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PARALLEL AND INTERSECTING FLATS FRACTIONS:
ESTIMABILITY AND ALIAS STRUCTURES

Donald A. Anderson
and
Ann M. Thomas

( ABSTRACT

Regular fractional factorial designs-for the sn, s = pOl

’
o

factorial®may be obtained as solutions sets to linear equations, 5

of the form At = c over GF(s). ™It is well known how to deter-
mine which factorial effects are estimable, and how to construct
‘:f‘.'..b'v\

the alias sets directly from the’matrix:A. Consider the k sets

of equations over GF(s).

k
where A, is m. x n of rank m., and let T = igl{EJAiL = ¢ L
I f Ai = A2 B .= Ak’ T is called a parallel flats fraction, and
if not all Ai are equal, T is called an intersecting flats

fraction. 3There is no unified theory developed for determining

estimability and alias structures from &hese types of fractions, . irve

=
1 -,

‘*The purpose of this paper is to present some preliminary

results in the development of such a theory.
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1s Fractional Replication

! As the number of factors in an s" experiment increases, the high

3 cost of experimentation, expecially in industry, often prohibits use of
a complete factorial design. If economy of time, space, and materials
is an important consideration, and if it is reasonable to assume that
certain higher order interactions are negligible, then a fractional

1 factorial design may be appropriate. The concept of fractional repli-
cation for 2" and 3" experiments was introduced by Finney (1945) as a
logical outgrowth of the theory of confounding, and since that time the

theory of fractional replication has developed rapidly. Experimenters

involved in high cost research have found the designs to be useful,
particularly as screening experiments run on a large number of factors.
The notion of linear flats within a finite Luclidean geometry, as
developed by Bose and Kishen (1940) and Bose (1947), is a useful device
for partitioning degrees of freedom and constructing fractional factorial
designs. Suppose s = p“, where p is prime, and consider an s" factorial

experiment involving n factors, each at s levels. Let every possible

treatment combination or "run" be represented as an n x 1 vector t
with elements from a Galois field of order s, denoted GF(s), and with
ith element corresponding to the level of the ith factor. Then there
clearly exists a one-to-one correspondence between the s" possible
treatment combinations and the s points in the Euclidean geometry of

order n over the field of order s, denoted as

EG(n, s) = {(t, t ) | t; € Gi(s), i =1, ..., n}.

il ST




A linear (n - k)-flat in EG(n, s) is defined to be the set of points in

EG(n, s) that satisfy a consistent system of k independent linear

AL, where ag = 0 Aps +ee5 @

n
equations, each of the form Z a.t.
=g * s-1

denote the elements of GF(s) and a, a; for some i = 0, 1, ss5 OPr 8-1%

Consider a pencil of s parallel (n - 1)-flats with equations of the
n

form ) a;t; = ap, where a; is Fixed, 4= 45 < 0, and a, assumes
i=1 ;

consecutively the s values a Ags wees A _g- Any such pencil partitions

0’
the s" points in EG(n, s) into s subsets of sn—1 points each, with con-
trasts between these subsets accounting for s - 1 degrees of freedom.
Thus the pencil ti =a, I Fixeds and v/ = 05 1, csn & — L, is used to
define the (5 - 1) degrees of freedom corresponding to the main effects
of the ith factor, the pencils given by equations of the form

Tyt auti' = ag, 1 and 1t fikedy W= 1o 25 vewy 5 = 3 @nd a1 ey 5= 15
are used to define the (s - 1)2 degrees of freedom corresponding to the
two-way interaction of Factors i and i', and so on. Suppose, for
instance, that each factor in a 3" experiment appears at levels 0, 1, and

2. The two degrees of freedom provided for the main effects of the ith

factor by the pencil t; =r,r = 0, 1, 2, correspond to the linear

contrast, written as {E_[ t, = 2F - f% | t, = 0}, and to the quadratic
contrast, written as {£_| ty =2 - 21 ‘ t, = 1} + {t | t; = 0}. For

any two factors Fi and Fi' the same type of contrasts may be used to
partition the two degrees of freedom for interaction FiFi' specified by
the pencil t.l + ti' =r,r =90, 1, 2, and the two degrees for FiFi,
specified by the pencil t; + 2ti' =r, r =0, 1, 2. This procedure gives
a single degree of freedom, breakdown of the four degrees of freedom

corresponding to the interaction of Factors i and i'. Clearly, the

Lk d




components of this breakdown are not the same as the components of the
breakdown into single degrees of freedom for linear x linear, linear x
quadratic, and so on, that was described in Section 1.1.

The simplest kind of fractional factorial design for the s" experi-
ment consists of all treatment combinations corresponding to points in
EG(n, s) that lie on a particular (n - 1)-flat in a pencil of s parallel
flats. The aliasing structure for such a design is easily determined by

taking linear combinations of the defining relationship for the selected

n
pencil, say Z aiti e A 0y Ly -ues & — 1y with the defining

i=t
relationships for main effects (ti =a,r=0,1, ..., s - 1), two-
factor interactions (ti + auti' SR R Qyedy coey B = 1), dnd S0 on.

In general, the defining pencil should be selected so that effects of
interest are aliased, or confounded, with negligible effects.

