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SUMMARY

Ih i s  work  c o n s i d e r s  Mark ov  dec i s ion  processes  w i t h  p o l i c y

constraints. The se l e c t i o n  of an optima l stationary policy for

such processes, in the absence of policy constraints , is a problem

which has received a great deal of attention and has been

satisfactoril y solved. Relatively little attention has been given

to the case when policy constraints are present. Optimal policy

sensitivity analysis is also a subject in which little has been

achieved. We develop, in this paper , a computationall y efficient

iterative algorithm for selecting the optimal policy for completel y

ergodic , infinite—time horizon Markov decision processes with policy

constraints for both the risk—indifferent and risk—sensitive cases.

The sensitivity of optimal policies vis—a—vis the constraints is

also analyz ed , and the algorithm is used to quantif y the analysis.

An important limitation of all previous analyses of Markov

decision processes is the implicit assumption that selecting an

alternative in any one state has no effect on alternative selection

in any other state. If that assumption does not hold , we have

“policy constraints ”. Some policies become “infeas ible ”, i.e.

unallowable. One method of dealing with such a situation was

proposed for risk—indifferent Markov decision processes [io]. The

policies can be ordered and , af ter determining the optimal policy ,

we can go backwards in the orde ring, checking each policy for

“feasibility ”. This method , ho~’ever, becomes computationall y

~ ~~~~~~~~~~~~~ -— -  .~~~*--- ~~~.-~~~~~~~~ -



bu rdensome a lt e r  the  s e c o n d — b e s t  pot i cy .  More over , no m e t h o d  of

o r d e r i n g  has been dev i sed  for  r i s k — s e n s i t i v e  Mark ov dec i s ion

processes.  The present  work shows how to t r e a t  e f f i c i e n t ly  “ p o l i c y

constrained” problems for both risk—indifferent and risk—sensitive

Markov decision processes by proceeding from one feasible policy to

a better one until the optima l feasible policy is obtained. Our

point of departure is reformulating the Markov decision process in

the absence of policy constraints as a constrained maximization

problem. The Lagrange multiplier rule is then applied to decompose

the problem into two iterativel y coup led ones . This yields the

existing algorithms and indicates how to develop a new al gor ithm

to solve “policy constrained problems ”.

Chapter Il is devoted to risk—indifferent Markov Decision

Processes. After reviewing previous work , namely, Howard ’s

algorithm and the Linear Programming formulation , we embark upon

formulating policy constraints. Then the Lagrange multi plier

formulation is outlined and pursued to its consequences. This

leads to the development of an efficient al gorithm , along the

VD—PI lines , whose convergence Is proved . The algorithm is

applied to Howard ’s famous taxicab e::ample after policy constraints

are introduced to it. All the foregoing deals with completel y

ergodic Markov processes in which all states are recurrent. We

outline how the algorithm is modified when it encounters coupled

iii



states which are transient. We also discuss periodic Markov

processes.

Chapter III is devoted to risk—sensitive Markov Decision

Processes. As in chapter II , Howard ’s and Matheson’s algor ithm

is rev iewed , a Lagrange multiplier formulation is developed , and

an algorithm emerges. Its convergence is proved , and it is

applied to the same previous example w ith a risk aversion

coefficient. Finally, it is pointed out that transient states

have no effect on the algorithm , and that since periodic processes

are inherently de terminist ic problems , they are better solved by

risk—indifferent methods.

Chapter IV deals with sensitivity analysis. The concepts of

“constraint—indifferent ” and “constraint—sensitive ” optimal

policies are introduced , and a procedure for computing the worth

of individual constraints is outlined . It is explained by appl ying

it to the example solved In chapter II.

In chap ter V , we discuss modifications of the algorithm for

problems having a large number of states and give the computational

results of Howard ’s baseball problem. We also make some suggestions

concern ing future research.
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Chapter I

INTRODUCTION

A. Background and Motivation

The context of this work is completely ergodic Markov processes with

rewards , which are allowed to run for an unlimited number of transitions.

The basic problem we are concerned with is selecting , from among a set of

such processes , one that yields the highest average return . Figure 1.1

illustrates such a Markov Decision Process . In states 1 and 3 we have

three a lternat ives to choose from , and in state 2 we only have two alter-

natives. Associated with each alternative k in state i are three

probab ilit ies of trans it ion p
~ 

(j = 1, 2,3) from state i to all

states and the rewards r~~. of making said transitions under the given

alternative . In each state , k can take on values of 1,2,... ,K ., where

K
i 

is the number of alternat ives ava ilable in state i (3, 2, and 3,

respect ively,  for Figure 1.1). Once an alternative is chosen in each

state (i.e., k given a value between 1 and k
i 

in each state i), we

have what is called a stationary policy P. The 1
th component of P is

alternative selected in state i. In Figure 1.1, e.g., we gave k the

values 1, 2, and 2 in states 1, 2, and 3, respectively (i.e., we selected

the first alternative in state 1 and the second alternative in states 2

and 3). In other words , we have a policy

P = (1 ,2,2)

We denote the ith component of P by P ( i ) .  Thus , for the above policy

p(1) = 1, P (2)  = 2, P(3) = 2.

t -
~
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Fig. 1.1. THREE-STATE MARKOV DECISION PROCESS .

Such a policy is stationary in the sense that every time the process

is in state i alternative P(i) is always selected .

Once a pol icy is selected , a Markov process with rewards is defined .

The transition probability matrix and the reward matrix are composed of

rows determined by each alternative in each state . For the policy men-

tioned in Figure 1.1, we get the transition probability matrix

~
i1 ~i2 

P~3

P =  P~1 
~:~
2 

~,2

• 2 2 2p
31 “32 ~33

with a similar reward matrix 
R . 2
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For a completely ergodic Markov process , the limiting state proba—

bilities are independent of the s tart ing state . They give the average

number of stages the process spends in each state and are given by [4,

51

=

N 
(1.1)

where ~t is the column vector whose components 
~~~

. are the limiting

state probabilities , P is the transition probability matrix of the

process , and N is the number of states . Also associated with a Mar—

kov process is the vector q of immediate expected reward s defined by

= (1.2)

For a risk—indifferent decision maker , Howard [4 ,51 has shown that

if the Markov process is allowed to run for an unlimited number of tran-

sitions , the average reward of the process per transit ion , herea fter to

be called the ga in of the process , is given by

N

(1.3)

where the q . are given by (1.2) and the it . are given by (1.1) for the

specified process (i.e., the selected policy).

For the problem illustrated in Figure 1.1, we have 18 policies to

select among . Each results in a process for which (1.1) can be solved ;

3
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then (1.2) and (1.3) are used to compute the gain . A “brute force”

method for selecting the optimal policy would be to do this for all 18

policies . However , the number of policies increases astronomically as

the number of alternatives increases . Actually, the number of policies

N
is 

~
ll
i 
K
i
. Thus, in the above example , if an additional alternative

were introduced in state 2, we would immediately have 9 more policies

to take into account. We are hence faced with an essentially combina-

torial problem .

Howard [4 ,5] dev ised an extremely ef f icient iterat ive algor ithm

which exploits certain features of this problem to solve it. First , a

value determination (VD) is made for a given policy. The VD consists

of comput ing “relat ive values” v~ for each state , under the given pol-

icy,  and the gair of that policy from

g + v~ = q. + 

~~l 
~~~~~ i = 1,2,3, ..., N (1.4)

Then , using the ~~~ an attempt is made to improve the policy,

i.e., detect a policy of larger gain than the current one . To this end ,

test quantities are defined in each state for each alternative . Then,

the alternative yielding the largest test quantity in each state is Se—

lected . Formally,

P(i) = 

ta 
t~ 

k=1 ,2,
~~~

.,K
i 
[q~ 

+ ~~ P~ j
v
1]
~

i = 1,2, . . . , N (1.5)
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If the policy improvement (P1) does not change the current policy,

it is the optima l policy. Otherwise , VD and P1 , i.e ., (1.4) and (1.5),

alternate until we converge to the optima l policy. The efficiency of

the VD—PI algorithm results from reducing the combinatorial problem of

simultaneously selecting different alternatives in different states to

a set of discrete maximization problems which select the alternatives

in each state independently of other states .

Mine and Osaki [91 formulated the risk-indifferent Markov Decision

Process as a linear program (U’). They showed that the VD is the solu-

tion of a dual problem , whence the relative values v
1 

are the simplex

multipliers . They also showed that the PT is a simplex iteration with

at most N simultaneous pivoting operations. Using the U’ formulation ,

Nesbitt [101 showed how the policies can be ordered accord ing to ga in .

For the risk-sensitive decision maker possessing an exponential

ut ility funct ion , Howard and Matheson [61 define a “d isutility contri-

but ion” matrix Q, whose elements are given by

= 
~~ j  ~~~~~~ (1.6)

where the p
11 

and r
11 

are the probabilities and reward s selected by

a given policy, and ~ is the risk aversion coefficient . They derive

a certain equivalent gain given by

(1.7)

where \ is the “maximal elgenvalue” of Q (the largest posi t ive ei-

genvalue which exceeds the modul ii of all other eigenvalues of Q) .  It

5

-
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is this g that has to be maximized . They devised an algorithm quite

similar to the YD—PI . It consists of a policy evaluation (PE) phase ,

the counterpart of the VD. In PE, the utilities u~ pertaining to a

given policy are computed by solving the eigenvalue problem

7\u . = ~~~~~ I = 1,2, .. . , N (1.8)

where the q1. are given by (1.6) and )~ is the maxima l eigenvalue of

the corresponding matrix Q.

Then a policy improvement (PT) phase is undertaken . It is identi-

cal to the PT of the risk—indifferent case , except that the test quan—

titles are different . Here , a policy is selected such that

t IN
max J~ 

q~~.u . ~
k=1, 2 , . . .  ,K 1 [~=l - j

I = 1,2, . . ., N (1.9)

In all of the afore-mentioned work , no restr ict ions are made on the

manner in which alternatives are selected in different states . It is

assumed that the selection of an alternative in a given state has noef—

fect on alternative selection in any other state . In other words, there

is no interaction , or “coupling ,” between a l ternat ives  in d i f f e r e n t

states . This is the feature that  allows considering each state separ-

ately in the P 1. However , it is an idealized situation that night or

might not hold in rea l l i fe . With the profusion of rules and regula-

t ions govern ing econom ic act iv it ies in th is day and age , it might veryp,.

6 
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well turn out that alternative selection is not as “coupling—free” as

the idealized si tuation envisions . (Later in this work , we give a sim-

ple example of how alternatives in different states could be coupled.)

Introducing inter—state dependence in alternative selection in

effect imposes constraints on the policies. Some policies become “in-

feas ible ,” and we have to select the optimal “fea sible” policy, where

“feasibility” means satisfying the constra ints . This work strives to

do exa ct l y  that , in a computationally efficient manner . Nesbitt [101

suggests that for policy constrained problems , we start with the optima l

policy in the absence of constraints and go backwards in the ordering

checking feasibility until we hit the feasible policy yielding thehigh—

est gain. The problem with this brute force method is that , once we get

beyond the second—to—opt imum policy , we have to evaluate an increasingly

large number of policies for each step in the ordering process . More-

over , we first have to solve the unconstra ined policy problem before we

can solve the constrained policy one. Also , there has been no work on

policy ordering for the risk-sensitive case . What is really needed is

an algorithm that retains as much of the simplicity and efficiency of

Howard ’s VD—PI and PE—PI algorithms as possible, while taking feasibil-

ity into account as it progresses from one feasible policy to a better one.

Another aspect of the constrained policy problem is that there has

been no work done on for mulat ing the constra int s mathemat ically in a

systematic manner . This we also strive to achieve .

Also of interest in a constrained policy problem , is the “sensitiv—

Ity ” of optima l policies to the policy constraints . This “sensi t ivi ty”

can best be expressed in terms of value , i.e.,how much a rational deci-

s ion maker would be wi l l ing to pay to remove a constra int .

7
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To summar ize then , this work is mainly concerned with three th ings :

the formulation of policy constraints ; developing a VD-PI type of algo-

r ithm for completely ergodic , infinite time horizon Markov Decision Pro-

cesses ; and sensitivity analysis of optimal policies vis—a—vis the policy

constraints .

13. Methods and Results

Our point of departure is the U’ formulation . There , a quantity

~~ d~ is introduced . That quantity represents the conditional probability

that , given the process is in state i , alternative k is selected . In

the 12 formulation , it is proved that for each state i , only one d~~=1

and the rest are zero . This is exactly what we want. We will formulate

both the Markov Decision Process and the policy constraints in terms of

the d1
~.

For pol icy constraints , we first concentrate on the “two—alterna-

tive—coupling” case . By this , we mean interact ion between an alternat ive

k in state i and another alternative P in some other state j. The

constraints will be expressed in terms of d
1
~ and d’

~, to be denoted
1 3

by a and b , respectively, for s implici ty (a and b can only take

on values of zero or un i ty) . By exhaustion of al l  possible combinations

and straightforward application of simple logic , we conclude that there

can only be five different types of constraints:

-t
a + b — 1 (1.10)

a + b > 1 (1.11)

F - - a — b 0 (1.12)

8
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,‘ a + b = 1 ( 1 . 1 3)

a — b = 0 (1.14)

The designations to the left of the constraints are those we use on

a graph or table to indicate the type of constra int (as in Figure 1 . 2 ) .

Inequality (1.10) expresses the constraint stating that , at most , one of

alternatives a and b is allowable in any feasible policy ; (1.11)

states that at least one has to be present ; (1.12) states that alterna —

tive b is not allowable in any policy unless it is accompanied by a;

5- 
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Fig. 1.2. FIVE-STATE POLICY CONSTRAINED MARKOV DECISION
PROCESS.
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(1.13) states that exactly one of the two alternatives must be present

in any policy ; (1.14) states that we can have either both or neither

alternatives in any feasible policy. In Figure 1.2, e.g., alternative

-1 in state 2 cannot be selected unless alternative 3 in state 1 is.

Similarly, as regards alternative 2 in state 2 and alternative I in

state 3, we cannot have more than one of them in any feasible policy.

If more than two alternat ives are coupled by any single constra int , we

resort to the algebra of events to express the constraint s as a Boolean

expression , with truth and fal sity be ing assigned the values un ity and

zero, respectively.

If the Boolean expression is an exclusive OR , it is equated to

unity to give us our constraint . This is because , by definition , only

one component of an exclusive or can be true . Otherwise , because of

the possibility of more than one component being true simultaneously,

the expression is set greater or equal to unity. Of course , some con—

straints involving more than one alternative can be intuitively trans—

lated into an algebraic relationship without recourse to the algebra of

• events. One such type of constraint is considered here because it is

of special significance later on. Assume that we have a policy P

whose first M components (M >1) are a ,b ,c ,... ,m , respectively.

If we want to make P and all policies that d if fe r  with P in exactly

one of the first M components infeasible~ we can do that by the sim—

pie cons traint

d~ + d~ + . . . + d~ M — 2 (1.15)

10
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Once we develop a methodology for expressing policy cons t ra in ts , we

turn to developing a VD-PI type of algorithm to handle policy constrained

problems . To this end , we exploit the fact that the origina l problem we

are faced with is a constra ined optimization one , even in the absence of

policy constraints. For the risk—indifferent case , the objective func-

tion to be maximized is the gain . The constra ints are the equations de-

fining the limiting state probabilities and those requiring the d
k 

to

sum to unity in each state . If we have policy constra ints , they will be

additional relationships between d
k 

of different states .

The realization that we are dealing with a constrained optimization

problem leads us to the Lagrange multiplier rule , which enables u~ to re-

duce the problem to two iteratively coupled problems defined on the asso-

ciated Lagrangian. One of them turns out to be the VD , while the other

is the maximization of the L.agrangian over the discrete set of feasible

policies . It turns out that the relevant quant ity to be max im ized is the

weighted sum of the test quantities . The weights are the limiting state

probabilities . In the absence of policy constraints , the individual com-

ponents of the sum can be maximized in order to maximize the sum . The

weight ~t . in each state then becomes irrelevant , and we just maximize

the test quantities , which is what the P1 does. Hence , the P1 act ually

maximizes the Lagrangian, exploiting the absence of interstate coupl ing

to decompose that maximization , an essent ial ly combinatorial problem , to

N mu ch s impler maximizations . In the presence of policy constra ints ,

however , such a decomposition can no longer be effected . We have to face

the combinatorial maximizat ion problem head on. This we do by adapting

a branch and bound technique to our problem. This is a method whereby

maximizat ion is achieved without having to enumerate the feasible set.

11
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We prove that  such a method converges to a policy that maximizes the gain

~ vei~ the set of feasible policies d i f f e r i n g  with it in exactly one state .

Therefore , we add a constraint of type (1.15) and start  on another  set .

In this manner , we remove whole subsets from consideration without having

to consider all the elements belonging to them .

To retain as much of the VD—PI as possible , we introduce the notions

of “free” and “cou pled ” states . The former are states in which no a lter—

n a t i v e s  arc involved in any policy constraints. The “coupled ” states are

those which are not “free.” As long as the original P1 yields feasible

policies , we do not use branch and bound . Failing that , we maximize over

the free states by origina l P1 and over the coupled states by branch and

bound . This algorithm has two advantages . First , it achieves computa-

tional efficiency by sticking to Howard ’s P1 as much as possible . Sec-

ondly, if the policy yield ing the highest gain in the absence of policy

constraints is not made infeasible by the introduction of these con—

straints , the algorithm detects it without having to exhaust the feasible

policy set (by removing successive subsets). This is of particular sig—

nificance for sensitivity analysis .

A Lagrange multiplier formulation is also applied to the risk—sensi-

tive case . Here , the objective function is the maximal eigenvalue of the

Q matrices associated with the feasible policies . The constra ints are

the eigenvalue problem defining the maximal eigenvalue , plus the policy

constraints . As in the risk—indifferent case , Howard’ s and Matheson ’s

PE—PI algorithm is shown to be the transformation of the original prob-

lem , via Lagrange multipliers , to two problems . The breakdown of the P1

when policy constra ints are introduced is shown , and a similar algorithm

is developed .

12
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Finally, sensitivity analysis is considered . As mentioned before ,

our algorithm is capable of detecting whether or not the policy con-

straints have any effect on the optima l policy in their absence , without

having to solve the unconstrained policy problem . The value of removing

ind ividual policy constraints is explored for those situations where

they affect optimal policy selection .

C. Outline

Chapter I I  is devoted to r i sk—ind i f f e r en t  Markov Decision Processes .

Af ter  reviewing previous work , namely Howa rd ’s VD—P I a lgori thm and the

U’ formulat ion , we embark upon formulat ing policy constra ints . Then the

Lagrange multiplier formulation is outlined and pursued to its conse—

quences . This leads to the development of an efficient algorithm , along

the VD—PI lines , whose convergence is proved . The algorithm is appl ied

to Howard ’s famous taxi cab example after policy constra ints are intro—

duced to it. All the foregoing deals with completely ergodic Markov pro-

cesses , in which all states are recurrent . We outline how the algorithm

is modified when it encounters coupled states which are transient . We

also discuss periodic Markov processes .

Chapter III is devoted to risk—sensitive Markov Decision Processes .

As in Chapter I I , Howard ’s and Matheson ’s PE-PI algorithm is reviewed , a

Lagrange multiplier formulation is developed , and an algorithm emerges .

Its convergence is proved , and it is applied to the same previous exam-

ple with a risk avers ion coefficient .

Chapter IV deals with sensi t iv i ty  analysis . The concepts of “con-

s t r a in t—indif f e r en t ” and “constra in t—sens i t ive” optima l policies are in—

troduced , and a procedure for compu t ing the worth of ind iv idual

13
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constra ints is outlined . It is explained by applying it to the example

solved in Chapter I I .

In Chapter V , we discuss modifications of the algorithm for prob-

lems having a large number of states and give the computationa l results

for Howard ’s baseball problem . We also make some suggestions concerning

future research .

14
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Chapter II

RISK-INDIFFERENT MARKOV DECISION PROCESSES

A .  Introduction

In this  chapter , we dea l with r i s k — i n d i f f e r e n t  Markov decis ion pro-

cesses , where we progress from unconstrained policies to constra ined ones .

Section B dea ls exclusively with unconstraimed pol ic ies .  First , How-

ard’ s value determinat ion—policy i terat ion algori thm (hereaf ter  referred

to as VD—PI )  is developed . Then , the linear programming fo rmula t ion  of

the problem is developed . Most of th is  section appears in the l i t e r a tu r e

but is included here because it forms the foundation on which the results

of this work are based . For example , the linear programming formulation

provides us with the mathematica l encoding of the process of selecting

one alternative in each state . The conditional probability d
1
~ 01 se—

lecting alternative k, given the system is in state i , together with

k
the important result that all d . s are zero or unity, enables us to ex-

press policy constraints .

Section C deals with constra ined policies . The definition of what

we mean by constraints on the policies is spelled out . We mean interac—

t ion , or “coupling ,” between alternat ives in di fferent  state s , such as

the selection of one alternative in a certa in state preventing the selec- -

tion of another alternative in some other state . First , we dea l with

“couplings” between two alternat ives only ,  and we show that all such cou—

plings reduce to five types of constraints . The general case is treated

by the algebra of events . We give an example of a 3—alternative coupling

and show how one of the 2-alternative couplings can be derived from the

general case. Then , we show that ;  constra ined policy problem can be 

. -5
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reduced to a number of 12’s , which is unacceptable on account of that

number being , more often than not , astronomical.

The approach we take to solve the problem is the realization that ,

even in the absence of policy constra ints , we are faced , basically, with

a constrained maximization problem . The objective function is the gain ,

and the constraints are the equations defin ing the limiting state proba-

bilities . We consequently use a Lagrange multiplier (UI ) formulation of

the problem to reduce it to two unconstra ined , iteratively coupled , prob-

lems . One of them turns out to be the VD. The other one is the Maximi-

zation of the Lagrangian L over the discrete set of feasible policies .

This is an essentially combinatorial problem . We show that , in the ab—

- - sence of policy constraints , the lack of “coupling” fac i l i t a tes  the re-

duction of that problem to a number of simple discrete maximization prob-

lems , yielding Howard ’s P1. The presence of coupling , however , in the

case of constrained policies destroys the reduction feature . Thus , we

seek an efficient means for solving the combinatorial problem of maxi-

mizing L over the discrete set of feasible policies .

In Sect ion C , we also point out the fact that maximizing L per se

in P1 does not guarantee selection of a policy having a higher gain ,

i . e . ,  policy improvement . Rather , the fact  that L and g (the ga in

we are trying to maximize) have the same value at the optimum and after

each VD jus t i f i e s  trying to increase L. Improving the policy has to be

guaranteed outside the Lagrangian framework . This we do by introducing

- 
. 

a su f f i c ien t  condition for improving the policy . This condition , which

was derived by Howard [4 ,51 , is satisfied by the maximization of L when

no policy constra ints are present . Actually , it is also su f f i c i en t  to

guarantee the VD-PI convergence to an optimum policy.

16
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In Section D , we develop an algorithm for solving the problem , when

faced with policy constraints , on the basis of the UI formulation of Sec-

tion C. The algorithm is composed of the usual VD , plus a new P1 which

maximizes the gain over subsets of the set of feasible policies . It is

based on the branch and bound (BB) techniaue for solving combinationa l

problems [2,3,71. One such method is adapted to our problem , and we show

that it converges to a policy that maximizes the gain over the set of all

feasible policies differing with it in exactly one state . This set is im-

mediately removed from further consideration by a simple constra int , thus

reducing the set of feasible policies . To increase computationa l effi—

,? ~ t t  ,, ,, ,,
ciency,  we introduce the notions of free and coupled s ta tes .  A free

state is one in which no alternative is coupled with any other alterna-

t ive in any state , i.e., not involved in any policy constraints . A “cou-

pled” state is one that has at least one alternative in it “coupled ” with

some alternative in another state , i.e., involved in some policy con-

straint(s). Our P1 is invoked only if regular P1 yields an infeasible

policy. In this case , the free states are maximized by regular P1 and

the coupled states by branch and bound . In either case , the sufficient

condition of Section C is satisfied , and we have an improved policy . This

has a further advantage . If the policy constraints do not make the opti-

mum pol icy (w ithout constra ints) infeas ible , then it can be detected once

it is encountered , and we do not have to exhaust the feasible policy set

to reach the optimum .

The convergence of the developed algorithm is proved in Section D.

- 
.~ In Sect ion E , we apply the algorithm to Howard ’s famous taxicab ex-

ample after some policy constra ints are imposed on it.

17
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Sections B through E deal with policies that do not result in tran-

sient states ; all states are recurrent . In Section F, we address the

problem of transient coupled states . We also consider periodic Markov

processes , and from them we infer that the manner in which we hand le

t ransient  coupled states and how we obtain an i n i t i a l  f e a s i b l e  p o l i c y

are both cases where we profess complete ignorance . In the former case ,

the zero value of for a transient state obliterates our accumulated

knowledge about that state , as far as the Lagrangian is concerned . In

the latter case , the lack of an initia l feasible policy is equivalent

to complete ignorance of the Markov process we are dealing with .

B. Markov Decision Processes without Policy Constraints

The objective here is to select a stationary policy that maximizes

the average return per trans ition of the completely ergodic system , where

all states are recurrent , if it is allowed to make many transitions ,

i.e., over an infinite time horizon .

This is achieved by the value determination-policy improvement al-

gorithm , which computes values for a given policy, then obtains a better

policy , until the optimum policy is obtained .

1. Value Determination—Policy Improvement Formulation

a. Value Determination

We start out with a f in ite t ime hor izon , i.e. , allow the

system to make only n transitions , then extend the horizon . We denote

the expected total earnings in the next n transitions if the syste;t is

in state i by v .(n). To compute this quantity, we note that , if a

• trans it ion is made to state j ,  its value will be the r . - earned by the

18
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transition plus the amount earned by starting in state j with one tran-

sition fewer rema ining , i.e. , v
1
(n— l). Thus , the previous amount must

be weighed by the probability of making the transition from i to j,

i.e., p. .. Since the transitions from i are mutuall y exclusive ,

v .(n) is simply the sum of the weighed quantities . In other words ,

N
r 1

v .(n) = “ p . . Ir . . + v .(n — 1)] ( 2 . 1)
j=l ‘- IL 1.] 3 n = 1,2 ,3 ,

If we define the immedia te  expected reward for a transi-

t ion from state i by

q
~ = P~~1

r1.1 
i = 1, ..., N (2.2)

we can write Equations (2.1) as

N
1 = 1  

v . (n)  = q. + 
jr=l 

~11
v~~(n — 1) 

n = 1, 2 ,3 , ... (2 .3)

It can be shown [4,51 that , for a completely ergodic process , the asymp-

tot ic behav ior of (2.3) is given by

v . (n )  = ng + v~ i = 1,2 , ..., N (2.4)

where v~ is the “relative value” of being in state i , and

g = ~1
q
1 

(2 .5)
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Hence , g is the average return per t rans i t ion  of the system if it is

allowed to make many t ransi t ions under a given p ol i cy .  Such a p ol i cy

is stationary in the sense that it does not depend on n , i .e . ,  if we

find ourselves in a given state , we select a pa r t i cu l a r  a l t e rna t ive,

irrespective of n .  We are seekIng a pol icy  wh ich maximizes  this  ga in

g.  Once a policy is determined , the n ’s and q ’s are ava i lab le , and

hence (2 .5) gives us the ga in of that policy. However , we have no means

of find ing a better p o l i c y ,  if one exists . The key to this  lies in

( 2 . 4) .  For large n ,

v . (n)  = ng + v~ i = 1,2 , ..., N

We also have that (2 .3) hold s for al l  n:

v . ( n) = q. + p1.v . (n - 1) i = 1,2 , ..., N

Thus , for an i n f i n i t e  time horizon , we can subs t i tu te

(2 .4)  into (2 .3)  to get

n g ÷ v ~~~~~q j +~~~~~~p j 1[
n _ l g + v

1] 
i 1,2 , . . . , N (2 .6)

N
which , by v i r tue  of j~~l 

P 11 
1, is reduced to

g + v . = q1 + p
11

v
1 

i = 1, 2 , ... , N ( 2 . 7 )
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Here , we have a set of N s imultaneous l inear equations

in the N variables v . and g ,  a tota l count of N + 1. We notice

that  adding a constant c to each v . in ( 2 . 7)  gives

g + v . + c = + p . . ( v . + c) (2 . 8)

i .e . ,

g + v .  = q.  + p~~1
v . (2 .9)

But (2 . 9) are the original equations (2.7). Hence , the true values of

v . have no real s ignif icance in processes with in f in i t e  horizons. It

is the dif ferences  between the v . ’ s that matter . This is shown by

v 1
(n) = ng + v . (2.10)

v~~(n )  = ng + v~ (2.11)

whence

v . (n)  - v . (n )  = V - v . (2 . 12)
i 3 i 3

Thus , sett ing any one of the v . ’s equal to zero , usu-

ally v
N , and solving (2.7) gives us the gain of the given policy and

• • a set of v ’s we call the relative values of the policy. Those are

u sed to select a policy having a higher gain than the given one .

b.  Policy Improvement

Here , we also start with a f i n i t e  horizon , then extend

it by applying ( 2 . 4) .  If we define v 1
(n )  as the total  expected return

4 .~ 21

- ---5- —- - -- - • ~ - - -
- 

- -
- - •~~~~~~ 5-_ _ -~~~~~.----~~~~~~~~~~~~~~~~ --  ~ _- -••-~~~~ - - -



in n stages , if we start in state i and an optima l policy is fol-

lowed , then applying the principle of optimality of dynamic programming ,

we have for any n

v .(n + 1) = max ~~ ~~~~~~~ + v .(n)]  n = 0 ,1,2 , ... (2.13 )
1 k 

~~ 
13 13 3

This may be written as

v
~

(n + 1) = max q~ + ~ p
~ v .(n) 

n = 0 ,1,2 , ... (2.14)
k ‘ j=l ‘~~ ~

Thus , if we have an optimal policy up to stage n , we can

find the best alternative in state i at stage n +1 by maximiz ing

k
q. + p. v .( n)
1 

j=l

over all alternatives k in state i. For an i n f in i t e  horizon , we sub—

st itute for v
1
(n) from (2.4) to obtain

N
k

q. + p . . (ng + v . )
i ij j

as the test quantity to be maximized th each state .

N
The fact that ~~ p11 = 1, irrespective of k, reduces

th is to

N
kq
1 + _ p . v + ng

.1=’ ‘• -

22
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S ince ng does not depend on the pol icy t I~a t is selected ,

it is sufficient to maximize

q~ + ~~ p~~ v . ( 2 . 1 5)

over al l  al ternat ives k in state i .  Thus , for each s t a t e  we select

an alternative k , and this results in a new p ol icy  P. Thus, given a

pol icy A , we solve

N
A A A A A
v . + g  = q . + • p . v .
1 1 1 3 )

by setting v~ = 0 to obtain v~~, i = l , 2 , . . . ,N - l  and the ga in

of policy A. Then, using the v ’s of policy A , we select an alter-

native k in each state i to maximize

N
k k A

q + p . . v .
j =l ~~

The alternatives k make up the new policy B , sa y. If

it is identical to A , it is the optimum pol icy .  Otherwise , a new

iteration is started .

2. Linear Programming Formulation

The Markov decision process can also be formulated as a l inear

programming (LP) problem . To do this , we f irst recall that the funct ion

to be maximized is

23
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g = ~~ (P ) q
1

(P) (2 . 16)

where (2 .16) is merely ( 2 . 5)  rewritten so as to emphasize the dependence

of the it’s and q ’s on the policy and where the maximization takes

place over all possible policies .

The next thing we do is to introduce a set of new variables

d
k
. Each d

k 
is the conditional probability of selecting alternative

k, given that the system is in state i. (Those variables , hence , have

to have a value of zero or unity. This , however , will be proved to re-

sult from the basic properties of linear programming , rather than setting

it as a constraint.) Hence , in any state i , the expected immediate

reward q
1
(P) is the sum of the q~ that result from selecting the

various alternatives k in state i , weighted by the probabilities of

selecting those alternatives , i.e.,

K .
1

