AD=AD34 249

UNCLASSIFIED

STANFORD UNIV CALIF DEPT OF ENGINEERING-ECONOMIC SYSTEMS F/6 12/1

MARKOV DECISION PROCESSES WITH POLICY CONSTRAINTS, (U)

APR 76 J NAFEH NSF=GK=36491
EES=DA=76=3

||||| 1.0 Ehe

=K
[l el
‘E

T e

22 T e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

MARKOV DECISION PROCESSES
33; WITH POLICY CONSTRAINTS
N STANFORD UNIVERSITY
<H ,f\/\
@ ‘1 John N
oo \ |
< N e
Q -
<< _
1
e |
AN 1Y o7t
Gl U
=
i Gt e ‘,,.,-‘"‘!

g ADVANCED (@2
4 DECISION TECHNOLOGY
PROGRAM

— CYBERNETICS TECHNOLOGY OFFICE
DEFENSE ADVANTED RESEARCH PROJECTS AGENCY
- Office of Naval Research « Engineering Psychology Programs

i

s

‘.
L

i 4

{

t

The views and conclusions contained in this document ar
representing the official poli

cies, either expressed or imp!
Government. This document

The objective of the Advanced Decision
Technology Program is to develop and transfer
to users in the Department of Defense advanced
management technologies for decision making.
These technologies are based upon research

in the areas of decision analysis, the behavioral
sciences and interactive computer graphics.
The program is sponsored by the Cybernetics
Technology Office of the Defense

Advanced Research Projects Agency and
technical progress is monitored by the Office
of Naval Research — Engineering Psychology
Programs. Participants in the program are

Decisions and Designs, Incorporated
The Oregon Research Institute
Perceptronics, Incorporated

Stanford University

The University of Southern California

Inquiries and comments with
regard to this report should be
addressed to

Dr. Martin A. Tolcott

Director, Engineering Psychology Programs
Office of Naval Research

800 North Quincy Street

Arlington, Virginia 22217

or

LT COL Roy M. Gulick, USMC

Cybernetics Technology Office

Defense Advanced Research Projects Agency

1400 Wilson Boulevard
Arlington, Virginia 22209

e those of the author(s) and should not be interpreted as necessarily
lied, of the Defense Advanced Research Projects Agency or the U.S.
has been approved for public release with unlimited distribution.

S ,q,.-,...T,.. B e et ERR
vy v

RESEARCH REPORT No. EES DA-76-3

MARKOV DECISION PROCESSES
WITH POLICY CONSTRAINTS

by
John Nafeh

DECISION ANALYSIS PROGRAM

Professor Ronald A. Howard
Principal Investigator

Sponsored by
Defense Advanced Research Projects Agency
Under Subcontract from
Decisions and Designs, Incorporated
and

National Science Foundation, NSF Grant GK-36491

April, 1976

DEPARTMENT OF ENGINEERING-ECONOMIC SYSTEMS
Stanford University
Stanford, California 94305

SUMMARY

This work considers Markov decision processes with policy
constraints. The selection of an optimal stationary policy for
such processes, in the absence of policy constraints, is a problem
which has received a great deal of attention and has been
satisfactorily solved. Relatively little attention has been given
to the case when policy constraints are present. Optimal policy
sensitivity analysis is also a subject in which little has been
achieved. We develop, in this paper, a computationally efficient
iterative algorithm for selecting the optimal policy for completely
ergodic, infinite-time horizon Markov decision processes with policy
constraints for both the risk-indifferent and risk-sensitive cases.

{ The sensitivity of optimal policies vis-a-vis the constraints is
also analyzed, and the algorithm is used to quantify the analysis.

An important limitation of all previous anaiyses of Markov
decision processes is the implicit assumption that selecting an
alternative in any one state has no effect on alternative selection
in any other state. If that assumption does not hold, we have
"policy constraints'. Some policies become "infeasible", i.e.

(unallowable. One method of dealing with such a situation was

proposed for risk-indifferent Markov decision processes [t0]. The

Neagg e e

‘ policies can be ordered and, after determining the optimal policy,
we can go backwards in the ordering, checking each policy for

"feasibility'". This method, however, becomes computationally

i
4
l‘ N i1

L

burdensome after the second-best policy. Moreover, no method of

ordering has been devised for risk-sensitive Markov decision
processes. The present work shows how to treat efficiently "policy
constrained" problems for both risk-indifferent and risk-sensitive
Markov decision processes by proceeding from one feasible policy to
a better one until the optimal feasible policy is obtained. Our
point of departure is reformulating the Markov decision process in
the absence of policy constraints as a constrained maximization
problem. The Lagrange multiplier rule is then applied to decompose
the problem into two iteratively coupled ones. This yields the
existing algorithms and indicates how to develop a new algorithm

to solve "policy constrained problems".

Chapter 1I is devoted to risk-indifferent Markov Decision
Processes. After reviewing previous work, namely, Howard's
algorithm and the Linear Programming formulation, we embark upon
formulating policy constraints. Then the Lagrange multiplier
formulation is outlined and pursued to its consequences. This
leads to the development of an efficient algorithm, along the
VD-PI lines, whose convergence is proved. The algorithm is
applied to Howard's famous taxicab example after policy constraints
are introduced to it. All the foregoing deals with completely
ergodic Markov processes in which all states are recurrent. We

outline how the algorithm is modified when it encounters coupled

1ii

|
|
|

E
|
|
i

Sagh

states which are transient. We also discuss periodic Markov
processes.

Chapter III is devoted to risk-sensitive Markov Decision
Processes. As in chapter II, Howard's and Matheson's algorithm
is reviewed, a Lagrange multiplier formulation is developed, and
an algorithm emerges. 1Its convergence is proved, and it is
applied to the same previous example with a risk aversion
coefficient. Finally, it is pointed out that transient states
have no effect on the algorithm, and that since periodic processes
are inherently deterministic problems, they are better solved by
risk-indifferent methods.

Chapter IV deals with sensitivity analysis. The concepts of

"constraint-indifferent" and '"constraint-sensitive' optimal

policies are introduced, and a procedure for computing the worth
of individual constraints is outlined. It is explained by applying
it to the example solved in chapter II.

In chapter V, we discuss modifications of the algorithm for
problems having a large number of states and give the computational
results of Howard's baseball problem. We also make some suggestions

concerning future research.

iv

¥ oo,
L
&
4
1

CONTENTS

SUMMARY SO o G R R S

TILUSTRATIONS/TABLES . & & s « + o s o s s s o

ACKNOWLEDGMENTS . . ¢ &« ¢ v ¢ ¢ ¢ o o o o o o o «

I.

II.

III.

INTRODUCTION « ¢ « « o o s o o o o o o o o &
A. Background and Motivation
B. Methods and Results « . « « . &
€. QuEline o - o o 4 s @ s e s e e s
RISK-INDIFFERENT MARKOV DECISION PROCESSES .
A, Introduction . « « ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o &

B. Markov Decision Processes without Policy
Congtraints . ¢« « ¢ o ¢« o o o o o o o &

1. Value Determination-Policy Improve-
ment Foruulation « « ¢« . . .

2. Linear Programming Formulation . . .

C. Markov Decision Processes with Policy
Constraints . ¢ « ¢ o« o ¢ s o o s o o

1. Formulation of Policy Constraints .
2. Lagrange Multiplier Formulation . .

D. Development and Convergence of the Algo-
b oo 1 -1, R S U I T B S P

E. The Example . : « ¢« ¢« ¢« ¢« ¢ o s ¢ o o &
F. Transient States and Periodic Processes
RISK-SENSITIVE MARKOV DECISION PROCESSES . .
A. Introduction . . « « ¢ ¢« ¢ ¢ o o ¢ ¢ o &

B. Markov Decision Processes without Policy
Congtraints . . « « ¢« ¢ o o o o o o o &

C. Markov Decision Processes with Policy
Constraints . . « ¢ ¢ ¢ s ¢ ¢ o ¢ o o &

Page
ii

vii

viii

13
15

15

18

18

23

29
29
43"
62
79
88
91
91

93

93

¥
f
‘-..
T
5 1
s 4
.
4

D. Development and Convergence of the Algo-
ritm

E. The Fxample . . &+ ¢ o = s o a o s & 5 o & »
IV. SENSITIVITY OF OPTIMAL POLICY TO CONSTRAINTS .

V. MODIFICATIONS FOR PROBLEMS WITH A LARGE
NUMBER OF STATES ¢ « ¢ ¢ ¢ o o o ¢ o o o s o o

A, Introduction . « o ¢ ¢ ¢ o o ¢ o o o & s &
B. Of Dimensions and Exhaustion
€. Of Partitions . « « o s s o o s o o s & ® s
D. Of Trapping States8 . : o« o« o ¢ o« o s « o
E. Of Speeding Up the Algorithm
F. Baseball Example and Computational Results
VI. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH
REFERENCES & o o s ¢ 5 o 5 6 9 v o o s & @ o o o
DESTRIBUTION LIST . o ¢ o o « o o o & & 5 @ » o ' @

DDLREZ3. & o o e v e e e e el e e el e e e

vi

Page

110
115

123

135
135
135
136
140
141
141
157
159
160

161

2.2

2.3

Number

5.1
5.2
5.3

5.4

P
(3}
.
©

—

-

]
!
§
I
i

ILLUSTRATIONS

Three-state Markov Decision Process

Five-state policy constrained Markov
Decision Process . o« ¢ o o o o o o s o o o o s o

A PI=YD dteration i & & ¢ « 3 o 5 & & s 5 ¢ e e @
The policy improvement routine
Algorithm for risk-indifferent case

Algorithm for risk-sensitive case

TABLES

Linear programming constraints
Table of ordered test quantities
Probabilities and rewards for the taxicab example
Baseball problem (transient--one constraint) . .
Baseball problem (transient--one constraint) . .
Baseball problem (transient--fifteen constraints)
Baseball problem (transient--thirty constraints)

Baseball problem (recurrent--one constraint) . .
Baseball problem (recurrent--fifteen constraints)
Baseball problem (recurrent--thirty constraints)

Speeding up the algorithm--baseball problem
(recurrent--thirty constraints)

Speeding up the algorithm--baseball problem
(transient--thirty constraints)

vii

56

78

115

27

63

80

143

144

147

149

151

152

153

154

155

e e ———

ACKNOWLEDGMENTS

I would like to thank Prof. Ronald A. Howard, my principal research
advisor, for introducing me to the world of Markov Decision Processes
and for his help and guidance throughout the course of this work.

Thanks are also due to Prof. James E. Matheson and Prof. Edward J.
Sondik, my readers, for their encouragement and the interesting points
they raised, which made this a better work.

I would also like to thank Dr. Edward J. Cazalet and Dr. Dale M.
Nesbitt for the illuminating discussions of Markov Decision Processes
that we had at the Stanford Research Institute and my colleague in the
Engineering-Economic Systems Department, Abdalla Abdelkader, for editing
the English of the dissertation.

For financial support, I am indebted to the General Electric Com-
pany, with particular thanks to Dr. William R. DeHollander who supported
my joining the Honor-Coop Program and encouraged me along the way. This
research was also supported by the Advanced Research Projects Agency of
the Department of Defense and was monitored by ONR under Contract
N00014-76-C-0074 under subcontract from Decisions and Designs, Inc.

Last but not least, my thanks to Ursula G. Burger for her typing
several drafts of the dissertation and for her support and patience

throughout.

viii

Chapter I

INTRODUCTION

A. Background and Motivation

The context of this work is completely ergodic Markov processes with
rewards, which are allowed to run for an unlimited number of transitions.
The basic problem we are concerned with is selecting, from among a set of
such processes, one that yields the highest average return. Figure 1.1
illustrates such a Markov Decision Process. In states 1 and 3 we have
three alternatives to choose from, and in state 2 we only have two alter-
natives. Associated with each alternative k in state i are three
probabilities of transition ptj (i =1,2,3) from state i to all
states and the rewards rtj of making said transitions under the given
alternative. In each state, k can take on values of 1,2,...,Ki, where
Ki is the number of alternatives available in state i (3, 2, and 3,
respectively, for Figure 1.1). Once an alternative is chosen in each
state (i.e., k given a value between 1 and ki in each state i), we
have what is called a stationary policy P. The ith component of P is
alternative selected in state i. 1In Figure 1.1, e.g., we gave k the
values 1, 2, and 2 in states 1, 2, and 3, respect{vely (i.e., we selected
the first alternative in state 1 and the second alternative in states 2

and 3). In other words, we have a policy
P=(,2,2)

t
We denote the i " component of P by P(i). Thus, for the above policy

P(1) =1, P(2) = 2, P(3) = 2.

Fig. 1.1. THREE-STATE MARKOV DECISION PROCESS.

Such a policy is stationary in the sense that every time the process
is in state i alternative P(i) is always selected.

Once a policy is selected, a Markov process with rewards is defined.
The transition probability matrix and the reward matrix are composed of
rows determined by each alternative in each state. For the policy men-

g tioned in Figure 1.1, we get the transition probability matrix

1 1 1
F11 *13 T3
2 2 2
i PaiPy FPag Fos
.
; A e

L 31 32 33

‘,f with a similar reward matrix R.
§ -

!

|

For a completely ergodic Markov process, the limiting state proba-
bilities are independent of the starting state. They give the average

number of stages the process spends in each state and are given by [4,

5]
'..'T « P = T'T
N (1.1)
., =1
i=1 1

where 1w 1is the column vector whose components ﬂi are the limiting
state probabilities, P 1is the transition probability matrix of the
process, and N 1is the number of states. Also associated with a Mar-

kov process is the vector q of immediate expected rewards defined by

N
(1.2)

J
U7 & Pyt

[

For a risk-indifferent decision maker, Howard [4,5] has shown that
if the Markov process is allowed to run for an unlimited number of tran-
sitions, the average reward of the process per transition, hereafter to

be called the gain of the process, is given by

N
g = E T, q CiL=3)
a b (s

where the qi are given by (1.2) and the ﬂi are given by (1.1) for the
specified process (i.e., the selected policy).
For the problem illustrated in Figure 1.1, we have 18 policies to

select among. Each results in a process for which (1.1) can be solved;

A

then (1.2) and (1.3) are used to compute the gain. A "brute force"
method for selecting the optimal policy would be to do this for all 18
policies. However, the number of policies increases astronomically as
the number of alternatives increases. Actually, the number of policies
is iﬁl Ki' Thus, in the above example, if an additional alternative
were introduced in state 2, we would immediately have 9 more policies
to take into account. We are hence faced with an essentially combina-
torial problem.

Howard [4,5] devised an extremely efficient iterative algorithm
which exploits certain features of this problem to solve it. First, a
value determination (VD) is made for a given policy. The VD consists

of computing "relative values" vi for each state, under the given pol-

icy, and the gair of that policy from

X
g+vi=qi+2 pijvj i=1,2,3, ...,N (1-4)
ik

Then, using the v an attempt is made to improve the policy,

i,
i.e., detect a policy of larger gain than the current one. To this end,
test quantities are defined in each state for each alternative. Then,

- the alternative yielding the largest test quantity in each state is se-

lected. Formally,

P(i) ={a : t. = max q, + P, v,
4 i
: T e Y o W3
i
.
' i=1,2, .o.,N (1-5)
: FF 4
&
;

—~ < (r gh ot s - -~ T

If the policy improvement (PI) does not change the current policy,
it is the optimal policy. Otherwise, VD and PI, i.e., (1.4) and (1.5),
alternate until we converge to the optimal policy. The efficiency of
the VD-PI algorithm results from reducing the combinatorial problem of
simultaneously selecting different alternatives in different states to
a set of discrete maximization problems which select the alternatives
in each state independently of other states.

Mine and Osaki [9] formulated the risk-indifferent Markov Decision
Process as a linear program (LP). They showed that the VD is the solu-
tion of a dual problem, whence the relative values vi are the simplex
multipliers. They also showed that the PI is a simplex iteration with
at most N simultaneous pivoting operations. Using the LP formulation,
Nesbitt [10] showed how the policies can be ordered according to gain.

For the risk-sensitive decision maker possessing an exponential
utility function, Howard and Matheson [6] define a "disutility contri-

bution'" matrix Q, whose elements are given by

-W'rij
= 1.
q].Lj 1:)ij e (6.)

where the and r are the probabilities and rewards selected by

Pi; ij
a given policy, and % 1is the risk aversion coefficient. They derive

a certain equivalent gain given by

g =-=1n A a.7)

where)\ is the ''maximal eigenvalue'" of Q@ (the largest positive ei-

genvalue which exceeds the modulii of all other eigenvalues of Q). It

.Tun. Y P i b
¥ ,
[N

¥

Gy B, S o
2

is this E that has to be maximized. They devised an algorithm quite
similar to the VD-~PI. It consists of a policy evaluation (PE) phase,
the counterpart of the VD. In PE, the utilities ui pertaining to a

given policy are computed by solving the eigenvalue problem

N\
N, = / q u i 1 2. aeay N (1.8)

- j=1 i3

where the q are given by (1.6) and A\ is the maximal eigenvalue of

ij
the corresponding matrix Q.
Then a policy improvement (PI) phase is undertaken. It is identi-
cal to the PI of the risk-indifferent case, except that the test quan-

tities are different. Here, a policy is selected such that

N< 1

P(i) = ‘a :t? = max 21 q:.u. i

1 k=1,2,: 'Ki j=1 ¢ J ’
51,8, cus, N (1.9)

In all of the afore-mentioned work, no restrictions are made on the
manner in which alternatives are selected in different states. It is
assumed that the selection of an alternative in a given state has noef-
fect on alternative selection in any other state. In other words, there
is no interaction, or '"coupling," between alternatives in different
states. This is the feature that allows considering each state separ-
ately in the PI. However, it is an idealized situation that might or
might not hold in real life. With the profusion of rules and regula-

tions governing economic activities in this day and age, it might very

 §
’
¥ oy
.
'
4
{

well turn out that alternative selection is not as 'coupling-free' as
the idealized situation envisions. (Later in this work, we give a sim-
ple example of how alternatives in different states could be coupled.)

Introducing inter-state dependence in alternative selection in
effect imposes constraints on the policies. Some policies become "in-
feasible," and we have to select the optimal '"feasible" policy, where
"feasibility'" means satisfying the constraints. This work strives to
do exactly that, in a computationally efficient manner. Nesbitt [10]
suggests that for policy constrained problems, we start with the optimal
policy in the absence of constraints and go backwards in the ordering
checking feasibility until we hit the feasible policy yielding the high-
est gain. The problem with this brute force method is that, once we get
beyond the second-to-optimum policy, we have to evaluate an increasingly
large number of policies for each step in the ordering process. More-
over, we first have to solve the unconstrained policy problem before we
can solve the constrained policy one. Also, there has been no work on
policy ordering for the risk-sensitive case. What is really needed is
an algorithm that retains as much of the simplicity and efficiency of
Howard's VD-PI and PE-PI algorithms as possible, while taking feasibil-
ity into account as it progresses fromone feasible policy to a better one.

Another aspect of the constrained policy problem is that there has
been no work done on formulating the constraints mathematically in a
systematic manner. This we also strive to achieve.

Also of interest in a constrained policy problem, is the "sensitiv-
ity" of optimal policies to the policy constraints. This "sensitivity"
can best be expressed in terms of value, i.e., how much a rational deci-

sion maker would be willing to pay to remove a constraint.

7

!

To summarize then, this work is mainly concerned with three things:
the formulation of policy constraints; developing a VD-PI type of algo-
rithm for completely ergodic, infinite time horizon Markov Decision Pro-
cesses ; and sensitivity analysis of optimal policies vis-a-vis the policy

constraints.

B. Methods and Results

Our point of departure is the LP formulation. There, a quantity
d: is introduced. That quantity represents the conditional probability
that, given the process is in state i, alternative k is selected. In

the LP formulation, it is proved that for each state i, only one d, =1

4 and the rest are zero. This is exactly what we want. We will formulate
both the Markov Decision Process and the policy constraints in terms of

the d?.

For policy constraints, we first concentrate on the ''two-alterna-

tive-coupling" case. By this, we mean interaction between analternative

k 1in state i and another alternative / in some other state j. The

£

constraints will be expressed in terms of d? and dj, to be denoted

by a and b, respectively, for simplicity (a and b can only take

i

on values of zero or unity). By exhaustion of all possible combinations

and straightforward application of simple logic, we conclude that there

: can only be five different types of constraints:
a+b<1 (1.10)
T a+b>1 (1.11)

(1.12)

i
4
1
i
t"' _> a-> 2 0
B
t
&
4
3

i

g

ot B, J‘-—.w-T—- B, Sl BT
[, 3

o gt g e

I
-

— a +b (1.13)

a~-b=20 (1.14)

The designations to the left of the constraints are those we use on
a graph or table to indicate the type of constraint (as in Figure 1.2).
Inequality (1.10) expresses the constraint stating that, at most, one of
alternatives a and b is allowable in any feasible policy; (1.11)
states that at least one has to be present; (1.12) states that alterna-

tive b 1is not allowable in any policy unless it is accompanied by a;

Fig. 1.2. FIVE-STATE POLICY CONSTRAINED MARKOV DECISION
PROCESS .

©

|
|

(1.13) states that exactly one of the two alternatives must be present
in any policy; (1.14) states that we can have either both or neither
alternatives in any feasible policy. In Figure 1.2, e.g., alternative
4 in state 2 cannot be selected unless alternative 3 in state 1 is.

“

Similarly, as regards alternative 2 in state 2 and alternative 1 in

state 3, we cannot have more than one of them in any feasible policy.

If more than two alternatives are coupled by any single constraint, we
resort to the algebra of events to express the constraints as a Boolean
expression, with truth and falsity being assigned the values unity and
zero, respectively.

If the Boolean expression is an exclusive OR, it is equated to
unity to give us our constraint. This is because, by definition, only
one component of an exclusive or can be true. Otherwise, because of

the possibility of more than one component being true simultaneously,

the expression is set greater or equal to unity. Of course, some con-
straints involving more than one alternative can be intuitively trans-
lated into an algebraic relationship without recourse to the algebra of
events. One such type of constraint is considered here because it is
of special significance later on. Assume that we have a policy P
whose first M components (M >1) are a,b,c,...,m, respectively.

If we want to make P and all policies that differ with P in exactly

CS

2 f one of the first M components infeasible; we can do that by the sim-

ple constraint

<M=2 (1.15)

10

!
H
{
¥ .
§
§
s
¢
1

Once we develop a methodclogy for expressing policy constraints, we
turn to developing a VD-PI type of algorithm to handle policy constrained
problems. To this end, we exploit the fact that the original problem we
are faced with is a constrained optimization one, even in the absence of
policy constraints. For the risk-indifferent case, the objective func-
tion to be maximized is the gain. The constraints are the equations de-~
fining the limiting state probabilities and those requiring the d? to
sum to unity in each state. If we have policy constraints, they will be
additional relationships between d? of different states.

The realization that we are dealing with a constrained optimization
problem leads us to the Lagrange multiplier rule, which enables us to re-
duce the problem to two iteratively coupled problems defined on the asso-
ciated Lagrangian. One of them turns out to be the VD, while the other
is the maximization of the Lagrangian over the discrete set of feasible
policies. It turns out that the relevant quantity to be maximized is the
weighted sum of the test quantities. The weights are the limiting state
probabilities. 1In the absence of policy constraints, the individual com-
ponents of the sum can be maximized in order to maximize the sum. The
weight Ki in each state then becomes irrelevant, and we just maximize
the test quantities, which is what the PI does. Hence, the PI actually
maximizes the Lagrangian, exploiting the absence of interstate coupling
to decompose that maximization, an essentially combinatorial problem, to
N much simpler maximizations. 1In the presence of policy constraints,
however, such a decomposition can no longer be effected. We have to face
the combinatorial maximization problem head on. This we do by adapting
a branch and bound technique to our problem. This is a method whereby

maximization is achieved without having to enumerate the feasible set.

