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1. INTRODUCTION

The accuracy of ice crystal size spectra measurements using
the Particle Measuring Systems (PMS) spectrometers has been a source
of considerable uncertainty in récent years. The two existing versions
differ primarily in their resolution (R). Special flights made by the
Meteorology Research, Inc. (MRI) Citation and Navajo indicated a sys-
tematic difference between the two probe types (Davey, 1975). Ground
tests were conducted with the probes mounted on the WB-57F and the
Citation by Thompson Ramo Woolridge (TRW). In addition, tests were
performed by PMS to determine the sizing effect of the probes. These
tests were performed on rectangular and circular optical arrays for both

the narrow- and wide-arm precipitation spectrometers.

Cunningham (1975) reported that the ''wide-arm'' precipitation
probe (WAP) measurements result in calculated equivalent radar reflec-
tivity factor underestimates from 5 to 15 dBZ'. Calculations by other
investigators using the ''narrow-arm'' version of the PMS precipitation
probe (NAP) measurements found agreement to better than 5 dBZ with

the radar data.

Davey (1975) concluded, from a comparison with foil and repli-
cator data, that NAP was more accurate in ice than in liquid water

precipitation.

The true limitations and uncertainties of the PMS precipitation
probes in ice clouds are beginning to be uncovered. Heymsfield (1975)
and Carbone and Srivastava (1975) have studied ice clouds with simul-
taneous aircraft and Doppler radar observations. They calculated radar
reflectivity factor (obtained from a NAP installed on a WB-57F) and

found that it agreed quite closely with the radar measurements. Above

1 dBZ = 10 log Z, where Z is the radar reflectivity factor
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5 km the true reflectivity factors were within 2 dBZ with the discrepancy

increasing to 6.1 dBZ at 2.6 km. The conclusion from the above dis- :
cussion is that NAP measurements are generally in better agreement with

radar than the WAP measurements. The excellent agreement found by

Heymsfield and Srivastava suggests that, when comparing the two probes,

NAP can be used as a ''control' probe provided the maximum particle size

does not greatly exceed probe sizing capability.

There are three factors which contribute to the discrepancy be-

tween aircraft and radar measurements.

1 Maximum particle size (typically between 1 and 2 mm)
which the NAP is capable of measuring. The existing
particles larger than L, . at the lower levels of an ice

cloud can account for part of the discrepancy.

2. Crystal light transmission problem. Crystals with thin
edges and finely divided branches generally do not shadow
sufficiently and result in undersizing. Nondimensional
corrections (Knollenberg, 1975) for different crystal habits
were developed and are currently available but do not

explain observed discrepancies.

ik S0 AER L RR EL b

3. Mass-length relationships. The mass-length relationships
found by Heymsfield (1972) and Locatelli and Hobbs (1974)

were used in the calculations. Any inaccuracies in these

assumptions introduce errors in the calculated reflectivity

factors. This problem is currently under investigation by

Cunningham, Knollenberg, and Heymsfield with prelimin-

e T S o

ary results indicating this to be a secondary effect.

In the present work, data from NAP and WAP were compared.
Calculated reflectivity factors from these data were then compared to

/
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the (ALCOR) radar measurements taken simultaneously with the aircraft
data.

2. TEST PROCEDURES AND DATA PROCESSING

2.1 Test Procedures

Correlation flights, simultaneous aircraft and radar measure-
ments, were made over Kwajalein in September and October 1974, The
two versions of the PMS Optical Array Precipitation Probes (WAP - wide-
arm probe, NAP - narrow-arm probe) were mounted on a C-130E aircraft.
WAP was equipped with spherical photodiodes, while NAP had rectangu-
lar ones. On October 12, 1974 excellent data was available for constant
level passes between 4.8 and 8.8 kim, at 1 km intervals.

The radar was in a tracking link-offset mode, sampling a cloud
volume approximately 3 km ahead of the C~130E. The radar used in this
study is the ALCOR C-band, which transmits a frequency modulated
chirp'' pulse. Its characteristics are:

A = 5.29 cm
he (effective pulse depth) = 37.5m
6 (beam width) = 0,005 rad

&l Data Processing

2.2.1 Data Processing at AFGL

Particle spectra, water content (WC) and radar reflectivity

factor (Z) were calculated by scientists at Air Force Geophysical Laboratories

(AFGL) from aircraft tapes. Particle spectra data for both probes were
processed in a similar manner: the results are presented as 4-second
averages. The Knollenberg (Kn) corrections, necessary to adjust for the

crystal light transmission problem, were applied. The ice crystal habits

i,
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chosen for processing were based on either replicator observations, snow
stick or assumptions of growth habits which occur at a given temperature.