~~~
- k kq1(P) = ‘~ (2 . 17)

k=1

whence our ob jective function becomes

N
g = \ \ ~

- .(P) q kd~ (2.18)

i=1 k=l

Here , the sr ’s and d ’s are var iables , whence our funct ion

is no more linear. However , using the defini t ion of condit ional  proba-

b i l i t y ,  and denoting the Joint p robab i l i ty  of being in state i , and

selecting al ternat ive k by x~
< , and recalling that is the steady

state probability of being in state i , we get

24
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i
I

which gives

x = ;t . (P) d~ (2.19)

The constraints on the d 1
~ follow from their being probabi l i—

ties

K .

i = l ,2 , . . . , N (2 .20)

d~~~�0

Now , the original constra ints on the -‘ s were

~~ 
— .~~ ) = 0 .i = i ,~~, ..., N (2.21)

1=1 3

~~ l 
~~~(P) = 1 (2 .22 )

Using (2.19) , it can be shown [91 that our l inear programming

problem is

K

max 
~~ 

\~ q~x~ (2 .23)

x . 1=1 k=1
1

subject to

\ p~~x~~- \~ 
x

1 = 0  ( 2 . 2 4)

i=l k=l k=l

25
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N 
K~

x
k 

= 1 (2. 25)

j =l k=1

Now we proceed to prove that this LP yields values for

wh ich are either zero or uni ty , whence the d~ become the mathematical

encoding of selecting one alternative in each state.

Theorem 2.1.

Any basic feasible solution to the 12 defined by (2 . 23) through

(2. 25) has the property that  for each i , there is only one k such

k kthat x . > 0 and x~ = 0 otherwise .
1 1

Proof.

For the completely ergodic process rank , ( I—P ) = N — i .  Thus, one

of the constraints (2 .24)  is redundant , and the rank of the constra ints

is N. ñ’om the basic properties of linear programming , it follows that

any basic feasible solution has N positive variables x
1
~ with the rest

of the variables zero. Now , let us look at the equations of the con-

straints in deta il (Table 2.1). Because —p . . (i ~ j) is negative and

(i—p . .) is positive, it follows that , in each of the first N equa—

t ions , there has to be at least one x’~ associated with a term (l—p ~~,)

wh ich is not zero , e.g., in the first equation if = 0 for k = 1,2,

...,k, then the xk which are not zero (i.e., positive) are all multi-

pl ied by negative coeff icients and hence sum up to a negat ive number ,

contradicting the value of the R.H.S. Also , the fact that the f irst N

equations contain a redundant one does not change the fact that it has

to be satisfied . Thus, for each i , there has to be at least one xk >O

26
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for some k. If , for some state i , more than one x~ > 0 , then there

remains less than (N-i) nonzero x~ for the remaining (N-i) states .

This would mean that , for some 1, al l  x~ = 0 , contrad icting the fact

that at least one such x~ > 0. Thus, for each i, there can be at most

one k such that x
k 
> 0. “At most one” and “at least one” mean “only

‘‘one .

The following corollary to this theorem provides us wi th  the

result we sought to prove .

Corollary.

Any basic feasible solution to the 12 defined by (2 . 23) through

(2 .25)  yields a pure stat ionary strategy, i . e . ,  for each i , dk
= l  for

some k and zero for all other k .

Proof.

Equations (2.19) give

(2 . 26)

Substituting (2.20) in (2.26),

K .
1

x. = 1t
~ 

(2 . 27)

Substituting (2.27) in (2.19),

K .

= d~ \ x~ 
(2.28)

k=l

28 
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i . e . ,

k

d

~ 

= ;: k 

I = 1,2 , . . . ,  N (2.29)

The theorem states that for any given i ,

x~~ = 0  k~~~~i x~~ > 0  i < 2 < K . (2 .30)

Hence ,

K .

\ x
k 

= x~
’ (2.31)

Thus ,

d
k 

= x~/x (2.32)

Whence , for k ~ ~~, d k 
= 0 , and

d~ = x~ /x~ = 1 (2.33 )
1 1 1 

-

i . e . ,  only one alternative is chosen in each state . This important  re—

sult will be used when extending the Markov decision process to the case

where the policies are constrained .

C. Markov Decision Processes with Policy Constraints

1. Formulation of Policy Constraints

Our point of departure here is the LP formulation for the un-

constra ined policies case . Rewriting (2 .23 ) through (2.25) after sub—

s t i tu t ing from (2.19) and (2 .22) , we get our original nonlinear problem :
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K .

max it . q
k
d

I
~ (2.34)

subject to

K .

~j
_
~~~~~

it
i > ~~

Pij
d
i

0 j = 1 ,2, . . .,  N (2.35)

K .

(2.36)

K .
- 

. 
- -

~~ k\~ d i = l

k— i I = 1,2, . . .,  N (2.37)

d~ > 0

Note that (2.34) through (2.37) define the same problem as

(2.23) through (2.25). Hence , whatever applies to (2.23) through (2.25)

applies to (2.34) through (2 .37) . Speci f ica l ly ,  we know beforehand that

in the solution of (2.34) to (2 .37) the d 1
~ are either zero or u n i t y ,

with d~ = 1 for only one k in each state i. The significance of

this will become apparent later .

Now , we introduce constraints on policies . By constra ints , we

mean interaction , or coupling , between alternatives in different states .

For example , it might happen that selecting a l t e rna t ive  j ,  when the

system is in state i , prevents the selection of alternative ~ in state

k .  Thus , any policy having P ( i)  = j  and P (k)  = £ is nonfeas ib le .  As-

sum ing that  the mathematical encod ing of alternative selection is valid ,

-; 30 
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i . e . ,  dk is zero or un i ty  and is u n i t y  for only  one k in each i ,

th~ above constra int may formally be expressed as

d ?  + d~ - 1 (2.38)
I k —

( 2 . 3 8 )  plus d~ = 0 or 1 imply that no more than one of d? and

can be u n i t y .  Of course , they can both be zero .

Now we consider the encod ing of policy constraints in general.

First , we handle constraints that only couple two alternatives indiffer-

ent states , i.e., d? and d~~, for example. We shall hereafter refer

to such constraints as binary constraints. We will show that no matter

how the constraint is stated , it reduces to one of five relations.

Theorem 2 . 2 .

Any policy constraint consisting of an interaction between alterna-

tive j in state i and alternative £ in state k can be expressed

as one or the following :

a + b � l  (2.39)

a - b � 0  (2.40)

a + b < i (2.41)

a + b = 1 (2.42)

a — b = 0 (2.43)

where a = d~ and b = d~~, and both are either zero or unity.

j~4~ -
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Proof.

We go about proving the above by simply exhausting. a l l  possibili-

ties . Since a and b can both have only one of .two values , the pair

(a,b) cannot have more than four va lues , an d any constra ints merel y

limit the number of values that pair can have . Thus, we trans late the

constra int as outlawing certain of those values . First , we dea l with

the trivial cases .

Allowing all values (i.e., outlawing none) is equivalent to saying

that we have no constraints , while outlawing all four values is a con-

tradiction . The pair (a,b) is assured to ex ist and belong to the set

f(0,0),(0,l),(l ,0),(1,lfl. Outlawing three values and only allowing one

is a case where we do not need any constraints . This is because we are

saying that a value has been assigned to both a and b . If the value

of a is zero , say, it means that alternative j in state i is not

allowed . Thus, we just discard it. (Actually, this is a contradiction

on the part of the decis ion maker . On the one hand he is saying that

there is a number of alternatives available in state i , and on the

- 
- 

other hand he is saying that one of those alternatives does not exist.)

Likewise , if the value of a is unity, this means alternative j will

always be selected in state i , whence we should discard all other al-

ternatives in that state . (Yet , another contradiction ; hereafter , when—

ever the value of a or b is predetermined by a constra int , we will

consider that to be a contradiction and point it out.) What appl ies to

a applies to b in the foregoing . Hence , we are left with two cases ,

namely those where only one or two pair values are outlawed .

Inequality (2 .39) outlaws (0 ,0) and allows the three other possible

values . This constraint can be stated as follows : any policy has to

32 
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have either a or b , or both . (2.40) outlaws the pair (1,0) which in

plain English says that , if alternative b is not selected , then ne ither

can a. (If the constraint is the other way around , i.e., not select ing

a prevents selection of b , merely renaming a and b makes (2.40)

applicable.) Inequality (2.41) outlaws (1,1) which is the type of con-

straint we already discussed (2.38). This exhausts the case where only

one value of the pair (a,b) is outlawed . Equation (2.42) outlaws (0,0)

and (1,1); in effect , it says that at least one of a and b mu st be

selected , but the selection of one prevents selecting the other . Equa-

tion (2.43) outlaws (1,0) and (0,1); the type of constra int which says

that select ing (nonselecting) one alternat ive neces sita tes  select ing

(nonselecting) the other . There remain , however , four combinations of

values that have not been outlawed by any of (2.39) through (2.43). We

show that they represent contradictions . Outlawing (0,0) and (0,1) means

that the only feasible values are (1,0) or (1,1). But , here , a = 1,

which we previously showed represents a contradiction on the part of the

decision maker . Likewise , outlawing (1,0) and (1,1) leaves us with (0,0)

or (0,1) implying a = 0. In the same manner , outlawing (0,0) and (1 ,0)

implies b = 1, while outlawing (0,1) and (1,1) implies b = 0.

If the policy constraint involves more than two alternatives inter—

act ing with each other , we resort to the algebra of events to obta in a

logical (or Boolean) express ion for the constra int and then transform it

into an algebraic constraint . An example illustrates this . Suppose we

- - have three alternatives , the selection of each being denoted by the

events A , B , and C , respectively (each alternative being , of course ,

in a d i f fe ren t  s ta te) .  Not selecting an alternative will be denoted by

the complement , e.g., A’ . The val::s of the d~ will be denoted by

- -5 
—~~,
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a ,b , c. Assume that the constraint is that A and B cannot occur si-

multaneously unless C also occurs . This means that ABC’ is outlawed .

Hence , the Boolean expression that has to be true is

(ABC’)’ = A’ + B’ + C (2.44)

If the values of a , b , and c are to represent the events A , B ,

and C, then the va lues represent ing A’ , B’ , and C’ are (1—a) ,

(i—b) , and (i—c) , respectively (since a ,b ,c can only be zero for

nonselection and unity for selection). The Boolean expression (2.44) is

false only if all of its components are false (i.e., of value zero).

Thus , algebraically we want the corresponding values to sum to something

other than zero . This means

(1 — a ) + (1 — b) + c 1

—a - b + c -1

a +b  — c <  1 (2 .45)

Two things have to be noted here . First , if the reduction of the

Boolear. expression to its minima l sum involves intersections of events ,

then the al gebraic constraint  corre’~ponding to it will  involve products.

Secondly, (2 .45)  was derived by requiring the L . H . S .  representing (2.44)

to be greater or equal to one. This is because truth of any component

is s u f f i c i e n t  to establ ish the t ruth  of the whole expression , whence the

truth of more than one component causes the sum to exceed u n i t y .  This

does not hold , however , if the Booleri n expression is an exclus ive  OR.

There , only  one component can be true , whence the sum of values cannever

exceed u n i t y .  In t h i s  case , the equ iva len t  of (2 .45)  is derived by set—

ting the sum equa l to u n i t y .  ~ w . we formal ly  derive the previous .
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We are interested in “translating” a B oolean expression represent ing

combinations of events into an algebraic expression . By “t r ans la t ion , ”

we specifically mean that we are seeking an algebraic expression which

holds if , and only if , the corresponding Boolean expression is true . To

this end , we start by defining algebraic variables to correspond with the

events . Since an event X has only two possible values (true and false ,

representing the event ’s occurrence or lack of it ) , we define an associ-

ated algebra ic variable x which can only take on the values 1 and 0.

Thus:

Defini t ion .

Let X be an event . Its associated algebraic variable is a real

number x restricted to the values 1 and 0 such that X is true if and

only if x = l .

Hereafter , we will denote the values true and false by T and F.

Proposition 2.1.

If X is an event whose associated algebraic variable is x , then

the algebraic variable associated with X’ , the comp lement of X , is

1

Proof.

