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SECTION I

INTRODUCTION

The objective of this study was to investigate large mode volume
hole.coupled optical resonators for high power laser applications. The
work program was divided into six tasks with the following primary ob-
jectives.

Task 1 — To determine the usefulness of hole coupled resonators a
computer program was to be developed to calculate and plot the eigen-
values, the internal resonator fields, the far-field pattern of the
output beam, and the sensitivity of length misadjustment. Two specified
hole-coupled resonators were to be analyzed.

Task 2 - A computer program was to be created to opcinize the figure
of laser resonator mirrors such that the dominant resonator mode would
be the best fit, in a least squares sense to a desired, user specified,
mode. The test case would be a uniform amplitude and uniform phase
distribution over a circular aperture at the output plane of the resonator.
Once the mirror figures were found, the resonator was to be analyzed
using the tools developed in Task 1.

Task 3 - A study was to be made to determine the ratio of annular
to hole output coupling required to achteve good azimuthal mode discrim-
ination in a designated resonator configuration.

Task 4 = A study similar to that of Task 3 was to be conducted for a
resonator with holes in both mirrors.

Task 5 - An investigation was to be made of the possibility of using
conformal mapping techniques to transform circular geometries to rectan-
gular geometries where the resonator eigenmode calculations could be

expedited using the fast Fourier transform.

i i




Task 6 -~ The field fitting program of Task 2 was to be improved

and applied to various "desired" mode shapes while noting the effects

o s

on the azimuthal mode discrimination properties of the associated resonators.
The results of Tasks 1 through 5 are presented in Sections II

through VI, respectively. Since the results of Task 6 primarily yielded

improvements in the results of Task 2, they are included in Section III. ]
The capabilities of two computer programs developed during the i

4 contract period are described in Sections II and III. Details related

to the calculation methods used in the programs are contained in é

appendixes A and B.




SECTION II
TASK 1 - RESULTS

A. General Information

A computer program has been developed and used to analyze the eigen-
modes of several hole-coupled resonators. The program can compute and
plot: 1) the eigenvalues versus the outer resonator Fresnel number, 2)
the internal resonmator fields (magnitude and phase), and 3) the far-field
patterns of circular cylinderical resonators having mirrors of arbitrary
radial figure in the Freanel approximation.

The method of calculation used in the program is similar to that

described by Siegman and Miller in their article on the Prony method [1]%,
but with appropriate modifications to accommodate arbitrary radial mirror
figures. To dispense with the problem of the '"spurious" eigenvalues
which they described, the Prony calculation itself is iterated to insure
converged (or non-converged) solutions. The initial vector for each
Prony calculation after the first one is taken as the sum of the nor-
malized eigenvectors computed during the previous calculation. In cases
where convergence is not achieved after a specified number of iterations,
those eigenvalues and eigenfunctions are discarded. More specific details
concerning the method of calculation and computer programming are contained
in Appendix A.

Two hole-coupled resonators were identified by the Air Force project
officer [2] as test cases for analysis using the computer program. The
mirror profiles of these two resonators, designated HUR and HUR CC' are
depicted in Figure 1. The other two resonators shown in the same figure

are considered '"negative branch" versions of the first two. These four

resonators are confocal versions of a more general class of resonators

*Numbers in brackets indicate references.

3
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in which the mirrors are conic sections with arbitrary off-axis spherical

, curvature. These are "confocal” but not in the usual sense because the

E mirrors have focal rings rather than focal points. The radii of the

focal rings are designated D; and D) for mirrors 1 and 2, respectively.

* Both mirrors have an outer radius of A. Mirror 2 has a central output
aperture, or hole, of radius H. A magnification M = A/(A-H) is asso-~
ciated with the first two resonators, and a negative nngnificafion

M = A/(H-A) is associated with the "negative branch" configuratioms.

The computer program was used to plot the radial mode eigenvalues
versus the outer resonator Fresnel number N = AZI(BA) (B-mirror separa-
tion, A-wavelength) for various magnifications and azimuthal mode indices
£ (where azimuthal variation of the form exp (+ j%¢) has been assumed).
The program was also used to plot the internal resonator fields and the
far-field patterns for various Fresnel numbers. Representative plots

3 are shown and discussed in the following subsections.

B. Analysis of Resonator 1 - HUR

Figures 2 through 6 show the eigenvalue plots for resonator 1 of
Figure 1 for magnifications M = vZ, 5/3, 2, 3, and 8, respectively. The
eigenvalues intertwine in a slightly more complicated fashion than those
of the conventional unstable resonator (e.g., see reference 1). An even
more significant difference between the mode of this resonator and a conven-
tional unstable resonator is that only for very small Fresnel numbers
(N=1) is the 2=0 mode dominant. (The dominant mode at a gived Fresnel
number is the mode with the largest eigenvalue magnitude |y| or lowest
losses 1 - lylz.) For example, in comparing parts a, b, ¢, and d of Figure
2 for M = /E; the 2=0, 1, 2, and 3 azimuthal modes are dominant within
the approximate Fresnel number ranges 0-1.5, 1.5-5.5, 5.5-9.5, and 9.5-?,

respectively.
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Figure 7 shows the radial eigenmode of field plots for the lowest
order azimuthal mode =0, for M=2 and N=6. The eigenvalues for the three
radial modes can be found in Figure 4a at N=6. Figure 7a shows the
amplitude and phase of the three lowest loss radial modes in a plane
just after being reflected from mirror 1. Probably the most strikiag
feature is the rather sharp magnitude peak at the center of the mirror
(relative radial coordinate equal to zero). The phase of the lowest loss
radial mode decreases approximately 90° from the center of the mirror to
the outer edge (relative radial coordinate equal unity). The phase of the
next lowest loss mode on the other hand increases to approxinntely_90°
near the outer edge but then decreases to near zero at the edge. The
phase profile of the third lowest loss mode has even more variation.

