .

4. A process should not consume processing time when
it is waiting to aquire the resource.

Thus , these conditions must also be met by any general communications

package .

Additional problems arise when an objective of the communication

package includes a high level user and working environment interface.

The calling protocol to initiate a message transfer or retrieval should

I be consistent , or nearly so, on both computers to facilitate ease of use.

1 (4] A critical section is simply a commonly shared program stream that
accesses a resource

(5] See Chapter 3 in reference (6)

I
I
I

_ _
-

1 4

Equally important , the execution speed of the MCCP should be made as fast

as possible since it will be used in the course of controlling real time

events.

-~~ Considering the programming of the MCCP itself , a great deal
- of thought should be given to writing structured code that will lend itself

to simpler debugging procedures and to future expandability if the need

• arises.

I

I :

a.

ii

I
N

,
.

[
_________ _ _

_ _ _ _ _ _ _ _ _ _

- ~~~~~~~~~~~~~~~
~~~~~~~~~~~~~ rr~~~~~~~~~. ~~~_-~~~~~~~

__ _  _ __-n~ 

I
1 5

3. SOFTWABE ARCHITECTURE

I 
An attempt has been made to make the sof tware architecture

comprising the MCCP as symmetrical as possible on the two computers. This

I would not only convey an easier understanding of the philosophy behind the

communication mechanisms but would also facilitate in the actual progranining

since the basic communication algorithms would be the same while the actual

coding of these algorithms would be different. In reality, the attempt was

I only partially successful since portions of the communication package had

I
to be custom written to interface with the particular operating system.

Still , ‘when viewed from a system level , the architecture as shown in

I Figure 3-1 retains much symmetry.

The NCCP is composed of basically four parts , two interprocess

I communication facilities (IPCF) (1] and two intracomputer communication

I 
facilities (ICCF ) where one of each exists on each computer. The function

of each IPCF is to provide an easily used facility for allowing intertask

I communication on the same computer. The function of each ICCF is to

provide a facility for allowing intra-IPCF communication. This basic

I structure , then , is capable of allowing any task to communicate with any

other task regardless of whether the destination task exists on the same

computer or the other.II The operation of the IPCF is very analogous to the operation of

a post office , it must be able to receive messages and route them to the

LI
(1] The acronym IPCF was first conceived and used by Digital Equipment

Corp. in reference (2)I
I
I



-. —•~~—---—‘- ..r ~~~’ ? - ~~~~~, wrr ’ r~wr

PDP — ] ø

r _ _ _  _ _ _  

—-
I fTask~ JTa s kl . . . T k  I

[jcc~j - 

_____ 

F-

1 L_ J

PDP— 1.l
- n ~1

• Rask Task . . . ITaskI i  2 L~ I
L 

> Pa ths  of C o mm u n i c a t i o n

> C h a n n e l  C o m m u n i c a t i o n

• 
. • - - -

1 Figure 3—1 . S o f t w a r e  1~r ch i t e c t u r e  of the  M CCP.

11 

•~~~~~M- • •• - -- - - ---~•• ~~~~~~~~~ —• • - -~~~~~~~~~~
- —



— 
_~ ._ -... “~~~

_ _ -_ ~~ ‘~~~~~~ , 
-~~~~~~~~~~~~-~~~ ~- ===- —

T~TY~~

7

• I appropriate destination task. The ICCF consists primarily of channel driv ing

and receiving routines and is used to relay messages dispatched by or intended

J for a part icular IPCF .

‘ 
The lowest level channel software has already been written prior

to the comp letion of this project. The level of this software is compatib~Le

I with both the standard DEC I/O UUO monitor calls on the PDP-lO side and with

the I/o emulator trap routines on the PDP-ll side.

I
I
I
I
I

1,- I
P 1

— - -~~-•. ,- ~~— •,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
— _y_•~~ _______



~TT
1 

8

4. COMMUNICATION FACILITIES

In this chapter the discussion focuses on the actual algorithms

and control mechanisms used to implement the MCCP.

4.1 IPCF

As was previously mentioned, the IPCF serves as a facility for

• transf erring messages from one task to another on the same computer. As

such , it represents the essential foundation on which the rest of the MCCP

is based.

-
~~ 4.1.1 PDP-lO IPCF

~
. 4

The PDP-lO IPCF already exists as a standard feature of the DECr
system-lO monitor [1]. It is supported by three monitor calls (UUOs) which

allow a user to either send , receive, or query for the presence of a

I message. A message is a semistructured packet of information which consists

i of what might be analogous to an “envelope ” and “data” portions. The

envelope portion consists of a structured four word control block that

I I contains such information as source and destination addresses, the length

and a pointer to the data portion, and some assorted flags. The data

1 
~ portion consists of up to a 12 word block of user defined data.