The ALCOR data were available in 1-second averages.
2.2.2 Data Processing at MRI

WC and Z values were reprocessed at MRI using the basic
particle spectra obtained by AFGL with different crystal habits, i.e.,
crystal habits that seemed more realistic given spatial continuity con-
siderations from state parameters and radar measurements. The Kn

corrections applied to sample spectra are listed in Table 1.

The maximum crystal size measurable with the NAP was 1. 85
mm and with the WAP, 4.5 mm. Only the data below 1.85 mm were

taken into consideration, even when other data existed.

2.3 Other Considerations

Three important considerations in comparing radar-measured
with aircraft-calculated reflectivity factor should be discussed at this

point.

1. The sampling volume of the radar, as used in the present
configuration, was 10% to 10° m?, while the PMS
probes sampling volume was only 0.1 m® per second.
The factor of 10° to 10’ difference results in a smoothing
out of gradients in reflectivity factor as measured by the
radar when compared to aircraft data. Averaging the data

over an interval of time will result in a smoothing to sorme

degree of the aircraft data also.




TABLE 1. KNOLLENBERG CORRECTION FACTORS TO PMS
PROBES FOR DIFFERING HYDROMETEOR TYPES g

I (Actual Size Class) = X + YI (Measured Size Class) f

Hydrometeor Type X Y
Spherical Photodiodes
Rain 0.22 0.99
7'1 Plates 0.16 1.07
"‘ Branched Dendrites 0.72 1.03 E
t Columns 1.50 1.10 §
Bullet Rosettes 0.40 1.01 t
Large and Small Snow 0.18 115

Rectangular Photodiodes

Rain 0. 36 1.03
Plates 0.51 1.08
Branched Dendrites 1.24 1.03
] Columns 1.39 1.26
Bullet Rosettes 0. 69 1.04
Large and Small Snow 0.75 1.16
4
i ,
K
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2. It is very difficult to convert radar return power and

aircraft size spectra measurements into radar reflec-
tivity factors in regions within or just below the melting
level since an uncertaintly exists in the hydrometeor

types in the region.

3. The NAP sampling volume is a factor of 6 lower than the
WAP. The small sampling volumes of the probes, result-
ing in a truncation of concentrations lower than about
100 m™ for WAP will affect radar reflectivity calculations

where large particles in small concentrations exist.

3. PARTICLE SPECTRA AND DEDUCED PMS
PROBE LIMITATIONS

Comparison of data measured with NAP and WAP indicates large
discrepancies in particle concentrations. In rain, these discrepancies
occur mostly at the small size end of the spectrum. In snow and ice l
crystals the entire WAP measured spectrum is shifted with respect to the
NAP data. From previous research, and radar data in the present study it

was concluded that NAP data usually resulted in reflectivity factors close to

radar measurements and, therefore, the NAP could be used as a '"control"
probe. Correction factors that bring the WAP spectra into closer agree-
ment with the NAP spectra are sought. The method of approach to the
problem is an iterative one. Basically, the method consists of quali-
tatively examining various spectra from both probes to determine the

sense, magnitude and circumstances surrounding the largest discrep-

ancies. Following careful examination of many spectra (measured by

probes simultaneously) two major problems are suspected: (1) under-
sizing due to high crystal light transmission (UNSZ) by the thin parts of
the ice crystal and (2) undercounting due to depth of field limitations --
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a small volume in which particles in the first few size classes are not in

focus (hereinafter referred to as DF). It is useful to discuss the effects
of these problems with respect to hypothetical model spectra before

application of corrections to actual measured spectra.

3.1 Model Spectra

Both UNSZ and DF problems are discussed in this section.