11

1

e ————————

We prove that such a method converges to a policy that maximizes the gain
over the set of feasible policies differing with it in exactly one state.
Therefore, we add a constraint of type (1.15) and start on another set.
In this manner, we remove whole subsets from consideration without having
to consider all the elements belonging to them.

To retain as much of the VD-PI as possible, we introduce the notions

of

free" and "coupled" states. The former are states in which no alter-~
natives are involved in any policy constraints. The "coupled" states are
those which are not "free." As long as the original PI yields feasible
policies, we do not use branch and bound. Failing that, we maximize over
the free states by original PI and over the coupled states by branch and
bound. This algorithm has two advantages. First, it achieves computa-
tional efficiency by sticking to Howard's PI as much as possible. Sec-
ondly, if the policy yielding the highest gain in the absence of policy
constraints is not made infeasible by the introduction of these con-
straints, the algorithm detects it without having to exhaust the feasible
policy set (by removing successive subsets). This is of particular sig-
nificance for sensitivity analysis.
A Lagrange multiplier formulation is also applied to the risk-sensi-
tive case. Here, the objective function is the maximal eigenvalue of the
{ Q matrices associated with the feasible policies. The constraints are

the eigenvalue problem defining the maximal eigenvalue, plus the policy

e

l constraints. As in the risk-indifferent case, Howard's and Matheson's
PE-PI algorithm is shown to be the transformation of the original prob-
lem, via Lagrange multipliers, to two problems. The breakdown of the PI
when policy constraints are introduced is shown, and a similar algorithm

is developed.

12

i
'
¥ ac3
s
1
&
f
g

Sege

),

S - 3,.-’.7_.. Ly g e
(85 v

Finally, sensitivity analysis is considered. As mentioned before,
our algorithm is capable of detecting whether or not the policy con-
straints have any effect on the optimal policy in their absence, without
having to solve the unconstrained policy problem. The value of removing i
individual policy constraints is explored for those situations where

they affect optimal policy selection.

C. Outline

Chapter II is devoted to risk-indifferent Markov Decision Processes.
After reviewing previous work, namely Howard's VD-PI algorithm and the
LP formulation, we embark upon formulating policy constraints. Then the
Lagrange multiplier formulation is outlined and pursued to its conse-
quences. This leads to the development of an efficient algorithm, along
the VD-PI lines, whose convergence is proved. The algorithm is applied
to Howard's famous taxi cab example after policy constraints are intro-
duced to it. All the foregoing deals with completely ergodic Markov pro-
cesses, in which all states are recurrent. We outline how the algorithm
is modified when it encounters coupled states which are transient. We
also discuss periodic Markov processes.

Chapter III is devoted to risk-sensitive Markov Decision Processes.
As in Chapter II, Howard's and Matheson's PE-PI algorithm is reviewed, a
Lagrange multiplier formulation is developed, and an algorithm emerges.
Its convergence is proved, and it is applied to the same previous exam-
ple with a risk aversion coefficient.

Chapter IV deals with sensitivity analysis. The concepts of "con-
straint-indifferent” and "constraint-sensitive" optimal policies are in-

troduced, and a procedure for computing the worth of individual

13

. B . o - T 5 RS 5 o A e

e ——————r

constraints is outlined. It is explained by applying it to the example

solved in Chapter II.

In Chapter V, we discuss modifications of the algorithm for prob-
lems having a large number of states and give the computational results
for Howard's baseball problem. We also make some suggestions concerning

future research.

14

i
>
1
u
t
&
¢
$

T
il

(N

.Tv—- LA o g
Ry

In v

¢
i
}

T ——

Chapter I1

RISK-INDIFFERENT MARKOV DECISION PROCESSES

A. Introduction

In this chapter, we deal with risk-indifferent Markov decision pro-
cesses, where we progress from unconstrained policies to constrained ones.

Section B deals exclusively with unconstrained policies. First, How-
ard's value determination-policy iteration algorithm (hereafter referred
to as VD-PI) is devel&ped. Then, the linear programming formulation of
the problem is developed. Most of this section appears in the literature
but is included here because it forms the foundation on which the results
of this work are based. For example, the linear programming formulation
provides us with the mathematical encoding of the process of selecting
one alternative in each state. The conditional probability d? of se-
lecting alternative k, given the system is in state i, together with
the important result that all d?'s are zero or unity, enables us to ex-
press policy constraints.

Section C deals with constrained policies. The definition of what
we mean by constraints on the policies is spelled out. We mean interac-
tion, or "coupling," between alternatives in different states, such as
the‘zglection of one alternative in a certain state preventing the selec-
tion of another alternative in some other state. First, we deal with
"couplings' between two alternatives only, and we show that all such cou-
plings reduce to five types of constraints. The general case is treated
by the algebra of events. We give an example of a 3-alternative coupling
and show how one of the 2-alternative couplinéé can be derived from the

general case. Then, we show that a constrained policy problem can be

15

reduced to a number of LP's, which is unacceptable on account of that

number being, more often than not, astronomical.

The approach we take to solve the problem is the realization that,
even in the absence of policy constraints, we are faced, basically, with
a constrained maximization problem. The objective function is the gain,
and the constraints are the equations defining the limiting state proba-
bilities. We consequently use a Lagrange multiplier (LM) formulation of
the problem to reduce it to two unconstrained, iteratively coupled, prob-
lems. One of them turns out to be the VD. The other one is the Maximi-

zation of the Lagrangian L over the discrete set of feasible policies.

This is an essentially combinatorial problem. We show that, in the ab-

sence of policy constraints, the lack of "coupling' facilitates the re-

duction of that problem to a number of simple discrete maximization prob-
lems, yielding Howard's PI. The presence of coupling, however, in the

case of constrained policies destroys the reduction feature. Thus, we

seek an efficient means for solving the combinatorial problem of maxi-

mizing L over the discrete set of feasible policies.

In Section C, we also point out the fact that maximizing L per se
in PI does not guarantee selection of a policy having a higher gain,
i.e., policy improvement. Rather, the fact that L and g (the gain
we are trying to maximize) have the same value at the optimum and after
each VD justifies trying to increase L. Improving the policy has to be E
guaranteed outside the Lagrangian framework. This we do by introducing

a sufficient condition for improving the policy. This condition, which

was derived by Howard [4,5], is satisfied by the maximization of L when
no policy constraints are present. Actually, it is also sufficient to

guarantee the VD-PI convergence to an optimum policy.

16

-~

s b g L

In Section D, we develop an algorithm for solving the problem, when
faced with policy constraints, on the basis of the LM formulation of Sec-
tion C. The algorithm is composed of the usual VD, plus a new PI which
maximizes the gain over subsets of the set of feasible policies. It is
based on the branch and bound (BB) technique for solving combinational
problems [2,3,7]. One such method is adapted to our problem, and we show
that it converges to a policy that maximizes the gain over the set of all
feasible policies differing with it in exactly one state. This set is im-
mediately removed from further consideration by a simple constraint, thus
reducing the set of feasible policies. To increase computational effi-
ciency, we introduce the notions of "free' and "coupled" states. A "free"
state is one in which no alternative is coupled with any other alterna-
tive in any state, i.e., not involved in any policy constraints. A "cou-
pled" state is one that has at least one alternative in it "coupled'" with
some alternative in another state, i.e., involved in some policy con-
straint(s). Our PI is invoked only if regular PI yields an infeasible
policy. In this case, the free states are maximized by regular PI and
the coupled states by branch and bound. In either case, the sufficient
condition of Section C is satisfied, and we have an improved policy. This
has a further advantage. If the policy constraints do not make the opti-
mum policy (without constraints) infeasible, then it can be detected once
it is encountered, and we do not have to exhaust the feasible policy set
to reach the optimum.

The convergence of the developed algorithm is proved in Section D.

In Section E, we apply the algorithm to Howard's famous taxicab ex-

ample after some policy constraints are imposed on it.

~

P e o

oy

D -JT—W
i
‘

Sections B through E deal with policies that do not result in tran-

sient states; all states are recurrent. In Section F, we address the
problem of transient coupled states. We also consider periodic Markov
processes, and from them we infer that the manner in which we handle
transient coupled states and how we obtain an initial feasible policy
are both cases where we profess complete ignorance. In the former case,
the zero value of ﬂi for a transient state obliterates our accumulated
knowledge about that state, as far as the Lagrangian 1is concerned. In
the latter case, the lack of an initial feasible policy is equivalent

to complete ignorance of the Markov process we are dealing with.

B. Markov Decision Processes without Policy Constraints

The objective here is to select a stationary policy that maximizes

the average return per transition of the completely ergodic system, where

all states are recurrent, if it is allowed to make many transitions,
i.e., over an infinite time horizon.

This is achieved by the value determination-policy improvement al-
gorithm, which computes values for a given policy, then obtains a better

policy, until the optimum policy is obtained.

1. Value Determination-Policy Improvement Formulation

a. Value Determination

We start out with a finite time horizon, i.e., allow the
system to make only n transitions, then extend the horizon. We denote
the expected total earnings in the next n transitions if the systew is
in state i by vi(n). To compute this quantity, we note that, if a

transition is made to state j, its value will be the rij earned by the

18

transition plus the amount earned by starting in state j with one tran-
sition fewer remaining, i.e., vj(n ~1). Thus, the previous amount must
be weighed by the probability of making the transition from i %o .
i.e.; pij' Since the transitions from i are mutually exclusive,

vi(n) is simply the sum of the weighed quantities. In other words,

e

N .
N EE DR
= s -1 2
Tyl j=i piJ'[riJ' M)] B R Bady wes e

If we define the immediate expected reward for a transi-

tion from state i by

N‘
= \ i = v 2l
% = L Pagfey il e st !
j=1 |
g
we can write Equations (2.1) as %
|
" |
§; L = A, sy N {
i -1 2.3 |
vi(n) a; + ;;1 pijvj(n) % LR s () |
s 1

It can be shown [4,5] that, for a completely ergodic process, the asymp-

1
{
totic behavior of (2.3) is given by |

vi(n) - ng v, T L2 ey N (2.4)

z where v, is the "relative value'" of being in state i, and

i N |
E i A .
E & g=2nq (2.5) |
b - DL .
E 1

»-5¢ 1

. 3 |

L' |

i i 19

: 1

d

{

|
|
|

DRt

i

'
¥

H

1-
e
E

&
|

Hence, g 1is the average return per transition of the system if it is
allowed to make many transitions under a given policy. Such a policy
is stationary in the sense that it does not depend on n, i.e., if we
find ourselves in a given state, we select a particular alternative,
irrespective of n. We are seeking a policy which maximizes this gain
g. Once a policy is determined, the =n's and q's are available, and
hence (2.5) gives us the gain of that policy. However, we have no means
of finding a better policy, if one exists. The key to this lies in

(2.4). For large n,

vi(n) =ng +v, 1w 1.2, ciey N
We also have that (2.3) holds for all n:
Nq
i)

v,(m) =q £

i piivj(" - 1) Jm 2 ey N

[

Thus, for an infinite time horizon, we can substitute

(2.4) into (2.3) to get

N<
ng +v, =q, + T> p .lﬁn -1) g +v, i=1,2,...,N (2.6)
i i jti ij J

12

which, by virtue of 1 pij = 1, 1is reduced to

3=

gL

g +v, =q, + i=1,2, sis, N (2.7)

Pij"5

e
i
-

il

20

4
|
|
1

B e b

¥ 5o,
i

!

&

:

L)

:

Here, we have a set of N simultaneous linear equations
in the N variables Vi and g, a total count of N + 1. We notice

that adding a constant ¢ to each v, in (2.7) gives

N
g +v, +c=4q, + :z p _(vi +c) (2.8)
j= :

1.@0y

(2.9)

N-
-

=

g +Vv, =9

: Sl Pij¥;

e

But (2.9) are the original equations (2.7). Hence, the true values of

vi have no real significance in processes with infinite horizons. It

is the differences between the v,'s that matter. This is shown by

v.(n) =ng + v, (2.10)

i i
v.(n) =ng + v, (2.11)

J J

whence
v.(n) ~v.,(n) =v, - v, (2.12)
i J 1 J

Thus, setting any one of the vi's equal to zero, usu-
ally VN, and solving (2.7) gives us the gain of the given policy and

a set of v's we call the relative values of the policy. Those are

used to select a policy having a higher gain than the given one.

b. Policy Improvement

Here, we also start with a finite horizon, then extend

it by applying (2.4). If we define vi(n) as the total expected return

21

|
|
|
|
|
|
|
|

R

g B ,,.-‘.,.T-— L et NI
.= o
- S

in n stages, if we start in state 1 and an optimal policy is fol-
lowed, then applying the principle of optimality of dynamic programming,
we have for any n

+ vJ(n)] Wom BN T s (2.13)

This may be written as

»

v.(n + 1) = max qk + N p& v.(n) a0, 1.2, .. (2.14)
i K 1 ;—1 1y J

N

Thus, if we have an optimal policy up to stage n, we can

find the best alternative in state i at stage n+1 by maximizing

[

k
. pijvj(n)

e
Il

over all alternatives k 1in state i. For an infinite horizon, we sub-

stitute for vj(n) from (2.4) to obtain

[/=

e + 'y (ng +v.)
qi pij g j

1

(&%
il

as the test quantity to be maximized in each state.

The fact that 1;1 p11 =1, irrespective of k, reduces
this to
Nq
e D P ene
J=£ "
22

T—-’ A gy
5 '~
’, 8-

A

o

Since ng does not depend on the policy that is selected,

it is sufficient to maximize
p..v, (2,15)

over all alternatives k in state 1i. Thus, for each state we select
an alternative k, and this results in a new policy P. Thus, given a

policy A, we solve

by setting vg = 0 to obtain v?, i=1,2,...,N-1 and the gain gA
of policy A. Then, using the v's of policy A, we select an alter-

native k 1in each state i to maximize

N\
k N\ k A
4y * ¥
=1

The alternatives k make up the new policy B, say. If
it is identical to A, it is the optimum policy. Otherwise, a new

iteration is started.

2. Linear Programming Formulation

The Markov decision process can also be formulated as a linear
programming (LP) problem. To do this, we first recall that the function

to be maximized is

23

[=

ni(P) qi(P) (2.16)

i=1

where (2.16) is merely (2.5) rewritten so as to emphasize the dependence
of the =n's and q's on the policy and where the maximization takes

place over all possible policies. 3

-~

The next thing we do is to introduce a set of new variables
d?. Each d? is the conditional probability of selecting alternative

k, given that the system is in state i. (Those variables, hence, have 1

to have a value of zero or unity. This, however, will be proved to re-
sult from the basic properties of linear programming, rather thansetting
it as a constraint.) Hence, in any state i, the expected immediate
reward qi(P) is the sum of the q? that result from selecting the
various alternatives k in state i, weighted by the probabilities of
selecting those alternatives, i.e.,
Ki
a (@) = \ ql:dli{ (2.17)

k=1

whence our objective function becomes

K
3 N i
3 - * Kk
F | g=N \ (@ a¥a" (2.18)
b 8 s AR &
i=1l k=1

Here, the =n's and d's are variables, whence our function

is no more linear. However, using the definition of conditional proba-

ey

bility, and denoting the joint probability of being in state i, and
selecting alternative k by x?, and recalling that xi is the steady
state probability of being in state i, we get

24

s
$
4
¢
H
)

X
4 =7 ™
which gives
2= = x (P) & (2.19)
i - | i
The constraints on the d? follow from their being probabili-

ties

K,
2k
di =1 i = 1.2, sy N (2.20)
k=1
& so
i 2

Now, the original constraints on the ='s were

N
l 7y () By (B) = 7 (P) = 0 Jm B, cien B (2.21)
i=1

N

Dz et (2.22)

=

Using (2.19), it can be shown [9] that our linear programming

problem is

E i
l B
max ‘; a %y (2.23)
k &=
=1 k=1
‘ xi i=1l k
H sub ject to
’
i‘ N k _k KJ K
b S Py%) - X xg =0 (2.24)

‘!f i=1 k=1 k=1
R

¢

&

%

25

i
I
3
i
I
[

b
§
;
!

i
2 xg =1 (2.25)
j=1 k=1
Now we proceed to prove that this LP yields values for d?,
k
which are either zero or unity, whence the d become the mathematical

i

encoding of selecting one alternative in each state.

Mooren 2.1
Any basic feasible solution to the LP defined by (2.23) through
(2.25) has the property that for each i, there is only one k such

that x? >0 and x: = 0 otherwise.

Proot.

For the completely ergodic process rank, (I-P) = N=-1. Thus, one
of the constraints (2.24) is redundant, and the rank of the constraints
is N. From the basic properties of linear programming, it follows that
any basic feasible solution has N positive variables x: with the rest
of the variables zero. Now, let us look at the equations of the con-
straints in detail (Table 2.1). Because -pij (i # j) 1is negative and
(1-—pii) is positive, it follows that, in each of the first N equa-

<)

k
tions, there has to be at least one x associated with a term (l-pii

i
which is not zero, e.g., in the first equation if x? =0 for k =1,2,
...,k, then the x? which are not zero (i.e., positive) are all multi-
plied by negative coefficients and hence sum up to a negative number,
contradicting the value of the R.H.S. Also, the fact that the first N

equations contain a redundant one does not change the fact that it has

to be satisfied. Thus, for each i, there has to be at least one x§'>0

26

(Sa-v) ¢ x¢%a-y)

il
-
(ol

NSy _ ... T NEg _ BuNTq
z ¢ e

%y %y Ty Iy it
L L]
L -
. .
L] L
H«x Aman - .—V 40004 % Awwn - ﬁv # mxAnmn - nv aaxm,nn o oeee o BBLg _ L,ETg
A \N * g Ty e £ X
2, 12q _ oo _ ByT%q _ %yl LY £ O SRPCREIE | P T -
2, 2y £e v1 e Vi z\z2 T\t

SINIVYLSNOD ONINNVYDOUd UVINIT

1°2 9T4a®BL

27

for some k. If, for some state i, more than one x: > 0, then there

remains less than (N-1) nonzero x: for the remaining (N-1) states.

k
This would mean that, for some i, all xi = 0, contradicting the fact

that at least one such xt > 0. Thus, for each i, there can be at most

one k such that x: > 0. "At most one" and "at least one" mean "only
"
one.

The following corollary to this theorem provides us with the

result we sought to prove.

Corollary.
Any basic feasible solution to the LP defined by (2.23) through
(2.25) yields a pure stationary strategy, i.e., for each i, d:::l for

some k and zero for all other k.

Proof.

Equations (2.19) give

Ki Ki
Y ek N & (2.26)
it i i e i
k=1 k=1
Substituting (2.20) in (2.26),
K1
N xf =1 (2.27)
3 i
—
k=1
Substituting (2.27) in (2.19),
K.
e o
- 2.28
xi di 2: xi ()
k=1

-~

g

i
!
}
¥y
2l
f
&
{

i.e.,

k
d, = —— i=1,2, ..., N (2.29)

The theorem states that for any given i,

i N K # 2 x! >0 1< 1 <K, (2.30)
1 1 = - i
Hence,
K
i
N xS =« (2.31)
Lo 1 p 1
k=1
Thus,
k. 8 -~
a4 =x /= (2.32)
1 1

Whence, for k # /, d: =0, and

a? « xt/xt = 1 (2.33)
: & 1 1 _

i.e., only one alternative is chosen in each state. This important re-
sult will be used when extending the Markov decision process to the case

where the policies are constrained.

C. Markov Decision Processes with Policy Constraints

L, Formulation of Policy Constraints

Our point of departure here is the LP formulation for the un-
constrained policies case. Rewriting (2.23) through (2.25) after sub-

stituting from (2.19) and (2.22), we get our original nonlinear problem:

29

K

R
max \ ﬂi \ qidi (2.34)
et pa—y
i=1 k=1
subject to
e A
— = 0 j = 1 2 . e 2-
nj 2: L zl pijdi j 2 , N (2.35)
i=1 k=1
S T
N =, d, =1 (2.36)
I i
——t e
i=1 k=1
Ki
\| dl.{ =k
£i
k=1
5 1= B2 e g /N (2.37)
dg >0
1 -

Note that (2.34) through (2.37) define the same problem as
(2.23) through (2.25). Hence, whatever applies to (2.23) through (2.25)
applies to (2.34) through (2.37). Specifically, we know beforehand that
in the solution of (2.34) to (2.37) the d? are either zero or unity,
with d: =1 for only one k in each state i. The significance of
this will become apparent later.

Now, we introduce constraints on policies. By constraints, we
mean interaction, or coupling, between alternatives in different states.
For example, it might happen that selecting alternative j, whgn the
system is in state i, prevents the selection of alternative £ in state
k. Thus, any policy having P(i) = j and P(k) = [is nonfeasible. As-

suming that the mathematical encoding of alternative selection is valid,

30

i.e., d? is zero or unity and is unity for only one k in each i,

the above constraint may formally be expressed as

a s d- <4 (2.38)

(2.38) plus d? =0 or 1 imply that no more than one of di and dﬁ
can be unity. Of course, they can both be zero.
Now we consider the encoding of policy constraints in general.

First, we handle constraints that only couple two alternatives indiffer-

1’7

" for example. We shall hereafter refer

ent states, i.e., d‘]?_ and d
to such constraints as binary constraints. We will show that no matter

how the constraint is stated, it reduces to one of five relations.

Theorem 2.2.
Any policy constraint consisting of an interaction between alterna-
tive j in state 1 and alternative [/ 1in state k can be expressed

as one ot the following:

a +b > 1 (2.39)
a-b>0 (2.40)
a+b<1 (2.41)
a +b=1 (2.42)
a-b=20 (2.43)

and both are either zero or unity.

31

Proof.

We go about proving the above by simply exhausting. all possibili-
ties. Since a and b can both have only one of&twdbvalues, the pair
(a,b) cannot have more than four values, and any constraints merely
limit the number of values that pair can have. Thus, we translate the
constraint as outlawing certain of those values. First, we deal with
the trivial cases.

Allowing all values (i.e., outlawing none) is equivalent to saying
that we have no constraints, while outlawing all four values is a con-
tradiction. The pair (a,b) is assured to exist and belong to the set
{¢(0,0),(0,1),(1,0),(1,1)}. Outlawing three values and only allowing one
is a case where we do not need any constraints. This is because we are
saying that a value has been assigned to both a and b. If the value
of a 1is zero, say, it means that alternative j 1in state i 1is not
allowed. Thus, we just discard it. (Actually, this is a contradiction
on the part of the decision maker. On the one hand he is saying that
there is a number of alternatives available in state i, and on the
other hand he is saying that one of those alternatives does not exist.)
Likewise, if the value of a 1is unity, this means alternative j will
always be selected in state i, whence we should discard all other al-
ternatives in that state. (Yet, another contradiction; hereafter, when-
ever the value of a or b is predetermined by a constraint, we will
consider that to be a contradiction and point it out.) What applies to
a applies to b in the foregoing. Hence, we are left with two cases,
namely those where only one or two pair values are outlawed.

