

NAVAL POSTGRADUATE SCHOOL Monterey, California

STATISTICAL ANALYSIS OF NON-STATIONARY SERIES OF EVENTS IN A DATA BASE SYSTEM

by

P. A. W. Lewis

and

G. S. Shedler

September 1976

Approved for public release: distribution wilchited.

Proposal for:

NDAU33708

ç

J.

z

Oblef of Huvel Seconce Arlington, SA 22217

NAVAL POSTGRADUATE SCHOOL Nonterey, California

Rear Admiral Isham Linder Superintendent Jack T. Borsting Provost

The work reported herein was supported by funds provided directly from the Chief of Mavel Research under Grant NR-12-634

Reproduction of all or part of this report is authorized.

Prepared by:

Peter A. W. Lewis, Professor Department of Operations Research

G. Shedler by P. fun

Gerald S. Sheller IM Research Laboratory

Reviewed by:

Michael G. Sovereign, Chairman/ Department of Operations Research Relaased by:

un mm

Robert Fessum Dean of Research

Best Available Copy

	ATION OF THIS PAGE (Minn D	أرواعا الالاكر متصاريب خدي علائل وبورها وعصوط	READ INSTAUCTIONS
	PORT DOCUMENTATIO		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
112955Lw7699	2		
	Analysis of Non-St		
	Data Base System		
			6. PERFORMING ORG. REPORT NUMBER
			S. CONTRACT OR GRANT HUMBERRA
la A. y. Le	wis and		
/d S./Sheal			
. PENPONINE ONE	ANIZATION NAME AND ADDA	£\$\$	18. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
· · · · · · · · · · · · · · · · · · ·	raduate School		
Monterey, C			
	PRICE HAME AND ADDRESS	M	HE HEFORT DATE
Arlington,			September 1076
TE MENIYONNE AR	ENCY NAME & SOMESSIN AS	rent angeflantratting Offices	18. SECURITY CLASS. (of this report)
		ara 1	UNCLASSIFIED
		(Joop, /	The BUCL AND FICATION / DOWN BRADING
	ATENENT (of this Report)		JCHEDULE
17. EISTRIBUTION ST	TATEMENT (of the abovect anto		nited. # Amport)
17. EISTRIBUTION ST	ATENENT (of the distrest ente		
17. BISTRIBUTION ST 18. BUPPL, BUENTARY			
18. Suffe, Sub atany	v NOTES Mus en reverse side H noccessor	rod in Block 38, if different in	in Report)
H. SUPPLEMENTARY H. HEY USAGE (Cont Bata Base S WOrkload	r NOTES Invo en reveres else H neccour Systeme sto dat	red in Block 30, if different in y and identify by block number, ichastic models a base management	ar Report)
H. NEV NEASS (Control Bata Base S Workload deepstor sy	v HOTES Ano in Americo Allo Hinococco Systeme sto dat rstems pro	red in Block 30, if different in y and identify by block number bchastic models to base management bbebility modelling	a Report)
H. SUPPLEMENTARY H. NEV WORKS (Cont Bata Base S Workload Computer sy Workload ch workload ch	v NOTES	red in Block 30, 11 different in y and identify by block number, ochastic models a base management obsbility modelling in-stationary stoche bobastic moint prod	a Amport)
10. SUPPL SHENTARY 10. HEV HEASS (Const Bata Base S Workload Computor sy Workload ch Parformenco S. Markey (Const	w NOTES Mus on reverse also H neccess systeme sto dat rstams pro- maracterisation nor evaluation sto mus on reverse add H necessary	red in Block 30, if different in y and identify by block number schastic models to base management bability modelling to-stationary stocks bastic point proc and identify by block number	a Report)
H. MEY WORKS (Const Bata Base S Workload computer sy workload ch performence St. Shifted (Contra STE the doo the workload	v NOTES Ano an Average allow H neccourt systeme sto dat vstems pro- maracterisation nor avaluation sto mu on Average allow H neccourt avaluation of the bel- we cription of the bel- wd. One approach to	red in Block 30, 11 different in red in Block 30, 11 different in red identify by block number, ichastic models is base management bability modelling in-stationary stoch inchastic point proc and identify by block number; performance evaluat isvior of the syste o these problems co	a Amori) atic point processes asis of computer systems and characterization of mprAsss the interactive
10. NEV USAGE (Const Bata Base S Workload Computor sy Workload ch Performence S. Shirter (Such Centra are the dee the workloa combination paper descr	works works works systeme ato dat stams pro- maracterization nor evaluation ato much over or other ato much over or other ato much over or other ato in the problems in the pro- peription of the behad. One approach to of data-damiytic g tibes methods, both	red in Block 30, 11 different in and identify by block number performing a plock number performing a point proc an identify by block number performing evaluation performing eval	a Report) a Report) a tic point processes asses tion of computer systems as and characteristion of mprisess the interactive bability modellings This the statistical analysis of
 W. NEV VENES (down Bata Base S Workload computer sy workload ch performance M. NEV VENES (down Computer sy workload ch performance M. NEV VENES Computer sy workload ch performance M. NEV VENES (down Computer sy vorkload ch per	v NOTES Mus on reverse offer H messee systems sto dat vstems pro- mus on reverse offer H messee evaluation sto evaluation sto evaluation sto problems in the pro- peription of the beh of data-smalytic pro- tibes methods, both any universite stoc variables. Such pro- peription of the periods of the stop of the stop of the periods of th	red in Block 30, 11 different for y and identify by block number ochastic models to base management bability modelling to-stationary stocks bastic point proce- and danth by block number performance evaluate to these problems co or ocedures with pro- eld and new, for the static point proce- bastic point proce-	a how of computer systems mand characteristion of mprises the interactive obability modelling; This the statistical analysis of asses and sequences of pasi- ently encountered in cou-
W. MAY WARE (Com Bata Base S Workload demputer sy workload ch performence S. Shirker (Jaco Centra sre the dee the workloa combination paper descr star-station five random puter syste	works works works with a converse of the measure with a converse of the measure aracterisation nor evaluation store works of the below of data-analytic grisses methods, both ary universate store wariebles. Such grisses converse of the value of the set of a set of a set of the set ary universate store wariebles. Such grisses converse of the value set	red in Block 20, 11 different in red in Block 20, 11 different in part (dentify by block number, part (dentify by block number, performance evaluate performance evaluate performance evaluate performance evaluate performance evaluate performance with pro- celd and new, for (chastic point proce processes are frequency for the performance	a hower) atic point processes istic point processes isses ion of computer systems in and characteristion of imprises the interactive bability modelling; This the statistical analysis of isses and sequences of pasi- iently encountered in cou- lagy an analysis, is siven.
 W. Suff. Substand Bata Base S workload computer sy workload ch performance Suff. W. Association Contra ste the doe the workloa combination paper descr use-station tive random 	whores who an average also it maccount systeme sto maracterization nor avaluation sto maracterization nor avaluation sto maracterization nor avaluation sto avaluation sto avaluatio	red in Block 20, 11 different for y and Manife by block number ochastic models to base management bability modelling to-stationary stocks becastic point proce- and Manife by Block number performance evaluate to these problems co to the syste of the syste of and new, for to thestic point proce to the set of the pathods to the	a howy atic point processes asses tion of computer systems m and characterisation of mprises the interactive bability modellings This the statistical analysis of asses and sequences of pasi- antly encountered in cou-

そのでは、古田の市でで、「ここ」にあるながない。

_____UCLASSITIO

LLUMTY CLASSIFICATION OF THIS PAGE The Date Buland

of the stochastic point process of transactions initiated in a running data base system.

On the basis of the statistical analysis, a non-hemogeneous Poisson process model for the transaction initiation process is postulated for periods of high system activity and found to be an adequate characterisation of the data. For periods of lower system activity, the transaction initiation process has a complex structure, with more clustering evident. Overall models of this type have application to the validation of proposed data base (sub)system models.

19. (cont'd)

non-homogeneous Poisson process cluster process series of events spectral analysis rate Function estimation self-exciting processes correlation coherence

UNCLASSIVING

SECURITY OL ADDIFICATION OF THIS PAULIMAN Bate Busines

STATISTICAL ANALYSIS OF HON-STATIONARY

SERIES OF EVENTS IN A DATA BASE SYSTEM

P. A. W. Lewis[®] Department of Operations Research and Administrative Sciences Naval Postgraduate School Nonterey, California 93940

G. S. Shedler IBM Research Laboratory San Jose, California 95193

ABSTRACT: Central problems in the performance evaluation of computer systems are the description of the behavior of the system and characterization of the workload. One approach to these problems comprises the interactive combination of data-analytic procedures with probability modelling. This paper describes methods, both old and new, for the statistical analysis of non-stationary univariate stochastic point processes and sequences of positive random variables. Such processes are frequently encountered in computer systems. As an illustration of the methodology as analysis is given of the stochastic point process of transactions initiated in a running data base system.

On the basis of the statistical analysis, a non-homogeneous Poisson process modul for the transaction initiation process is postulated for periods of high system activity and found to be an adequate characterization of the data. For periods of lower system activity, the transaction initiation process has a complex structure, with more clustering evident. Overall models of this type have application to the validation of preposed data base (sub)system models.

Written while this author was a consultant to IM Research. Support from the Office of Maval Research under Grant MR-02-200 is gratefully acknowledged.

÷

1. Introduction

Description of the behavior of a running system and characterization of the workload are central problems in the performance evaluation of data base systems. These are systems in which there are many users who can access, via remote terminals, a (typically very large) data base managed by a computer. Such a system should respond to a query in a reasonably short time, given the number of users and the nature of the user environment. This must be accompliabed as economically as possible, where by economically we include direct customer (waiting) costs and computer system resource utilization. This is a typical operations research situation in which we are trying to allocate limited resources in an optimal way amongst competing demands. Because of the complexity of data base systems, detailed measurements comprise just one aspect of performance evaluate them; such measurements comprise just one aspect of performance evaluation, which in its entirety would encompase data collection, analysis, modelling, and interpretation. Ultimate goals of performance evaluation include tuning of existing systems and prediction of performance of proposed systems.

1

This paper is concerned with methods for statistical analysis of series of events which can be applied to obtain a graphical and mathematical description of the <u>behavior</u> of a running data base system. Such a description would be a useful starting point for studies aimed at workload characterisation. The particular analysis of data given uses a combination of statistical data-analytic procedures and probability modelling (<u>cf</u>. Lewis and Shedler, 1973). The specific results reported here for the analysis of a non-stationary univariate series of events occurring in an IMS data base system are intended neither to comprise in themselves a description of the running IMS system was necessarily to be a sufficient basis for characterizing the workload of an IMS system. Rather the results are to be considered illustrative of methods that may be useful in such studies.

