e g

-

llAU?_'?'?OB

-~ s ol -

nPESSLw76622

NAVAL PGSTGRADUATE Scllﬂﬂl

Nontersy, California

STATISTICAL AMALYSIS OF NOW-STATIONARY
SERIES OF EVENTS IN A DATA BASE SYSTIN
by
P. A. W, Lavwis
and
G. 8. Shedler

Septanber 1976




i!m
ettt e et e, s

O,

NAVAL POSTCRADUATR SCWOOL
Monterey, Califoraia

Rear Admiral Ishem Linder Jack T. Borsting
Superintendeat Provost
The work reported herein was supported by fu de proudod directly from
the Chief of Maval Ressarch undér Grent ,
Reproduction of all or part of this rcpert is authoriud.
Prepsred by:

1 L,

Pater A. V. Lewis, Professor
Department of Operations Ressarch

G.Shudle P £

Cerald 8. Shéiler
IM{ Research Laboratory

Raviswed by: Relaased by:
/ol cw/t.u/ Wl oy ] W%
Michael G. Sovereign, Cluiru:,?‘ Kobert Fossum

Dapartment of Cperations Ressarch Dean of Reesarch



- Best
Available
Copy



UNCLASSIFIED
SECUMTY CLASHPICATION OF THIS PAGE (Fhon Dete Entered)

REPORT DOCUMENTATION PAGE ReAD ISTAUCTIONS

BEFORE COMPLETING FORM |
r. SOVT HCCRISION WO 3. RECIPIENT'S CATALOG NUMBER
%

, ” . TYPL OF REPORT & PEMOD COVERED
Statistical Amalysis of Non-Stationary Series o

Eveats in a Data Base Syutu)_'—

'J. CONTRACY GR GRANT nUwBENS |

; ' ' " AREA & WONK UNIT NUM )
Naval Postgraduate School
Nonterey, CA 93940

Prtr————————— e er——————————]
6. PERFOMMNNG ORG. REPORT NUMNBER

1. CONTROLLING OFPICT NAME AND ADDRESS
Chief of Naval Research

Arlington, VA 22217
N DRSS SR T BSRET R

3 | 5. SECUMTY CLADS. (of Win report)
UNCLASSIFIED

Aol T LT UL

Approved for public release: distribution unlimited.

praanem.
17. STMOUTION STATEMENT (of the shewrest sntered In Blook 20, i1 diiterent frem Report)

TARY NO

T WEY WORBE (ontiews on vovores ohss 17 moceosmy and IGeniity By SIoch mambers T

Bata Masc Systome stochastic models
workloed data base management
compute” systens probability modalling

workload characterisation non~stationary stochastic point processes

W:E%‘u Eht processss
o roveres nossesy and sumber)
tral probiems in che performance evalustion of computer gyptems

are the description of the behavior of the system cud characterigstion of
the wsrkicad. Ose approach to these prodlems comprisss the intefaetive
combination of data-aaslytic procedures with probebility modelidngy This
pipsr deacribes methodo, both old asd naw, for the stntistical apaiysie of
se-gtatisanry wnivarista stochestic point processes acd ssynencas of 7nsi-

tive rendsa variebles. Soch processss are frequently encountered in cou-

TN GF 1 0BV 3D 12 BIEMME5S
/8 9208082426203 |

st -

[RRESPCIT TS A LWL

i T T

e Pt A g e e



!

——lBCLASSIRIED.

-l \J AY » Bate

of the stechastic point precess of transactisns initiated in a rummiag dote
bSese system.

On the besis of the statistical amelysis, s non-henogeneous Poiseom prccesy
uedsl for the transaction initistion process is postulated for periods of high
system activity and found to be an adequate chearscterisatiom of the data. For
periods of lower system sctivity, the transaction imitiatiom process has a

cemplex structure, with more clustering evideat. Overall sodels of type
have applicstion to the validation of proposed data base (sud)oyst 8,

N

19. (comt'd)

son-homogeneous Poisson process
clugter process

seriss events

spectral analysis

rate Punction estimation
self-gxciting processes
correlation

cohsrence

UNCLASSIYIND
Ty 0L ABNMECA or »

[OSREPE




IR e ST Y 3 By 870, 00 Sew v a Pwanm,

R A

STATISTICAL ARALYSIS OF RON-STATTONARY

SERIZS OF EVENTS I3 A DATA BASE SYSTEM

P. A. W. Lewis*
Department of Operations Research
and Administrative Sciences
Naval Postgraduste School
Monterey, California 93940

GC. S, Shedler
IBM Research Laboratory
San Jose, California 95193

ABSTRACT: Central problems in the performance svaluation of computer systews
eve the description of tha behavior of the system and characterization of tha
vorkload. One aporoach to these problems comprises the interactive combination
of dats-analytic procedurss with probability medelling. This paper describes
methods, both old and new, for the statistical analysis of non-stationary
univariste stochastic point processes and sequences of positive rardom variables.
Such processes sre frequeatly sacountered in computer systems. As an illustra-
tion of the methodelogy ev anslyais is given of the stochastic peint process of
transactions initfatsd in s running data base aystem,

On the basis of the statisticel analysis, a non-homogeneous Poisson process
modul for the trarsaction inicistion process is postulated for periods of high
system sctivity and found to be sm adequate charseterization of the data. For
periode of lower system activity, the tremsaction initiacion process has a com
plex structure, vith more cluctering evideant. Overall models of this type have
spplicetion to the validastion of preposed data base (subdb)system modeles.

*
Srictes while this suthor was & comsulgant to LI kesesrch. Support frowm the
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1. Introduction

Description of the behavior of a ruaning system and characterization of the
worklead are central problems in the performsmce svaluation of data base systems.
These are systems in which there are many users vho can access, via remote ter-
ninals, a (typically very large) data base menaged by a computer. Such a system
should respond to & query in a reasonably short time, given the number of users
and the nature of the user enviromment. This must be sccomplished as economi-
cally as possible, where by aconomicelly we include direct customer (waiting)
costs and computer system resouzce utilizatiim. This is & typical operations
ressarch situation in vhich we are trying to allocate linited resources in an
optimal way amongst competing demands. Bocasuse of the complexity of data base
systems, detailed measuremsnts of existing systems are needed in order to model
and evaluate them; such measurements cowprise just one aspect of performance
evaluacion, which in its entirety would encompsas data collection, analysis,
wodelling, and interpretation. Ultimate goals of performence evaluation include
tuning of existing systems and prediction of performsnce of proposed systems.

This paper is concernad with methcds for statistical analysis of series of
events which can be applied to obtain s graphical and msthemstical description of
the behavior of a rumcing data base system. Such a description would be & useful
starting point for studies aimed at workload characterisation. The particulsr
analycis of data givea uses a combination of statistical data-analytic procedures
and probibility modelling (cf. Lewis and Shedler, 1973). The specific results
reporied hers for the amalysis of a non~stationary univariate series of events
oceurring in an IMB data basc system are intended neither to cosprise in them~
selves a description of the running IMS eystem iur necessarily to be a sufficient
basis for characterizing the workload of an IMS system. Rather the vesults are
to b2 considered illustrative of mathods that say be useful in such studies.

In & data base system the worklosd may be taken o be a collection of data
sequences identifiable at varioue lswels of the system; workload characterization
comprises the study of these data sequences (individually and jc~ .tly) along with
the trsmsformstions amomg them. We are deliberately vague here ‘“out what is
meant by data sequence; it could be a sequence of events ucc. in time, 1{.e.
a point process, or a sequanca of observations of a stochastic rocess, i.e¢. a
time saries. Yor example, in sn IMS data base system we can comsider, at the
user level, sequencss of transactions and DL/1 calls; at the legical level,
ssquences of target segments; at the segments se.rched level, sequences of path
segments; at the paging leval, sequances of path blocks, etc. Associsted with
thess {dentified basic workload data sequences, there may be othar date sequences
of iuterest, e.g., the subsequence of path block exceptions. We may also be




interested ir external mesauremesats related to the workload data sequences such
as responee times for users.