Inequality (2.39) outlaws (0,0) and allows the three other possible

values. This constraint can be stated as follows: any policy has to

32

have either a or b, or both. (2.40) outlaws the pair (1,0) which in

plain English says that, if alternative b is not selected, then neither
can a. (If the constraint is the other way around, i.e., not selecting
a prevents selection of b, merely renaming a and b makes (2.40)

applicable.) Inequality (2.41) outlaws (1,1) which is the type of con-

straint we already discussed (2.38). This exhausts the case where only

one value of the pair (a,b) is outlawed. Equation (2.42) outlaws (0,0)
and (1,1); in effect, it says that at least one of a and b must be

selected, but the selection of one prevents selecting the other. Equa-

tion (2.43) outlaws (1,0) and (0,1); the type of constraint which says

that selecting (nonselecting) one alternative necessitates selecting

(nonselecting) the other. There remain, however, four combinations of

values that have not been outlawed by any of (2.39) through (2.43). We

show that they represent contradictions. Outlawing (0,0) and (0,1) means
that the only feasible values are (1,0) or (1,1). But, here, a = il

which we previously showed represents a contradiction on the part of the
decision maker. Likewise, outlawing (1,0) and (1,1) leaves us with (0,0)
or (0,1) implying a = 0. In the same manner, outlawing (0,0) and (1,0)
implies b = 1, while outlawing (0,1) and (1,1) implies b = 0.

If the policy constraint involves more than two alternatives inter-
acting with each other, we resort to the algebra of events to obtain a
logical (or Boolean) expression for the constraint and then transform it
into an algebraic constraint. An example illustrates this. Suppose we
have three alternatives, the selection of each being denoted by the
events A, B, and C, respectively (each alternative being, of course,

in a different state). Not selecting an alternative will be denoted by

J

the complement, e.g., A'. The values of the di

will be denoted by

33

a,b,c. Assume that the constraint is that A and B cannot occur si-
multaneously unless C also occurs. This means that ABC' is outlawed.

Hence, the Boolean expression that has to be true is

(ABC')' = A" +B' +C (2.44)

If the values of a, b, and c¢ are to represent the events A, B,
and C, then the values representing A', B', and C' are (1-a),
(1-b), and (1-~c), respectively (since a,b,c can only be zero for
nonselection and unity for selection). The Boolean expression (2.44) is
false only if all of its components are false (i.e., of value zero).
Thus, algebraically we want the corresponding values to sum to something

other than zero. This means

(L-a) +@-BYae> 1

-a -b +c¢c >-1

4\
[y

a +b-c< (2.45)

Two things have to be noted here. First, if the reduction of the
Boolear. expression to its minimal sum involves intersections of events,
then the algebraic constraint corresponding to it will involve products.
Secondly, (2.45) was derived by requiring the L.H.S. representing (2.44)

to be greater or equal to one. This is because truth of any component

is sufficient to establish the truth of the whole expression, whence the
truth of more than one component causes the sum to exceed unity. This
does not hold, however, if the Boolean expression is an exclusive OR.
There, only one component can be true, whence the sum of values can never

exceed unity. In this case, the equivalent of (2.45) is derived by set-

ting the sum equal to unity. Ncw, we formally derive the previous.

34

We are interested in "translating' a Boolean expression representing
combinations of events into an algebraic expression. By 'translation,"
we specifically mean that we are seeking an algebraic expression which
holds if, and only if, the corresponding Boolean expression is true. To
this end, we start by defining algebraic variables to correspond with the

events. Since an event X has only two possible values (true and false,

~

representing the event's occurrence or lack of it), we define an associ-
ated algebraic variable x which can only take on the values 1 and O.

Thus:

Definition.

let X be an event. Its associated algebraic variable is a real
number x restricted to the values 1 and O such that X is true if and
only if x = 1.

Hereafter, we will denote the values true and false by T and F.

Proposition 2.1.

If X is an event whose associated algebraic variable is x, then

the algebraic variable associated with X', the complement of X, is
1-x.
? 5o Proof .
‘ Let Y =X', y=1-x
Then Y=T<E>X=F

e
]

We already have T<E==>x=1

B 35

So, we have proved that Y =T <>y =1 which is the definition of the

associated algebraic variable.

The importance of Proposition 2.1 is that, whenever we have the
*

complement of an event, we can substitute the "algebraic complement" of

if whenever we en-

In other words,

its associated algebraic variable.

we set Y = X'

in the Boolean expression, then the result-

in the algebraic expression can be set to

This enables

us to only consider uncomplemented events, without loss of generality.

What follows applies in general if the mentioned substitutions are made.

Now we consider a Boolean expression composed of the sums

of products First, we consider products.

Proposition

true <> abc

(OR's)

T from rules of Boolean Algebra

1 from definition

Proposition 2.3.

B=B, +B, + ... +B is true <¢=> b, + b2 + ce. + bn > 1

1 2 N 1

where B is a Boolean product of events and b is the corresponding

i i

product of the associated algebraic variables.

Proof.

From the rules of Boolean Algebra, we have

their sum exceeds unity.

Corollary.
let B = B1 + 82 ey 1 BN where Bi is the Boolean product of
events. Let
I= (1,2, ceay NJ
If B.B, =F Vi €1
1)
(N
Then B=T & :1 b. =1
p 4 i
- l i=1
Proof .
: hat : : = =T
: Assume tha]i,J B1 b Bj
§
E
i' ¢ Then B,B T T
3 # 37
4
R 3
4

If only one such i exists, then the bi sum to unity; otherwise,

?
|
i
!,
i
|
i

—y

——

,L‘:"
=
Z’

But this contradicts BiBj = F, Vi " Hence, there cannot exist more
- ’
than one i 2 Bi = T. In this case,
B=T < 2 B =T = j i
]1 i and Bj F for j #£ i
&> 3,2b, =1 and b, =0 for j # i
i i j

N
= 2: b, =1
i=1 2

The preceding is the case of an exclusive OR. A special case of
this is when only one of N events is allowed to be true. This can be
detected by the special form the Boolean expression takes. It is formed
of the sum of N products, where each product is formed of an event
and the complements of the remaining N-1 events. For example, for

three events A, B, C:
AB'C' + A'BC' + A'B'C

In this case, a +b + c = 1. This is because the only way the Boolean
expression can be true is for only one event to be true, and the rest
false. This happens if, and only if, one associated algebraic variable
is unity and the rest are zero. For instance, (2.43) may be derived in
this fashion. Here, the two alternatives A and B are either both

selected (1,1) or both not selected (0,0). The Boolean expression for

this is

AB + A'B'

which is an exclusive OR. Moreover, it is of the special form we just

illustrated. Putting C = B', we get

38

N

AC' + A'C

Then, the algebraic expression is

Since

we get
i.e., J

Note that the "translation" is not unique. The general procedure out-
lined in the proposition, however, always yields a valid "translation."
For instance, an alternative form of (2.43) could be derived byapplying

the general procedure to the Boolean expression

AB + A'B'
We would get
b + (1 -a)(l-b) >1
1.6,

2ab - a - b > 0

For a and b restricted to O and 1, this inequality defines exactly
the same constraint as (2.43) (substituting the four possible values,
verifies this). If we had noted that the Boolean expression is an ex-

clusive OR, we would have obtained

2ab -a -b =0,

i.e.,

2 2
22b - a -b =0, because a =a, b =b

Thus,

which, again, is equivalent to (2.43).

Because of the nonuniqueness of "translation," we suggest that the
general procedure be used only as a last resort, in order that we get
the simplest possible constraints. Unless the constraint is too compli-
cated to intuitively translate, it is expressed via algebra of events.
A check is made to see if it is of the special form mentioned previously.
If so, the d?'s are summed to unity. Otherwise, the corresponding d:
is substituted for its event and 1-d§ for the complement of the event.
If the Boolean expression is an exclusive OR, the resultant algebraic
expression is equated to unity; otherwise, it is set greater than or
equal to unity. In this manner, any policy constraint can be translated
into an algebraic constraint under the assumption that the d: involved
in the constraints are all either zero or unity.

Note that the general procedure for translating Boolean to alge-

braic expressions only applies to sums of products.

The foregoing then implies that the Markov decision process with
policy constraints can be formulated as (2.34) through (2.37) plus some
extra constraints on a subset of the d:.

Now, we proceed to prove an important result.

40

Proposition 2.4.

For the problem

N 1 e
max 3 T \ q;d; (2.34)
eed
i=1 =1
sub ject to
AR
T, - :Z %, N p 4 =0 F =12, sz ¥ (2.35)
J e
i= k=1
- S EU
f> T, \ d. =1 (2.36)
2 h 4 4y 1
i=1 k=1
K.
i
S -1
k=1
o 1 e B ey N (2.37)
>0
g 2
Kk ! :
c,(af) =0 2=1,2, ..., m (i,k) 51)
(2.46)
k 2 g
Cp(di) =0 pa 22 ieey 4 (i,k) ¢ Sz‘

Where S, and S, are subsets of S = {(i,k))}, the following holds.
If d: is assumed to only take on values of zero or unity for
(i,k) € S1 U Sz, then d: will only take on values of zero or unity

for (i,k) € S.

411

o

e
!
8
f
1

Proof.

Since the set S of all possible alternatives is finite, all of its
subsets are finite. Moreover, restricting d: to values of zero or unity
makes the possible number of ways in which (2.46) can be satisfied fi-
nite. In other words, we have a finite number of values for the (m +q)-
tuples representing the values of d? for (i,k) © 51 U 52; of those

values, only a limited number will satisfy (2.46) unless the constraints

are contradictory.

Now, for each (m +q)-tuple satisfying (2.46), the d?'s involved
have certain given values (zero or unity). Substituting those values in
(2.34) through (2.37) yields an identical problem with, possibly, fewer 1
constraints. The structure of the problem, however, is the same. Thus,
it is our LP problem (2.23) through (2.25) for which we proved that the
d:'s are all zero or unity. Hence, our problem can be reduced to a fi-
nite number of LP's, each defined on a subset of the set defined by the
constraints (2.35) through (2.37), and consequently yielding values of
zero or unity for the d?'s not involved in the constraints (2.46).

The foregoing implies that we can formulate the constrained policy
problem as a finite number of LP's corresponding to the number of ways
(2.46) can be satisfied. We could then solve each problem (either as an
LP or, even better, using the VD-PI algorithm), and the optimum policy
would be that belonging to the problem yielding the highest gain. This,
of course, is unacceptable from a computational point of view. Not only
is the sub-problem of determining how many LP's we have a combinatorial
one, but also the number of LP's we would have to solve could be astro-
nomical. That is why we proceed to use the Lagrange multiplier method

to reduce our constrained problem to two unconstrained ones.

42

-

i

)

}

4

t

£
¥,
g
f i
]

¢

$

2. Lagrange Multiplier Formulation

The Lagrange multiplier rule for constrained maximization prob-
lems provides us with a powerful technique for reducing the constrained
problem to a number of unconstrained ones.

One form of the Lagrange multiplier rule is the following [8]:

et X* ¢ E' maximize f£(x) subject to

c,(x) =0 "G O SR

Then there exist real numbers R;, i=1,2,...,m such that

% * * o K o K * ¥y - SO o
the point (xI,xz,...,xn,Al,)z,...,Km) = (x*,\") €E is a ecritical

point of the function

m
L(x,\) = f(x) + :: ‘%iCi(x) (2.47)

i.e.,
VL(x* *) = 0
Moreover,

L(x*,\%) = £(x*)

The appealing feature of this form of the Lagrange multiplier rule is
that it transforms the constrained maximization of the function f into
finding critical points of the "lLagrangian" L, as defined by (2.47),
which is unconstrained. Of course, the cost incurred here is the in-
crease of dimensionality from n to n +m. However, the Lagrangian of-
fers the possibility of an iterative algorithm. A set of A's is chosen
for a point x; then x and A are changed successivéiy, until we get

to the critical point. The fact that at the solution the values of the

43

original function and the Lagrangian are equal, plus the fact that we
are trying to maximize such a value, can be used to move from one set
of variables to a new one. We make the increase of L our objective.
Actually, we could divide the variables (x,\) whichever way we choose,
alternatively changing each set until we arrive at the solution. How-
ever, tne convergence of such an iterative algorithm to the desired

maximum has to be proved. For one thing, the proposition does not state

-~

that any critical point of L is, necessarily, a constrained maximum of
f. Only the converse is guaranteed. Moreover, nothing in the proposi-
tion guarantees convergence even to a critical point of L. It merely
establishes the existence of such a point if the function f has a con-
strained maximum. With this in mind, we proceed to apply the Lagrange
multiplier rule to solving the Markov decision process.

First, we rewrite the form of the general problem (including

policy constraints):

K
o - k. k
e N 2. N g, (2.34)
L 1 H 1
=1 k=1
subject to
R aiey
N n, N p.dy =7, =0 i=1,2, ..., N (2.35)
L. L L Tl J
i=1 k=1
|
' K
i E e
1 = \ . d. =0 (2.36)
a— 1 - L
i=1 k=1
| K
N d,=-1=0 (2.37)
s h 4
i=1
44

'
= »
& .
§
4
¢
i

o e A S S e A SR o s e

g (2.46)

where s, and S, are subsets of the set S = ((i,k)} of (i,k) pairs
defining each alternative in each state.

We will treat the problem as follows. Since we have already
shown that (2.46) merely restricts us to subsets of S, and that set-
ting d‘i(=0or 1 for «(i,k) € S, U S, results in the rest of dli(be-

ing unity or zero, we will consider (2.34) through (2.37) and then, when

we change the d:‘, we will take (2.46) into consideration and only

choose zero or unity for those dl; involved in (2.46).
Corresponding to (2.34) through (2.37), we have a Lagrangian
L involving 2N +1 multipliers A. We will name them according to the

constraints, whence they will later acquire significance. For (2.35),

we define v % (i.e., 'Al,...,,.‘uN). For (2.36), we define the

multiplier g (i.e., A_ .). For (2.37), our multipliers (A

N+l N42?T

'\2N+1) will be named Bl e ,BN.

Hence, our Lagrangian is

N, . Kk k { Y, ii k k
L = 14 d, + v T LA, = 7
| 2 i 2 q1 i 2y bi l L le i j
g] i=1 =1 j=1 i=1 k=1
I "
: N i G o
" sglt =~ \ ni\ dy + N ﬁi\d,-1 (2.48)
£ ; i=1 k=1 fi=1 k=1

3
¥
4
!
H

45

It is a function of the limiting state probabilities ﬂi, the
k
conditional probabilities di of selecting alternative k given state
i, and the Lagrange multipliers vJ, g, and Bi.

All in all, we have 3N +

oz

121 Ki + 1 variables (the dimension
of the Euclidean space over which L is defined). Our objective is to
find a critical point for L. This we do iteratively. Starting with
d?'s that satisfy (2.37), we set the partial derivatives of L with
respect to the n's equal to zero. This gives values for the v's and
g (and also, as we will show, for the =n's; this is equivalent to set-

ting the partial derivatives w.r.t. the v's and g to zero). Then, we

use the LP result which tells us that we know beforehand that the d?

k
are zero or unity. The way we use it is to change the di in the zero-
unity subspace, rather than set partial derivatives w.r.t. d? equal to

zero, The partial derivatives of L w.r.t. the ='s |is

My N K .
3L ¥ K.k = k& Lk
3, 3 iy = vy + Ysj PisPy = 8 N dy
1 e — M —
k=1 J=L k=1 k=1
11,2, sesy N (2.49)

Given a policy P, 1i.e., values of dt satisfying (2.37) (and
a [for constrained policies, (2.46) also), we get only one k for each i,

t and (2.49) reduces to

N
)

JL(P) _ q.(P) -v, +) p..(P) v, -g 1= Le2) veey N - C2:.50)
mi 1 1]‘-:1 1] J

Setting the derivatives equal to zero gives us

46

ol g3 A Wy
. :
gt .
o .

o

B
3
L
&

f
3

T

qa,

1+\ P, V. =g +V, £ 21,2, souy B (2.51)

»
= ij j i

v
{

C

but (2.51) is the VD phase of the VD-PI algorithm. Thus, that phase is
one in which Lagrange multipliers are updated. In (2.51), we have N
equations in N + 1 unknowns. However, since (2.35) contains a redun-
dant equation, any one of (2.35) can be discarded, which is equivalent

to setting one of the v's to zero, whence (2.51) becomes a nonsingular

system of equations. In matrix form, it can be written as

— - - i —_ r~ —_ = —
1 pl1 p12 A P plN 1 v1 q1
> 1 - ol e e e it
Pa1 Paa Pan E V2 a,
Peaa Pegs TrerEe SBegg T VN :
- - b e e e 1
Py,1 Px,2 Pov 7 L®J L[]

Regarding the multiplication of a matrix by a vector as taking
a linear combination of the matrix columns, the above states that we are
attempting to form the q vector as a linear combination of the n + 1
columns of the matrix on L.H.S. The elements of the combination are the
v's and g.

Since v is set to zero, however, this means that we candrop

N

t
the N i column to get our N X N system of equations:

47

.

!

.1—.—» 4 WY I e B
7, . .

¢
§
$
{
i

—

1 -9

—p91

“Pys

S _pl,N—l 1 E v1 T
I = Poy ¢+ ¢ o oo -pz’N_1 1 v,
A e S VN-1
o N A e 1
w7 TS B TR

Denoting the

N X N matrix on the L.H.S. by ;,

W 2
Vs qu
Vo qp

. ol
. = [P] 5
Vi -
g 9

we get

(2.52)

Now we proceed to show that the 1x's can be obtained as a by-

product of VD (which has been compactly stated by (2.52)). If we differ-

entiate the Lagrangian w.r.t. the v's and g, we get (2.35) and (2.36),

i.e.,

L {:~ £ R 4
*, 2™ LT i B
J i=1 k=1
K
N i
L - ¥ %
-_—=1 - 7
% e R
i=1 k=1
48

(2.53)

(2.54)

For a given policy P, if we set the partial derivatives equal
to zero, we get our original definition of limiting state probabilities,

namely,

N
ﬂ-lp.”-.=0 j=12, ..., N

N«
e
i=1

Since the first N equations contain a redundant one, we can

drop the Nth equation and get N equations in the N unknown ﬂi. In ;

matrix form, this may be written as

= . 1% - —’ - -~ r-oﬁ
1 pl1 p21 P el e le i ﬂl
-p12 1 - L L -pN2 “2 0
l
-p -p IR T b1¢ 0 H
1,N-1 2,N-1 N,N-1 N-1
i 1 1 PR R 1 | i ﬂN ¢ _1_

But the matrix on the L.H.S. is the transpose of P. Hence,

e

{ the n's are the solution of

=Y
e 9

(2.55)

A
[SR

49

-y fo on-r—- L g ey
¥ ‘.
L £]

Hence, the n's are the last column of ([5]‘1)T, i.e., the
transpose of the last row of 3_1. Since we compute ;_1 in the course
of VD, this means that we actually have the wn's without any additional
computational effort whatsoever. The significance of this will become
apparent when we consider policy constraints. Hence, setting the partial
derivatives of L w.r.t. the v's and g equal zero, actually means
setting all its partial derivatives (except for those involving the d:'s
and their f's) equal to zero.

Now, we proceed to interpret the Lagrange multipliers. (2.53)

and (2.48) imply that the v's are involved in L in the form

N,

N o B
~ ov ,
J=1jJ

where dL/dvj gives the amount by which the jth constraint on [T is vi-
olated. It is necessary that it be zero for all j. Otherwise, we do
not have a critical point for L, whence it can never be a constrained
maximum. Hence, Vj gives us the cost of violating the jth constraint
by one unit. But that constraint represents the equilibrium of proba-
bilistic flows in the steady state. Thus, vJ is the value of being in
state j (albeit a relative one). If, in that state, the equilibrium
of probabilistic flows does not hold (e.g., by virtue of using Pij's
belonging to a policy different than the one the =n's were computed
for), vy gives us the cost per unit of "disequilibrium'" for that state.
It might be that we gain, in terms of the value of L, by doing that,
i.e., we increase L. However, there is no guarantee that when we com-
pute the new =n's and v's we will get a net increase in L. This will

be explained shortly.

50

The interpretation of g is straightforward. From (2.52), g
~=1
is the inner product of the last row in P and the q vector. By
virtue of (2.55), that row is merely the transpose of the T vector.

Hence,

N

T —
.q=>-' «jiq

il

g=1I)
1

[

But this is the value of our original function we are trying tomaximize.
Hence, for a given policy, the value of the gain is one of the Lagrange
multipliers that make the aforementioned partial derivatives equal to
Zero.

The VD, therefore, results in equating some of the partial
derivatives of L to zero for a given policy. The remainder of those
We would like to

partial derivatives are not nccessarily zero though.

equate them to zero. Rather than do that, however, we can do better.
We already know that d:'s have to be zero or unity for unconstrained
policies (and for constrained policies if we set the extra ones to zero
or unity). Hence, it would be more efficient to look upon this part of
the maximization process as a discrete problem and try to increase the
To do this, we rewrite (2.48), re-

value of L (see [1] for example).

! k
arranging the terms, so as to bring out the dependence on di'

-

K
N i N N
2 < k k k
L = ﬂil qi+2pijvj di vaﬂJ

¥ i=1 k=1 J=1 j=1

i
; N Ki. Kk N K_i: k
1 +g1-Zni di+3 By d, - 1

st —

L’ i=1 k=1 i=1 k=1

! 4 51

& 45

{

}

Our aim is to select the dt such that we get the largest
; increase possible in L. Since we will be selecting them as zero or

unity, according to our prior knowledge for unconstrained policies (and

our forcing them for constrained ones), and since the ﬂi are held con-

stant during improvement of the policy, we need only concern ourselves

k
with the first term in L. The second one does not involve di' and

the last two vanish. Thus, we concentrate on maximizing the quantity:

K
N N
- S [x -k K
DA a +) Py vy 95 (2.56)
— =}
i=1 k=1 j=1

J e

(2.56) is the inner product of two N-component vectors. The first is
the vector [I(P), as determined by the current policy P. Its compo-
nents are nonnegative. The second vector is a variable. For each pol-

1
icy P', where P'(i) = k', the d: satisfy (2.37), whence the sum-

, Al
mation over k reduces to one term for each state, namely t? = [q? +
N ok . th
j§1 pijvj] the i component of the vector selected by P'. We will

denote that vector by T(P'). Hence, the maximization of (2.56) reduces
to selecting that vector T(P'), i.e., that policy P' which yields
the largest value of inner product with the constant vector T(P). This
is, essentially, a combinatorial problem. The absence of policy con-

straints reduces it to a much simpler problem. In the absence of such

l constraints, all possible vectors T(P') are allowable (i.e., feasible).
| : N
There are 121 Ki such vectors. Among them, is that vector for which
N
% :
. ti = max q: + ::' plijvj 1 =1,2, sius 8 (2.57)
k=1,2,...,K, j=1 -

¥ iy
& .
!
4
¢
‘
3

52

-

i
.
¥,
$
¥ 1
{
}

The maximization of (2.57) yields, for each i, an alternative

KI. Those alternatives make up a policy P* with the corresponding
vector T(P*). Now consider the inner product of T(P*) and II(P). Since
each component of T(P*) is greater than the corresponding components
of all other T(P) and, since the components of T are nonnegative,
it immediately follows that P* is the policy that maximizes (2.56).
Hence, for unconstrained policies, the combinatorial problem of maxi-
mizing (2.56) reduces to the N discrete, "uncoupled,” maximization
problems (2.57). But (2.57) is the PI phase of the VD-PI algorithm.
Thus, that phase is actually the maximization of L with respect to
the d?, using the values of I and V for the current policy. This
can be represented, schematically, as in Figure 2.1. There, we grouped
the variables into three axes. The P's are represented by an axis,

as are the v's and ='s. Since the v's do not exist in the original

constrained problem (2.34) through (2.37), its set of feasible points

lies in the (II,P) plane. Moreover, since the constraints yield unique
values for 1[I, the problem reduces to selecting from a discrete set of
points Ai in that plane. Regarding the Lagrangian, for each policy.
P, it is a function of Il and V. However, the VD results in points
whose [I is identical to that of the given policy, whence the points
ay have the same [l component as the points Ai' As shown in Figure
2.1, the PI consists of moving from a,, say, along the P direction,
holding 1T and V constant, to maximize L. This results in point
b

say. The VD then takes us to a from which we go into the PI

29 2’
etc.
A word of caution is necessary here. It pertains to setting

up the increase in L as a criterion for selecting a policy having a

53

*NOILVYALI AA-Id V °T1°g *31d

Ty
/ /
/ /
A /
/ ¥ 7
7/ e \ Vi
“ 7
7
7 7 4
/ /
/ / - 3
14 Fis ot
S
7
I\\/

oy

aa

higher gain than the current one. Firstly, the fact that L is maxi-

mized along the 'ray" emanating from a point a, does not guarantee f

that the resultant aj will give the highest gain possible on this
iteration (i.e., the best improvement). ;

Referring to Figure 2.2, the PI surveys the points b2

through b which lie on the "ray" emanating from a It then selects

5 I
that point bi at which L is maximum. For Figure 2.1, b2 happens

to be that point. The VD then gives a However, it cannot be proved

9°
that another point b3, say, at which L 1is less than at bz, will

necessarily yield a point as for which the gain is less than a,. In

other words, the ordering of the values of L at bi is not necessarily
identical to the ordering of the gain values at the corresponding ai.
Moreover, merely increasing L along the a, "ray" does not guarantee
a better policy. That guarantee is to be provided outside the Lagrangian
framework, as we shall explain later. The question might arise, there-
fore, of whether it is at all appropriate to maximize L for policy im-
provement. The appropriateness of this procedure is justified for two
-] reasons. First, we know that at the optimum the value of the constrained
function we are trying to maximize is identical to that of L, as well
as at all points ai. Second, since we are trying to maximize our orig-

inal function, it would pay to try increasing L as we go along. This

s

{ gives us an insight into how to go about policy improvement when there
are policy constraints, as long as we bear in mind two things. The first

is that the sole purpose of PI is to obtain a policy having a higher

gain, irrespective of how much higher it is (e.g., it might happen that

applying (2.57) to only one state yields a policy P whose gain is

1

higher than the policy P, obtained by applying (2.57) to all states.