For example, one fraction of a ’3u experiment with Factors Fl’ F2,F3,

and Fu, each at levels 0, 1, and 2, consists of the 27 points on the

three-flat specified by t; + 2t2 tty 2t,4 = 0. Equivalently, this

fraction is often represented by the defining relations

2 2
I =7F
1F2F F

. ¥
3fy (= FlFQFSFu)'

In this design the F2F§ interaction, which by definition is based on

contrasts among sums of points for which t? + ?ta = constant, is aliased

: D iy
with FlFu since (t1 2.t

2 + 2tu) + (t2 + 2t3) = t, + 2t, = constant.

3 1 y

Similarly, the F,F, interaction is aliased with the F_F, interaction

13 24

since (t1 + 2t, + t If three-factor

9 3t 2tu) + 2(t1 + ts) = 2(t2 +t

&>

and higher order interactions are negligible, the alias sets for this
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fraction are {up}, {Ip, {r;, {r;, {r“}, {rlr?}, {F1Fu}’ {r3ru}, {r?ra},

o g a2 Bl .2 2 2 2
{11f3, rgfu}, {11r3}, {IQIQ}, {F1}2, F3fu}, {Flru, F2F3}.
In general, regular sn—k fractions of the sn factorial experiment
consist of solutions over GF(s) to
At = ¢ (1)

where A is a k x n matrix of rank k and ¢ is k x 1, both over a Galois
field of order s. Geometrically, the equations (1) represent a linear
S n n
(n - k)-flat of s points in EG(n, s). If 7 a.t., = a_ and z a.t.
R il ; i
i=1 i=1
|l

=a ' are two equations used to define a fraction, their generalized

n n
interaction is specified by ( Z at,y # a .l X 2., = a o Ul seis= L,
guy 2 3 ut.zy it W

w=0, ..., s-1, and it is an easy matter to determine the alias sets
for the fraction by considering all linear combinations involving

defining relationships and their generalized interactions.

: n-k s ’ o oo
In practice a regular s fraction is often specified by defining

relations in k "words'", chosen so that effects of inteorest are aliased
3 4 o 3 " 6-2
with higher order, negligible interaction effects. For example, a o
fraction consisting of the N = 3q = 81 treatment combinations t that are i
solutions to
t 111 0 of, _Je
[o 9.1 ¥4 1J£ “[Cj] i 5
2 |
|
can be specified by the defining relations 4
I=F,F.F.F, = F.FF.F. = F,FFFF :
1'23% 34°56 1"273 5% ]




where £1I2F3[5k6 is the generalized interaction generated by 11}2131u

o
and FqFaF5F6. The resulting fraction is a design in which main effects
are aliased with threc-factor and higher order interactions. Thus, if

three-tactor and higher order interactions are negligible, the design
provides estimates of main effects in the presence of non-negligible

two-factor interactions.

Bose (1944) defined a linear combination A'B of the parameters in a

linear model to be estimable if and only if there exists a linear com-
bination c'Y of the observations such that E(c'Y) = A'B. A complete
factorial design provides an estimate for every single degree of freedom
component of 8. With a fractional factorial design, on the other hand,
Bi € B is estimable if and only if the column of X that is multiplied by
Bi in tue model E(Y) = XB is linearly independent of all remaining

columns of X.

Box and Hunter (1961), in a paper dealing with regular ?n—k fractions

of the 2! factorial, introduced the term resolution of a design as a
means of classifying fractional factorial designs on the basis of
estimability of effects. The term applies directly to the regular sn.k
fractions of the s" factorial experiment, in which case the design is
resolution r if all linear combinations of the rows of A from equation
(1) have at least r nonzero coordinates. The names resolution III,
resolution IV, resolution V, and so on, make obvious reference to the

particular kind of fractions considered by Box and Hunter. For example,

3 5 n g . :
a resolution IV design for the s factorial experiment requires each

‘ *"“‘*M_-——w
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word in the defining relations to have at least four letters and at least

one word to have exactly four letters. Such a design permits estimation
of the general mean and all main effects if all three-factor and higher
order interactions are negligible. Further, the estimates are uncorre-
lated with each other.

To the extent that the name resolution r still carries implication
to the regular sn—k fractions of the s" experiment it is an unfortunate
terminology. A slightly modified definition which is now generally
accepted was given by Webb (1965, 1968) and Margolin (1969a) as follows.
Definition 1. If a design is such that all effects (main effects,
interactions) involving r or fewer factors are estimable, ignoring all
interactions of r + 1 or more factors, the design is said to be of
resolution 2r + 1; if all effects involving r - 1 or fewer factors are
estimable, ignoring all interactions of r + 1 or more factors, the design
is said to be of resolution 2r.

Note that this definition refers only to the estimability of effects,
not to any specific method of construction. Further, it does not require
estimates to be uncorrelated with each other or u to be estimable. In
general, designs of odd resolution permit estimation of all effects not
assumed to be zero, while designs of even resolution permit estimation
of certain effects in the presence of other non-zero, nonestimable
effects. In practice, designs of resolutions III, IV, and V are of the
most interest. A resolution III design allows estimation of maineffects
when two-factor and higher order interactions are negligible, and a
resolution V design allows estimation of main effects and two-factor

interactions when three-factor and higher order interactions are




negligible. A resolution IV design, on the other hand, permits esti-

mation of main effects in the presence of nonestimable two-factor
interactions when three-factor and higher order interactions are
negligible.