Civer the complexity of data bose systems and the resulting relative diffi-
culty of carrying out mesaiagful performemce evaluastions and designs for such
systems, the collection aand snalysis of msesursment data from representative
systew; to identify and characterize significast performonce phenomena seems
appropriate. The aveilabilit’ of such seasuremsats presents the possibility of
obtaining thereby espirically valid, paramsterised mathematical models for work-
load data sequences. However, the sheer volume of data which can be collected
from & rusuing data sese system (e.g. tens of thousands of transactions per day,
hndreds of thousands of DL/I calls per day, millions of path segments per day,
etc.) is a source of some difficulties. Such a volime of data is not only costly
to manipulate, it is difficult to comprehend. In practice it appears that if we
vish ;0 do & detailed analysis (end modelling) of any of the several workload
data sequences mentioned abeve, it is necesssry to select "representative”
sequences obeerved during (relatively) short periods of time. If useful infor-
mation 1is to be obtained from the data collection, analysis, and modelling (e.g.
for the determination of pertinent system requiremsats), it is important to be
able to describe the systes comtaxt in which the tramsactioa workload phenomen:
wers obesarved and anslysed. )
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In addition to models of the werkload, medels of the system or sub-systew
structure are needed in performance evaluation. The authors feel that stochastic
models of the type obtained in this study have application to the detailing of
proposed system wodsls, i.e. filling in the fine structure of parts of the model.
A second application i{s to tha "validation" of system models in the sense of
establishing their predictive value. The methods used for the statistical
analysis of data from the running system cen also be used to analyze the output
of simulations of proposed (sub)system medels. "Agriement” of a process pre-
dicted by the system wdel with the corresponding process observed in the running
system would constitute evidence o1 the predictive value of the model. Thus, for
example, the results of the statistical emalysis of the transactiom initiation
precass reported here could be used in attemptiag to validata a stochastic model
of the INS DL/I component such as the queueing modal developed by Laveaberg and
Shedler (1973).

‘ 2. Description of the Avuilable Data
] T™he analysis given heve illustrating methedc for the exsmination of non-
| ; stationa~y series of events is of data obtuined from an IMS data mnagewment
| system. The following is & brief outlina of the structurs of IMS.
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IMS (I Corp., 1973) 1is a processing program for the implemmatation of large
dats bases shared in common by several spplications. The IMS progrsa exscutes
under the oparating system of the computer system to extend the data comsumica-
tion and dats base mmnagement capebilities of the operating system. In INS
users can access the dats base from remote termimals by entering messages called
transactions. A perticular tramssction uses and thus wniquely identifies an
spplication progrsm which processes the message (or transaction) and accesses the
dats base. The data management facility of IMS is called Data Language/l (DL/I). '
The two interfaces of 2= application progrem with DL/I are a data base descrip~
tion and & program linkep- which allows DL/I to process data base sccess requests
which arise during emscution of an applicatioa progras. The exscution of aon
applicetion progrra thus gives rise to a sequence of calls to the DL/I component
of INS.

A conceptusl disgram of s computer system rwmning INS {s given in Figure 1.
As shom thers, a portion of memwry i{s davoted to the operating aystem. The IMS
program occupies a portiom of msmory called the IMS control region. Application
programs reside in secomdary storage in an application program library. For
exscution an applicatiea program must be loaded into ove of several (typically
three or four) regions in mswdry called INS application regions. The data base
resides in secondary storags, and data are transferred into msemory for p-ocessing
in respomnse to tramsaction initistions.

Data on the processiag of transactioms hav. beem obtained from a computer
system rumming IMS for production coatro]l umder the IMM operating system 0S.
Intry of data into the system is on-line sad is governed by the occurrance of
events en the production line. The epochs of time at which individual DL/I calls
wvere complated (i.e. comtrol returned to the application program) have been
recorded, alomg with informstion sufficient to ideatify the epochs of time at
vhich imndividual transsctions were initiatad. From these time stamps the
seque.  of times between transaction initiations was derived. Most of the
results displaysd in this paper are for a time period of high system activity
referred to a8 time pertod H. This data consisted of 1999 transaction initia-
tions in a period of time (4n wnspecified units) of ty * 11936.6066. Much of
the statistical anaiysis was done ueing the SASE-1IV progrua (Lewis, Ratcher and
Weis, 1969) for analyzing sevies of events. SASE-1IV has a mazimum input of 1999
evants; thie accownts for tha lmg.h of the p'crtod under study. This high system
acrivity period was selocted after an initfal overall look at the several days of
data on transsctios initistions which was available. The analyeis sls> used '
SASE-VI (an {mproved version of SASh-IV), APL implementations of parts of SASE-VI,
snd APL implomentstions of vate estluation procedurss.
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3. Preliatinary Anglyeis of Tramsactiom Iaitistion Process

3.1 Prior Considerations amd Aseumptions '

In amalyzing the transaction initiation data, there were a number of prior
assunpt ions which could be made shout the data to serve as a starting point for
the analysis. The purpose of the data mmalysis is to confirm these assumptions
or to pofiat to suitsble modificatioms.

(1) Since the data is takes over . whole day (in fact, six whole days), we
expect a time of day effect as activity builds up through the working
day and then declines during the evening. Thus, any kind of initial
snalyses based on an ssswmption qf stationarity is inapprop-.iate.

(2) Since the data consiste of times of tramsactiom iritiations, so that we
are dealing with a point process or series of events, the usual null
wodel which is delimsated in Section 5 j= a non-homogeneous Poissoc
process (MMPP). This could be appropriate here since the transaction
process i3 & superposition (Cox snd Lewis, 1966, Ch. 8; Cinlar, 1972) of
inputs from a number of sources (users).

(3) Since each user's sctivity is likely to consist of a (random) number of
transactions after initial sign on, some clustering in the data might be
expected. An appropriate model here is the non-homogesneous Poisson
cluster prccess (Lawis, 1967). In this process sm inities] primary
(main) event ganarstes 3 finite sequence of secondary (subsidiary)
events; the compiete process is thea the superposition of the primary
and secondary events, where the msin events are assuned to be generated
by a non-homogeneous Poisscn process. If emough initial events are gen-
erated (high-activity) so that the number of secondary processes is
large, this process is hard tc distinguish from # Poisson process.

Starting frem these aseumptions, the amalysis of the data procesded as
follows:

(a) A very rough, model-free procedure was used to estimate the rate func-
tion for the tramsaction imitiation process cwer the who'a day, the rate
function beiag the derivetive of the eapected nwsber of tramsactions in
a time period (0,t]. This rate weuld be cemstamt for a stationary
(hemogeneous) precess.

(d) Om the dasis of this trend analvsis, relatively homogensous high and low-
activity periods were selected, and s sttenpt was wade to wverify the
PP wnd:l, or the clustering mdel, for the tresesestisn initistion
process .




. et

(c) Basc¢d on this local analysis and modelling of the transaction initiation
process, more formal model-dependent estimation procedures were applied
to the transaction rate function for the several days. In later sec-
tions it will be seen that the Poisson assumption is reasonably valid
for high-activity periods, clustering becomes more evident at low-
activity periods, and there is a surprising amount of local inhomogene-
ity of ~n almost oscillatory (cyclic) nature. It is this last phenome-
non vhich is perhaps the most interesting aspect of the analysis.

3.2 Analysis of Transaction Initiation Counting Process

Point processes can be analyzed either in terms of the intervals betwezn
events, wvhich is a stochastic sequence (time series), or the counting process
(the number of events in an interval (0,t]) which, as & function of t, is a
continuous parameter stcchasti~ process. Here 0 1s some convenient fixed
origin, the number of events in (0,t] 1s denoted by Nt, and the expected
value of Nt is

M(t) = E{Nt}. (3.1)

Ites derivative, ofcen called the rate function or intensity function, is
n(e) = B -0,

the notation A(t) being generally used for the rate function of a Poisson pro-
cess. (Ses Cox and Lewis, 1966, Ch. 4, for furthe: definitions of point
processes.)

Rote that although the times of the transaction initiation events for the
six days were available, for an initial aanalysis we used counts of events in
successive unit time intervals, {.e. A = 1. This constitutes a sampling of the
data; if the data were from a HHPP, these counts would be independent Poisson
variates with possibly different means (s&> Section 4). Let these counts be
By j=1l,...,n, whzre By - uj-'nj-l and N, = 0. If these counts are summed
to give counts in C contiguous intervals, they will atill be Poisson distrib-

uted. Such s summstion can ba considered as

(1) & cruie sssething of che dats to obtain an astimate and picture of the
rate function over the day. Thus, since A =1,
sa () = § %1 - a);
b LM
the wveights is the sas.thing all have value 1/C. This constant smooth-
ing fumetion must be uveed with care; it can .suse spurious effacts if

the rate is wot chemging linsarly.

(2) s coslescing of count data to test for homogeneiry.
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Piotq of the smoothed ovnts usfing ( = 4800 are shown in Figure ! tar 3§ of
the 6 days, and for the average of the »moothed counts over all 6 days. Formal
tests for homogeneity are available for Poisson variates (Cox and lewis, Ch. 4),
or else a one-way anclysis of variamce cam be performed on the coalesced data
after a square root transforuation. The amalysis of viriance test is uscd be-
cause the comnts are large enough to be considered to b normally distributed;
the square root transformation s uned because although Poisson countw with 3
large mean are approximately normally distributed (see Table 2.1, Cox and lewis,
1966, p. 21) the mean and the variance are the same, and this violates a basic
assumpt ion in the analvsis of variance test. The square vaot of a Pofssen var:-
ate N plus one-fourth, v’NTlTl;. has mran approximately equal to -'—, an?
variance 1/4, vhere u is the Poisson mean (Cox and Lewis, 1966, p. 44).