- -. Let Y = X ’ , y = l - x

Then Y = T < = > X = F

We already have X = T -z~~~ > x = 1

35
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Assume Y = T

Then X = F  - -> x~~~i -+ x = O  > y = l - x = i

Hence Y = T  > y = i

Assume y = 1

Then x = l - y = O ~~~~1 > X = F  Y = T

i.e., y = l  ~- Y = T

So, we have proved that Y = T 
~
-
~~~

> y = 1 which is the definition of the

associated algebraic variable .

The importance of Proposition 2.1 is that , whenever we have the

complement of an event , we can substitute the “algebraic complement ” of

its associated algebraic variable. In other words, if whenever we en-

counter X ’ we set Y = X ’ in the Boolean expression , then the result—

ing y in the algebraic expression can be set to 1-x. This enables

us to only cons ider uncomplemented event s, without loss of generality.

What follows applies in general if the mentioned substitutions are made.

Now we consider a Boolean expression composed of the sums (OR ’s)

of product s (AND ’s). First , we consider products.

Proposition 2.2.

B = ABC ... Z is true ~~—~~‘ abc ... z = 1

Proof .

ABC . . . Z = T ~~—~’A = B = C =  ... = Z = T  from rules of Boolean Algebra

a = b = c = ... = z = 1 from definition 
- -
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Proposition 2 .3.

B = B  + B  + ... +B  is true c — ; b +b  + . ..  + b  >1
1 2 N 1 2 n —

where B~ is a Boolean product of events and b~ is the correspond ing

product of the associated algebraic variables .

Proof.

From the rules of Boolean Algebra , we have

B = T  ~~~~ ~~~~~~ = T  ~~~ b . = 1
1 1

If only one such i exists , then the b . sum to u n i t y ;  otherwise ,

their ~‘um exceeds unity.

Corollary.

Let B = B
1 

+ B
2 + ... + B

N 
where B. is the Boolean product of

events. Let

I = (l,2, ..., N)

If B B = F  Vi~~~ I
1 -j

N

Then B = T 4=~~ b . = 1
i=1 

1

Proo f.

Assume that 
~~~~ ~~ 

B
1 

= T, B~ T

Then B
i
B
1 

= T

37
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But this contradicts B .B = F , V. . Hence , there cannot exist more
1 j i,j

than one i -~ B1 
= T. In this case ,

B = T  < -
~~~ ~

.
~~~

B
i
= T  and B . = F  for j~~~ i

<
— > 1. - b . = 1 and b . = 0 for I ~ 1

1 1 3

The preceding is the case of an exclusive OR. A special case of

this is when only one of N events is allowed to be true. This can be

detected by the special form the Boolean expression takes . It is formed

of the sum of N products , where each product is formed of an event

and the complements of the remaining N — i  events . For example , for

three events A , B , C:

AB’C’ + A ’BC ’ + A ’B’C

In this case , a + b + c = 1. This is because the only way the Boolean

expression can be true is for only one event to be true , and the rest

false . This happens if , and only if , one associated algebraic variable

is unity and the rest are zero. For instance , (2.43) may be derived in

this fashion . Here , the two alternatives A and B are either both

selected (1,1) or both not selected (0,0). The Boolean expression for

this is

AB +A ’B’

which is an exclusive OR. Moreover , it is of the spec ial form we just

illustrated . Putting C = B’, we get

38

-5- -- 5----  -- - ~~~—-- -- - .



AC ’ + A ’ C

Then , the algebraic expression is

a + c = l

Since

C = B’ ~- c = 1 - b

we get

a + 1 — b  = 1

i.e

a — b  = 0

Note that the “tra nslat ion” is not unique . The general procedure out-

lined in the proposition , however , always yields a va lid “translation .”

For instance , an alternat ive form of (2.43) could be derived byapplying

the general procedure to the Boolean expression

A B + A ’B’

We would get

ab + (1 — a ) ( 1 — b) 
~ 
1

i . e . ,

2ab - a - b

For a and b restr icted to 0 and 1, this inequality def ines exactly

the same constraint as (2.43) (substituting the four possible values ,

verifies this). If we had noted that the Boolean expression is an ex—

clus ive OR , we would have obta ined

2 a b — a — b = 0 ,

L.
39
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i.e.,

2ab - a
2 

- b
2 

= 0, because a
2 

= a , b
2 

= b

Thus ,

(a - b) 2 = 0

a - b = O

wh ich , again , is equiva lent to (2 .43) .

Because of the nonun iqueness of “translat ion ,” we suggest that the

general procedure be used only as a last resort , in order that we get

the s implest possible constra ints . Unless the constra int is too compli-

cated to intuitively translate , it is expressed via algebra of events .

A check is made to see if it is of the specia l form mentioned previously.

k . . . kIf so , the d .’s are summed to unity. Otherwise , the corresponding d .

is substituted for its event and 1-d~ for the complement of the event .

If the Boolean express ion is an exclus ive OR , the resultant algebra ic

expression is equated to unity ; otherwise , it is set greater than or

equal to unity. In this manner , any policy con straint can be translated

into an algebraic constraint under the assumption that the d 1
~ involved

in the constraints are all either zero or unity.

Note that the general procedure for translating Boolean to alge-

braic expressions only applies to sums of products .

The foregoing then implies that  the Markov decision process with

policy constra ints can be formulated as (2 .34)  through (2 .37)  plus some

extra constra ints on a subset of the d~~.

Now , we proceed to prove an important  resul t .
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Proposition 2.4 .

For the problem

K

max ‘) it
1 
\~ 

k~k (2.34)

i=1 k=1

subject to

K .

.j=1 ,2, ..., N (2.35) 

-

-

K
i

~t . \ d
k 

= 1 (2.36)

K .

~ d~ = 1

k=l 
1 = 1,2 , . .. ,  N (2.37)

d~ ~ 
0

C
2~
d~~) o I = 1,2 , . . . ,  m (i,k) S

1
(2.46)

C (d’
~) = 0 p = 1,2, . . . ,  q (i,k) - - S

2~

Where S
1 

and S
2 are subsets of S = f(i ,kfl, the following holds.

If d~ is assumed to only take on values of zero or u n i t y  for

(i,k)  S1 U S2, then d~ will  onl y take on values of zero or u n i t y

for (i,k)  I~~ S.

- .. 41
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Proof.

Since the set S of all possible alternatives is finite , all of its

subsets are finite . Moreover , restricting d~ to va lues of zero or un ity

makes the possible number of ways in which (2.46) can be satisfied f i—

nite. In other words , we have a finite number of values for the (m+q)-

tuples represent ing the values of d~ for (i,k) S
1 J 

S
2 ; of those

values , only a limited number will satisfy (2.46) unless the constraints

are contrad ictory.

Now , for each (m+q)—tuple satisfying (2.46) , the d’~’s involved

have certain given values (zero or unity). Substituting those values in

(2.34) through (2.37) yields an identical problem with , possibly, fewer

constraints. The structure of the problem , however , is the same . Thus,

it is our 12 problem (2.23) through (2.25) for which we proved that the

d’~’s are all zero or unity. Hence , our problem can be reduced to a fi-

nite number of LP’s, each def ined on a subset of the set def ined by the

constraints (2.35) through (2.37), and consequently yield ing values of

zero or unity for the d~~’s not involved in the constra ints (2.46).

The foregoing, implies that we can formulate the constra ined policy

problem as a finite number of LP’s corresponding to the number of ways

(2.46) can be satisfied . We could then solve each problem (either as an

12 or , even better , using the YD—PI algorithm), and thc optimum policy

would be that belonging to the problem yieid ing the h ighest ga in . This ,

of course , is unacceptable from a computational point of view . Not cnlv

is the sub—problem of determining how many 12’s we have a combinatorial

one , but also the number of LP’ s we would have to solve could be astro—

nomical. That is why we proceed to use the Legrange multiplier method

to reduce our constrained problem to two unconstra ined ones .

42
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2. Lagrange Multiplier Formulation

The Lagrange multiplier rule for constrained maximization prob-

lems provides us with a powerful technique for reducing the constrained

problem to a number of unconstrained ones .

One form of the Lagrange multiplier rule is the following [81:

Let X~
’ -

~~ E~
’ maximize f(x) subject to

C.(x) = 0 i = 1,2, . . . ,  m

Then there exist rea l numbers ~~~
‘
, I = 1,2,...,m such that

the point ~~~~~~~~~~~~~~ ~~~~~~~~~~~~ = (x*,~ *) -T ~~~~ is a critica l

point of the function

L(x,~) = f ( x )  + T\ .C.(x) (2.47)

i.e

VL(x * ,~~~) = 0

Moreover ,

= f(x ~ )

The appealing feature of this form of the Lagrange multiplier rule is

that it transforms the constrained maximizat ion of the function f into

finding critical points of the “L.agrangian ” L , as defined by (2 .47) ,

which is unconstrained . Of course , the cost incurred here is the in—

crease of dimensionality from n to n +m. However , the Lagrangian of-

fers the possibility of an iterative algorithm . A set of ~ ‘s is chosen

for a point x; then x and ?., are changed success ively, unt il we get

to the critical point. The fact that at the solution the values of the

43
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o r iginal  funct ion  and the L.agrangian are equa l , plus the fact that we

are trying to maximize such a value , can be used to move from one set

of variables to a new one . We make the increase of L our ob jective .

Actually, we could divide the variables (x ,~.) whichever way we choose ,

alternatively changing each set until we arrive at the solution . How-

ever , the convergence of such an iterative algorithm to the desired

maximum has to be proved . For one thing , the proposition does not state

that any critica l point of L is , necessarily, a constra ined maximum of

f. Only the converse is guaranteed . Moreover , nothing in the proposi-

tion guarantees convergence even to a critical point of L. It merely

establishes the existence of such a point if the function f has a con-

strained maximum . With this in mind , we proceed to apply the Lagrange

multiplier rule to solving the Markov decision process.

First , we rewrite the form of the general problem (including

policy constraints):

K

max \ q~d~ (2.34)

subject to

K

\ i t . \ p

~~

.d

~~

—

~~

- . = 0  1 = 1 ,2, ..., N (2.35)

- K .

(2.36)

K
I
\ d

k 
— 1 = 0  (2.37)

i=i
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C ; (d ~~) -~~ 0 1 = 1 ,2 , . . . , m ( j  ,k )  -
~~

(2 . 4 6 )

c (d~) = 0 p = 1,2 , .., q (i ,k)  ~ S2~

where S
1 

and 
~2 

are subsets of the set S = f(i,k)) of (i ,k) pairs

defining each alternative in each state .

We will treat the problem as follows . Since we have already

shown that (2.46) merely restricts us to subsets of S , and that set-

ting d~ = 0 or 1 for (i,k) -~ S S results in the rest of d~ be—
1 1 2 1

ing unity or zero , we will consider (2.34) through (2.37) and then , when

we change the d~~, we wil l  take (2 .46)  in to  consideration and only

choose zero or unity for those d~ involved in (2.46).

Corresponding to (2.34) through (2.37), we have a Lagrangian

L involv ing 2N+1 multipliers 7~. We will name them according to the

constraints , whence they will later acquire significance . For (2.35),

we de fine v
l
,...,vN 

(i.e., l ’
~~
”’ N~~ 

For (2.36), we def ine the

multipl ier g (i.e., T~~~~~~ )~~ For (2.37), our multipliers

2N+i~ 
will be na med

Hence , our Lagrangian is

K . K .N N N i

~~ k k  c. - v ’  k k
L =  \ it . \ q d . + V it . p ..d . - s .

1 I i 
~~~~, i __ 1 ~~~ 13 1 3

i=l k=1 j=1 i=l k=l

N 
K
i N 

K~ 1
(2 . 18)

i—I 1~~1 i—I k—i
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It is a function of the limiting state probabilities it ., the

conditional probabilities d
k 

of selecting alternative k given state

i , and the Lagrange multipliers v
1
, g, and 

~~~

. .

N
All in all , we have 3N + .T K . + 1 variables (the dimension

i=1 1

of the Euclidean space over which L is defined). Our objective is to

find a critical point for L. This we do iteratively. Starting with

that satisfy (2.37), we set the partial derivatives of L with

respect to the it ’s equal to zero. This gives values for the v ’s and

g (and also , as we will show , for the it ’s; this is equivalent to set-

ting the partial derivatives w.r.t. the v ’s and g to zero). Then , we

use the 12 result which tells us that we know beforehand that the

are zero or unity . The way we use it is to change the d
k 

in the zero—

unity subspace , rather than set partial derivatives w.r.t. d1
~ equal to

zero . The partial derivatives of L w.r.t. the - ‘s is

K K . K .

-J~~~\ q
k
d
k _ v + \ v  \ pk

.d
k _ g \  dk

j=l k=1 k=l

i = 1,2 , ..., N (2.49)

Given a policy P, i.e., values of d~ satisfying (2.37) (and

for constrained policies , (2.46) also), we get only one Ic for each i ,

and (2 .49)  reduces to

= — v . + p . . ( P )  v
1 

— g i = 1, 2 , .. . , N (2 .50 )

Setting the derivatives equa l to zero g ives us

46
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+ p . 1v . = g + V . i = 1,2 , ..., N (2.51)

but (2.51) is the VD phase of the VD—PI algorithm . Thus, that phase is

one in which Lagrange mult ipl iers  are updated . In (2.51), we have N

equations in N + 1 unknowns . However , since (2 .35) contains a redun-

dant equat ion , any one of (2 .35) can be discarded , which is equ ivalent

to setting one of the v ’s to zero , whence (2.51) becomes a nonsingular

system of equations . In matrix form , it can be wr itten as

P — 

~11 ~~12 ~1N 
~ 

r~~
-
~ Th1

—p21 
1 — p

22 1’2N 
1 v

2 
q
2

~~~~~~ ~N-1,2 ~
1’N-1 N 

1 V
N

- 

1’N ,l 1’N ,2 
1 - 

~N~N 
1 g

Regarding the mult iplicat ion of a matr ix by a vector as taking

a linear combination of the matrix columns , the above states that we are

attempt ing to form the q vector as a linear combinat ion of the n + 1

columns of the matrix on L.H.S. The elements of the combination are the

v ’s and g.

Since v N 
is set to zero , however , this means that we candrop

the Nth column to get our N X N system of equat ions :

- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~ - ——-----5---, 
- -



~1 — p11 —p
12 

. 
~~~ ,N—1 ~~ 

- 

V
1 

- 

q
1

— p
21 

1 — P22 ~2,N-~1 
1 V

2 
q2

. . V N 1

- ~N ,1 ~N , 2 ~N ,N-1 
1 

- 

g 
-

Denoting the N x N matrix on the L.H.S. by P, we get

v1

v 2 q2

= (2.52 )

vN l

g

Now we proceed to show that the ~:‘s can be obta ined as a by-

product of VD (which has been compactly stated by (2.52)). If -ye differ-

entiate the Lagrangian w.r.t. the v ’s and g, we get (2.351 nd (2.36),

i.e.,

- N K
1

= >, ~i >~ 
p~~d~ — (2.53)

K .

(2.54)
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For a given policy P, if we set the partia l derivatives equal

to zero , we get our original definition of limiting state probabilities ,

namely,

N

it . — p .  ~z = 0 j = 1,2, ..., N
3 

~~~~~~ 
13 1

N

it . = 1
i

— i=1

Since the f i rs t  N equations contain a redundant one , we can

thdrop the N equation and get N equations in the N unknown it~~~. In

matr ix  form , this may be writ ten as

1 - p11 
-p21 ~N1 I

1 — p22 ~N2 
0

~~1 N 1  ~~2;N 1  ~~N~N1j 

IC
N:1J 

=

But the matrix on the L.H.S. is the transpose of P. Hence ,

the it ’s are the solution of

It
1 

0

b ~2 = 
(

~~~~i)T 
0 

(2 .55)

IC
N 

i

—5--— ~~~~~~~~~~~~~~ — -5— 
- 

- 
... ~~~~— ~, 
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Hence , the it’s are the last column of ( [~ 1_l )T
, i.e. , the

transpose of the last row of P ’. Since we compute P
1 

in the course

of VD , this means that  we actual ly have the it ’s without any additiona l

computational effort whatsoever . The significance of this will become

apparent when we consider policy constraints. Hence , setting the partial

derivatives of L w.r.t. the v ’s and g equal zero , ac tua l ly  means

sett ing all its part ial der ivat ives (except for those involv ing the d~~’s

and their n’s) equal to zero.

Now , we proceed to interpret the Lagrange multipliers . (2.53)

and (2 .48) imply that the v ’s are involved in L in the form

N

— j lv
3

where iL/- lw . gives the amount by which the ~
th 

constraint on ~ is vi-

olated . It is necessary that it be zero for all j. Otherwise , we do

not have a critical point for L, whence it can never be a constra ined

maximum . Hence , v . gives us the cost of violating the ~
th 

constra int

by one unit. But that constraint represents the equilibrium of proba—

bilistic flows in the steady state . Thus, v
i 

is the value of being in

state j (albeit a relative one). If , in that state , the equilibrium

of probabilistic flows does not hold (e.g., by v irtue of us ing

belonging to a policy different than the one the it ’s were computed

for), v
1 

gives us the cost per unit of “disequilibrium” for tha t  state .

It m ight be that we ga in , in terms of the va lue of L , by doing that ,

i.e., we increase L. However , there is no guarantee that when we com-

pute the new it’s and v ’s we will get a net increase in L. This will

be explained shortly.

50

— 
- -—5- ——- - - - - — --— -----— —- --5- — — 5 -  —--——-----— 



The in terpre ta t ion of g is stra ightforward . From (2 . 5 2 ) ,  g

is the inner product of the last row in P
1 

and the q vector . By

virtue of (2 .55), that row is merely the transpose of the it vector.

Hence ,

N
T

g = ~~ .q =  ~ .q.
i~ l ~~~

But this is the value of our original function we are trying to maximize .

Hence , for a given policy, the value of the gain is one of the Lagrange

multipl iers that make the aforementioned partial derivatives equa l to

zero.

The VD , therefore , results in equating some of the partia l

derivatives of L to zero for a given policy. The rema inder of those

partial derivatives are not n~cessarily zero though . We would like to

equate them to zero. Rather than do that , however , we can do better .

We already know that d~~’s have to be zero or unity for unconstra ined

policies (and for constra ined policies if we set the extra ones to zero

or u n i t y) .  Hence , it would be more efficient to look upon this part of

the maximization process as a discrete problem and try to increase the

value of L (see Ill for example). To do this , we rewrite (2.48), re-

arranging the terms , so as to br ing out the dependence on d~~.

N K 1 N N
~~~~~~~

- -  - - —~~~~~~~~~~~~~ -—--5- - ~5 
-- A
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Our aim is to select the d~ such that we get the largest

increase possible in L. Since we will be selecting them as zero or

un it y ,  according to our prior knowledge for unconstrained policies (and

our forc ing them for constra ined ones), and since the are held con-

stant during improvement of the policy, we need only concern ourselves

with the first term in L. The second one does not involve d~ , and

the last two vanish . Thus, we concentrate on maximizing the quantity:

N K . 
/ N

li
i ~~~ 

+ 

~~ 

d~ (2.56)

(2.56) is the inner product of two N-component vectors . The first is

the vector Ft (P), as determined by the current policy P. Its compo-

nents are nonnegative . The second vector is a variable . For each pol-

icy P’, where P’ ( i ) = k’ , the d~ satisfy (2.37), whence the sum—

nation over k reduces to one term for each state , name ly t~ = 1q~~ +

N k’ th
~~~ 

p
11
v
1
] the I component of the vector selected by P’. We will

denote that vector by T(P’). Hence , the maximization of (2.56)reduces

to selecting that vector T(P’), i.e., that policy P’ which yields

the largest value of inner product with the constant vector 1(P). This

is , essentia l l y ,  a combinatorial problem . The absence of policy con-

straints reduces it to a much simpler problem . In the absence of such

constraints , all possible vectors T(P’) are allowable (i.e., feasible).

N
1’ There are ~~ K~ such vectors . Among them , is that vector for which

t~ = max q~ + ~ p~~v 1 
I = 1 ,2, ...,N (2.57)

k=l ,2,... ,K1 1=1 - -
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The maximization of (2.57) yields , for each 1 , an alternative

K~~. Those alternatives make up a policy P” with the corresponding

vector T(P *). Now consider the inner product of T(P*) and 11(P). Since

each component of T(P*) is greater than the corresponding components

of al l  other T(P) and , since the components of IT are nonnegative ,

it immed iately follows that P~’ is the policy that maximizes (2.56).

Hence , for unconstrained policies, the combinatorial problem of maxi-

mizing (2.56) reduces to the N discrete , “uncoupled ,” maximization

problems (2.57). But (2.57) is the P1 phase of the VD—PI algorithm .

Thus, that phase is actually the maximization of L with respect to

the d~~, using the values of IT and V for the current policy. This

can be represented , schematically, as in Figure 2.1. There , we grouped

the variables into three axes. The P’s are represented by an axis ,

as are the v ’s and -f ’s. Since the v ’s do not exist in the original

constrained problem (2.34) through (2.37), its set of feasible points

lies in the ( ,P) plane . Moreover , since the constra ints yield unique

values for It , the problem reduces to selecting from a discrete set of

points 
~~ 

in that plane . Regard ing the Lagrangian, for each policy

P, it is a function of IT and V. However , the VD results in points

whose IT is identical to that of the given policy, whence the points

a . have the same 11 component as the points A . . As shown in Figure

2.1, the P1 consists of moving from a
1, say, along the P d irectIon ,

holding IT and V constant , to maximize L. This results in point

b
2, 

say. The ‘ID then takes us to a2, from wh ich we go into the P1

o etc.

A word of caution Is necessary here . It pertains to set t ing

up the increase in L as a criterion for selecting a policy having a
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higher gain than the current One. Firstly, the fact that L is maxi-

mized along the “ray” emanating from a point a
1 

does not guarantee

that the resulta nt a . will give the highest gain possible on this

iteration (i.e., the best improvement).

Referring to Figure 2.2, the P1 surveys the points b
2

through b
5 

which lie on the “ray” emanating from a
1 . It then selects

that point b~ at which L is maximum . For Figure 2.1, b
2 

happens

to be that point . The VD then gives a
2. However , it cannot be proved

that another point b3 , say ,  at which L is less than at b ., , will

necessarily yield a point a
3 

for which the gain is less than a2. In

other words , the order ing of the values of L at b . is not necessarily

identical to the ordering of the gain values at the corresponding a • .

Moreover , merely increasing L along the a • “ray” does not guarantee

a better policy. That guarantee is to be provided outside the Lagrangian

framework, as we shall explain later . The question might arise , there-

fore , of whether it is at all appropriate to maximize L for policy im-

provement . The appropriateness of this procedure is justified for two

reasons . First , we know that at the optimum the value of the constra ined

— funct ion we are try ing to max im ize is ident ical to that of L , as well

as at all points a 1 . Second , since we are trying to maximize our orig-

inal function , it would pay to try increasing L as we go along . This

gives us an insight into how to go about policy improvement when there

are policy constraints , as long as we bear in mind two things . The first

is that the sole purpose of P1 is to obta in a pol icy hav ing a higher

ga in , irrespective of how much higher it is (e.g., it might happen that

applying (2.57) to only one state yields a policy P
1 

whose ga in is

h igher than the pol icy P2 obta ined by applying (2.57) to all states .
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The computational cost of trying to detect this is prohibitive . Conse-

quently, we apply (2.57) to at least one state , the result being a pol-

icy having a higher gain than the current one , i.e., merely an improve-

ment (not necessarily the best improvement). The second thing to bear

in mind is that merely Increasing L from a 1 to b ., sa y , does not

guarantee that a~ is a better policy. It might very well happen that

L increases from a~ to b . and then decreases from b . to a - (where
i 3 3 .1

its value is g) such that L(a .) < L(ai
).