Figure 7b shows the same fields except plotted in a plane just
incident on mirror 2. At this magnification the radius of the hole in
mirror 2 is one half the outer mirror radius. Since the fraction of
the field in the hole relative to that on the mirror increases for the
higher order radial modes it is easy to understand that the higher order
modes have more losses. Both the magnitude and the phase of the lowest
loss radial mode are fairly uniform-in the output hole which results
in the near "ideal" far-field beam profile shown in Figure 7c. For
comparison, the_far-field pattern corresponding to uniform illumination
of the hole with the same power as in the lowest order radial mode for
2=0 is also shown. Finally the integrated far-fie}d intensity associated
with the two far-field plots of Figure 7c are shogn in Figure 7d. Out to
the half-power beam width, the two plots are virtually identical. The

fact that there is slightly more power within a given beam angle larger
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than the beam width for the non-uniformally illuminated aperture relative
to the uniforqlllybilluninated aperture is probably not too significant,
since the power is reduced there.

Figures 8,9, and 10 show the fields for the same conditions as
Figure 7 for the azimuthal mode indices £ = 1, 2, and 3. For these
higher order azimuthal modes, the field is zero on the axis. Also, it
can be seen that the fields tend to "move" radially outward for increasing
azimuthal mode index. In comparing the field magnitude profiles at
mirror 2 for the 2=0 and 2£=3 dominant radial modes (Figure 7b and 10b),
it is understandable that the 2=3 mode has less loss than the 2=0
mode since there is relatively little field in the hole for the £=3 mode.

For all the magnifications considered, the 2=0 modes were dominant
only at very small Fresnel numbers. Increasing the size of the hole
from zero apparently increases the losses more rapidly for the 2£=0 mode
than the higher order azimuthal modes. Thus, to obtain any significant
power output from this type resonator in the 2=0 mode will require that
some method be devised which would discriminate against the higher order

azimuthal modes.

C. Analysis of Resonator 2 - HUR CC

Figure 11 shows the eigenvalues for the four lowest order azimuthal
modes for resonator 2 of Figure 1 with Mfz. Only for Fresnel numbers less
than 0.5 is the =0 mode dominant. The computer program has considerable
difficulties in achieving converged solutions for Fresnel :umbers greater
than N=6. A clue to the difficulty can be obtained by examining the
complex field structure for the 2=0 and %=1 modes in Figures 12 and 13

at N=4, The large number of grid points required to delineate these
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"interference" patterns makes the calculations at Fresnel numbers larger
than about N=6 prohibitively expensive. Even if the =0 were dominant

at reasonably large Fresnel numbers, this resonator would be objectionable
because of the poor far-field performance as seen in Figure 12d. From
these and other calculations it has been concluded that this resomator

configuration would not provide a high quality output beam.

D. Analysis of Resonators 3 and 4

Even though resonators 3 and 4 were not specifically designated
for analysis, some preliminary calculations were made to determine their
potential for use as hole-coupled resonators. Figures 14, 15, and 16
show the eigenvalues calculated for resonator 3 of Figure 1 for magni-
fications M= -1, -2, and -3. These plots are interesting in that the
radial mode eigenvalues do not cross as has been the case for all pre-
viously examined stable and unstable resonators. Another interesting
and potentially more important aspect of these graphs is that the azimuthal
mode eigenvalues tend to become degenerate as the Fresnel number increases.
Thus only minimal azimuthal mode discrimination should be required to
achieve 2=0 mode operation. Hence if the theory of reference [3] about
the role of mode volume with regard to mode discrimination by an active
medium is correct, then the =0 mode could be the dominant mode when the
resonator contains a saturable gain medium since the 2=0 mode is the only
mode that does not have zero amplitude on axis.

The excellent radial mode discrimination and the possibility that
2=0 mode may be favored because of its mode volume make resonator 3 the
most promising hole-coupled resonator investigated to date. In addition

to continued theoretical analysis, an experimental study of this type of

resonator should be conducted.
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A few calculations of the eigenvalues of resonator 4 (not shown)
revealed that the higher order azimuthal modes have 1owcr.; losses than
the 2=0 mode. 'l'herefor.e no further analysis of this configuration seems
worthwhile, since we are primarily interested in only those resonators

where the £=0 mode would be dominant.

E. Sensitivity to Length Misadjustment

One method to determine the sensitivity of the eigenmode character-
istics to length misadjustment would be to calculate the eigenmodes for
different distances between the mirrors with all other parameters fixed.
A second method is to note that changing the ruoutc;r length a small
amount, to first order, just changes the resonator Fresnel number. Hence,
to determine for example the sensitivity of the eigenvalue magnitude
|Y| to mirror separation B, one would compute

SBM'T%l' g'l';l’Ty!T Agl

where the A signifies a small change in the respective parameter. Note

g

since the Fresnel number N is inversely proportional to B. Thus

L ' R LA
Ml B .. ol o PR
S8 * TWT aW N, W, -

vhere (from the eigenvalue graphs) IYll and IYZI are the eigenvalue
magnitudes at Fresnel numbers Nl and Nz corresponding to the mirror
separations B and B + AB, respectively. In a similar manner other sen-

sitivities related to Fresnel number changes can be computed.
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SECTION III

SR At e

RESULTS OF TASKS 2 AND 6

A. Introduction

A computer program has been developed which calculates the resonator

! mirror figures to obtain an optimum fit in a least squares sense to a

specified, or desired, radial eigenmode amplitude and phase profile.
A description of the calculation technique used in the computer program
is given in Appendix B. The program was to be tested by noting how well
it performed in trying to achieve: 1) a maximum mode volume, 2) uniform | §

amplitude and phase in the output of a hole-coupled resonator, and 3)

maximum far-field on-axis intensity. Tests conducted during work on

Task 2 indicated that the program perforqed satisfactorily except when
the resonator had little mode discrimination. Later while working om i
Task 6, the Prony method of calculating the fields, which was used in
Task 1, was incorporated into the program, and the program's performance
improved significantly. The test cases were repeated, and better fits

to the desired fields were obtained. These latter tests results are

e £ B Y BB A A O

described in the following subsections, along with some additional test
results obtained during Task 6.

Before resulgs are described, the main limitation of this approach
to designing resonators should be mentioned. The program calculates the

mirror curvatures, or figure, for an optimum fit of the lowest loss radial

mode of a particular azimuthal mode index to ghz desired mode profile.
In all the test cases,'the 2£=0 mode indcx.was used. After the "optimum"
resonator had been found, it was analyzed using the tools of Task 1. 1In
almost all cases, a higher order azimuthal mode_was found to have fewer
losses than the =0 mode for which the resonator was designed. To

assure that the resonator is dccigned for the lowest loss radial and
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azimuthal mode, the one dimensional radial field propagator would
have to be replaced with a full mirror propagator. Neither time
nor sufficient computer funds were available to make this important
modification.