- I The protocol for using the IPCF requires a user job to declare

an ASCIZ [2] symbolic name and aquire a process ID (PID) through the

~~~

- I (SYSTEM] INFO facility of the IPCF. PIDs serve as the source and

1 [1] Since this facility is well documented in Chapter 7 of reference (2)
~~ - only a brief description of its features are presented here

[23 An ASCIZ string is equivalent to an ASCII string terminated by a null
character

- i 9

I destination addresses used in the envelope portion of the message packet.

The [SYSTEM] INFO facility can also be used for such purposes as finding

I the names associated with other PIDs, finding the PID5 associated with

I
other names, etc.... A feature of the IPCF which allows a job to have

several PIDs will be shown in a later section to have a crucial role in the

I operation of the MCCP.

Intertask communication is accomplished through the use of a

I “mailbox” in the form of a short linear first in-first out (FIFO) queue

I
created by the monitor for each job that requests a PID from [SYSTEM] INFO.

- Message packets are placed in the receiver job queue and remain there

I
until that job retrieves them.

4.2.2 PDP-ll IPCF

I When the POP-il multiprogramming operating system was written

no provision was made for allowing easy and systematic intertask conmtui-

I cation. Thus the creating of the PDP-ll IPCF was necessary to overcome

I
this handicap. It was decided that the structure and operational protocol

of this IPCF should be designed to mimic, with certain limitations, the

I behavior and structure of the PDP-lO’s IPCF. This decision implied that

the overall characteristics and usage protocol of the entire MCCP would

/ ‘~ I become consistent on both computers. Since the PDP-lO IPCF has been

I
found quite easy to use then the ease of use of the overall MCCP should

follow likewise.

I This decision also suggested a possible software structure which

satisfied the above objectives and yet could be easily partitioned into

- • ~~~~~~~~~~~~~~ ~~ - ~~~~~~~~~~

—•--,-
~~
--—

I
1 10

well understood functional modules. They were: a shared data base to be

- I used as the common store, and three routines similar to the PDP-lO’s IPCF

r
send, query, and receive IJUOs which perform various operations on this data

base. This, indeed, was the approach taken.

I To insure reliable intertask communication the mechanisms within

-
. the IPCF use a combination of hardware and operating system features to

I . guarantee both mutual exclusion and the automatic scheduling of each task’s

critical section.

A simple and effective way to insure mutual exclusion of the
-

sharable resource is to force the removal of the critical section from a

user’s program. By keeping the location of the data base unknown to the user

and by requiring all users to use standard system routines to gain access to

• the resource only in an indirect manner then system integrity can be insured.

• It follows then that this philosophy causes these entire system routines
- F themselves to become critical sections.

The POP-li hardware allows a simple way to handle these routines.

- .. Instead of using true reentrant subroutines, software interrupt routines are

used instead (these routines are called via the TRAP instruction). Mutual

exclusion, results from the fact that once an interrupt occurs the computer

T hardware can be made to temporarily ignore further interrupt requests.

Af ter an interrupt , the hardware pushes the old program counter word (PC)

and program status word (PS) onto a stack and reloads the PC and PS with

words from a specific interrupt vector location. If the new PS causes

the interrupt routine to run at a higher priority than other user tasks,

then all pending interrupts of lower priority are temporarily ignored until

t

_ _ _ _ _ _ _ _— •-_•__••,
~._~ —~•.—— -- .—•— — -‘• ~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~ ;_••_ ,._ Lr ~

______________________ - - •_ — —•••-- ‘——-•-,;

P 1 11

the trap routine finishes execution and the old PC and PS are restored.

Thus, this characteristic also insures the automatic scheluding of

execution of each trap routine (which are critical sections).
ii.

Another way of accomplishing this goal but without having to

change program priority is to use a powerful operating system command which -

• .7 can stop multitasking and cause the processor to execute only the task which

issued the command [3]. Thus , once a trap routine is entered , it can request

exclusive use of the processor for the duration of the routine. Just before
-

the return from interrupt is made , the routine can request that normal time

slicing resume.

- ; The latter approach was taken in the course of the IPCF develop-

ment.

The use of a data base and the general protocol necessary to access

parts of it implies two levels of isolation between any two communicating

tasks. First, the task that wishes to send a message to another task must

set up his message in his own memory space and then invoke the IPCF send

a. rout ine which copies the message into a portion of the data base. Second,

the destination task must invoke the IPCF receive routine which copies its
4.

current message in the data base into the task’s memory space. It might be

felt that such double buffering would be unnecessarily slow and possibly
V.

jeopardize the objective of controlling real t ime tasks. However, since a

1. user message is restricted to being 32 words or less the time consumed in

F moving the message back and forth is negligible even in a potentially high
-

use environment.

[3] See .LOCK and .UNLOCI(EMrs in reference (8)

E
- ‘~~~~~~ • - ~~~~~~~ ~~~~~ ~~~~~~~ W r , - -~~ -

I 12

I By developing an efficient queue structure which groups together

- messages for a common destination task and by using dynamic storage

allocation algorithms for controlling the data base, an efficient and

high speed message handler has been developed. The queue structure is

- • - diagrammed in Figure 4-1.
•

I
Whereas the PDP-lO uses PID5 as source and destination addresses

for message packets , the PDP-ll uses only user declared three character

Radix-50 [4] symbolic names. A master task table contains the user declared

-
task name (analogous to a PID) and a pointer to the current message buffer

for each task that requests use of the IPCF. The message buffers themselves

form an easily manipulated buffer ring (5]. The addition or deletion of a

-

message packet to or form the data base simp ly requires modif ication of the

buffer pointers and updating the storage allocation routines to either get

- . or free the buffer area. Therefore successive message buffers for any given

I . task do not have to occupy successive memory locations in the data base.

Thus the integrity of the queue structure is free from any problems due to

either time dependent behavior of the tasks using the IPCF or to varying

[lengths of message packets.

In the following sections an explanation of operation is given

~ I for each of the four user accessible IPCF routines.

H: _ _ _ _ _ _

(4] For a definition of Radix-50 see reference (3)& t [5] See Chapter 11 in reference (9)

-,

, ~•

__
_ -____