In a data base system the workload may be taken to be a collection of data sequences identifiable at various levels of the system; workload characterization comprises the study of these data sequences (individually and jc⁻.tly) along with the transformations among them. We are deliberately vague here bout what is meant by data sequence; it could be a sequence of events occor in time, i.e. a point process, or a sequence of observations of a stochastic rocess, i.e. a time satiss. For example, in an INS data base system we can consider, at the user level, sequences of transactions and DL/I calls; at the logical level, sequences of target segments; at the segments searched level, sequences of path these identified basic workload data sequences, there may be other data sequences of interest, e.g., the subsequence of path block exceptions. We may also be

interested in external measurements related to the workload data sequences such as response times for users.

Given the complexity of data base systems and the resulting relative difficulty of carrying out meaningful performance evaluations and designs for such systems, the collection and analysis of measurement data from representative system; to identify and characterize significant performance phenomena seems appropriate. The availability of such measurements presents the possibility of obtaining thereby empirically valid, parameterized mathematical models for workload data sequences. However, the sheer volume of data which can be collected from a running data same system (e.g. tens of thousands of transactions per day, hundreds of thousands of DL/I calls per day, millions of path segments per day, etc.) is a source of some difficulties. Such a volume of data is not only costly to manipulate, it is difficult to comprehend. In practice it appears that if we wish no do a detailed analysis (and modelling) of any of the several workload data sequences mentioned above, it is necessary to select "representative" sequences observed during (relatively) short periods of time. If useful information is to be obtained from the data collection, analysis, and modelling (e.g. for the determination of pertinent system requirements), it is important to be able to describe the system context in which the transaction workload phenomena were observed and analyzed.

In addition to models of the workload, models of the system or sub-system. structure are needed in performance evaluation. The authors feel that stochastic models of the type obtained in this study have application to the detailing of proposed system models, i.e. filling in the fine structure of parts of the model. A second application is to the "validation" of system models in the sense of establishing their predictive value. The methods used for the statistical analysis of data from the running system can also be used to analyze the output of simulations of proposed (sub)system models. "Agruement" of a process predicted by the system model with the corresponding process observed in the running system would constitute evidence of the predictive value of the model. Thus, for example, the results of the statistical analysis of the transaction initiation process reported here could be used in attempting to validate a stochastic model of the DHS DL/I component such as the queueing model developed by Lavenberg and Shedler (1973).

2. Description of the Available Data

The analysis given here illustrating methods for the examination of nonstationary series of events is of data obtained from an IMS data management system. The following is a brief outline of the structure of IMS.

INS (IDM Corp., 1973) is a processing program for the implementation of large data bases shared in common by several applications. The INS program executes under the operating system of the computer system to extend the data communication and data base management capabilities of the operating system. In IMS users can access the data base from remote terminals by entering messages called transactions. A particular transaction uses and thus uniquely identifies an application program which processes the message (or transaction) and accesses the data base. The data management facility of IMS is called Data Language/I (DL/I). The two interfaces of an application program with DL/I are a data base description and a program linkage which allows DL/I to process data base access requests which arise during emecution of an application program. The execution of an application program thus gives rise to a sequence of calls to the DL/I component of IMS.

A conceptual diagram of a computer system running IMS is given in Figure 1. As shown there, a portion of memory is devoted to the operating system. The IMS program occupies a portion of memory called the IMS control region. Application programs reside in secondary storage in an application program library. For execution an application program must be loaded into one of several (typically three or four) regions in memory called IMS application regions. The data base resides in secondary storage, and data are transferred into memory for processing in response to transaction initiations.

Data on the processing of transactions have been obtained from a computer system running INS for production control under the INM operating system 05. Entry of data into the system is on-line and is governed by the occurrence of events on the production line. The epochs of time at which individual DL/I calls were completed (i.e. control returned to the application program) have been recorded, along with information sufficient to identify the epochs of time at which individual transactions were initiated. From these time stamps the sequent of times between transaction initiations was derived. Most of the results displayed in this paper are for a time period of high system activity referred to as time period H. This data consisted of 1999 transaction initiations in a period of time (in unspecified units) of to ~ 11936.6066. Much of the statist%cal analysis was done using the SASE-IV progrum (Lewis, Katcher and Weis, 1969) for analyzing series of events. SASE-IV has a maximum input of 1999 evants; this accounts for the length of the period under study. This high system activity period was selected after an initial overall look at the several days of data on transaction initiations which was available. The analysis also used SASE-VI (an improved version of SASE-IV), APL implementations of parts of SASE-VI. and APL implementations of rate estimation procedures.

5. Preliminary Analysis of Transaction Initiation Process

3.1 Prior Considerations and Assumptions

į

In analyzing the transaction initiation data, there were a number of prior assumptions which could be made about the data to serve as a starting point for the analysis. The purpose of the data analysis is to confirm these assumptions or to point to suitable modifications.

- (1) Since the data is taken over a whole day (in fact, six whole days), we expect a time of day effect as activity builds up through the working day and then declines during the evening. Thus, any kind of initial analyses based on an assumption of stationarity is inappropriate.
- (2) Since the data consists of times of transaction initiations, so that we are doaling with a point process or series of events, the usual null model which is delinested in Section 5 1% a non-homogeneous Poisson process (MMPP). This could be appropriate here since the transaction process is a superposition (Cox and Lewis, 1966, Ch. 8; Cinlar, 1972) of imputs from a number of sources (users).
- (3) Since each user's activity is likely to consist of a (random) number of transactions after initial sign on, some clustering in the data might be expected. An appropriate model here is the non-homogeneous Poisson cluster precess (Lawis, 1967). In this process an initial primary (main) event generates a finite sequence of secondary (subsidiary) events; the complete process is then the superposition of the primery and secondary events, where the main events are assumed to be generated by a non-homogeneous Poisson process. If enough initial events are generated (high-activity) so that the number of secondary processes is large, this process is hard to distinguish from a Poisson process.

Starting from those assumptions, the analysis of the data proceeded as follows:

- (a) A very rough, modul-free procedure was used to estimate the rate function for the transaction initiation process over the whole day, the rate function being the derivative of the expected number of transactions in a time period (0,t). This rate would be constant for a stationary (homogeneous) process.
- (b) On the basis of this trend analysis, relatively homogeneous high and lowactivity periods were selected, and an attempt was unde to verify the MMPP models or the clustering model, for the transaction initiation process.

(c) Basid on this local analysis and modelling of the transaction initiation process, more formal model-dependent estimation procedures were applied to the transaction rate function for the several days. In later sections it will be seen that the Poisson assumption is reasonably valid for high-activity periods, clustering becomes more evident at lowactivity periods, and there is a surprising amount of local inhomogeneity of a almost oscillatory (cyclic) nature. It is this last phenomenon which is perhaps the most interesting aspect of the analysis.

3.2 Analysis of Transaction Initiation Counting Process

Point processes can be analyzed either in terms of the intervals between events, which is a stochastic sequence (time series), or the counting process (the number of events in an interval (0,t]) which, as a function of t, is a continuous parameter stochastic process. Here 0 is some convenient fixed origin, the number of events in (0,t] is denoted by N_t , and the expected value of N_t is

$$M(t) = E\{N_{k}\}.$$
 (3.1)

Its derivative, often called the rate function or intensity function, is

$$\mathbf{m}(\mathbf{t}) = \frac{\mathrm{d}\mathbf{M}(\mathbf{t})}{\mathrm{d}\mathbf{t}} = \lambda(\mathbf{t}),$$

the notation $\lambda(t)$ being generally used for the rate function of a Poisson process. (See Cox and Lewis, 1966, Ch. 4, for further definitions of point processes.)

Note that although the times of the transaction initiation events for the six days were available, for an initial analysis we used counts of events in successive unit time intervals, i.e. $\Delta = 1$. This constitutes a sampling of the data; if the data were from a WHPP, these counts would be independent Poisson variates with possibly different means (see Section 4). Let these counts be n_j , j = 1, ..., n, where $n_j = N_j - N_{j-1}$ and $N_0 = 0$. If these counts are summed to give counts in C contiguous intervals, they will still be Poisson distributed. Such a summation can be considered as

(1) a crude expecting of the data to obtain an estimate and picture of the rate function over the day. Thus, since $\Delta = 1$,

$$\Delta \widetilde{\mathbf{m}}(\frac{\mathbf{C}}{2}) = \int_{j=1}^{\mathbf{C}} \frac{\mathbf{n}_{j}}{\mathbf{C}} = \widetilde{\mathbf{u}}(\frac{\mathbf{C}}{2});$$

the weights in the ansuthing all have value 1/C. This constant smoothing function must be used with care; it can cause spurious effects if the rate is not changing linearly.

(2) a conlescing of count data to test for homogeneity.

é

Plots of the smoothed counts using 0.44800 are shown in Figure 2 for 3 of the 6 days, and for the average of the smoothed counts over all 6 days. Formal tests for homogeneity are available for Poisson variates (Cox and Lewis, Ch. 6), or else a one-way analysis of variance can be performed on the coalesced data after a square root transformation. The analysis of variance test is used because the counts are large enough to be considered to be normally distributed; the square root transformation is used because although Poisson counts with a large mean are approximately normally distributed (see Table 2.1, Cox and Lewis, 1966, p. 21) the mean and the variance are the same, and this violates a basic assumption in the analysis of variance test. The square root of a Poisson variate N plus one-fourth, $\sqrt{N+1/4}$, has mean approximately equal to $\sqrt{-7}$, and variance 1/4, where μ is the Poisson mean (Cox and Lewis, 1966, p. 44).

The analysis of selected time periods reported below is for periods chosen from day 2. In Table 1 we show in successive columns the number of counts (transaction initiations) in successive groups of forty 120 time unit periods; the mean number of counts in 1 time unit (the rate function estimate plotted in Figure 2) for day 2; \bar{x}_i the average of forty quantities x_{ij} , where $x_{ij} = \frac{1}{i}$ {(number of counts in jth 120 time unit period in group i) + 1/4; $\frac{1}{2}$; $\frac{1}{2}$ and \bar{a}_i , the within group sample variance and standard deviation respectively.