B. Maximum Mode Volume

In an attempt to achieve a maximum mode volume, the program was
given the task of trying to achieve a uniform field magnitude over the
entire output plane of the hole-coupled resonator shown in Figure 17.
Maximizing the field in one "plane" does not guarantee a maximum mode
"volume", but the program is currently structured to fit fields in only
one plane. Since the least squares minimization procedure finds a
local minimum for the mean square error, it is best that the initial
resonator configuration be one in which the fields are already close to
the desired fields.

The beginning and ending resonator configurations aloang with the
eigenvalues for the two lowegt order radial and four lowest order azimuthal
modes indices (m=0,1 and 2=0,1,2,3) are shown in Figure 17a. Figure 17b
shows the desired, beginning, and ending field on the output mirror
(2) for 2 = 0. Note that the ending field magnitude is a very good fit
to the desired field but that the eigenvalue for this mode (lym!-o.sss)
is not the largest eigenvalue. For reference purposes the associated
fields on the other mirror (1) are shown in Figure l7c.

It appears that the ending field on mirror 1 has less mode "volume"
than the beginning field, but the situation is somewhat distorted by the
central peak since the fields are normalized by peak amplitudes rather
than average intensity as would be required for a fair mode volume com-

parison. Apparently the uniform fill on mirror 2 was obtained somewhat
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[ at the expense of the fill on mirror 1. The far-field beam patterns of

: Figure 17d were calculated for the fields in the output aperture not-;lizcd
] to the same power level in the aperture. The relative peak values given
are measured relative to the uniformly illuminated (uniform amplitude and
phase) aperture field. The plot symbol + for the uniformly illuminated case
3 is somewhat obscurad by the plot symbol O used for the initial field.

: In any event, the far-field pattern of the beginning resonator is better

than that of the ending resonator.

In an attempt to improve the far-field pattern while maintaining a
maximum mode "volume", an additional constraint was imposed on the desired
field: that its phase be uniform in the output aperture. The beginning
(same as previous case) and ending resonator mirror configurations are
shown in Figure 18a. The desired, beginning, and ending fields on mirror
2 are shown in Figure 18b. The final field magnitude, as might be

expected, is not as good a £it to the desired magnitude due to the

additional constraint on the phase of the field in the aperture. The
phase fit in the aperture is good and results in an almost ideal far-field

pattern as shown in Figure 18d. Again, for reference purposes the be-

ke b

gioning and ending fields on mirror 1 are shown (Figure 18c). The
| ending field "fills" the mirror very well except for the small region

near the axis.

c. Uniform.uhgni;ude and Phase in the Output Hole

A test of the computer program was made in an attempt to achieve
uniform magnitude and phase in the output aperture of a hole-coupled
resonator. The initial resonator configuratioﬁ was chosen as that of

the HUR described in Task 1 (resonator 1 of Figure 1). The beginning "
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and ending mirror profiles are depicted in Figure 19a. Note that even
though mirror 2 was initially convex with respect to the interior of J
the resonator, it ended as concave. m':uma for the beginning and
ending resonators at mirror 1, at mirror 2, and in the far-field are :
gshown in plots b,c and d. As can be seen, the fit to the desired field ;
on mirror 2 is excellent, the mode £111 is increased over that of the
HUR on both mirrors, and the far-field is virtually identical with
that of the uniformly illuminated aperture case. The associated in-
tegrated far-field intensities, "power in the bucket"” curves are
shown in plot 19e. The total power within the half-power beam width ?
for the two cases are sbout equal; however, for all beam angles greater ‘
than the half-power beam angle, the HUR integrated intensity exceeds
that of the uniformly illuminated aperture. The "tapered” magnitude ‘
profile reduces the power in the side~lobes relative to the main lobe.

Next, a test was made to see if good results could be achieved for
a resonator with a Fresnel number of N=8 which was twice that used for
the previous tests. The beginning and ending resonator configurations
and the associated field plots are shown in Figures 20a through 20e. As
can be seen the results are very good. For even larger Fresnel number
calculations it would probably be necessary to let the program calculate

the mirror curvature to higher (than second) order.

D. Maximum On Axis Far-Field Intensity
From an analysis of the far-field integral equation for a circular
aperture it can be nhown‘ﬂut for given power flow through a fixed aperture

the maximum on-axis far-field intensity is achieved when the field in the

aperture is uniform. Therefore, it was decided to have the program attempt

to maximize the power within a given beam anglg, rather than to maximize the

Lot i e
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far-field on-axis intensity. The approach takep was to request that the
program find a resonator whose integrated far-field intensity was equal g
to its maximum possible value over a specified beam angle. Of course
the ideal far-field magnitude profile which would satisfy this gondition 5
would be an on-axis delta function. The beginning and ending resonator E
configurations are shown in Figure 2la. Figure 21b shows the resulting §
integrated far-field intensity, and it can be seen that the final intensity i
is a better fit to fhe desired intensity than that of the uniformly ill-
;' uminated aperture. This results in a significant decrease in the first
| side lobe peak relative to the reference as shown in Figure 2lc. In
Figure 21d it can be seen that the fie}d magnitude in the aperture of
mirror 2 is tapered and the phase is uniform. The final field on mirror

i 1 in Figure 2le, although itself quite peaked on axis, is more slowly

R e

varying than the fields of the other hole-coupled configurations examined.