2

b 55

.
§
»
i
!
-
‘
§
&
¢
kS

*ANILNOY INAWIAOHAWI ADITOd AHL gz *31d

56

.. _ .
.
b7 ot8

. . Py ‘ v L Y, FUNPRRNSISE . s ey Y L.".J e Sans

>

~

o ey, b-n.--r Bt R
l'.‘.‘ 3 b

The computational cost of trying to detect this is prohibitive. Conse-
quently, we apply (2.57) to at least one state, the result being a pol-
icy having a higher gain than the current one, i.e., merely an improve-
ment (not necessarily the best improvement). The second thing to bear

in mind is that merely increasing L from a to b

i i’ say, does not

guarantee that aj is a better policy. It might very well happen that
L increases from ai to bj and then decreases from b], to aj (where

its value is g) such that L(aj) < L(ai).

Now we reconsider (2.56), namely,

K

N i N
- — k - k k

2.5
Vo, S o S pemile, (2.56)
Lt — —
i=1 k=1 j=1

For unconstrained policies, it reduces to (2.57), which gave
us a policy P*. If the policy constraints do not make P* infeasible,
then we select P*. Otherwise, we have to solve the combinatorial prob-
lem of selecting that vector T(P) from the feasible set of such vectors
(corresponding to the feasible set of policies), which maximizes (2.56)

and guarantees an increase in the gain. If we rewrite (2.56) as

K K
Nn: : k+N kv dk—{‘ ln k+N‘ kv dk
Zizqi zpijj 1'/_2 i\ " 2 PV %
i=1 k=1 j=1 i=1 k=1 j=1
and define

N
tk = qk + z pk v
i i jmi ij j
we find that we are trying to maximize

57

2 gy

e T '-1-—'
N

k
Since di is zero for all k's but one in any state i, and

the t: are the PI test quantities of yesteryear, (2.58) tells us that
we are trying to maximize the sum of those test quantities, one in each
state, weighted by how much time the system spends, on the average, in
each state. This makes intuitive sense. Moreover, maximizing the indi-
vidual components of a sum, automatically maximizes the whole sum. In
the absence of policy constraints, it is possible, as we have shown, to
maximize the individual components. We do not have to worry about feas-
ibility. 1In this case, the ni become mere scaling factors common to
the components we are trying to maximize, whence they can be ignored.
Once we introduce constraints on the policies, however, we have to take
feasibility into consideration. The states become "coupled" through the
constraints, such that it might not be feasible to maximize the individ-
ual components independently of one another. It is the ''noncoupling" of
states which allows the reduction of (2.58) to (2.57). Thus, when policy
constraints are present, we have to consider the sum as a whole and seek
an efficient method of solving the nonreducible combinatorial problem.

—

Here, we will have to take into consideration the of the current pol-
icy. This would seem to imply additional computations (solving N si-
multaneous linear equations) per iteration. However, this is not so. We
have shown that the 1's are already there as a by-product of VD ((2.52)

and (2.55)). Thus, taking the r's into consideration does not involve

any extra computational effort. The test quantities are merely

58

multiplied by the corresponding +«'s before we embark upon our maximi-
»

zation. That maximization, as we noted earlier, does not, of itself,
guarantee an improvement in the gain. However, we do have a sufficient
condition (developed by Howard [4]) for a gain improvement from one pol-
icy to another.

Assume that we have a policy P for which the VD has been
performed (i.e., the v's and ~'s computed). Consider any other

policy P'. Each policy has a vector of test quantities T associated

with it, where

Sz

k k k
t.(P) = q,(P) + p..(P) v_(P) = 2,2, saes N ' 62.59)
1 T — 1] J
J=1
M
K, , Kk e R 3
= ! % = 2 v e N .
ti(P) qi(P) + j‘:i pij(P) vJ.(P) e =T , N (2.60)

1

where the vj s are those obtained from the VD for policy P. Specif-

ically,
N
k
qi(P) +]2_1 p;‘j(P) "j(P) = vi(P) + g(P) i= 1,2, e, N (2.61)

Thus, (2.59) reduces to
k
ti(P) = vi(P) + g(p) (2.62)

Had we solved the VD for policy P', we would have had

N,
k k
qi(P') + ;21 piJ(P') vj(P') = vi(P') +g(P'y 1=1,2,...,N (2.63)

59

Combining (2.63) and (2.60), we can immediately write

N

k L} gl ' | \ﬁ k 1 — 1
ti(P y = vi(P) +g(P') + ;;1 pij(P)[}j(P) vj(P)]

w12y eony B (2.64)

Now compute the components 71 of the difference vector 5 =T(P') -T(P)

from (2.64) and (2.62):

ey - 5
1 1

2
Il

i
N,
s N
=v.(P') +g(®") + 2 p..P)|lv.(P) -v (P")]| - v (P) - g(P)
i {;& ij J J i
Setting

v, =v (P') - v, (P)
i i i

[g = g(P') — g(P)

and rearranging terms, we get

Y . '
g + ﬂwi s + 21 pij(P) Avj (2.65)
But (2.65) has exactly the same form as (2.51) (the VD equa-
tions) where the correspondence is
g <> Og, v <—> v, ¥ == q

We previously showed that the solution for g was I ﬂiqi’

where the ='s are the limiting state probabilities of the policy under

60

consideration. Therefore, we can immediately write the solution of

(2.65) as

N
g(P') - g(P) = /g = 2 r, () 7, (2.66)

i=1

Since the w's are nonnegative, (2.66) states that the suffi-
cient condition for improving the gain (from P to P') is that 7y be
nonnegative for all states and strictly positive in at least one state.
Note that the definition of the test quantity differences ﬁi involves
quantities known for policy P. In other words, we do not have to solve
the VD for every alternate policy P'. Without knowing T (P'), we can
guarantee that P' is better than P if at least one ni is positive.
We refer to this as an "improvement" in state i. Note, however, that
the derived condition is not necessary. There might very well be another

Al

policy P" which gives positive and negative 7;'s in different states
but has a Il vector which makes the R.H.S. of (2.66) positive. We can
not discover this, however, without solving the VD for P". Thus, the
best procedure for guaranteeing a gain improvement is to improve the test
quantity in at least one state. 1In the absence of policy constraints,
(2.57) does that. In the presence of policy constraints, we have to max-
imize (2.58), subject to improving at least one state. As mentioned ear-
lier, that maximization is a combinatorial problem. Solving it, consti-

tutes a modification of PI to handle constrained policies, giving us the

algorithm we are seeking. This we do in the next section.

61

i
) ¢
{
RE .
i
1
K
}
b

D. Development and Convergence of the Algorithm

As explained earlier, the algorithm consists of the VD intact, plus
a modified PI to handle policy constraints. First, we address the com-

binatorial problem:

g 2 o s
max N\ n ot (2.58)
PEF & &L i
i=1 k=1
sub ject to
c dk> <0 £ =1,2 m (i,k) €8
,Z(i = ROy ey ey ’)
(2.46)
k :
Cp(di) =0 p=1,2, cuuy (1,k) €8,

where all the inequality type of constraints have been grouped together,
as are those of the equality type.

F is the set of feasible policies defined by (2.46), where a pol-
icy, by definition, means selecting one alternative in each state, i.e.,
satisfying the constraints (2.37).

One of the most efficient techniques for solving combinatorial prob-
lems is the branch and bound method (or the multiple choice programming)
[2,3,7]. Here, the space we are optimizing over is divided into subsets
in such a manner that only a portion of the whole space is examined. We
will develop a method based on these concepts. Central to this method
are the concepts of branching and fathoming, which we proceed to define.
Branching is the process of obtaining one or more points from a given
infeasible point in the policy space. Fathoming is a property of a point
being considered. If no branching can be made from a point, or if no

benefit is going to result from such branching, the point is said to be

62

B ,l.-<-o1-w A oAy et o
L T

Yoggerr e

fathomed. Thus, fathoming is basically the termination of branching.
An unfathomed point is eligible for branching. |
We will illustrate the method of branching and bounding by consid-
ering an example. Assume that we have three states, with three alterna-
tives to choose between in each state. Assume, furthermore, that the VD
has been carried out for a given feasible policy, resulting in the test
quantities t?, defined by (2.59). We will consider the t: multiplied
by the corresponding zi's and list them as in Table 2.2, where theyare
in descending order in each state (e.g., t; > t2 > tz, i.e., alterna-

tive 1 in state 2 maximizes the test quantity).

Table 2.2

TABLE OF ORDERED TEST QUANTITIES

State | Ordered Test Quantities
3

1 t2 t t1
(1 1/1

2 tl t3 t2
2/2) 2

2 1 3

3 t3 t3 t3

Table 2.2 also illustrates the policy constraints. Here, we assume

constraints of the simple mutually exlusive type. Corresponding to the

' in Table 2.2, we have the constraints:

"couplings'

dj +d; <1 (2.67)
d 3

d1 + d2 <1 (2.68)
63

S o

d, +dg <1 (2.69)
- S

d, +d; <1 (2.70)

Now we start "branching and bounding" to maximize (2.58), subject |
to (2.67) through (2.70) (the equivalent of (2.46)). Since a point
"branches" into other points, we will have a "tree." We will also have
a lower bound for the optimum. (The lower bound is initialized to the
artificial value of -x.) Whenever branching gives us a feasible point,
the value of L (the function we are trying to maximize) is compared to
the current lower bound. If it exceeds that bound, the bound is updated,
and any point yielding a value of L which is lower than the new bound
is fathomed. Feasible points are fathomed by definition. The search

terminates when no more unfathomed points exists. We start out with the

point representing that T vector whose components are given by (2.57),
i.e., the largest test quantity in each state. Denote it by TOl' Our

tree then initially consists of one node

01

L
where T01 = (tl’t2’t3)'

The corresponding policy is P01 = (2,1,2), i.e., selecting alter-
natives 2, 1, and 2 in states 1, 2, and 3, respectively. This is the
policy the PI would select. However, in our example, it is infeasible
(it violates (2.67)). Hence, our lower bound remains at its initial

value of =«, and we have one unfathomed point T01 to branch from.

Branching consists of selecting each alternative in state 1, in turn,

64

-

Ccm e

i
]
| 4
;
i
L TP
i h
t §
$§ 9
b
’

i.e., changing the first component of T

. The remainder of the compo-

01

nents are chosen such that they are the largest test quantities in their
states, consistent with the constraint imposed by the first component,

1
e.g., would prohibit selecting t and

2
if any. Thus, selecting t 97

1!
3
hence we have to select t2 instead. For the third component, we can

2 7 3
select t, because it is not "coupled" with t]. The fact that t, and

t§ are coupled is postponed to the next level of branching, if we get

there. Hence, our tree becomes

T
s "@‘\. ~

e
/T T, T
& 11 19 13

where

S (ti'tz’ti)
LT S (ti’t;'ti)
ryy = (ki)
The corresponding policies are:
P11 = (2,3,2)
P12 = (3,1,2)
Pig = (1,1,2)
65

TR Y

Only P is infeasible, whence T and T are immediately

11 12 13

fathomed. Moreover, the value of the lagrangian at those two points is

compared to the lower bound (-x) and to that at T11' Assume that

L(Tll) = L(T13) > L(le). In this case, the lower bound is updated to

L = L(T13)

and T11 is the only point available for branching. If we represent

fathoming by "grounding' the point in the tree, the situation becomes:

01
»*
T11 T13
—t csnlbe
Moreover, P13 is the optimum policy so far. Now we start branch-
ing from T11’ as we did from TOl' Here, we select, in state 2, each

alternative in turn. However, the alternative must be uncoupled from

2

tl. In other words, at each level in the tree, we have a fixed alter-
native in a number of states. T01 represents level 0. No states .ave
fixed alternatives. The next level of T11, T12, and T13 has the

alternative in state 1 fixed (this is level 1). Only T goes down

11

one further level (to level 2) to attempt fixing alternatives in state

2, consistent with the constraints imposed by the alternative fixed in
2 2
the previous level. Since T11 has t1 fixed, and t1 is coupled

1
with tz, we cannot fix the latter. Thus, we only have two succe .or

points to Tll' The remaining components are selected such that they

66

e v—-r N UIEEUE———
B 3

are the maximum test quantities in their states, under the restriction
that they satisfy any constraints imposed by fixing the previous levels.
Since we are down to the last level, the points we obtain, if any, have

3 3
to be feasible. Thus, fixing t2 imposes selecting t3, while fixing

« «

2 2 3 3
t2 enables us to select t3. Note that, if t, were coupled with t3

also, we would only have one successor point to Tll' If, in addition,

ti were coupled with all alternatives in state 3, no branching would

be possible from T and it would be fathomed. Those are interesting

11’

3
cases because such constraints imply that t2 and t2 are not really

alternatives at all; they can never be selected in a feasible policy.

This can be detected by manipulating the constraints to discover that

3 2
they impose d2 = d2 = 0. However, we are more inclined to let the

branch and bound discover this (along with nonfeasible problems). Thus,

at this step, our tree would become:

where

= -
] |
o

b
|

= (2,3,3)

d
I

= (2,2,2)

67

T ——

The * next to T13 implies that this is the best point obtained so far.
Both P21 and P22 are feasible, whence we compute L(T21) and
L(T22) and compare them to the current bound (the best value of L so

far). Also, both points are fathomed. Assume that L(Tzz) > L(T21) >L.

In this case, we update L, set P22 as our optimum so far, and

survey the tree for unfathomed points:

T01
¢ R, S
‘i!l" ‘i!!'r ! :
Since no more branching is possible, T22 is the optimum. If we reach

the end without encountering any feasible points, the problem is unfeas-
ible. This is detected by the lower bound still being at its original
[value of =-c.
Note that in this example there are 27 different policies. Of those.

only 17 are feasible, and we only considered 6. The efficiency of branch

Sags

! and bound techniques (BB) results from the manner in which branching and
fathoming are implemented. The branching takes feasibility into account
in a piecemeal fashion, one state at a time, while being always biased
towards sets of points where L has larger values. This gives us a

chance to seize upon a feasible policy of large L relatively quickly.

68

;i
g
%

Then, the bounding eliminates, via fathoming, whole sets of points from
any further consideration.

Now we embark upon proving that the outlined BB method maximizes
the Lagrangian over the set of feasible policies.

First, we prove that, as we move into deeper levels in the tree,

the value of L cannot increase.

Proposition 2.5.

If branching occurs from some infeasible node I at level Kk 1in
the tree, the value of L at the resultant nodes cannot exceed that at

I.

Proof.

The value of L at any node corresponding to a policy P is merely
the sum of the components of the vector T(P) corresponding to that
policy.

Now consider T(I) at the infeasible node I at level k. Its
first k components do not violate any constraints. Moreover, start-
ing from the k +1 component, each component is maximum in its state,
subject to the constraints imposed by the first k components.

Now any node resulting from I has a T which agrees with T(I)
in the first k component. The k +1 component is any one in state
k +1, subject to the constraints imposed by the first Kk components.
Hence, it cannot exceed the k+1 component of T(I). Starting from
component Kk +2, each component of a branch is the maximum in its
state, subject to the constraints imposed by the first k+1 compo-

nents. They might be the same as, or more than, the constraints imposed

69

-~

Ei
P
’
|
$
e
g i
s
K
¢
[
)

by the first k components, but not less. Hence, from component k +2,

no component of a branch node can exceed the corresponding component of

T(I). Thus, we have shown that, starting from component k +1, no com-
ponent of a branch node can exceed the corresponding one in T(I). This

proves the proposition.

Proposition 2.6.

If a given feasible policy P is not in the BB tree and there ex-
ists a fathomed policy P' in the tree at level k such that P' and
P agree in the first k components, then the value of L at P can-

not exceed the optimum value obtained by the BB.

Proof.

We have two cases to consider:

(a) P' is feasible. Since P' agrees with P in the first
k components and the rest of the components of T(P')
are the maximum in their states, subject to the constraints
imposed by the first Kk components, then no component of

T(P) can exceed the corresponding component of T(P').

(b) P' is infeasible. Assume that P' 1is fathomed because
no branching is possible from it. This means that the
first k components impose constraints which make all
alternatives in state k +1 infeasible. But P agrees
with P' in the first k components, whence they impose
the same constraints. Hence, the k +1 component of P
violates some constraint, i.e., P 1is infeasible. But
this contradicts the assumptions. Hence, P' was fath-
omed because there exists some node F elsewhere in the

tree yielding a larger value for L than node P'. Since

70

T—., B e R

[;

o B, S -y

P is obtainable from P' by branching, Proposition 2.5
says that L at P cannot exceed that at P', whence

it cannot exceed that at F.

Thus, in (a) and (b), we have shown that there exists a feasible
policy in the tree where the value of L is not less than that at P.
But since the optimum obtained by BB is the largest value for L over

all feasible nodes in the whole tree, the proposition is proved.

Proposition 2.7.

If a given feasible policy P is not in the BB tree and there
exists an unfathomed policy I in the tree at level k, such that P
and I agree in the first k components, then there exists a policy
P' in the tree at level k+1 such that P and P' agree in the

first k+1 components.

Proof.

Since I is not fathomed, branching has occurred from it. Con-
sider the branch nodes. They all agree with I, whence with P, in
the first k components. Component k+1 takes on all values in
state k +1 such that the constraints imposed by the first k compo-
nents are not violated. But component k +1 of P satisfies the same
constraints (because it satisfies all constraints). Thus, one of the
branch nodes from I agrees with P in component k +1, whence it
agrees with it in the first k +1 components. Since this node is at

level k +1, the proposition is proved.

oS

B

gt B, S A -.7&—. gy
LS B
P 3

Proposition 2.8,

If a given feasible policy P is not in the BB tree and there ex-
ists a node N in the tree at level k such that N and P agree in
the first Kk components, then the value of L at P cannot exceed the

optimum obtained by BB.

Proof .

Consider the node N. It is at level k and agrees with P in the
first k components. If N is fathomed, apply Proposition 2.6.

If N 1is not fathomed, apply Proposition 2.7 repeatedly. Every
time we get to an unfathomed node at level [, there is a node branch-
ing from it at level £ +1, agreeing with P in f+1 components. Fi-
nally, we reach a fathomed node at some level m <M (where M 1is the

deepest level the tree reaches) and apply Proposition 2.6.

Proposition 2.9.

No feasible policy P can yield a value of L greater than the

optimum obtained by BB.

Proof .

If P 1is in the tree, the proof is trivial. Consider a feasible
policy P not in the tree. The first component in P is an alterna-
tive in state 1. Now look at level 1 in the tree. It has as many
nodes as state 1 has alternatives. Each node has one alternative in
state 1 as its first component. Thus, there exists a node N in the
tree at level 1 such that N and P agree in the first component. We
have satisfied the assumptions of Proposition 2.8, whence its result
applies, completing the proof.

72

-

et 2o e it et

o oA

[———

Now that we have a method for solving the combinatorial problem of
maximizing the Lagrangian over the set of feasible policies, we have to
guarantee an improvement in the gain. This we do by guaranteeing that
the quantity defined by (2.66) never be negative. To ensure this, we
do not allow negative vi's in each iteration. To illustrate, we first

repeat Table 2.2.

State Ordered Test Quantities

2 3 1
i <t1 tl tl
T 3 2
4 t ///tz) s
2 1 3
3 t3 t3 t3

Now we assume that we entered with policy (3.3.3). We want to dis-
allow any test quantity that is less than that of the current policy in
each state (whence no y; can be negative). In our case, the policies
we consider in BB in this iteration would be given by the following ta-

ble.

State Ordered Test Quantities

2 3

1 (tl t1
1 3

~ t2 ///t2

3 t2 tl/) 3
3 3 3

No resulting policy can have any negative 71, whence (2.66) can
never be negative, i.e., we prevent selection of a policy with lower
' Now assume that BB yields policy (2,3,3). Assume, furthermore,

YD for that policy results in the following table.

73

State Ordered Test Quantities

1 ti ti////tf
(tg -

tg‘t:ng\\\ t2

2

3

(Note that the "coupling" is between alternatives in different

-~

states, not between test quantities. That is why the '"couplings" look
different in this table.) Now we enter BB with policy (2,3,3), and, to

restrict the 7i' we only consider the following.

State Ordered Test Quantities
1 (t} t? t?
2 3
3 e

It is obvious that discarding alternatives reduces the amount of
computations involves in each iteration. To increase the efficiency,
we can renumber the states in each iteration such that state 1 has the
least number of alternatives. The obvious question is what if the BB
results in the same policy we entered with? What is the characteristic
of such a policy? In the following theorem, we show that it maximizes

the gain over a subset of the feasible policies.

‘ Theorem 2.3.
If the maximization of the Lagrangian over the set of feasible

policies, subject to 75 >0 for all i, yields a policy P for which

g 0 for all i, then that policy maximizes the gain over the set

of all feasible policies that differ with it in eactly one state.

74

i.
$
4
¢
s

s

SR h--o-T-' LA g Yo
by T,
e e s

Proof.

let P' be a feasible policy differing with P in the kth compo-

nant (i.e., state). Let P(k) = ¢/ and P'(k) = m. Assume that tE ™
£

tk. Since T(P) differs from T(P') only in the kth component, the
Lagrangian at P' is greater than at P. This implies that there ex-
ists a feasible policy P' yielding a value of L greater than the

optimum obtained by BB. But this contradicts Proposition 2.9.