Firstly, it can be seen that all of the variances τ_1^2 are larger than the value 1/4 postulated on the basis of a homogeneous Poisson count process; since $39 \sim \hat{\sigma}_1^2 / (1/4) = 156 \times \hat{\sigma}_1^2$ should, under the null hypothesis, have a γ_{39}^2 distribution with upper 99% point of 62.281, all the $\hat{\sigma}_1^2$'s are significantly large (i.e. greater than 62.281/156 = 0.3992) and either the Poisson or homogeneity (within group) assumptions are invalid.

Comparing the sum of the within group sample variances σ_1^2 , which is 48.1826, to the between group variances (or sample variance of the \bar{x}_1), which has a value 1.7126 we get an F-ratio of 19.4878. The F-ratio, formally given by

$$\mathbf{F} = \frac{\mathbf{m}\hat{\sigma}_{\mathbf{x}_{1}}^{2}}{\sum_{\mathbf{x}_{1}}\hat{\sigma}_{\mathbf{x}_{1}}^{2}/\mathbf{k}}$$

has an F-distribution with $v_1 = (m-1) \times k = 39 \times 12$, $v_2 = k-1 = 11$ degrees of freedom, and the value 19.4878 in Table 1 is highly significant at a 5% level or at g = 1% level. We conclude that the data is inhomogeneous, although departure from a Primson assumption has not been ruled out.

The overall picture in Figure 2 is of an initial build up in transaction rate, a fairly constant transaction rate for a period of time, and then a drop to a lower level. This picture is consistent over days; the drop in day 1 (around t = 165838) was due to a period for which data was not available.

However, even in the two relatively stable periods, there is some evidence (large values of $\hat{\sigma}_1^2$ in Table 1 relative to 1/4) of more microscopic inhomogeneity, and the analysis proceeded by examining sections of data in these high and low-activity periods in more detail. The examination was of interest pur se, but was also motivated by a most for more formal statistical rate estimation procedures.

Highly parametric global procedures for rate estimation are available at present ~iy for MMPP's. Details of the procedure and the estimation are given in the next two sections. Application to the data for the high and low system activity periods and for the entire day is described in later sections.

In addition, non-parametric local smoothing procedures related to kernal-type density estimates (Rosenblatt, 1956) are used. These are also described later (Section 5.2). First we give properties of the NHPP.

4. Non-Homogeneous Poisson Process Hodel

The non-homogeneous Poisson process model for a series of events N_t is discussed in a statistical context by Cox and Lewis (1966, Ch. 3). Lewis (1972), Cox (1972), and Brown (1972). A very detailed mathematical account is given in Onedenko and Kovalanko (1969); a recent treatment is by (inlar (1975). Like the homogeneous Poisson process, the non-homogeneous Poisson process arises as a limit of the superposition of a large number of non-stationary point processes (cf. Giular, 1972). The assumptions underlying the non-homogeneous or time-Aependent Peisson process (MEPP) are the same as those for the ordinary Poisson process except that the rate parameter λ is now considered to be a continuous function of time $\lambda(t)$. One approach to the NHPP is via the incremental probabilities in small intervals. Thus, for $s, t \ge 0$, and denoting by N(s;t) the sumber of events in the process in the interval (t, t+s), the assumptions for a MEPP with rate function $\lambda(t)$ are that, as $s \neq 0$,

$$Pr\{N(s;t) = 0\} = 1 - \lambda(t)s + o(s),$$

$$Pr\{N(s;t) = 1\} = \lambda(t)s + o(s),$$
(4.1)

and that the rank-m variable N(s;t) is statistically independent of the number and position of events in (0,t]. As a consequence of (4.1),

$\Pr\{\mathbf{N}(\mathbf{s};\mathbf{t}) \ge 2\} = o(\mathbf{s}).$

The survivor function for the forward recurrence time in the process, the probability that there are no events in (t,t+s], i.e. that N(s;t) = 0, is derived via first-order differential equations to be

$$\mathbf{R}(\mathbf{s};\mathbf{t}) = \exp\left\{-\int_{\mathbf{t}}^{\mathbf{t}+\mathbf{s}} f(\mathbf{u}) d\mathbf{u}\right\}, \qquad (4.2)$$

A more general approach to defining the MMPP starts with the function $\Lambda(t)$, which is assumed to be monotone non-decreasing and continuous from the right; then the number of events occurring in any interval, say (t,t+s], is assumed to have a Poisson distribution with parameter

$$A(t+s) - A(t) = \int_{t}^{t+s} \lambda(u) du,$$

i.e. for k = 0, 1, 2, ...

$$-\{\Lambda(t+s)-\Lambda(t)\}$$

$$\Pr\{N(s;t)=k\} = \frac{e}{k!}$$

Consequently, $\Lambda(t)$ is the expected value function M(t) discussed in Section 3. In addition, the number of events in any finite set of non-overlapping intervals are assumed to be independent random variables. There are other equivalent definitions, and also minimal definitions; see Gnedenko and Kovalenko (1969) and Ciniar (1975).

The following theorem (cf. Ginlar, 1975) establishes that a homogeneous Poisson process of rate 1 can be obtained by transformation of the time scale of a NHPP, via the inverse of $\Lambda(t)$. This result, Theorem 4.1, and the following Theorem 4.2 are the basis for the procedures described in Sections 6 and 7 below for detrending the data and testing the goodness-of-fit of the NHPP model.

<u>Theorem 4.1</u>. Let $\Lambda(t)$ be a non-decreasing right-continuous function of $t \ge 0$. Then T_1, T_2, \ldots , are the time-to-events is a HMPP with $\mathbb{E}\{H_t\} = \Lambda(t)$, if and only if $T_1^* = \Lambda(T_1), T_2^* = \Lambda(T_2), \ldots$ are the time-to-events in a homogeneous Poisson process with rate 1.

The next theorem establishes an important property of the MMPP which we use throughout the paper.

Theorem 4.2. Assume we have a MMPP observed for a fixed time $(0,t_0)$, in which $H_{L_0} = n$ events occur at times $T_1 < T_2 < ... < T_n < t_0$. Then, conditional on having observed n(>0) events in the $(0,t_0)$, the T_1 's are distributed as the order statistics from a sample with distribution function

$$Y(t) = \frac{A(t) - A(0)}{A(t_0) - A(0)}, \quad 0 \le t \le t_0,$$

and when A(t) is absolutely continuous, probability density function

$$f(t) = \frac{\lambda(t)}{\lambda(t) - \lambda(0)}, \quad 0 \le t \le t_0$$

Thus, we see that (conditionally) the transformation of the time axis is exactly the same as the probability integral transform which is used to transform a random variable X with known distribution function F(x) into a uniform random wariable on (0,1), i.e. u = F(X) is uniform (0,1). This transformation

ø

is the basis for non-parametric tests of distribution functions such as the Kolmegorov-Smirnov test. The analogy explains why tests for a homogeneous Poisson process (HPP) are similar to tests for completely specified distributions obtained from independent, identically distributed samples; the primary difference in the two procedures lies in the alternative hypotheses which arise (see Cox and Lawis, 1966, Ch. 6). Specifically, if we test that a random sample X_1, X_2, \ldots, X_n with unknown distribution function F(x) is from a given distribution function $P_0(x)$, then if $P_0(x) \neq F(x)$, the variables $U_1 = P_0(X_1), \ldots,$ $U_n = P_0(X_n)$ are i.i.d., but not uniformly distributed. However, if we test (conditionally) that n observed times-to-events T_1, \ldots, T_n are from a NHPP with given integrated rate function $\Lambda_0(t)$, then

(1) if the process is NHPP but $\Lambda_0(t)$ is not equal to the true integrated rate function $\Lambda(t)$, then $T_1^{\dagger} = \Lambda_0(T_1), \dots, T_n^{\dagger} = \Lambda_0(T_n)$ are i.i.d., but not uniform $(0, t_0]$.

and

(2) if the process is not <u>MHPP</u>, then even if $\Lambda_0(t)$ is equal to $\Lambda(t)$, the $T_t^{\prime \prime}s$, i = 1, ..., n are <u>not</u> conditionally a random sample.

The above leads to very different considerations in the <u>power</u> of tests for MMPP's and completely specified distributions, even though the test statistics are the same (see Lawis, 1965, for greater detail). It is difficult in testing for MMPP's with procedures based on the above theorems, to separate out the effects of departures from Poisson assumptions and departures from assumptions as to the form of A(t). However, since both MPP's and MMPP's have independent count increments, tests for the global Poisson assumption are based on this property. In particular, the spectrum of counts (Cox and Lawis, 1966, Ch. 5) should be flat after detrending.

In the following section we discuss estimation of the MEPP rate force ion using parametric models, both to describe in a global way the rate function (as opposed to the local smoothing in Figure 3) and to detrend the data so as to examine the global Poisson assumption. Non-parametric rate estimation is also briefly discussed.

5. Estimation of the MEPP Note Function

5.1 Parametric Model and Rate Estimation

Following Cox and Lawis (1966, Ch. 3) and Cox (1972), an exponential polynomial rate function has been assumed for the MEPP, i.e. $\lambda(t)$ of the form

$$\lambda(t) = \exp\left(\sum_{m=0}^{t} a_{m}t^{m}\right), \quad -\infty < a_{0}, \dot{a_{1}}, \dots, a_{t} < +\infty. \quad (5.1)$$

This accumption is converient and constitutes no real restriction since any

continuous rate function can be appreximated arbitrarily closely by an exponential polynomial. The result follows from results on ordinary polynomials by taking logarithms; note that $\lambda(t) \ge 0$ for any values of $\alpha_0, \alpha_1, \ldots, \alpha_r$. We describe now statistical procedures based on this model. Formal tests for the degree r of an exponential polynomial rate function are discussed in Section 6. Here a procedure is outlined for the maximum likelihood estimation of the coefficients $\{\alpha_n\}$ of an exponential polynomial, of fixed degree r.