E. A "Hole-Coupled" Resonator with a Dominant 2£=0 Mode

Many additional tests have been made of the program's ability i
to fit desired fields, and in most tests the program was able to achieve |
a good fit, Once the resonator parameters were found, the eigenvalues for
the higher order azimuthal modes were calculated using the program developed
% ? during Task 1. It was found that none of the hole-coupled resonators had
? ’ good azimuthal mode discrimination. The only hole-coupled resonators

l found for which the =0 mode was dominant had very high losses over the
? : . outer edges of the mirror(s). ;
One "hole-coupled" resonator in which the 2=0 mode was dominant

is shown is Figure 22. The mirror profiles are extremely exaggerated

ey

to show their general shape. No R and D values are given because the

mirror figures were calculated to third order. The beginning configuration
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is actually the ending configuration of a previous test where the
desired field was specified as uniform phase in a plane 1nc1_dent

on mirror 2 out tot-hlvh.nhluthaudiuc of mirror 1. No
restriction vas placed on the field nzﬁitudg. In this case the re-
quirement that the phase be uniform on the mirror was rnov‘cd. Except

near the edge of the hole where the field amplitude is relatively small,
the phase of the final field is very close to the desired field phase.
The mode discrimination ratio

3

: Y
0, _ 0.515 _
IY—zol 0.478 - 1-08

was the largest obtained for any hole-coupled resonator examined, except
vhere the Fresnel number of the hole was trivially small. Ewven in this

case the Fresnel number of the hole is only
NEL = (1/3)2 =1
E 1 5 and less than half of the total output is through the hole. |

F. Rimmed Resonator Test

One additional test will be described to further illustrate the
utility of the program. The program was given the task of adjusting
the slope and curvature of the rim on one of the resonators described
by Lax et al. [3]. They state that "...transverse n;)de can be suppressed
at high power levels, provided the ratio of the fundamental-mode-irradiance
spatial minimm to maximum exceeds a minimum value". Using the fitting
program the fundamental mode irradiance can be tailored very easily.

The beginning configuration (Figure 23a) was chosen wikthout regard to

|
1
|
{
|
1

their suggestion that the mirror and rim l?runel_mmber- be non-integral

or that Nl % N. We note that there is little azimuthal discrimination

since

lml . 0.985

S w 1,01
Y10 0.974
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for the starting resonator. THe field profile (Figure 23b) of the

=0 mode for the beginning resonator is interesting in that the phase

in the plane at the mirror(s) is almost perfectly flat. The desired
magnitude was chosen to try to make the field qu:u_d. more uniform

over the mirror without increasing the losses too much, and the desired
phase is that of a spherical wave coming from the virtual focus (see
reference 8) of the geometric resonator mode with no rim. The final field
magnitude profile is "flatter," and the azimuthal mode discrimination is
somevhat improved in the ending resonator, but at the expense of higher
logses over the mirror edges. It appears that the magntfude fit is not

as good as might be expected, prob;bly due to the non-uniform magnitude
and phase weighting functions of H; and Ub. The magnitude fit could be
improved at the expense of the phase fit sinp%y by increasing the H; weights
relative to the Hb weights. It is not understood, however, why the phase
profile is not an even better fit than that shown. It is interesting

that the rim was virtually straightened out to conform to the curvature

of the central portion of the resonator. In any event, the ratio of

the minimum to the maximum field values 1s 0.5 and hence satisfies the

criteria stated in [3] for achieving good azimuthal mode discrimination.

G. Conclusions

In conclusion, the program is able to calculate mirror curvatures
to fit a desired radial mode profile for no azimuthal variations. It
has been found that requiring the field magnitude of the £=0 mode to be
uniform in the output aperture virtually assures that the 2=0 mode will
not be the lowest loss mode (i.e. that higher order azimuthal modes will

have lower losses in the same resonator). This suggests that possibly
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the program should be required to achieve uniform amplitude in

the hole for the lowest loss azimuthal mode to increase its 'lonu

relative to the 2=0 mode. The "brute force" way to obtain =0

mode operation would be to have the program adjuu_t the azimuthal mirror
profile in addition to the radial protﬁ.. This procedure, while straight-
forward with regard to generalizing the program to calculate the full
resonator field, would be more costly with regard to the computer time
required.
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SECTION IV

TASK 3 RESULTS

The objective of Task 3 was to determine the required ratio of
annular to hole coupling such that the resonator of Figure 24 would
have good azimuthal mode discrimination. To facilitate the discussionm,

we define the geometric ratio of the area of the annular output region

2

ﬂAzz 4 nAlz to the area of the hole H,

A -at

n-—T
2

In the limiting case where focal ring radius D=0 the resonator degenerates
into a conventional unstable positive branch confocal resonator which is
known to have good azimuthal mode discrimination. In this case HZ-O and
R = ©, In another limiting case where D'Al the resonator degenerates into
resonator 1 of Figure 1, which was investigated in Task 1 and found to
have poor azimuthal mode discrimination. In this second case the area
of the annulus is zero so that R=0. As the area of the hole increases
and R decreases the azimuthal mode discrimination ratio (magnitude of
the ratio of the largest =0 eigenvalue to the next largest eigenvalue
for any %) will decrease. Somewhere within the range 0 < R < « the loss
for the 2=0 mode will equal the loss of one or more of the higher order
azimuthal modes, and the mode discrimination ratio will be unity. It
was hoped that a large fraction of the output could be hole coupled (R << 1)
before this breakeven point was reached. To determine how ﬁuch hole coupling
could be allowed, while maintaining acceptable azimuthal mode discrimination

the computer program developed under Task 1 was used to calculate the

eigenvalues of the resonator for various values of D.
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Figure 24 Resonator with hole and annular output coupling
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Figures 25 and 26 show the eigenvalues for the case wvhere D=0

for magnifications M = /2 and 3. As is seen, at a fixed magnification,
the =0 mode has the lowest losses (tha largest eigenvalue), and the
losses increase as £ increases. It is evident in comparing Figure 25a
and 25b that the mode discrimination ratio decreases as the Fresnel
number increases.

Figure 27 shows the lowest loss eigenvaiues for D approximately
one third of the radius of mirror 1 and for a magnification M=3.0.
In this case the radius of the hole H, = 2/9A1 and the inner radius of
the output annulus A2 = (5/9) Al. Hence |
1 - (5/9)%

R= (amd
vhich means that only about 1/14th the total output could be hole-coupled.

= 14

A comparison of the different azimuthal mode plots shows that the
2=0 mode is dominant in the Fresnel number interval 0 < N < 4, the
=1 mode is dominant for 4 < N < 15, and the =2 mode is dominant 15 < N <
a higher fresnel number than is on the plot.