This paper was motivated by the authors' search for resolution IV
designs for the s factorial (Anderson and Thomas 1975a, b). This search
led to the consideration of parallel and intersecting flats construction.
At the present time there is no unified theory developed for determining
the alias sets, or even which effects are estimable, from such con-
structions. The purpose of this paper is to begin a development of
estimability and alias structure theory for parallel and intersecting
flat fractions. Because of the initial motivation most of the examples
relate to estimability of main effects in the presence of two-factor

interactions.

2. Construction Using Intersecting Flats

; n-k ; n v -
In Section 1 a regular s fraction of the s factorial experiment

was defined to be the set of solutions over GF(s) to

At = ¢, (3)

where A is a k x n matrix of rank k and ¢ is k x 1, both over a field of




j order s. Thus there is a one-to-one correspondence between the s
points of EG(n,s) that lie on the linear (n - k)-flat specified by (2)
and the sn_k treatment combinations that are in the fraction determined
by (2). An alternative to choosing points on a single flat in EG(n,s)
is to take the union of thepoints on several flats. Thus consider the

tj flats generated by equations

At =c,, = 2 sae o (3)

where Ai is m, X n of rank m, and ¢ is m, % 1. The design T corresponding

ol (3) is

T= U{tlae=c) . )
i=1

The ith flat contains g points, but since the flats may intersect in

various ways the number of points in T as well as the estimability of

factorial effects depend on the Ai and N in a rather complex manner.
Consideration of designs of type (4) was motivated by a search

for a general series of minimal or near minimal resolution IV designs for

the s" factorial. Theorems 1 and 2 produce such a series in N = s(s - 1)n

runs, only s(s - 2) more than the perhaps unattainable lower bound.

Theorem 1. Let A AZ,...., An be (n - 2) X n matrices of rank (n-2)

l’

sucl that for & = 1y 2y «eey 0,
1. the ith column of A; is O,

2. one column of Ai has all nonzero elements, and

3. the remaining (n - 2) columns of A

4 are some permutation of I(

n-2)"




—

Then the fraction

n

F= U4t |A1L = Si} (5)

i=1
is resolution IV for any choice of the ci-
Proof. Each row of Ai contains exactly two nonzero elements and has ith
element zero. Further, any linear combination of two or more rows of Ai
will have at least two nonzero elements and a zero in the ith position.
[t follows directly that in the ith set of equations, the main effect of
the ith factor is aliased only with three factor or higher order inter-

actions. Thus the main effects of the ith factor are estimable from the

runs corresponding to

so all main effects are estimable from the union

n
T=0{t}] At =c¢c.l
; = T =l
1=1
The proof is complete.
Example 1, The design T formed by taking the union of solutions over

.
GF(s) to the following five systems of equations is an s~ resolution 1V

lesign in s(s - 1)5% runs.
Fliat 1. Flat 2s Elak. 3.
0 =1 100 0 -1 04100 1 j~3 18400 ]'o
G =1 0 & OFE = |0 e e L [ R =g SR = i
0-1001 0 -1000 1 L -10001 |1
Flat u. Flat 5.

11000 0 11000 o

-10100[t= |0 -10100]t=]0

-1 0001 i -1 001 0] 0
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The union of the points on these five flats with :

r(ﬂ? 012 912 042 012 012 012 012 012 012
012 201 120 201 012 012 012 012 012 @12
T = Lor2 200 120120 120 204 012 012 012 012
012 201 120 120 120 120 120 201 012 012
012 20X L£20° 120 120 £20 120 £20 120 2()1.

where the underscoring indicates the treatment combinations generated by

the ith system of equations, i = 1, 2, 3, 4, 5.

o 1 a : ) p : : > .
Theorem 2, For s = p, p prime. there exist fractions of resolution IV
B bt T e ; %5 -3

in N = s(s - 1)n runs for the s factorial.

Proof. The proof is by construction. Let the column of all nonzero
elements of the Ai in Theorem 1 be -1, that is, an (n - 2) column with
every element -1 € GF(s). Further, let the column -1 be the second

A_. Finally, arrange the

column in A, and the first in AQ, A3, cees Ag

1
rows of each Ai so that the set of (n - 2) columns, each with a single
one and (n - 3) zeros, in order form ]n-2' The arrangement in Example
3.1 illustrates this particular ordering. The Cis EoE el tasg Dis Qb
then selected so that flats 1 and n intersect in s points, flats i and
i+ 1) 1 28, «-.5 it = 1, intersect in s points, dand all remaining

.

intersections of pairs of flats are empty. The construction is repre-

sented pictorially in Figure 1.




i
#

el
Flat 1
I\\ Flat 2
Flat n A e, b
/ oF
.
\/ :
.
: /
Flat (i - 1)
.
Al
AR Flat i
Flst (i + 1)
Figure 1. Geometric Representation of Construction
for Design in s(s - 1)n Runs
With g = (Cli’ Cops wves Cn—?,i)" i=1, ..., n, the construction

is achieved as follows.
1 €y =By = al for some constant a implies flats 1 and 2 inter-

sect in s points.

