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1. Introduction

Consider the syu tem of linear equation .

(1.1) A x — b  
—

where A is an NXN spar se .yometric positive definite matrix such as those tha t arise in

fin ite difference and finite element approximations to elliptic boundary value problems

in two and three dimensions . A classic method for solving such systems is Gaussian

elimination: We use the kth equation to eliminate the kth variable from the remaining

N—k equations for k — 1,2, . . .,N—l and then back—solve the resulting upper triangular

system f or the unknown vector x. Equivalently, vs form the UTDU decomposition of A and

successively solve the triangular systems

(1.2) UT Z _ b , D y _ z ,U x .y

Unfortunately , as the elimination proceeds , coefficient. that vere zero in the original

system of equations become nonzero (or fill—in), increasing the work and storage required.

The purpose of this r iper is to introduce a new graph—theoretic model of such fill—ia;

to establish lover bounds for the work and storage associated with Gaussian elimination;

and to present a minimal storage sparse elimination algorith, that significantly reduces

the storage required.

In section 2, we review the graph—theoretic elimination model of Parter and Rose

and introduce a new element model of the elimination process. In section 3, vs use this

model to give simp le proofs of inherent lover bounds f or the work and storage associated

with Gaussian elimination , generalizi ng similar results of George and Hoffman, Martin,

and Pose. Last , in section 4 , we show how the e lement mode l , combined with the rather

tmusual idea of recomputing rather than saving the facto r ization , leads to a minima l

stor age sparse elimination algorit~~ that requires significan t ly less storage than regular

sparse elimination (e.g. 0(n2) vs. 0(n2 log n) for the five— or nine—point operator on an

axu mesh ) .

- - - - - —~~~-————_—--—--
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2. An Ej .,ment Ft ’dai for  Qauaaion Ej imi na tion

In this section , we shall review.— the gr aph—theoretic elimination model of Gaussian

elimina t ion ’ó~~gii~~d by Par te r (6] and exCens~vely developed by Rosa ( 7]  and’~introduce

a new element mode~~ cE. Lisenstat (1], Sherm an (91 .

Given an irreducible NXN sy stric positive definite matrix A — (a u ) ,  vs can

represent the zero—nonzero structure of A by a graph G (A) — (V,E) as follows: The vertex

of G(A) corresponds to the ith row/coluem of A; the edge (vi.v3
) is an edge of G(A) if

and only if au ~1 0. We shall model Gaussian elimination on the matrix A as a sequence

of such graphs.

Let G~
1
~ — G CA) . Then the graph ~~~~~ is derived from as follows: Corre-

sponding to using the kth equation to eliminate the kth variable from the remaining N—k

equations , we add any edges necessary to make all vertices adjacent to the kth vertex vk
pairvise adjacent and then delete and all edges incident to it. Thus the graph

represents the nonzero structure of the lower R- k+l * N—hf! submatrix of A ju st before the

kth variable is eliminated. From this observation , the following operation and storage

counts are i sdiate :

TFwor ’. ’~ (Rose (7]): Let d.5 denote the degree of vertex in the elimination graph

i.e. at the t ime it was eliminated . Thin the n~~b.r of multiplies required to for. the