The eigenvalues were also calculated for D = Al/2 for magnifications
M = /7 and 3, as shown in Figures 28 and 29. As in the previous case
the azimuthal index of the dominant mode increases as the Fresnel number
increases. Thus it is concluded that only for relatively small Fresmel
numbers could any of the resonator output be hole-coupled in the =0

mode. These Fresnel numbers are too small to be of interest for high

power laser applicationms,
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SECTION V

TASK 4 RESULTS

The purpose of Task 4 was to study the behavior of the eigenmodes
of the resonator shown in Figure 30. This resonator is similar to the
one in Figure 24 which was analyzed in Task 3 except the centerline
has in effect been "blown up" into a circular cylinder of radius Hl.
This resanator could be used when there is an on-axis obscuration
within the region r < Al caused, for example, by the nozzle(s) of a
chemical laser. For parameterization purposes the Fresnel numbers
NH1 = lel(BA) and ND = Dzl(BA) were defined. The behavior of the
eigenmodes was analyzed for various values of NH1 and ND as a function of
the outer resonator Fresnel number N = Alzl(BA).

Figure 31 shows the resonator eigenvalues for ND = 1, NH = 1, and
M = 2, This choice of parameters results in a conventional unstable
confocal resonator whose centerline has been blown up from a radius
of zero to a radius of Hl which corresponds to a Fresnel number of 1.
As seen the dominant radial modes for 2=0 and %=1 have essentially
identical eigenvalues over the range of Fresnel numbers considered
2 <N < 10. The losses of the 2=2 and 2=3 modes increase relative

to those of the =0 mode for increasing N.

Figure 32 shows the resonator eigenvalues for ND and NH1 increased
to a value of 2 for M = 2, This increase in Hl results in less azimuthal
mode discrimination., It is apparent, that increasing the size of the
centerline (or Hl) tends to make the azimuthal mode eigenvalues become

degenerate.
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In an attempt to increase the azimuthal mode discrimination for
NH1L = 2 and M = 2, the value of ND was decreased to 1. Geometrically,
this decrease in D should increase the rate at which the fields are

coupled over the outer edge of mirror 2. Since the higher order

azimuthal mode fields tend to peak further out radially then the lower

order azimuthal modes, the output coupling for the higher order modes
should increase more rapidly than for the £=0 mode. The calculated
eigenvalue magnitudes in Figure 33 for this case are smaller than

those in Figure 32, indicating there is indeed more output coupling.
However, there is no significant increase in the azimuthal mode discrim-
ination.

The eigenvalues were also calculated for larger ratios of Hl

and D to Al, For these cases the plots for the four lowest order

azimuthal modes were very similar with the greatest differences being

between the =0 and =3 plots. Since the %=1 and 2=2 plots lie betw=en
the £=0 and =3 plots, they are not shown.

Figure 34 shows the eigenvalues for H1 = A1/2 and D = Al/2 at a
magnification M =3, Since D = Hl this resonator is like that of a
conventional unstable resonator except the centerline lL.. been expanded
to a radius of HIl.

Figure 35 shows the eigenvalues for Hl = Al/4, D= Al1/2, and M = 2.
Figure 36 shows the eigenvalues for the same conditions except D = 3Al/4
which ircreases the area of the smaller annulus relative to the outer
annulus; There is very little difference in the eigenvalues for the

two cases.
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Figure 37 shows the eigenvalues for Hl = Al/2, D = 3/4Al and
M= 2, Figure 38 is for the same conditions except D = Al. For
this last case where D = Al the resonator is like that of resonator
1 of Figure 1 except the centerline is of radius Al/2.

Comparing all the figures in this section shows increasing the
hole sizes in the mirrors decreases the azimuthal mode discriminationm,
but increases the radial mode discrimination. This suggests an
interesting relationship between the radial and azimuthal modes and
also suggests the following. Since cutting a section out of the
resonator a2long a line where the radial coordinate is a constant increases
the radial mode discrimination, then cutting sections out along lines
vhere azimuthal coordinate is a constant should lead to an increase in
azimuthal mode discrimination. A study of "wedge-coupled” resonators

should be made to determine behavior of their eigenmodes.
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Figure 37a Eigenvalues of the resonator of Figure 30 for H1 = Al/2,
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SECTION VI
TASK 5 RESULTS

The purpose of Task 5 was to investigate the possibility of
using conformal mapping techniques to transform circular geometries
to rectangular geometries where the resonator eigenmode calculations
could be expedited using the fast Fourier transform. The conformal
transformation [5]

We=exp (2)

vhere W= u + iv = r exp (i¢)

and Z = x + iy
maps. rings in the complex W plane into . rectangles in the Z plane as
shown in Figure 39. It was hoped that the transform could be used to
link the eigenmodes of strip resonator calculations to the eigenmodes
of circular resonators. A problem arose which aborted the exercise.

The éransform dictates

r = exp(x)
In cylindrical coordinates the field on mirror 2 at T, for example '
depends in a complex manner on the field at each source point £ In
Cartesian coordinates the field at x, depends on the field at each source

point x. but through a Kernel which is a function of the difference in

1
the coordinates x, and X Therefore a strip calculation can be made for
a fixed width strip resonator anywhere in the Z plane. For example,
if the strip mirrors are translated a distance b in the x direction
relative to the origin, then the circular mirrors are scaled by a factor
exp(b) in the W plane. The eigenmode losses for the resonator whose
mirrors are scaled by a factor exp(b) in the W plane are not the same as

the losses for the unscaled calculation, assuming the distance between
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Figure 39 Transformation regions for the complex transform
W= exp Z where W= u + iv and Z = x + iy
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the mirrors is not changed. A possible solution would be to scale the

distance between the mirrors and the Huvele;gth Sy the same factor
exp(b) which would make the Fresnel number of the circular resonator
% invarient to transverse shifts of the strip resonator as shoculd be the

case. The point has not yet been resolved.
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SECTIQN VII |

SUMMARY, CONCLUSION, AND FUTURE WORK

A computer program was developed during Task 1 for calculating

S

the radial eigenmmodes of circular cylindrical resonators where the
azimuthal variation is of the form exp (+ j$) where L is any integer. |

The program was used to analyze several confocal hole-coupled resonator

configurations to determine whether or not the %=0 mode wéuld be the
dominant or lowest loss mode in the unload resonator. No purely hole-
coupled resonator was found in which the =0 mode was clearly dominant
except for the uninteresting limit of small Fresnel numbers. One
resonator (Figure lc) was found in which all azimuthal modes had
approximately equal losses (i.e., the modes were degenerate). Loaded
cavity analysis should be performed using a reasonable gain saturation
profile to determine the '"saturated" mode profile. If these results
are promising, an experimental study of the resonator should be under-
taken.