The snalysis of selected time periods reported below is for perfods choser
from day 2. In Table | we show in successive columns the nurber of counts
(transaction initiations) in successive groups of forty 120 time unit periods;
the mean number of counts in 1 time unit (the rate function estimat: plotted in
Figure 2) for day 2; ;i the average of forty quantities ‘lj' vh:x,-; XU -
{(number of comts in jth 120 time unit perfod in group f)+1/4: " °; ~’ and

61, the within group sample varisnce and standard deviation respectivel;.
Firstly, it can be seen that all of the variamces 'y ere larger than the
vaJue 1/4 postulated on the basis of s homogensous Poisson count process; since
39 ~6§,‘(1/6)°156x&i should, under the null hypothesis, have a ,;9 distribu-
tion with upper 992 point of 62.281, all the af'. are significantly large (i.e.
greater than 62.281/156 = 0.3992) and either the Poisson or homogeneity (within

group) assumptions are invalid.

Comparing the sum of the within group sample variamces o’, which is
48.1826, to the betveen group variances (or sssple variance of the ;i)' which
has a value 1.7126 we get an P-ratio of 19.4878. The F-ratio, formall, given by
-

i
L
has an F-distribution with v *® {m-l) xk = 39x12, vy = k~1 = 11 degrees of
freedom, and the value 19.4878 in Table 1 is highly significant at a 5% level or
at ¢ 17 level. We conclude that the data is inhomogeneous, although departure
from & :inson assumption has not been ruled out.

Fe=

The owecall picture in Figure 2 is of an initial build up in transaction rate,
a fairly counstani transaction rate for s period of time, and then a drop to a
lower lsvel. This picture is consistent over days{ the urop in day 1 (around
t = 165858) wam due to & jeriod for which data was not available.




However, even in the two relatively stable periods, there is some evidence
(large values of 5: in Table ] relative to 1/4) of more microscopic inhomogene~
ity, and the amalysis proceeded by examining sections of data in these high and
low—-activity pericds in more dctail. The examination was of interest p.r se, but
was aleo wotivated by a need for more formsl statistical rate estimation proce-

dures.

Nighly parsmetric globsl procedures for rate estimation are available at
present ~aly for MIPP's. Details of the procedure and the estimation are given
in the naxst two sectioss. Application to the data for the high and low system
sctivity periods and for the entire day is described in later secrions.

In addicion, non-parametric Jocal smoothing procedures related to kernal-type
density estimstes (Roesenblatt, 1956) are used. These are also described latcr
(Section 5.2). TPFirst we give properties of the NHPP,

4. Non-Nomogenecus Poisson Process Model

The non-homogemeous Poisson process model for s series of events Nt is dis-
cussed in a statistical context bv Cox and Lewis (1966, Ch. 3). Lewis (1972),
Cox (1972), and Drowm (1972). A very detailed msthematiczl account is given in
Guedenko and Xowaleako (1969); a recent treatment iz by (inlar (1975). Like the
homoganeous Poisson process, ths non-homogeneous Poisson process arises as a
limit of the swperpesitiom of a large number of non-stationary point processes
(cf. Glular, 1972). The assumptions underlying the non-homogeneous or time-
dependent Peisscn process (MEPP) are the same as those for the ordinary Poisson
process emcept that the rate paramster )\ 1o now considered to be a continuous
function of time ){t). One approach to the NHPP is via the incremental proba-
bilities in small intervals. Thus, for s,t 20, and denoting by N(s;t) the
nuber of evento in the precess in the interval (t,t+s), the assumptions for a
NIPP with rate fumction A(t) are thet, as s + 0,

Pr{N(s;t) =0} = 1-A(t)s+o0(s),
Pri{R(s;t) =1} = Alt)s+o(s), (4.1)

and that the rame*e veriable N(s;t) 1is statisticaiiy independent of the number
and positisn of events in (0,t]. As « consequence of (4.1),

Pr{M(s;t) 2 2} = o(s).

The survivor fuaction for the forwerd recurrence time in the proness, the proba-
bility that there arc no events ia (t,t+s], 1.e. that N{(m;t) » 0, is derived

vis first-eorder differencial eguations to be
t4y

Ri{sit) = exp «t -I } (xddu }. (6.2)
-4
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A more general approach te defining the WMPP starts with the function A(t),
which is assumed to be monotome mon-decreesing aad comtinuous from the right;
then the number of events occurring in amy imterval, say (t,t+s], is sssumed
to have a Poisson distributionm with parameter

t4s
A(tts) - A(t) = I A(u)du,
t
i.e, for k = 0,1,2,...
~{A(t+s)-A(t)}) .
' Pr{N(s;t) =k} = £ uﬂﬁﬂ)-h(t)} .

Consequently, A(t) is the expected value fumcziom M(t) discussed in Section
3. In addition, the number of events in any finite set of non-overlapping inter-
vals are assumed to be independent rsndow varisbles. There are cther cquivalent
definitions, and alsc minimal definitioms; see Cnedenko and Kovalenko (1969) and
Cinlar (1975).

The following theorem (ef. Cinlar, 1975) establishes that a homogeneous
Poisson process of rate 1 can de ebtaimed by transformation of the time scale of
a NAPP, via the inverse of A(t). This result, Theorem 4.1, and the following
Theorem 6_.2 are the basis for the procedures described in Sections 6 and 7 below
for detrending the data and testinmg the goodness-of-fit of the MIPP model.

Thantem 4.1. Let A(t) be & nem-decressing right-esntinuwows fumction of tz0.
Then T,,7,5..., &re the timme-to-events is a2 MPP with l{lt} = A(t), 1if and

) ealy tf ri - MTI)"i - s('_rz),... ave the timse-to~evants ip a hemegencous
Poisson precess with rete 1.

The next theorem establishes an important preperty of the MWPP which we use
throughout the paper.

Theorem 4.2. Assume we have 3 WIPP cbeerved for a finad tims (O.tol. in which
B, "n evemts occur at times T <?,¢...¢T <t.. Then conditional oe having
t 1 72 a 0

OD’M n{>0) events in the '(O.tol. the ‘l‘“- are distributed as the order

statistics from a sample with distributfon functien

r(:)-ﬁ&%. Osese,,

and vhen A(t) 4o abesletely comtimmwess, peedadility demsity fumctiee

' !(t)-#%m. oscsz..

Thus, we see that (comditismally) ths trameformetise of the time axis is
' asactly the same 50 the probadility imtegral tramsform which is used to transform
& randats variable X with keows distribution fwmction F(x) into & wmiform
rendon wazriable on (0,1}, 4.6, 4 = FCE) 45 wmiform (0,1). This tramsfrrsmcion




is the basis for nca-parametric tests of distribution functions such as the
Kolsogorov-Smirnov test. Tho'mlogy explains why tests for a homogeneous
Poisson process (NFP) are similar to tests for completely specified distributions
obtained from imdependent, identically distributed samples; the primary diffev-
ence in the two procedures lies in the alternazive hypotheses which arise (see

Cox and Lewis, 1966, Ch. 6). Specifically, if we test that a random sample .
11.12.....Xn with waknown distribution function PF(x) 4s from a given distri- .
bution fumctiom Yo(:). then 1if Po(x) ¢ P(x:, the variudbles l.l1 ] ro(xl)..... P

Uu . ro(xu) are 1.1.d., bdbut not wmiformly distributed. However, if we test
(conditionally) thet n observed Simes-to-events Tl""'rn are from a NHPP

with given iategrated rate function Ao(t), then

(1) 1if the pricess is RHPP but Ao(t) is not equal to the true integrated
rate function A(t), then "l'i - Ao(‘l'l),....'r"‘ = Ag(T)) are 1.1.d.,
but not uniform (o.tol.

and
(2) 1f the process is not WHPP, then even if Ao(t) is equal to A(t),

the r;'-. 1=1,,..,n are ngt conditionally a random sample.

The above leads to very differeat considerations in the power of tests for
MIFF's and completely specified distributions, wven though the test statistics
are the samm (ses Lawis, 1985, for greater detatl). It is difficult in testing
for WIPP's with precedurss baved on the Sbove theorems, to separate out the
effecte of depertures from Polsson sssumptions snd departures from assumptions as
to the form of A(t). Nowever, since both HPP's and MMPP's have independent
count incremsats, tests for the global Poisson assumption ars based on this prop-
erty. In particular, the spectrum of ccunts (Cox and Lewis, 1966, Ch. 3) should
bs flat after detrending.

In the follewiag ssction we discuss eatimation of the MNPP rate {-.".."n
wsiag parvametric medels, both te describe in a global vay the rate funetion (as
opposed to the locsl smoothiag in Figive 1) and to datxend the data 20 as to
exanine the global Poissou asswsption. MNom-parametric rate estimation is also
briefly discwosed.