~~~
,
~~~

, , - .-, ‘ ‘ ‘ - • fl’ S7”7’~~~~” -
-

13

1!
-

IL! -

Task Table Message Buffers

IL: Name

Pointer
I

~~~ , Name

- Pointef d..4~ 
-
‘

• 

_ _  _ _  ~::::e 
_ _

S ‘ 

: t’~E~SSage -

,

Messaqe -

Name
- 

Pointer

U • 

-

- • Ficiure 4—1 . Queue Structure.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ l4

4.1.2.1 Initialization Routine

This routine is provided to reinitialize the entire IPCF package.

L It clears the task table and the entire data base thereby erasing any

messages that still existed there. This routine is intended to be called

by either a system task or by a single user root task. Due to its extreme

nature it is intended to be executed only once, preferably, after the

- operating system has crashed. Normally, user programs do not have to use it.

1 4.1.2.2 Send Routine
S

The send routine takes a user message and routes it to the S

- 1 appropriate receiver. A message can be sent to three general destinations:

~ I to another task on the PDP-ll, to some task on the PDP-lO, or to the PDP-ll’s

IPCF (SYSTEM] INFO facility. If the destination address specified in the

j envelope portion of the message packet is zero then the message is sent to

-

I
t SYSTEM] INF O, otherwise a search is performed on the task table to see if

- the given destination address is indeed a valid one. If it is , room for the

I user ’s message in the data base is made via the storage allocation routines,

copied there, the appropriate buffer pointers are updated , and a return is

I made to the user ’s program. If the given destination address is found to be

invalid (the task table does not contain the address) the IPCF assumes that

the message is intended for the PDP-1O and sends it there via the ICCF. It

— will be shown later that if the destination address is still invalid on the

PDP- lO the message is ~h~~n flushed. Thus , this routing algorithm allows

user tasks to be unaware of the physical computer in which the destination

task resides.

Ii
~

r.

~

- -•—•—--— -‘—--- S
~~~~~~~~~~~~~~~~~ 

S - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


5 1 15

The [SYSTEM) INFO facility provides three basic services to all

S users. First, user tasks declare intentions of using the IPCF by per-

- forming a LOGON request to (SYSTEM] INFO. This request simply enters the

-

task’s name into the task table thereby making it a valid address. Second,

tasks can perform the ACTIVE request which determines the validity of a

•
• potential destination address. Third, user tasks declare their end of use

of the IPCF by performing the LOGOFF request. This request removes the task

name from the task table and flushes any of its outstanding messages from S

the data base.

4.1.2.3 Query Routine

- This routine allows a task to query for information concerning the

present message in its queue . It returns such information as the name of

the sending task and the length of the message portion of the packet.

-- 4.1.2.4 Receive Routine

-
This routine allows a task to receive a pending IPCF packet. The

j current message in the task’s queue is copied into a portion of the task’s

memory space specified in the request. Once the message is retrieved from

I the queue, the message buffer is removed from the buffer ring, and buffer

r pointers are updated, and the storage allocation routines return the buffer

area back to the unused data base pool.

4.2 ICCF

The ICCF serves as the facility for sending and receiving messages

from each computer over the high speed channel interface. Its responsibilities

r include reformatting messages either before they are sent or after they areL
/

I

— — - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ r
..5 r~ -5— ...’ -

~~~~ —~
- 
.—‘,

~

•,_ - -, — •- - -. S S-
~~ ~~~~~~~~~~~~~~~~~~~~~~~~

1 16

received and to relay the received message to that computer ’s IPCF. Each

ICC! can be viewed as being similar to any other user task except that a

high degree of specialized interaction occurs between the ICCF and IPCF.