Now we recons ider (2.56), namely,

N 
K 1 /

\‘ it~~ 
\ + \ p~~ v~~ d~ (2.56)

i=l j=l

For unconstrained pol icies , it reduces to (2.57), which gave

us a policy P”. If the policy constraints do not make p* infeas ible ,

then we select P~’. Otherwise , we have to solve the combinatorial prob-

lem of selecting that vector T(P) frori the feasible set of such vectors

(correspond ing to the feasible set of policies), which maximizes (2.56)

and guarantees an increase in the gain . If we rewrite (2.56) as

.

~~~~ 
it~ 

~~~~ 

(q
~~~~~+ ~~~~ P~ jv

j ) d~~~=\  ‘S ~~ ‘S P~ jv
j ) d~

i i  kl  j i  i l k l  j i

and define

• N
k k

t 1 = q 1 + ~~
j=1

we find that we are trying to maximize
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‘
~, 

it . t~ d~ (2.58)
l i i

_4 —
i=l k=1

Since d~ is zero for a ll k ’s but one in any state i , and

the t~ are the P1 test quantities of yesteryear , (2.58) tells us that

we are trying to maximize the sum of those test quantities , one in each

state , weighted by how much time the system spends , on the average , in

each state . This makes intuitive sense. Moreover , maximizing the indi-

vidual components of a sum , automatically maximizes the whole sum . In

the absence of policy constraints , it is possible , as we have shown , to

maximize the individual components. We do not have to worry about feas-

ibility. In this case , the it , become mere scaling factors common to

the components we are trying to maximize , whence they can be ignored .

Once we introduce constraints on the policies , however , we have to take

feas ibi l i ty  into consideration . The states become “coupled ” through the

constra ints , such that it might not be feasible to maximize the ind ivid-

ual components independently of one another . It is the “noncoupl ing ” of

states which allows the reduction of (2.58) to (2.57). Thus, when policy

constraints are present , we have to cons ider the sum as a whole and seek

an efficient method of solving the nonreducible combinatorial problem .

Here , we will have to take into consideration the IT of the current poi—

icy. This would seem to imply additional computations (solving N si—

multaneous linear equations) per iteration . However , this is not so. We

have shown that the ‘- ‘s are already there as a by-product of VD ((2.52)

and (2.55)). Thus, taking the ~ ‘s into consideration does not involve

any extra computational effort . The test quantities are merely
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multiplied by the corresponding -~‘s before we embark upon our maximi-
S

zation . That maxi~~iiation , as we noted ear l ie r , does not , of it self ,

guarantee an improvement in the ga in . However , we do have a s u f f i c i e n t

condition (developed by Howard [41) for a gain improvement from one p0 1—

icy to another .

Assume that we have a policy P for which the VD has been

performed (i.e., the v ’s and it ’s computed). Consider any other

pol icy P’ . Each policy has a vector of test quant i t ies  T associated

with it , where

t~~(P ) = q~~(P) + ~~ p~~.(P )  v . (P) i = 1,2 , ..., N (2.59)
1=1

t~~(P’) = q~ (P ’ ) + ~ p~ 1
(P’) v .(P) i = 1,2, ..., N (2.60)

where the v S ’s are those obtained from the VD for policy P. Specif-

ically,

q~~(P) + ~~ p~~. (P) v .(P)  = v , (P) + g(P )  i = 1,2 , . . . ,  N (2.61)

Thus , (2.59) reduces to

t1
~(P ) = v , (P) + gO’) (2 .62)

• Had we solved the VD for policy P’ , we would have had

+ 

~~ 
S O”) v~ O”) v~~~’) + gO”) i 1 ,2 , . , N (2 . 63)

— 
.
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Combining (2.63) and (2.60), we can Immediately write

t~~(P ’)  = v 1
(P ’ )  + g(P ’ )  + ~~~~~ p~j

(P’)[vj
(P ) - v~~(P ’)]

I = 1,2 , ..., N (2.64)

Now compute the components 
~~ 

of the dif ference vector ~~=T (P’) —T(P)

from (2.64) and (2.62):

= ~‘~(P~ ) - tk (P)

= v , (P ’)  + g(P ’ )  + ~~~~ p~~.(P’)[v .(P) 
- v .(P’)] - v 1

(P) - g(P)

Setting

Av . = v . ( P ’)  - v .( P)
1 1 1

= g(P ’)  - g(P)

and rearranging terms , we get

— 
I ~~ 

+ -v
1 

= 
~

‘ . + ~~ p~~.(P ’)  Av~ (2.65)

- - But (2.65) has exactly the same form as (2.51) (the VD equa—

tions) where the correspondence is

g <—> \g ,  v <—> - \v , ~ <—> q

We prev iously showed that the solut ion for g was ~

- - . where the -‘ ‘s are the limiting state probabilities of the policy under

60
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consideration . Therefore , we can immedia tely wr ite the solut ion of

(2.65) as

g O ” )  — g(P ) = - • g = 

~~l 
it
1O”) ~~~~ 

(2.66)

Since the ~ ‘s are nonnegative , (2.66) sta~ es that the suffi—

cient condition for improving the ga in (from P to P’) is that -

~~~ 

be

nonnegative for all states and strictly positive in at least one state .

Note that the def init ion of the test quant ity d ifferences 
~~~

. involves

quantities known for policy P. In other words , we do not have to solve

the VD for every alternate policy P’. Without knowing IT(P’), we can

guarantee that P’ is better than P if at least one is positive .

We refer to th is as an “improvement ” in state i. Note , however , that

the derived condition is not necessary. There might very well be another

policy P” which gives positive and negative ~ , ‘s in different states

but has a TI vector which makes the R.H.S. of (2.66) positive . We can

not discover this , however , without solving the VD for P” . Thus , the

best procedure for guaranteeing a gain improvement is to improve the test

quantity in at least one state . In the absence of policy constraints ,

- - 

- (2.57) does that . In the presence of policy constraints , we have to max—

imize (2.58) , subject to improving at least one state . As mentioned ear-

lier , that maximization is a combinatorial problem . Solving it , consti-

- — tutes a modification of P1 to handle constrained policies, giving us the

algorithm we are seeking . This we do In the next section .

61



—-5  
—‘- -5— —— --5 —— 

~~~~~~~~~~
- -

~~~~~
- -

~~~~~~~~~~~~~~~~~~~ 

--

D. Development and Convergence of the Algorithm

As explained earlier , the algorithm consists of the VD intact , plus

a modified P1 to handle policy constraints . First , we address the com-

binator ial problem :

K .

max ‘5 \., ~~~~~~ (2.58)
‘—- - 1=1 k=1

subject to

c~ (d
’
~) < 

0 £ = 1,2, ..., m (I ,k) TI S~~~
(2.46)

c (d~~) 
= 0 p = 1, 2 , ..., q (i ,k) TI s2)

where all the inequality type of constraints have been grouped together ,

as are those of the equality type .

F is the set of feasible policies defined by (2.46), where a pol-

icy, by definition , means selecting one alternative in each state , i.e.,

satisfying the constraints (2.37).

One of the most efficient techniques for solving combinatorial prob-

lems is the branch and bound method (or the multiple choice programming)

[2,3,71. Here , the space we are optimizing over is divided into subsets

in such a manner f iat only a portion of the whole space is examined. We

will develop a method based on these concepts . Central to this method

are the concepts of branching and f athotning , which we proceed to define .

Branching is the process of obtaining one or more points from a given

infeasible point in the policy space . Fathoming is a property of a point

being considered . If no branching can be made from a point, or if no

benefit  is going to result from such branching , the point is said to be
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fathomed . Thus, fathoming is basically the termination of branching .

An unfathomed point  is eligible for branching .

We will illustrate the method of branching and bound ing by consid-

ering an example . Assume that we have three states , with three alterna-

tives to choose between in each state . Assume , furthermore , that the VD

has been carried out for a given feasible policy, resulting in the test

• quantities tk , defined by (2.59). We will consider the t
1
~ multiplied

by the correspond ing -~~‘s and list them as in Table 2.2, where theyare

in descend ing order in each state (e.g., t~ > t~ > t~~, i.e., alterna-

tive 1 in state 2 maximizes the test quantity).

Table 2. 2

TABLE OF ORDERED TEST QUANTITIES

State Ordered Test Quantities

1 ,t
2 t t

1

2 ~~~ t~~\ 
t~

3 t~~
”t~~
) t~

Table 2.2 also illustrates the policy constraints . Here, we assume

constra ints of the s imple mutually exlusive type . Corresponding to the

“couplings” in Table 2.2, we have the constra ints:

d~ + d~ < 1 (2.67)

d~ + d~ < 1 (2.68)
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d~ + d~ < 1 (2.69)

d~ 4 d~ < 1 (2.70)

Now we start “branching and bounding” to maximize (2.58) , subject

to (2.67) through (2.70) (the equivalent of (2.46)) . Since a point

“branches” into other points , we will have a “tree.” We will also have

a lower bound for the optimum . (The lower bound is initialized to the

art if icial value of -c~o .) Whenever branching gives us a feas ible point ,

the value of L (the funct ion we are trying to maximize) is compared to

the current lower bound . If it exceeds that bound , the bound is updated ,

and any point yielding a value of L which is lower than the new bound

is fathomed . Feasible points are fathomed by definition . The search

terminates when no more unfathomed points exists. We start out with the

point representing that T vector whose components are given by (2.57),

i.e., the largest test quantity in each state . Denote it by T
01
. Our

tree then initially consists of one node

ED
2 1 2where T01 = (t 1,t2 1t3) .

• The corresponding policy is P
01 

= (2,1,2), i.e., selecting alter—

natives 2 , 1, and 2 in states 1, 2 , and 3, respectively. This is the

policy the P1 would select . However , in our example , It is infeasible

o (it violates ( 2 . 6 7) ) .  Hence , our lower bound remains at its i n i t i a l

value of -‘- , and we have one unfathomed point T
01 

to branch from .

Branching consists of selecting each alternative in state 1, in turn ,

-

~

- — — “- - - — - -- ____________



i .e . ,  changing the f i rs t  component of T01 . The remainder of the compo-

nent s are chosen such that they are the largest test quantit ies in their

states , consistent with the constraint imposed by the first component ,

if any . Thus, selecting t~~, e.g., would prohibit selecting t~~, and

hence we have to select 4 instead . For the third component, we can

select 4 because it is not “coupled” with 4. The fact that 4 and
4 are coupled is postponed to the next level of branching , if we get

there . Hence , our tree becomes

- - 
~

ED’ N
C)

where

= (t~~,t~~,t~~)

• T12 
= (4,4,4)

T~3 
= (t~ ,t~ ,4)

The corresponding policies are:

P11 = (2,3,2)

P12 
= (3,1,2)

p = (1,1,2)13
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Only P11 is infeasible, whence T
12 

and T
13 

are immed iately

fathomed . Moreover , the value of the Lagrangian at those two points is

compared to the lower bound ( _oo ) and to that at T
11
. Assume that

L(T
11
) > L(T13) > L(T12). In this case , the lower bound is updated to

L = L(T
13
)

and T11 is the only point available for branching . If we represent

fathoming by “ground ing ” the point in the tree , the s i tuat ion becomes :

Moreover , P
13 

is the optimum policy so far. Now we start branch—

• ing from T
11, 

as we did from T
01
. Here, we select , in state 2 , each

alternative in turn . However , the alternative must be uncoupled from

4. In other word s , at each level in the tree , we have a fixed alt -r—

native in a number of states . T~~ represents level 0. No states iave

fixed alternatives . The next level of T
11, 

T
12~ 

and T
13 

has the

alternative in state 1 fixed (this  is level 1) . Only T
11 

goes d-~wn

one further level (to level 2) to attempt fixing alternatives in state

2, consistent with the constra ints imposed by the alternat ive fixed in

the previous level. Since T
11 

has 4 fixed , and 4 is coupled

with 4, we cannot fix the latter . Thus, we only have two succ.. or

points to T11. The remaining components are selected such that they
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are the maximum test quantities In their  states , under the res t r ic t ion

tha t  they s a t i s f y  any cons t r a in ts  imposed by f i x i n g  the previous levels .

Since we are down to the last  level , the points  we obta in , if a n y ,  hav e

to be feasible . Thus, fixing 4 imposes selecting 4, while fixing

t enables us to select 4. Note that , if 4 were coupled with 4
a lso , we would only  have one successor point to T

11
. If , in addition ,

4 were coupled with all alternatives in state 3, no branching would

be possible from T11, and it would be fathomed . Those are in teres t ing

cases because such constra ints imply that 4 and 4 are not r ea l ly

L alternatives at all; they can never be selected in a feasible policy .

This can be detected by manipulating the constraints to discover that

they impose d~ = d = 0. However , we are more inclined to let the

branch and bound discover this (along with nonfeasible problems). Thus,

at thIs step , our tree would become:

H 

~~~~~~~~~~~~~~~~~~~~~~~

where

T21 
= (4,4,4)

T22 
=

• 
p

21 
= (2,3,3)

= (2 ,:,2)
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The * next to T

13 
implies that this is the best point obtained so far.

Both P
21 

and P
22 

are feasible, whence we compute L(T
21
) and

L(T
22
) and compare them to the current bound (the best value of L so

far). Also , both points are fathomed . Assume that L(T22
) > L(T

2~
) >L.

In this case , we update L, set 
~22 

as our optimum so far , and

survey the tree for unfathomed points:

~~~~~~~~~

T
11

~~~~~~~

2

~~~~~~~~~~~~~~~~~~~~~~~

3

Since no more branching is possible, T22 is the optimum . If we reach

the end without encountering any feasible points , the problem Is unfeas-

Ible . This is detected by the lower bound still being at its original

value of -~~.

Note that in this example there are 27 dIfferent policies . Of those .

• only 17 are fea sible , and we only considered 6. The efficiency of branch

and bound techniques (BB) results from the manner in which branching and

fathoming are implemented . The branching takes feasibility into account

in a piecemeal fashion , one state at a time , while being always biased

towa rd s sets of points  where L has larger  va lues .  This gives us a

chance to seize upon a feasible policy of large L relatively quickly.
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Then , the bounding eliminates , via fathoming , whole sets of points from

any fur ther  consideration .

Now we embark upon proving that  the out l ined BB method maximizes

the Lagrangian over the set of feasible pol i c i e s .

First , we prove that , as we move into deeper levels in the tree ,

the va lue of L cannot increase .

PropositIon 2 .5 .

If branching occurs from some infeasible node I at level k in

the tree , the value of L at the resultant nodes cannot exceed that at

I.

Proof.

The value of L at any node correspond ing to a policy P is merely

the sum of the components of the vector T(P )  corresponding to tha t

pol icy .

Now consider T ( I )  a t  the Infeasible node I at level k .  Its

f i rs t  k components do not violate any cons t ra in ts .  Moreover , s t a r t—

ing from the k + 1 component , each component is maximum in its state ,

subject to the constra ints Imposed by the f i r s t  k components.

Now any node result ing from I has a T which agrees with T(I)

in the f i r s t  k component . The k + 1 component is any one in s ta te

k + 1 , subject to the constra ints imposed by the f i r s t  k components .

Hence , it cannot exceed the k + l  component of T ( I ) .  S ta r t ing  from

component k +2 , each component of a branch is the maximum in its

state , subject to the constra ints imposed by the f i r s t  k + 1 compo—

nents . They might be the same as , or more than , the constraints  impo sed
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by the f i r s t  k components , but not less . Hence , from component k + 2 ,

no component of a branch node can exceed the corresponding component of

T(I). Thus , we have shown that , start ing from component k + l , no com-

ponent of a branch node can exceed the correspond ing one in T(I). This

proves the proposition.

Proposition 2.6.

If a given feasible policy P Is not in the BB tree and there ex-

ists a fathomed policy P’ in the tree at level k such that P’ and

p agree in the f i rs t  k components , then the value of L at P can-

not exceed the optimum value obtained by the BB.

Proof.

We have two cases to consider :

(a)  P’ is feasible . Since P’ agrees with P in the f i rs t

k components and the rest of the components of T ( P ’ )

are the maximum in their states , subject to the constraints

imposed by the f i r s t  k components , then no component of

T(P) can exceed the corresponding component of T(P’).

(b ) P’ is infeasible. Assume that P’ is fathomed because

no branching is possible from it. This means that the

f i rs t  k components impo~ e constraints which make a l l

alternatives in state k + 1  infeasible . But P agrees

with P’ in the f i rs t  k components , whence they impose

the same constraints . Hence , the k +1 component of P

— violates some constraint , i . e . ,  P is infeasible . But

this  contradicts the assumptions . Hence , P ’ was fa th—

omed because there exists some node F elsewhere in the

tree yield ing a larger value for L than node P ’ . Since

~ 

.
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P is obtainable from P . by branching , Proposit ion 2.5

says that L at P cannot exceed tha t  at P ’ , whence

it cannot exceed that at F.

Thu s , in (a)  and (b) , we have shown that there exists a feasible

policy in the tree where the value of L is not less than that at P.

But since the optimum obtained by BB is the largest value for L over

al l  feasible nodes in the whole tree , the proposition is proved .

Proposition 2.7.

If a given feasible policy P is not in the BB tree and there

exists an unfathomed policy I in the tree at level k , such that P

and I agree in the f i r s t  k components , then there exists a pol icy

P ’ In the tree at level k + 1 such that P and P’ agree in the

f i rs t  k + l  components .

Proof.

Since I is not fathomed , branching has occurred from it. Con-

s ider the branch nodes . They all agree with I , whence with P , in

the f i rs t  k components. Component k ÷ l  takes on all  values  in

state k + 1  such that the constraints imposed by the f i r s t  k compo-

nents are not violated . But component k + l  of P sa t i s f ies  the same

constraints (because it sat isf ies  all  cons t ra in ts) .  Thus , one of the

branch nodes from I agrees with P in component k + l , whence it

agrees with it in the f irst  k + l  components . Since this  node is at

level k + l , the proposition is proved .

L. 
•
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ProposItion 2.8.

If a given feasible policy P Is not in the BB tree and there ex-

ists a node N in the tree at level k such that N and P agree in

the f i rs t  k components , then the va lue of L at P cannot exceed the

optimum obtained by BB.

Proof.

Consider the node N. It is at level k and agrees with P in the

first k components . If N is fathomed , apply Proposition 2.6.

If N is not fathomed , apply Proposition 2 .7 repeatedly. Every

t ime we get to an unfathomed node at level ~~, there is a node branch—

ing from it at level £ + l , agreeing with P in i I + l  components . Fi-

nally, we reach a fathomed node at some level m < M (where M is the

- 
• deepest level the tree reaches) and apply Proposition 2.6.

Proposition 2.9.

No feasible policy P can yield a va lue of L greater than the

optimum obtained by BB.

Proof .

If P is in the tree , the proof is t r i v i a l .  Consider a feasible

policy P not in the tree . The f i rst  component in P is an alterna-

• tive in state 1. Now look at level 1 in the tree . It has as many

nodes as state 1 has alternatives . Each node has one alternative in

state 1 as its first component . Thus, there exists a node N in the

tree at level 1 such that N and P agree in the f i r s t  component . We

have satisfied the assumptions of Proposition 2.8, whence its result

applies , completing the proof.
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Now that we have a method for solving the combinatorial problem of

maximiz ing the Lagrangian over the set of feasible policies , we have to

guarantee an improvement in the ga in . This we do by guaranteeing that

the quant i ty  defined by (2 .66 ) never be negative . To ensure th is , we

do not allow negative .‘s in each iteration . To i l lustrate, we f i r s t

repeat Table 2 .2.

State Ordered Test Quantities

1 ,4 t~ ~~V
2 \t 1 t 3

~ t 2
2 ,,— 2 )  2

3 t~ t~~/ t~

Now we assume that we entered with policy (3.3.3). We want to dis-

allow any test quantity that is less than that of the current policy in

each state (whence no 
~~~

. can be negative). In our case , the policies

we cons ider in BB in this iteration would be given by the fo l lowing ta-

ble .

State Ordered Test Quant it ies

1 f t [ t]

2 k~i ~2 2

3 t2 t1 t3
3 3 3

No resulting policy can have any negative 
~~~~

, whence (2.66) can

ie~’ ‘-r 1,.’ •~g~i t ive , i .e.,  we prevent selection of a policy with lower

- - ~ Ijr ’Ii - that BR yields policy (2 ,3 ,3) .  Assume , furthermore ,

~.. ~~. Vfl f nr t h - ’t  ~~ l tcy r e su l t-  in the following table .



State Ordered Test Quantities

1 3
1 1t t t~

V
2 \t3 t’ t2

3 t~~~~~~~~~~~ t~

(Note that the “coupling” is between alternatives in d i f f e ren t

states , not between test quantities . That is why the “couplings” look

different  in this table .)  Now we enter BB with policy (2 ,3 ,3) , and , to

restrict the 
~~~~ 

we only consider the following .

State Ordered Test Quantities

1 3 2
1 ft 1 t1 t 1

2

3 t~

It is obvious that discard ing alternatives reduces the amount  of

computations involves in each iteration . To increase the e f f i c i ency ,

we can renumber the states in each iteration such that state 1 has the

least number of alternatives. The obvious question is what if the BB

results In the same policy we entered with? What is the characteristic

of such a policy? In the following theorem , we show that it maximizes

the gain over a subset of the feasible policies .

Theorem 2.3.

If the maximization of the Lagrangian over the set of feasible

• policies , subject to 
~~~ ~ 

0 for all i , yields a policy P for which

= 0 for all  i , then that  policy maximizes the gain over the set

of all feasible policies that d i f f e r  with it in eactly one state .
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Proof.

Let P’ be a feasible policy d i f f e r ing  with P in the k th compo-

nant (i . e . ,  s t a t e ) .  Lat P (k)  = ~ and P ’ (k )  = m . Assume that t~ >

4. Since T(P) di ffers from T (P’)  only in the kth component , the

Lagrangian at P’ is greater than at P. This implies that there ex-

ists a feasible policy P’ yield ing a va lue of L greater than the

optimum obtained by BB. But this contradicts Proposit~ on 2.9.