Hence,
m £
tk = tk
Thus,
T <0 and % = 0 for i #k
where
y = T(P') - T(P)
Hence,
N
g(P') - g(P) = z 7w, (P') v,
: i - 5
i=1
= 0
Tk S
i.e.,

g(P') <g(P)

Thus, any feasible policy differing with P in exactly one state can-
not have a higher gain than P.

Thus, when BB converges to a policy, that does not necessarily mean
that it is the overall optimum. What we propose to do in this case is

to make that policy, and all policies differing with it in exactly one

75

e

R

EE.. .
L
!
&
?
<
!

i S e R St M 158 A i bt

state, infeasible, thus removing a whole subset from further considera-
tion. This can be achieved by adding just one constraint to the set of
policy constraints. If the policy P is given by P(i) = k, the con-

straint is
N
E k
d, <N-2 (2.71)
] R
i=1

(As a matter of fact, (2.71) is a special case of a general form. For
example, to make an individual policy infeasible, the R.H.S. would be
N-1. 1In general, to make a policy, and all those differing with it in
exactly M < N states infeasible, the R.H.S. of (2.71) would be N -
M-1.)

In order to increase computational efficiency, we divide the states
into two types. The '"free states" are those which are not involved in
any policy constraints, i.e., their d?'s are only involved in rela-
tions of the type (2.37). The states involved in relations of the type
(2.46), i.e., having alternatives that are "coupled" with each other,
we refer to as "coupled states." Given a feasible policy A for which
VD has been performed, we first attempt a regular PI (maximizing test
quantities over all states). If this does not change A, we have an
overall optimum policy. If the resultant policy is feasible, we start
a new VD. Otherwise, we maximize over the free states by regular PI,
and over coupled states by BB with 7i = 0. This results in a policy
B. If B differs from A, we enter VD. Otherwise, we know that A
maximizes the gain over the set of feasible policies differing with A
in exactly one coupled state. In this case, we make policy A, as well

as all policies differing with it in exactly one coupled state,

76

infeasible by a (2.71) type constraint (here, the N in (2.71) would be
the number of coupled states). Then, we enter BR again to maximize the

Lagrangian over the currently feasible policy set, with the 71 > 0 re-

striction removed. Basically, we are looking for a feasible policy, re-
respective of gain, whence it makes sense to use the latest values of

t? since they contain a certain amount of the algorithm's history up to
this point.

Every time BB converges to a subset maximizer, we compare its gain
to the best previous subset maximizer and retain the one with the higher
gain. As a result of removing subsets over which we maximize, the feas-
ible policy set quickly shrinks until it becomes empty. When BB results
in an infeasible problem, we have an optimum policy.

To get an initial feasible policy, we maximize the sum of the imme-
diate expected rewards qt over the feasible policy set using BB. Sche-
matically, then, our algorithm can be represented in Figure 2.3. The
convergence of this algorithm to an optimum feasible policy is readily

proved .

Consider a feasible problem (nonfeasible ones are detected at the
outset by exiting from El1). Now consider any feasible policy P other
than the one selected by the algorithm.

If we exited the algorithm from E2, then policy A has the highest
gain of any policy (whether feasible or not). This is because, for A,
each test quantity is the maximum in its state. Any policy which is not

identical with A has to be different from it in at least one state.

Consequently, any policy other than A results in nonnegative 7i's,
with at least one yi strictly negative. Equation (2.66) then implies

g(P) < g(A). This is the case where the policy constraints do not affect

T\—' P
P v,

\

77

e

set g* = -o; get No feasible policies ;
initial feasible policy problem is infeasible

{ Bl

Perform VD for given
policy 1i; call it A

+

Maximize test quantities B=A; this is the

%— to get feasible policy r——l— : ‘
B £ A overall optimum policy i

i ~

B infeasible; enter BB
with A to maximize L
over ''coupled states"
~e—— with y; > 0, maximize
test quantities over

"free states" to get

policy B # A

+

B=4; if g() >¢g*,

set A as optimum, and

g =g@); add (3.3) No feasible policies
-— type constraint, and —=| remain; we have an

enter BB to maximize L optimum policy

" "
over coupled states,
7 unrestricted in sign E3

‘ Fig. 2.3. ALGORITHM FOR RISK-INDIFFERENT CASE.

the feasibility of that policy yielding the highest gain in the absence
of any such constraints. Thus, we have retained the ability to detect
such a policy, without having to exhaust the feasible policy set, by
(2.71) type constraints.

If we exited the algorithm from E3, then, at that point, the given

feasible policy P had become infeasible. The only way this can come

|

!

V.

L 78

about is from (2.71) type constraints. Hence, P belongs to some sub-
set over which we have maximized the gain, whence g(P) cannot exceed
] the gain of the policy selected by the algorithm.

Since no feasible policy can have a gain higher than that of the

policy selected by the algorithm, the latter is the optimum feasible

policy.

E. The Example

We will take Howard's famous taxicab example [4] and add some pol-

icy constraints to it. The taxi-cab driver works in an area encompas-

sing three towns A, B, and C. In towns A and C, he has three alterna-

tives.

1. He can cruise in the hope of being hailed by a passenger.
2. He can drive to the nearest cab stand and wait in line.

I 3. He can pull over and wait for a radio call.

If he is in town B, alternative 3 is not available because there is no
radio cab service in that town. For a given town and alternative, there
is a probability that the next trip will be to each of the towns A, B,
and C, and a corresponding net monetary reward associated with each such

trip. If towns A, B, and C are identified with states 1, 2, and 3, then

e

‘ Table 2.3 gives the probabilities and rewards. Now we introduce the con-
straints. In towns A and B, there is a union for taxi-cab drivers. The
union owns the cab stands in both towns and the radio cab service in town

A. Nonmembers are denied the use of union facilities. Union membership,

however, has strings attached to it. To become a member, a driver has

r T i, el R
. Ny
= $ody

to use the facilities, except that he can only use one cab stand (either

\

79

i
'
&
[
P!

Table 2.3

PROBABILITIES AND REWARDS FOR THE TAXICAB EXAMPLE

. k k
State | Alternative pij rij Rewards
N
k k k
i = 2 3 = =
i k j=1 1=12 3 [q/=> Ao
j=1
?
i 1 " 1/2 1/4 1/47] 10 4 s'l 8
|
[r 1 2 1/16 3/4 3/16 g8 2 4 2.75
3 174 18 s8|| |4 6 4J 4.25
; B 1 M 1/2 o 1/27] M4 o0 18 16
2 |1/16 7/8 1/16 | 816 8 15
&
1 T 1/4 1/4 1/27] 10 2 8 7
3 2 1/8 3/4 1/8 6 4 2 4
‘ 3 | 3/4 1/16 3/16 | | 4 0 8 4.5

|
|
|
|
|

in town A or town B to give other members a chance). Thus, if our friend
joins the union, alternative 1 (cruising) is not available for him in
states 1 and 2, whereas if he does not, alternative 1 becomes the only

2
available one in both states. In other words, either d1 =d, =0 or

1 2
1 1 : .
d1 = d2 = 1. This is a type (2.43) constraint. Specifically,

d, =d, =0 (2.72)

Also, since he cannot select alternative 2 in both states 1 and 2,

no matter what, we have a (2.41) type constraint. Specifically,

d +d§ <1 (2.73)

R e Tt ot

R

r' g e gy o
- i

X
= gy

Our friend wants to select a policy that yields the highest gain, subject
to those constraints.

The first step in the algorithm is to set the optimum gain g* = -
and get an initial feasible policy. We use BB to maximize the sum of im-
mediate expected rewards over the feasible set. Our first node in the

k
tree is the one that picks the maximum qi in each state:

Ty, = (8,16,7) Fon ™ WA

PO1 is feasible, whence T01 is fathomed, and we have an initial feas-

ible policy A = (1,1,1).

Performing the VD for A gives:

State Ordered Test Quantities
1 t: = 4,213 t? = 3.373 ti = 2,207
:fES<s;;;;;
2
2 t2 = 4,323 t} = 3.333
""" S et e | VIR N o B L ol Rt
= 3. = 3.68 = 2,38
3 t3 3.907 t3 680 t3 2.387
and g(A) = 9.200

Constraint (2.72) is represented by a double line coupling the two alter-
natives involved, while (2.73) is represented by a single line. Since the
alternatives in state 3 are not coupled to any other alternatives, state

3 comprises the set of "free states'" we defined earlier. The dotted line

separates the free states from the coupled ones.

81

S

r . S B
N "S-
% Sz

o
e S e

3

The regular PI gives us policy (1,2,2) which is infeasible; it

violates (2.72). Hence, we maximize over the free state to get P(3) =
2. For the coupled states, we enter BB with 71 >0, i.e., the follow-

ing table:

State Ordered Test Quantities

2 t

(Ol I

NG

t

The first node is the maximum in each state, an infeasible one:

Ty, = (4.213,4.323) P, = (1,2)

To branch to the next level, we fix alternatives in state 1. Since we

1
only have one alternative, we only have one branch. Also, d1 =1 and

(2.72) make di = 1, whence we can only select alternative 1 in state
2. This makes the branch node feasible, whence it is immediately fath-

omed .

T

e
(%01

: T11

= S92t i, Je =
Tl1 (4 213, 333) P11 (1,1)

i
1
K3
{
i

DI

r— M Ag I ey v e
1Y g

.
g8 3

B s et and

Therefore, P(1) =1 and P(2) = 1. Thus, we emerge with a policy B =
(1,1,2), different from A. So, we call this new policy A, i.e., A=

(1,1,2) and perform the VD for A. This results in:

State Ordered Test Quantities
3 | ti = 3.962///,t? = 3.148 ti = 2.077
2 ti = 6.720 tl = 5.197
AL e o
A= (1,1,2) g(A) = 9.366

Maximizing in all states, i.e., regular PI, results in (1,2,2) which is
infeasible. It violates (2.72). Thus, we maximize in 3 to get P(3) =
2, and we enter BB, for the coupled states only, discarding any alterna-

k
tives having ti less than the one we entered with (i.e., ﬁi = 0.

Thus, what we consider is given by:

State Ordered Test Quantities

1
" tl
2\1
2 t2 t2

The third component of our policy will always be 2, so we only write the
first 2 for brevity.
Our first node, as usual, is the maximum in each state. This, we

already know is infeasible, whence we will branch from T01’

83

N

3
13
ki
i
P, * 1
4
1

e AR e e i L

T01 = (3.960,6.720) pOl = (1,2)

Our first level is obtained by fixing the first component to each
available alternative in state 1 and selecting the maximum in state 2,
consistent with the constraints imposed by the first component. Here,
we only have one alternative available in state 1, namely, alternative

1 1
1. Hence, we set d1 = 1. This immediately makes d2 =1 by virtue
of (2.72). Hence,
‘il!'r
e liBer

T, = (3.960,3.333) Pn = (1,1)

P11 is feasible, whence T11 is immediately fathomed and also gives

the largest Lagrangian over the defined set. Hence, BB yields a policy

B = (1,1,2). But this is the same as policy A that we entered with.
Hence, A maximizes the gain over the set of all feasible policies

that differ with it in exactly one component in the coupled states. This

is achieved by adding the constraint:

where Mc is the number of coupled states. Here, Mc = 2, Thus,

84

A kg 5 5 i b i o

1
1 o= 0 (2.74)

1
Note that (2.74) makes d, =d, = 0 i.e., those alternatives are re-

ja—y
N
-

moved from further consideration. We let the algorithm deal with that,
however, rather than scanning every constraint. |
Now we compare g(A) = 9.366 to g* = -=. g(A) is greater, so we |

set our optimum policy P, so far, as |

Poas o= (11 2) g* = 9.366

b B e U AR S Lok

and look for a feasible solution by maximizing L over the coupled
states, with 74 unrestricted in sign. Thus, the values considered in

the BB are given by

i State Ordered Test Quantities

1 2 3
1 t1§x<:t1 t1
‘ 2 N1
2 t2 t2
% The BB tree is given:
3 1 @
;. 4 §;;;;;
-‘ :i
. |
.? ‘
:é : T01 = (3.960,6.720) P01 = (1,2)
; Tll = (2.077,6.720) Pll = (3,2)
i
Y Fi4
‘ia- where P11 is feasible.
Bt i 85

i
i
s 4
{
L}

.~

;
!
-I;)

Hence, we have a

to obtain

State
1 t
2 t
3 t

new policy A = (3,2,2) for which we perform VD

Ordered Test Quantities

= 1.041 ti = 0.579 ti = 0,311
e
=in2 = .
t2 9.086
=151 tl = 0.948 t3 = -0,182
3 3
(3,2,2) g(A) = 12.774

Regular PI gives (2,2,2) an infeasible policy. Hence, we maximize in

3 to get P(3) = 2,

and we enter BB for states 1 and 2 with the follow-

ing table.
State Ordered Test Quantities
2 i 3
1 t1 t1 t1
2
o
2 t2

The BB tree for

01

11

\

SN
!,Ja*
(T11)
R

(1.041,20.69)

o
]
~
S+
o~
~—

01

(0.311,20.69) P (3,2)

3 4

86

AD=AD34 249

UNCLASSIFIED

?:L

STANFORD UNIV CALIF DEPT OF ENGINEERING~-ECONOMIC SYSTEMS F/6 12/1

MARKOV DECISION PROCESSES WITH POLICY CONSTRAINTS,(U)

APR 76 J NAFEH NSF=GK=36491
EES=DA=76~3

s

i< e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

 §
i
»
§
r
i
]
R 4
%

Thus, BB gives us (3,2,2), the policy we entered with. g(A) = 12.774

and g* = 9.366. Consequently, we update our optimum policy and gain
to

P = (3,2,2) g* = 12,774

and add the constraint

(2.75)

3
+
o
N
INA
o

Then we try to get another feasible policy. The following table

gives the values considered by BB, followed by the BB tree.

State Ordered Test Quantities
2 1 3
1 Tl t1 t1
|2 H1
2 tz t2

(0f course, we have the additional two constraints (2.74) and (2.75).)

:/’/\\\

To1

Toy = (1.041,20.69) Pay ™ (2,2)

PO1 is infeasible, and no branching is possible from level 0. This is

an indication that the problem is infeasible. (This is the effect of
2

(2.74) and (2.75). They force d; =0 and d, = 0, i.e., no alterna-

tives can be selected in state 2, whence infeasibility.) Thus, we have

87

i o bt 2

exhausted the set of feasible policies (without evaluating each policy,

merely by removing subsets), and we have an optimum policy:

P = (3,2,2) g* =12.774

The unconstrained problem had its optimum at (2,2,2). That policy,
however, violates (2.73), whence it is infeasible. The introduction of
constraints thus affects the policy (in some cases, it might not be true,
as we shall later show, when discussing sensitivity to constraints), and
the feasible policy yielding the highest gain is the one we obtained.
(Incidentally, it turns out to be more beneficial for our friend to be-

come a union member.)

F. Transient States and Periodic Processes

In the foregoing, all states were assumed to be recurrent, i.e.,
ﬂi > 0 for all states. If we have transient states and they happen to
be coupled, the theorem of Section C would not apply. This is because

the test quantities are multiplied by =« whereas the ﬂi are defined

i!

on the test quantities. As long as ni > 0, then inequalities of test

quantities are not affected by multiplication by ni. If ﬂi==0, how-

ever, then multiplication by ﬁi equates all test quantities in state

A

i s of zero. Since

i to zero, and that does not necessarily imply »
the proof of the theorem was based on that fact, it does not hold for
transient states. In other words, it is not true that BB éonverges to

a policy that maximizes the gain over the subset of feasible policies

differing with it in exactly one state if one of the coupled states is

transient.

._—-—A#Illllllt=Z;a————-d=———a3===ﬂ=lﬂllﬂHﬂﬂI-I---------------------'|!l

Hence, we need to deal with coupled transient states separately. We

do this in the following manner. We fix the alternatives in the recur-

rent coupled states to those of the current policy (i.e., set the corre~ i
sponding dl; = 1). Then we use BB with 71 > 0 to maximize the sum of

the test quantities over the transient coupled states. This is basically

o

a feasibility exploration. If this process results in a change in tran-~
d sient coupled state alternatives (in at least one state), we have an im-
proved policy. If not, we fix the alternatives in the transient coupled

states to those of the current policy and use BB with 71 >0 to maxi-

mize the Lagrangian over the recurrent coupled states. If the policy
does not change, then it maximizes the gain over the set of policies b
that differ with it in exactly one coupled state.

Finally, a word about periodic processes. By a periodic process,
we mean one whose transition probability matrix is periodic. In this
] case, 1w, = 1/N for all states. The case of interest is one in which

i 1
all feasible policies are periodic. We know that

By

k. k

a e
k=1

g =

[A

He
Il
et

and it is g we want to maximize. If all policies are periodic, then

we want to maximize

o

In this case, we only need one iteration. Our initial feasible

k
policy is the optimum one since we use BB to maximize the sum of qi

89

4
v
&
!
K
'
i
}

Sy s e

i
’.f

over the feasible policy set to get it. Of course, this is an inher-
ently deterministic problem (we just maximize the average immediate re-
ward). Unless we know a priori that all feasible policies are periodic,
we do not seek to find that out (since it is computationally equivalent
to explicitly enumerating the feasible policy set). The only reason for
discussing periodic policies, is to shed some light on initial feasible
policies and transient coupled states. Maximizing a sum is equivalent
to maximizing the average if a uniform probability distribution is as-
sumed. The latter is characteristic of the ﬂi of periodic policies.
The uniform distribution, however, is the mathematical encoding of a
Bayseian's profession of complete ignorance of a process. In the case
of periodic policies, we do not know where we will find the process if
we enter it at a random point in time. This is essentially what we are
saying at the start of the algorithm when we do not have any feasible
policy available (we do not have a transition probability matrix). In
the case of transient coupled states, our Lagrangian has degenerated,
making all test quantities equivalent and thus obliterating our accumu-
lated knowledge to this point. Consequently, we profess complete ignor-
ance about those states and maximize the sum (i.e., average) of the

original test quantities.

90

LRI

ot o, S 1o -.r L A GO i

Chapter III

RISK-SENSITIVE MARKOV DECISION PROCESSES

A. Introduction

In this chapter, we develop an algorithm for risk-sensitive Markov
Decision Processes with policy constraints.

As in Chapter II, we start by reviewing previous work in Section B.
Instead of expected values, we deal with utility functions and certain
equivalents, the standard method of incorporating a decision maker's
attitude towards risk (i.e., uncertain propositions). The policy evalu-
ation-policy improvement (PE-PI) algorithm developed by Howard and Math-
eson [6] is outlined. It is the counterpart of the VD-PI algorithm for
the risk-indifferent case. Just as our algorithm of Chapter II was based
on the VD-PI, our algorithm here is based on the PE-PI.

In Section C, we use the fact that the original problem is actually
a constrained optimization problem to formulate it in the Lagrangian
framework. We show that decomposing the optimization of the Lagrangian
into two problems results in the PE-PI algorithm when no policy con-
straints are present. The dependence of the algorithm on the sign of
the risk aversion coefficient 5 is brought out. In the case of a risk
preferring decision maker (y < 0), the problem is one of maximization.
For v >0, it is a minimization problem. In PE-PI, making the utili-
ties of opposite sign to 7 during the PE phase, transforms the problem
into one of maximization for both cases. Hence, the sign of the utili-
ties is not really arbitrary. It has to be opposite to that of ;
otherwise minimization would have to replace maximization in the PI

phase.

91

Introduction of policy constraints makes the PI phase inapplicable,
just as was the case for risk-indifferent analysis. Therefore, we have
to look elsewhere for solving the essentially combinatorial problem of
policy improvement.

In Section C, we also show that the Lagrange multipliers are the
utilities of the PE-PI. They represent the cost of violating the con-
straints; in this case, the constraints defining an eigenvalue problem.
The realization that the constraints in the risk-indifferent case (the
equations defining the limiting state probabilities) also define an ei-

I genvalue problem, leads us to discover the counterpart of the limiting
state probabilities. Whereas, in the risk-indifferent case, the eigen-
value problem pertained to the transition probability matrix of a pol-

icy; in the risk-sensitive case, it pertains to the matrix of "disutil-

ity contributions" of the policy, a combined measure of the probabilities
of transitions and how much they contribute to "disutility." In this
case, we have an eigenvector Z defining the equilibrium flow of those
quantities, just as the vector I of limiting state orobahilities de-
fined the equilibrium of probabilistic flows in the risk-indifferent
case. It is the components of this vector Z which should weight the
test quantities in each state when policy constraints are present.

-

i Whereas, weighting by was intuitively obvious in the risk-indiffer-~

ent case (ﬁi being the time the process spends in state i, on the
average, in the long run), the weighting in the risk-sensitive case al-
most defies intuition. At the very least, it is not transparent. It is
the Lagrange multiplier formulation that brings it out.

In Section D, we set out to develop an algorithm similar to the

one we developed in Chapter II. We outline a sufficient condition for

92

i
.
¥,
B
!
X
{

guaranteeing policy improvement (since, as before, maximizing the Lag-

rangian does not, per se, guarantee that). As before, it turns out that,
if in every state we disregard alternatives whose test quantities are

less than that of the current policy, the policy is guaranteed to improve
if PI changes it. We still retain the division into "free' and "coupled"
states, improving the free states by regular PI and the coupled states by
BB imposing the sufficient condition for improvement. Convergence of BB
to a given policy still means that that policy is optimum over the subset

of feasible policies that differ with it in exactly one coupled state.

TP NPT

In such cases, we make those policies infeasible and continue.

If the policy constraints do not make the best possible policy in-
feasible, then retaining the feature of maximizing test quantities in
each state still enables us to detect that policy without having to ex-
haust the feasible policy set. The convergence of the algorithm is also
proved .

In Section E, we apply the algorithm to the problem of Chapter II J

when the taxicab driver is not risk-indifferent.

B. Markov Decision Processes without Policy Constraints

! In Chapter II, the decision maker was assumed to be risk-indiffer-

ent, whence the basic premise was to maximize the expected value of out-

vrg e

1 comes. For a risk-sensitive decision maker, we have to maximize the ex-
pected value of the "utilities” of outcomes, where those "utilities" are

defined by the decision maker's "utility function." The latter encodes

his attitude towards risk if he subscribes to certain arguments regard-
ing risky propositions or "lotteries." An outcome having value v is

£ assigned a utility u(v), and the expected value of the utilities is

93

|
Ve,
: N
.z:’

Yo

i
1
...
H i
5 4
{
¢

called the utility of the lottery. An important concept in risk-sensi-

tive analysis is that of certain equivalent (CE). The CE of a lottery

is the value whose utility is the same as the utility of the lottery
u(v) = u(@) (3.1)

Thus, if we have a lottery whose utility is x, its certain equiv-

alent v is given by
v=u (x) (3.2)

where u-1 is the inverse of the utility function u.

We will restrict ourselves to dealing with a decision maker who
subscribes to what is known as the delta property. If all prizes in a
lottery are increased by the same amount /A, his certain equivalent
for the lottery increases by A. Such a decision maker possesses a
utility function which is either linear or exponential. The linear case

implies risk indifference, so we will work with exponential utility

functions
u(v) = ~(sgn 7) eV (3.3)
-1 1
u (x) = - — In [(-sgn) x] (3.4)
where < 1is the risk aversion coeffixcient. Risk averters have a posi-

tive v, while risk preferers have a negative 9. (sgn 7) denotes the

sign of 5. An important implication of the exponential utility func-

tion is the following:

94

u(v +4) = =(sgn v) e"',"(V-F-A.)
' o B A
i.e., = -(sgn) e A% - A 5.5 |
=y
e < ulv)

u(v +4)

Adding a constant A to all lottery prizes causes their utilities to be
multiplied by e-yA.