Model spectra are used to illustrate and quantify the individual problems.
Observations show two principal forms of particle size spectra: (1) ex-
ponential, decreasing with increasing ice crystal size, and (2) bimodal,
decreasing exponentially from the second peak with increasing size. Be-
sides these two spectral forms, the spectra may be characterized as
either '"marrow' (to ~ 0.5 mm) or 'wide' (to 2-3 mm). It is instructive
to see the changes in the spectral form which result from the aforestated

problems. i

3.1.1 Exponential Spectrum

Figure 1 illustrates how a narrow, exponential spectrum changes
due to UNSZ and/or DF problems. Figure la shows an original spectrum
and a spectrum shifted 1.5 size classes to the left: a case of UNSZ. The

loss in the total particle concentration due to this undersizing is more than

90 percent, the first, the most populated, size class has disappeared com-

pletely and only half of the second one is still present. Figure 1b illus-
trates the effect of a pure DF problem. The two cases presented are:

DF « R and DF « R?, with channel 4 in complete focus. Note that in
this case the spectrum appears undercounted. This problem is not nearly
as severe as the UNSZ illustrated in la; however, 70 percent of the total
number concentration is lost in the '""DF « R? " cage. Figure lc shows
the effect of combining DF and UNSZ on a narrow exponential spectrum.
Note here, the extreme case of ''DF « R?" where only 0.5 percent of the

total number concentration remains.
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Figure 2 illustrates the changes that can occur with a wide,
exponential spectrum if UNSZ and/or DF problems are present. Figure
2a shows the case of a shift in the actual spectrum of 1.5 size classes
to the left. Note that even though there is some undersizing, this prob-
lem generally would not produce an underestimate in Z and WC of the
magnitude commonly observed. The 50 percent reduction in total number
concentration in the sample spectrum shown produces a 5 dBZ difference
in the reflectivity factor. When DF is the only problem as in Figure 2b,
there is no undersizing but an undercounting at the smaller sizes which
causes the spectrum to change from its truly exponential character.

Figure 2c shows the combined effect of both DF and UNSZ problems.
3.1.2 Bimodal Spectrum

In general, the UNSZ problem alone affects the total number and
size of the particles. The DF problem changes the spectral form such

that a bimodal spectrum becomes an exponential or monomodal.

Figure 3 shows the effects of these problems on a narrow bi-
modal spectrum. Figure 3a shows that a pure shift keeps the bimodal
spectrum intact. The shape of the spectrum will change, however, if
the shift is sufficiently large to eliminate the first peak. If DF is the
only problem, as in Figure 3b, the tail end of the spectrum does not
change, however, the small end becomes severely underestimated (by
55 percent in the "DF = R'" case and by 65 percent in the '""DF « R? case).
Figure 3c illustrates the effect of both DF and UNSZ.

Figures 4a, b, and ¢ show the effects of UNSZ and DF on a wide
bimodal spectrum. The results are similar to the effects on the narrow

spectrum, with a higher percentage of particles lost in this case.
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3.2 Deduced Correction Factors: Depth of Field and Undersizing

3.2.1 Undersizing Correction

Undersizing commonly occurs with ice particles that have thin
branches or edges. These parts do not shadow sufficiently and thus they
are not "'seen'' by the probe. This problem appears to occur at all sizes
with about the same magnitude, hence the slope of a spectrum of under-
sized particles is parallel to the real spectral slope. In the case of
WAP and NAP, NAP is considered the '"control" probe. The distance
between the slopes of the measured spectra (by the two probes) is the
shift. The correction applied to the aforementioned spectra were only
approximations to the nearest hali-size-class. It will be seen in Section
4.2 that the shift is habit dependent: no shift for rain and maximum

shift for small snow and bullet rosette spectra.

Quantitatively, for pure exponential spectra one can write:
N; = N01 e'l\‘l L

Nz = Noz e

where N is the number concentration, A, the spectrum slope, and L, the

length of the particles measured.

When A = A, = A and N; = N, then
Nos 7% = Noy &l s
1 Ny,
or L1 -L2=AL—A in N02 (1)

Expression (3) is a formula for obtaining the exact amount of under-
sizing or shift. In general, the undersizing of the WAP data was from

0 to 2 size classes, or up to 0.6 mm.