S. Zstimstion of the NEPP Rate Fwmctiom

3.1 Paramstric Model and Rate Estimation

Yollowing Cox and Lewis (1966, Ch. 3) and Cox (1972), an exponential poly- ’
nonisl rete function has Deen sssumad for the PP, 1.0, 1A(t) of the form

4
l‘e’ - M I a t‘). - < 'ogdlgoto.ﬂt‘ho (501) !

Thiz sesmmption ie convenisnt snd constitutes no real restriction sincc mmy

b
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continuous rste function cam be appreximated srbitrsrily closely by an
expiuential polynonial. The vesult follows frem results on ordinarv polynowmials
by taking logarithms; note thet A(t) 20 for any values of Bgeay vesesl We
descride now statistical procedures based en this model. PFormel tests for the
degree r of an empowentisl polywemial rate function are discussed in Section 6.
Nere & precedure is outlined fer the maxtmum 1iheliheed estimatiom of the coeffi-

clents (a.} of sn exponential pelynemia’. of fined degree .
The times-to-events T <‘t2 ...<‘l‘n in 2 fined time period and the random

1
varisble l(to) = n have a joint dmtt: function (Cox end Lewis, 1966, Ch. })
0
- A{u)du
9 n
f(t.l.....t ) = ¢ 1 a(e,), (5.2)
n 1
il
which, om substituting the rate function (5.1), becomes
t
r 0 1 4 L
-I u.l.-! up{z act }de, (5.3
f(tl.....t in) = g =0 0 =0
a
whery
...t:§.l.+t:. --°'oon.ro (SOA)

Thus, the log-liszelihood fumctiom, log L, the logarithm of the demsity at
the odserved values of the “andom variables comsidered as ¢ function of the r+1l
peramstess, is

R A I
log L{a_,a,5c0.00 ) = as -I axp( a t )dt. (5.5)
0°1 4 =0 L % ) 0 1.0 1 ]
It follows that the derivatives, known as the scores, are
t

o
-a—l-%t—k- [ ] 'h- Io tu .”(L u.t-)‘t, k= 0.1.....1’. (St‘)

The solutica (6.} te the system of Bys. (5.46), the scora vector, vhem set to
sero, ave the maxiwwn ithelfheed eottmster; of fe-). and can be deternined
rumerically by Newton-Rapheen fterstion. The wxmertical procwdire werks well pro-
vided that sn initfial vecter suffictently wear the selution is mowm. A tvo-step
wethed for obtaining such an faitial valus has deen preposed by NacLesm (1974).
Ris precedurs consists of finding an erdinery pelynsnial reprasencation of the
seam degree as ) (t) heving the cheerved sums of powers (-.} for ite "wements.”
M cxpongutial pelynsnisl appreximetiaon te this pelynemial, obisined by taking
logarighme and sgain fitting 'wasats, serves #s the initial wvalue for the Newtoe-
Raphoon itsratiss. This Macless procedure hos been inplemsnted ia APL and uaed

it - _




to estimate the coefficients (6.). The procedure apyears to work well for
polynonials up o degrse 8. Rstimates of the covariance matrix ~ the maximum
1ikelihood estimstes ({a_) are obtained from the second order partial deriva-
tives of the log-likelibcod equation vhen evaluated at the estimates parameter
values.

Once the appropriste degree of the polynomial is obtained by the methods of
Section 6, the rate fwmctien with the msximwm likelihood estimates for the a's
can be plotted to obtain s picture of the rate function. The procedures are
clearly sensitive to the WHPP model; for thie reason, we discuss next non-pars-
mtric kernel-type estimstes.

5.2 Non-paramstric Kermel-type Rate Estimates
Theorea 4.2, vhich relates (comditionally) the rate function 12(t) in a NHPP
to a density functiom in (o.tol.

)
f(t)'m;ﬁ-(ﬁ. OStSto.

suggests we could use nomn-parsmitric probebility deasity function estimates to
estimate rate fumctions, at least in NNPP's. The procedure chosen is the nom-
parametric kermal-type density estimate introduced by Rosenblatt (1936). Briefly,
the procedure to estimate f(t) from a random sample ‘l'l.rz.....Tn is as
follows:

Define
t~T

(© = s ,zl W) -

vhare W(u) 1is a boumded aon-neagative integrable weight functioam with

r W(u)du = 1,

-

and b(n) 1s s pesitive handwidth functiom which tends to mero a8 n-+e, bdut is

such thet o(b(n)) = 1/n. Thus, we might heve b(a) ~ .-1/1. for enemple.

Nete thet for a given set of chosrwatisns, all estimates of this fere are
thenselves density fumcticus, i.e.

i.(:) 20, r t (e =1,

and since the "3" asre rendem veriables, E.(t) is a ecntinueus paremmter
stechastic precess, but clesrly nen-statisunary. Altheough this type of demsity
cotimats dses et Toguire parametric ssewmptions to he made sbout f{t), the
bondvideh fumction and herwel W(u) wmuet be chessn. In this papir wu have
alrcedy chesss W(u) te be & trissgulor fumetion sed b(a) te bo 1.25/a}'2,

7




- * e AL R

Sadienn

!
{
|
|

The cenditional structure of the JMUPP mekee the estimetion of the rate
functiom A(t) similar to the non-parametric estimetion of the demsity function,
but with twvo differences.

First, care must be taken with normslization of the rate function estimate.
This {s because the procedure above estimates the rate normalized by dividing by
A(to)- A(0) and \(to)- A(0) 1s unknown, For a NHPP this is the mean of a
Poisson varisble which is estismted by n, the number of events in (O.to].
Using this estimate for A(to) = A(0) we then get, as a rate function eatimate,

-

. : 1 (Y o
Meinatg) = 0 (6) = TS (121 “smm) -

This will be modal about the usual estimate of the rate ) 1in a homogeneous
Poisson process, which is estimsted by i = n/t,. The second difference is that
when the demsity function estimation technique is applied to rate function
sstimation there is no asymptotic justification for the procedure.

6. Tests for the Degree of the Exponential Polynomial Rate Function

6.1 Theory

The analysis of trends in a NHPP, based on the assumption of an exponential
pelynomial rate function, is discussed in Cox and Lewis (1966, Ch. 3), and Lewis
(1972). 1a the latter paper, formal tests for the linear and quadratic terms in
the emponential polywomial are derivad. Ue use here a direct axtension of these
matheds to yield tests for higher degree terms.

There are a mumber of possible hypotheses which can be tested when consider-
ing the exponential polymomial rate functiom

r
"
A(t) = cn(lo at ) . (6.1)

(1) Soms givem suboets of the r+1 parameters are zero. Asymptotic tests
for this hypothesis are based on standard maximum likelihood arguments;
soe Oox (1972) oad Meclesm (1974) for details. [Resentially the maximum
valwes of the likeliheod fumctiens wader the two hypotheses are compared;
the diffaresce has (asvuptotically) & x? distributies under the mull
Wypethesis with mown dagrece of freedsm. The problem with this test 1o
phoncmsnsiegical; ene ssldem knews @ piori which subeet to test.

(2) It 1s poasidlie to ask which subeet of the r+1 parameters gives the
best (west parsimsmiows) fit to the data. This has boem worked out for

ordinary, neraal theory limear pelyasuisl vegression (Deniel amd Wood,
$971), bt st fer tha MPP cade.

(3) Mm altornstive 16 to test for successive imclweion of highar ovder
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polyncmial terms. This is reasonsble if the exponential polynomial is
being used in a purely descriptive way, and the statistical theory is
known. Strictly, we test that, for some k21, nofo,alfo.....akﬂo,
am-o.am-o.... (The analogous normal time series case is considered
in great detail in Anderson, 1971, Ch. 2.) A possible drawback would
occur wvhere there is a cyclic effect, e.g.

A(t) = up(ao-O-kun (uotﬂ)}. (6.2)

The series expension of un(wot+6) gives a polynomial with alternating
zero and non-zero cosfficients for powers of t 4f the phase angle is
appropriate. This in turn is tied into the starting point of observa-
tions.