4.2.1 Message Reformattiflg

The channel interface hardware can operate in several different 
S

• I modes of data packing and unpacking while making transfers between the two

machines. However, the ICCF utilizes only the mode which packs/unpacks POP-li

words, right justified, into/out of successive 18 bit PDP-lO bytes as shown

in Figure 4-2. The actual message reformatting that occurs in a PDP-ll out-

E put buffer and PDP-lO input buffer is shown in Figure 4-3. The reformatting

that occurs in a PDP-1O output buffer and PDP-11 input buffer is essentially

1. identical but is applied in reverse order.

PDP-lO PDP-11
0 1 2  17 18 L920 35 15 0
00 B O O  A A

00 D O O  C B
0~~ — —  _ _ _ _ _ _ _ _ _

00 F 0 0  B C

00 H 0 0  G D

E

Figure •4-2. Data Packing Between the POP-b and POP-li

Ir
S 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ — •~—
•.———————

~~~~
S.—



• 
• 0 N . U .  A2 Al A2

2 N . U .  nu~ 1 n u l l

4 N . U .  S2 Si Si 52

• 6 N . U .  n u l l  S3 53 n u l l

10 Si S2 S3 P2 Ri RI R2

12 Ri R2 R3 null P3 P3 null

• 14 ‘Length Length Length

• 16 N.U. N.U. N O .  
S 

-

• 20 Data 1 Data 1 Data 1

- 
22 Data 2 Data 2 Data 2

• 0 Al A2 A3 null Al A2 A3 null null

1 Si S2 S3 null Si S2 S3 n u l l  nul l

2 Ri R2 R3 null P1 P2 P3 null null

3 Length N.U. Leng th ~c1dress

• • 4 Data 1 Data 2 Dat~ 1 D a t a -  2

• -
5 . 4

- Figure 4—3. Message Reformatting .

• ‘ ‘ 5 ’

1;
El

- : I~ • - - •~~ - - - ~
-
:~~~

-- 
- - - • --5 - ‘- - -- 5-’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘-‘S • S ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~~~~~~~ 

S

- ~~~-S.- ~~ -,_ ~.-
-

~~~
—

I

1 18

I A Radix-50 to ASCIZ conversion of the sender’s and receiver’s

task names is required to conform with the PDP-lO’s ASCIZ orientat ion.

I A convenient PDP-ll monitor call allows rapid conversion and will fill

S 
successive bytes, as shown in Figure 4-3, with the ASCIZ equivalents. Since

IL word 22 relative to the 8tart of the buffer can contain a Radix-50 name

- required for certain (SYSTEM] INFO requests, it is copied into word 6 and

also converted into an ASCIZ string. In the event that this word does not S

I contain a name its conversion will be meaningless and will be later ignored.

Just prior to the channel transfer, the POP-il bytes containing

the ASCIZ equivalents of the various task name characters must be swapped

S such that the characters will again be in the same lexical order once the

- POP-il words are mapped into the PDP-lO input buffer. Once the transfer is

made the PDP-lO side uses byte manipulation instructions to fully left

justify the ASCIZ fields within the buffer word and thus make the name
1 ’ ~

compatible with the PDP-lO ASCIZ convention. The PDP-iO must also update

the address word of the received message packet so it points to the memory

location following itself. Once this is done, the received message packet

is virtually in the proper PDP-lO IPCF format.

I: 4.2.2 PDP-bO ICCF

The PDP-lO ICCF is composed of two parts, a channel receiving

r 
routine and channel driving routine. The receiving routine basically accepts

messages sent by the POP-il, it postformats them according to Figure 4-3,

L and then either relays the message to the appropriate destination task via

- 
the PDP-bO IPCF or it performs some internal bookkeeping. The channel

a

II

S ___ — - - -



-~~~~~~~ -5--..-- ~~~~~~-~~---S-~ - __~_~ _~~~~~~~~ S _ _ •~~~~~~~~ ~~~~~~~~~~~ • - 5 - 
S

-

. 1 19
I

driving routine basically receives message packets from the IPCF and again

either performs some internal ICCF bookkeeping or preformats the message

T and transfers it to the PDP-ll’s ICCF.

The above bookkeeping refers to the manipulation of an internal

task table the ICCF must maintain. Since the sender/receiver addresses of

S 
an IPCF packet on the PDP-ll are names while those on the PDP-1O are PIDs,

some sort of mechanism must exist that allows a PDP-l0 packet to be properly S

routed to the PDP-ll via the FDP-lO’s IPCF and vice versa. The basic mechanism

- exists as a feature of the PIW-l0’s IPCF. A user job has the capability of

possessing several different names and can be referenced by each PlO

-- associated with each name. Thus, if during a LOGON request on the PDP-il,

- a message is sent to the PDP-10 containing the name of the PDP-ll task then

the channel receive routine can request the POP-lO ’s [SYSTEM) I1’~FO to assign

a PID to this name and then enter both name and PlO into the task table.

~ However , this name/PlO combination belongs now only to the ICCF itself and

not to -any PDP-li task directly. But now, when some PDP-lO task requests

[SYSTEM] INFO for the P10 associated with the name of a PDP-ll task, it will

I be receiving a PlO of the ICCF. When that PDP-lO task sends a message

packet to this P10 the ICCF will retrieve it and perform a search through

- I the task table to find the name of the PDP-ll task associated with it and

then relay the message to the POP-li. Likewise, if during a LOGON procedure

I on the POP-lO a message is sent to the ICCF by a user’s job containing the

task’ s name and PID then the ICCF can simply enter both into the task table.

Now, when a POP-li task sends a packet to a job that is actually on the

~ I 
PDP-lO, the ICCF will receive the message from across the channel and will

S 
-

— -



~ -‘ —S
~~~~~~~~~~