Now we are in a position to analyze the Markov Decision Process for
a decision maker possessing the A property, i.e., an exponential util-
ity function given by (3.3) and (3.4). As usual, we first consider the
limited time horizon and then let n tend to «. Given a certain policy
(i.e., a probability transition matrix and associated reward matrix), the
process will generate a total reward vi(n +1) if it is in state i and
is allowed to continue for n +1 transitions. This uncertain reward has
a certain equivalent ;i(n-+1). The CE is that amount the decision maker
would be willing to take for certain instead of receiving the uncertain

reward generated by the Markov process. It can be shown [6] that this

CE is given by

piju[rij + vj(n)] (3.6)

u(x? (n + 1)) =
i

Using the property given in (3.5), we can reduce (3.6) to

e

)
Il
=

G

- .
B | u<\7i(n + 1)) - S

b

—-yrij o
pij e u(v (n)) (3.7)

[
=

If we define the utility of being in state j, with n transitions

remaining, as u.,(n),

j

. -ﬁj(n)
uj(n) = u(vj(n)) = -(sgn 7) e (3.8)

95

i

H

1
¥
-
L]

s

{

E Then we can write (3.7) simply as

N -1
- pij e uj(n) (3.9) !

v N
ij

N

‘ u. (n +1) =
i i j

In the case of risk aversion (positive %), the term o T4} is ;
] the negative utility, or the "disutility," of the reward T The term
"disutility" will be retained regardless of the sign of 7. If we define

the "disutility contribution" of the transition from i to j as

E oy
} I T (3.10)

then we have a disutility contribution matrix Q with elements q s

J
which are nonnegative. In this case, (3.9) becomes
N«
u,(n +1) = ‘> q..u.() (3.11)
: -

E This is the recursive relation for computing successive utilities of the

process. To find the certain equivalents, we refer to the definition of

the utilities given by (3.8) and use (3.4) to get
a, () = - - In |-(sgn 7) u (n)] (3.12)
i Y i

ti l To see what happens when we allow the time horizon to be infinite,
we first write (3.11) in vector form. Defining U(n) as the vector

whose components are ui(n), we can write (3.11) as

Un +1) =Q - U(n)

96

i
H
$
e
!
s
{
!

E——

e

Y

EH
-

b

t

This gives
um) = Q" . U) (3.13)

If the Markov transition probability matrix P is irreducible and acy-
clic, then Q 1is irreducible and primitive.* In this case, it can be

shown that

lim Qn - UO) = 1lim <l£> U(n) =k - U (3.14)

n
n— oo n - o

A

where)\ is the largest eigenvalue of Q, and U is the corresponding
eigenvector with k chosen such that uN = -(sgn 7). Thus, for large n
the utility of any state is multiplied by A at each successive stage.

Equations (3.12) and (3.14) may be used to show [6] that the asymptotic

form of the certain equivalent can be written as

vi(n) =ng +v, +¢ (3.15)

where the "certain equivalent gain" g of the process is given by

g == =1nX (3.16)

*
A reducible matrix A 1is one for which a permutation exists to place

it in the form

where B and D are square matrices. Otherwise, A 1is irreducible.
An irreducible P is one in which all states communicate. A matrix A
is primitive if some power of A has all elements positive. A primi-~
tive P 1is called acyclic.

97

~

g 1is a property of the policy under consideration, and we will be seek-

ing that policy which maximizes it. To compute E for a given policy,

we divide (3.11) by A", let n-e, and then use (3.14) to get

N\
E: q,.u, = A\u 1= 1,2, iea, K (3.37)

(3.17) has to be solved for the largest eigenvalue A of Q, which
makes (3.17) of rank N-1, i.e., a redundant equation exists. This is
overcome by setting uN = -(sgn 7), which makes ;N =0 However,
choosing a value for uN is not completely arbitrary. That value has
to have the opposite sign of 5 (more about this in Section C). As soon
as we have A, (3.16) gives us E for the policy under consideration.
This phase of the algorithm is called policy evaluation (PE). We need a
policy improvement (PI) phase. As in the risk-indifferent case, test
quantities are defined, and improving the policy reduces to maximizing
the test quantities in each state. The utilities replace the relative

values, and the disutility contributions replace the probabilities. In

other words, we select an alternative k in each state i such that

N—«
k k
u, = max z: q, Ju. (3.18)
ksl,2,...,K, |§=1 "7

i

This is the equivalent of (2.57). The immediate expected rewards are
not explicitly present because they are included in the utilities. The
algorithm terminates when PI yields the same policy that we entered it

with.

98

e —— ‘ - e R ,

C. Markov Decision Processes with Policy Constraints

From the discussion of the previous section, we can view the risk
sensitive Markov Decision Process as follows.

Each policy P, made up of an alternative in each state, has asso-
ciated with it a disutility contribution matrix Q. The maximal eigen-
'y value %M of Q determines the certain equivalent gain of the policy
E = -1/7 1n %M. Thus, we are confronted with the task of selecting that

Q which yields the largest value of E. The sign of % (type of atti-

tude towards risk) determines our objective. For a risk prefering deci-
sion maker, 9 1is negative. Consequently, maximizing E is the same
as maximizing KM. For a risk averse decision maker, however, b is
positive, and it is the smallest %M which gives the largest E.

i We have thus ascertained that our objective function is XM, the
maximal eigenvalue of Q, whence our constraints are those defining the

M
eigenvalue problem that yields A . To gain more insight into this, we

reconsider the risk-indifferent case. If we write the constraints defin-
ing the limiting state probabilities I for a transition probability

matrix P in vector form, we get

I« P=1I (3.19)

It is then apparent that 1T is a "left eigenvector" of P (or eigen-

Sy e

l F l vector of its transpose) with a corresponding eigenvalue of unity. But

that eigenvalue is the maximal eigenvalue of P by virtue of it being a
stochastic matrix. This holds for any policy. Therefore, in the risk-
indifferent case, all maximal eigenvalues are unity. The corresponding

left eigenvectors then define the objective function through

99

R N Q.r e T TU
S5, LR

LERN

g B, S v ...Tg—. LA s PSRN 5 8
o .
- g =

In the risk-sensitive case, we deal with the Q matrices. Their
maximal eigenvalues differ and, solving the eigenvalue problem, yields
the objective function through the eigenvalue rather than the eigenvec-
tor. To get the constraints, then, we define a vector Z, with compo-
nents zi, as the left eigenvector of Q. Thus, Z is the counterpart

of T (more about that later), and it should satisfy

% +Q =X «Z (3.20)

(3.20) is the counterpart of (3.19), i.e., for a given policy. To take
alternative selection into account, we use the d: on the rows of Q,
as we did in the risk-indifferent case. We will first concentrate on
the risk prefering case, i.e., 7 < 0. Here, we are dealing with the

constrained maximization problem:

max XM (3.21)

subject to

-Nz,=0 Fu LB, viig K (3.22)

N & -1a0 i=1,2, ..., N (3.23)

100

Ly

DRI

'

IS

3 Fu4
: i.,’..

& 9

[

!

o]
>
o
R
S —
\
=]
=
]
—
b
=2
-~
=3
3
N
2}

(3.24)

M
where A is the largest positive number satisfying (3.22) and 81 and

82 are subsets of S = {(i,k)} the set of all (i,k) pairs defining
each alternative in each state.

The constraints (3.23) and (3.24) are those we previously encoun-
tered as (2.37) and (2.46). The constraints (3.22) are not linear,
whence there is no LP equivalent of (3.21) through (3.24). Consequently,
we cannot apply the LP result which guarantees that the d: will turn
out to have zero-unity values. Rather, when solving the problem, we will
restrict ourselves to those values. While other values satisfying (3.23)
might give larger values for KM, our objective function, we reject
them. The reason is that they represent "randomized strategies,”" a con-
cept which %s meaningless in our context.

As noted before, a set of dt describing a policy P determines a
disutility contribution matrix Q(P) and its associated left eigenvec-

tor Z defined by

ET QR w N . 8 (3.25)

For an irreducible primitive matrix Q, the components of the maximal
eigenvector all have the same sign. They are either all positive or
negative. (The transpose of an irreducible primitive matrix is also ir-
reducible and primitive.)

As in Chapter II, we first concentrate on (3.21) through (3.23),

i.e., unconstrained policies. We showed that the maximizer of the

101

constrained problem is a critical point of the corresponding Lagrangian.
Here, we have 2N Lagrange multipliers corresponding to (3.22) and
(3.23). The first N of those, associated with (3.22), we denote by

ul,uz,...,u The other N ones, we denote by Bi. Consequently, our |

N°
Lagrangian is

/. ’. K

N N i N N]
M = — -~ k .k M ~ -~ Kk
= - z - 3 .26 e
L=A +> § z, \ a;d; ~Nzy uj+\ By N d; -1 () |
- — Sl — fomg |
j=1 Li=1 k=1 1=1 i=1

To maximize our constrained function, we seek critical points of L. As
before, we only set certain partial derivatives to zero to evaluate a
policy, then we try to change the policy so as to maximize L (because
the values of the constrained function and L are identical whenever a
policy is evaluated).

Setting the partial derivatives of L w.r.t. the Zi and %M equal 1

to zero, we get

N Ki
oL N N S S |
. = - =0 = 1.9 .. r
3z Z u, g, 4y - Ny i) , N (3.27) ,
j=1 k=1
N
511;4:1_ zz'u'=° (3.28)
1 d}\ j=1 J J

' For a given policy P, the d: are all zero or unity with onlyone
d? equal unity in each state. Thus, in (3.27), the summation over k
reduces to one element for each i. This defines the Q(P) of the pol-
icy under consideration. Defining U as the vector whose components

are u (3.27) and (3.28) can be written as

i,

102

3
3
 §
i
1
s
|
|

R = o
B -

Wy (3.29)

o
~
)
~
-]
]

(3.30)

N
=
1}

=

Differentiating L w.r.t. the u and equating toc zero gives us the

i
original constraints (3.25)

zT - Q(p) = xM . zT (3.25)

The system (3.29) is the PE phase of the PE-PI algorithm. It is an
eigenvalue problem, whence the rank of the system is N-1., At this
point, there is nothing to indicate that setting uN to some particular
value has any significance. We know, however, that U, as well as Z,
has components which are either all positive or all negative. Equation
(3.30) tells us that Z and U have the same signs. This will become
significant in the PI phase. What concerns us here is the relationship
of the solutions of (3.25) and (3.29).

In matrix form, (3.29) can be written as

= M = = =
a1 A 44 sl e e 95 uy 0
M
dyq dyy = N % % e LT u, 0
M
i A1 dno I LRI ey A J uy 0
— - — J

This, as we noted earlier, is a system of rank N-1. If we set

uN = a, say, we get

103

- % -)\M —~ . — - T
911 92 B R R e, 1 9N
- \" u
921 922 il S 2 92N
= =a
q q - || u q
%N-1,1 N-1,2 N-1,8-1 = " | [N | L N-1,5

(3.31)

where we dropped the last equation. The resulting system can be written

as

A'H:V

where A is the matrix on the L.H.S. of (3.31), and V is the vector on
the R.H.S. U is the N-1 vector composed of the first N-1 compo~-

nents of U. Hence,

U = A Ly (3.32)

Now we write (3.25) in matrix form:

- AM = F A _b_
911 421 o S T N1 o |
M
a4 dyp = A R T Ay z, 0
M
q q e e e q - A z | 0

This being a system of rank N-1, we can set z_=Db, say, to get

104

R -.‘r—. PSSRSO
(.-“;, y 3 3

oy i g A

911 991 LIS IR B e, T 1 N1

-3 z
q12 q22 * & & & B ® @ qN—1,2 2 qu
- =
XM z

L % Gon ot vttt NN LN N, N1
(3.33)

Denoting the N -1 vector whose components are zl,...,zN_1 by Z
and the R.H.S. vector of (3.33) by W, we get
AT-§=W
where A 1is the same matrix as in (3.31). Thus,
T—l
z=(A - W (3.34)

And thus solving (3.32) implies that (3.34) is solved. All we need to
get Z, once we have U, is to transpose the inverse we already have

and multiply it by the transpose of the last row of A (and the value

of z_). This is significant for the case of policy constraints.

N

Now we interpret the Lagrange multipliers ui and the zi. The 2

plays here the role that the II plays in the risk insensitive case.

Note that the constraints defining the limiting state probabilities are

HT P HT
HT s 1=1
105

S———.

L

4.,,...,,,.,._“..4”

|

3

{

1

L 4T
e

L

$

-

where 1 is the vector whose components are all unity. That vector is

the eigenvector of P corresponding to 1II:

Moreover, the common eigenvalue is unity, the maximal eigenvalue for any
transition probability matrix P. Hence, (3.25) represents the '"equi-
librium of disutility contribution flows" in the limiting case, exactly
like the constraints on the limiting state probabilities did for the
probabilistic flows. The difference is that here the "outflow" is mul-
tiplied by %M, correspodning to the fact that, in the limit, utilities
are multiplied by %M every transition. The ui, being Lagrange mul-
tipliers, give us the cost of violating the constraints per unit of dis-
equilibrium just as the v's were in the risk-insensitive case.

Now we proceed to PI. Once we have evaluated a policy, we want to
improve it. We make maximizing the Lagrangian our objective (providing
the guarantee of improvement outside the Lagrangian framework, as be-

k
fore). To do that, we rewrite L to bring out the dependence on di'

Y, Y, Pk o om md X 2o
L = Z u q..d, + N = A zZ.u, + B, \> d, = 1
i j ij i JJ Ly Lz, *
i=1 j=1 k=1 j=1 i=1 k=1
N .
For the given policy JEI zju_i =1 (from (3.30)) and for any policy

2, d, =1, whence we only have to contend with the first term:
N N
N e N u. '\ ql; dlI (3.35)
Lt J L

106

ey

i A g

i
»
4
t
e
!
&
{
}

(3.35) is the inner product of two vectors. The first vector 2
is constant. The second is policy dependent. Once a policy P is se-

lected, it defines a vector T(P) of "test quantities"

N
tl,(= \ qk u (3.36)
i]‘;1 2 5 |

where th%' q& is the corresponding element of the Q selected by pol-

ij
2 k
icy P. The sign of ti is the same as that of VU, and hence also Z.
Thus, if Z and U are chosen positive (uN = =(sgn 7) because we are

dealing with the case 9 < 0), then, to maximize L, we have to select
that feasible T(P) with largest components. Otherwise, we would have

to select that one with the smallest components (if Z and U are neg-
ative). In other words, if the sign of uy is the same as that of 7,

the test quantity has to be minimized in order to maximize the Lagrang-

ian. We will assume hereafter that in PE we take u_ =z _ = -(sgn 7).

N N

In the absence of policy constraints, we can select

N
N X
=) 3 .37
ty max L, g%, ()
k=1,2,...,K, |j=1

Since the zi are nonnegative, this choice maximizes the Lagrangian,
and we have the PI phase of Section B. If we have policy constraints,
however, such a policy might not be feasible. In this case, we have to

consider (3.35) as a whole. In essence, we redefine the components of

T to be
N,
t, = 2 \\ qk u (3.38)
i 1 & "1
107

Sogre

T

i
:
1
i
§
) :
£ 4
!
;

where the policy P determines the alternative in each state
P(i) =k

The Lagrangian then becomes merely the sum of the components of
T(P). Here, the original test quantities have been weighted by the cor-

responding z the variables controlling the equilibrium of disutility

i’
contribution flows. Whereas, in the risk-insensitive case, weighting
test quantities by the limiting state probabilities was intuitive (the
process spends ﬂi of the time in state i, on the average), this
weighting cannot be intuitively derived in the risk-sensitive case. Z
encodes the limiting behavior from both the probabilistic and risk at-
titude aspects.

Note that, if the test quantities are defined by (3.38), i.e., we
multiply by zi, then, when maximizing the Lagrangian, we do not have
to worry about the signs of Z and U. They cancel out. Thus, in the

absence of policy constraints, we can set u_ = (sgn 7) = -1 but take

N
care to multiply the test quantities by -1 before maximizing in each

state. This is just another way of saying that u has to be positive

N
when v 1is negative.

In other words, (3.29) is not really a '"free" eigenvalue problem,
in the sense that we are not free to choose any value for one of the
ui. The values have to be of different sign than 9 in the absence of
policy constraints in order to implement the PI of Section B as is.
Otherwise, the test quantity has to be minimized. It is the realization
that PI is maximization of the Lagrangian which led us to detect this

dependence on sign 7. As mentioned, this dependence can be removed if

the test quantities are multiplied by the Z - Since this is what we

108

paveys

P
H
{

do when policy constraints are present, we need not worry about signs.

We will select Ty = Uy = -(sgn 7) for consistency. (Either Z or U

has then to be normalized to satisfy (3.30).) For constrained policies,
we maximize the Lagrangian by BB as before. That BB does maximize the

Lagrangian has already been proved. The proof still applies because the
Lagrangian was only assumed to be the sum of the components of T(P)

(which it still is) without any dependence on how those components were

obtained.

For the case of risk aversion, positive), we previously mentioned
that we need to minimize KM in order to maximize E. In this case, our
constrained problem is the same as (3.21) through (3.24), except that
(3.21) is replaced by min %M. What applies to constrained maximization
applies to constrained minimization, as far as the Lagrange multiplier
rule is concerned.

Thus, the minimizer of the constrained problem is still a critical
point of the Lagrangian. Hence, the PE phase is the same. When we get
down to PI, however, we would like to select P so as to minimize the
Lagrangian, In the absence of policy constraints, setting uN:=-(sgn j)
makes U and Z both negative. Thus, to minimize the inner product,
the variable vector composed of test quantities has to be maximized (be-
cause it will be multiplied by a negative vector, and we want tominimize
the result). Hence, setting uN = =(sgn ¥) in the unconstrained poli-
cies case, and then maximizing the resultant test quantities, actually
minimizes the Lagrangian. This is what is really sought here. For con-
strained policies, we merely minimize the Lagrangian without worrying

about signs, because we multiply the test quantities by zi. A better

109

LIS

g

v

i

| 23
i
H

&

s

approach would be to take the sign of % into consideration, explicitly.
This could be done by redefining the test quantities as
N,
£ = ~(sgn) z, 2 o (3.39)
j=1
For a risk preferrer (y < 0), this reduces to (3.38), whence all the
previous applies. For 9 >0, (3.39) effectively multiplies the Lagran-
gian by -1. In other words, the Lagrangian defined by (3.39) is the neg-
ative of that defined by (3.38). Since we want to minimize the latter,
we can maximize the former. Consequently, PI becomes maximization, ir-
respective of the sign of 7 if we define the test quantities by (3.39).
To summarize then, setting uN = -(sgn) makes PI maximize test
quantities in the absence of policy constraints. While this involves
dependence on the sign of 9, it automatically takes into account the
fact in one case we want to maximize L and in the other minimize it.
When policy constraints are present, we have to explicitly take the sign
of v into account by defining the test quantities as in (3.39), whence

we always maximize L in the PI.

D. Development and Convergence of the Algorithm

As in Chapter I1I, the maximization of L does not, per se, guaran-
tee an improvement in E. We have to provide that guarantee outside the
Lagrangian framework. We will introduce a sufficient condition for im-
proving E, based on a condition derived by Howard and Matheson [6]. If
we have a policy A, then the test quantity corresponding to the alter-

native selected by any other policy B in state i 1is defined as

110

aadll

i i 56 i

Proposition 3.1.

~A

policy B, a sufficient condition for EB > is

A (B,A) >0 1@ 1.2, wiey K

with inequality holding for at least one state 1i.

Proof.

We note that since E -1/y 1n A\, where A\

versa.

An important result from matrix theory is that,

WXy s e

ative irreducible matrix with maximal eigenvalue X\
{ with positive components xi, then
H N N
! \ qy X \ q, .X
i fop 13 & W
¥, min = < N £ max -
;. ' i i i - |
i g+ 111
s 2
{
}

AN B A
t,(B) = -(sgn 7) z; L 324
j=1
A A :
where A and uj are the values obtained by the PE for policy A.
will define Ai's analogous to the 71'
1 by
A
A, (B,A) = t.(B) - t,(A)
i i i
where the ti are defined by (3.40).

value of Q, then we need to prove that XB > XA for

(3.40)

We

s of the risk-indifferent case

(3.41)

Given a policy A for which PE has been performed and any other

(3.42)

is the maximal eigen-

< 0 and vice

if Q 1is a nonneg-

and x is a vector

(3.43)

with equality holding if and only if x is an eigenvector of Q.

Now we consider the implications of (3.42). By virtue of (3.41),

we can write

t.(B) > t. (A)
i = i

with inequality holding in at least one state. Using (3.40), this re-

duces to

N 3,
A B A A A A
-(sgn 7) zi :: qi,u. > -(sgn 7) Zi 21 qi.u.
& 18 & 1

Since, from PE, zi and 7y have different signs, the product
-(sgn 7) zi is always positive, and we can divide both sides of the
inequality by that quantity without reversing its sense. Also from PE,

U is an eigenvector of QA, whence
o s > Wt (3.44)

with inequality holding in at least one state i. If U is also an

eigenvector of QB, (3.44) reduces to

for some i

N ——— ———

If U is not an eigenvector of QB, we consider < < 0 first, then

For 7 <O, uj > 0, and (3.44) can be rewritten as

$ @
=1 J A

(]

u

Since this holds for all i, then it is certainly true that

N B
min ‘\ e B > XA
— A -
1 J=1 ui

Applying (3.43) to the L.H.S. of this inequality, noting that U

B
is not an eigenvector of Q , we get

B A

A

For 7 > 0, u, < 0 and (3.44) can be rewritten as

S b))

[

Hence,

~b
1}v4z
=
Q
He W
.
uF>
>

Since this holds for all i, it is certainly true that

i

i

@
E !

&

{
)

S &kt
J=1 o A

max ——————— < A

Applying (3.43) to the L.H.S. with U not an eigenvector of QB gives

r 2B

4 We thus have a sufficient condition for improving g. The forego-

ing proposition states, in effect, that "improving" the test quantity,

~

as defined by (3.40), in at least one state suffices to improve g.

Thus, when we enter BB, we will discard alternatives for which Ai < 0.
If BB yields a policy different to the one we entered with, it is auto-

matically an improvement. Otherwise, the policy on which BB converges

maximizes E over the set of feasible policies that differ with it in
exactly one "coupled" state.

The previous proposition also guarantees that if, for a policy A,
f each test quantity is maximum in its state, then policy A is optimum.

The proof is identical, except that equality is allowed to hold in all

states. Finally, to get an initial feasible policy, we maximize

N
-(sgn 7) jz over the feasible policy set by BB. Thus, the algo-

1 %
rithm can be schematically represented in Figure 3.1.
The convergence proof is identical to that of Chapter II. If we

exit the algorithm at E2, that policy is the overall optimum. No policy

Sogre

’ can have a better E. (This is the policy PE-PI would converge to. In
other words, the policy constraints have not altered the optimum policy.)
If we exit the algorithm at E3, then any feasible policy has become

infeasible by virtue of (2.71) type constraints. This means that it be-

longs to a subset over which we maximized E, whence it cannot have a
LSy better E than the one we obtained.