Also, a computer program has been developed which demonstrates the
feasibility of a technique for calculating mirror figures to achieve
specified radial eigenmode profiles. The most serious limitation is
that the program considers only the radial mode profile, where in most
cases of interest, it is the azimuthal phase profile which is of
paramount interest. The program should be generalized to allow arbitrary
radial and azimuthal field variation so that the radial and azinﬁthal
mirror figure functions can be calculated to achieve hole-coupled output .
with minimal azimuthal field phase variation.

Analysis of resonators with holes in both mirrors has shown that,

when both the holes are much larger than a Frensel number, there is
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virtually no difference in the losses for the lowest order azimuthal

eigemmodes, but that the radial mode discrimination is excellent.

Since increased radizl mode discrimination is achieved by cutting

out sections of the resonator along line of comstant radial coordinate

(holes), it is likely that increased azimuthal mode discrimination

can be achieved by cut;ing out sections of the resonator along lines

of constant azimuthal coordinate (wedges). Therefore a study should i
be made of the eigenmodes of "wedge-coupled" resonators with higher -

order phase figures.
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APPENDIX A

i B CALCULATION OF THE RESONATOR EIGENMODES

A computer program has been developed to calculate the bare cavity
scalar radial eigenmodes for exp (j%$) azimuthal variation in circular
cylindrical resonators. The resonator mirrors can have arbitrary radial
3 curvature within the Fresnel approximation and arbitrary reflectivity.

‘ The eigemmodes are computed numerically via the Prony method as described

previously by Siegman and Miller [1]. Their method is modified to

allow for arbitrary mirror curvatures, and the procedure is iterated

to assure convergence and accuracy of the computed eigenmodes and eigen-

values. The following three subsections extracted from the user's
1 . manual for the program discuss the relevant mathematical equations and

some of the programming details.

1. WAVE PROPAGATION

The basic resonator integral equations for the radial field functions

are [6]
a
YR )/ = 1 K exy e R (e ) ar, (A1)
a
» a
‘ y,(f’nf” eV, = 1L kG e )R (2 )T ary (A2)

where the kernel

K(eprp) = 3" § ewl-d 35 8y7] + 857)] /oy, (A3)




- the subscripts 1 and 2 refer to mirrors 1 and 2, respectively
@ - the phasor radial field on mirror {, where the azimuthal :

field dependence is assumed to vary as exp(j%)
r - radial coordinate
k - wavenumber = 2w/A f
A - wavelength f
B

- mirror separation

I - Bessel function of order %

a - outer mirror radius

8 - resonator parameter = 1 - B/R
R - radius of curvature -

Y?') - single pass eigenvalue

The complete field is written as
EyC) = R ,(r) exp(jL4) (A4)
where n and £ are the radial and azimuthal mode indices, respectively.
The fields (eigenmodes) are orthogonal on the mirror surfaces and can
be normalized such that

2T a
‘J)' g E lllk(_r:)E:M'(_::):: drd¢ = 6m6u (AS)

For computational convenience the integral equations will be written in

a different form. Let us define a comstant

2Lk
B

cC=1 (a6)

a spherical phase factor,

()
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and- a "reflection coefficient"
2

py(ry) = (w‘ ‘) (a8)
oy - | S

The latter is interpreted as a reflection coefficient (or function)

since r,?/2%, 1s the approximate distance the mirror surface is dis-
placed from planar and thus l'.t:'.zll:l is the total phase shift the wave
experiences at 1:1 upon reflection. For higher order resonators the re-
flection coefficient can be generalized to

Py(ry) = exp (32k4, (r,)) (A9)

(arbitrary magnitude variations could also be included) where d AR
the distance the mirror is displaced from planar (the mirror figure

function). In terms of the new variables, the kernel can be rewritten as

kr.r
K(xy,r,) = CJ, (—%l) ¥py (r1)p, (x))t, (r)) e, (ry)r x, (ALD)

Then with the additional definition

(1)

R, ' (x,) .
-:1)(1-1) e W v (A11)

Yoy (xy) Ve, (x))

and the grouping Ti(ri) - pi(ti)t i(ri)ti the resonator integral equa-

tions may be written as

QLM R (“‘1‘2 @ ,.

Yy .!. (,tl) é’ J!’ 5 ) fz(rz)az (lrz)ch:2 (A12)
g kr,r

Y'('zl-la)(rz) -{)‘ I (-—:——2) 'l‘]_(rl)a,f]‘)(r:l)drl (A13)
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or correspondingly in matrix form as

7181 =J '2282 (AL14)

Y8, =J T,8, (A15)

where % is understood. From (All) it is seen that n,('ﬂ(xi) is the field

on a spherical surface of radius B just incident mirror i because mul-

tiplying by

T - - (1)
togd = &P \3p (A16)

transforms the field to a plane in front of the mirror and sultiplying
by w transforms the field to the mirror surface. Therefore, the
product pi.(ti)ti(:i) transforms the field from the spherical surface,
to the mirror surface, and back to the spherical surface but propagating
in the opposite direction.

The radial fields on the spherical surfaces, can be normalized such

that

! -g‘ () .j(t) (x) T(r) dr = 8, (A17)

where the integral is over the mirror surface.
Finslly the composite matrix equation for, say the fields on mirror

1, may be written

YSl -J Tz J ‘Il Sl (A18)

where the round trip eigenvaluey =Y, Y,. For small number of points

on both mirrors it is useful to form the round trip operator matrix
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M= Jr, JT,. However, as the number of field grid points increases, two

Ml |
computational savings can be realized by not computing M. First, it takes
one fourth the computer storage to store the the real symmetric matrix of
Bessel functions J as opposed to the complex matrix M. Second, the number
of multiplications required to form M can exceed the number of multiplica-
tions required to find the dominant eigenmodes by the iterated Prony

method which will be described in the next section.

