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An autoregressive process · {yt} of order p with mean 0 is 

defined by 

(l) t = .•. ,-1,0,1, .•. ' 

where the 

O<cl<oo 

are independent random variables with C:.ut = 0, 4u~ = cr
2 

The stochastic process is stationary and yt is indepen-

dent of if and only if the ut+l' ut+2' · · · 

associated polynomial equation 

(2) b(w) 

where has roots ... ' 

p-j 
w = 0 ' 

w 
p less than 

are such that the 

l in absolute value. 

The purpose of this paper is to show that the generalized variance of the 

process is a power of the variance of ut p ( )-1 times IT .. 1 1-w.w. 
l,J= 1 J 

The covariance sequence of the process is composed of 

crs =~ytyt+s = cr-s' s = 0,1, .... Consider a sequence of observations 

y1 , •• ,, yT for T L p constituting a sample vector lT = (y1 , •.• ,yT)'. 



The covariance matrix of the sample vector is 

(3) JJ Y y,' - ( crl. -j ) - ~T - cr2 ~T • {..e -T-T - - -

The determinant ~~TI = (cr2 )TI~I is the generalized variance of ~T . 

u 
p+l' 

(4) 

In the Gaussian case the joint density of ~p and 

••• , UT (T L_p) is 

T 

I 
t=p+l 

u~]} 

··Since the Jacobian of the transformation from to 

~T is 1 , the constant of the density of ~T is the same as of (4) 

and hence ~~~1 1 = 1~;1 1, T L p (See Walker (1961) and Siddiqui (1958),) 

Since 1~1 = ~~PI for T L p , we call lgpl the normalized genera-

lized variance of the process. 

For TLP substitution for from (l), t = p+l, ... ,T, into 

(4) to obtain the density of 
I -1 

yields the quadratic form ~T 3T ~T , 

showing that every element of is a second degree polynomial in 

except possibly elements of 
-1 Q . 

-P 
However, since the 

density of y
1

, ... , yT is identical to the density of yT' .•. , y
1 

, 

the elements of 
-1 -

3p must be second degree polynomials in B1 , ... , Bp 

The components of -1 
~p are therefore polynomials in the roots w1 , ... ,wp 

l~p-11 of degree at most 2p . Hence, the determinant _ is a polynomial 

in of degree at most 
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Lemma l, If 

(5) 

then 

(6) 

and 

(7) 