114

i

§

’

i
Bi <
fy.
Bi
B

$

3

Set g" = ~»; get ' No feasible policies;
initial feasible policy . | problem is infeasible |
_ -4

4 {

E1
\

Perform PI for given
policy 1i; «call it A

\

Maximize test quantities ’
~<%—— to get feasible policy ——
B # A

B = A; this is the
overall optimum policy

E2

B infeasible; enter BB
with A to maximize L
over 'coupled states"
e— with /y >0, maximize
test quantities over
"free states'" to get
Lﬁpolicy B #A

i
B =A; if g@) >g*,
set A as optimum, and
g¥ = g(A); add (3.3) No feasible policies
-=%— type constraint, and —= remain; we have an
enter BB to maximize L optimum policy

over 'coupled states,"
A unrestricted in sign E3

Fig. 3.1. ALGORITHM FOR RISK-SENSITIVE CASE.

E. The Example

We will solve the same example we solved in Chapter II, introducing
a risk averse coefficient 7 = 0.01. We rewrite the original policy

constraints (2.72) and (2.73) as

d, -d, =0 (3.45)

115

2 ; <1 (3.46)

N

To get an initial feasible policy, we enter BB to maximize -1;1 qij

over the feasible policy set. The BB tree:

T,y = —(0.923,0.852,0.933) Py, = (1,1,1)

Performing PE for the feasible policy (1,1,1) results in: |

State Ordered Test Quantities
; 1 t: = -0.362 t? = -0.369 t° = -0.380 |
i
‘ 2 tg Ziéiffgg;;; t; = -0.181 |
3 t§ = -0.367 t; = -0.369 tg = 0,381
A= (1,1,1) g(A) = 9.19

Regular PI gives (1,2,2), an infeasible policy. Maximizing the free |

state gives P(3) = 2, and the BB tree is:

01

N .

Tyy = -(0.362,0.173)

e)
]

01 1,2

T,, = -(0.362,0.181) P

11 a,n

116

.11 A A b1 6 50 A I e IR AT € . e 1 A T 44 5 el A N e AN VMl A . e Bk B

Thus, we get po.icy B = (1,1,2), different to the one we started with.

Performing PE for (1,1,2) gives: 4
State Ordered Test Quantities
1 2 3
= -0.357 = =0. = =03
1 t, §§§>6///1;1 36t t, 74
. ; - NS
3 2 i - -0.273\\ el = —o.2u6

2 2
2 1

3 tS = -0.268 t3 = -0.,269 t, = -0.,278
A= (1,1,2) g(A) = 9.34

Regular PE yields (1,2,2) which violates (3.45), i.e., is infeas-
ible. Hence, we maximize in 3 to get P(3) = 2, and we enter BB with

;’L\i _>_0, i.e., E

State Ordered Test Quantities

[o=Y

4

[\

The BB tree is:

v -
./—
‘/\

=
]

-(0.357,0.273) Pos

01 a8

11 -(0.357,0.286) P11 = (1,1)

117

i

k..

E 02 T = =
i

LN

r s e

i
!
k3
_{

Thus, we get policy (1,1,2), the same one we entered with. Hence,

our optimum policy Po and E* so far are
P = (1,1,2) g¥ =9.34

We add the constraint

And we enter BB with no restrictions on /&, il.e.,

State Ordered Test Quantities
i 1 2 3
I t1 tl tl
2 1
2 t2 t2

The BB tree is:

~

o
)

\

—

&)

—
]

-(0.357,0.273) P

|
~
[
0o
~

01 oL

-3
]

-(0.374,0.273) P

]
—~

w
-

N
~

131 11

Hence, we have a policy (3,2,2) for which we perform PE:

(3.47)

S

B
R ST

.

o

.

SERy SR pea———.

State Ordered Test Quantities

j tl = =0.091 ti = ~0,096 tl = =0.099

2 tz = =0.656 t; = ~0,756

e s e e
A= ,2,2) g(A) = 12.40

Regular PE yields an infeasible policy. Thus, we maximize in 3 and

enter BB with:

State Ordered Test Quantities

The BB tree:

3
Il

-(0.091,0.656) P (2,2)

01 01

-(0.099,0.656)

8]
I

= (3,2)

=
I

11 X

And we got (3,2,2) the policy we entered with. Since its g is

greater than E*, we update:

119

”FW.‘WNWT_W..,.-..-.H,
S ————

We add the constraint |

3 2 ‘
d1 + d2 <0 (3.48) i
!
And we enter BB with: |
f !
State Ordered Test Quantities
2 p 4 3
| 1 t t1 t1 .
)
2 t2 t2
The BB tree: {
i
g 1
(01
; T01 = -(0.091,0.656) P01 = (2,2)
{; i No feasible policy exists in the tree, i.e., the problem has become
infeasible. Thus, our optimum policy and E are
{ ~%
' po = (3,2,2) g = 12.40
-
| & ‘ This is the same optimum policy as in “hapter II, the risk-indifferent
_ case. Thus, a small risk-aversion coefficient of 0.01 does not change
ii the optimum policy. The negligible effect of such a small coefficient
; may also be detected by rezarding the risk premium, the difference be-
L
‘;'~ tween expected value and expected utility decision making:
& 120
4 5
!

g* - g% =12.774 - 12.40 = 0.374

This, however, is not our concern here. Our main objective is to have

i e

an algorithm which works for both risk-indifferent and risk-sensitive

cases. This objective has been achieved.

i, e el

S e

e gy

121

{

l—'
A2
!

&

{

!

PRECEDING PAGE BLANK.NOT FILVMED

g g e e

Chapter 1V

SENSITIVITY OF OPTIMAL POLICY TO CONSTRAINTS

In this chapter, we investigate the effect of policy constraints on
the optimal policy and how much a rational decision maker would be wil-
ling to pay in order to remove one or more constraints.

Our point of departure is the absence of policy constraints. In
this case, no policy can yield a higher gain (or certainequivalent gain)
than the policy Po arrived at by Howard's VD-PI (or PE-PI) algorithm.
When policy constraints are introduced, policy Po might, or might not,
become infeasible. If the set of policy constraints does not make Po
infeasible, it is still the optimal policy, and the constraints are
merely a red herring. In other words, we can tell the decision maker
that, in this case, his concern about policy constraints is much ado
about nothing. We define such an optimal policy as a "constraint-indif-
ferent" optimal policy, and all constraints are worthless, in the sense
that the decision maker has nothing to gain by removing any of them.
Moreover, we do not have to solve the problem in the absence of policy
constraints to detect constraint-indifference. The algorithm we devel-
oped has the ability to detect that, as we showed in the convergence
proofs. If we exit the algorithm from E2, we have a constraint-indiffer-
ent optimal policy. The distinguishing feature of the E2 exit is that,
for the selected policy, each alternative maximizes the test quantity
in its state. Therefore, any other policy results in nonpositive 71,
whence the gain cannot increase.

If we exit the algorithm from E3, we have what we define as a '"con-

straint-sensitive" optimal policy. Here, the policy having the highest

123

T ———

possible gain is infeasible. The constraints have affected the optimal
policy. If we look at the table of ordered test quantities for the last
iteration, there will be at least one state in which the selected alter-
native does not maximize the test quantity (otherwise, we would have ex-
ited from E2). For such states, the only thing that prevented BB from
maximizing the test quantities, is the feasibility. Thus, it might be
worthwhile to pay for removing some constraints. There is, however, a
subset of constraints (possibly the null set) which do not affect the
optimal policy and can be determined from the final (i.e., last itera-
tion) table of ordered test quantities. Assume that the coupled states
are numbered 1,2,...,M <N, and that the alternatives selected by the
optimal policy in those states are a,b,c,...,m, respectively.

We start by listing the table of ordered test quantities for the
coupled states of the optimal policy. Without 1loss of generality, we
have renumbered the alternatives in each state according to the descend-

ing order of their test quantities.

§£3£g Ordered Test Quantities
1 ti tf...ti ..tll(l'
| T B e T
;
2 M tnla t;...t; ..t:M

The line we have drawn through the table is the 1line representing the

restriction 71 > 0. No alternatives to the right of this 1line are

124

g b, L o -.T.—- B L T
v, e
4 y

e

i
i
t
4
¥ iy
§
!
&
}

considered in BB. Our claim is that, if the d: involved in a con- :
straint are all to the right of that line, the optimal policy is not
affected by that constraint. This is due to the fact that only 74 >0
can yield a better policy, and all such policies (to the left of the
line) are infeasible (otherwise, we would have converged to the best).

Finally, the alternatives selected by the optimal policy in the

coupled states are given by
P(1) = a P(2) =b, ..., P(M) =m

Each policy constraint Cp(d?) <0 (or =0) involves d: such

that i ¢ {1,2,...,M}. Now consider the subset of constraints

¢ {cp(d‘i‘) e p(i)}

Then C 1is composed of constraints which do not affect the optimal

policy, i.e., if they are discarded, the solution would not change.
The proof is simple. If a constraint involves d? such that k>P(i)
for all i, then the extra feasible policies resulting from discarding
that constraint have negative 7i's (to the right of the line), whence
their gain is inferior to the policy we already obtained. Consequently,
the algorithm would not converge to any of them. It would still con-
verge to the same optimal policy.

Thus, when the algorithm terminates, we can immediately determine
whether or not there are worthless constraints. If we exit from E2, we
have a constraint-indifferent optimal policy. If we exit from E3, we
can look at the table of ordered test quantities and detect those con-

straints that the decision maker need not have concerned himself with.

125

e

i
!
H
G
!
&
{
!

T ———

Aot e

T 2 A

At this point, he should not be willing to pay for removing anyof them;
he would not gain anything. As for the remainder of the constraints,
some of them might also be worthless, but some of them definitively are
not. To discover the worth of any single constraint, we can remove it
and solve the problem again, starting with the optimal policy as our
initial feasible policy. This we do for the taxicab example in the

risk-indifferent case. There, our policy constraints were

1 1
- =0 -
d1 d2) (4.1)
2 2
4
d;, +d, <1 (4.2)

We converged to policy P0 = (3,2,2) and gain g = 12.77.

State Ordered Test Quantities

1 t2 = 1.04 tl -

0.58 t

fuy
=
]
[u
Il
o
\&
-

Here, we have drawn the 7i 2= 0 1line and the constraints. Neither
constraint involves d: which are all to the right of that line. Thus,
we do not have, as yet, any worthless constraints. Let us see what

happens if we discard (4.1). This means that the union drop the re-

striction of using its facilities but still allows only one taxi-cab

126

»

i

Y

{
¥
I

3

H

{

;

stand to be used. Our initial feasible solution is (3,2,2). We note
that no improvement can be made in the free state, and maximizing over
the coupled ones results in the infeasible policy (2,2,2). Hence, we
enter BB with the next table. (We shuffled the states around to have
the one with least alternatives as the first component. This reduces

the BB computations.)

State Ordered Test Quantities
" 2
2 t2
2 1 3
1
t1 t1 t1

The BB tree is:

To1
£ 3
V(TS
Ty = (1.04,20.69) Py, = (2,2)
T,, = (0.58,20.69) P, =(1,2)

Hence, we move to (1,2,2), a feasible policy different to the

one we entered with. Performing VD gives us

Bt ool

State Ordered Test Quantities

1 ti = 1.47 ti = 1.12 ti = 0.59

2 tg = 20.48 t; = 11.08

; ti = 1.2- o -ti ; -0.84 i -tg ; 0.22
P=(1,2,2) g = 13.15

No improvement is possible via maximizing test quantities, so we enter

BB with
State Ordered Test Quantities
2
2 t2
2 1
1 t1 tl

The BB tree is identical to the previous one, i.e., we converge to

(1,2,2). Therefore, we introduce the constraint

and we set our optimal policy so far as

P = (1,2,2) g¥ = 13.15

State Ordered Test Quantities

e

4
H
3
T
1%
1
4
{
I

PRS0 N 070 PR R SRS i A 0 SN S 2T 00

TOl
*

The BB tree is given:

T,, = (1.47,20.48) Py, = (2,2)
Tyq = (1.47,11.08) Pl1 = (2,1)
The VD for (2,1,2) gives
State Ordered Test Quantities
1 t; = 2.44 tf = 2.05 ti =1.29
2 t2 = 8.87 t; = 6.61
Bl e
P = (2,1,2) g = 8.81
No improvement is possible, so we enter BB with
State Ordered Test Quantities
2 £ i
\
) g e
129

The BB tree is:
T01
s
T11
'
T01 = (2.44,8.87) pO]_ = (1,2)
1
T11 = (2.05,6.61) pll = (2,1)

And we have converged to (2,1,2). Since g < g*, our previous optimal

policy is still optimal so far. We introduce the constraint
di + d; <0 4.4)
and enter BB with
State Ordered Test Quantities
: g2k g

e
=N
w

The BB tree is:

P
e
|| "gil’

§
1 — o
: T,, = (2.44,8.87) P, = (1,2)
& 3 »
tﬁ& 130

i Tt

The only node in the tree is infeasible, and no branching is possi-
ble, i.e., an infeasible problem. Thus, we have exhausted the set of
feasible policies and exited from E3. Our necessarily constraint-sensi-

tive optimal policy is
P=4{1,2,2) g = 13.15

The difference in gains between this optimal policy and that in the

presence of (4.1) is

Agl = 13.15 - 12.77 = 0.38

Therefore, it is not worth more than 0.38 units per transition for
the taxi-cab driver to try removing (4.1). For instance, if there were
a proposition in the union for raising the dues in return for abolishing
the rule that forces a member to use union facilities, he should not vote 1

for it if the increase in dues averages more than 0.38 per trip. Other-

wise, he votes for the proposition. He stands to gain by changing his

optimal policy under the new rules of the game. Note that there still
k; is a more gainful policy if (4.2) were also discarded (the constraint-
indifferent policy; here, it would be constraint-indifferent by default
because there would be no constraints). We know about the existence of
that policy from the fact that we did not exit from E2.

We could discard (4.2) and start with the policy (1,2,2) to get
the optimal one, thus computing how much that constraint is worth in the
absence of (4.1). A more interesting thing happens, however, if we re-
tain (4.1) and discard (4.2). In other words, if, after solving the

problem in the presence of both (4.1) and (4.2) we want to know how much

131

5
H
b !
¥ »
i
¢
&
z
!

(4.2) is worth, we would start with policy (3,2,2) and only (4.1) as a

constraint. We repeat the policy's table here.

i §Eg£g Ordered Test Quantities 1
E .
1 ti = 1.04 ti ='0.58 ti = 0.31
.I
4 2 ti = 20.69 t; = 9.09
| S e Ao e
P = (3,2,2) g = 12,77

Here, no improvement can be made in the free state, but we can maximize

over the coupled states to get:

§£3£2 Ordered Test Quantities
| 1 ti = 0.82 ti = 0.71 ti = 037
ll
2 tg = 22.29 t; = 13.21
3 t§ = 1.01 t; = 0j75 -t§ = 0.33-
P = (2,2,2) g = 13.34

b2 |
i' f Here, the test quantities are all maximum in their states under this

policy, and we exit from E2. Hence, (2,2,2) 1is the best policy he can

ever implement. It is also constraint-indifferent. In other words, it

"

i B, _l.‘-‘-vr L R
vy .
L7

is only the rule that only one union taxicab stand can be used that need

concern him. Its value is

132

P Sy _l.n-..-.T—- B
-l S

fg, = 13.34 - 12.77 = 0.57

Note, however, that, in the absence of constraint (4.1), constraint

(4.2) is worth

Ags = 13.34 - 13.15 = 0.19

This is arrived at by the fact that, in the absence of (4.1), we
converged to a gain of 13.15. Had we then discarded (4.2) and started
with the then optimal policy (1,2,2), we would have converged to
(2,2,2). The values naturally turn out to be additive. (Otherwise, we
would have a ''money pump" situation). In other words, a constraint does
not usually have a value independent of other constraints. There could
be, however, a constraint (or group of constraints) that renders the
others worthless. In our example, constraint (4.2) was such a constraint.
If that constraint representing the one-stand-only rule were removed,
the other constraint is worthless. To achieve that, a value of 0.57 per
transition is an upper bound. If only (4.1) were removed at a cost of
0.38 per transition, then removing (4.2) would be worth 0.19. Thus, to
get the constraint-indifferent optimal policy, our friend could do one
of two things. He could expend up to 0.38 per transition to remove the
use-the~union-facilities rule and up to 0.19 per transition to remove
the one~stand-only rule for a total of 0.57 per transition. Alterna-~
tively, he could expend up to 0.57 per transition to remove the one-
stand-only rule and not bother about the first rule. In either case,
there is an (identical) upper bound on how much he should be willing to

pay to achieve that constraint-indifferent optimal policy.

133

e e e T S S S ————— - ,'.‘

-

In general, it is not that simple to discover combinations that
4 achieve the constraint-indifferent optimal policy. The fact is, how-
ever, that no matter how it can be achieved, there is a unique upper
! bound on the value of doing so, namely the difference in gain between
the constraint-indifferent optimal policy and the constraint-sensitive é

optimal policy given by the algorithm when all constraints are taken

into consideration. If the decision maker is interested in the afore-
mentioned upper bound, we could start discarding constraints, one at a
time, and solving the problem starting with the latest constraint-sen-
sitive optimal policy as an initial feasible policy until we eventually
get the constraint-indifferent optimal policy. We can give him two
‘ things here. First, the breakdown of the upper bound between con-
straints. Secondly, we tell him that, no matter what, the constraint-
indifferent optimal policy is the best he can ever hope to achieve for
the given problem.
If the decision maker is interested only in specific consfraints,
E or groups thereof, we can compute the worth of such constraints by the
afore mentioned technique; it being understood that the worth we compute
of specific constraints is subject to the presence of the remainder of
the constraints.

The problem of determining specifically which constraint, or group

o

B | of constraints, render the rest worthless (i.e., discarding themresults

E. in a constraint-indifferent optimal policy), or even the minimal such

| group, is an essentially combinatorial problem worthy of research.

134

i
g ¥
HEE
'
&
{

Chapter V

MODIFICATIONS FOR PROBLEMS WITH A LARGE NUMBER OF STATES

A, Introduction

As explained earlier, for a constraint-sensitive optimal, we have
to exhaust the feasible policy set. That set becomes very large as the
¢ number of states increases. At the same time, the rate at which it is
exhausted is slow. This we discuss in further detail in Section B. In
Section C, we introduce the idea of partitions, i.e., dividing the cou-
pled states into groups which have no intergroup couplings. We show how
partitioning increases the rate of exhausting the feasible policy set,
discuss the problems introduced by partitioning, and how to overcome
them. 1In Section D, we elaborate on how to deal with transient states
if we have a single trapping state (whence all policies have the same
gain). 1In Section E, we discuss a modification which might further
speed up the algorithm. Finally, in Section F, we introduce various
constraints to Howard's baseball problem [4] and give the computational

results.

B. Of Dimensions and Exhaustion

As the "dimension" of the problem, i.e., the number of states in-
} , creases, the number of policies increases multiplicatively. This is
‘ because the latter is given by 121 Ki' Thus, adding one state with 3
alternatives, say, increases the number of policies by a multiplicative

factor of 3. While it is true that the constraints eliminate some of

these policies, we can still consider that, in general, we have a fairly

135

" {
:
.Z

large number of feasible policies to consider. In the case of a con-

straint-sensitive optimal policy, we have to exhaust the feasible policy
set (exit E3 in the algorithm). As we have seen, whenever branch and |
bound converges on a policy, that policy maximizes the gain over the
subset of policies differing with it in exactly one coupled state. That
subset is discarded, and exhaustion occurs when the union of such sub-
sets covers the feasible policy set. Now, if we consider the number of
policies in any one of the afore-mentioned subsets, we find that it is
given by i§ Ki -N+1. (Here, we assume, for illustrative purposes,

=1

that all the N states are coupled.) Of this number of policies, some

might already be infeasible, either due to the original constraints or
type (2.71) constraints. Hence, the exhaustion process is, at best, ad-
ditive in nature; whereas the set to be exhausted has a size whose na-
ture is multiplicative. In other words, the feasible set is being ex-
hausted at too slow a rate. It thus appears that, in the absence of
additional structural properties, the computational cost of the algo-

rithm would be prohibitive for problems with a large number of states.

€. Of Partitions

For practical problems with a large number of states, it might very

well turn out that the coupled states can be divided into groups having

eTe

I no inter-group coupling of alternatives. (We will later give examples.)

1

Those groups we term "partitions.”" We thus define a partition as a group

of coupled states in which no alternative in any state appears in a con-

——reIwR

straint involving alternatives in any state not in the partition. For-

—

”

mally: Let the m o constraint (Cm) be defined by the set of ordered

pairs (i,k) referring to the d?'s involved in the constraint, i.e.,

4 136

|
:{_

c, = {[il(m),kl(m)], Ty [iz(m),kg(m)]}

2 2
e.g., for d1 + d; + d5 >1,

c = {(1,2),(,1),(5,2))

Let the rth partition be defined by its constituent states:
P = {il(r), e oy iN(r)}
Then our definition becomes

iep <> {(i,k) €C =>1i_(m) €P V[i.(m),k.(m)] EC }
r m 3 r J 3 m

We have thus characterized the states further. First, we divide them

into free and coupled states. Then the coupled states are further de- ,
composed into partitions (whence a partition may be regarded as a 'gen-

eralized free state'). The advantage of partitioning is explained by

the following proposition.

=

| Proposition 5.1.

Let the maximization of the Lagrangian over the set of feasible

>0 yield a policy P for which all 7, =20

policies subject to 3

i
(i.e., branch and bound converged to P). Then P maximizes the gain
over the set of all feasible policies that differ with P in at most

one state in each partition.

137

e

g e, S -.r—» B
.y
’,

Proof.

let P' be a feasible policy differing with P in at most one

state in each partition. First, recall that

N
g(P') - g(P) = /g = Ei ni(P') 74 (2.66)

i=1

Now consider each partition. If P' is identical with P throughout
a partition, then 7i = 0 for all states in that partition. If P’
differs with P 1in exactly one state in a partition, then 7i <0 for
that state. (Otherwise, the Lagrangian could have been improved, and
that did not happen.) As for the free state, 71 = 0. (The alterna-
tives there maximize the test quantities.) Therefore, 7i = 0 for all
states, whence /g <0 and P cannot be inferior, in gain, to P'.

The importance of the previous result is that, with partitions, the
rate of exhausting the feasible set is greatly enhanced. The number of
policies in a subset discarded by a policy P has a rough estimate of
rgl [iégpr Ki —N} +1], where R is the number of partitions and Nr
is the number of states in partition Pr. Actually, the previous esti-
mate is on the high side because we have to subtract from it those com-
binations that cause a change in more than one partition. However, that
estimate serves to illustrate the fact that the rate of exhaustion is
better than additive, a definite improvement on the case where no par-
titions exist. This contention has been borne out in the computational
results.

The introduction of partitions complicates matters slightly. First,

we have the problem of additional (2.71) type constraints, to impleme it

138

i
’
?
{

discarding subsets over which we maximize the gain. We could add a con-
straint for each partition. In this case, however, we would have to

consider combinations of them to detect whether or not a given policy

belongs to a discarded set. This problem is resolved by applying the

result of the proposition directly without resort to formal constraints
of type (2.71). Every time branch and bound converges to a policy; that
policy is retained in lieu of a constraint. Then, given any policy, it
is compared to the retained policies. If the given policy differs with
a retained policy by, at most, one alternative in each partition, that
given policy belongs to a set over which we have maximized. It is ig-
nored, i.e., considered infeasible.