The times-to-events $T_1 < T_2 \dots < T_n$ is a fixed time period and the random variable $W(t_0) = n$ have a joint density function (Cox and Lewis, 1966, Ch. 3)

$$f(t_1,\ldots,t_n;u) = e \int_{0}^{1} \lambda(u) du = \frac{1}{n} \lambda(t_1), \quad (5.2)$$

which, on substituting the rate function (5.1), becomes

$$f(t_1,\ldots,t_m;n) = e^{\frac{T}{m-0}} e^{\frac{T}{m-1}} \int_0^{t_0} e^{\frac{T}{m-1}} e^{\frac{T}{m-1}} dt, \qquad (5.3)$$

where

$$s_{m} = t_{1}^{m} + \dots + t_{m}^{m}, \quad m = 0, \dots, r.$$
 (5.4)

Thus, the log-likelihood function, log L, the logarithm of the density at the observed values of the mandom variables considered as a function of the r+1 parameters, is

$$\log L(a_0, a_1, \dots, a_r) = \sum_{m=0}^{r} a_m a_n - \int_0^{t_0} \exp(\sum_{k=0}^{r} a_k t^k) dt. \quad (5.5)$$

It follows that the derivatives, known as the scores, are

$$\frac{\partial \log L}{\partial \alpha_k} = \alpha_k - \int_0^{c_0} t^k \exp(\sum_{m=0}^{c} \alpha_n t^m) dt, \quad k = 0, 1, \dots, r. \quad (5.6)$$

The solution $\{\hat{a}_{n}\}\$ to the system of Eqs. (5.6), the score vector, when set to sero, are the maximum likelihood estimatory of $\{a_{n}\}\$, and can be determined numerically by Howton-Rephoen iteration. The numerical procedure works well provided that an initial vector sufficiently near the solution is known. A two-step method for obtaining such an initial value has been proposed by Hacleon (1974). His procedure consists of finding an ordinary polynomial representation of the same degree as $\lambda(t)$ having the observed sums of powers $\{a_{n}\}\$ for its "moments." An exponential polynomial approximation to this polynomial, obtained by taking logarighms and again fitting represents, merves as the initial value for the Howton-Rephoen iteration. This Macleum procedure has been implemented in APL and used

to estimate the coefficients $\{\hat{a}_{n}\}$. The procedure appears to work well for polynomials up to degree 8. Retinates of the covariance matrix " the maximum likelihood estimates $\{\hat{a}_{n}\}$ are obtained from the second order partial derivatives of the log-likelihood equation when evaluated at the estimates parameter values.

Once the appropriate degree of the polynomial is obtained by the methods of Section 6, the rate function with the maximum likelihood estimates for the a's can be plotted to obtain a picture of the rate function. The procedures are clearly sensitive to the MMPP model; for this reason, we discuss next non-parametric kernel-type estimates.

5.2 Non-parametric Kernel-type Rate Estimates

Theorem 4.2, which relates (conditionally) the rate function $\lambda(t)$ in a NHPP to a density function in $(0, t_0)$,

$$f(t) = \frac{\lambda(t)}{\Lambda(t_0) - \Lambda(0)}, \qquad 0 \le t \le t_0,$$

suggests we could use non-parametric probability density function estimates to estimate rate functions, at least in NHPP's. The procedure chosen is the nonparametric kernel-type density estimate introduced by Rosenblatt (1956). Briefly, the procedure to estimate f(t) from a random sample T_1, T_2, \ldots, T_n is as follows:

Define

$$\hat{t}_{n}(t) = \frac{1}{nb(n)} \sum_{j=1}^{n} W\left(\frac{t-T_{j}}{b(n)}\right) ,$$

where W(u) is a bounded non-negative integrable weight function with

$$\int_{-\infty}^{\infty} V(u) du = 1,$$

and b(n) is a positive bondwidth function which tends to zero as n + n, but is such that o(b(n)) = 1/n. Thus, we might have $b(n) \sim n^{-1/2}$, for example.

Note that for a given set of observations, all estimates of this form are themselves density functions, i.e.

$$\hat{f}_{n}(t) \geq 0, \quad \int_{-\infty}^{\infty} \hat{f}_{n}(u) du = 1,$$

and since the T_j 's are random variables, $f_R(t)$ is a continuous parameter stochastic process, but clearly non-stationary. Although this type of density estimate does not require parametric accomptions to be made about f(t), the bondwidth function and hermel W(u) must be chosen. In this paper we have alruedy chosen W(u) to be a triangular function and b(n) to be $1.25/n^{1/2}$. The conditional structure of the MMPP makes the estimation of the rate function $\lambda(t)$ similar to the non-parametric estimation of the density function, but with two differences.

First, care must be taken with normalization of the rate function estimate. This is because the procedure above estimates the rate normalized by dividing by $\Lambda(t_0) - \Lambda(0)$ and $\Lambda(t_0) - \Lambda(0)$ is unknown. For a NHPP this is the mean of a Peisson variable which is estimated by n, the number of events in $(0, t_0]$. Using this estimate for $\Lambda(t_0) - \Lambda(0)$ we then get, as a rate function estimate,

$$\hat{\lambda}(t;n,t_0) = n\hat{f}_n(t) = \frac{1}{b(n)} \left(\sum_{j=1}^n W\left(\frac{t-T_j}{b(n)}\right) \right).$$

This will be modal about the usual estimate of the rate λ in a homogeneous Poisson process, which is estimated by $\hat{\lambda} = n/t_0$. The second difference is that when the density function estimation technique is applied to rate function estimation there is no asymptotic justification for the procedure.

6. Tests for the Degree of the Exponential Polynomial Rate Function

6.1 Theory

The analysis of trends in a NHPP, based on the assumption of an exponential polynomial rate function, is discussed in Cox and Lewis (1966, Ch. 3), and Lewis (1972). In the latter paper, formal tests for the linear and quadratic terms in the exponential polynomial are derived. We use here a direct extension of these methods to yield tests for higher degree terms.

There are a number of possible hypotheses which can be tested when considering the exponential polynomial rate function

$$h(t) = \exp\left(\sum_{m=0}^{r} a_{m}t^{m}\right).$$
 (6.1)

- (1) Some given subsets of the r+1 parameters are zero. Asymptotic tests for this hypothesis are based on standard maximum likelihood arguments; see Cox (1972) and MacLean (1974) for details. Essentially the maximum values of the likelihood functions under the two hypotheses are compared; the difference has (asymptotically) a χ^2 distribution under the null hypothesis with known degrees of freedom. The problem with this test is phenomenological; she seldem knows a priori which subset to test.
- (2) It is possible to ask which subset of the r+1 parameters gives the best (most parsimulous) fit to the data. This has been worked out for ordinary, normal theory linear polynomial regression (Daniel and Wood, 1971), but not for the MMPP case.

(3) An alternative is to test for successive inclusion of higher order

polynomial terms. This is reasonable if the exponential polynomial is being used in a purely descriptive way, and the statistical theory is known. Strictly, we test that, for some $k \ge 1$, $a_0 \ne 0, a_1 \ne 0, \ldots, a_k \ne 0$, $a_{k+1} = 0, a_{k+2} = 0, \ldots$ (The analogous normal time series case is considered in great detail in Anderson, 1971, Ch. 2.) A possible drawback would occur where there is a cyclic effect, e.g.

$$\lambda(t) = \exp\{\alpha_0 + k \sin(\omega_0 t + \theta)\}.$$
 (6.2)

The series expension of $\sin(\omega_0^{t+\theta})$ gives a polynomial with alternating zero and non-zero coefficients for powers of t if the phase angle is appropriate. This in turn is tied into the starting point of observations.

We develop the procedure now for case 3; we have used it in an ad hoc manner by testing until two or more successive zero coefficients occur. For a MMPP with exponential polynomial rate function

$$\lambda(t) = \exp\left(\sum_{m=0}^{T} \alpha_m t^m\right),$$

the likelihood of n events in the period $(0,t_0)$ at times $t_1 < t_2 < \ldots < t_n$ is

$$L(a_0,a_1,\ldots,a_n) = \exp\left\{\sum_{m=0}^{n} a_m e_m - \int_0^{t_0} \exp\left(\sum_{k} a_k t^k\right) dt\right\}, \quad (6.3)$$

where

$$s_{m} = \sum_{i=1}^{n} t_{i}^{m}, \quad m = 0, 1, \dots, r.$$
 (6.4)

The obvervations $\{t_i\}$ enter Eq. (6.3) only through $(n, [t_i, [t_i^2, \dots, [t_i^r]),$ and it can be shown from the exponential form of Eq. (6.3) that these are a set of sufficient statistics for the set of parameters $a_0, a_1, a_2, \dots, a_r$. There is, however, even more structure and a formal test for the rth degree term in the exponential polynomial rate function can be based on the idea that for any given r and a_r , $(n, [t_i, \dots, [t_i^{r-1}])$ are a set of sufficient statistics for a_0, a_1, \dots, a_{r-1} , i.e. the distribution of $[t_i^r, given n, [t_i, [t_i^{r-1}], is independ$ $ent of <math>a_0, \dots, a_{r-1}$ for all values of a_r . This is convenient since we want to test $a_r = 0$ against $a_r \neq 0$ regardless of the values of a_0, \dots, a_{r-1} , i.e. they are misance parameters.

Denoting t_i/t_0 by u_i and $\frac{y_i}{n}$ by c_i , a test for a_r is then based on the statistic c_r and its well hypothesis conditional distribution, given n, c_1, \dots, c_{r-1} . This distribution is not known for small t_0 (equivalently small n). However, asymptotically c_1, c_2, \dots , and c_r will be jointly normally distributed with mean value and variance that can be obtained from properties of the uniform distribution. We assume a uniform $(0,t_0]$ distribution for the t_1 's since $(n, [t_1, \ldots, [t_1^{r-1}])$ are a set of sufficient statistics for $a_0, a_1, \ldots, a_{r-1}$, so that assuming these parameters to have value zero does not affect the final result but does simplify computations. Then, also asymptotically, the conditional distribution of c_r , given n, c_1, \ldots, c_{r-1} is normally distributed with mean $\mu_r = \mathbb{E}(c_r | c_{r-1}, c_{r-2}, \ldots, c_1, n)$ and variance $\sigma_r^2 =$ $\operatorname{Var}(c_r | c_{r-1}, \ldots, c_r, n)$ obtainable from normal theory.

The normal theory results are that to test the null hypothesis H_0 : $\alpha_r=0, \alpha_{r+1}=0, \ldots,$ but $\alpha_0, \ldots, \alpha_{r-1}$ have any value, compute the statistic

$$U_{r} = \frac{\sigma_{r} - \mu_{r}}{\sigma_{r}}$$
(6.5)

and test as a mean 0, variance 1 normal deviate, i.e. accept H_0 _t, say, a 5% level if $|U_r| \le 1.96$. Expressions for μ_r and σ_r have been derived by techniques of symbolic mathematics and the matrix operations above. Details of the derivation will be reported elsewhere. The case r=1 is discussed in detail in Cox and Lewis (1966, Ch. 3).