23
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3.2.2 Depth of Field Correction

The WAP measurements also suffer from an undercounting
problem, especially at the small sizes. The corrections applied were
such as to make the WAP spectrum slope parallel to the NAP one. They
were either proportional to the resolution, R, of the probe, in the case

of ice particles, or proportional to Ra, in the case of rain.
p propo

This undercounting problem is largely due to the depth of field
limitations. The WAP has 26.3 cm separation between its arms where
small particles cannot possibly be in focus over this entire distance.
The small particles close to one arm will not be counted because they
will not be in focus. One can find the distance midway between the arms

where different size particles are in focus.
DIF (cm) = K L (cm) (2)

where DIF is the ''distance in focus', K is a probe characteristic
constant and L is the length of the particle in question. The maximum
DIF is 26.3 cm. Assume that the third size class particles are always

in focus. The minimum length of the particles in focus is 3 ¥ 0.03 cm

Thus
26,3 = KX 3% 0.03 = 3KR
A6
= = TR

Then the DIF for any size particle is:

DIF = 292 L
For example, a crystal 0.01 cm long will be in focus only in the 2 cm
interval, midway between the probe arms. The undercounting in this
case, assuming a constant concentration of particles, is more than 90

percent.
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The following sections apply UNSZ and DF corrections as previ-

ously described to actual measured spectra.
4. PRECIPITATION PROBE COMPARISON

4.1 Particle Spectra

Figures 5 and 6 are examples of rain spectra. The original
data have similarly shaped spectra: exponential spectra for NAP data,
and an almost flat, or a small slope, for WAP spectra. The DF correct-
tions applied changed the WAP spectra such that they coincided with the
NAP spectra. In these cases, there were no UNSZ corrections needed.
In both cases, an R? (R is the probe resolution) DF correction was
applied. The size of the particles first in focus (SZF) differed from day
to day (perhaps due to different instrumentation setup procedures).

Figures 7 and 8 represent two spectra for wet snow. Both NAP
spectra are bimodal. The WAP spectra (when compared to the NAP
spectra) suffer from both UNSZ and DF problems. The UNSZ problem
is severe in Figure 7. The shift due to the undersizing is approxi-
mately one size class (300 um). The undercounting of particles in the
first size class is obvious (the spectra flattens); the WAP does not ''see'
all the small particles that exist in the sampling volume. This DF
problem is corrected by assuming an R dependence of the depth of field.
The NAP and the corrected WAP spectra now have similar slopes, and
the horizontal distance between them is the shift (UNSZ shift).

Figure 9 illustrates a 'large snow'' spectrum. Both UNSZ
and DF problems are again present: the undersizing is approximately
one-half size class, the DF correction is proportional to R, and SZF

is approximately 900 ym.
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Figures 10 and 11 are illustrations of bullet rosettes and small

snow spectra, respectively. Both spectra are exponential with only the
UNSZ problem present. The approximate undersizing is two size classes
(600 pm). No DF corrections were needed. The slopes of the NAP and

WAP spectra were similar.

From this small sample of spectra it would appear that the
problems and corresponding corrections are habit dependent. The R?
dependence for the rain spectra and R for large snow suggest that depth
of field depends upon the particle shape, being length squared for a spheri-
cal particle, and length for at least some snow particles. The bullet
rosettes and the small snow do not show a DF problem. The problem is
likely to be present in the first two size classes, however, undersizing
eliminates these sizes, thus eliminating the depth of field problem. The
UNSZ problem seems to be more severe for smaller snow particles
(small snow and bullet rosettes) generally about two size classes. The
undersizing gets smaller towards larger snow particle habits and dis-
appears completely for rain. The above discussion is based only on a
small sample. These results should be considered somewhat speculative

at this time.

4.2 Water Content and Radar Reflectivity Factor.

Calculations and Comparison Between the Two Probes

The WC and Z were calculated using the AFGL processed parti-
cle spectra. The equations used are described in detail by Heymsfield
(1975a). They are:

N. [gm™?] (3)

8
5
[N E]
.
e

n
Sy N 4 [mm® m=2) (4)
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where d

a and b are

= a(5z)” and Sz = R(X + YD)
= WCin g m™>
= equivalent melted diameter

the coefficient and the exponent, respectively,

for changing a size length, SZ, into an equivalent melted

diameter.

The following table lists the a's and b's used for WC and

Z for the spectra presented in the previous section.