The second problem that arises is how to detect that the set of
feasible policies has been exhausted. Whenever BB converges to a nec-
essarily feasible policy P, we enter BB with no restriction on 74
for each partition in turn, all other partitions being held constant
(i.e., no change in alternatives). If BB finds the problem infeasible
for one partition, this does not imply exhaustion. Only if all parti-
tions yield an infeasible problem, is the feasible policy set exhausted.
We have, however, to prove this assertion.

Assume that for policy P, all partitions yield an infeasible
problem. Assume that there exists a feasible policy P' whose gain is
greater than the optimum obtained so far. This implies that P' does
not belong to any set over which we have maximized the gain. This, in
turn, implies that for each retained policy R, there exists at least
one partition in which R and P' differ in more than one state. This,

of course, applies to P. Now consider P'. There exists a partition

139

Yo e

i
'
|
13
p
{
)

Pi and a retained policy Rl such that P' and R1 differ in more

than one state in Pi' (Otherwise, P' would belong to a discarded

set.) Now consider a policy L1 which 1is identical to R1 in all

states except those in Pi and identical to P' in Pi' L1 differs

with R in more than one state in P whence it does not belong to

1 .

the set discarded by R But BB did not yield us Ll'

1°
Therefore, there must exist a retained policy R2 defining a dis-

carded set to which L belongs. 1In partition Pi, L and R and

1 1 27

therefore P' and R differ in at most one state. Thus, there ex-

2’
ists a partition Pj in which P' and R2 differ in more than one

state. Now consider policy L2 identical to R2 in all partitions

except Pj and identical to P' in Pj' Thus, L2 and P' are iden-
tical partitions Pi and Pj' BB did not yield this policy, whence it

belongs to a discarded set defined by a retained policy R Continuing

3
in this manner, we finally form P' and find that it belongs to a sub-

set over which we have maximized, whence its gain cannot exceed that

already obtained. Thus, we have exhausted the feasible policy set.

D. Of Trapping States

In some problems, such as Howard's baseball example, there is one
trapping state, whence all others are transient. In this case, all pol-
icies have the same gain. Howard shows, however, that his VD-PI algo-
rithm improves the relative values every iteration [4]. Since we have

retained Howard's sufficient condition > U, this still applies.

7 =
However, when we have a constraint-sensitive optimal, we are maximizing

over subsets. Whenever we detect such a maximum, we compare its gain

140

R N o Ny e

T

- oy

”

St O, !«-‘--Tw
s

with the current optimum. If the gains are equal, as they are here, we
need a criterion for selecting an optimum. We adopt the criterion de-

veloped by Nesbitt [10] for such cases, where ?Zl Bivi is optimized,

Bi's being the given initial state probabilities. This maximizes the

asymptotic expected reward.

E. Of Speeding Up the Algorithm

As mentioned earlier, a computationally burdensome approach to the
constrained Markov Decision Processes problem would be to obtain the
unconstrained optimum by Howard's VD-PI algorithm, then proceed back-
wards in the policy ordering, checking feasibility. Our algorithm at-
tacks the problem directly by only considering feasible policies and
exhausting the feasible policy set. We can also obtain constraint-
indifferent optimum without having to exhaust the set. A moddle-of-
the-ground approach would be to obtain the unconstrained optimum by
VD-PI, then start our algorithm from there. The initial feasible policy
is obtained by branch and bound with no restrictions on 7i’ from the
table of test quantities rather than from the q?- While we still would
have to exhaust the feasible policy set for a constraint sensitive op-
timum, we have a better chance of starting at a policy having a high
gain. While it is true that we perform extra VD's in the beginning, it

is hoped that this will be offset by performing less BB iterations later on.

F. Baseball Example and Computational Results

All the above considerations were applied to Howard's baseball ex-

ample [4] with constraints imposed on the policies, the constraints

it ot niatd oA . — - . S L I D A - - ¢ et e

being various bright ideas imposed on the manager by the club's eccentric
owner.

Table 5.1 gives the results for a simple constraint:

4 1 2
J d2 + d3 <1 (5.1)
] This yields a constraint-indifferent optimal policy. Another simple con-

straint yields the results given in Table 5.2:

d, + d; <1 (5.2)

In both cases, we have only one partition.

Encouraged by the results his team achieves, the owner wants to try
new ideas. The manager knows better but wants to keep his job, so he
compromises. They agree that, irrespective of how many men are out, the
owner's ideas are to be carried out only if there is a man on third base

and the bases are not loaded. With no one out, the owner wants a hit

decision in at least 2 of the 3 possible situations. Likewise, with one
man out and two men out. This translates immediately to the following

constraints:

(5.3)

(5.4)

(5.5)

Table 5.1

BASEBALL PROBLEM
(Transient--One Constraint)

[Number of policy constraints =1
| . 10
{ Number of feasible policies = 2.2 x 10
Number of iterations = 2
Optimal gain = 00
Optimal policy type = constraint-indifferent
State Decision Value vi
il Hit 0.81
2 Hit 1.24
3 Hit 1.32
4 Hit 1.88
5 Hit 1.56
6 Hit 2.07]
7 Hit 2.16 3
8 Hit 2.73]
9 Hit 0.45]
10 Hit 0.77
11 Hit 0.87
12 Hit 1.23
13 Hit 1.10
14 Hit 1.44
15 Hit 1.53
16 Hit 1.95
17 Hit 0.17
18 Hit , 0.33 ,
19 Hit | 0.39 '
20 Hit | 0.58
21 Hit 0.50
22 Hit 0.67
23 Hit 0.73
24 Hit 0.98 1
25 Trapped 0.0

143

)
Table 5.2
BASEBALL PROBLEM
(Transient--One Constraint)
Number of policy constraints =1
E . 10
] Number of feasible policies = 2.2 X 10
Number of iterations =5
Optimal gain = 0.0
Optimal policy type = constraint-sensitive
1
State Decision l Value vi
1 Hit 0.78
2 Hit 1.24
3 Bunt 1.01
4 Hit 1.88
5 Hit 1.53
6 Hit 2.06
7 Hit 2.14
8 Hit 2,73
9 Hit 0.45
10 Hit 0.77
11 Hit 0.87
E 12 Hit : 1.23
o i 13 Hit 1.10
' ; 14 Hit 1.44
' 15 Hit 1.53
16 Hit : 1.95
, 17 Hit 1 0.17 !
18 Hit 0.33 I
5 19 Hit 0.39
- 20 Hit 0.58
E ‘ 21 Hit 0.50
. 22 Hit 0.67
23 Hit 0.73
24 Hit 0.98
25 Trapped 0.0

[

-r—' B e, dhee s TEE SR
- p
» i

144

1
!
8
{
!

LRI

i
4

1

4

L R0
RV
'

&

3

That is not the whole story, however. The owner has additional bright
ideas. If the manager decides to hit with a man on first base, then he

has to hit with a man on second. The corresponding constraints are:

dé + di <4 (5.6)
dé + d?, <1 (5.7)
d14 + dis = | (5.8)
dh + dis < 1 (5.9)
d;z + dzs L (5.10)
déz + dza =3 (5.11)

Finally, the manager cannot decide to hit with a man on second base un-

less he decides the same with one on first and second. This translates

into:
dz + d; = 1 (5.12)
dg + d1 < p | (5.13)
2 1
d13 + d15 < 1 (5.14)
3 h S
d13 + d15 < 1 (5.15)
2 1
d21 + d23 < 1 (5.16)
3 1
d21 + d23 < 1 (5.17)
145

Constraints (5.3) through (5.17) decompose into three natural partitions
corresponding to how many men are out. Table 5.3 gives the results under
these conditions. Note that the optimal is constraint-indifferent. In

other words, all the fuss the owner made is really irrelevant. The man-
ager does exactly what he would have done without any interference from

the owner. However, neither of them realizes that, and the team contin-
ues to win, which makes the owner come up with even more ideas. The man-
ager salvages freedom of action only if the bases are loaded or nobody

is on. 1In addition to the previous, the owner imposes restrictions when-
ever nobody is on third. He wants the decision to be a steal in at least

two of every three possible situations. This leads to:

d, +dy +d, >2 (5.18)
3 3 3 ;
d10 td g dl2 >2 (5.19)
3 3
d + d3 +d . >2 (5.20)

Moreover, if he decides to steal second with one man on, he cannot hit

or bunt (i.e., must steal third) with two men on:

dg + d; < 1 (5.21)
dg + di <1 (5.22)
dio + d12 < ! (5.23)
dio + di2 < 1 (5.24)

146

Table 5.3

BASEBALL PROBLEM
(Transient--Fifteen Constraints)

15

Number of policy constraints
Number of feasible policies = 3.4 X 107
Number of iterations =2

Optimal gain = 0.0

constraint-indifferent

Optimal policy type

State Decision Value vi
3
1 Hit 0.81 i
2 Hit 1.24
3 Hit 1.32
1 4 Hit 1.88
4 5 Hit 1.56
6 Hit 2.07
7 Hit 2.16
8 Hit 2,73
9 Hit 0.45
10 Hit 0.77
11 Hit 0.87
12 Hit 1..23
13 Hit 1.10
14 Hit 1.44
15 Hit 1.53
‘ 16 Hit 1,85
= 17 Hit 0.17
3 18 Hit 0.33
2 | 19 Hit 0.39
. l 20 Hit 0.58
iﬂ 21 Hit 0.50
22 Hit 0.67
i 23 Hit 0.73
L 24 Hit 0.98
i 25 Trapped 0.0
' J
L 3BT
E ‘55; }
: ks | 147
& 2
b {
%

——

Lo B, S

r- B, et SEE T
fa i

.

dig o, <1 (5.25)
3 2
dig +dgy <1 (5.26)

With less than two men out, he cannot decide to steal with two men on if

he decides to hit or bunt with a man on second:

di +dy <1 (5.27)
d§ + dz = & (5.28)
dal, +do, <1 (5.29)
dil + diz <3 (5.30)

With two men out, the rule changes to not steal with two men on if hit

or bunt with a man on first:

1 3

d18 + d20 S 1 (5.31)
2 3

d18 + d20 <1 (5.32)

Table 5.4 gives the results of the problem subject to constraints (5.3)
through (5.32).

In all the previous, we retained the original structure of the prob-
lem, namely a single trapping state (state 25, three men out). To select
among policies, we used an initial state probability distribution 61 =1,
B, =0 for i # 1. This means always starting in state 1 (no men out,

i
no men on). The same problems were run with 81 = 1/24 (equally likely

148

DR

Table 5.4

BASEBALL PROBLEM
(Transient--Thirty Constraints)

Number of policy constraints

Number of feasible policies =

Number of iterations
Optimal gain

Optimal policy type

30

4.6 X 104
2

0.0

constraint-sensitive

State Decision Value vi

1 Hit 0.62

2 Hit 0.93

3 Steal 3 0.87

4 Steal 3 1.20

5 Hit 1.39

6 Hit 1.83

7 Hit 2,01

8 Hit 2.60

9 Hit 0.35
10 Hit 0.56
11 Steal 3 0.57
12 Steal 3 0.75
13 Hit 1.01
14 Hit 1,32
15 Hit 1.47
16 Hit 1.89
17 Hit 0.12
18 Steal 2 0.17
19 Hit 0.35
20 Steal 3 0.31
21 Hit 0.47
22 Hit 0.63
23 Hit 0.72 |
24 Hit 0.98 ‘
25 Trapped 0.0

149

ey e

to start anywhere), and the results were identical. To test the algo-

rithm on a problem with many states that are recurrent, we changed the
P1j of the trapping state. We made state 25 return to state 1 (i.e.,
a new inning) with probability 1. Tables 5.5, 5.6, and 5.7 give the
results of the recurrent problems subject to constraints (5.2), (5.3)
through (5.17), and (5.3) through (5.32), respectively. Finally, we ran
the algorithm in the manner described in Section E for both the recur-
rent and transient baseball problems, and a slight improvement in exe-
cution time was noticed. Tables 5.8 and 5.9 give the results of the
two problems, respectively.

The computational results obtained indicate to us that we have a

computationally efficient algorithm for Markov Decision Processes with

constraints when the number of states is large.

150

Table 5.5

BASEBALL PROBLEM
(Recurrent--One Constraint)

Number of pclicy constraints =1

Number of feasible policies = 2.2 X 1010
Number of iterations =4

Optimal gain = 0.1373

]

Optimal policy type constraint-sensitive

State Decision Value vi
E
1 Hit 0.13
2 Hit 0.62
3 | Bunt 0.45
4 i Hit 1.26 i
5 | Hit 0.91
6 | Hit 1.44
7 | Hit 1.52
8 Hit 2.11
9 Hit 0.01
10 Hit 0.35
11 Hit 0.43
12 , Hit 0.81 |
13 i Hit 0.68 |
14 Hit 1.02 ;
15 Hit 1.11 |
16 i Hit 1.53 |
17 Hit -0.05 '
‘ 18 Hit 0.11
3 19 Hit 0.17
> | 20 Hit 0.36
21 Hit 0.27
: l 22 | Hit 0.45 .
- 23 \ Hit 0.51
24 Hit 0.76
25 New Inning 0.0

i
»
; .
g 5
‘ng 151 !

[N

Table 5.6

BASEBALL PROBLEM
(Recurrent--Fifteen Constraints)

Number of policy constraints

Number of feasible policies =

Number of iterations
Optimal gain

Optimal policy type

15

3.4 X 107
2

0.1406

constraint-indifferent

State Decision Value vi
1 Hit 0.14
2 Hit 0.61
3 Hit 0.68
4 Hit 1.24
5 Hit 0.91
6 Hit 1.43
7 Hit 1.52
8 Hit 2.09
9 Hit 0.001

10 Hit 0.34
11 Hit 0.42
12 Hit 0.80
13 Hit 0.67
14 Hit 1.01
15 Hit 1.10
16 Hit 1.32
17 Hit ~-0.06
18 Hit 0.10
19 Hit 0.16
20 Hit 0.35
21 Hit 0.27
22 Hit 0.44
23 Hit 0.50
24 Hit 0.75
25 New Inning 0.0

152

Serpr et

Table 5.7

BASEBALL PROBLEM
(Recurrent--Thirty Constraints)

30

Number of policy constraints

4
Number of feasible policies = 4.6 X 10

Number of iterations =2

Optimal gain 0.1017

Optimal policy type

constraint-sensitive

State Decision Value v
1 Hit
2 Hit
3 Steal 3
4 Steal 3
5 Hit
6 Hit
7 Hit
8 Hit
9 Hit
10 Hit
11 Steal 3
12 Steal 3
13 Hit
14 Hit
15 Hit
16 Hit
17 Hit
18 Steal 2
19 Hit
20 Steal 3
21 Hit
22 Hit
23 Hit
24 Hit
25 New Inning

0.10
0.42
0.31
0.64
0.89
1.33
1.52
2.11

-0.004

0.21
0.18
0.34
0.68
0.98
1.14
1.57

-0.05
-0.03

0.18
0.10
0.29
0.45
0.55
0.81
0.0

153

Table 5.8

SPEEDING UP THE ALGORITHM--BASEBALL PROBLEM
(Recurrent--Thirty Constraints)

g Number of policy constraints = 30
!
; Number of feasible policies = 4.6 X 104 ‘
Number of iterations =3
Optimal gain = 0.1017
Optimal policy type = constraint-sensitive
State Decision Value vi
1 Hit 0.10
2 Hit 0.42
: 3 Steal 3 0.31
4 Steal 3 0.64
5 Hit .89
6 Hit 1.33
7 Hit 1.52
8 Hit 2,11
9 Hit -0.004
10 Hit 0.21
11 Steal 3 0.18
12 Steal 3 0.34
13 Hit 0.68
14 Hit 0.98
15 Hit 1.14
16 Hit 1.57
17 Hit -0.05
18 Steal 2 -0.03
s 19 Hit 0.18
3 20 Steal 3 0.10
; 21 Hit 0.29
; 22 Hit 0.45
23 Hit 0.55
24 Hit 0.81
25 New Inning 0.0

Table 5.9

SPEEDING UP THE ALGORITHM~-BASEBALL PROBLEM
(Transient--Thirty Constraints)

Number of policy constraints

Number of feasible policies =

Number of iterations
Optimal gain

Optimal policy type

constraint-sensitive

State Decision Value vi
1 Hit 0.62
2 Hit 0.93
3 Steal 3 0.87
4 Steal 3 1.20
5 Hit 1.39
6 Hit 1.83
Tr Hit 2,01
8 Hit 2.60
9 Hit 0.35

10 Hit 0.56
11 Steal 3 0.57
12 Steal 3 0.75
13 Hit 1.01
14 Hit 1.32
15 Hit 1.47
16 Hit 1.89
17 Hit 0.12
18 Steal 2 0.17
19 Hit 0.35
20 Steal 3 0.31
21 Hit 0.47
22 Hit 0.63
23 Hit 0.72
24 Hit 0.98
25 Trapped 0.0

e

.

;’:’
&
i

e —

PRECEDING PAGK HLANK

L —— = o

Chapter VI

CONCLUSION: AND SUGGESTIONS FOR FUTURE RESEARCH

An important limitation of the Markov Decision Process as a model

for practical problems has been overcome. The ability to deal with

policy constraints extends the applicability of the model, as we saw

in the taxicab and baseball examples. Although the policy constraints

there were immediately translated into algebraic form, we also have the

ability to express complicated constraints via the algebra of events.

We showed, however, that the resultant constraints might not be of the

simplest form possible. An area worthy of future research would be to
try and devise a procedure which yields simple algebraic expressions.
The algorithm we developed could be used to order the policies accord-
ing to gain by successively making the optimal policy infeasible. This
would involve more computational effort than Nesbitt's [10] procedure.
However, it orders risk-sensitive policies for which no method for or-
dering has yet been devised. An interesting research would be to seek
a unified approach to both the ordering and the policy constraint prob-

lems.

As we pointed out, the values of the constraints are interdependent. To
discover which constraints, or group of constraints, are responsible for
constraint-sensitivity of the optimal policy, it seems fruitless to try
using our algorithm repeatedly in an effort to exhaust all possible con~-
straint combinations. The mere bookkeeping required is mind-boggling.

Investigating the structural interaction between the coupled states dur-

ing maximization of the Lagrangian would probably be a better approach.

Another area worthy of further research is sensitivity analysis.

157

g4 ¢
i

10.

V e

REFERENCES

H. Everett, III, "Generalized Lagrange Multiplier Method for Solving
Problems of Optimum Allocation of Resources," Operations Research,
Vol. 11, No. 3, May-June 1963, pp. 101-111.

W. C. Healy, Jr., "Multiple Choice Programming," Operations Research,
Vol. 12, 1964, pp. 122-138.

F. S. Hillier and G. J. Liebermann, Introduction to Operations Re-
search, Holdenday, San Francisco, 1967.

R. A. Howard, Dynamic Programming and Markov Processes, The M.I.T.
Press, Cambridge, 1960. -

R. A. Howard, Dynamic Probabilistic Systems, 2 volumes, Wiley, New
York, 1971.

R. A. Howard and J. E. Matheson, "Risk Sensitive Markov Decision
Processes, Management Science, Vol. 18, No. 7, March 1972, pp.
356-369.

E. L. Lawler and D. E. Wood, "Branch~-and-Bound Methods: A Survey,"
Operations Research, Vol. 14, 1966, pp. 669-719.

D. G. Luenberger, Introduction to Linear and Non-Linear Programming,
Addison-Wesley, Reading, Mass., 1973.

Mine and Osaki, Markovian Decision Processes, American Elsevier
Publishing Co., New York, 1970.

D. M. Nesbitt, "Policy Ordering in Semi-Markov Decision Processes,"
Ph.D. Dissertation, Engineering-Economic Systems Department, Stan-
ford University, March 1975.

159

WING ACHE B AN NIV TP T aerevs

DISTRIBUTION LIST

Director (2 copies)

Advanced Research Projects
Agency

Attention: Program Management

1400 Wilson Boulevard

Arlington, VA 22209

Administrator, Defense
Documentation Center

(12 copies)

Attention: DDT-TC

Cameron Station

Alexandria, VA 22314

Office of Naval Research
(3 copies)

Attention: Code 455

800 North Quincy Street
Arlington, VA 22217

Defense Contract Administrative
Services Management Area

Attention: Mr. K. Gerasim

300 Joppa Road

Towson, MD 21204

Director (6 copies)

Naval Research Laboratory
Attention: Code 2627
Washington, DC 20375

Director (6 copies)

Naval Research Laboratory
Attention: Code 2629
Washington, DC 20375

REE——

-~ ——

At 0 00 NI 15 85 gL NN &35y 2 S5

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER
['{EES-DA-76-—3
“JaTITLE (and Subtitte) YPE OF-RERORT.A PERIOD COVERED
F,/ fMarkov Decision Processes with Policy Technical /\{" - “
s Constraints"y /f[_ PERFORMING ORG. REPORT NUMBER
e b, EES DA-T6-3 e
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
/, John Nafeh - ’, - .7.57030_011‘3_ - P J
{1 - / { A
Pl 1 ‘ ¥
= SRA ¥, T, TASK -
9. PERFORMING ORGANIZATION NAME AND ADDRESS PROCALM ELEMEN' m.ls!;:s
The Board of Trustees of the Leland Stanford
Junior University, c/o Office of Research Admin-
istrator, Encina Hall, Stanford, California 94305
11. CONTROLLING OFFICE NAME AND ADDRESS 13 DATE
Advanced Research Projects Agency, Human Re- April 1976 —
sources Research Off@cg, Arlingtqn, Va. 22209 TS —NUWBER OF PAGES ——
(Sub-contract of Decisions & Designs, Inc., 170 /" jl '7
- eLean, Vo oolod) "rm"_‘?‘,%r_—‘;——
T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 15. SECURITY CLASS.
Engineering Psychology Programs, Code LS55 Unclassified
Office of Naval Research
s 3 15a. DECLASSIFICATION DOWNGRADING
800 No. Quincy Street, Arlington, Va. 2217 SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
‘#
Approved for public release; distribution unlimited.
: 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
; 18. SUPPLEMENTARY NOTES
! 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
H OPTIMAL POLICY RISK-SENSITIVE CONSTRAINT-INDIFFERENT
>
! l‘ RISK-INDIFFERENT POLICY CONSTRAINTS CONSTRAINT-SENSITIVE
NABSTRACT (Continue on reverse side if necessary and identify by block number)
;L This work is concerned with Markov Decision Processes with policy constraints.
i : The selection of an optimum stationary peclicy for such processes, in the
& absence of policy constraints, is a problem which has received a great deal
A of attention, and has been satisfactorily solved. Relatively little >
§ Fe attention has been given to the efse when policy constraints are presenv—= el [|
L (continued) , -
‘:. e ; — ¢
Bl i FORM
, i EDITION OF | NOV 651S OBSOLETE - ,
i * 5 DD . jan'7s 1473 UNCLASSIFIED ‘r—",’/
| I SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) \‘
i 161
I 4

e e e - ro—

B T A AT A B B T ————

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block 20 (Continued)

> or to the formulation of such constraints. Optimum policy sensitivity
analysis is also a subject in which little has been achieved.

Towards those ends, this work makes three major contributions. First,
policy constraints are formulated and categorized. Secondly, a
computationally efficient iterative algorithm is developed for select-
ing the optimum policy for completely ergodic, infinite time horizon
Markov Decision Processes with policy constraints for both the risk-
indifferent and risk-sensitive cases. Finally, the sensitivity of
optimum policies to the policy constraints is analyzed by using the
algorithm to compute the value of removing a constraint or a group of
constraints.

g

r B R e S
w¥y

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

162

e e T