6.2 Applications to High Level (H) Data

We discuse now the application of the parametric rate function testing scheme of the previous subsection and the rate estimation procedures of Section 5 to a more microscopic examination of the transaction initiation process during a period of high system activity for day 2. This high-activity period is, in Figure 2, from approximately t = 73728 to t = 85661. We will also use the kernel-type density estimate of Section 5.2. We do this most particularly because the MHPP assumption has, at this point, not been validated. Overall characteristics of the sample s^{-1} shown in Table 2. (The sample momen a given there should be used only as a guide; they are meaningless if the data is inhomoge.cous.)

The first quostion to be addressed is whether the data can, in this relatively short high-activity period, be considered to be approximately homogeneous or stationary.

Figure 3 shows the cumulative number of transactions in "tisted Garing this time period. The departure from linearity is fairly gross; assuming a homogeneous Poisson process, the Kolmogorov-Smirnov measure of the departure from linearity is

$$v = \sqrt{n} \sup_{u} |F_{u}(u) - u|,$$
 (6.6)
 $0 \le u \le 1$

where

$$\mathbf{F}_{n}(\mathbf{u}) = \frac{number t_{1}' \le u t_{0}}{n}, \quad 0 \le u \le 1. \quad (6.7)$$

This is the uniform conditional test in Cox and Lewis (1966, Ch. 6); conditional on the observed value $N_{t_0} = 1999$ of events in $(0, t_0]$ it has the usual Kolmogorov-Smirnov statistic distribution with upper 1% point 1.628; the observed value is 2.389, which is an event of very small probability <u>under the Poisson</u> assumption.

These probabilities could be grossly in error if the data was more dispersed than under the Poisson assumption, where by dispersion we mean either that the standard division of the intervals between events or the counts of events in long intervals is larger than would be expected under a Poisson assumption. (The two are not independent.) These dispersions are usually measured by first normalising to give the random variable Z mean one; for intervals, the result is the coefficient of variation, i.e.

$$C(Z) = \frac{\mathfrak{s} \cdot \mathfrak{d} \cdot (Z)}{\mathfrak{g}(Z)} = \frac{\sigma(Z)}{\mathfrak{g}(Z)} = \sigma(\frac{Z}{\mathfrak{g}(Z)}).$$

To examine the dispersion of the intervals in the data without confounding it with the apparent inhomogeneity, the 1999 intervals were divided into 10 nonoverlapping sections. The sample characteristics for each interval are shown in Table 3. The means within each group could be used to test for inhomogeneity, but more importantly the coefficients of variation, skewness and kurtomis, which for exponentially distributed intervals have values 1, 2, and 9, respectively, give us rough measures of departure which are sufficient to validate the tests for trend.

Table 3 gives no indication that the sample characteristics of the intervals of the process depart from an exponential distribution (although there way be correlation between intervals). The sample coefficients of variation are all around one, as is the sample coefficient of variation for the whole set of data as given in Table 2. We, therefore, proceed to use techniques based on the NHPP model to emmine the trend in more detail; further tests of the Poisson assumption for this section of data are given in Section 7.

Table 4 gives successive tesk statistic values for the tests for null parameters in the superscription polynomial model

$$\lambda(t) = \exp\left\{\sum_{m=0}^{t} \alpha_{m} t^{m}\right\}.$$

This procedure was described in Section 6.1, and as remarked there, is used fairly informally. A formal application would suggest stopping at r=2 and

accepting a log-linear model

$$\lambda(t) = e^{\alpha_0 + \alpha_1 t},$$

but the test statistic for a_3 , $U_3 = 5.3138$ is significantly large, and the tests have been continued up to r=9. For r=7,8,9, the test statistics are all small, well within the 5% limits of ±1.96.

Table 4 also gives the values of the log-likelihood function evaluated at the maximum likelihood estimates. The log-likelihood must increase as more parameters are added; the difference, when suitably normalized, is used to test (asymptotically) for inclusion, or exclusion of parameters (see MacLean, 1974 or Cox, 1972), and is known asymptotically to have a χ^2 distribution. The absolute differences, δ , given in column three of Table 4 are clearly correlated with values of the test statistic $U_{\rm p}$, e.g. the large jump of 13.4 when including α_3 in the likelihood goes with a large value of U_3 .

The results of both the U_r statistic and the likelihood function values suggest that an exponential polynomial of degree 6 will fit the data very well. The maximum likelihood estimates of the parameters and normalized values are given in Table 5. In computing these estimates in an APL program using MacLean's starting procedure, it is necessary to use normalized time $t/t_0 = u$ and normalized parameters $a_m^* = a_m t_0^m$ to avoid scale problems.

The resulting estimated rate function $\lambda(t;\underline{\hat{a}})$ is plotted for the highactivity period in Figure 4. The data gives an intimation of a growth plus cyclic effect of fairly long period. A model for this could be

 $\lambda(t) = \exp\{\alpha_0 + \alpha_1 t + \alpha_2 \sin(\omega_0 t)\};$

this is linear in the parameters if ω_0 is fixed and known (e.g. time of day effect). Moreover if the Taylor series expansion for the sine function is used, one has an exponential polynomial with even index parameters (beyond zero) equal to zero, i.e. $\alpha_2 = \alpha_4 = \alpha_6 = \dots = 0$. This is the reason why the test for the order of the exponential polynomial indicated that we should have stopped at r = 2, and then gave an indication that α_3 was non-zero. Cyclic effects are more easily headled via spectral methods; we return to this in Section 8.

Another way to examine the trand is to use the kernel-type local emothing techniques of Section 5.2. Although these have breader applicability then the particular global fitting under a NNPP accumption, they suffer as in all nonparametric density estimation (spectra, rate functions, probability density functions, intensity functions), from the need to choose a suitable kernel and bandwidth. In practice, it is usually reasonable to take a few different

bandwidths and, by eye, judge when a balance between suml1 variability and small bias is achieved.

A kernel-type rate function estimate $\hat{\lambda}(t;n,t_U) = n\hat{f}_n(t)$ with bandwidth $b_n = 1.25/n^{1/2}$ (chosen in the above way) is shown in Figure 5. It again shows possible oscillatory behavior in the data, or greater dispersion that we would expect under a MPP assumption. Confidence bands for this type of estimate are available (Bickel and Rosenblatt, 1973, Lawis et al., 1975), but we have preferred to give, in Figure 6, an identical smoothing of a simulated homogeneous Poisson process of rate $\hat{\lambda} = n/t_0$. Comparison of Figures 5 and 6 graphically illustrates that the data is not a HPP. The lack of gross departures from Poisson-type characteristics for the interval structure was discussed above; over dispersion, rather than a trend, could give the large fluctuations in the rate estimate.

In Figure 5 there is a large peak at about t = 3000; we have examined the data for any obvious anomalies at this point (e.g. vary regular intervals) but have found none. In Figure 7 we have overlaid the estimated integrated rate function $\hat{\Lambda}(t;\hat{a})$ (exponential polynomial degree 6) on the empirical estimate of the integrated rate function which is just the cumulative number of events in (0,t] as a function of t.

6.3 Applications to Low-Activity (L) Data

We mow give, in abbreviated form, an analysis of low-activity (L) data, which is similar to that given for high-activity (H) data in the previous section. The low-activity data is the period beyond t = 145152 in Figure 2; the data is for a time period of approximately 1.15 times as long as for the high-activity (H) data, and only 1258 events (transaction initiations) occur. Overall characteristics of the sample are shown in Table 6.

An immediate observation from Table 6 is that the coefficient of variation of the intervals is high relative to the value 1 for an exponentially distributed region variable. To examine this further, five soctions of the data were taken and the interval characteristics which were computed are given in Table 7. Each section of data contained 251 observations. It is fairly apparent that the means are decreasing (rate is increasing) over the five sections, the successive differences, on the basis of the estimated standard deviations of the mean estimates, being about three standard deviations. However, all the coefficients of variation, coefficients of showness, and kurtosis are larger than the corresponding values for a Poisson process.

The first conclusion from the "have analysis is that parametric detrending for this low-activity data must be done with care; we return in Section 7 to

鰺

consideration of details of the structure of the low-activity process, but since the intervals are more dispersed than for a Poisson process, there is consistency with a cluster process hypothesis (Lewis, 1967, Vere-Jones, 1970). Note, too, that a cluster process will look more and more like a Poisson process as activity increases and this is consistent with the finding that the high-activity data was approximately Poisson.

Returning to the trend analysis, we show in Figure 8 the cumulative number of events in (0,t] as a function of t, which is a non-parametric estimate of the integrated rate function (dotted curve). It is by no means linear, and the Kolmogorov-Smirnov test statistic (see Eqs. (6.6) and (6.7)) has value 6.048. This, we would surmise, is significantly large even if the Poisson hypothesis were not true.

In Table 8 we give the successive test statistics U_{T} for successively more complicated exponential polynomial rate functions. There is a very definite overall increase in the rate, as measured by $U_{1} = 11.696$, and again a phenomenon where U_{2} , U_{4} and U_{6} are not significant. However, it can also be seen that the tests are significant out to r = 10; it was not possible, even if it were desirable, to carry out the computations any further. The maximum log-likelike-desirable, to carry out the computations any further. The maximum log-likelike-desirable interpreted very carefully. It is conceivable that using a likelihoods must be interpreted very carefully. It is conceivable that using a likelihood based on a Poisson process would force the rate estimation procedure to fit the integularity due to overdispersion by added local wrinkles in the rate function. It is, in fact, always difficult to discriminate between inhomogeneity and over-dispersion, but it is almost cartain that it is the over-dispersion which given rise to the high degree of the fitted polynomial for this data.

With the above qualifiers in mind, we have fitted an exponential polynomial degree 8 to the data. Degree 8 was chosen because of computational limitations. The integrated rate function $\hat{\Lambda}(t;\hat{a})$ is shown overlaid on the non-parametric estimate in Figure 8; the eighth degree exponential polynomial rate function $\hat{\lambda}(t;\hat{a})$ with estimated parameters is shown in Figure 9 (solid curve). Again the outstanding feature is the cyclic nature of the rate, superposed on a generally increasing rate.