We develop the procedure now for case 3; we have used it in an ad hoc msnner
by testing until two or more successive sero coefficients occur. PFor a MHPP with
exponential polynomial rate function

A(t) = oxp(jo a-t-) .

the 1ikelihood of n events in the period (o.tol st times t1<tz< vee €3, is
4 ‘o %
L(8gs08ys00050,) = oxy{lo a8," Io m(g a,t )dt}. (6.3)
vhere
'
" 121 ty m=0,1,...,r. (6.4)

The obuervetions {t )} eater Bq. (6.3) only through (“'z‘p:‘:“---zti)-
and it can Y shown from the exponential form of Bq. (6.3) that these are a set
of sufficient statistics for the set of parsme.ers BeGys0gceecsl . There is,
however, sven mors structure and & formsl test for the rth degree term in the
exponantial pslynomisl raca Iwmction con Vs based ea the ides thet four amy given
r md o, (l.xt‘....,{tr’l) are a set of eufficiest statistice for
BgeBysesseB 1y 1.0, the distribution of [t:. gives l.{ti.{trl. is independ-
eat of | PORETYL W for all valwes of #,c This is convenieat sisce ve weat to
test o © 0 agaiast o, $ 0 regardless of the vaiues of L VTPRNT NPT I 2

they are wuisanes paramsiers. %

.
Demeting t,/ty by u, amd —3 by c,, atast for o 1is them based ou

the statistic e, and 1ts wull hypochenis cemditienal distribuzion, given

ByCpoocsel g+ This distriduiion iz not knewk for small to {eguivalently small

). Nowsvery, asymptotically €ge€aueene md :, will %u joimtly normally




distributed with mean value snd variance that can be obtained from properties of
the uniform distribution. Ve assume a wniform (O.to) distribution for the
t,'s since (n.ftl.....ztrl) are a set of sufficient statistics for
00'“1""'“:-1‘ so that assuming these parameters o have value zero does not
affect the final result but does simplify computations. Then, also asymptoti-
cally, the conditional distributtion of Cpor given NeCysecenC ) is normally
distributed with mean My " !(crﬁcr-l.cr-z.....cl,n) snd variance n: -

Var(crlcr_l.....cl.n) obtainable from normal theory.

The normal theorvy results are that to test the nrull hypothesis HO:

ur-o.am-o..... but “o"”’qr-l have any value, compute the statistic

U = K (5.5)

and test uba mean O, varisnce 1 normal deviate, i.e. accept HO .t, say,
a 52 level if lUrI $1.96. Expressions for u, and o have been derived by
techniques of symbolic mathematics and the matrix operations shove. Details of
the derivation will be reported elsevhere. The case r=1 {s discussed in
detail in Cox and Lewis (1966, Ch. 3).

6.2 Applications to liigh Level (N} Date

e discuss nev the applicatien of the parametric rate fumction testiag schems
of ths previous subsaction and the rate estimstion procedures of Section 3 to a
mete microscopic examinetion of the tramsection initiation process duriag a
period of high system activity for day 2. This high-activity period is, in
Pigure 2, frem approximetely t = 73728 to t = 85661. Ue will also use the
kernel-type density estimate of Section 5.2. We do this most particularly
because the NHPP assumption has, st this point, not been validated. Overell
characteristics of the sample s : shown in Table 2. (The sample momen s given
there should be used only as a guide; they are mesaningless {f the data is
tahomoge eous . )

The fin: quostion to be addreseed is whethe: the data cam, in this relative-

1y sheont high-activity peried, be comsidered to be approximstely homogensocws or
statiomary.

Tiguee 3 ehexe the cumnietive sumber of toansactions . ‘tissed swring this

time peried. The departure fres linserity 1o fairly gress; sssuning a homsgenecus
Poisesn procens, the Kolmegorov-Smirwov msecurc of tke departure from linesrity
is

B =/a swp ;r.(a)-u! , (6.6)
Ogusl
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number t, 's S ut

r (u) = 61‘ 2 osusl. 6.7)

This 18 the wniform conditional test in Cox and Lewis (1966, Ch. 6); conditional
on the observed value llt = 1999 of events in (o.tol it has the usual

Kolmogorov-Smirnov -mu?tc diecribution with upper 1X point 1.628; the observed .
value is 2.389, which is an event of vary small probability under the Poisson
assysption. .

These probabilities could be grossly in error if the data was more dispersed
than under the Poisson assuaption, vhere by dispersion we mean either that the
standard davistion of the intervals betwes. events or the counts of events in
long intervals is larger then would be expected under a Poisson assumption. (The
tvo are not independent.) Thesa dispersions sve usually measured by first normal-
ising to give tha random variable Z mean one; for intervals, the result is the
coefficient of variation, i.e.

o 8:8.(2) _o(%) . ., 2
c(2) R(2) %’Lz'%' °(l(2))'

To exanine the diepersion of the intervals in the data without ccafounding
it with the apparent inhomogeneity, the 1999 intervals wers divided into 10 non-
overlapping sectirns. The sample characteristics for each intervel are shown in
Table 3. The means within ssch group could be used to test for inhomogeneity,
but wore importantly the coefficisnts of variation, skewness and kurtosis, which
for expomentially distributed intervals have values 1, 2, and 9, renpectively,
give us rough measures of departure which are sufficient tu validate the tasts
for tremd.

Table ) gives no indication that the sample characteristics of the intervals
of the »rocess depart from sm exponential distributiom (although there visy be
correlation batwesn intervals). The sample coefficients of variction ars all
aromnd one, as is the sasple coefficient of variation for the whole set of data
98 given 1ia Table 2. Ve, therefors, proceed to uss techniques based on the NHPP
medel t0 eamming the trend 1n wore setail; further tests of the Poisson assump-
tiom for this section of data are given in Section 7.

Tuble 4 gives sussessive tes:: statistic valwes for the tests for null
paramsiere in the awpmential prlynemiel wodel ’

A(t) = m{i a_t'}.

This procedure vas describad ia Section 6.1, and as remarked there, is used
fairly informally. A formal application would suggest stopping st r=2 and

P

1

mem@ Cvmsa—




accapting a log-linear model

a. da.t
AMt) we 0 1,

but the test statistic for s U3 = 5.3138 1s significantly large, and the
. tests have been comtinued up to r=9, For r=7,8,9, the test statistics are

all small, well vithin the SX limits of 11.96.

Table 4 also gives the valuss of the log-likelihood function evaluated at the
maximum likelihood estimates. The log-likelihood must increase as more param-
eters are added; the diiference, when suitably normalized, is used to test
(asymptotically) for inclusion, or exclusion of parameters (see MaclLean, 1974 or
Cox, 1972), and is known asymptotically to have a x? distribution. The abso~
lute differences, §, 3iven in column three of Table 4 are clearly correlated
with values of the test statistic Ur’ e.g. the large jump of 13.4 when includ~-

ing a, in the likelihood goes with a large value of U

3 3

The results of both the U ¢ statistic and the likelihood function valuec
suggest that an exponential polynomial of degree 6 will fit the data very well.
The maximum likelihood estimates of the parameters and normalized values are
given in Table 5. 1In computing these estimates in an APL program using Maclean’s
starting procedur¢, it is necessary td use normalized time t/t0 * u and normal-

ized paramsters a; - a.t; to avaid scale problems.

The resulting estimated rate fumction A{t;a) 4s plottad for the high-
activity period in Figure 4. The data gives an intimation of a growth plus
cyclic effect of fairly long period. A model for this could be

A(t) = up(aohlthz sin (uot)};

this 1s linear in ihe parameters if “g is fixed and known (e.g. time of day
effect). Moreover if the Teylor series expamsion for the sine function is uced,
one has sa exponentisl polynomial with even index parameters (beyond zerv) equal
to gero, {.e. 8, "0, " " +++*0, This 1s the reason why the test for the order
of the exponential polynomial imdicated that we should have stopped at r= 2,

snd thes gave an indication thet 3, Wes non-sero. Cyclic effects are more
casily hondled via spectral methods; we retura to this in Section 8.

t Ansthar way to exaxins the trand 48 to wee the kernsl-type local emoothing
technigues of Section 5.2. Although these have breader applicabllity them the
. particular glebel fitting under & WEPF acsumption, they suffer as in all nea-

parasmstric density estimstion (spectya, rate fumctioms, probadility demeity
fumctisns, intensity fumctione), frem the need to choose s suitsble kornel and
bandridth. Ia practice, it is weually reasenadle to take & fow d4ffervnt
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bandvidths and, dy ays, judge when a balance beiwaen emall variability and small
bias is achieved.

A kernel~-type rate function estimate ;(t;n,tc) u nfn(t) with bandwidth
b, = 1.25/a1/2  (chosen in the sbove way) s shown in Pigure 5. It again shows
poseible oscillatory behavior in the data, or greater digpersion that we would
expect under a NPP sssumption. Confidence bands for this type of estimate are
availadle (Bickel and Rosenblatt, 1973, Lewis et al., 1975), but we have pre-
ferred to give, in Figure 6, an identical smoothing of a simulated homogeneous
Poieson process of rate A = n/to. Comparison of Pigures 5 and § graphically
illustrates that the data is not a HPP. The lack of gross depertures from
Poisson-type characteristics for the interval structure was discussed above;
over dispersion, rather than a trend, could give the large fluctuations in the
rate sstimate.

In Figure 3 there is s large peak at about t = 3000; we have exsmined the
data for any cbvious amomslies at this point (e.g. v2ry regular intervals) but
have found nome. In Figure 7 we have overlaid the estimsted integrated rate
function A(t;a) (exponential polynomial degree 6) on the empirical estimate of
the integrated rate fumction which is just the cusulative number of events in
(0,t) &s a function of t.