Type Breakpoint Equivalent Melted Diameter
(mm) a b
Rain 0.00 1.000E + 00 1.000
Wet snow L<1.00 1.000E + 00 1.000
Wet snow L >1.00 1.000E + 00 0.653
Large snow L.< 1.00 4.000E - 01 0.782
Large snow L>1.00 4.000E - 01 0.875
Small snow L <0.50 4, 000E - 01 0.782
Small snow L >0.50 3.700E - 01 0.670
Bullet-rosettes L<0.20 2.560E - 01 0.667
Bullet-rosettes L >0.20 4.380E - 01 1.000

It is obvious that the corrected spectra resulted in values of WC and Z

quite close to the NAP values.

The corrections on the rain spectra,

(spectra suffering from DF only) result in an improvement of the calcu-

lated values by 30 percent in WC and less than 1 dBZ in the calculated

reflectivity factor. On the other hand, the corrections on the bullet ro-

settes and small snow spectra (spectra suffering a two size class shift)

result in a much greater improvement:

34

80 percent in WC and more than




15 dBZ. The above observation points to the conclusion that undersizing
in the WAP spectra is a more severe error than an undercounting of the
small particles when WC and Z are the quantities of interest. The
corrections presented in the previous section were only approximate, but
the results of the calculations given in Table 2 show that these approxi-

mations essentially brought the probes into agreement.
Bie COMPARISON OF AIRCRAFT AND RADAR MEASUREMENTS

5.} Original Data Comparison

Pass-averaged aircraft calculations and radar reflectivity factor
measurements, both processed by AFGL, appear in Figure 12. Note the
agreement between radar measurements and the calculations of the NAP
data at the upper two levels. There is approximately 2 dBZ difference
between NAP data and radar, and 16-24 dBZ between WAP data and radar
measurements. The next level shows a much lower radar reflectivity
factor value for both aircraft probes, while the radar indicates a 6 dBZ
increase. The crystal habit assumed in the data processing of this level
was dendrites. In the next two levels, the calculated reflectivity factor
values are 14 and 23 dBZ higher, respectively, than the radar measured
values; data processing assumed wet snow for the 5.8 km level and rain

for the 4.8 km level.

Little change in reflectivity factor results from the application
of the current Knollenberg correction factors. Figure 13 illustrates the

change.

The strong disagreement of the lower three levels can be ex-
plained largely on the basis of incorrect choice of crystal habit or hydro-
meteor phase. It should be reiterated that no replicator data were avail-
able. The predominant crystal habit should have been bullet rosettes, at

the lower three levels, for the following reasons:
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L. The aircraft observer reported a 22-1/2° halo through-
out the entire cloud. This observation is indicative either

of columnar or bullet rosette ice particles.

2. No significant growth of particle size took place between
7.8 and 4.8 km, as evidenced by the nearly constant

value of Z between these levels.

3. Particle spectra at 5.8 and 4.8 km were nearly identical
in form and total number concentrations. Clearly, virtu-
ally no melting could have taken place at the 4.8 km level,
and some type of aggregate ice particle would be a more

correct choice.

B i Corrected Results

Figure 14 illustrates changes in the reflectivity factor in the
lower three levels due to correction of particle habit. The habit selected
for the purposes of these calculations was bullet rosettes. Considerably
better agreement for both probes at these levels indicates that the choice
of bullet rosettes was a more appropriate particle habit. The WAP results
are only 7 dBZ lower than the radar measurements at 6.8 km compared
to a 14 dBZ difference before the habit type was changed. The NAP data
results in consistently lower reflectivity factors than measured by the
radar. This can be attributed to the truncation of the particle spectrum
at 1.8 mm -~ an error which could have been improved by extrapolating

the spectrum to larger sizes.

Figure 15 shows the improvement of the WAP results when
corrected for the undersizing problem. The particle spectra (for 1-
minute intervals at each level) during the ALCOR correlations are illus-
trated in Figures 16-20. Note how the only problem existing throughout

is undersizing. This observation agrees with the previously concluded
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Figure 16. Comparative particle spectra during ALCOR radar
correlation. See legend and text for explanation.
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fact that WAP spectra of bullet rosettes suffer from only the UNSZ prob-

lem. The above observation is another strong argument for the change

in habit type to bullet rosettes in the lower three layers of the run.