S
~

SS S - S

-~~~~

S 5

5

1 20

• I
again perform a search through the task table replacing the sender/receiver

names with the proper associated PIDs. The packet can then be relayed to

I the proper POP-b destination task.

The channel receiving and driving routines are part of one job.

S
In order to make the ICCF immune to any errors due to the time dependent

• I behavior of the communicating tasks, the Software Interrupt System of the

PDP-lO was utilized [6]. The ICCF consists of the channel receiving routine S

as the main background task while the channel driving routine exists as the

S interrupt task. The software interrupt system can be initialized by a user

to generate interrupts on various I/o and non-I/O conditions. One of these

conditions is the receiving of an IPCF message packet. By associating the

channel driving routine solely with the receiving of IPCF packets and

I processing them while the channel receiving routine is associated solely

- - with the receiving of channel packets and redispatching them, then both

routines maintain only a unidirectional link to the IPCF and thus any

possible cross interference between the two tasks is eliminated.

There is an implicit priority built into this structure with

regard to the operation of each part of the ICCF. Regardless of the state

that the background task is in it ‘will be interrupted whenever an IPCF

packet is received and execution will not resume until the interrupt task

finishes. Thus in a highly interactive environment, the channel driving

S routine can “hog” the use of the channel for brief periods of time. For

[6] See Chapter 3 in reference (2)

Li
i t i
t 1S

~
— ~~~~-— • S • ~~~~ ~~~~~~~~ ~~~~~~~~ - •

I
1 21

I
the working environment for which this system is designed this inherent

priority is an advantage since the PDP-1O will often execute command or

I message generating tasks while the POP-il will normally execute slave or

message receiving tasks.

4.2.3 POP-il ICCF

I The PDP-ll ICCF is far simpler in structure than that of the

PDP-iO. Whereas both the channel driving and receiving routines resided

I together in one job on the PDP-lO, the two routines are separated on the

POP-li. The channel driving routine is logically located within the IPCF

1 module itself since all outgoing messages across the channel are initiated

only by the IPCF rather than some user task. The channel receiving routine,

however, is located in a separ ate job whose basic purpose is to monitor

I the channel , reforma t, and relay all incoming messages to the IPCF. The

two routines also maintain an unidirectional link to the IPCF so cross

-I interference is also eliminated. S

SI
The one feature that the channel receiving routine has that has

no equal on the PDP-lO is the ability to command the operating system to

load a program into core and start multitasking. This feature is utilized

whenever the routine attempts to relay a message to an invalid address.

Through an error condition received due to the attempt to send the

message, the routine interprets the receiver taks name as also being

part of the file name containing the program of the destination task.

J Through several monitor calls the channel receive routine instructs the

monitor to load the program and start its execution. This feature is

1’ particularly useful for bringing up an entire user multitask conmtuni-

• cation package from the POP-iD side alone.

E

55~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -

22

-
‘ T This feature is also necessary due to the structure of the

POP-il multitasking operating system. From the command console a user

can load and execute only one job. If other tasks are also meant to be

executed for multitasking, then it is the responsibility of that first root

• 1 task to issue the proper monitor calls to load and execut e these other

S tasks. Since the MCCP will serve as part of the basic operating system

then this feature is a necessity once the system itself is brought up.

4.3 POP-li User Initialization Routine

Due to the PDP-ll/40 memory management hardware user’s programs,

IPCF , and ICCF cannot automatically access each other once they are

loaded into core and execution is initiated. Rather, each job that
S

.

intends to use the IPCF in some capacity (the ICCF even has to ~o this)
S

must execute a standard subroutine that can be linked with his program.

The subroutine essentially executes monitor calls that manipulate the

user ’s page maps such that both the user task and IPCF are mapped to

each other.
— S

I
I

T~~V S

1 23

1 5. POP-il IPCF USERS MANUAL

The communications handling software being developed for the

PDP-iO and POP-li machines is written such that it mimics both the protocol

as well as a subset of features already existing in the Inter’process

S Communications Facility (IPCF) residing in the PDP-l0 monitor [i]. As a

• J result, intertack communication from POP-il to PDP-ll, POP-il to POP-b , or

POP-b to POP-il will just as easily be accomplished from a user’s level as

i it is in the IPCF on the PDP-lO alone. Since the PDP-bO IPCF already exists

- T the following discussion focuses primarily on the POP-il IPCF. It will be

shown that the IPCF mimics the behavior of a post office in the manner in

I which it handles messages . Topics in the following discussion are explained

I
only to the extent necessary to be able to use the POP-il IPCF or to

indicate differences with the corresponding PDP-iO IPCF.