2. St o Ckl + Cypo kK= &, v.0sm - 3 implies flats 1 and n
bl i
intersect in s points.
8. g4 = cki+£,k 2 By swng 4% 2y Ly vuvg D= P aml T.5 3 uiy
i sl

n - 1, implies flats i and (i + 1) intersect in s poilnts, 4 = 1,

., Cn-?,i 7 cn—?,l f: L 1 = 3y <oy m = 1 Implies flat 1 does not

interaect with £lat 1, 1 = 3y ..,
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B. Le.. =t s X =Dy ey o= 2, and i 2 1 F B, Db s 1,
1i i-1.13
implies flat i does not intersect with flat i + b, b > 1, 1 = 2,
ey A R
1
For arbitrary ¢4 = [Cll’ ety Cn-?,l] and Cl?’ and any Cln 7 €y = Cq11°
the following construction clearly satisfies conditions 1 - 3. 4
o = CiptCpq - C110 =18y s A =2
Oyt S Samn 34 il
= Z g - 4 +c kX = 2 -
)i Ck,i—l’ k 7 1, 5 E % Cln Lk_l,l, 5 s & 5
= 5 B
Also, since Cln # €10 = ©41 implies Sin 7 Cn-2,2 - cn_2,1
implies iy % Cn~?,i~cn—?,1’ 153y wewy Ol
i i . + el =3
implies cn_z’1 7 Cn-2,l Cyyo i 5 "
h =~ il
condition 4 is satisfied. And for planes i and i' = i + b, b > 1, i=2,
w5 =2y € L ) i 1 3 s i =
"2 CypfCyo Sy | MMPLISS oy 4 4 kimg, R Rpls g F g - vyl
1 i 57 (s :
implies Srn T it 1 # C1-l,2
implies c.., # 51,1,
so condition 5 is satisfied.
One such choice of the (8] is Y = St 0, Sy = 1, g3 = COs Lo s
e 1)y g, = (0, 051, ceny )Yy vy g 4 = (0, 0, 0, L, 1)

kExample 2. The 35 design in Example 1 illustrates the construction of

Theorem 2.
The designs constructed by Theorem 2 have a convenient representa-
tion in terms of parallel one-flats. Since flats 1 and n, as well as

flats i and i+1, i=1,2,...,n-1, intersect in s points, each of the




gt

system of equations

is of rank n - 1 and consistent.

In fact, each can be reduced to the
form
1 q
-1
e " doyjbi=a 2
Sut iy
The equation (7) with the (i - 1)th row eliminated, i = 2, 3, ..., n,

are precisely

At

where d* is the (n - 2) X 1 vector

(i - 1)th element. 1In relation to

points on the ith, i = 2, ..., n, flat may be represented as s parallel

one-flats defined by

where the (i - 1)th element of d

elements are d* = ¢y Similarly, if the first equation of (7) is subtracted

from each of the remaining, the result is

is X, € GF(s) and the remaining n - 2

13

s =1, 2, awy 0k, (6)

=(_i*’

obtained from d by eliminating the

Theorem 2 d* = Si' Thus the set of

= Oi lv 2) LA | S—ls (8)
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"dz = dl“
d. =4
l At = ? ) - € » (9)
| a1 7 9]

and the 52 points on A, t = ¢, are obtained by keeping c, fixed and let-

1

ting dl take all values in GF(s). Thus in the parallel flats representa-

1-

tion (7) the coefficient matrix is fixed while vector d is varied.

Example 3. The parallel flats representation of the 35 design of Example
1 is given by

-11000
=10 £ @ @ e

-10010]|
-10001

where the gi are the columns of

0212000000
0211120000
: 0211111200
4 92113131118

The one-flats of each plane are identified by the spacing in the array

T of Example 1. Several additional examples are included in Section 3.

3. The 34 Experiment - More Examples.

A somewhat detailed consideration of the 34 experiment will
| illustrate both the versatility and the complexity of design construct ion

from intersecting linear flats.

3 ‘ — IM -




For the 34 factorial consider first

b | 0210 2010 2100 2100

0201 2 2 001 2001 2010

{ A, = i My : Ay = x Wy = »  (10)

as specified in Theorems 2 and 3 of Section 2,

€ " (Cli’ c2i)', Tl 2, 3. 6.

and

The number of runs in T, which corresponds to the number of points in the
geometric representations of T, clearly depends on the choice of s i=

¥, 2, 3, 4. For instance, if Sy ™ 0, i=1, 2, 3, 4, the design includes
the 27 runs represented in Figure 2 of Section 3. On the other hand, if

the Ei are chosen to be

¢l = (0,0)
gy = (1,1
ey = (0, 1)
¢} = (0,0)

the result is a design in 24 runs. In general, with A AZ’ A3, and A

1° 4

defined as above,any choice of <4 yields a two-flat which is simply the
union of three non-intersecting one-flats, each being of the form
4
{t, t + 1, t + (2)1}. Thus a design T = U {EIAiE - Ei}’ expressed here
i=1

as the union of four intersecting or nonintersecting two-flats, could

alternatively be written as a union of parallel one-flats. That is,
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where B is a 3 x 4 matrix of rank 3 and r depends on the intersection
structure of the two-flats. As in Section 2 , it is convenient to let