uTw dec~~~osttion of A is given by

I
V .  L

kill

d the n~~~er of of f—diagonal nonasro entries in U is given by

The element model ulates Gaussian elimination as a sequence of transformations

on the graph G(A) and the collection £ of maximal cliques of vertices in G(A) which we

~~~~~~ ~~~~~~~~ 
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(4
shall refer to as .Zow.nt.. Initially. G~

1~ — G(A), f *:E~ — £, and all vertices a-re

marked uneliminated. Then and are derived from and E (k) as follows:

Corresponding to using the kth equation to eliminate the kth variable from the remaining

N—k equations, we mark th kth vertex as eliminated and add any edges necessary to make

all vertices adjacent to vk pairvise adjacent (no vertices or edges are deleted) ; all the

elements of f(~~ contajcing 
~k 

are merged into a new element and then deleted from f~~~.

Note that the subgrap h of induced by the unelininated vertices is just G~~ so that

the number of unelininated vertices adjacent to at the time it is eliminated is dk as

above. Also, elements in f
(%~ are cliques in (though not necessarily maximal

cUques). A vertex will be said to be an exterior vertex In if it belongs to nore

than one element; otherwise it belongs to exactly one element and is said to be an

interior vertex.

As an exomple, consider th. elimination process for the nine—point operator on

a 3*3 grid:

1—5—2
I I I

Figure 2.1 7.4—9
I I I
3—4—4

Initially , the elements correspond to the individual mesh squar es or elements , since these

form the only maximal clique, in G(A). Hence the nene “element model” (C f.  George 14]).

When we eliminate vertex v1, there is no change in the element graph (except to mark

eliminated) since it is an interior vertex. The some is true when we eliminate v2, v3,

end ~4• When we eliminate v5, however, the two elements conta ining V~ are merg.d, as also

happens when vs eliminate v6. Mow eliminati ng v 7 causes th . two remaining elements to be

merged into the final element which consists of all the vertices. Eliminating vertices

Vp end v, ha. no further effect since they at. interior vertices.

Vs note the following properties of the element model for future use . Throughout

th. elimination process , the number of elements that contain a given vertex never incre enes .

Thus an eli.inst.d vertex is necessarily an interior vertex , and, corresponding ly , an
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exterior vertex is uneliminated. (However , an interior vertex need not have been

eliminated. ) Initially , the largest element contains at most dmax vertices , where d ax
is the maximum degree of any vertex in G(A) and no vertex belongs to more than 2~~aX

~~~m x~~)elements. (See Hiseustat (1] for an example where a ver tex actually belongs to 22 a

elements.) At the end of the elimination , the only element consists of all the vertices.

3. Loj er Bounds for G~~ssion ~ iimination

In recent years , there has been a great deal of interest in computational complexity ,

particularly in analyzing the number of fundem*ntal operations inherent in a conputaion.

Along these lines , George (4] and Hoffman, Martin , and Rose [5] have used the elimination

praph model to prove lower bounds f or the work and storage associated with Gaussian

elimination on symmetric positive definite matrices whose graphs are certain regular

planar grids. In this section, we shall describe how the element model can be used to

give simpler proof s of these results that extend easily to some irregular grids in two and

three dimensions. For further detai ls, see Eieenstat (11.

First we shall define the model of computation in which these lover bounds are

valid. Given an irreducible NxN symmetric positive definite matrix A , we seek to solve

the system of linear equations (1.1) using Gaussian elimination. The work associated with

the elimination process will be taaan as the n~~~er of multiplies to factor A; the storape

th. number of nonzero entries in the matrix U.

The work sod storage required for Gaussian elimination is directly related to the

order in which the variables are eliminated. Thus, instea d of solving the original system

(1.1), we night prefer to solve the permuted system.

5.1) PA P T , _ P b ,PT Y .z

for s~~~ given permutation matrix P so a. to reduce the associated work and storage.

Indeed, a great deal of research has been dome towa rd discovering good ordering strategies

(e.g. minimum degree (73 end nested dis ection (43). Note that the permutation P doss not
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change the structure of the graph G(A) , other than relabelli ng the vertice s and thus

changing the order of elimination. Since the lower bounds we shall derive will be

independent of such considerations , they will be valid for all possible orderings.

As in section 2 , let G(A) — (V ,E) denote the graph associated with A , and let

denote the maximum degree of any vertex in G(A). We shall now nake the following additional

assumption about the matrix A or , equivalently , the graph G(A) :

“Isoperi ~metri c” Inegua ii:~~~ There exists constants K > 0 and 0 ~ o , 8 � 1 such that ,

given any subset S of V with I s i  � B N , we have

K Islu
where

— (v c S :~~v c V—S such that v and w are adjacent in G(A) )

is the bowida,~ of S.

This assumption is closely related to the classical isoperimetric inequality, which

relates the area A and perimeter P of a plane figure

2 zAP � 4 I

and the isovolumetric inequality, which relates the volume V and surface area S of a

three—dimensional region

~ 36W2.

Indeed, proofs of this property for particular grids follow the classical proofs. As an

e x p l., for the five— or nine—ooint operator on an nxn grid, we have

~ IS i
1t2 if ISI  ~

whil. for the seven— or twenty—s even—poin t operator on an oxaxo grid we have

1111 ~ isi’~’ 
j ~ ,sj ~

ef. Lisenstat [13.

—- ~~~~~~-____~~ 
-
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L.iwa (Zisens t at (1]);  Assume that the graph G(A) satisfies so isoperimetric inequality.

Then there exists a K(8t4/2~~1x)
0 clique in some elimination graph G~~~.