— I 5.1 IPCF Structure

- The POP-li IPCF structure can be divided into two functional

S I groups:

T 1. A data base to store messages

2. A collection of various routines to manipulate
- this data base

• Each routine has a corresponding UUO associated with it. Basic intertask

communication is accomplished by: 1.) copying user message packets into

an appropriate buffer in the data base after the IPCFS. UllO is executed

[1] See Chapter 7 of reference (2)

1;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



24

~1 I and 2.) returning an appropriate message for the data base and copying it

I 
into the receiver’s task memory space once the IPCFR. UUO is executed.

5.2 Message Packets

I All message packets handled by the POP-li IPCF are analogous to

S letters sent to and received from a post office. Each packet consists of an

I “envelope” portion and a “message” portion. The format of both parts is shown

in Figure 5-1. The message portion of the packet contains user defined infor-

mation (or information needed by (SYSTEM] INFO) and can consist of up to
27 words

I Word 0- ENVEL: Flags ; See Table 5-3
1- Sender ’s PlO ; Can be 0
2- Receiver ’s PlO ; Required S

- I 3- Message Length ; Length of “MESS” portion
4- MESS ; Address of message

I Word 0- MESS: info ; Beginning of message
1- info -

2- info

.

I Figure 5-1. Message Packet Format

1 5.3 Process ID (PlO)

I
A PID is a user-declared symbolic name. The symbolic name must

L be at most a three character RADIX-SO name.

L I



S S 
5SS•~~~~ SV S

1 25

~ 
5.4 Queues

~ 1. The LPCF will create a message queue for each task that declares a

- PID to the (SYSTEM] INFO facility. Any packet received from the IPCF viii be

I moved to the receiver’s defined addressing space in the same format as in

S 
Figure 5-1.

• 1 5.5 ISYSTENI INFO

The [SYSTEM] INFO facility acts as a central information utility for

- the IPCF and performs several functions connected with task names. The various

functions are listed in Table 5-1. The PID of (SYSTEM] INFO will always be 0.

5.5.1 [SYSTEM] INFO Request Format

The message portion of any pac ket sent to [SYSTEM] INFO must conform

S to the format shown in Figure 3-2.

-• Table 5-1
{S ( SYSTEM] INFO Functions

Function Name Description Argument

0 .IPCII Enter name into Name
task table

2 .IPCIA See if name exists Name
in task table

• 4 • IPCID Remove name from Name
task table

S Word 0- MESS: Function ; See Table 5-1
1- Function arg. ; See Table 5-1

‘S Figure 5-2. [SYSTEM] INFO Request Format

~~~ I 
_ _ _ _

_ _

S

•

— 5 - -— ’ - - S~~S~~~• -’ ~~~~~~~ ~~~~

•
~
?
~~~

Y’
~
’••” ’S•s

~ 
— _

~S ~__~ __ S _ .~ S5~_S5 SS ~~~~~~~~~~~~~~~~~~ ~ _ S S _ ~ —_—~—‘r-—”-’ - ,.v. w r’ ’~rr,r ~..r.’ ~~~~~~~~~~~~

_S_

t 
I

26

T 5 • 5 • 2 [SYSTEM] INFO Reply Format

i (SYSTEM] INFO neve r return s any explicit information. The success

I or failure of a [SYSTEM] INFO request is returned implicitly in the type of

return made from the IPCFS. UUO.

1 5.6 Error Codes

Any errors detected within the IPCF or as a result of .a user’s

improper use of the IPCF will cause an error code to be returned in the IP.CFE
S 

within the user ’s packet descriptor block. The error will be one of those

listed in table 5-2. Any error will cause an error return to be taken

at the conclusion of the UUO execution.

Table 5-2-- Error Codes (Returned in IP.CFE)

Value Mnemonic Reason

3 IP.CNP No packet in receive queue
T 5 IP.CT L Data too long for buffer
4%. 6 IP.CDU Destination unknown

11 IP.CRR No room in receiver ’s quota
14 IP.CIS Invalid sender PlO
16 IP.CUF Unknown function
20 IP.CPF Task table full
75 IP.CDP Duplicate name
76 IP.CNN Unknown name

0~

-- 5.7 IPCF Initialization Routine

The IPCFI. UUO is used to complete ly reinitialize the entire

S IPCF facility. It causes the task table to be cleared as well as the entire

S data base. This UUO is intended to be used by only a system task of a

single user root task. Due to its extreme nature , it is not recoii.ended

for general use. Normal user tasks do~ not have to use it.