6.3 Applications to Low-Activity (L) Data

wa &ov give, in abbreviated form, sa amalysis of low-activity (L) data, which
is similar to that given for high-activity (i) data iu the previous section. The
low-activity data is the period beyond ¢t = 145152 fa Pigure 2; the data is for
a time pericd of spproximately 1.15 times as long as Icr the high-activity (H)
data, aad only 1258 events (transsction initiations) occur. Owerall character-
istics of the sample are shown in Tadble 6.

An immediste cdeervation frem Tsble 6 is that the coefficieat of varistion
of the intervals is Ligh relative te the value ] for ax ewponeatially distributed
rendon variable., To emamine this furthar, five sictioms of the data were takea
and the interval chevecteristice which were computed are given in Table 7. Rach
section of data comtained 231 chesrvatiens. It fs fairly spparemt that the means
are docressing (vate s incressiang) over the Zive sectioms, the successive
differences, en ths basis of the estimsted standerd deviations of the mean esti-
mates, being sbout three standard deviations. BKowever, all the coefficiemts of
variatisn, ceafficients of showmese, and kurtosis are largsr thas the correspend-
ing veluss for & Podseen process.

The firet cmmciusion frem the ~“ove asalysis is that peramstiic detremding
for this low-acsivily 4048 muet be dove with cars; wa veturs in Saction 7 te
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consideration of details of the structure of the low-activity process, but since
the intervals are more dispersed than for a Poisson process, there is consistency
with a cluster p.ucess hypothesis (lLewis, 1967, Vere-Jones, 1970). Note, too,
that a cluster process vill look more and more like a Poissom process as activity
increases and this is consistert with the finding that the high-activity data
vas approximately Poisson.

Returning to the trend analysis, we show in Figure 8 the cumulative number of
events in (0,t] as a function of t, which is a non-parawmetric estimate of the
integrated rate function (dotted curve). It is by no means linear, and the
Kolmogorov-Smirnov test statistic (see Eqs. (6.6) and (6.7)) has value 6.048.
This, we would surmise, is significantly large even if the Poisson hypothesis

were not true.

In Table 8 we give the successive test statistics l" for successively wore
complicated exponentisl polymcwial rate functions. There is a very definite
overall increase in the rate, as msasured by Ul = 11.696, and again a phensme-
non where Uz. U‘ and U
that the tests are significant out to r=10; 1t was not possible, even if {t

o T ot significent. HNowever, it can also be seen

were desirable, to caxry out the computations any further. The meximm log-like-
liho~ds are also given in Table 8. Since the data is non-Poisson, the likeli-
hoods must be Interpreted very carefully. it is conceivable that using a likel:-
hood baned on a Poisson prucess weuld force the rate estimation procedurz to fit
the ir.egularity due (o overdispersioa by added local wrinkles in the rate func-
tion. It is, in fact, slways difficult to discriminatc between inhomogeneity and
over-dispersion, bet it is almeet certaim that it is the over-disperaion which
gives rise to the high degree of the fitted polynomial for this data.

With the above qualifiers in mind, we have fitted am exponeatial polymomial
degree 8 to the data. Dagrue 8 was chosen becawse of computational limitatioms.
The integrated rate functiom A(t;a) is shown overlaid om the mom-paremetric
estimsle in Pigure §; the eighth dagree emponential polynonisl rete fumction
f(t;a) with estimated paramsters is shewn ia Figure 9 (solid curve). Again the
outstanding feature is the cyclic nature of the rate, superposed on s generally
incroasing rate.

The herasl-type estimster tm..c.) of the rate fwnction is aloe showm 1
Pigure 9 (dotted awrve); it 10 sloar fir staparing it te the empenestial poly-
sonial rate function estimnts that the prosadure vedng the WIFP asswption weks
well despide the appasunt depitituves fvem & Feotesen precess; if amythiag, there
is s fatrly clesr velidstion of tin vesuits ia Tohile 8 thet = empsmsnciol pely-
noaisl rate fmestion of dagves higher than 8 iz 2eaded.
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1t is also of (nterest to aote that the estimated parameters 1 with even
index r are nagative (Table 9), a pattern similar to that for the high-activity
date shown in Teble 5, vhere a,, o,, a, #ad a, are negative, the remaining
estimated S-'s being positive. This is sgain illustrative of the cycli. offer!
in the data. It is difficult to compare the magnitude of the estimates . the
tvo periods since, if thvware were a cycle in the data, the relative phase at the
cegioning of the period of observations would influence the parameter values.

6.4 Applications to Complete Dsys Data

In Section 2 a very rough smoothing produced the smoothed estimate of the
rate of tramsection initiations given in Figure 2. It is of interest to apply
the global smoothing based on a NHPP assumption and an exponential polynomial
rate function to the complete days data, even though it is not Poisson at low-
activity, so as to have a formei, easily implemsnted procedure for this type of
data vhich does not imvolve a choice of smcothing fumctions and bandwidins.

Over the vhole day 25,076 transaction imitiations were observed; details of
the testing for the degree of the exponentisl polynomial, and the values of the
estimated paramsters are not tabulated hare. Briefly, the tests up to r-=10,
except for r=2, indicate that the parameters are aon-zero. Computation of the
momsnts for the U"l only up to r=10 imposes a limitat)-. an the fit; more
iaportantly, estimation of parameters in an exponentisl pol - . fal for an emtire
day's data is mnot fessidle for degree greater than 9. Thus. .n Figure 10 we have
overlaid on the rate estimste for day 2 dats given jin Figure 2 an exponential
polynouial of degree 9. The agresment betweem the (wo estimates is good.

e would expect thet as the degree of the: polynomial wveat up, the local fluc-
tustions for the high and Lk ~activity sections would appear. The computational
preblems, however, are horreadouws; it would be simpler to connect up polynomial
rate function estisstes within smaller, contiguows sectioms. This has not been
pursusd; i» perticular, it is not clear the polynomials would commect smoothly.

The everall conclusion of this section i3 that the data is grossly msu—~hosog-
easus posnibls resssms will be discussad in Sectienm 8.

7. Tests of Pit of the WIFP

In the discuseion of Section 4, it was noted that by tramsiorming the ohser-
vatices ia a NP vith known rote funotion oo thet the timss~to-events becoms
ri-l(‘rl).t;- Aaz)..... the transfovasd povnses is & homsgensous Puisscm pro-
osts With wait vate fusetisn. sveswer, by emditiening en the awsber of ewvem:s
ia (O.Cn) - (I.A(to)). the preblem of testing for & MIFP can d¢ reduced to
tasting, fer venn alternctives, that the CimSs-teo~ovlin.w ste stder statistics

frem & wniforn . imtribetion. Other Sests ave given i Cox smd Lexts (1966, Ch. 6).
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The trsnsformation is showm in Figere 11.

Testing for a NNPP with unknews rate function is more difficult. The analo-
gous problem in regression analysis is to test the usual agssumption that the

residuals t:i in an sdiitive wedel

Y‘ - t(u_ﬂ_)*ci

ars indesendent normal random veriables with mesm zero and constant varisnce o<,
The problem is that after estimating the parametric mean value function, the
residusls ¢ = vi-;(x;é) are no loager independent and normally distributed
(e.g. see Damiel amd Wood, 1971).

An snalogous procedure swggestod by Lewis (1970), using Theorem 4.1, is to
estimate the parameters in the parametric rate fumction A(t;a), which we dennte
by A(t;a) or A(t), via msaximum 1ikelihood and then to detrend the process by
transforming the proczss to obtaia 'l'i - ﬁﬂl;é)' ri - ﬁ(T,ré),... We would
expact the departures frem a hoaegavesus puecess to be r4ll if the number of
shearvat ions is large and the awmber of pu".nn o.all, end, of course, if the

completely specified WIFP is cecrrect.

Very little is known about this procedure. Note, however, that if the uni-
fora conditional test is weed with (conditional) Kelmegorev-Smirnov statistics,
the pesbien is thet of Kelawgovev-Sairaew twets of fit after parameter sstimstion,
Lilliefere (1967, 1949) hae investigated this for expeneniial and normsl random
variables; ss expected, tne estimated distributiom fumction (integrated rate
fuaction) is. en average, closer te the empirical distridbution function (empiri-
cal istegrated wate function) them witheut peramster estimstioam. More recent
work on Xolesgorov-Sairnov tests with estimsted pazmmsters is net yet deweloped
for our purposes. Tests for a howogenseus Poissen precess based on spectra (Cox
and Lowis, 1966, Ch. 6) sheuld be less sensitive to paramster estimation.

o sow apply these astheds e the low snd high-ectivity periede in an infer-
asl samnes, velying sere on puspacties of the intarwals and the count epectia )
then on the rats fwetien.