Table 3 summarizes the radar data and the aircraft calculation
results for the different corrections applied. The final results are within
2 dBZ for the NAP data and 5 dBZ for the WAP data. These are small
errors compared to the discrepancies that existed before the corrections

(Kn, habit, UNSZ) were applied.

The radar reflectivity factor data processed in 8-second averages

for both aircraft and radar are plotted in Figures 21-25. These figures

illustrate the change of dBZ with time at a constant level in the cloud. The

"uncorrected' and ''corrected' aircraft results are plotted. Similar to the
pass-averaged reflectivity factor graphs, the discrepancies between the
radar data and aircraft calculations get smaller with each correction
applied. A noticeable difference between the radar and aircraft curves is

the smoothness of the radar measurements due to spatial averaging.
6. CONCLUSIONS

Systematic discrepancies in size spectra measurements between
the two PMS probes were found. Corrections were applied to the WAP
measurements, thereby, reducing the discrepancies between the two spec-
tra. The correlation runs allowed the comparison between the results of
the two probes and the radar data. Once Knollenberg corrections and the
change to appropriate habit were performed, the NAP results were within
2 dBZ of the radar measurements. Two other corrections were developed
for the WAP data: UNSZ (undersizing) and DF (undercounting). These
corrections brought the wide-arm probe results within 5 dBZ of the radar
measurements, which represents a 20 dBZ improvement from the initial

25 dBZ difference.

47




TABLE 3.

COMPARISON OF MEASURED VS CALCULATED RADAR
REFLECTIVITY FACTOR (dBZ) TASS, AVERAGED

Altitude (km) 8.8 7.8 6.8 5.8 4.8
ALCOR (dBZ) 2.8 5.8 12.3 12.2 4.8 (12.2)
Habit initially Bullet Bullet Wet
Used In Rosettes Rosettes Dendrites Snow Rain (Ice)
Calculation corrected S Bullét Rosettegdeacvsusnansnoccanans
uncorrected 0.5 2+9 - 2.7 26.4 27.8
NAP Kn 0.7 3.3 0.4 &3.2 29.0
habit 0.7 3.3 10. 4 8.1 6.5
uncorrected -23.4 -13.3 -10.7 19.2 24.6
Kn -19.4 - 8.5 - 21 10.9 30.8
b2 habit Ao oA 5.9 9.0 3.4
UNSZ - LB 0.6 9.3 12.1 3.4
48




*so1y1oads 103 puada] 998 ‘umoOys dI® Zgp PojeR[NO[BD-3JRIDITR PI}OSIIO0D pue
Teuidiro yjog ‘*3yeidlie pue Iepel I0J s93eIdA® puodas-g ul Zgp jo sjord awy,

€01-92. 0£:920
SR s T

*12 2an81g

1N
00:92 01 og:¢S 00:92 0!

og:v2 0! 00:#2 01
[ T 1

viva ¥0Ww —&—
NOILO3INEOD ZSNNYYM —A—
NOILO3YYOD NX Tgs R
dYN =8~

dwm —9o—

dVN --0--

49




*so1y1oads x0J puada| 998 ‘umoys 91® Z{Pp pdje[nd[ed-jjelIdile pajdaII0od pue
[eutSiio yjog ‘jyeIdoIle pue 1epes 10y sdaferase puodas-g ul Zdp jo sjord suwuil  *zZ 2andig

% LW9'INIL
201-9L o091 01 0¢ sl ol

: b ~oosiol o€ b1 0l

o __oetl 00l O! Og€ €1 01
Dl e AL § BNy b

vivag 8091w —&—
NOILD3INHOD ZSNNYvm —O—

lql
NOILO3NHOD N A%;

dVN — " -
dvM —O—
dVYN --0--




A S R B b 0 S AN

*sd1j109ds 103 puafo| 209

‘UMOYs da® Z¢gp peje[nd[ed-jJeIdile pajdaIIod pue

.—d:.mwa.ho yjoyg ‘jJjeadaie pue aepea 103 so3eioAe® puodas-g ul Zzdp Jjo mu—O.—& w1l °¢? Ohﬁm._r.m
pOo1-92 1w 3INIL
og:L0 00:20 0! 0£:90 0! €0:90 0! 0£:90 O! 00:€2 0! 0z 00!
i T g s f g T
ﬁ
Ng
/O ~9 Q.
T TS 9 N -
il e o=l
- — 25 e
O g q// =T allclv:cl.\.ﬁ
o8 -
/Q\

Yive HOOW——
NOILO3YHOD ZSNN dww™ &
dYM 7
dYn = s

(A Rt e
NOILO3MH0D N3 {5\ — —a--

NOILO3M¥0D L1k |

&SN ==
A D e
. .