Proof : At the start of the elimination process, the maximum size of any element is 
~~ax’

the maximimun degree of any vertex in G(A) . At the end of the elimination process , there

is exactly one element of size N , namely the set of all vertices. Therefore, at some point

during the elimination , the f i rs t  element of size ‘ BN was created. This element was

created by merging all the elements containi ng some vertex As we saw in section 2, vk

could belong to at most 2’~~” elements at this point and thus at least one such , say ea ,

mus t contain note than 8N/2~~ax vertices . Consider the boundary vertices of e°. There

are at least K(8N/2~~51)° such vertices by the isoperimetric inequality, al l are unelimi—

nated vertices at this stage , and they are all pairvise adjacent. Thus they form a clique

in G (k) .

Coroiiartj : The bandwidth of the matrix A is at leas t

~ J/2~~U)° N°

Coivlla,:~~ The total work, required to factor the matrix A using band elimination is at

least

L LZ($,2dm.u)2n N~
2°
~
’1
~ ;

the number of nonzeroes in the band of A is at least

L($/2~~51)° N~°~
1
~

The proof follows directly from the standard operation and storage counts for band

elimination in terms of the number of equations and the bandwidth.

Cozvtlary : The total work required to factor the matrix A is at least

*E
S
~~/2~~

a5)
~~ 

iq3°

the number of nonzeross in U is at least
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.~~K2(g,Z
dmax)2~ N

2n.

Th. proof follows from the L e a  as in Hoffman, Martin, and Rose [5].

We shall now examine the consequences of these simple results. For planar grids

with ~~2 vertices and bounded degree, such as the five— or nine—point operator on an n’n

grid:

(1) the bandwidth is at least 0(n)

(2) the work and storage are at least 0(n4) and 0(n3) respectively for band elimination

(3) the work and storage are at least 0(n3) and 0(n2) respectively for sparse

elimination (a more careful analysis gives 0(n2 log n) for the stor age ; see

Etsenstat [1]).

For three dimensional grids with -n3 vertices and bounded degree, such as the seven— or

twenty—seven—point operator on an nxnxn grid:

(4) the bandwidth is at least 0(n2)

(5) the work and storage are at least 0(n7) and 0(n6) respectively for band elimination

(6) the work and storage are at least 0(n6) and 0(n4) respectively for sparse

elimination.

4. Mtn ima l Storage Spares Eliminatio ’iz

One of the major disadvantages of Gaussian elimination for solving sparse systems

of linear equations is the amount of storage required. For example, to solve the nine—point

fin ite difference operator on an nxn grid requires at least 0(n 2 log n) storage whereas an

iterative me thod would require only 0(n 2) storage. In this section , we rresent a variation

of sparse Gaussian elimination that tr ades a significant reduction in storage for a modest

increase in work . For ease of exposition , we shall restrict attention to the nine-point

operator on an n~n grid with n • 2~-.l, but the results are valid for more general finite

4 
-
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element grids , cf. Elsenstat, Schultz, and Sherman [3), Sherman [9). For similar results

on band elimination , see tisenstat , Schultz, and Sherman [2], Sherman [9].

Tw~ basic concepts are used in achieving this reduction: Firs t , r ather than save

the entire factorization , we shall throw most of the nonzero entries of U away and re-

compute them as neede d during the back—solution; second , we use an element merge tree to

specify a divide—and—conquer elimination ordering and to keep track of those entries of U

that are being save d during each step of the calculation.

Suppose we were to perform Gaussian elimination in such a way that the last 2n+ l

variables to be eliminated correspond to the vertices on a dividing cross as shown in

Figure 4.1. At the end of the elimination process, we would have generated all the

coefficients in the upper triangular system of equations that remains , and we have merely

to solve this system for the vector of unknowns x. Yet suppose we had saved only those

coefficients in the last 2n+l rows. Then we could only solve for the last 2n+l variables ,

i.e. the values of the unknowns on the dividing cross. This is enough , however, to sp lit

ou r original nxn prob lem into four smaller n/2 x n/2 problems of the sane form, which we

can now sol ve in the same fashion.

I II

Figure 4.1.

III IV

Of course, we viil have to do more work than we would have had we saved the entire

factorfzation . But how much more? The nested dissection ordering of George [ 4)  orders

the variables on the dividing cross last and requires approximately Cm3 multiplies fo r

•~~~ fixe d constant C. Thus the cost of the whole procedure is Just Cm3 plus the cost of

solving fou r ‘-n/2 ~ n/2 problems . Letting e(n) denote this cost , we have that

0(m) cm3 + 40(n/2)

and that 0(n) — Cni~ for n sufficiently small . (After all , when the amount of storage for

_______  - - - -- —~~- ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - — - — - --____ - _____________
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the factorization gets small enough, we may as well save all of it.) The solution to this

recurrence relation is

0(n) 2cm3.