-1 1 09

B=1-1010 (11)
-1 001
The examples which follow further illustrate the dependence of the
number of points in T on the choice of €15 o Cgo and Sy For each
example it is assumed that Ai’ i=1, 2, 8, 4, and B are as defined in
(10 and ( 11 ), respectively. Thus C = [Sl €y S5 24] completely
specifies a design as a union of two-flats, while D :[94 QQ v Qr]
specifies it as a union of one-flats. In the geometric configurations
lines represent two-flats and points represent one-flats.
012012111000

; 0 C 0
Example 3. 36 run design C = [? 8 ; 1] D =1012000012111
201000222012

S

. s s . 4 :
Figure 2. Geometric Representation of 36 Run 3 Design

00 1 O

Example 4. 33 run design C = [0 0921

01212111000
] D =]101200012111

01200222012
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' / / /
93 d

Figure 3. Geometric Representation of 33 Run 3u Design

(80 1 (R

Example 5. . -
xample 30 run design C [O 00 2 0120012222

0121211000
] o
0120000012

~e

/

/

3 s . 4 .
Figure ﬁ: Geometric Representation of 30 Run 3 Design

012123111

Example 6. 27 run design C = [8 8 é ;] D = |012001222
£ 012000012

N &

. . s u s
Figure 5. Geometric Representation of 27 Run 3 Design
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Clearly, this 27 run design is not the same as the 27 run design
pictured in Figure 2 of Section 3.1.

There is no uniqueness to the particular constructions presented in
Theorems one and two of Section 2. Other choices of the /\i may
also give rise to resolution IV designs. For example, the 27 run 3“
foldover designs, [given by Anderson and Thomas (1975a)], all
have representations as four intersecting two-flats. The Ai,i=], 2 3, 4

for these designs are listed in Example 7. In each case €y T 85 " By

& = 0.

Example 7. A{ matrices for 27 run 3u resolution IV Foldover Designs

(a) Design 2 (orthogonal array of strength 3)

_[ro-10 [t o0-1 _[1011 . (11319

G [010-1]’%'[01-10]’ AS'L0111:I’ Au_[ll.')l]
(b) Design 3

_fo-110 _[-1

’\1'[0-101]’ Az‘[-1

(c) Design 4

. fe-120] . _[+ 1011 e R
Ay ‘[0-10 1]’ A '[-1 [0111]’ ’\u‘[1 10 1]

. Iy &
The smallest known designs for the 3 experiment are the ones gener-

==
O =
= o
e
-
>
w
"
R
RS
D =
oo
)
ey
-
>
1
[ g
S =
=
T
- b
T

|l =
==
-

>
W

"

g 1
00

ated by Theorem two of Section 2 . Since these designs require N = 24

y : x LU 5 ;
runs while Margolin's lower bound for resolution IV 3 designs is N > 21,




it
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is of interest to investigate the possibility of using four intersec-

ting two-flats to construct a 21 run resolution 1V design.

Consider the 21-point configurat

ion pictured in Figure 6.

Flat 1/

\, e

P
%

\\Flat 3

Flat 2

Figure 6.

21-point Configuration in LEG(4, 3).

In Figure 6 every pair of two-flats intersect in exactly three points,

and every triple of two-flats, except

and 3, intersect in exactly one point

and 3 is empty. For i = 1, 2, 3, and

solutions over GF(3) to

where /\i is 2 x 4 of rank two and < s 2 % 1.

the one censisting of flats 1, 2,

. The intersection of flats 1, 2,

4 the ith flat consists of

(12)

Thus any two of the four

flats, say flats i and j, intersect in exactly three points if

and any three of the four flats, say flats i.

i
] & o (i3)
s
=
j. and k, intersect in
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exactly one point if

Ai Ai
rank (A, = rank Aj 0 (14)
A A,

Flats 1, 2, and 3 have an empty intersection if and only if

A Ay § B
rank |[A,| = 3 and rank A, e = 4, (15)
2 2 =2
& Ay | &
In accordance with Theorem 1 of Section 2 let Ai’ = [ B W

be 2 % 4 matrices of rank 2 such that the ith column of Ai is 0, one

column of Ai’ denoted by a, = (a )', has all nonzero elements, and

11¢ %o

the remaining two columns of Ai form I Since Theorem 1 guarantees

0 2
that a fraction T = U {t | A.t = Ei} constructed using these A, as
i=1

coefficient matrices is resolution IV, it is of primary interest to know

a..)" and

whether for i = 1, 2, 3, 4 there is some choice of a; = (ali’ i

e, = (e

s 150 c2i)' from GF(3) that will yield the construction of Figure 6.