The hormol-type sotiantor $\lambda(t;n,t_0)$ of the rate function is also shown in Figure 9 (dotted europ); it is alson in expension it to the expensatial polynomial rate function estimate that the procedure using the HMPP assumption works wall despise the apparent departures from a Poisson process; if anything, there is a fairly clear validation of the results in Table 8 that an expensatial polynomial rate function of degree higher than 8 is peeded. It is also of interest to note that the estimated parameters a_{r} with even index r are negative (Table 9), a pattern similar to that for the high-activity data shown in Table 5, where \hat{a}_{0} , \hat{a}_{2} , \hat{a}_{4} and \hat{a}_{6} are negative, the remaining estimated \hat{a}_{1} 's being positive. This is again illustrative of the cyclic effect in the data. It is difficult to compare the magnitude of the estimates in the two periods since, if there were a cycle in the data, the relative phase at the reginning of the period of observations would influence the parameter values.

6.4 Applications to Complete Days Data

In Section 2 a very rough smoothing produced the smoothed estimate of the rate of transaction initiations given in Figure 2. It is of interest to apply the global smoothing based on a NHPP assumption and an exponential polynomial rate function to the complete days data, even though it is not Poisson at lowactivity, so as to have a formal, easily implemented procedure for this type of data which does not involve a choice of smoothing functions and bandwidtns.

Over the whole day 25,076 transaction initiations were observed; details of the testing for the degree of the exponential polynomial, and the values of the estimated parameters are not tabulated here. Briefly, the tests up to r=10, except for r=2, indicate that the parameters are non-zero. Computation of the noments for the U_r 's only up to r=10 imposes a limitatif. In the fit; more importantly, estimation of parameters in an exponential polorial for an entire day's data is not feasible for degree greater than 9. Thus, in Figure 10 we have overlaid on the rate estimate for day 2 data given in Figure 2 an exponential polynomial of degree 9. The agreement between the two estimates is good.

He would expect that as the degree of the polynomial want up, the local fluctustions for the high and is -activity sections would appear. The computational problems, however, are horrendous; it would be simpler to connect up polynomial rate function estimates within smaller, contiguous sections. This has not been pursued; in particular, it is not clear the polynomials would connect smoothly.

The overall conclusion of this section is that the data is grouply non-homogenous; possible reasons will be discussed in Section 8.

7. Tools of Pit of the MPP

In the discussion of Section 4, it was noted that by transforming the observations in a MHTP with known rate function so that the times-to-events become $T_1^i = A(T_1), T_2^i = A(T_2), \ldots$, the transformed process is a boungemean Pulsaue process with unit rate function. However, by conditioning on the number of events in $(0, t_0)$ or $(0, A(t_0))$, the problem of testing for a MHTP can be reduced to testing, for some alternatives, that the times-to-eventual are order statistics from a uniform - istribution. Other tests are given in Cox and Levis (1966, Ch. 6).

\$0

The transformation is shown in Figure 11.

Testing for a HHPP with unknown rate function is more difficult. The analogous problem in regression analysis is to test the usual assumption that the residuals c_i in an additive model

$$Y_1 = g(1;\underline{B}) + c_1$$

are independent normal random variables with mean zero and constant variance σ^2 . The problem is that after estimating the parametric mean value function, the residuals $\hat{\epsilon_i} = Y_i - g(i; \hat{\underline{\beta}})$ are no longer independent and normally distributed (e.g. see Damiel and Wood, 1971).

An analogous procedure suggested by Lewis (1970), using Theorem 4.1, is to estimate the parameters in the parametric rate function $\lambda(t;\underline{\alpha})$, which we denote by $\hat{\lambda}(t;\underline{\hat{\alpha}})$ or $\hat{\lambda}(t)$, via maximum likelihood and then to detrend the process by transforming the process to obtain $T_1^t = \hat{\lambda}(T_1;\underline{\hat{\alpha}})$, $T_2^t = \hat{\lambda}(T_2;\underline{\hat{\alpha}})$,... We would expect the departures from a homogeneous purcees to be small if the number of observations is large and the number of parameters small, and, of course, if the completely specified MMPP is correct.

Very little is known about this procedure. Note, however, that if the uniferm conditional test is used with (conditional) Kolmegorev-Smirnov statistics, the publicm is that of Kolmegorev-Buirnov tuets of fit after parameter estimation. Lilliefere (1967, 1969) has investigated this for expensedial and normal random variables; as expected, the estimated distribution function (integrated rate function) is; on average, closer to the empirical distribution function (empirical integrated sate function) then without parameter estimation. More recent work on Kolmegorov-Smirnov tests with estimated parameters is not yet developed for our purposes. Tests for a houngeneous Poisson process based on spectra (Cox and Lewis, 1966, Ch. 6) should be lass sensitive to parameter estimation.

We now apply those notheds to the low and high-activity periods is an informal manner, selving more on properties of the intervals and the count spectra than on the rate function.

7.1 High Activity Data - Test for HER?

The following discussion of the validity of, or departures from, the HMPP modul for the high-eachyday data to based after transformation of the data on the nuthodology in Cox and Lavis (1996), which to implemented in the BAGB-BY program. It is highly technical; our discussion is abbreviated and cus be skipped by the sunder inter-road primarily in the menules of the data analysis. Briefly, the HMPP is found using the detrembing terbelies of the approximately correct. Deviations seeur became of as approach indidition effect which results in fover very

short intervals than would occur under the MMPP assumption.

To proceed with the analysis of the detrended high-activity data, in Table 10 we give results of several tests for dependence of intervals in the process. The normalized, estimated first serial correlation coefficient $(n-1)^{1/2}\hat{\rho}_1$ has a value -2.5532, higher than the 1% level of the normal distribution, while the tests for independence based on the cumulated periodogram (raw interval spectral density estimate) using the Kolmogorov-Smirnov statistic $D_{n/2}$ and the Anderson-Darling statistic $W_{n/2}^2$ (Cox and Lewis, 1956, Ch. 6) are just significant at a 1% level.

We note that the smoothed interval spectral density, as computed in the SASE-VI program, shows no characteristic departure from flatness, and serial correlations beyond the first are small. Thus, there appears to be only a residual dependence in the intervals, possibly due to the detrending or a residual trend.

Similarly, the estimated spectrum of counts (Cox and Lewis, 1966, Ch. 5; Lewis, 1970) has no significant departure from flatness, showing that a Poisson process is a tenable hypothesis for the detrended data and consequently a NHPP hypothesis for the original data.

However, some very subtle departures from exponentiality appear when one looks at the interval properties of the detrended process. These are given in Table 11. In the first place, the estimated coefficient of variation of times between events, $\hat{C}(X')$ is smaller than 1. Estimated from five sections of the data, it has value $\hat{C}(X') = 0.9673$, with estimated standard deviation 0.0775, which is too large to give conclusive evidence of departure from the value C(X') = 1 for a Poisson process.

This artifact of the data shows up clearly in an estimate of the intensity function, $m_f(t)$. There is a definite notch at zero in the estimate $\widetilde{m_f}(\Delta t)$ (Cox and Lewis, 1966, Ch. 5). Thus, there are only 720 observations within Δ of the origin, and subsequently the estimate is essentially flat, never deviating in any interval Δ from the modal value of 1,000 by more than 50.

Checking of the transaction initiation process showed that there was, in fact, a minimum time between transaction initiations imposed by the system. A simple model of a Poisson process with blocking (Type I counter) is sufficient to account for the deviations from a Poisson process.

Another artifact in the data appears in the fact that the estimated coefficients of skewness and kurtosis, $\hat{\gamma}_1(X')$ and $\hat{\gamma}_2(X')$ for the data (5.2363 and 68.3916 in Table 11) are large compared to the Poisson process values $\gamma_1(X) = 2$,

 $\gamma_2(X) = 9$. These are due to occasional very large times between transaction initiations; these seem to occur in very short periods of high variability of times between transaction initiations. This shows up in Figure 5 as the spike at about t = 3000.

No explanation has been found for this departure from the NHPP; it could be due to special procedures in the use of the system but in any event is too minor to affect practical use of the NHPP model in evaluating such a system.

7.2 Low-Activity Data - Test for NHPP

The low-activity data, after detrending with an estimated rate function $\hat{\Lambda}(t;\hat{\alpha})$ which is the integral of an exponential polynomial of degree 8, to give $T_1^i = \hat{\Lambda}(T_1), T_2^i = \hat{\Lambda}(T_2), \ldots$, shows a very definite indication of departure from a Poisson process. For $\hat{C}(X^i)$, $\hat{\gamma}_1(X^i)$, $\hat{\gamma}_2(X^i)$, we obtain values 1.475, 4.1233, 21.716, respectively, and these are too large to be consistent with a Poisson hypothesis after detrending.

The data also shows considerable interval correlation. A detailed analysis will not be given here, especially since the detrending process is not completely valid. However, as remarked earlier, the low-activity data after detrending is consistent with a cluster process hypothesis. We emphasize that "consistent" here refers only to matching of gross characteristics of the observed and theoretical processes; there is no known formal way of verifying a non-homogeneous cluster process hypothesis.

8. Discussion

The outstanding feature of this data is the oscillatory nature of the rate function in both the high and low activity pariods. Such oscillatory behavior is usually investigated by spectral analysis, but this, of course, is applicable only to stationary data. The data shows a gross time-of-day effect superposed on the oscillations, and it is not simple to filter this out, most particularly because the period of the oscillation is long, i.e. low frequency. It is, therefore, likely to become mixed up in a spectral analysis with long term evolutionary (time-of-day) trends.

Nevertheless, an attempt was made to examine the cyclic effect in time periods H and L by

- (a) detrending (Section 7) after fitting an exponential polynomial of degree 1;
- (b) computing the count spectrum of the detrended data using SASE-VI.

The result of these spectral analysis showed generally flat spectra, with peaks at a low frequency corresponding to a rough guess at the frequency of the cycle, which was obtained from Figures 4 and 9. There seems to be no evidence of a fixed frequency cycle; this would show up as a sharp peak in the spectrum.

The cycles observed in this exploratory analysis of a single series of events in the system bring up some interesting, difficult, and as yet, unresolved methodological and phenomenological questions.