Hence ,

t~ ~ 4
Thus ,

and 
~~~~~~ 

for i~~~~k

where

= T (P ’)  - T(P)

Hence ,

g(P ’)  — g(P) = ~~~~~~

= 

~k~ k ~ 
0

i.e.,

g(P ’)  < g(P)

Thus , any feasible policy d i f fe r ing  with P in exactly one state can—

not have a higher gain than P.

Thus , when BB converges to a policy , that  does not necessarily mean

that it is the overall optimum . What we propose to do in this case is

to make that policy, and all policies differing with it In exactly one
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state , infeas ible, thus removing a whole subset from further considera-

tion . This can be achieved by adding just one constra int to the set of

policy constraints . If the policy P is given by P(i) = k, the con-

straint is

N

~~~~d~~~< N — 2 (2 .71)

(As a matter of fact , (2.71) is a special case of a genera l form . For

example , to make an ind ividual policy infeasible, the R .H . S .  would be

N — i .  In general , to make a policy, and all those differ ing with it in

exactly M < N states infeasible , the R .H . S .  of (2.71) would be N —

M - 1.)

In order to increase computational eff ic iency, we divide the states

into two types . The “free states” are those which are not involved in

any policy constraints , i.e . ,  their d1
~’s are only involved in rela—

— t ions of the type (2.37) . The states involved In relations of the type

(2.46) , i.e . ,  having alternatives that are “coupled” with each other ,

we refer to as “coupled states .” Given a feasible policy A for which

VD has been performed , we first attempt a regular P1 (maximizing test

quantities over all states). If this does not change A , we have an

overall opt imum policy . If the resultant policy is feasible , we start

a new VD. Otherwise , we maximize over the free states by regular P1,

-
; and over coupled states by BB with y .  > 0. This results in a policy

1

B. If B d i f fe r s  from A , we enter VD . Otherwise , we know that A

maximizes the gain over the set of feasible policies differing with A

in exactly one coupled state. In this case , we make policy A , as well

- 
- as all policies d i f fer ing  with it in exactly one coupled state ,
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infeasible by a (2.71) type constra int (here , the N in (2.71) would be

the number of coupled s t a t e s) .  Then , we enter BR again to maximize  the

Lagrangian over the currently feasible policy set , with the > 0 re-

striction removed . Basically, we are looking for a feasible policy, re-

respective of gain , whence it makes sense to use the latest va lues of

t~ s ince they conta in a certa in amount of the algori thm ’s history up to

this poInt .

Every time BB converges to a subset maximizer , we compare its gain

to the best previous subset maximizer and reta in the one with the higher

ga in . As a result of removing subsets over which we maximize , the feas—

ible policy set quickly shrinks unt i l  it becomes empty.  When BB results

in an infeasible problem , we have an optimum policy.

To get an init ial feasible policy, we maximize the sum of the imme-

diate expected rewards q~ over the feasible policy set using BB. Sche-

mat ica l ly ,  then , our algorithm can be represented in Figure 2.3. The

convergence of this algorithm to an optimum feasible policy is readily

proved .

Consider a feasible problem (nonfeasible ones are detected at the

outset by exiting from E l) .  Now consider any feasible polIcy P other

than the one selected by the algorithm .

If we ex ited the algor ithm from E2, then policy A has the highest

gain of any policy (whether feasible or n o t ) .  This is because , for A ,

each test quant ity is the maximum in its state . Any policy which is not

ident ical with A has to be d i f fe rent  from it in at least one state .

Consequently, any policy other than A results in nonnegative ~- . ‘s ,

with at least one s t r ict ly negative . Equation (2 .66)  then implies

g(P) < g(A). This is the case where the policy constraints do not affect

- • 77

- ---5- -- — -—~~~~~~~~— - - — -  44



_ _  -5- -

Set g* = —co ; get 
____ 

No feasible policies;
initial feasible policy problem is infeasible

__________________________ 

El

~~ Perform VD for given
policy i; call it A

Maximize t~~ t quantit ies 
_

~ B = A ; this is the

B ~ A overall optimum pol icy

E2 
—

B infeasible ;  enter BB
with A to maximize L
over “coupled states”

~~~~~ -— with 7i > 0 , maximize
test quant it ies over
“free states” to get
policy B~~~A

B = A ;  if g (A)  > g
set A as optimum , and
g* = g(A) ; add (3.3) No feasible policies

~~~~~~
— type constraint , and ~~ remain ; we have an

enter BB to maximize L optimum policy
over “coupled states , “

~‘ unrestricted in sign E3

Fig . 2.3. ALGORITHM FOR RISK-INDIFFERENT CASE.

the feas ibil i ty  of that policy yield ing the highest ga in in the absence

of any such constraints.  Thus , we have reta ined the ability to detect

such a policy, without having to exhaust the feasible policy set , by

(2.71) type constraints .

If we exited the algorithm from E3 , then , at that point , the given

feasible policy P had become infeasible . The only way this can come
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about is from (2.71) type constra ints . Hence , P belongs to some sub-

set over which we have maximized the ga in , whence g(P )  cannot exceed

the gain of the policy selected by the algori thm .

Since no feasible p ol icy  can have a ga in higher than that  of the

policy selected by the algorithm , the lat ter  is the optimum feasible

policy.

E. The Example

We will take Howard ’s famous taxicab example [41 and add some pol-

icy constra ints to i t .  The taxi—cab driver works in an area encompas-

s ing three towns A , B , and C. In towns A and C , he has three alterna-

tives .

1. He can cruise in the hope of being hailed by a passenger .

2. He can drive to the nearest cab stand and wait in line .

3. He can pull  over and wait  for a radio ca l l .

If he is In town B , a l te rnat ive  3 is not avai lable because there is no

radio cab service in that  town . For a given town and alternative , there

is a probabil i ty that  the next t r ip  wil l  be to each of the towns A , 8 ,

and C, and a correspond ing net monetary reward associated with each such

t r ip .  If towns A , B , and C are Identif ied with states 1, 2 , and 3 , then

Table 2.3 gives the probabilities and rewards . Now we introduce the con-

stra ints . In towns A and B , there is a union for taxi-cab drivers . The

union owns the cab stands in both towns and the radio cab service in town

A.  Nonmembers are denied the use of union f ac i l i t i e s. Union membership ,

- -‘~~ however , has strings attached to I t .  To become a member , a driver has

to use the facilities , except th at he can on ly  use one cab stand (e ither
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Table 2.3

PROBABILITIES AND REWARDS FOR THE TAXICAB EXAMPLE

State Al ternat ive  p~~. r~~1 
Rewa rd s

I k j 1  2 3 j = l  2 3

[ 1/2 1/4 1/4~] rb0 4 81 8

1 2 1/16 3/4 3/16 8 2 4 2 .75

3 [ 1/4 1/8 5/8] L ~ 6 4] 4 .25

2 1 r 1/2 0 1/21 E14 0 181 16

2 L1/16 7/8 1/16] L 8 16 8] 15

r 1/4 1/4 1/21 rio 2 81
3 2 1/8 3/4 1/8 6 4 2 4

L 3/4 1/16 3/16] L 4 0 8] 4 .5

in town A or town B to give other members a chance). Thus, if our fr iend

joins the union , alternative 1 (cruising) is not available for him in

states 1 and 2 , whereas if he does not , a l te rna t ive  1 becomes the only

available one in both states . In other word s , either d~ = d~ = 0 or

d
~ 

= d~ = 1. This is a type (2 .43 ) constra int . Specifically,

d~ — d~ = 0 (2 .72 )

Also , since he cannot select a l ternat ive 2 in both states 1 and 2 ,

no matter what , we have a (2 .41) type constraint. Specifically ,

d~ + d~ < 1 (2 .73)
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Our friend wants to select a policy that yields the highest  ga in , subject

to those constraints .

• The f i r s t  step in the a lgor i thm is to set the optimum gain g* = _~,

and get an in i t i a l  feasible policy.  We use BB to r~.aximize the sum of im—

med iate expected rewards over the feasible set . Our f i r s t  node in the

tree Is the one that picks the maximum q
l( 

in each state :

( T oi

T01 = (8,16,7) P
01 = (1,1, 1)

P01 is feasible , whence T01 is fa thomed , and we have an i n i t i a l  feas—

ible p ol icy  A = (1 ,1,1).

Performing the VD for A gives :

State Ordered Test Quant i t ies

I t~ = 1.213 = 3 .373 t~ = 2.207

2 t~ = 4.32~~~~~ t? = 3.333

3 t~ = 3.907 t~ = 3.680 t~ = 2.387

• 
• 

and g(A) = 9.200

Constraint (2.72) Is represented by a double line coupling the two alter-

natives involved , while (2.73) is represented by a single line . Since the

alternatIves in state 3 are not coupled to any other alternat ives, state

3 comprises the set of “free states” we defined earlier . The dotted line

separates the free states from the coupled ones .
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The regular P1 gives us policy (1 ,2,2) wh ich Is infeasible ; it

violates ( 2 . 7 2) .  Hence , we maximize over the free state to get P(3) =

2 . For the coupled states , we enter BB with 
~~~~ ~ 

0, i.e., the follow—

inv table:

State Ordered Test Quantities

1 t~i
2 

2~~\~t
2 t

2

The f i r s t  node is the maximum in each state , an infeasible one :

T
01 

= (4.213 ,4.323) P
01 = (1 ,2)

To branch to the next level , we f ix  al ternatives in state 1. Since we

only have one alternative, we only have one branch . Also , d~ = 1 and

(2 .72 ) make d 9 = 1, whence we can only select alternative 1 in state

2. This makes the branch node feasible , whence it is immediately fa th—

omed .

T
11 

= (4.213 ,3.333) P
11 = (1,1)
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Therefore , P ( l)  = 1 and p(2) = 1. Thus, we emerge with a policy B =

(1,1,2) , d i f f e ren t  from A.  So , we call th i s  new policy A , i .e. , A =

(1,1,2) and perform the VD for A .  This results in:

State Ordered Test Quanti t ies

= 3.960 t
2 

= 3.148 t3 
= 2.077

l~~~~~~~~~~~~~ l 1

2 t~ =6.720 t~ = 5.197

3 t~ = 2.741 t~ = 2.620 t~ = 1.617

A (1,1,2) g(A) = 9.366

Maximizing in all states , i.e., regular P1 , results in (1 ,2,2) which is

infeasible. It violates (2 .72) .  Thus , we maximize in 3 to get P(3) =

2 , and we enter BB, for the coupled states only, discarding any alterna-

tives having t~ less than the one we entered with (i.e., 
~~

. 0).

Thus, what we consider is given by :

State Ordered Test Quanti t ies

1 t~i
2\ 1

2 t
2 t2

The third component of our policy will always be 2 , so we only write the

f i r s t  2 for brevity.

Our f i r s t  node , as usual , is the maximum in each state . This , we

already know is Infeasible , whence we will branch from T01
.
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0
T01 

= (3.960 ,6.720) P
01 

= (1,2)

Our f i r s t  level is obtained by f ixing the f i rs t  component to each

available alternative in state I and selecting the maximum in state 2,

consistent with the constraints imposed by the f i rs t  component . Here ,

we only have one al ternative available in state 1, namely,  a l te rna t ive

1. Hence , we set d~ = 1. This immediately makes d~ = 1 by virtue

of (2.72). Hence ,

0\\
E11

T
11 

= (3.960,3.333) P
11 

= (1 ,1)

P
11 is feasible , whence T11 is immediately fathomed and also gives

the largest Lagrangian over the defined set . Hence , BB yields a policy

B = (1 ,1,2 ) .  But this is the same as policy A that we entered with .

Hence , A maximizes the ga in over the set of a l l  feasible policies

that d i f f e r  with it in exact ly  one component in the coupled states . This

is achieved by adding the constraint :

1 1
d + d  < M  - 2
1 2 — c

where M is the number of coupled states . Here , M = 2. Thus,c C
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+ d~ <0 (2 .74)

Note that (2.74) makes d~ = d~ = 0, i.e., those alternatives are re-

moved from further consideration . We let the algorithm deal with that ,

however , rather than scanning every constraint .

Now we compare g(A) = 9.366 to g 4’ = —o- . g(A) is greater , so we

set our optimum policy P , so far , as

P A (1 ,1 ,2) g* = 9.366

and look for a feasible  solution by maximiz ing L over the coupled

states , with T~~ • unrestricted in sign . Thus , the values considered in

the BB are given by

State Ordered Test Quantities

1 
1 2 3

t
l

2 ’~~~~~~l2 t 2 ~ t 2

The BB tree is given :

H

T
01 

= (3.960,6.720) P
01 = (1,2)

= (2.077,6.720) P
11 = (3 ,2)

where P11 is feasible .
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Hence , we have a new pol icy A = (3 ,2 ,2) for which we perform VD

to obtain

State Ordered Test Quantities

1 t~ = 1.041 t~ = 0.579 t~ = 0 .311

2 t~~ = 2  t~~ = 9.086

3 t~ = 1.511 t~ = 0.948 t~ = —0.182

A = (3 ,2 ,2) g(A) = 12.774

Regular P1 gives (2 ,2 ,2) an infeasible policy. Hence , we maximize in

3 to get P(3) = 2, and we enter BB for states 1 and 2 with the follow-

ing table .

State Ordered Test Quantities

1 t~ t~i
2

2 t
2

The BB tree for maximizing the Lagrangian is

-

~~

T01 = (1.041 ,20.69) P01 
= (2,2)

T
11 

= (0.311 , 20 .69) P11 
= (3,2)
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Thus , BR gives us (3,2,2), the policy we entered with . g(A) = 12.774

and g* = 9.366. Consequently, we update our optimum policy and ga in

to

P = (3,2,2) g = 12.774

and add the constraint

d~ + d~ < 0 
(2.75)

Then we try to get another feasible policy. The following table

gives the values considered by BB, followed by the BB tree.

State Ordered Test Quantities

1 t~ t~ t~

2 t~ t~

(Of course , we have the additional two constra ints (2.74) and (2.75).)

= (1.041 ,20.69) p
01 

= (2 ,2)

P01 
is infeas ible , and no branching is possible from level 0. This is

an Indication that the problem Is infeasible . (This is the effect of

(2.74) and (2.75) . They force d~ = 0 and d~ = 0, i.e., no alterna-

tives can be selected in state 2, whence infeasibility.) Thus, we have
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exhausted the set of feasible policies (without evaluating each policy,

merely by removing subsets), and we have an optimum policy:

P = (3,2,2) g* = 12.774

The unconstrained problem had its optimum at (2,2,2). That policy,

however , violates (2.73), whence it is infeasible . The introduction of

constraints thus affects the policy (in some cases , it might not be true ,

as we shall later show , when discussing sensitivity to constraints), and

the feasible policy yielding the highest gain is the one we obtained .

(Incidentally, it turns out to be more beneficial for our friend to be-

come a union member.)

F. Transient States and Period ic Processes

In the foregoing , all states were assumed to be recurrent , i.e.,

~ 
> 0 for all states . If we have transient states and they happen to

be coupled , the theorem of Section C would not apply. This is because

the test quantities are multiplied by 
~~~~

, whereas the ~t . are def ined

on the test quantities . As long as it
1 
> 0, then inequalities of test

quantities are not affected by multiplication by i t.  If ,t =0 , how—

ever , then multiplication by equates all test quantities In state

I to zero , and that does not necessarily imply ~~ ‘s of zero . Since

the proof of the theorem was based on that fact , it does not hold for

transient states. In other words, it is not true that BB converges to

a policy that maximizes the ga in over the subset of feasible policies

differing with it in exactly one state if one of the coupled states is

transient .
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Hence , we need to deal with coupled transient states separately. We

do this in the following manner . We fix the alternatives in the recur-

rent coupled states to those of the current policy (i.e., set the corre-

sponding d~ = 1). Then we use BB with 
~~~~ ~ 

0 to maximize the sum of

the test quantities over the transient coupled states . This is basically

a feasibility exploration . If this process results in a change in tran-

sient coupled state alternatives ( in at least one state) , we have an im-

proved policy. If not , we fix the alternatives in the transient coupled

states to those of the current pol icy and use BB with 
~
‘ . > 0 to maxi-

mize the lagrangian over the recurrent coupled states . If the policy

does not change , then it maximizes the gain over the set of policies

that differ with it in exactly one coupled state .

Finally, a word about periodic processes . By a periodic process ,

we mean one whose transition probability matrix is periodic . In this

case , it
1 

= 1/N for all states. The case of interest is one in which

all feasible policies are period ic. We know that

K .N i

g = ’S’ it.~~~~~~q
’
~d
’
~

and it is g we want to maximize . If all policies are periodic , then

we want to maximize

N 
K .

i c-’ k k

i=l k=i

In th is case , we only need one iteration . Our initia l feasible

policy is the optimum one since we use BB to maximize the sum of q~
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over the feasible policy set to get it. Of course , this is an inher-

ently deterministic problem (we just maximize the average immediate re-

ward). Unless we know a priori that all feasible policies are periodic ,

we do not seek to find that out (s ince it is computat ionally equ ivalent

to explicitly enumerating the feasible policy set). The only reason for

discussing periodic policies , is to shed some light on initial feasible

policies and transient coupled states . Maximizing a sum is equivalent

to maximizing the average if a uniform probability distribution is as-

sumed. The latter is characteristic of the of periodic policies.

The uniform distribution , however , is the mathematical encoding of a

Bayseian ’s profession of complete ignorance of a process . In the case

of periodic policies , we do not know where we will find the process if

we enter it at a random point in time . This is essentially what we are

saying at the start of the algorithm when we do not have any feasible

policy available (we do not have a transition probability matrix). In

the case of transient coupled states , our Lagrangian has degenerated ,

making all test quantities equivalent and thus obliterating our accumu—

lated knowledge to this point. Consequently, we profess complete ignor—

ance about those states and maximize the sum (i.e., average) of the

original test quantities .
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Chapter I I I

RISK-SENS ITIVE MARKOV DECISION PROCESSES

A.  Introduction

In this chapter, we develop an algorithm for r isk—sensit ive Markov

Decision Processes with policy constraints .

As in Chapter II , we start by reviewing previous work in Section B.

Instead of expected values , we deal with u t i l i t y  functions and certain

equivalents , the standard method of incorporating a decision maker ’s

at t i tude towa rds risk ( i . e . ,  uncerta in propositions). The policy evalu—

ation-policy improvement (PE-PI) algorithm developed by Howard and Math-

eson [61 is outlined . It is the counterpart of the VD—PI algorithm for

the risk-indifferent case. Just as our algorithm of Chapter II was based

on the VD-PI , our algorithm here is based on the PE—PI.

In Section C , we use the fact that the original problem is actually

a constrained optimization problem to formulate it in the Lagrangian

framework . We show that decomposing the optimization of the Lagrangian

into two problems results in the PE-PI algorithm when no policy con-

straints are present . The dependence of the algorithm on the sign of

the risk aversion coefficient ~ is brought out . In the case of a risk

preferring decision maker (
~ <0), the problem is one of maximization .

For 7 > 0, it is a minimization problem . In PE-PI , making the utili-

ties of opposite sign to y during the PE phase, transforms the problem

into one of maximization for both cases . Hence , the sign of the utili-

ties is not really arbitrary. It has to be opposite to that of ‘ ;

otherwise minimization would have to replace maximization in the P1

phase .
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Introduction of policy constraints makes the P1 phase inapplicable ,

just as was the case for risk—indifferent analysis . Therefore , we have

to look elsewhere for solving the essentially combinatoria l problem of

policy improvement .

In Section C, we also show that the Lagrange multipliers are the

utilities of the PE—PI. They represent the cost of violating the con-

straints ; in this case , the constraints defining an eigenvalue problem .

The realization that the constraints in the risk-indifferent case (the

equations defining the limiting state probabilities) also define an ei—

genvalue problem , leads us to discover the counterpart of the limiting

state probabilities . Whereas, in the risk—indifferent case , the eigen-

value problem pertained to the transition probability matrix of a p01-

icy ; in the risk—sensitive case , it pertains to the matrix of “disutil-

ity contributions” of the policy, a combined measure of the probabilities

of transitions and how much they contribute to “disutility.” In this

case , we have an elgenvector Z defining the equilibrium flow of those

quantities , just as the vector of limiting state nroba~~ilities de-

fined the equilibrium of probabilistic flows in the risk—indifferent

case. It is the components of this vector Z which should weight the

test quantities in each state when policy constra ints are present .

Whereas , weighting by was intuitively obvious in the risk—indiffer-

ent case ~~ being the time the process spends in state i , on the

average , in the long run), the weighting in the risk—sensitive case al-

most defies intuition . At the very least , it is not transparent . It is

the Lagrange multiplier formulation that brings it out.

In Section D, we set out to develop an algorithm similar to the

one we developed in Chapter II. We outline a sufficient condition for
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guaranteeing policy improvement (since , as before , maximizing the Lag—

rangian does not , per Se , guarantee that). As before, it turns out that ,

if in every state we disregard alternatives whose test quantities are

less than that of the current policy, the policy is guaranteed to improve

if P1 changes it. We still retain the division into “free” end “coupled”

states , improving the free states by regular P1 and the coupled states by

BB imposing the sufficient condition for improvement . Convergence of BB

to a given policy still means that that policy is optimum over the subset

of feasible policies that differ with it in exactly one coupled state .

In such cases , we make those policies infeasible and continue .

If the policy constraints do not make the best possible policy in-

feas ible , then retaining the feature of maximizing test quantities in

each state still enables us to detect that policy without having to ex-

haust the feasible policy set. The convergence of the algorithm is also

proved .

In Section K , we apply the algorithm to the problem of Chapter II

when the taxicab driver is not risk—indifferent .

B. Markov Decision Procasses without Policy Constraints

In Chapter II , the decision maker was assumed to be risk-indiffer—

ent , whence the basic premise was to maximize the expected value of out-

comes . For a risk—sensitive decision maker , we have to maximize the ex—
U

pected value of the “util ities” of outcomes , where those “utilities” are

defined by the decision ma ker ’s “u t i l i ty  function .” The latter encodes

his attitude towards risk if he subscribes to certain arguments regard —

ing risky propositions or “lotteries.” An outcome having value v is

assigned a utility u(v), and the expected value of the utilities is
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called the utility of the lottery. An important concept in risk—sensi-

tive analysis is that of certain equivalent (CE). The CE of a lottery

is the value whose utility is the same as the utility of the lottery

u(v) = u(v) (3.1)

Thus, if we have a lottery whose utility is x , its certain equiv-

alent v is given by

= u 
1
(x) (3.2)

where U
1 

is the inverse of the utility function u.

We will restrict ourselves to dealing with a decision maker who

subscribes to what is known as the delta property. If all prizes in a

lottery are increased by the same amount A , his certain equivalent

for the lottery increases by ~~. Such a decision maker possesses a

utility function which is either linear or exponential. The linear case

implies risk indifference , so we will work with exponentia l utility

functions

-wu (v )  = — ( sgn  ‘~) e (3.3)

u
1 (x) = — ln [(—sgn ‘~ ) x] (3 .4)

where is the risk aversion coefficient . Risk averters have a posi-

tive ‘ , while risk preferers have a negative . (sgn ‘)  denotes the

sign of . An important implication of the exponential  u t i l i t y  func—

tion is the following:
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u (v +. - )  = — ( sgn ~
) e

i.e . ,  = — (sgn ) e~~
I 
e ’

~ (3.5)

u (v  +•\) = e~~
A u(v )

Adding a constant A to all lottery prizes causes their utilities to be

multipl ied by e ”~.

Now we are in a position to analyze the Markov Decision Process for

a decision maker possessing the A property, i.e., an exponential util-

ity funct ion given by (3 .3) and ( 3 . 4 ) .  As usual , we f i r s t  consider the

l imited t ime horizon and then let n tend to co . Given a certa in policy

(i.e., a probability transition matrix and associated reward matrix) ,the

process will generate a total reward v . (n +1) if it is in state i and

is allowed to continue for n +1 transitions . This uncerta in reward has

a certa in equivalent v .(n  + 1) .  The CE is that  amount the decision maker

would be wil l ing to take for certain instead of receiving the uncertain

reward generated by the Markov process . it can be sho~m 16] tha t this

CE is given by

u~~~. (n + i)~ = p. .uIr . + ~~. (n)] (3 .6)
/ i ‘3 L ’ i  1

Using the property given in (3.5) , we can reduce (3.6) to

N

u (~i
n + 1)) = i,

1~ 
e

1
~ u(~j

(n
)) (3.7)

If we define the u t i l i ty  of being in state j ,  with n trans it ions

rema ining , as u~~(n)~

/ \ —~~~ (n )
u (n )  = u (~v (n)) = — ( sgn -v )  e (3 .8).1

..: ~~~~~~~~~~ ...... ~L —— - - -



- •- ---- .--- ;-
-- 

—“ U,

Then we can write (3.7) s imply as

N -yr~ 4
u
i

(n + 1) = ‘ p14 e 
“ u .(n) (3.9)

j=i -~ -~

In the case of risk aversion (posit ive y), the term e 71’
~ i is

the negative utility, or the “disutility ,” of the reward r 1.. The term

“disut i li ty” will  be reta ined eegardless of the sign of y .  If we define

the “d i su t i l i ty  contribution” of the transit ion from I to j as

—yr ..
— 13
— p . .  e (3.10)

then we have a d isut il ity contr ibut ion matr ix Q with elements q
~~.

which are nonnegative . In this case , (3.9) becomes

u .( n + 1) = q ..u .(n) (3.11)

This  is the recursive relat ion for comput ing success ive ut ilit ies of the

process . To find the certain equivalents , we refer to the def in it ion of

the utilities given by (3.8) and use (3.4) to get