7.1 High Activity inta - Tust fer NEN?P

The fellewing diocussion of the walidicy af, or dapartuves frem, the MEY
ssdel for the high-~estiviey data f» dond alter tsamsfoomtion of the deta em the
mshedelagy in Con and lavie CMG), whink 46 japbenssted i the BARE-IV pregras.
It 3o highly teshnicel; euwr discunsion is sbbrevisted snd cun be skippad by the
seader inteswriad prinamily in the sesults of the data amslyeis. Beiefly, the
PP is fowmd wsi~g the Jutsmniing tsrhnigume to be aproximately cervact. Devis-
Lieaw scswr Decsme of ax apravest Inkibdtiss effect whick reoxlts in fover wery
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short intervals than would occur under the NNFP assumption.

To proceed with the anaiysis of the detrended high-activity data, in Table 10
we give results of several tests for dependence of intervals ir the proceas. The
normalized, estimated first serial correlation coefficient (n-l)uzﬁ1 has &
value =2.5532, higher than the 1X level of the normal distribution, while the
tests for independence based on the cumulated periodogram (raw interval spectral
density estimate) using the Kolmogorov-Smirnov statistic D“/2 and the Anderson-
Darling statistic ":/2 (Cox and Lewis, 1956, Ch. 6) are just significant at a
1X level.

We note that the smoothed interval spectral density, as computed in che
SASE-VI program, shows no characteristic departure from flatneas, and serial
correlations beyond the first are small. Thus, there appears to be only a resid-
ual dependence in thc intervdls, possibly due to the detrending or a residual
trend.

Similarly, the astimated spectrum of counis (Cox and Lewis, 1966, Ch. 5;
Levis, 1970) has no significant deperture from flatness, showing that a Poisson
process is a tenable hypothesis for the detrended data and consequently a NHPP
hypothesis for the original data.

Nowever, some very subtle departures from exponentiality appear when one
looks at the interval properties of the detrended process. These are given in
Table 11. In the first place, the estimated coefficient of variation of times
between events, é(x') is smaller than 1. Estimated from five sections of the
data, it has value &(X') = 0.9673, with estimated standard deviation 0.0775,
vhich is too large to give conclusive evidence of departure from the value
C(Xx') = 1 for a Poisson process.

. “

This artifact of the data shows up clearly in an esatimate of the intensity
function, ‘g(t)' There is a definite notch at gero in the estimate ;f(At)
(Cox and Lewis, 1966, Ch. 5). Thue, there are only 720 observations within A
of the origin, and subsequently the estimate is essentially flat, never deviating
in any interval A from the modal valua of 1,000 by wmore than 50.

Checking of the transaction initiation process showed that there was, in fact,
s sinimum time betwsen tramssction initiations imposed by the system. A simple
msdel of a Potuson precess with blockiang (Type I counter) is sufficient to
accomt for the deviations from a Poisson process.

Another artifact in the data appears in the fact tlat th: e:timated coeffi-
cionts of skawneca and kurtosis, ;1(1') and ?2(X') for the data (5.2363 and
68.3916 in Table 1l) ave large compared to the Polsson procees values YI(X) = 2,

22
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YZ(X) = 9, These are due to occasiohal very largs times between trsnxaction
initiations; these seem to occur in very short periods of high variabilfity of
times between transaction initiations. This shows up in Figure 5 as the spice
at about t = 3000.

No explanation has been found for this departure from the NHPP; it could be
due to special procedures in the use of the system but in any event is too minor

to affect practical use of the WHPP model in evaluating such a system.

7.2 Lew-Activity Data - Test for NHPP

The low-activity data, after detrending with ap cstimatcd rate funciion
X(t;é) which is the integral of an exponential polynomial of degree 8. to give
Ti - ﬂ(Tl), Ti = ﬁ(Tz),..., shows a very definite indication of departure from a
Poisson process. For C(X'), {1(X'). Qz(x'). we obtain values 1.475, 4.1233,
21.716, respectively, and these are too large to be consistent with a Poisson
hypothesis after detrending.

The data also shows considereble interval correlation. A detailed analysis
will rot be given here, especially since the detrending process is not completely
valid. However, as remarked earlier, the low-activity data after detrending is
consistent with a cluster process hypothesis. We emphasize that "consistent”
here refers only to matching of gross characteristics of the observed sad theo-
retical processes; there is no known formal way of verifying a non-homogensous
cluster process hypothesis.

8. Discussion

The outstending feature of this data is the oscillatery nature of the rate
function in both the high and low activity periode. Such oscillatory behavior
is ususlly investigated by spectral amalysis, but this,of course, is applicable
only to stationary data. The data shows s gross time-of-day effect superposed on
the oscillations, and it is sot simple te filter this out, most particularly
because the period of the cecillation is long, 1.e. low frequency. It 1is, there~
fore, likely to become mixed up in a spectral analysis with long term evolution-
ary (time-of-day) treands.

Neverthaless, an attanpt wvas mede to exanine the cyclic effect in time
pariods ¥ and L Dy

(a) detrending (Section 7) after fittiag sa sxponentisl polyno~ial of
degree 1;

(b) computing the count spectrum of the detrended dats using SASE-VI.

The rssult of these spectral sanolysis showed generally flat spectrs, with
paaks at a low frequency corresponding to a rough guess st the frequency of the

—
R _




o s .. - N

cycle, wvhich was obtained from Figures 4 and 9. There seems to be no evidence of
a finsed frequsncy cycle; this would show up as a sharp pessk in the spectrum.

The cycles obeerved in this exploratory analysis of a single series of events
in the system bring up some interesting, difficult, and as yet, unresolved
mthodolopical and phenomenological questions.

(1) The global techniques for rate function estimstion need to be extended
to larger sections of data as the best overall way of looking at this
data. The most practical way of doing this would appear to be to apply
the technique to non-overlapping or overlapping sections of the data.
The prodlem of joining sections might lead to (exponentisl) spline
function teciniques; new problams of testing then arise.

{(2) The question arises as to vhat causes the oscillatory or cyclic effect;
in the Iantroduction we pointed out that the transaction initiation
protess is an output Or response process s0 that it is presumsbly driven
by other processes associated with the system (e.g. message arrivals).
The isplications of this fywam a methodological point of view are twofold:

(a) The deterministic rate function estimsted in previous sections
might be considered, at least in the micro-aspects, to be purely
descriptive. There is a possibility that vhat we are seeing is the
effect o‘ congestion in the system (e.g. DL/I component), and the
dats mey perhaps be best described by something like a self-excit-
ing process (Navkes, 1972), which is the point process analog of an
sutoregressive system., This would not be inconsistent with our
findings, aince (linear) self-excitimg processss are special types
of cluster processes (Nawkes and Oskes, 1974). One problem with
the above interpretstien of the cyclic effect {s that we would
expect more os:illatory effect during high activity periods than
during low activity periods. Nowever, just the opposite is true.

(b) Since the observed transaction initiatiov procese is driven by
other processes aseociated with the system, a fuil description of
the bshavior of the system would involve an attempt: to corvelate
the tramsaction dnitiatien precess studied im this peser with pro-
cesses at other points of the system. In particular, it would be
of interest to corrslete the tramssction imftiation process with
the process of message srrivels from termisals. It would also be
desirable to correlate the tramsaction iaitiation process with tl.e
successive respoass times experienced by users of the system.

There are sany msthodological probless in asalysing very mon-statiunary
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systems, in particular the problem of estimeting correlation and/or coherence.

For the present case, the fact that the Ligh activity data is close to Poisson,
although non-homogeneous, should make development of the necewsary methodology

simpler. The work of Cox and Lewis (1972), and particularly Cox (1972), should
be useful.
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Ona-Way ..821ysis of Varisace for Counts.
Transaction Initistion Procsss for Day 2.