The result, of course, would be a minimal resolution IV design for theﬁ;
3“ experiment. Unfortunately, if the Ais are defined as in Theorem 1
if condition (13) is satisfied for every pair of two-flats, and if
condition (l4) is satisfied for flats i, j, and k when (i, j, k) =

(14, 2, 4), (1, 3, 4), and (2, 3, 4), then it is impossible for flats

1, 2, and 3 to satisfy condition (15).

Since the Ais specified by Theorem 1 cannot be used to produce

the configuration of Figure ¢, consider instead

Ay = [1 0 a;; byy (16)




and the corresponding two-flats in EG(4, 3) defined by At = T

P= 3, 25 3, Be MWith the Ais defined in this way it is possible to

<)t and

select freom GF(3) values for a. = (a, ., a..)"s b: = (b,., b.
- e 1i 21

1 11 21

£33 (Cli’ c?j)', i=1, 2, 3, 4, so that the resulting two-flats
intersect as in Figure 6. However, an exhaustive consideration of all
possibilities yielded only two intrinsically different constructions of
this kind, the conditions for which are discussed below.

The first way to produce Figure 6 is to select a., hi’ and Cio

i=1, 2, 3, 4, which satisfy the following conditions.

(1) ayy #aj,, ag5 = ayys ayq 7 agg, g, # agy
(2) ay) =a,, = ay; =a,,
(3) byg = 2(byy +byy), by # byg
(17)
(1) byy = byy = byy = b,
(5) €43 # 2(c11 + c12)
(6) cyy = eyy = cp3 = ¢y,
With the Ass defined in this way, no individual two-flat provides .

estimates of any of the main effects. Thus a design of this type could

be resolution IV only if the treatment combinations in the union
U ;

Te= b €| At = gi} work together to separate main effects from each
i=1
other and from interaction effects. Unfortunately, the rigidity of

SRR TNI Gy

conditions (2), (4), and (6) in (17) ensures that some main effects
and interaction effects will be aliased in identical ways on all four
two-flats. Suppose, for example, that the ass E&’ and s i = 23 W%

are chosen according to (17) to give systems of equations (18).




(18)

| o ]
= N

o kLo g 3% o Fe 102 28, A2
(3 [o 11 1}3' [1j i [o 1}1 g L}

It follows, for instance, that on every flat the main effects of Factor
2, say F,, are aliased with the F3ru interaction of Factors 3 and u

according to the correspondence of levels given in (19).

PQ(t?) F, uhten 9.1, 3
0 > 1
1 N 19)
2 > 2

That is, for every t = (t t t.s t,)' in T the following are

PRIl
satisfied:
Whenever 1::> =0, t3 + tu = 1.
Whenever t2 =1, t3 + fu = 0.
Whenever t2 = 2, t3 4 tu = D

Thus the design determined by systems of equations (18) does not

separate the effects of F_, from the interaction of F

5 3 and Fu.

In general, since the preceding example illustrates a consistent
occurrence, designs specified by (17) cannot be resolution IV.
The second construction that yields Figure 6 can be achieved in a

number of ways, a typical one being specified by the conditions (20).

(1) ayq # 8150 835 = agye A3 7 3355 355 F 8,4 *
(2) ay) # ay0 855 = 85,5 8y ¥ 8y55 3py 7 ayg |
(3) b?2 = 2!:)11 + b?1 + b12, b13 = 2b1,1 + ’21)1?, l>23 = 1)‘11 + 1321 +

2b12, l)]u # b13’ b?u = 2b]1 + b?1 + blu 363
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(4) Cop = 2u11 t ey, t €12° €13 7 2cyq ¥ /cl?, Chg = )r]] + Coy *
€432 {‘;)l\\ = )Lfl] + €54 + (]U
Designs of the type (20) resemble those of type (17) in that the

individual flats do not guarantee estimability of any of the main effects
Moreover, in any specific instance it is easy to see that the flats do
not work together to create a resolution IV design. For example, if the
ais bos and c., i =1, 2, 3, 4, are chosen according tc (20) to give

systems of equations

100 1z) _ 11 10
€1} [0 10 2};' [2] (2) |0 1

1SN ey 1 1.0 0
Ed [o 12 1}5 [J e [ 1 [1

it follows that main effects F, are aliased with interaction effects

s
o N
| DR |
[t
"
P -y

(21)

H

NN
A =
"

Fun by the same correspondence on all four planes. Thus Design (21),
like Design (18) cannot be resolution IV.
A second design constructed according to (20) consists of

solutions to systems of equations (22).
o [1 00l . rv] RSN 2} 3 {o}
0112j-' G T l01 2 al= 4o
B B 1] 1 & 4 0]
= [0 10 JL ; [L v [o 112 [0

The aliasing patterns determined bv these four flats are not as easy to

(22)

o}
-
bt
|t
]

analyze as those of (21). However, to cite one example, on the first

ol
flat the main effects for Fl are aliased with interaction erh according

to
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( P ;
11~ ) }JA“(11+)1))
() < 0
1 i 2
2 e 1

while on the second flat the main effects of F? are aliased with F1FZ

by the same correspondence. This occurrence, along with other similar
correspondences, suggested that Design (22) 1is not resolution IV, a

result that has been verified by direct computer check.