- (1) The global techniques for rate function estimation need to be extended to larger sections of data as the best overall way of looking at this data. The most practical way of doing this would appear to be to apply the technique to non-overlapping or overlapping sections of the data. The problem of joining sections might lead to (exponential) spline function techniques; new problems of testing then arise.
- (2) The question arises as to what causes the oscillatory or cyclic effect; in the Introduction we pointed out that the transaction initiation process is an output or response process so that it is presumably driven by other processes associated with the system (e.g. message arrivals). The implications of this from a methodological point of view are twofold:
 - (a) The deterministic rate function estimated in previous sections might be considered, at least in the micro-aspects, to be purely descriptive. There is a possibility that what we are seeing is the effect o' congestion in the system (e.g. DL/I component), and the data may perhaps be best described by something like a self-exciting process (Newkes, 1972), which is the point process analog of an autoregressive system. This would not be inconsistent with our findings, since (linear) self-exciting processes are special types of cluster processes (Newkes and Oakes, 1974). One problem with the above interpretation of the cyclic effect is that we would expect more oscillatory effect during high activity periods than during low activity periods. Novever, just the opposite is true.
 - (b) Since the observed transaction initiation process is driven by other processes associated with the system, a full description of the behavior of the system would involve an attempt to correlate the transaction initiation process studied in this paper with processes at other points of the system. In particular, it would be of interest to correlate the transaction initiation process with the process of message arrivals from terminals. It would also be desirable to correlate the transaction initiation process with the successive response times experienced by users of the system.

There are many methodological problems in analysing very non-stationary

systems, in particular the problem of estimating correlation and/or coherence. For the present case, the fact that the high activity data is close to Poisson, although non-homogeneous, should make development of the necessary methodology simpler. The work of Cox and Lewis (1972), and particularly Cox (1972), should be useful.

References

Anderson, T. W. (1971). Statistical Analysis of Time Series, Wiley, New York.

- Bickel, P. J. and Rosenblatt, M. (1973). "On Some Global Measures of the Deviations of Density Function Estimates," Ann. Math. Stat. 44, 1071-1075.
- Brown, M. (1972). "Statistical Analysis of Non-Homogeneous Poisson Processes." In Stochastic Point Processes, P. A. W. Lewis (ed.), Wiley, New York, 67-89.
- Çinlar, E. (1972). "Superposition of Point Processes." In <u>Stochastic Point</u> Processes, P. A. W. Jewis (ed.), Wiley, New York, 549-606.
- Çinlar, E. (1975). Introduction to Stochastic Processes, Prentice-Hall, Englewood Cliffs, New Jersey.
- Cox, D. R. (1972). "The Statistical Analysis of Dependencies in Point Processes." In <u>Stochestic Point Processes</u>, P. A. W. Lewis (ed.), Wiley, New York, 55-66.
- Cox, D. R. and Lewis, P. A. W. (1966). <u>The Statistical Analysis of Series of</u> Events, Methuen, London; Wiley, New York and Dunod, Paris.
- Deniel, C. and Wood, F. S. (1971). <u>Fitting Equations to Data</u>: <u>Computer Analysis</u> of <u>Multifactor Data for Scientists and Engineers</u>, Wiley-Interscience, New York.
- Gnedenko, B. V. and Kovalenko, I. (1969). Introduction to Queueing Theory. Tr. by D. Louvish, Daniel Davey and Co., Hartford, Conn.
- Hawkes, A. G. (1972). "Mutually Exciting Point Processes." In <u>Stochastic Point</u> <u>Processes</u>, P. A. W. Lewis (ad.), Wiley, New York, 261-271.
- Hawkes, A. G. and Oakes, D. (1974). "A Cluster Process Representation of a Self-Exciting Frocess," J. Appl. Prob. 11, 493-504.
- IBM Corp. (1973). "Information Management System 1360, Version 2, General Information Manual," GH 20-0765 IBM Corp., Armonk, New York.
- Lavenberg, S. S. and Shedler, C. S. (1975). "A Queueing Model of the DL/I Component of IMS," IBM Research Report RJ-1561, Sau Jose, Calif.
- Lewis, P. A. W. (1965). "Some Results on Tests for Poisson Processes," Biometrika 52, 67-77.
- Lewis, P. A. W. (1967). "Non-homogeneous Branching Poisson Processes," J. Royal Statist. Soc. B. 29, 345-354.
- Lewis, P. A. W. (1970). "Remarks on the Theory, Computation and Application of the Spectral Analysis of Series of Events," J. Sound Vib. 12, 353-375.

- Lewis, P. A. W. (1972). "Recent Results in the Statistical Analysis of Univariate Point Processes." In <u>Stochastic Point Processes</u>, P. A. W. Lewis (ed.), Wiley, New York, 1-54.
- Lewis, P. A. W., Katcher, A. H. 4 Weis, A. H. (1969). "SASE-IV an Improved Program for the Statistical Analysis of Series of Events," IBH Research Report RC-2365, Yorktown Weights, New York.
- Lewis, P. A. W., Liu, L. H., Robinson, D. W. and Rosenblatt, M. (1975). "Empirical Sampling Study of a Goodness of Fit Statistic for Density Function Estimation," Neval Postgraduate School Report NPS55Lw75031, Monterey, Calif.
- Lewis, P. A. W. and Robinson, D. W. (1974). "Testing for a Monotone Trend in a Modulated Renewal Process." In <u>Reliability and Riometry</u>, F. Proschan (ed.), <u>SIAM</u>, Philadelphia, 163-181.
- Lewis, P. A. W. and Shedler, G. S. (1973). "Empirically Derived Micromodels for Sequences of Page Exceptions," IBM J. Res. Devel. <u>17</u>, 86-100.
- Lilliefors, H. W. (1967). "On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown," J. Amer. Statist, Assoc. 62, 399-402.
- Lilliefors, H. W. (1969). "On the Kolmegorov-Smirnov Test for the Exponential Distribution with Maan Unknown," J. Amer. Statist. Aseoc. <u>64</u>, 387-389.
- MacLean, C. J. (1974). "Estimation and Testing of an Exponential Polynomial Rate Function Within the Non-Stationary Poisson Process," <u>Biometriks 61</u>, 81-86.
- Rosenblatt, N. (1956). "Hemarks on Some Non-Parametric Estimates of a Density Function," <u>Ann. Math. Stat</u>. <u>27</u>, 3, 832-837.
- Vere-Jenes, D. (1970). "Stochastic Models for Earthquake Occurrence," J. Royal Statist. Soc. 2, 32, 1-62.

\$

¢

۰. ۲.

ł

ì

the second s

Set & Langerers

One-Way maxiysis of Variance for Counts. Transaction Initiation Process for Day 2.

Group 1	Counts in 4800 Unit Time Intervals	Maan Counts In Unit Time Interval		$\hat{\sigma}_{i}^{2}$	â _i
1	1034	0.2154	4.5638	5.6635	2.3798
2	1742	0.3629	6.5178	1.6084	1.2682
3	2455	0.5115	7.6421	3.5629	1.8876
4	1877	0.3910	6.6108	3.8181	1.9540
5	2841	0.5919	8.3752	1.4157	1.1898
6	2925	0.6094	8.5412	0.6898	0.8305
7	2446	0.5096	7.7840	1.0866	1.0434
8	1012	0.2108	4.3684	6.8893	2.6248
9	1910	0.3979	6.7616	2.5957	1.6111
10	1671	0.3483	5.9692	6.8401	2.6154
11	1988	0.4142	6.7364	4.9443	2.2236
12	1880	0.3917	6.6715	3.0682	1.7516
			∑x _i ≈80.5420	$\sum_{i=42.1826}^{2^2}$	
			x,/12-6.7118	$\sum_{i=1}^{2} \hat{\sigma}_{i}^{2}/12 = 3.51$	1 52
			€ ² / _x ≈'.7126		
	- The second		$\hat{\partial}_{\frac{w}{2}} = 1.3005$		

Sample Characteristics of Times-Between-Events. Transaction Initiation Process for Time Period H.

8	number of transactions initiated	1999
t ₀	period of observation	11936.6066
X	estimated mean time between trans- action initiations	5.9698
Ê(x)	estimated coefficient of variation of times between transaction initiations	1.0533
Ŷ ₁ (X)	estimated co-afficient of skewness of times between transaction initiations	6.7399
$\hat{Y}_{2}(X)$	estimated coefficient of kurtosis of times between transaction initiations	107.7282
X Mex	Naximum time between transaction Initiations	133.6488
X min	minimum time between transaction initiations	0.0152

Sample Characteristics of Times-Between-Events. Transaction Initiation Process for Ten Sections of Time Period H.

1. **1**. 1.

a service possible to at a

X

.

,

·

;

,

1

•

المراجعة المراجعة

•

•

٠

6

t

Section	sample mean X	s.d. of pasn 6(X)	coeff. of variation C(X)	$\begin{array}{c} \text{osff. of} \\ \text{skewness} \\ \hat{Y}_1(X) \end{array}$	coeff. of kurtosis Y ₂ (X)
1	7.4645	0.5561	0.8430	2.3096	11.4548
2	6.0584	0.3577	0.8328	2.2653	12.1494
3	5.4876	0.5414	1.3916	7.7614	84.6585
4	6.1348	0.3822	0.8789	1.1901	3.9449
5	5.0611	0.2854	0.7954	2.9991	18.6264
÷	6.8133	0.4489	0.9706	2.2651	9.6977
7	7.5992	0.7779	1.4440	8.0075	89.8598
6	6.2456	0.3631	9.8652	1.8087	7.11/4
9	4.2847	0.2425	0.7984	1.6654	6.6807
10	4.5566	0.2513	0.7750	1.7533	8.1512
20 3 0	5.9708	0.4137	0.9598	3.2026	25.2341
9. d. 72888	0.3591	0.0506	0.0783	0.7952	10.4197

•

degree of polynomial r	manimum log-likalihood max log. L	absolute difference δ	test statistic Ur
1	~5563.8		3.8387
2	-5562.8	1.0	1.5727
3	-5549.4	13.4	5.3138
4	-5548.9	0.5	-0.4437
5	-5539.9	10.0	-4.2081
6	-5537.0	2.9	-2.6188
7	-5536.9	0.1	0.0188
8	-5536.8	0.1	0.1211
9	~5536.8	0.0	0.2038

Yalues of Maximum Log-Likelihood and Test Statistic in NHPP Exponential Polynomial Rate Function for Times Between Transaction Initiations for Time Period H.

• • •

TINE 5

「こうちょうないないないない

ころないたちないないです。 ふたんなかい たいないないないないないない ちょうしょう かんていまたい しょうかい ゆ

こうちょうちょう しま

くばいたちの

ころう いまたのないのない かったる たいろう しし

Estimated Values of the Crefficients (a) in MEPP Exponential Polynomial Rate Function (Degree r=6) for Times Between Transaction Initiations for Time Period H.