Th us we are doing twice as much work but , as we shall see , the savings in storage will be

much more significant.

The element merge tree is based on the element model introduced in section 2.

Recall that initially there were a number of elements, or maximal cliques of vertices, and

chat as the elimination progressed these elements were merged into larger and larger

e lements until only a single element containing the entire set of vertices remained.

Given an elimination ordering , we construct the corresponding element merge tree as follows :

The nodes in the tree represent elements that were created during the elimination process;

the roo t of the tree is the final element consisting of the entire set of vertices ; the

node (i.e. element) e1 is a son of another node e2 if and only if e1 was merged into e2

when some vertex was eliminated. The merge tree f or the 3’~3 nine—point operator of

Figure 4.2a is given in Figure 4.2b.

1—5—2
I t  I

Figure 4.2a. 7—8—9
I I I
3—6—4

Figure 4.2b. (1,2,3,. .,9}

(l ,2 ,S, 7 , 8 ,9} (3 ,4 ,6 , 7 , 8 , 9)
/ /(1,5,7,81 (2,5,8,9) (3,6,7,8) (4 ,6,8,9)

We will now specify the ordering of vertices and the corresponding element tree

which we will use to make the storage required for our procedure 0(n2) as opposed to the

O(n2 log n) for the f actorization. Beginning with the entire grid , we break it into four

equal —size elemence using a dividing cross as in Figure 4.1. (Note that the vertices on

the dividing cross belong to more than one element since they are exterior vertices.) The

last vertices to be eliminated will be the center vertex followed by the other vertices on

4 
- -
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the dividing cross. We then order the interior vertices in element I, followed by those

of element It , element III , and element IV. The vertices within each of these are

e liminated in an an alogous fashion : The last vertices to be eliminated are the center

ve rtex followed by the othe r vertices on a dividing cross; we then order the vertices in

each of the four subelements, and so on.

The ordering that results can be shown to be equivalent to the nested dissection

ordering in terms of the work and storage required (cf. Eiaenstat , Schultz, and Sherman [3) ,

Rose and Whitten [8), Sherman [9)), and the element merge trees are identical, although the

actual orderings are completely different. Thus the divide-and conquer order produces an

0(n3) elimination scheme. We now show th at the elimination can be carried out in such a

way th:t the coefficients in the last 2n+l rows can be computed using only 0(n 2) storage .

Consider again the element merge tree . The nodes at the bottom or zeroth level

correspond to elements in the original graph G(A), aU of which contain exactly 4 = (204.1)2

vertices. At the first level, the elements were formed by merging four bottom—level elements

and thus each contains exactly 9 — (21+1)2 vertices. In gener al , at the kth level the

elements were forme d by merging four e lements on the (k—l) th level and, by induction,
k 2contain precisely (2 +1) vertices.

We shall say that a particular element in the element tree is active at a particular

point in the elimination If it has not yet been merged into another element. Then the only

entries in the triangular factor U that we shall be saving at that point are those corre-

sponding to pairs of exterior vertices in active elements. Note that the final element

is active once it is created and is never deactivated, so that the coefficients in the last

2n+l rows of U will be available to solve for the unknowns on the dividing cross at the

end of the elimination.

Since there are at mos t four active elements at any level in the element merge tree

(other than the zero th ) at any stage of the elimination by virtue of the re cursive definition

of the ordering, we can easily bound the total storage required: At the kth level from the

bottom, there are at most t — 42k exterior vertices per element, which require at most

nonzero entries of U to be saved; thus the total storage is at most
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i—i
£ 4 • 

1 ( 4 2 k) (4.2k~1) -
~~~~ n2 .

k’.O ‘

A more careful analysis using two-w ay dissection show that the total stora ge can be redu ced

to 9n~ , cf. Eisenstat , Schultz , and Sherman [3), Sherm an [9).

Note that this suipris ing result does not really violate the results of section 3;

the storage for U still is 0(02 log a) — we j ust aren ’ t saving all the entries. Another

point wor th noting is that the alRorithm can be implemented to run in time O(n1°~2 
7) if

the elimination of variables on dividing crosses is done in blocks using Strassen’s

algorithm for ma..rix multiplication and inversion [10). Again, this does not violate

the results of section 3 since we are doing block rather than point elimination

.4
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