In summary, although the discussion of the preceding paragraphs
does not constitute a proof that no 21 run 3“ resolution IV design can
be constructed from four intersecting two-flats, it does indicate that
this is probably the case. Moreover, it surely points out the need for
a means of analyzing how the choice of Ai and Cis o=ty Ll Dyatfect

n

estimability in a design of the form T = U {t | At = Si}'
i=1 gl




n
T= U {t]|A
=1

the structure of

.t=c.}
i =

iz 3 ehe /\.].:;
is of course,

e Flat af a time.

4. Estimability of Effects
The examples and discussion of the previous section illustrate
learly how the estimability of effects from design
lepends not only on the individual Ai“" but also on
intersection resulting from choice of Cio ks Bt Or:
are as specified by Theorem 2 of Section 2, it
possible to estimate all main effects using just on

However, the estimability of p that occurs if Cl =

is provided not by any individual flat, but rather
cation of all treatment combinations in a union of
the foldover type designs summarized in Example 8

all resolution IV although estimability of certain

N

guaranteed by considering the flats one at a time.

The present section introduces an approach to

aliasing structure for designs formed as the union

g = e = € =0
=2 DR
by the joint appli-
n flats. Similarly,

of Section 3 are

main effects is not

the analysis of the

of a number of flats

The discussion includes examples which illustrate use of the basic

procedures.

: E y : : "
For the 3 experiment consider again the general design

P
T= Ul |ag=cl,
i=1 ‘

where each A, is an my X 0 matrix of rank . For
i

' :Il‘

the model equations that correspond to the

tions specified by A.t = ¢, are
) =

2L &

each iy 1 = 1. e Py

ms )
' treatmont combing

(2u)

1
|
|
]




|
H

0

where X. is an !.'i X V matrix of known constants, and B8

v X1
vector of non-negligible unknown parameters. Thus the model for the N

observations corresponding to treatment combinations in (23) can be

partitioned as

ik ey
Elyl = ey | =| x| 8= x8. (25)
v %
=2 2
v ¥
- [- - I.J
For every i, i =1, ..., r, the coefficient matrix Ai partitions
the parameters in B into a number of alias sets, savy 3_1, et g
2 i iug

i
For example, in a 3 experiment involving factors F,, F,., F., and Fy
i 1

the coefficient matrix

produces the five alias sets S1 S Ak, 32 — {Fl. F?F.ﬁ, ?‘3?“, ?‘Qf'u},
S = E E F? i F? & F?} S = 4F S Eals E.E I, and S
"3 2? 1 4 e 8 e v: e ! R AR : e [l ' “5

}, where u has one degree of freedom and evervy

w N

— Wiz Pk F.E F,)T
other effect has two degrees of freedom corresponding to the linear and
quadratic contrasts that were discussed in Section 1.

Suppose now that E is an effect of interest and that estimability

of the linear (E,) and quadratic (Ej()) components of E is not guaranteed
L

=
by @ny one flat in (3.23). Let S5 = 4B = B Eoos wuew By | bo ‘the
1 il 17 |({

alias set including E that is generated by coefficient matrix A.,
i=1, ..., r, and assume that each Eji, 0= e Ci‘ -5 RO N

carries two degrees of freedom. Then if L‘.H and I‘.i,‘, are any two

L0 S g e o e Syl 2 ) 3 i s B o oo o —

Al




|

2 i S e R i R g
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P . =
members of Si’ it is possible to transform the levels of Eij to the
levels of Kij' by applying one of the permutations in (26).
E B s B I
ij }l t 1 e
Ol =) G > 4
e: s €01 220
20w g 20 P
(9 I | g > 2
b T Gl IR R (26)
*. 0 2, w0
0o > 2 0+ 0
(024 )z 1= (12 ) S S Y
20 =3 2
Horeover, if Xg represents the submatrix of Xi consisting of the
:(i columns that co:respond to linear and quadratic components for
: . S B s
Hii’ y =t Ei, it is clear that Xi is of rank two since exactly

5 . B
two degress of freedom are associated with each effect in Si'

Suppose specifically that linear and quadratic contrasts are specified

by the orthogonal polynomial coefficients

r __Quadratic

0 -1 1
1 0 -2
? 1 1 .

Then if Eij and Eij' in S? are related by permutation g of (26), and
E

s . E . . ,
3 Xi'jj' consists of the four columns of Xj associated with Lii and

E..,, one finds that
1]

E

P ¥z Pg = @
XJ;JJ' : :

&

where Pg is determined by permutation g in accordance with (27).
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2 rg g Pg
G o -y
e g 2 (01) 0 2
-2 0 -1 =3
0 =2 =44
2 0 2 0
(012) a2 (02) 0 2 (27)
s 2. 6
-1 1 6 =5
2 0 o S
0 2 0 2
2
(021) 1 -3 (12) o
g[S 1

It is instructive to consider first the special case for which
A. = B, a constant m x n coefficient matrix independent of i. Then

design (23) becomes

>

Te U {t | Bt = d.}, ( 28)
i=1
each flat consists of Ni = 3" treatment combinations, and the
resulting union of parallel (n - m)-flats includes a total N= (rX3" ™)
treatment combinations. Moreover, S? = SE =EHER = El’ EQ, & loos Ef}

is the same for all r flats.