~~~(n) = — ln [_(sgn ‘ )  u~~(n)]  (3. 12)

To see what happens when we allow the time horizon to be infinite ,

we f i r s t  write (3.11) in vector form . Defining U ( n )  as the vector

whose components are u i
(n) , we can write (3.11) as

U ( n + 1 ) = Q  . jj (ri )
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This gives

U ( n ) = Q
fl . U ( 0 )  ( 3 . 1 3 )

If the Markov transition probability matrix P is irreducible and a cy—

d i e , then Q is irreducible and primitive .* In this case , it can be

shown that

u r n  Q
fl . u(0)  = lim U(n) = k U (3.14)

n -‘ c.~ n ~~~~~

where ~\ is the largest eigenvalue of Q, and U is the corresponding

eigenvector with k chosen such that U N = -(sgn ~ ) .  Thus , for large n

the u t i l i t y  of any state is multiplied by 7~ at each successive stage .

Equations (3 .1.2) and (3.14) may be used to show [6] that the asymptotic

form of the certain equ ivalent can be wri t ten as

v 1
(n) = n~ + + c (3.15)

where the “certain equivalent gain” g of the process is given by

• g = !ln 7\ (3.16)

*A reducible matrix A is one for which a permutation exists to place
it in the form

u: 
~~~]

where 13 and D are square matrices . Otherwise , A is irreducible .
An irreducible P is one in which all states communicate . A matrix A
is primitive if some power of A has all elements positive . A primi-
tive P is called acyclic .
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g is a property of the policy under consideration , a nd we w i l l  be seek-

ing tha t policy which maximizes  i t .  To compute g for a g iven po l icy ,

we d iv ide  (3.11) by ~~~~~ let f l-~~co , and then use (3 .14) to get

q~~.u
1 

= ~ rU . i = 1,2, ..., N (3.17)

(3.17) has to be solved for the largest eigenva lue ?\ of Q, which

makes (3 .17) of rank N — i , i .e . , a redundant  equat ion exists . This  is

overcome by sett ing u N = — (sgn ) , which makes V
N 

= 0. However ,

choosing a value for U N is not completely a rb i t ra ry . That value  has

to have the opposite sign of ‘. (more about th is  in Section C) .  As soon

as we have ~\ , (3 .16) gives us g for the pol icy under consideration .

This phase of the a lgo r i thm i.z cal led policy evaluat ion (P E ) .  We need a

F policy improvement (P 1) phase . As in the r i s k — i n d i f f e r e n t  case , test

quan t i t i e s  are defined , and improv ing the policy reduces to maximiz ing

the test quan t i t i es  in each s t a t e .  The u t i l i t i e s  replace the re la t ive

values , and the d i s u t i l i t y  cont r ibut ions  replace the probabil i t ies . In

other words , we select ~n a l terna t ive k in each s tate  i such that

= max 
N’ 

q
k 
~u (3 .18)

~ k
~
.i , 2 , . . . , K i ~~~~ 

i3

T h i ’~ j s  the equ iva len t  of ( 2 .5 7) . The immediate  expected rewards are

n~ ’t expl i c i t l y  present because they are included i.n the u t i l i t i e s. The

a I L

~

a r i t h r n  te rminates  when P1 yields the same policy tha t we entered it

xi th .
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C. Markov Decision Processes with Policy Constra ints

From the discussion of the previous section , we can view the r isk

sensitive Markov Decision Process as follows .

Each pol icy  P , made up of an a l te rnat ive  in each state , has asso-

ciated with it a disutility contribution matrix Q. The maximal eigen—

va lue 7~1 
of Q determines the certain equivalent ga in of the policy

g = —1/-I ln A~~. Thus , we are confronted with the task of selecting that

Q which yields the largest value of g.  The sign of ‘
~ (type of at t i-

tude towards r isk)  determines our objective . For a r isk prefering deci-

sion maker , ~ is negative . Consequently, maximizing g is the same

as maximiz ing AM . For a r isk averse decision maker , however , y is

positive , and it is the smallest which gives the largest g.

We have thus ascertained that  our objective function is AM
, the

maximal eigenva lue of Q,  whence our constra ints are those defining the

eigenvalue problem that yields AM . To gain more insight into this , we

reconsider the risk-indifferent case . If we write the constraints defin-

ing the limit ing state probabilities Tt for a t r ans i t i on  probabi l i ty

matrix P in vector form , we get

P = (3.19)

It is then apparent that II is a “ lef t  eigenvector ” of P (or eigen—

vector of its transpose) with a corresponding eigenvalue of unity. But

that eigenvalue is the maximal eigenvalue of P by virtue of it being a

stochastic ma t r ix . This holds for any policy . Therefore , in the r i sk—

indi f fe ren t  case , a l l  maxima l eigenva lues are un i ty .  The corresponding

le f t  eigenvectors then def ine  the objective function through

~ 
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N

g =  - n q

In the risk—sensitive case , we deal with the Q matrices . Their

maximal eigenvalues differ and , solving the eigenvalue problem , yields

the objective function through the eigenvalue rather than the eigenvec-

tor. To get the constra ints , then , we define a vector Z , with compo-

nent s z
1, 

as the left eigenvector of Q. Thus, Z is the counterpart

of ~T (more about that later), and it should satisfy

T M T
Z .Q .. A .~~ (3.20)

(3.20) is the counterpart of (3.19) , i . e . ,  for a given policy. To take

alternative selection into account , we use the d~ on the rows of Q,

as we did in the r i sk—ind i f f e ren t  case . We will  f i r s t  concentrate on

the risk prefering case , i . e . ,  ~ < 0.  Here , we are dealing with the

constrained maximizat itfli pvoblem :

max A
M 

(3.21)

subject to

N 
K
i

N’ z~ \ q~~d
’ — A

M
z
1 

= 0 j = 1,2, . . .~ N (3 .22)

1<
1

i = l ,2, ..., N (3 . 2 3)

100



_ _  _ _ _  ~~~~~~~~~~~~~~~_ _ _ _ _  _ _ _

~~~~~~ •~~ 0 = 1, 2 , . . . ,  m (i ,k )  ~
- (3.24)

C (d~) = 0 p = 1,2, . . . ,  q (i,k) -~

where AM is the largest positive number sa t i s fy ing  (3.22) and S1 and

S2 are subsets of S = [(i,k)) the set of all (i,k) pairs defining

each alternative in each state .

The constraints (3.23) and (3.24) are those we previously encoun-

tered as (2.37) and (2.46). The constra ints (3.22) are not linear ,

whence there is no LP equivalent of (3.21) through ( 3 . 2 4) .  Consequently,

we cannot apply the LI’ result which guarantees that the d~
< wi l l  turn

out to have zero—unity values . Rather , when solving the problem , we will

restrict ourselves to those values . While other va lues sa t i s fy ing  (3.23 )

migh t give larger values for A
M

, our objective function , we reject

them . The reason is that they represent “randomized strategies ,” a con-

cept which is meaningless in our context .

As noted before, a set of d~ describing a policy P determines a

disutility contribution matrix Q(P) and its associated left eigenvec-

tor Z def ined by

zT Q( P ) = A
M . z’1’ (3.2 5)

For an irreducible primitive matrix Q, the components of the maximal

eigenvector all have the same sign . They are either all positive or

negative . (The transpose of an irreducible primitive matrix is also ir-

reducible and pr imi t ive .)

As in Chapter II , we first concentrate on (3.21) through (3.23),

i.e., unconstrained policies . We 

:::wed 

that the maximizer of the
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constrained problem is a critical point of the corresponding Lagrangian.

Here , we have 2N Lagrange multipliers corresponding to (3.22) and

(3 .23).  The f i rs t  N of those , associated with (3 .22 ) , we denote by

— ul ,u2 , . .., uN
. The other N ones , we denote by f~~. Consequently, our

Lagrangian is

L = A
M

+ >  
z~ \~

‘ ~~
j
d~~_A

M
z
j]uj

+ s~ 

~ d~~_ i ] 
(3.26)

jl  i l  k l  i i  i i

To maximize our constra ined function , we seek critical points of L. As

before, we only set certain partial derivatives to zero to evaluate a

policy, then we try to change the policy so as to maximize L (because

the values of the constrained function and L are identical whenever a

policy is evaluated).

Setting the partial derivatives of L w.r.t. the z • and A
M 

equal

to zero, we get

= u~ ~~ q’~ .d~ - A
M
u . = 0 i = 1,2, . . . ,  N (3.27)

= 1 - z .u . = 0 (3.28)

For a given policy P, the d~ are all zero or unity with only one

equal un i ty  in each state . Thus, in (3.27) , the summation over k

reduces to one element for each i. This defines the Q(P) of the pol-

icy under consideration . Defining U as the vector whose components

7. are u ., (3.27) and (3.28) can be wri t ten as
1
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Q(P) . U = A~U (3.29)

zT 
. U = 1 (3.30)

Differentiating L w.r.t. the u
1 

and equat ing to zero g ives us the

original constraints (3.25)

zT . Q(P )  = A
M . zT (3.25)

The system (3.29) is the PE phase of the PE-PI algorithm . It is an

eigenvalue problem , whence the rank of the system is N—i. At this

point , there is nothing to indicate that setting U
N 

to some part icular

value has any significance. We know , however , that U , as well as Z ,

has components which are either all positive or all negative . Equation

(3.30) tells us that Z and U have the same signs . This wil l  become

significant in the P1 phase. What concerns us here is the relationship

of the solutions of (3.25) and (3.29).

In matr ix form , (3.29) can be written as

— A
M 

q12 ~~~ 1 ~~~ ~~

q
21 

q
22 A

M 
‘12N u

2 
0

- 
~~~ q~~ - AM] uN 

0

This , as we noted earl ier , is a system of rank N—i. If we set

- •  ti
N 

= a , say,  we get
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q11 
- q12 . ~~1,~~ _ 1 u

1 

- -

Mq21 q
22 

— A . ~~2 ,~~ _ 1 
u
2 

= —a

L N—l ,1 ~~~ _ 1,2 ~~~~~~~~~~~~~~~~~~ 
— A

M 
‘1

N-i

(3.31)

where we dropped the last equation . The resulting system can be written

as

A U = V

where A is the matrix on the L.H.S. of (3.31), and V is the vector on

the R.H.S. Ti is the N — i  vector composed of the f i rs t  N - i  compo-

nents of U. Hence ,

U = A
1 

. V ( 3 . 3 2 )

Now we write (3.25) in matrix form :

Mq11 
- A q21 z1 0

q12 q
22 

— A
M q~~ z 2 

0

— 

q2 
q~~ - AM

] 
Z
N] 

0

L This being a system of rank N — i , we can set z N = b , say ,  to get
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q11 ~ q21 
. ~~~ _ 1,1 ~l ‘

~N1

M
q12 

q
22

-A ~~~~~~ z
2

=-b

L ~~ clN_ l ,N..4 
- 

- 

Z
N_ i~~ j ’N ,N_ l

(3.33)

Denoting the N — i  vector whose components are Z
l,~~

.
~~

Z
N l  

by Z

and the R.H.S. vector of (3.33) by W , we get

AT 
. z = w

where A is the same matrix as in (3.31). Thus,

= (
~

)
~ 

. W (3 .34)

And thus solving (3.32) implies that (3.34) is solved . All we need to

get Z , once we have U , is to transpose the inverse we a l ready have

and mult iply it by the transpose of the last row of A (and the va lue

of Z
N

) .  This is significant for the case of policy constraints .

Now we interpret the Lagrange multipliers u . and the z , . The Z

plays here the role that the II plays in the risk insensitive case .

Note that the constra ints defining the l imiting state probabilities are
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where 1 is the vector whose components are all unity. That vector is

the eigenvector of P corresponding to TI :

Moreover , the common eigenva lue is un it y ,  the max imal eigenva lue for any

transition probability matrix P. Hence , (3.25) represents the “equi—
S

libr ium of d isutil ity contr ibut ion flows” in the limiting case , exa ct ly

like the constraints on the limiting state probabilities did for the

probabilistic flows . The difference is that here the “outf low” is mul-

tiplied by A
M
, correspodning to the fact that , in the limit , u t i l i t i e s

are multiplied by A~
1 

every transition . The u
~~
, being Lagrange mul-

t ipl iers , give us the cost of violating the constraints per unit of dis-

equilibrium just as the v ’s were in the risk—insensitive case .

Now we proceed to P1. Once we have evaluated a policy, we want to

improve i t .  We make maximizing the Lagrangian our objective (providing

the guarantee of improvement outside the Lagrangian framework , as be-

fo re) .  To do that , we rewrite L to br ing out the dependence on d’~.

K . K .

L = z~ u~ ~~ q~~d
1
~ + A

M 
- A

M 

~: ~~~~ 
+ 

;~l ~ 
d~ 

- ii
• N

For the given policy [~ 
z
1
u

1
=l ~(from (3.30)) and for any policy

Ki k
k~1 

d~ = 1, whence we only have to contend with the f irst term :

N N
\ z~ \ u~ \ q~~1

d~
< 

(3.35)

- 

- 
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(3.35) is the inner product of two vectors . The f i r s t  vector Z

is constant . The second is policy dependent . Once a policy P is se-

lected , it defines a vector T(p) of “test quant it ies”

= 
\ q

k 
~ (3.36)

1 ~—1 ijj

where th~~ ~~~ 
is the corresponding element of the Q selected by pol-

icy P. The sign of t~ is the same as that of Ii, and hence also Z.

Thus, if Z and U are chosen positive (u
N 

= -(sgn ~~) because we are

deal ing with the case ~ <0), then , to maximize L, we have to select

that feasible T(P) with largest components . Otherwise , we would have

to select that one with the smallest components (if Z and U are meg—

ative). In other words , if the sign of U
N 

is the same as that of ,

the test quantity has to be minimized in order to maximize the Lagrang—

ian. We will assume hereafter that in PE we take u
N = Z

N = -(sgn -).

In the absence of policy constra ints , we can select

t~ max ~~ q~~u . (3.37)
k=l ,2,...,Ki j=l

Since the z~ are nonnegat ive , this choice maximizes the Lagrangian ,

and we have the P1 phase of Section B. If we have policy constraints ,

however , such a policy might not be feasible . In this case , we have to

consider (3.35) as a whole . In essence , we redefine the components of

T to be

= ~~ q~~u~ (3.38)
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where the policy P determines the al ternative in each state

P(i) = k

The I.agrangian then becomes merely the sum of the components of

T(P). Here , the origina l test quantities have been weighted by the cor-

responding z
1
, the variables controlling the equilibrium of disutility

contribution flows . Whereas , in the risk—insensitive case , weighting

test quantities by the limiting state probabilities was intuitive (the

process spend s of the time in s tate  i , on the average ) , this

weighting cannot be intuitively derived in the risk-sensitive case . Z

encodes the limiting behavior from both the probabilistic and risk at-

titude aspects .

Note that , if the test quantities are defined by (3.38) , i.e., we

multiply by z•, then , when maximiz ing the Lagrangian , we do not have

to worry about the signs of Z and TI .  They cancel out . Thus , in the

absence of policy constraints , we can set UN = (sgn ~
) = —i but take

care to multiply the test quantities by -l before maximizing in each

state . This is just another way of saying that U N has to be positive

when ~ is negative .

In other words, (3.29) is not really a “free” eigenvalue problem ,

in the sense that we are not free to choose any value for one of the

u
i
. The values have to be of different sign than y in the absence of

policy constraints in order to implement the PT of Section B as is.

Otherwise , the test quantity has to be minimized. It is the realization

that P1 is maximization of the Lagrangian which led us to detect this

dependence on sign ‘1. As ment ioned , this dependence can be removed if

- -1’• the test quantities are multipl ied by the z~~. Since this is what we

• 
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do when policy constra ints are present , we need not worry about signs .

We will select Z
N 

= U
N 

= —(sgn  ~
) for consistency. (Either Z or U

has then to be normalized to satisfy (3.30).) For constra ined policies,

we maximize the Lagrangian by BB as before. That BB does maximize the

Lagrangian has already been proved . The proof s t i l l  applies because the

Lagrangian was only assumed to be the sum of the components of T(P)

(which it still is) without any dependence on how those components were

obtained .

For the case of risk aver sion , positive ? ,  we previously mentioned

that we need to minimize A~
1 

in order to maximize g. In this case , our

constra ined problem is the same as (3.21) through (3.24), except that

(3.21) Is replaced by mm A
M
. What applies to constrained maximization

applies to constra ined minimization , as far as the Lagrange multiplier

rule is concerned .

Thus, the minimizer of the constrained problem is still a critical

point of the Lagrangian. Hence , the PE phase is the same . When we get

down to P1, however , we would like to select P so as to minimize the

Lagrangian . In the absence of policy constraints , setting u~~=_ (s~n~~)

makes U and Z both negative . Thus, to minimize the inner product,

the variable vector composed of test quantities has to be maximized (be-

cause it will be mult iplied by a negat ive vector , and we want to minimize

the result). Hence , sett ing u
N 

= — (sgn y) in the unconstra ined poli-

- t  cies case , and then max imiz ing the resultant test quant it ies , actually

minimizes the Lagrangian. This is what is really sought here . For con-

strained policies, we merely minimize the Lagrangian without worrying

about signs , because we multiply the test quantities by z~~. A better
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approach would be to take the sign of y into cons ideration , explicitly.

This could be done by redefining the test quantities as

N

k
t~ —(sgn ~~~ 

Z
1 ~~ q

1~
u~ (3.39)

j=i

For a risk preferrer (-
~ <0), this reduces to (3.38), whence a l l  the

previous applies. For , >0, (3.39) effectively multiplies the Lagran-

gian by —1. In other words, the Lagrangian defined by (3.39) is the neg-

ative of that defined by (3.38). Since we want to minimize the latter ,

we can maximize the former . Consequently, P1 becomes maximizat ion , ir-

respect ive of the sign of ~ if we define the test quantities by (3.39).

To summarize then , setting U
N 

= — (sgn ~
) makes P1 maximize test

quantities in the absence of policy constra ints. While this involves

dependence on the sign of y, it aut omat ica lly ta kes into account the

fact in one case we want to maximize L and in the other min imize  i t .

When policy constra ints are present , we have to explicitly take the sign

of -
~ into account by defining the test quantities as in (3.39), whence

we always maximize L in the P T .

D. Development and Convergence of the Algorithm

As in Chapter II , the maximizat ion of L does not , per Se , guara n-

tee an improvement in g .  We have to provide that guarantee outside the

Lagrangian framework . We will  introduce a s u f f i c i e n t  condition for  im-

proving g, based on a condition der ived by Howard and Matheson [61. If

we have a policy A , then the test quantity correspond ing to the alter—

native selected by any other policy B in state i is defined as

• 
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t . (B) = -(sgn ~
) z~ ~ ~~~~~ (3.40)

where ~~ and u~ are the values obtained by the PE for policy A. We

will define .~~~. ‘s analogous to the ~~~. ‘s of the r isi~- ind i f f e rent  case
1

by

= t .(B) — t . ( A)  ( 3 . 4 1 )
1 1 1

where the t. are defined by (3.40).

Proposition 3.1.

• Given a policy A for which PE has been performed and any ot her

policy B , a sufficient condition for > g
A 

is

~ i
(B ,

~~ 
� 0 i = 1 , 2 , . .. ,  N (3 .42)

with inequali ty holding for at least one state i.

Pro~ f.

We note that since g = -i/-i in A , where A is the maximal eigen—

B A
value of Q, then we need to prove that A > A for ~ < 0 and vice

versa .

An important result from matrix theory is that , if Q is a nonneg-

ative irreducible matrix with maximal eigenvalue A and x is a vector

with positive components x~~, then

N N
‘C \ q x

• ij j 4~~
-
1 

ij ~
mm ~~ -

~ A < max (3.43)
x — — . x

1 i 1 i

4 : . lii
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with equality holding if and only if x is an eigenvector of Q.

Now we consider the implications of (3.42). By virtue of (3.41) ,

we can write

t (B) >t .(A)
i — 1

with inequality holding in at least one state . Using (3.40), this re-

duces to

N N
A \  B A  A \  A A

—(sgn ~
) z. q..u . > — (sgn 7) z.

Since , from PE , z . and ~ 
have different signs , the product

-(sgn ~
) z~ is alwa ys positive , and we can divide both sides of the

inequality by that quanti ty without reversing its sense. Also from PE ,

U is an eigenvector of Q
A
, whence

~~ ~~~~~ > ~A A  (3 .44)
1

with inequality holding in at least one state i. If U is also an

e igenvector of QB
, (3.44 ) reduces to

B A  ~A A
A u1 

u~

with

B A  A A
A u . > 7~- U for some i

1 1

For

< 0, U . > 0 and - B >

For

>0 , U . < 0 and 
B
<

A
1
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If U is not an eigenvector of Q
13
, we consider -, < 0 first , then

>0 .

For <0 , U . >0 , and (3.44) can be rewritten as
3

N
\ ‘ B A
~ q ..u .

13 ~

A
U .

1.

Since this holds for all i , then it is certainly true that

N B A
~~ q..u .

mm ‘S 1 3J > A A
• f— A —
1 3 1  U .

1

Applying (3.43) to the L.H.S . of this inequality, not ing that U

is not an eigenvector of Q
B
, we get

B A
A > A

For ~ > 
0, u . < 0 and (3.44) can be rewritten as

~~~~ (- iu~~~i) � \
A (~~~U~~~

I)

Hence ,

N

luil

S ince this holds for all 1, it is certa inly true that
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N
• B A

~ q. U .ij  3
max j =l

A —
i lu m i

~\p~~Lying  (3.43) to the L.H.S. with U not an eigenvector of Q
B 

gives

A
B

< A
A .