3	â	â t _o
0	-2.1381	-2.13 ⁶¹
1	3.1832×10 ⁻⁴	3.7976
2	-2.2607×10 ⁻⁷	-32.2109
3	1.0211×10 ⁻¹⁰	173.6460
4	-2.1286×10 ⁻¹⁴	-432.1270
9	1.9331×10 ⁻¹⁸	468.4494
6	-\$.2664×10 ⁻²³	-181.2609
Sample Characteristics of Times-Between-Events. Transaction Initiation Process for Time Period L.

D	sumber of transactions initiated	1258
t ₀	period of observation	13819.51927
X	estimated mean time between trans- action initiations	10.9809
Ĉ(X)	estimated coefficient of variation of times between transaction initiations	1.6563
Ŷ ₁ (X)	estimated coefficient of skewness of times between transaction initiations	3.7524
Ŷ ₂ (x)	estimated coefficient of kurtosis of times between transaction initiations	18.9686
X	maximum time between transaction initiations	145.4241
^X min	minimum time between transaction initiations	0.0263

- could

--

N

Manufacture second and a second s

わちのため

、金融をおいると、

Constant and the set

5

Sample Characteristics of Times-Between-Events. Transaction Initiation Process for Five Sections of Time Period L.

section	sample peau X	s.d. of inon o(X)	coeff. of variation C(X)	coeff. of skywnese Y ₁ (X)	coaff. of kurtosts Y ₂ (X)
1	18.4683	1.6760	1.4378	2.2573	7.9515
2	12.5333	1.2289	1.5534	3.5112	16.6713
3	9.2178	0.9318	1.6015	5.0123	32.5160
4	8.2978	0.9430	1.8005	4.2290	23.2152
5	6.2124	0.3806	0.9706	3.7494	23.7669
12983	10.9459	1.0321	1.4728	3.7519	20.8242
e.d. meen	2.1390	0.2116	0.1386	6.4532	4.0867

1

Values of Maximum Log-Likelihood and Test Statistic in XHPP Exponential Polynomial Rate Function for Times Between Treposetion Initiations for Time Period L.

degree of polynomial	nesimun log-likihood	absolute difference	test statistic
r	max log L	δ	U _r
1	-4203.7		11.6960
2	-4203.6	0.1	1.2031
3	-4200.4	3.2	-2.4203
4	-4199.2	1.2	6.8175
5	-4191.0	3.2	-3.6703
6	-4190.2	0.8	0.4564
7	-4187.4	2.8	-2.3417
•	-4174.4	13.0	-5.0208
Ð			-5.9505
10	*** *		2.7145

the second received and the second se

THERE 9

7

のたが方

Ş

The second s

Residented Volume of the Coefficients {u } in MHPP Imponential Polynomial 2:20 Function (Degree 7=8) for Times Between Transactica Initistions for Time Period L.

•	ê	
0	-2.4384	-2.4784
1	5.7575×10 ⁻⁴	7.9566
2	-2.4040×10 ⁻⁶	-459.1064
3	1.6908×10 ⁻⁹	4462.4093
4	-5.1474×10 ⁻¹³	-18774.5 509
5	8.2145×10 ⁻¹⁷	41404 .4332
6	7.1769×10 ⁻²¹	-49991.0659
7	3.2524×10-25	31307.4980
8	-5.9823×10 ⁻³⁰	-7958.1157

Station

And an and a second second

Tests for Dependence on Serial Number and Dependence Between Intervals. Detrended (NHPP Exponential Polynomial Rate Function of Degree 6) Transaction Initiation Process for Time Period H.

.

n	number of transactions initiated	1999
Â	estimated serial correlation coefficient of lag 1 for times between transaction	
	initiations	-0.0576^
(n-1) ¹² p ₁		-2.5532
	Tests for serial independence based on cumulated periodogram	
D _{n/2}	Kolmogorov-Smirnov statistic*	1.4897
		, , , , , , , , , , , , , , , , , , ,

* upper 1% point is 1.318

** upper 1% point is 3.857

1

STRATES TO A STRATE OF THE STRATES STRATES STRATES

40.00.000

÷

.

Sample Characteristics of Times-Between-Events. Detrended (NHPP Exponential Polynomial Rate Function of Degree 6) Transaction Initiation Process for Time Period H.

n	number of transactions initiated	1999
tg	period of observation	1999.02
Ī'	estimated mean time between trans- action initiations	0.9998
Ê(x')	estimated coefficient of variation of times between transaction initiations	0.9784
\$1(X')	estimated coefficient of skewness of times between transaction initiations	5.2363
\$ ₂ (x [•])	astimated coefficient of kurtosis of times between transaction initiations	68.3916
X ⁴ surx	maximum time between transaction initiations	17.4752
X' min	minimum time between transaction initiations	0.0031

A STATEMENT STATEMENT STATEMENT

.

¢ É

÷.*

のないの言語

A STATE AND A S

رد. ک

Figure 2. Estimated mean number of transactions initiated in a unit time interval for days 1, 2 and 3. Estimates obtained by averaging counts in 4800 adjacent unit time intervals. This very severe smoothing takes out local fluctuations but gives a picture of how the activity varies over a full day.

Figure 3. Cumulative number of transactions initiated for time period H (high activity). There is enough departure from linearity to suggest inhomogeneity in the data. The test for a homogeneous Poisson process using the Kolmogorov-Smirnov statistic confirms the departure; the value 2.389 of the Kolmogorov-Smirnov statistic is highly significant.

にたれず

· November

Figure 4. Estimate $\hat{\lambda}(t; \hat{a})$ of NHPP rate function using exponential polynomial (degree 6) of transaction initiation process for time period H (high activity).

Figure 5. Estimate $\hat{\lambda}(t; n, t_0)$ of the rate function of the transection initiation process for time period H (high activity) using a kernal-type density estimator. Sample size n = 1999, band-width b(n) = $1.25/n^{1/2}$. Triangular window.

1. A. C. S.

Figure 6. Estimate of the rate function of a homogeneous Poisson process of rate n/t_0 . The estimator is the same as in Figure 5. The greater dispersion in Figure 5 is due to departures from the Poisson process, most probably inhomogeneity.

11

にないしました

Figure 7. Parametric and empirical estimates of the integrated rate function for time period H (high activity). Solid curve is the NHPP estimate $\hat{A}(t; \hat{\alpha})$ using exponential polynomial (degree 6). Dotted curve is the cumulative number of events for time period H.

NEW CONTRACTOR OF STREET, STRE

Figure 8. Parametric and empirical estimates of the integrated rate function for time period L (low activity). Solid curve is the NHPP estimate $\hat{\Lambda}(t; \hat{\alpha})$ using exponential polynomial (degree 8). Dotted curve is the cumulative number of events for time period L.

S TENE

のためというないであると

. Ś

Figure 12. Empirical lag survivor function of the detrunded times X' between transaction initiations for time period H. Sample size n = 1990. Note that the figure only shows the log survivor function out to 1554 events.

TNETIAL DISTRIBUTION LIST

......

この いってい いってい いっち

1.4

Copies

میں دمنہ ان ر

S. S. C. B. S. B. B. S. S. S. S. S.

	Copies		Copies
Dean of Research	2	Director	1
Code 012		Office of Naval Research	
Naval Postgraduate School		Branch Office	
Nonterey, 'CA 93940		1030 East Green Street	
		Attn: Dr. A. 9. Laufer	
Library, Code 0212	2	Pasadena, CA 91101	
Naval Postgraduate School	÷		
-		Office of Novel Deserve	•
Monterey, Cá 93940		Office of Naval Research	1
	•	Branch Office	
Library, Code 55	2	1030 East Green Street	
Naval Postgraduate School		Attn: Dr. Richard Lau	
Monterey, CA 93940		Pasadena, CA 91101	
P. A. W. Lewis, Code 55Lw	10	Office of Naval Research	1
Naval Postgraduate School		San Francisco Area Office	
Monterey, CA 93940		760 Market Street	
		San Francisco, CA 94102	
Professors G. G. Brown, Code 55Bw	1	Sum francisco, en 34102	
		Machadaal Idhaan	
R. W. Butterworth, 55Bd	1	Technical Library	1
J. D. Es ry, 55Ey		Naval Ordnance Stacion	
D. P. Gaver 55Gv	1	Indian Head, MD. 20640	
K. T. Harsh 11, 55Mt	1		
P. R. Milch, 55Mh	ļ	Office of Naval Research	1
F. R. Richards, 55Rh	· · i	Branch Office	
Naval Postgraduate Sch wl		1030 Last Green Street	
Nonterey, CA 93940	ı	Attn: Dr. D. Osteyee	
		Pasadena, CA 91101	
Statistics and Probability Program	3		
Office of Naval Research	,	Naval Ship Engineering Center	1
Attn: Dr. B. J. McDonald			1
		Philadelphia	
Arlington, VA 22217		Division Technical Library	
· · ·		Philadelphia, PA 19112	
Defense Documentation Center	12		
Caseron Station		Bureau of Naval Personnel	1
Alexandria, VA 22314		Department of the Navy	
		Technical Library	
Technical Information Division	6	Washington, D. C. 20370	
Naval Research Laboratory		-	
Washington, D. C. 20390		Dirsctor, Naval Research	6
		Laboratory	Ū
Office of Naval Research	1	-	
-	•	Attn: Librery, Code 2029	
New York Area Office		(ONAL)	
715 Broadway		Washington, D. C. 20390	
Attn: Dr. Robert Grafton			1
New York, New York 10003		Director	-
		Office of Neval Research Branc	h
Director	l	Office	
Office of Saval Rosearch		535 South Clark Street	
Branch Offico		Attn: Dr. A. B. Dawe	
495 Suzzor Street		Chicago, IL 66605	
Attn: Dr. A. L. Possell			
Nostea. M. 02210			
1957 AN 1975 - 214 21 776 52 857			

Copies

Ł

L

Library Naval Electronics Laboratory Center San Diego, CA 92152

Naval Undersea Center Technical Library San Diego, CA 92132

Strange - Constrant Statistics and and the second

Sherry Street

÷

1

1

Applied Mathematics Laboratory Naval Ship Research and Development Center Attn: Mr. Gene H. Gleissner Washington, D. C. 20007

?

** ~ ~