2. ITERATED PRONY METHOD

The basic Prony calculation used is exactly as described by Siegman
and Miller [1] except the procedure is repeated until convergence is
achieved and the number of eigenvalues is changed as required to facil-
itate convergence. The following discussion briefly describes the com—
putational procedure.

Formally, we wish to find the first n dominant eigenvectors IJ:L and

eigenvalues Yyo i =1 to n of the matrix equation
MU = Uy (A19)

where M is a complex symmetric matrix. In resonator terminolgy the
eigenvectors are often referred to as "eigenmodes," '"modes," or "fields."
An initial vector, or field distribution, Vo is constructed and propagated
n times through the resonator using the wave propagation procedure de-
scribed in the previous section. The higher order modes, smaller eigen-
values, are attenuated more rapidly than the lower order modes, which

have larger eigenvalues. The initfal field and sequence of propagated

fields may be written as:

i

R




V; - klul + kzuz + k303 + ..
Vi = uvo - kivlvl +'kirzﬂz + k57303 + ...

Vo = MY,y = kqY]U) + kyrpUp + kor3Uy + ..o (a20)

where initially the ki" and'yi's are unknown. Two matrices of dot

products are generated

e 2
! = r°1 !02 . - . !m
ru Flz L] E ® rh
(A21)
*
rtl Frz Sirety Frn
o R
r Flu
G = F
2n (A22)
rnn
-3
where r = n - 1 and the dot products are
Ty = I Oy O, (A23)

The F matrix is inverted and the eigenvalues are computed as the roots
of the polynomial

yn+Qtyn'1+...Qly+Q°-0 (A24)
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where
e = [q,]
Q
-1
. § = F'G (A25)
%
== L=
Then a matrix
() £ ] -
L = Yy Yo s «¥g
2 2 2
Y Y - . . Y
1 2 n (A26)
- G %l
is constructed where the eigenvalues are ordered such that
Weal < I} 1c8se (A27)

Upon inversion of the L matrix the square of the k values can be com-

puted

- 2 = 1. - L-ly. (A28)
2
- lkn -
* where
e
e |
=
£ i : 162
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brOnL
Using the ki's, Yi's, and Vi'l, i =1 to n, estimates “1" of the ﬂ
Ui's are computed from (A20). Since there may have been components of 4
higher order modes than n in the original vector V o0 Ve do not at this J

point know how accurate our computations of the eigenmodes are. There-

fore a new initial vector is formed, using the just computed eigenmode

estimates as

"o‘“1"'°z"'°'°"n (A30)

where the U 4 are normalized such that
i (Ui)k(ui)k =1 (A31) i
The procedure is repeated until the calculated expansion coefficients

k's are unity and the eigenvalues do not change from one calculation to

the next. Ideally if

the procedure will always converge, but when
Woar! = Igl (A33)

convergence can take a large number of iterations. When this situation

occurs, it is expedient to change n. If the eigeanvalues tend to separate
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as n increases, as is the case in resonator calculations, n should be in-
creased. However n cannot always be increased since the finite word
length of the computer will eventually truncate components of the higher

order mode in Vn in equation (A20), {i.e.,

n

Y
(}Ji (A34)
Y1

will become smaller than the resolution limit of the computer.

3. FAR-FIELD CALCULATIONS
By convention in the computer program, the output end of the res-
onator is at mirror 2. For display purposes, the field incident on

¥ mirror 2 {s transformed to a plane via
. u(x,) =/t (r,)s(ry) (aA35)

The far-field pattern, f(r), is computed by taking that part of u(rz)
which exits the resonator, ut(rz), and propagating it to the focus of
a lense. .For convenience the focus of the lemse is B, the cavity length,
so the previously computed Bessel function can be used. The field at

the focus of the lens is computed from
krrz
ftx)=c/S J "5/ v (rp)rydr, (A36)

where the integration is over the output plane. The integrated far-

- field intensity, p(r), can then be computed as

o) = [F |eG") | Perar (A37)
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APPENDIX B
LEASTS SQUARES METHOD FOR CALCULATING RESONATOR

PARAMETERS TO ACHIEVE A DESIRED EIGENMODE PROFILE

A non-linear regression algorithm has been utilized to calculate
radial mirror figures of open resonators such that the radial profile
of the lowest loss eigemmode (for a particular azimuthal symmetry) is
the best fit in a least squares semse to a user specified, "desired",
eigemmode profile. The method used is that of Marquardt [7] which is
a maximum neighBorhood method for least squares estimation of nonlinear
parameters. It performs an interpolation between the Taylor series
method and the gradient method in an attempt to combine the best features
of the two methods while at the same time avoiding their most serious
limitations. The algorithm described here for ease of reference is ,
identical to that of reference {8] except for changes in nomenclature
and the inclusion of point error weighting.

The model to be adjusted to the data can be written in the form
U= £(r;B;,855 - - - B (1)

where r is the independent variable(s) and Bl, BZ’ Jew Bk are the
population values of the k parameters to be estimated and 8 is the
dependent variable. In the context of the resonator problem 8 is the
lowest loss radial eigenmode profile (or intensity) for a particular
aximuthal symmetry, r is the radial field coordinate, and the B's are
the resonator parameters which one wishes to vary. The observed points

will be designated as

i) i=1,2,...N (B2)

166




which for the cases investigated to date are the desired radial field

points in a plane adjacent to one of the resoutor.nirrors or desired
radial points in the integrated far-field intensity profile. Standard
techniques can be used to calculate the radial mode profile 6 at the
specified coordinates for a given resonator geometry and radial mirror
figures which are dependent on the 8's. The problem could be structured
even more generally so as to optimize azimuthal variation in the mirror
figures provided the total field was calculated without restrictfon on
the type of azimuthal symmetry.