We thus have a suff icient  condition for improving g .  The forego—

ing proposition states , in effect , that “improving” the test quant it y ,

as defined by (3 .40 ) , in at least one state suf f i ces  to improve g.

Thus , when we enter BB , we will discard alternat ives for which t~. <0.1

If BB yields a policy d i f fe ren t  to the one we entered with , it is auto-

mat ica l ly  an improvement . Otherwise , the policy on which BB converges

maximizes g over the set of feasible policies that differ with it in

exactly one “coupled” state .

The previous proposition also guarantees that if , for a policy A ,

each test quant ity is max imum in its state , then policy A is optimum .

The proof is identical , except that equality is allowed to hold in all

L states . F i n a l l y ,  to get an i n i t i a l feasible pol icy ,  we maximize

—(sgn “
~~~ q.. over the feasible policy set by BB. Thus, the algo—

rithm can be schematically represented in Figure 3.1.

The convergence proof is identical to that of Chapter II. If we

exit the algorithm at E2, that policy is the overall optimum . No policy

can have a better g. (This is the policy PE—PI would converge to. In

other words , the policy constraints have not altered the optimum policy.)

If we exit the algorithm at E3, then any feasible policy has become

infeasible by virtue of (2.71) type constraints . This means that it be-

longs to a subset over which we maximized g, whence it cannot have a

better than the one we obta ined .
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Set = —cr ; get 
_____ 

No feasible policic~
initial feasible policy 

- 
• problem is infea s ible

El

__ Perform P1 for given
policy i ;  call it A

B infeasible ; enter BB
with A to maximize L
over “coupled states”

~~~— with -~ i ~ 
0 , maximize

test quant ities over
“free states” to get
pol icy B~~~ A

B A ;  if ~ (A) ~~~~~ 1
set A as opt imum , and
g* = g(A); add (3.3) No feasible policies

~~ type constraint , and —~ remain ; we have an
enter BB to maximize L optimum policy
over “coupled states ,”
~ unrestr icted in sign E3

Fig. 3.1. ALGORITHM ~DR RISK-SENSITIVE CASE.

E. The Example

We will solve the same example we solved in Chapter II , introducing

a risk averse coefficient y = 0.01. We rewrite the original policy

constraints (2.72) and (2.73) as

— d~ = 0 (3.45
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d~ + d~ ‘ 1 (3.46)

N
To get an initial feasible policy, we enter BB to max imize 

~~~~~~~~~ 

q..

over the feasible policy set . The BB tree:

= — (0.923,0.852,0.933) P
01 = (1 ,1,1)

Performing PE for the feasible policy (1 ,1,1) results in:

State Ordered Test Quant it ies

t

~~

= — o. 38o

3 t~ = —0.367 t~ = -0.369 t~ = —0.38 1

A = (1,1,1) g(A) = 9.19

Regular P1 gives (1,2,2), an infeasible policy . Maximizing the free

state gives P(3) = 2, and the BB tree is:

T
01 = — (0.362,0.173) P

01 = (1,2)

T
11 = — (0.362,0.181) P

11 = (1,1)
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Thus , we get po~ icy B = (1,1,2), different to the one we started with .

Performing PE for (1,1,2) gives :

State Ordered Test Quantities

1 t
1 

= —0.357 t
2 

= —0.364 t
3 

= —0.374
~~~~~ ~~~~~~~~~~~ 1 1

2 t~ = —o .273~~~~ t~ =

3 t = —0. 2 68  t~ = —0.269 t~ = —0.278

A = (1,1,2) ~(A) = 9.34

Regular PE yields (1 ,2 ,2) which violates (3.45), i.e. , is infeas-

ible. Hence , we maximize in 3 to get P(3) = 2, and we enter BB with

•
~ 
�0 , i.e.,

State Ordered Test Quantities

1 t~i

1
— 2

The BB tree is:

= —(0.357,0.273) P
01 = (1 ,2)

- •  

T11 = —(0.357,0.286) P
11 = (1,1)
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Thus , we get policy (1,1,2), the same one we entered with . Hence ,

our optimum policy P and g* so f ar are

P (1,1,2) g = 9.34

We add the constraint

d~ + d~ <0 (3 .47)

And we enter BB with no restrictions on . . ,  i.e.,

State Ordered Test Quantities

1 2 3
1 t1 ti ti

2 t~ t~

The RB tree is:

/~
‘
~I T
~ 01 1

I
. .

(T
11

T01 = — (0.357,0.273) P
01 

= (1 ,2~

= — (0.374,0.273) P
11 = (3 ,2)

t 

Hence , we have a policy (3 ,2 , 2) for which we perform PE:
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State Ordered Test Quanti t ies

1 t~ = —0.091 t~ = -0 .096 t~ = —0.099

2 t~ = —0.656 t~ = —0.756

1 3
3 t~ = —0.128 t

3 = —0.134 t~) = —0 .147

A = (3 ,2 ,2) g(A) = 12.40

Regular PE yields an infeasible policy . Thus, we maximize in 3 and

enter BB with :

State Ordered Test Quantities

1 ‘
~: E~ t~

2 t~

The BB tree:

-
-

i i :

T
01 

= — (0.091 ,0.656) P
01 = (2 ,2)

= — (0.099,0.656) P,~~ = (3 ,2 )

And we got (3 ,2 ,2) the pol icy  we entered wi th . Since it s g i~

greater than g*, we update :

: “~
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T~~~~~~~T TTTT ~~ TT~ _ _ _

p = (3 ,2,2) = 12.40

We add the constra int

+ d~ <0 (3.48)

And we enter BB with :

State Ordered Test Quant ities

1 t
2

H: 
1

2 t~ t•,

The BB tree :

(~~~
1

T
01 = — (0.091,0.656) P

01 = (2 ,2)

No feasible policy exists in the tree , i.e., the problem has become

infeasible . Thus, our optimum policy and g arc

P = (3 ,2 ,2) = 12.- lI)

This is the same optimum policy as in ‘~hapter II , the risk—indifferent

- . 
case . Thus , a small risk—aversion coeflicient of 0.01 does not change

the optimum polirv . The negligible effect of such a small coefficient

may also be detected by re~ :i rding the risk premium , the difference be—

tween expected valu e  and expected utilit y decision making :
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g* — g* = 12.774 — 12.40 = 0.374

This , however , is not our concern here. Our main objective is to have

an algorithm which works for both risk—indifferent and risk—sensitive

cases. This objective has been achieved .

k .1
-
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Cha pter IV

SENSITIVITY OF OPT IMA L POLICY TO CONSTRAINTS

In this chapter , we investigate the effect of policy constra ints on

the optima l policy and how much a rationa l decision maker would be wil— -

ling to pay in order to remove one or more constra ints .

Our point of departure is the absence of policy constraints. In

this case , no policy can yield a higher gain (or certain equivalent gain)

than the policy P arr ived at by Howard ’s VD-PI (or PE-PI) algorithm .

When policy constraints are introduced , policy P might , or might not ,

become infeasible . If the set of policy constra ints does not make P

infeasible , it is still the optima l policy, and the constra int s are

merely a red herring . In other words, we can tell the decision maker

that , in this case , his concern about policy constra ints is much ado

about nothing . We define such an optima l policy as a “constra int—indif-

ferent” optimal policy, and all constra ints are worthless , in the sense

that the decision maker has nothing to gain by removing any of them .

Moreover , we do not have to solve the problem in the absence of policy

constraints to detect constraint—indifference . The algorithm we devel-

oped has the ability to detect that , as we showed in the convergence

proofs . If we exit the algorithm from E2, we have a constraint-indiffer-

ent optimal policy. The distinguishing feature of the E2 exit is that ,

for the selected policy, each a lternat ive maximizes the test quant ity

in its state. Therefore, any other policy results in nonpositive

whence the gain cannot increase .

If we exit the algorithm from E3 , we have what we define as a “con—

straint~-sensitive
” optima l policy. Here, the policy having the highest
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possible gain is infeasible . The constra ints have affected the optima l

policy. If we look at the table of ordered test quantities for the last

iteration , there will be at least one state in which the selected alter-

native does not maximize the test quantity (otherwise , we would have ex-

ited from E2). For such states , the only thing that prevented BB from

maximizing the test quantities , is the feasibility. Thus, it might be

worthwhile to pay for removing some constraints. There is , however , a

subset of constraints (possibly the null set) which do not affect the

optimal policy and can be determined from the final (i.e., last itera-

tion) table of ordered test quantities . Assume that the coupled states

are numbered 1,2,...,M < N , and that the alternatives selected by the

optimal policy in those states are a ,b ,c ,... ,m , respectively.

We start by list ing the tab le of ordered test quant ities for the

coupled states of the optimal policy. Without loss of generality, we

have renumbered the alternat ives in each state according to the descend-

ing order of their test quantities .

State Ordered Test Quant it ies

1 t~i t~ .  ~~ 
~ •~~+l t~

i 
•

2 ~~ t~~~
’ t~

2

M ~~ . . .  t~ t~
M

The line we have drawn through the table is the line representing the

restriction > 0. No alterna tives to the right of this line are
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considered in BB. Our claim is that , if the d~ involved in a con-

stra int are all to the right of that line , the optimal policy is not

affected by that constraint . This is due to the fact that only y. >O

can yield a better policy, and al l  such policies (to the lef t  of the

line) are infeas ible (otherw ise , we would have converged to the best).

Finally, the alternat ives selected by the optima l policy in the

coupled states are given by

P( l) = a P(2) = b , ..., P (M) = m

Each policy constra int C ( d 1
~) < 0 (or =0) involves d~ such

that i E (1,2,...,M). Now consider the subset of constraints

C = {C (d
1
~) 

: k > P(i)}

Then C is composed of constraints which do not affect the optima l

policy, i.e., if they are discarded , the solution would not change .

The proof is simple. If a constraint involves d~ such that k>P(i)

for all i , then the extra feas ible policies result ing from discarding

that constra int have negat ive ~y. ’s (to the right of the line) , whence

their gain is inferior to the policy we already obtained . Consequently,

the algorithm would not converge to any of them . It would still con—

verge to the same optimal policy.

Thus , when the algorithm terminates , we can immediately determine

whether or not there are worthless constraints . If we exit from E2 , we

have a constraint—indifferent optimal policy. If we exit from E3 , we

can look at the table of ordered test quantities and detect those con-

straints that the decision maker need not have concerned himself with .
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At this point, he should not be willing to pay for removing any of them ;

he would not ga in anything . As for the rema inder of the constra ints ,

some of them might also be worthless , but some of them d e f i n i t i v e l y  are

not . To discover the worth of any single constraint , we can remove it

and solve the problem again , starting with the optima l policy as our

initia l feasible policy. This we do for the taxicab example in the

r i sk—ind i f f e ren t  case . There , our policy ~on~~~ra ints  were

d~ 
— d~ = 0 (4.1)

d~ + d~ < t (4.2)

We converged to policy P = (3,2,2) and gain g 12.77.

State Ordered Test Quantities

3 t~ = 1.51 t~ = 0.95 t~ = -0.18

P = (3,2,2) g = 12.77

Here , we have drawn the ~
‘ . > 0 line and the constra ints . Neither

constra int involves d~ which ar: all to the right of that line . Thus,

we do not have , as yet , any worthless constraints . Let us see what

happens if we discard (4.1). This means that the union drop the re—

striction of using its facilities but still allows only one taxi—cab
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stand to be used . Our initia l feasible solution is (3,2,2). We note

that no improvement can be made in the free state , and maximizing over

the coupled ones results in the infeasible policy (2,2,2). Hence , we

enter BB with the next table . (We shuffled the states around to have

the one with least alternatives as the first component. This reduces

the BB computations.)

State Ordered Test Quantities

2 t~

2 1 3
1 t

1 
t
l 

t
l

The BB tree is :

T01 = (1.04 ,20.69) P
01 = (2 , 2)

• 

-, 

T11 = (0.58 ,20.69) P
11 = (1 ,2)

Hence , we move to (1,2,2), a feasible policy different to the

one we entered with . Performing VD gives us
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State Ordered Test Quant it ies

1 t~ = 1.47 t~ = 1.12 t~ = 0.59

2 = 20.48 t~ = 11.08

3 t~ = 1.2 t~ = 0. 84 t~ = 0 .22

P = (1,2,2) g = 13.15

No improvement is possible via maximizing test quantities , so we enter

BB with

State Ordered Test Quantities

2 4
1 

2
1

The BB tree is ident ical to the prev ious one , i.e., we converge to

(1,2,2). Therefore, we introduce the constra int

d~~ + d ~~ <0

and we set our optimal policy so far as

P
0 = (1,2,2) g* = 13.15

State Ordered Test Quant it ies

2 
2 1

-
~~~~~ 1j2 

t
2

• 1 4 4 4
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The BB tree is given :

T
01

*

T01 = (1.47 ,20.48) p
01 = (2,2)

T11 = (1.47,11.08) P
11 = (2,1)

The VD for (2,1,2) gives

State Ordered Test Quant it ies

1 t~~ =2 .~ 4 t ~~ =2.O5 4=1.29

2 t
2 = 8. 87 t 2 = 6.61

3 4=2.66 4=2.53 4=1.22

P = (2,1,2) g = 8.81

No improvement is possible , so we enter BB with

State Ordered Test Quantities

2 4 4
3

1 t
1 

t
1 

t
1

k
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The BB tree is :

T
01 

= (2.44 ,8.87) P
01 = (1 ,2)

T11 = (2.05,6.61) P
11 = (2,1)

And we have converged to (2,1,2). Since g < g*, our previous optima l

policy is still optimal so fa r .  We introduce the constraint

d~ + d~ < 0 (4.4)

and enter BB with

State Ordered Test Quantities

2 1
2 t2 

t
2

1 
1N2 3

tl 
t
i t

l

The BB tree is:

= (2.44 ,8.87) p
01 = (1 ,2)

• 
• 
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The only node in the tree is infeasible , and no branching is possi-

ble , i.e., an infeasible problem . Thus, we have exhausted the set of

feasible policies and exited from E3. Our necessarily constraint—sensi—

tive optimal policy is

P = (1,2,2) g = 13.15

The difference in gains between this optima l policy and that in the

presence of (4.1) is

= 13.15 — 12.77 = 0.38

Therefore , it is not worth more than 0.38 units per transition for

the taxi-cab driver to try removing (4.1). For instance , if there were

a proposition in the union for raising the dues in return for abolishing

the rule that forces a member to use union facilities , he should not vote

for it if the increase in dues averages more than 0.38 per trip . Other-

wise , he votes for the proposition . He stands to gain by changing his

optimal policy under the new rules of the game . Note that there still

is a more gainful policy if (4.2) were also discarded (the constra int—

indi f ferent  policy; here , it would be constraint- indifferent  by de fau l t

• because there would be no constraints). We know about the existence of

that policy from the fact that we did not exit from E2.

We could discard (4.2) and start with the policy (1,2,2) to get

the optimal one , thus computing how much that constraint is worth in the

absence of (4.1). A more interesting thing happens , however , if we re-

tam (4.1) and discard (4.2). In other words, if , after so lv ing the

problem in the presence of both (4.1) and (4.2) we want to know how much

k
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(4.2) is worth , we would start w ith policy (3,2,2) and only (4.1) as a

constraint . We repeat the policy’s table here .

State Ordered Test Quantit ies

1 t~ = 1.04 4 = 0.58 4 = 0.31

1
2 t = 20.69 t

2 = 9.09

3 4 = 1.51 4 = 0.95 4 = —0.18

P = (3,2,2) g = 12.77

Here , no improvement can be made in the free state , but we can maximize

over the coupled states to get:

State Ordered Test Quantit ies

1 4 = 0.82 
4 = 0.71 4 = 0.37

2 4 = 22.29 4 = 13.21

3 4 = ~~~~ 4 = 0.75 4 = 0.33

P = (2,2,2) g = 13.34

Here , the test quantities are all maximum in their states under this

policy, and we exit from E2. Hence , (2,2,2) is the best policy he can

ever implement . It is also constraint-indifferent . In other words , it

Is only the rule that only one union taxicab stand can be used that need

• concern him. Its value is

132 

- • •



13.34 — 12.77 = 0.57

Note , however , that , in the absence of constraint (4.1), constraint

(4.2) is worth

tg3 
13.34 — 13.15 = 0.19

-S

This is arrived at by the fact that , in the absence of (4.1), we

converged to a gain of 13.15. Had we then discarded (4.2) and started

with the then optimal policy (1,2,2), we would have converged to

(2,2,2). The values naturally turn out to be additive . (Otherwise , we

would have a “money pump” situation). In other words , a constra int does

not usually have a value independent of other constraints . There could

be , however , a constraint (or group of constra ints) that renders the

others worthless. In our example , constraint (4.2) was such a constraint .

If that constraint representing the one—stand—only rule were removed ,

the other constraint is worthless . To achieve that , a value of 0.57 per

transition is an upper bound . If only (4.1) were removed at a cost of

• 0.38 per transition , then removing (4.2) would be worth 0.19. Thus , to

get the constraint-indifferent optimal policy, our friend could do one - 
-

of two things . He could expend up to 0.38 per transition to remove the

use—the—union-facilities rule and up to 0.19 per t ransi t ion to remove

the one—stand—only rule for a total of 0.57 per transition . Alterna—

tively, he could expend up to 0.57 per transition to remove the one—

stand —only rule and not bother about the first rule . In either case ,

there is an (ident ical) upper bound on how much he should be will ing to

pay to achieve that constraint—indifferent optima l policy.
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In general , it is not that simple to discover combinations that

achieve the constra int—indifferent optima l policy. The fact is , how-

ever , that no matter how it can be achieved , there is a unique upper

bound on the value of doing so , namely the difference in gain between

the constraint—indifferent optimal policy and the constraint—sensitive

optimal policy given by the algorithm when all constra ints are taken

into consideration . If the decision maker is interested in the afore-

mentioned upper bound , we could start discarding constraints , one at a

time , and solving the problem starting with the latest constraint-sen-

sitive optima l policy as an initial feasible policy until we eventually

get the constraint—indifferent optimal policy . We can give him two

things here . First , the breakdown of the upper bound between con-

straints . Secondly, we tell him that , no matter what , the constraint-

indifferent optimal policy is the best he can ever hope to achieve for

the given problem .

If the decision maker is interested only in specific constraints ,

or groups thereof , we can compute the worth of such constra ints by the

afore ment ioned techn ique;  it being understood that the worth we compute

of specific constraints is subject to the presence of the rema inder of

the constraints .

The problem of determining specifically which constraint , or group

of constra ints , render the rest worthless (i.e., discard ing them results - •

in a constra int- indifferent  optima l policy) , or even the min ima l  such

group , is an essentially combinatorial problem worthy of research .
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Chapter V

MODIFICATIONS FUR PROBLEMS WITH A LARGE NUMBER OF STATES

A .  Introduction

As explained earlier , for a constraint-sensitive optimal , we have

to exhaust the feasible policy set. That set becomes very large as the

number of states increases . At the same time , the rate at which it is

exhausted is slow. This we discuss in further detail in Section B. In

Sect ion C , we introduce the idea of partitions , i.e., dividing the cou-

pled states into groups which have no intergroup couplings . We show how

partitioning increases the rate of exhausting the feasible policy set , -

discuss the problems introduced by partitioning , and how to overcome

them . In Section D, we elaborate on how to deal with transient states

• if we have a single trapping state (whence all policies have the same

gain). In Section E , we discuss a m o d i f i c a t i o n  which might  further

speed up the algorithm . Finally ,  in Sect ion F , we introduce var ious

constraints to Howard ’s baseball problem [41 and give the computational

results .

B. Of Dimensions and Exhaustion

As the “d imension” of the problem , i.e., the number of states in—

creases , the number of policies increases multiplicatively. This is

N
because the latter is given by •

~~l 
K
i
. Thus , adding one state with 3

• alternatives , say, increases the number of policies by a multipl icative

factor of ~3 . While it is true that the constra ints eliminate some of

these policies , we can still consider that , in general , we havea  fairly
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large number of feasible policies to consider . In the case of a con-

straint—sens itive optima l policy, we have to exhaust the feasible policy

set (exit E3 in the algorithm). As we have seen , whenever branch and

bound converges on a policy, that policy maximizes the ga in over the

subset of policies differing with it in exactly one coupled state. That

subset is discarded , and exhaustion occurs when the union of such sub-

sets covers the feasible policy set . Now , if we consider the number of

policies in any one of the afore—mentioned subsets , we find that it is

N
given by 

j=l 
K
i
_ N +l . (Here , we assume , for illustrative purposes ,

that all the N states are coupled.) Of this number of policies , some

might already be infeasible , either due to the original constra ints or

type (2.71) constraints . Hence , the exhaustion process is , at best , ad-

ditive in nature ; whereas the set to be exhausted has a size whose na-

ture is multiplicative . In other words, the feasible set is being ex-

hausted at too slow a rate . It thus appears that , in the absence of

additional structural propert ies , the computational cost of the algo—

r i thm would be prohibitive for problems with a large number of states .

C. Of Partitions

For pract ical problems with a large number of states , it might very

well turn out that the coupled states can be divided into groups having

no inter-group coupling of alternatives . (We will later give examples.)

Those groups we term “partitions .” We thus def ine a part ition as a group

of coupled states in which no al ternative in any state appears in a con-

straint involving alternatives in any state not in the partition . For-

mally: Let the mth constraint (C
m
) be defined by the set of ordered

pairs (i ,k) referr ing to the d~~’s involved in the constra int , i.e.,
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C = 
{[ii

(rn )~ ki(m)]~ . . .,  [i~~(m) ,k
i(m)]}

e.g., for d~ +d~ +d~~ � 1 ,

C = f(1,2),(3,l) ,(5,2))

Let the rth partition be defined by its constituent states :

= {i1
ir), . .. ,  i

N(r)}

Then our def inition becomes

i P .
~~~~> (i,k) C > i .(m) ~ P VIi .(m) ,k .(m)l ~E Cr m j  r L i  3 J

We have thus characterized the states further . First , we div ide them

into free and coupled states . Then the coupled states are further de-

composed into partitions (whence a partition may be regarded as a “gen—

eralized free state”). The advantage of partitioning is explained by

the following proposition.