1 1 

hl h2 

C= (c. j) 
h2 h2 

= 1 2 
~ l 

p-1 
h2 

~~~ = II 
i<j 

(h. - h.) 
J l 

( II h.) II 
i:fk l i<j 

i:fk:fj 

where elk denotes the cofactor of elk in 

Proof. c is a Vandermonde matrix, and 

for example, by Hamming (1962)' Sections 8.2 

1 

h 
p 

h2 
p 

hp-1 
p 

(h. -h.)' 
J l 

c . 

I ~I and -1 given, c are 

and 10.3. A direct proof 

of (1) using (6) is as follows: to form elk delete row 1 and column 

k of 191 ; in the cofactor, factor h. out of the i-th column 
l 

to obtain a Vandermonde determinant of order p-1 . Q.E.D. 

(8) 

Lemma 2. The determinant of order p , 

D -p 
1 

a. + b 
l j 

= 

3 

p 
II ( ai + bj) 

i ,j=l 

(i:fk) 



Proof. This is Cauchy's determinant; see, for example, Bellman 

(1960), Section 11.6, Exercise l. A direct proof is as follows: To 

convert into 0 e~ch element in the first column, except for that 

in the first row, we subtract from each row an appropriate multiple 

of its first row. The i,j-th element is thus converted into 

(9) l l al+bl 

a1 +bj ai+b1 
i ,j =2, .•. ,p. 

The first factor on the right-hand side is common to t~e i-th row and 

the second to the j-th column. Hence, 

(10) D 
p 

= 

and the result follows. Q.E.D. 

Theorem. For . .. ' s such that the roots of (2) are less 
p 

than l in absolute value for T ~ p 

(ll) 

Proof. We first consider the case where 

ferent and different from 0 . If -1 
h. = w. 

l l 

w1 , ... , wp 

then in (5) 

are dif-

1~1 of 0 

Anderson (1971) in (24) of Section 5.3 gives an expression for the 

elements of 2:: in terms of (See also Problem 19 of 
~p 

Chapter 5.) Then 
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(12) 

where 

(13) 

Further, 

(14) 

lyl = 1 
1 - w.w. 

l J 

-1 
w. 

l = -1 w. + ( -w.) 
l J 

1 =---
p 
II w. 

i=l. l 

1 
-1 w. + (-w.) 
l J 

=-=-1-
p 
II w. 

i=l l 

p 
II 

i,j=1 
(w~1 - w.) 

l J 

( p )p-1 
= II w. 

i=1 l 

) 2 -1 -1 II (w. - wj w. w. 
i<j l l J 

::: 
p 

/ II (1- w.w.) 

= 

i,j=1 l J 

. p ) 
(

.II h~-1 II (h. - h. ) P-2 

i~1 l . i<j . J l 

p 
II 

i=l 

II (h. - h.)P-1 

i<j J l 

2p-2 
h. 

l 
1 

= 

2 II (w. - w.) 
i<j .l J 

p 
II (1-w.w.) 

l J i ,j=1 

2 

2 
II (hj - h. )2 II (w. - w.) 

i<j 
l i<j l J 
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and (11) follows for the roots different and nonzero. The determinant 

~~~11 is the polynomial 
p 

ITi,j=l(l 

such that I w .I < 1, j = 1, ... , p 
J 

w. w.) ' 
l J 

Q.E.D. 

which holds for all 

Discussion 

l. If the process is Gaussian, the normalizing constant in the 

normal density of ~T is (2~)-T/2 times 

(15) 
p 
IT 

i,j=l 

l 
2 (1-w.w.) 

l J 

2. If one or more of the roots approaches 1 in absolute value, 

I ,_.,-ll ~ 0 and I I ~T ~ ET -+ 00 • These facts agree with the nonexistence of 

a nontrivial stationary process satisfying (1) if one or more roots are 

equal to l in absolute value. 

3. Grenander and Szego (1958) in effect showed that 

I I - p ( )-1 lirrL ~- - IT. . 1 l - w. w. '1'+00 .:::'1' l,J= l J by use of an integral of 

though they did not relate this result to the generalized variance of 

the autoregressive process. Walker (1961) noted that 

I3TI = l§pl = 1/1~1 1 for T ~ p. An alternate proof of the theorem can 

be assembled from the results of Grenander and Szego and Walker. (See 

also Finch (1960).) 

4. A moving average model of order q is defined by 

(16) 
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where the are independent random variables with ~vt = 0 , 

< 00 • The associated polynomial equation 

(17) Zq + ~ zq-l + + ~ = 0 
~l ... ~q 

has roots •.• ' z • 
q 

Durbin (1959) conjectured that if is 

the covariance matrix of generated by (16), and if all 

roots of (2) are less than l in absolute value, then 

(18) 

for some n sufficiently large compared with p=q when a = S 
j j ' 

j = l, ... , p. Finch (1960) showed that 

(19) 

by use of some results of Grenander and Szego (1958) and gave explicitly 

the limiting value of the generalized variance for an autoregressive 

moving average process. Walker (1961) used more algebraic methods to 

show (18) for n = p = q . As an example, these results for p = q = l 

are 2 Q = l/(1-S ) 
l l 

and I I 2T+2 2 2 N = (1-a )/(1-a ) ~ l/(1-a ) 
~T l l l 

Durbin (1959) considered the case p = q = 2 in detail. 

as T~oo. 

For further discussion, see the recent paper by Shaman (1976). 
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