Counts in Maan Counts
Group | 4800 Unit Time | In Unit Time - A2 A
i Intezvals Intervel xi oi g
1
i 1034 0.2154 4.5638 5.6635 2.3798
2 1742 0.3629 6.5178 1.6084 1.2682
3 2455 0.5115 7.6421 3.5629 1.8876
4 1877 0.3910 6.6108 3.8181 1.9540
5 2841 0.5919 8.3752 1.4157 1.1898
6 2925 0.6094 8.5412 0.6898 0.8305
7 2446 0.5096 7.7840 1.0866 1.6424
s 1012 0.2108 4,3684 6.8893 2.6248
9 1910 0.3979 6.7616 2.5957 1.6111
10 1671 0.3483 5.9692 6.8401 2.6154
11 1988 0.4142 5.7364 4.9643 2.2236
12 1860 0.3917 6.6715 3.0682 1.7516
X = w Zu
R =60.5420 2481 £2.1826
§, /1246, 7118 §:8§/12~3.5152
9§ e .7126
1
ﬁg wl, 3085
A ¢ 1
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TABLE 2

Sample Characteristice of Times-Between-Events.
Transaction Infitiation Process for Time Period H.

initiations

n number of transactions injitiated 1999
to period of observation 11936.6066
X estimated mean time betveen trang- 5.9698

sction iniciations
é(x) astimated coefficient of variation

of times between transaction initistions 1.0533
¢1<x) estimated co:{ficient of skewness of times

between trai.:action initiations 6.7399
Qz(x) sstimated coefficient of kurtosis of

timas between transaction initiations 107.7282
X-‘x veximum time batween transaction

initiations 133.0488
xmin ainizum time between transaction

0.0152
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TABLE 3

Sample Characteristics of Timas-Betwean-Events.
Transaction Initiation Procesg for Ten Sections
of Tise Yaried K.

eanple e.4. of coaff. of ~paff. of coeff, of

mean ;sun variation 8 288 kurtesis
Section X @ {x) L0 ;0
1 7.46453 €.5561 0.2430 2.3096 11,4548
2 6.0584 0.3377 0.8328 2,2653 12,14%
3 5.4876 0.5424 1.3916 7.7614 84.5585
4 6.1348 0.3822 0.878% 1.1%01 3.9449
3 5.0611 0.2854 0.7954 2.9991 18.6264
s ©.8133 | G.4905 0.5708 2.2851 9.8977
7 7.5952 0.777% 1.4440 8.0075 §2.8598
] 6.2456 0.3831 0.8652 1.8087 7.1174
) 4.2847 0.2425 0.7984 1.6654 6.6807
10 4.5566 8.2513 6.7750 1.7533 8.1512
{msan 5.9708 0.4137 0.95%8 3.2028 25.2341
8.4, msan 0.3591 0.05056 2.8783 0.7952 10.4197
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TABLE 4

s of Maximum Log-likelihood and Test Statistic in NHPP
Exponential Polynomial Rate Function for Times Betwien
Transsction Initiations for Time Period H.

degree of Baxisum absolute test

polynomial log-1ikelihood difference statistic
r pax log. L § Ur
i ~5563.8 3.8387
2 -5562.8 1.0 1.5727
3 ~5549.4 13.4 5.3138
4 ~5548.9 ' 0.5 -0.4437
S -5539.9 10.0 -4,2081
6 -5537.0 2.9 -2.6188
7 ~5536.9 0.1 0.0188
8 ~5535.8 0.1 0.1211
¢ -5536.8 0.0 0.2038




TERZ 3

Zotimatod Valwes of the Cesffiziosts (& )} in WKFP
Exponantisl Polynomisl ¥ate Function (Degfes rwé) for
Timas Betwssn Transsction Initistions for Tise Peried H

a &- 3-1: o’
0 ~2.1381 -2.13¢1
N 1 3.183230°" 3.75%
} » < 2 -2.2607x10” ~32.2109
- | 3 1.0211x10730 173.6560
{ 4 -2.1286x10" 14 -432.1270
s 1.6331x107 5 468.4494
¢ -5.2684x10723 -181.2609
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TABLE 6

Semple Characteristics eof Times-Between-Events.

Traasactioa Initiscion Process for Time Poricd L.
r‘

n sumbar of trangactions initiated 1258
o pexiod of observation 13819.51927 |
X estimated moan time velween trars- ]

sction initiations 1¢.9809 !
8cx) estimated coefficisnt of variation of

times between transaction initiations 1.6563 i
91(8) estimated coefficient of skewness of

times betweon transaction initiations 3.7524
?z(x) estimated coefficient of kurtosis of

tinss betwsen transaction imitiations 18.9686
X__ maxvimm time hatuson tramsaseio
i initiations 145.4241

i

xuu minimiz time betveesn transaction

initiations 8.0263 |
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Sswple Chaxacteristics of Tizmas-Betusen-Ewentoc.
Trangsction Initistice Procese fer Fivs Ssctices
of Time Pevisd L.

sample
asan
X

g.d. of

&

coeff. of
variation
x}

coeff. of |

: vﬂlm |

coeff. of
knxtosis
YZ(X)

e.d. mogn

18.4683
12.5333
9.2378
8.2978

6.2124

10.9459

2.12%0

1.6760
1.2289
0.9318
0.9430

0.3806

1.0321

0.2116

1.4378
1.5534
1.8015
1.8005
0.9706

1.4728

0.1386

2.2573
3.5112
5.0123
£.22%0

3.7494

3.7519

G.44932

7.9515

16.6713

20.8242

4£.0867




. _Mm

83 8

Valwes of Meximum Log-Likelihsed and Test Scatistic im MEPP
Exponestial Polynomial Rate Puaction for Times Betwaen
Trer-oction Initiatieas for Tims Period L.

. mexines shselute T
degres of polynomial log-iikiinod |difference | test statistic
4 mex log L [} U e
) § -4203.7 11.6960
2 ~4$203.6 0.1 1.2031
v 3 "‘zwo‘ 3.2 "20‘203
4 -4£199.2 1.2 o e17¢
5 <4191.0 3.2 =3.6703
(] -4190.2 0.8 . 0.4564
7 -4187.4 2.8 -2.3417
8 -4174.4 13.0 -$5.0208
2 —— —— -5.9505
10 — — 2.7145
9 i
3!
4 s
3i rq
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Sszizated Values of the Cosfficienmts {4 } ta WHIP
Folynemisl 2ot Pumction (Dogfee T=8) for
Tisos Betwsen Tramssactica Juiciztieus for Time Period L.

- G' Q.to'
0 -2.4784 -2.4784
1 $.75750™4 7.9566
2 -2.4040x20"% ~59.1066 |
3 1.6908x10"° 4462.4093
4 -5.1476a0°33 ~18774.5509
5 8.2145x20" Y 414044332
" 7.108a0 2 499910656
. ? 3.2520a0 2 31307.4980
8 -5.9823x10" 30 -7958.1157
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TABLE 10

Tests for Dependence on Serial Number and Dependence
Petween Intervals. Detrended (NHPP Exponential Polynomial
Rate Function of Degree 6) Transaction Initiation
Process for Time Period H.

aumber of transactions initisted 1999
-
31 estimated serial correlation coefficient
of lag 1 for times between transaction
initiations ~0.0576"
-1, -2.5532
Tests for serial independence based on
cumulated periodogram
®
Da/Z Kolmogorov-Smirnov statistic 1.4897
wz #k
h/2 Anderson~Darling statistic 3.9941

"
upper 12 poiut is 1,315

A%
upper 1% point is 3.857

t
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TABLE 131

Sample Charscteristice of Times-Between-Events.
Datrended (WHPP Exponential Polynomial Rate Function
of Degrae 6) Transaction Initistion Process for Time

Feriod N,
fn aumber of transactioms initisted 1999
tﬁ period of chservation 1999.02
X estimated nean tinme between trans-

action initiatioms 0.9998

ﬁ(x') estinsted coefficient of variation
of times between transaction initiations 0.9784

?l(x') estinated coefficient of skevnsss of times
between transaction imitiationc 5.2363

| $.x")  estimaced coeffictent of kurtosis of times

batyesn tramsaction imitiatioms 68.3916
X' — maximum time betwesa transaction
intitiations 17.4752

x' ain rinimum time between transaction
initiations 0.0031
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Figure 3. Cumulative number of transactions initiated for timg pariod H (high
sctivity). There is erouph daparture from linearity to suggest inhomogeneity in
the dats. The test for & homogeneous Poisson process uting the Kolmogorov-
Srilrnov statistic confirms the deperture; the value 2.389 of the Kolmogorov-
Smirnov statistic is hughly significant,
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Figure 4. Estimate i(t: é} of NHPP rate function using exponentisl polynomial
(dagree 8) of transaction initiation process for time period H (high activity,.
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Figure 8. Estimats \(t; n, to) of the rate function of the transaction initiation
process for time peried H (high activity) using a kernal-type density estimator.
Ssmaple dze n = 1989, bend-width bin) = 1.26/nV/2, Triangular window,
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Figure 7. Parametric and empirical estimates of the lntegmed rate function
for tizae periad H (high activity). Solid curve is the NHPP estimate A(t; a)
usina exponentia! palynomial (degree 6), Dotted curve is the cumvlative
number ¢f svants for time period H.




Figuwre 8. Parametric anci ompiricsl astimetes of the integrated rate function
for time period L (low activity). Solid curvs is the NHPP estimate A(t; a)
using exponential potynomial (degree 8). Dotied curve is the cumulative
number of events for time periog L.
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for day 2. Solid curve is a giobel estimate bessd on an exponential poly-

nomial of degree 9. Dottad curve is local estimate obtzined as in Figure 2.
The high activity {H) and low activity (L) time periods are marked on the
figure, -
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Figive 11. Transformation of the time scale for NHPP having integrated
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