T W P

.

21-

21-

8l




..._
& |

*so1y1oads 10y pua8ay 998 umoOys a1' ZHP PIIBRINO[BI-3JRIDITE PIJOIIIO0D pue
[euiSiio yjog ‘jjeidoile pue ieped 10j safelase puodas-g ur Zgp jo sjord swll  *HZ 2InJ1g

Z LWO ‘3miL
10T-9L ooes60 0€ 85 60 0085 60 0€26 60 0045 60 ©r 93 60
Y s [ ] = o
1 i I Q
_
de
|
.\\vul .
A e 1
i i g
.Q ./ :'.A.ulllo - |
. 79— l<./ .@
— = —E \ |
B i —a~—t_ R
N © < 4 2
SN
P S—'g i n
L=
h//. = 91 3
/ A L
i _p——9— 9 z
7 o \O//ﬂ\ Moo == F il n
o~ 7 TR #F /6‘ S 3,
/Q/ 7 /v\ ) \ 402 w
Vg R bl
\ / G,/ |
Q 4 ] / /«
\a\\ // b \ \\»// .L. qN
\ LT ’ : 0.
\ \ o & 3 \ \ L@,/ N
\ , = N -
\‘/M \‘../ N : \/ e .O\\ / //‘!ﬁ\!\ l\:“\ e I.‘/ fdll
v iy S e | i 3 i i Wi g
VIV HOOW—G~ o v AR S Y / { e Y% 82
~ S~ = N 14 il
NOLLOZBYNOD Z5NN dyvm——&— L g R netr % - L & " Sk g5
— / 7 = Syt T ‘.
MOILDIY i ©4 % bl i f »: e
(CILIIYHOD LIBVH {0 — o % i “~
Ml b dVM —o— N\ - / qee
NOILO3uv 0D zx“aqzl e ® e ¢
dvM —o—
d¥N —-0-~
-~ 9¢
- - L R
- 407, 1&‘ & Moy, T




1 *so1y10ads 103 puadoy 899G ‘uUMOYS dI® ZP PAIL[NO[EI-}JRIDITE PIIIIII0D pue

[eu131I0 Yjog *jjeidiie pue Iepel 10j sofeIVA® PuodIS~-g Ul Zdp 3o sjord sawary ‘gz @anfig
- Awo “3INIL
901-9L 0016 60 0£:09 80 00 0% 60 0% 6% 60 00 6% 60 0€ 8% 60
ﬂ R § ﬂ T JT ¥ v -

i
i
i
e |
i |
|

53

g-wguw ‘290

. el
{391 SNIANSSY ) o W N /] v, o A w N
ViVO 40— ™ v S W WA T ,o///(\ PR N N ﬁ
’ e N,
ViVO 40— 5 a\ko«/o\\ v A . o/J
A.:i.l.cl iRl Wi N\ W e
NOLLO3Y¥0D Ligvh |, .\ o o e :
dYM — \
i
NOILO3¥HOY N¥{G (L e - \,- N
gva == \19¢
VR UEE
os
_




It was shown that the DF problem does not alter the Z and WC

results as severely as the UNSZ problem, the main reason being the
difference in the affected size-classes. In the case of UNSZ the entire
spectrum is affected, it is shifted; whereas, spectra having the DF
problem lose particles from the small size end only. Except for very
narrow spectra, the latter problem ranges from less significant to
negligible in comparison with the former when Z and WC estimates are

of principal concern.

It is felt that NAP is the appropriate probe to use for small
particles. From this study, it can be concluded that WAP does a com-
parable job to NAP, once the corrections for undersizing and under-
counting are applied. True number concentrations of the smallest parti-
cles are not recoverable with WAP without involving extrapolation tech-

niques at the small-size end of the spectrum.

.
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