Proposition 5.1.

Let the maximization of the Lagrangian over the set of feasible

policies sub ject to 
~~ 

0 yield a policy P for which all -- = 0

(i.e., branch and bound converged to P). Then P maximizes the ga in

over the set of all feasible policies that differ with P in at most

one state in each partition .
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Proof.

Let P’ be a feasible policy differing with P in at most one

state in each partition . First , recall that

g(P’) — g(P) = = ~.(P’) (p.66)

Now consider each partition . If P’ is identical with P throughout

a partition , then 
~~~

. = 0 for all states in that partition . If P’

differs with P in exactly one state in a part ition , then 
~y . 

< 0 for

that state . (Otherwise , the Lagrangian could have been improved , and

that did not happen.) As for the free state , y. = 0. (The alterna-

tives there maximize the test quantities.) Therefore , ~~ • < 0 for all

states , whence g <0 and P cannot be inferior , in gain , to P’ .

The importance of the previous result is that , with partitions , the

rate of exhausting the feasible set is greatly enhanced . The number of

policies in a subset discarded by a policy P has a rough estimate of

R
I Y K —N +11 , where R is the number of part itions and N -

r=1 i~~
Pr i r r

is the number of states in parti t ion P .  Ac tua l ly ,  the previous esti—

mate is on the high side because we have to subtract from it those corn-

binations that cause a change in more than one partition . However , that

estimate serves to illustrate the fact that the rate of exhaustion is

better than addit ive , a definite improvement on the case where no par-

titions exist. This contention has been borne out in the computational

• results .

The introduction of part itions complicates matters s l i g h t l y .  First ,

we have the problem of additiona l (2.71) t ype constra ints , to impleme it
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discard ing subsets over which we maximize the gain. We could add a con-

straint for each partition . In this case , however , we would have to

consider combinations of them to detect whether or not a given policy

belongs to a discarded set. This problem is resolved by applying the

result of the propos it ion directly without resort to formal constraints

of type (2.71). Every time branch and bound converges to a policy ; that

policy is retained in lieu of a constraint . Then, given any policy, it

is compared to the retained policies . If the given policy differs with

a retained pol icy by ,  at most , one alternative in each partition , that

given policy belongs to a set over which we have maximized . It is ig-

nored , i.e., considered infeasible .

The second problem that ar ises is how to detect that the set of

feasible policies has been exhausted . Whenever BB converges to a nec-

essarily feasible policy P, we enter BB with no restr iction on 
~~~

.

for each part ition in turn , all other partitions being held constant

(i.e., no change in alternatives). If BB finds the problem infeasible

for one part it ion , this does not imply exhaustion . Only if all parti-

tions yield an infeas ible problem , is the feasible policy set exhausted .

We have , however , to prove this assertion .

Assume that for policy P , al l  pa r t i t i ons  yield an infeasible

problem . Assume that there exists a feasible policy P’ whose gain is

greater than the optimum obtained so f.ar . This implies that P’ does

not belong to any set over which we have maximized the gain . This, in

turn , implies that for each reta ined policy R , there exists at least

one partition in which R and P’ differ in more than one state . This,

of course , appl ies to P. Now consider P’. There exists a partition
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and a retained policy such that P’ and R
1 

differ in more

-• than one state in P~~. (Otherwise , P’ would belong to a discarded

set.) Now consider a policy L1 
which is identical to R

1 
in all

states except those in P. and identical to P’ in P.. L d iffers
1 i 1

with R
1 

in more than one state in P~~, whence it does not belong to

the set discarded by R
1
. But BB did not yield us L

1
.

Theref ore , there must exist a retained policy R
2 

def in ing  a dis-

carded set to which L
1 

belongs. In partition P~ , L
1 

and R
2, and

• therefore P’ and R2, differ in at most one state . Thus, there ex-

ists a partition P. in which P’ and R2 
differ in more than one

state. Now consider policy L2 identical to R2 in al l  part itions

except P . and identical to P’ in P .. Thus, L and P’ are iden—2

t ical partit ions P . and P~~. BB did not yield this policy, whence it

belongs to a discarded set defined by a retained policy R3
. Continuing

in this manner , we f inally form P’ and find that it belongs to a sub-

set over wh ich we have maximized , whence its ga in cannot exceed that

already obtained . Thus, we have exhausted the feasible policy set.

D. Of Trapping States

In some problems , such as Howard ’s baseball example , there is one

trapping state , whence all others are transient . In this case , all  pol-

icies have the same gain . Howard shows , however , that his VD—PI algo-

rithm improves the relative values every iteration [4]. Since we have

reta ined Howard’ s sufficient condition 
~~
. >0 , this still applies .

However , when we have a constraint-sensitive optimal , we are maximizing

over subsets . Whenever we detect such a maximum , we compare its gain
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with the current optimum . If the gains are equal , as they are here , we

need a criterion for selecting an optimum . We adopt the criterion de-

veloped by Nesbitt [101 for such cases , where f~~v1 
is optimized ,

being the given initial state probabilities . This maximizes the

asymptotic expected reward .

E. Of Speed ing Up the Algorithm

As ment ioned earlier , a computationally burdensome approach to the

constra ined Markov Dec ision Processes problem would be to obta in the

unconstrained optimum by Howard’ s VD-PI algorithm , then proceed back-

wards in the policy ordering , checking feasibility. Our algorithm at-

tacks the problem directly by only considering feasible policies and

exhausting the feasible policy set. We can also obtain constra int—

indifferent optimum without having to exhaust the set. A moddle—of-

the-ground approach would be to obtain the unconstrained optimum by

VD—PI , then start our algorithm from there . The initial feasible policy

is obtained by branch and bound with no restrictions on ~~ . ,  from the

table of test quant ities rather than from the q~~. While we stillwould

have to exhaust the feasible policy set for a constra int sensitive op-

t imum , we have a better chance of starting at a policy having a high

gain . While it is true that we perform extra VD’s in the beginning , it

is hoped that this will be offset by performing less BB iterations later on.

F. Baseball Example and Computational Results

All the above considerations were applied to Howard ’s baseball ex—

ample [41 with constraints imposed on the policies , the constraints

-
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: 

111 

-

—4



-

~~ 
_ _ _  ~~T.::~~~~~

being various bright idea s imposed on the manager by the club ’s eccentric

owner .

Tab le 5.1 gives the results for a simple constra int :

+ d~ 
< 1 (5.1)

This yields a corstraint—indifferent optimal policy . Another simple con-

straint yields the results given in Table 5.2:

d~ + d~~ < l  (5.2)

In both ca ses, we have only one partition .

Encouraged by the results his team achieves , the owner wants to t ry

new ideas. The manager knows better but wants to keep his job , so he

compromises. They agree that , irrespect ive of how many men are out , the

owner ’s ideas are to be carried out only if there is a man on third base

and the bases are not loaded . With no one out , the owner wants a hit

decision in at least 2 of the 3 possible situations . Likewise , with one

man out and two men out . This translates- immediately to the following

constraints :

d~ + d~ + 4 2 (5.3)

+ + 2 (5.4)

+ 42 + 
2 (5.5)
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Table 5.1

BASEBALL PROBLEM
(Transient--One Constra int)

Number of policy constraints = 1

Number of feasible policies = 2.2 “< 10
10

Number of iterations = 2

Optimal gain = 0.0

Optimal policy type = constraint-indifferent

State Dec ision Value v~1

1 Hit 0.81
2 Hit 1.24
3 Hit 1.32
4 Hit 1.88
5 Hit 1.56
6 Hit 2.07
7 Hit 2.16
8 Hit 2.73
9 Hit 0.45
10 Hit 0.77
11_ Hit 0.87
12 Hit 1.23

• 13 Hit 1.10
14 Hit 1.44
15 Hit 1.53
16 Hit 1.95
17 Hit 0.17
18 Hit 0.33

- 

- 19 Hit 0.39
• 20 Hit 0.58

21 Hit 0.50
22 Hit 0.67
23 Hit 0.73
24 Hit 0.98
25 Trapped 0.0
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Table 5.2

BASEBALL PROBLEM
(Trans ient--One Constraint )

Number of policy constraints = 1

Number of feasible policies = 2.2 x 1010

Number of iterat ions = 5

Optimal gain = 0.0

Optimal policy type = constraint-sensitive

State Decision Value v~

1 Hit 0.78
2 Hit 1.24

- 
- - 3 Bunt 1.01
• 

- 4 Hit 1.88
5 Hit 1.53
6 Hit 2.06
7 Hit 2.14
8 Hit 2.73
9 Hit 0.45
10 Hit 0.77
11 Hit 0.87
12 Hit . 1.23
13 Hit 1.10
14 Hit 1.44
15 Hit 1.53
16 Hit 1.95
17 Hit 0.17
18 Hit 

- 0.33
19 Hit 0.39
20 Hit 0.58
21 Hit 0.50
22 Hit 0.67
23 Hit 0.73
24 Hit 0.98
25 Trapped 0.0
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That is not the whole story, however . The owner has additiona l bright

ideas. If the manager decides to hit with a man on first base , then he

has to hit with a man on second . The correspond ing constra ints are :

4 + 4 < 1 (5.6)

4 + 4 < 1

+ - 1 (5.8)

-

~ + < 1 (5.9)

42 + < 1 (5.10)

- 

42 + < 1 (5.11)

Finally ,  the manager cannot decide to hit with a man on second base un-

less he decides the same with one on first and second . This translates

into :

4 + 4 < 1 (5.12)

I 4 + 4 < 1 (5.13)

- 
+ 45 < 1 (5.14)

+ -~ 1 (5.15)

+ 43 < 1 (5.16)

‘

I 
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Constra ints (5.3) through (5.17) decompose into three natural partitions

corresponding to how many men are out . Table 5.3 gives the results under

these conditions . Note that the optima l is constra int—indifferent . In

other words , all the fuss the owner made is really irrelevant . The man-

ager does exactly what he would have done without any interference from

the owner . However , neither of them realizes that , and the team contin-

ues to win , which makes the owner come up with even more ideas. The man-

ager salvages freedom of action only if the bases are loaded or nobody

is on. In addition to the previous , the owner imposes restrictions when-

ever nobody is on third . He wants the decision to be a steal in at least

two of every three possible situations . This leads to:

4 + 4 + 4 > 2 (5.18)

3 3 3
d10 + d11 + d12 

> 2 (5.19)

48 + + 40 ~ 
2 (5.20)

Moreover , if he decides to steal second with one man on , he cannot •hit

or bunt (i.e., must steal third) with two men on:

4 + 4 < 1 (5.21)

4 +d ~~ < 1 (5.22)

+ 42 
-
~~ 1 (5.23)

+ 42 
< 1 (5.24)
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Table 5.3

BASEBA LL PROBLEM
(Transient——Fifteen Constra ints)

Number of policy constraints = 15

Number of feasible policies = 3.4 X 1O~

Number of itera t ions = 2

Optima l ga in = 0.0

• Optimal policy type = constraint—indifferent

State Decision Value v .
1

1 Hit 0. 81
2 h i t  1.24
3 Hit  1.32
4 Hit 1.88
5 Hit 1.56
6 Hit 2.07
7 Hit 2.16
8 Hit 2.73
9 Hit 0.45
10 Hit 0.77
11 Hit 0. 87
12 Hit 1.23
13 Hit 1.10
14 i Hit 1.44
15 Hit I 1.53
16 Hit 1.95
17 - Hit 0.17
18 Hit 0.33
19 Hit 0.39
20 Hit 0.58
21 Hit 0.50
22 Hit 0.67
23 Hit 0.73

— 24 Hit 0.98
25 Trapped 0.0

k
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3 1
d 18 + d

20 
1 (5 . 2 5 )

48 
+ d~ 0 1 (5 .26)

With less than two men out , he cannot dec ide to steal with two men on if

he decides to hit or bunt with a man on second :

4 + 4< i  (5.27)

4 + 4 < 1 (5.28)

+ 
42 < 1 (5.29)

41 + 42 < 1 ( 5.30)

With two men out , the rule changes to not stea l with two men on if hit

or bunt with a man on f irst:

48 
+ 1 (5 .31)

48 
+ < 1 (5.32)

Table 5.4 gives the results of the problem subject to constra ints (5.3)

through (5.32) .

In al l  the previous , we retained the original structure of the prob-

lem , namely a s ingle trapping state (state 25 , three men o u t ) .  To select

among policies , we used an init ial state probability distr ibution 
1 =1 ,

= 0 for i ~ 1. This means always starting in state 1 (no men out ,

no men o n) .  The same problems were run with = 1/24 (equal ly likely

1
_ .
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Table 5.4

BASEBALL PROBLEM
(Transient--Thirty Constraints)

Number of policy constraints = 30

Number of feasible policies = 4.6 x 1O~

Number of iterat ions = 2

Optimal gain = 0.0

Optimal policy type = constraint—sensitive

State Decision Value v~1

1 Hit 0.62
2 Hit 0.93
3 Steal 3 0.87
4 Steal 3 1.20
5 Hit 1.39
6 Hit 1.83
7 Hit 2.01
8 Hit 2.60
9 Hit 0.35
10 Hit 0.56
11 Steal 3 0.57
12 Steal 3 0.75
13 Hit 1.01
14 Hit 1.32
15 Hit 1.47
16 Hit 1.89
17 Hit 0.12
18 Steal 2 0.17
19 Hit 0.35
20 Steal 3 0.31

• 21 Hit 0.47
22 Hit 0.63
23 Hit 0.72
24 Hit 0.98 -

25 Trapped 0.0
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to start anywhere ) , and the results were identical. To test the algo-

rithm on a problem with many states that are recurrent , we changed the

P
11 

of the trapping state . We made state 25 return to state 1 (i.e.,

a new inning) with probability 1. Tables 5.5, 5.6, and 5.7 give the

results of the recurrent problems subject to constraints (5.2), (5.3)

through (5.17), and (5.3) through (5.32), respectively. Finally, we ra n

the algorithm in the manner described in Section E for both the recur-

rent and trans ient baseball problems , and a slight improvement in exe-

cution time was noticed . Tables 5.8 and 5.9 give the results of the

two problems , respectively.

The computat ional results obta ined indicate to us that we have a

computationally efficient algorithm for Markov Decision Processes with

constraints when the number of states is large .
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Table 5.5

BASEBALL PROBLEM
(Recurrent--One Constraint)

Number of policy constraints = 1

Number of feasible policies = 2.2 >< 10
10

Number of iterat ions = 4

Optimal gain = 0.1373

Optimal policy type = constraint-sensitive

State Decision Value v •1

1 Hit 0.13
2 Hit 0.62
3 Bunt 0.45
4 Hit 1.26
5 Hit 0.91
6 - Hit 1.44
7 Hit 1.52
8 

- 
Hit 2.11

9 Hit 0.01
10 • Hit 0.35
11 Hit 0.43
12 - Hit 0.81
13 Hit 0.68
14 1 Hit 1.02
15 Hit 1.11
16 Hit 1.53
17 Hit —0.05
18 Hit 0.11
19 Hit 0.17
20 Hit 0.36
21. - Hit 0.27
22 Hit 0.45
23 Hit 0.51
24 Hit 0.76
25 New Inning 0.0
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Table 5.6

BASEBA LL PROBLEM
(Recurrent——F ifteen Constraints)

Number of policy constraints = 15

Number of feasible policies = 3.4 X

Number of iterat ions = 2

Optimal gain = 0.1406

Optimal policy type = constraint-indifferent

State Dec is ion Value v .
1

1 Hit 0.14
2 Hit 0.61
3 Hit 0.68
4 Hit 1.24
5 Hit 0.91
6 Hit 1.43
7 Hit 1.52
8 Hit 2.09
9 Hit 0.001
10 Hit 0.34
11 Hit 0.42
12 Hit 0.80
13 Hit 0.67
14 Hit 1.01
15 Hit 1.10
16 Hit 1.32
17 Hit —0.06
18 Hit 0.10
19 Hit 0.16

— 
20 Hit 0.35
21 Hit 0.27
22 Hit 0.44
23 Hit 0.50
24 Hit 0.75
25 New Inning 0.0
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Table 5.7

BASEBALL PROBLEM
(Recurrent-—Thirty Constraints)

Number of policy constraints = 30

Number of feasible policies = 4.6 < 1O~

Number of iterat ions = 2

Optimal gain = 0.1017

Optimal policy type = constraint—sensitive

State Decision Value vi

1 Hit 0.10
2 Hit 0.42
3 Steal 3 0.31
4 Steal 3 0.64
5 Hit 0.89
6 Hit 1.33
7 Hit 1.52
8 Hit 2.11
9 Hit -0.004
10 Hit 0.21
11 Steal 3 0.18
12 Steal 3 0.34
13 Hit 0.68
14 Hit 0.98
15 Hit 1.14
16 Hit 1.57
17 Hit —0.05

• 18 Steal 2 —0.03
19 Hit 0.18
20 Steal 3 0.10
21 Hit 0.29
22 Hit 0.45

• 23 Hit 0.55
24 Hit 0.81
25 New Inning 0.0

ii
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Table 5.8

SPEEDING UP THE ALGORITHM--BASEBALL PROBLEM
(Recurrent-—Th irty Constra ints)

Number of policy constra ints = 30

Number of feasible policies = 4.6 ‘< 1O~

Number of iterat ions = 3

Optimal gain = 0.1017

Optimal policy type = constra int—sensi t ive

State Decis ion Value v .
1

1 Hit 0.10
2 Hit 0.42
3 Steal 3 0.31
4 Steal 3 0.64
5 Hit 0.89
6 Hit 1.33
7 Hit 1.52
8 Hit 2.11
9 Hit —0.004
10 Hit 0.21
11 Steal 3 0.18
12 Steal 3 0.34
13 Hit 0.68
14 Hit 0.98
15 Hit 1.1.4

• 16 Hit 1.57
17 Hit —0.05
18 Steal 2 —0.03
19 Hit 0.18
20 Steal 3 0.10
21 Hit 0.29
22 Hit 0.45
23 Hit 0.55
24 Hit 0.81
25 New Inning 0.0
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Table 5.9

SPEEDING UP THE ALGORITHM--BASEBALL PROBLEM
(Transient—-Thirty Constraints)

Number of policy constraints = 30

Number of feasible policies = 4.6 x 1O~

Number of iterations = 3

Optimal gain = 0.0

Optimal policy type = constra int-sensitive

State Decision Value v
i

1 Hit 0.62
2 Hit 0.93
3 Steal 3 0.87
4 Steal 3 1.20
5 Hit 1.39
6 Hit 1.83
7 Hit 2.01
8 Hit 2.60
9 Hit 0.35
10 Hit 0.56
11 Steal 3 0.57
12 Steal 3 0.75
13 Hit 1.01
14 Hit 1.32
15 Hit 1.47
16 Hit 1.89
17 Hit 0.12

• 18 Steal 2 0.17
19 Hit 0.35
20 Steal 3 0.31.

~ 1 21 Hit 0.47
22 Hit 0.63
23 Hit 0.72
24 Hit . 0.98
25 Trapped 0.0
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Chapter VI

CONCLUS ION~ AND SUGGESTIONS FOR FUTURE RES EARCH

An important limitation of the Markov Decision Process as a model

for practical problems has been overcome . The ability to deal with

policy constraints extends the applicability of the model , as we saw

in the taxicab and baseball examples . Although the policy constraints

there were immedia tely translated into algebraic form , we also have the

ability to express complicated constraints via the algebra of events .

We showed , however , that the resultant constra ints might not be of the

simplest form possible. An area worthy of future research would be to

try and devise a procedure which yields simple algebraic expressions .

The a lgorithm we developed could be used to order the policies accord-

ing to gain by successively making the optima l policy infeasible . This

would involve more computat ional effort than Nesbit t’ s [101 procedure .

However , it orders risk—sensitive policies for which no method for or—

dering has yet been devised . An interesting research would be to seek

a unified approach to both the ordering and the policy constraint prob-

lems .

Another area worthy of further research is sensi t ivi ty  ana lys i s .

As we pointed out, the values of the constraints are interdependent . To

discover which constraints , or group of constra ints , are responsible for

constraint—sensitivity of the optimal policy, it seems fruitless to try

using our algorithm repeatedly in an effort to exhaust all possible con-

stra int combinations . The mere bookkeeping required is mind —boggling .

Investigating the structural interact ion between the coupled states dur-

ing maximization of the Lagrangian would probably be a better approach .

k
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