[I

I )  
_  _ _  -



S 5~~5__ S~~ - - r r  r -- - - - - - - -

~~ii
27

r 5.8 Packet Sending Convention

The IPCFS. UUO is used to send an IPCF packet. If there is room

j  in the receiver’s queue, for a packet being sent, it is put into the queue .

- 
If there is no room, the UUO will take the error return.

S 
The form of an IPCFS. call is:

MDV #ENVEL ,RO ; Must use RO as
IPCFS. ; linking register
err c~r return
normal return

59 Packet Query Convention

I The IPCFQ. UUO is used to “query” the status of the input queue

and return information in the packet descriptor block about the next packet

I in queue. The returned information consists of the name of the sender task

- and the length of the message portion of the packet.

The format of the call is:

r MOV #ENVEL,RO ; Must use RD as
S IPCFQ. ; linking register

error return
- - normal return

a.
- 5.10 Packet Receiving Convention

j  The IPCFR. UUO is used to receive an IPCF packet. The packet

- descriptor block should specify the length and starting address of a block

of memory in the user’s addressing space. If the length of the message

~ I 
portion of the packet in the queue is greater than that specified in the

t packet descriptor block then as much data as possible will be transferred

• I to the user’s memory space and the remainder viii be lost.

;~~
• 

•
S I

~~

I



The format of the call is:

MOV #ENVE L.RO ; Must use RD as
- IPCPR. ; linking register

error return
normal return

5.11 Using the IPCF

The IPCF is analogous to a post office in the manner in which it

handles messages from one task to another. Thus, tasks can be classified

N accord ing to the way in which they use messages:
- 

1. Sources of messages
2. Sinks of messages
3. Source and sink of messages

If a task only generates and sends messages then it is not required

Li to have a PlO. This is analogous to the situation of sending a letter without

a return address. However, a task that expects to receive a message of any

kind is required to have a PID. It is encouraged, however, to always use a

Thus the user must adhere to the following general guidelines

if he is planning to use the IPCF:

- 1. Allow the size of the user task stack to be at
least 10 words long

- 2. Reserve memory for sending and/or receiving messages
3. Declare intentions of using IPCF (by requesting a

P10 through [SYSTEM] INPO)---optional
4. Use IPCF
5. Declare end of use of IPCF (by notifyingr [SYSTEM] INFO)---optional, need only be done

S 

if step 2. was followed

It should be noted that the IPCFR. and IPCFQ. UUOs never

block. Therefore if a user needs a message at a particular t ime in his

1’ program, he must execute a busy wait loop until that message is received.
1 -

~ Ii
1 1 •
I I .  

—

— S - S S=•fl ~~~~~~•~~~~_— SS•S~~~ PtS -
~~=--,—-)Sr~~~~~.



5 - 
5 5 - ~~“ -

I
1 5 29

The various flags in the high byte of the first word in the

envelope portion of the message packet (as shown in Table 5-3) provides

I the user with additional flexibility in using the IPCF. When the user sets

the IP.CFS and/or IP.CFR flags the IPCF interprets the second and third

L words of the envelope as a pointer to the actual sender and/or receiver

addresses.

Table 5-3

I Packet Descriptor Block Flags

Bit Name Meaning

1 0-7 IP.CFE Error code field
8-10 ---- Not used

I 
il IP.CFP Request is privileged S

12 IP.CFO Send above quota
13 IP.CFR Indirect Receiver’s PID S

14 IP.CFS Indirect Sender’s PID
15 -- - - Not used

I 
Currently, each task’s queue can hold a quota of f ive message s S

at one t ime. More messages can be placed in this queue if the sender task 
S

I sets either the IP.CFP of IP.CFO flags. Excessive use of these flags is

highly discouraged since if the destination task does not empty its queue

I fast enough or if there are bugs in the receive program, the entire data

base can fill up and a system crash is a real possibility.

Any of the IPCF IJIJOs may alter a user ’ s envelope portion at times

I after the UUO call is initiated. Thus the user must not assume no changes , -
~~

have occurred once the return from the UUO is made.

[ The IPCF does not associate each declared task name with any

sort of job number. Thus a uaer task can impersonate any other task simply

SI

SI :12 5  2. - - 55 .~~~~~ unr-r5~~~~~ - —5-



—~~ 

•~~S 55_ ~~~~S — s-r - — - 
— —1

.1 30

I by using any valid task name. This feature certainly opens the door to

malicious use of the IPCF. However, if used in a clever way, very complex

~ I intertask control communication can be achieved.

ii The MCCP requires all PDP-lO tasks, that intend to send or(
receive messages from the POP-li, to send a “LOCON” message to the PDP-10

S ICCF. The format of this message as weil as the format of other important

types of messages is summarized in Figure 5-3.