The problem is to compute those estimates of the parameters which
will minimize

n ~ 2
¢ =1 W, [u, - u,] (B3)
i=]1
where \’ii is the value of u(ri) predicted at the i-th data point and wi
is the associated weight for that point error. (u-magnitude and/or phase of U).
The Taylor series aspect of the combined Marquardt Method will now
be described. Writing the perturbed model in a Taylor series through

the linear terms gives

k
<ury, b+8,) > =£(r, b) + = §-§§ @, (4)
or
<u> = £ +PS (B5)

In (B4), 8 1s replaced by b, the converged value of b being the least

squares estimate of 8 and f 1 is the value of the function evaluated at

the i-th data point. The vector Qc is a small correction to b, where




iy

the subscript t is used to designate the § was calculated using the
Taylor series method, and P is an [n x k] matrix whose elements are
afilab It The brackets <> are used to distinguish predictions based on :
the linearized model from those based on the actual non-linear model.
Therefore, the estimated sum of squares error (SSE) is designated as
z 2
<> .1§1 W [ug = <up>] (86)

In order to minimize <¢> the critical point(s) must be found, i.e., 3

%%Q--O,j-l.z,...,k (87)

which requires from (B4) and (B6) that

= T Wlu, -f -1 @)1
Pl e T j_ls'bj‘ o

and

9<6> n Brse a¢

—x-L-zz:wlu-f-z G.).] -0

2%, Bralts: o S S 55'; el4! 3
or

n n k

af ¢, 3f
L W [u, -£f] -z I W =4 $), =0
R0 Ly T 55“; ot ot L0 W5y e

or in matrix notation

where
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- Py - £) (B15)

and § ! ¢ is the new perturbation as influenced by the weighting and j
l)[n X6l is a diagonal matrix of the weights. In practice b is only ;

corrected by a factor of §/ so that extrapolation does not go beyond

i da i i Rt

the region where f is adequately described by (B4). Failure to do so
would cause divergence of the iterates.
The steepest descent method takes a step in the direction of the

| negative gradiaent of ¢ from the current trail value. Thus,

. 30 99 % \T
§ - -(-—, g (B16)
-2 abl‘ 5!:2’ ¢ bk

Here again the step size requires careful control to insure convergence.
Having noted the inadequacies of both the Taylor and the steepest
descent methods, note also that any proper method must result in a cor-
g | rection vector that is within 90° of the negative gradient or else §

would increase with the iterate. Marquardt's Method is an interpolation

D a o S R

between gc and §‘8 for monotonic convergence of the procedure. This

method has its foundation in three theorems which will be stated without

proof. Proof of these theorems may be found in Marquardt [7] or Meeter

[8]. Meeter states and proves a somewhat stronger version of Theorem 1.

: : Theorem 1: Let A>0 be arbitrary and let go satisfy the
¥ equation
‘ 25
A A+ADS =g (817)
pi
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then _6_° minimizes <9> on the sphere whose
radius’ ||8]| satisfies

2 2
1811 = [181]° . (B18)

Theorem 2: Let §(A) be the solution of (B17) for a given

value of A. Then ||§(\)||? is a continuous

decreasing function of A, such that as A+,

180 | [*+0.
Theorem 3: Let Y be the angle between §  and § . Themy

is a continuous monotone decreasing®function of

A such that as A»», y+0. Since § 1s indepen-

dent of A, it follows that §° rotites toward

§ as A,

-g
Since the Marquardt Method combines both the Taylor series method
and the steepest descent method, it is necessary to note one relevant
property of these methods. The solution g; of (B1l) is invarient under
liriear transformation of the b-space. However, the steepest descent
soluticn is not scale invarient. It becomes necessary to scale the b~
space in some convenient manner. Therefore, the b-space 1is scaled in units
of the standard deviations of the derivatives 9f i/au T taken over the
sample points { = 1, 2, . . ., n. This choice of scale causes the A
matrix to be transformed into the matrix of simple correlation coefficients

among the 3filabj.

Thus, the scaled matrix A* and the scaled vector g* become

e ot - ()

Bu ‘.1'.‘.

g
3.* - (8;) = (ﬁ

a

1
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and the Taylor series solution leads to

* |
61 = Gj/ “‘jj (B22)

The algorithm is now clear. Specifically, at the r-th iter-
ation the equation
(A*(t) + A(r) I)G*(" - ‘*(r) (323)
is constructed. This equation is solved for gf(') and (B22) is used

to obtain § ), The new trial parameter vector

p(FHL) | (@) i(r) (B24)
will lead to a new sum of squares error O(Hn « It is essential to

selact X(r) such that .

o{Ftl) o o(®) (825)
It is clear from the foregoing theory that a sufficiently large _;3
A(') always can be found such that (B25) is satisfied, except when ﬁ

L‘r). is already a minimum of ¢. Therefors, a trial and error procedure

1s required to find a value of A‘") guch that (B25) is satisfied and
rapid convergence insured, i.e. minimize ¢ in the (approximately)
maximum neighborhood over which the linsarized function will give
adequate representation of the non-linear functionm.

The strategy employed is as follows:

Let Vv > 1,

Let A™1) 4enote the value of A from the previous iteration

Initially, let A(?) = 1072, for example.

compute 8\ ™1y and 001 /v) (see note below).
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1 00T ) < P, 1ae AP 2 21,
£ 00TV ) > 0, g 00 TY) <0, et
A ) 1)
12 00TV /0) > 0 20d 00y > 0 gncrease )
by successive multiplication by vV until for some smallest
@ AT < o) 1o A(P) & a1,
¥otE: 1f AC"L) 45 already negligible by comparisom with 1.0 to
the number of significant figures carried, then go to test
11 or {11 fmmediately without computing (A" 1) /v), and
ignore comparisons involving o (T sy,
On occasion in problems where the correlations among the parameter
estimates are extremely high ( > 0.99), it can happen that A will in-
crease to unreasonably large values. It has been found helpful for

these instances to alter test iii. The revised test is:

Noting that the angle Y(r) is a decreasing function of A(r), select a

criterion agnle i < % and take

R A A (827)

However, if test iii is not passed even though /\(r) has been increased

(r)

until vy <Y, then do not increase X(t) further, but take K(r)

sufficiently small so that O(ﬁl) < O(t). This can always be done

stace v <y <2 (1.

The procedure is considered converged when( |6 4 (t)ll(‘r+|l:.1 (r)l) <&,

for all § = 1, 2, ...,k and suitable choices for € and T, for example
10”3 and 10.3, respectively.
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