1

-- I

r I

I

I I
‘ I

-S I

I

[I



31

POP—il Task PDP—lø Tast’
• ¶ 1

ENV: ? ENV: ?
• Your PlO

PIL) of ICCF
Logon Procedure 2 2 ,,MES S

S 
• for a PDP—1l task MES -

I MES : .IPCII MES: l,,.IPCII
N ame Name

S 
S 

?olJr PlO
Pit) of: ICCF

__________________________ >( 

EN V: ?

Logon Procedure 2 , , M E S
for a PDP—].ø Task S

S 

MF.S: ø ,,.TPCII S

- Your name

ENV : ? EN~J:S ? Your PIfl
‘~ 5 

0 PID o I  ICCF
Logoff Procedure 2 2,,MES

- (PDP—l ø or POP—li) MES
S 

MES : .IPCID M E S :  O,,.IPCID
S Name Name

¶ ? = The settings ot these words depends on the user.

J S Figure 5—3. NCCP Special Message Packet Formats.

5 
~ I - 

-

I i

5 . 5  
5 

‘ . 5  . 5  



55 -- -‘m. - 55~~~~~5 i7~~~ -- -- -
._. nS_ .-_. _ - _.__• - .55—-  -5- - ‘

S SS.SSS.5S _S_.v•_ ~~~~ 
.-.-•,,-

~
, S — S - S ~~~~~~~~~~ 

S S

32

6. CONCLUSION

I The multicomputer computer communication facility has been designed

I
to provide high level use as well as to interface well in a user environment

where it is necessary to control several interdependent real t ime control

i tasks. The typical user only has to set up messages according to the partic-

ular IPCF protocol his task will be using. The user’s task does not have to

S 

~ 
be aware of the actual computer the receiving task is on, the MCCP will perform

the appropriate reformatting of the message and transfer the message across

I the channel interface automatically when the need arises.

I 
The ~~CP was written using both the POP-b and POP-il assembler code.

This provides a means for obtaining the fastest possible execution speed of

I the MCCP and therefore communication time among real time tasks was minimized.
S 

The structure of the program code i~seif was made very modular to

I insure easy comprehensibility, debugging, and future expandabiiity if the

I 
need should occur.

The major limitation of the system lies in the maximum message

I length each computer can handle. Since DEC set the maximum message packet

length on the POP-b to be 16 words, the POP-li IPCF was designed to handle

~~

‘ 

~ 
a maximum length of 32 words. Thus when a maximum packet is sent to either

I 
computer , full compatibility is achieved through the data packing and refor-

I 
matting that occurs between the two machines via the channel hardware.

I Possible improvements include providing a specialized means to

transfer large blocks of data (~ 32 POP-li words) and a mechanism that

r ~~~~~~~ 
- . 5 5 5 - 

—.



~~~~~~~~~~~~~~~~~~~~~ 555 5 ~~~~~~~~~~~~~~i i
33

— causes a PDP-ll task to be blocked until a message packet is received through

(the IPCFR. UUO. The first improvement would allow whole program files or

t large data files to be transferred quickly, and the second improvement would

-- free each user from having to write his own busy wait routines and would

S also cause less CPU time to be consumed.

1:
- I
• I

S
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
‘ —P’ - -- _

~~~_ -  ~~ 

S

I REFERENCES

1. Digital Equipment Corp., DECsystem-lO Assembly Language Handbook,
third edition , DEC-lO-NRZC-D , Digital Equipment Corp.,

I Maynard , Mass., 1973.

2. Digital Equipment Corp., DECsystem-lO Monitor Calls Manual, DEC-10-

I C~fCMA-A-D, Digital Equipment Corp., Maynard, Mass., 1974.

3. Digital Equipment Corp., Macro-il Assembler Programmer ’s Manual , S

I DEC-ll-c!4ACA-A-D, Digital Equipment..Corp., Maynard , Mass.,
June 1972.

4. Digital Equipment Corp., PDP-ll/40 Processor Handbook, Digital
j Equ ipment Corp., Maynard , Mass., 1973.

5. Dijkstra, E. W., “Cooperating Sequential Processes,” in Programming

J Languages, (Genuys ed.), Academic Press, 1968.

6. Hansen, Per Binch, Operating System Princip les , Prentice-Hall,
Englewood Clif f s , New Jersey, 1973.

7. Jacobus, C. J., M and M System Design and Operation , M. S. Thesis,
Coordinated Science Laboratory, University of Illinois, Urbana ,
Iii., 1975.

8. Jacobus, C. J., M and M E1~~ Calling Conventions, Coordinated Science

1 Laboratory, University of Illinois, Urbana , Ill., April 1975.

9. Knuth , The Art of Computer Programming, vol. 1/Fundamental Algorithms,

1 Addison-Wesley, Reading , Mass., 1968.

10. Selander, John M., A POP-b to POP-li Asynchronous Communications
Interface, M. S. Thesis, Coordinated Science Laboratory,
University of Illinois, Urbana, Ill., 1976.

H
ii:

I ~~~~~~~~~~~~~~~~~~~~~~ _ _