\ . ¥ % E

Consider for each i; 1 = 1, ..., s the null space of Xi' That
- . b ¢ , ;
is, given that S includes { effects, each with two degrees of freedom,
consider the space of all 2 x 1 vectors w such that X{y = 0.
Theorems 3 and 4, which follow, establish a means for investipgating

the estimability of F

and E] through consideration of the null spaces
{

L

for X?, = e e Y




Theorem 3. Let W§ be a 2€ x 2(£ - 1) matrix of full column rank such
E ..E »
that X5 W, = 0, where 0 represents an N, x 2(£ - 1) matrix of all zeros.

=
Then the column space of WE, denoted C(W?), is the same as the null

E

space of X

ey P 3 5 ; E n o
Proof. Since X; is of rank two, if w 1s a solution to Xiﬂ = 0, it 1B

possible to solve for two components of w in terms of 2 - 2 arbitrary

E - . ) = il
components. Thus the null space of Xi has dimension 2¢ - 2. [If wi
is of full column rank and such that XE W, = 0, the columns of wg

i

P

clearly form a basis for the null space of X.. The proof is complete.
i

Theorem 4, The linear and quadratic components for E are not esti-

mable from the runs of desipgn (28) if and only if there exists a

=
-
vector w € (N C(Wi) such that the components of w which correspond to
i=
EL and EO are nonzero.

Proof. 1In terms of model (25) any component of B is estimable if
and only if the corresponding column of X is linearly independent of

all remaining columns of X. Since the structure of design (28)

guarantees that EL and EO can be aliased only with effects in SL, it

suffices to consider only the submatrix of X consisting of columns for

. . : E . ;
the linear and quadratic components of effects in S°. Partition this

submatrix as




= e—————r

.
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-
and let the first two columns of X~ correspond respectively to EL and

EQ. Now E{ is not estimable if and only if there exists a 2¢ x 1

4

E . .
vector w = {w Wos wees W?f]' such that X w = 0 and in which wl %10,

s B fians
Clearly such a w must be in nc(wi). A similar argument holds for EP,

]’

and the proof is complete.
5 : E - Ao o
In practice the matrix Wi which provides the basis for the null

space of X& can be formed in any of a number of ways. Two of the most

useful forms are specified by Definitions 2 amd 3.

o) o Led b 4 E . :
Definition 2. Ni, a basis for the null space of Xi’ is said to be in

standard form with respect to effect Ek, where E, may or may not be

k

Ll A e 4
equal to E, if wi 1s written as

0 | 20 20 |20 2 0]
p2loasl o. leasloal " laos
Z., | O 0 0 0 |
0 A . = 3
k2
i o |. ’ ) G
3 1 . 0 : )

’ ’ . . . 0

0 z
0 0 0 £

where each 0 block is a 2 x 2 matrix of zeros and each zki is deter-

mined from (27) according to the permutation required to change the

levels of [, to the levels of Ei’ -t R CR U A S
S5 5 v e ] ’
Definition 3. wz, abasis for the null space of Xi’ is said to be in

-
diagonal form if W is written as
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- 2 0 7 f
5 0 | 0 ot 0
2.0 | !
210102l © [
250 {
0 12302 . i
: 0 12, ‘
|
’ 0 0 {
20 |
. ~ . (‘?l
o lolol g ]
- -1, (

: . : : :
where for some ordering of the effects in S is determined from

* Yk k+1

( 27 ) according to the permutation required to change the levels of

E, to the levels of E I =t e Boe 'y

k k+1°
Example 9. For the 3° experiment involving factors Fi' Y?. and F,
R 7 3
consider design T = U {i.l Bt = gi}, where
i=1

210
o [2 0 1}

and d, = (0, 0)', d, = (0, 1)', d, = (0, 2)', = (1, 0)', dg = (2,0),

4y

gﬁ = (1, 1)', and d, = (2, 2)'. The resulting design T consists of the

21 treatment combinations shown in (29), where spacing indicates the
seven individual flats.
012 012 012 012 012 012 012

T = 912 012 017 120 201 120 201 (29)
012 120 201 012 012 120 201

Coefficient matrix B produces alias set § -~ = § ¢ = § 9 = §
. Fq F Fq
— - F. = 2 = L "
{F], Fos Fas FiF s FiTo, F,F,} and the W, W W, L
i=1, ..., 7, each written in diagonal form, are as given in (30).

Unspecified entries in each wi are all equal to 0.




0

0 -2

cCAN™

N O =




By Theorem 4 for k = 1, 2, or 3 the linear and quadratic effects of
factor F, are not estimable if and only if there exists a vector

W = [wl, Wos vees J' with nonzero components corresponding to F

Y12 k.L

and Fk A such that w can be written as some linear combination of the
"o

columns of Wi, say Wiai, for each i, 1 =1, ..., 7. Thus to prove the

estimability of Fk,L and Fk,Q it suffices to show that

= = = = M
W ngi W2£1_2 \'7_(17

forces the components of w which correspond to FP L and Tk o to be
%5 G

. . 1 - = -
zero. Now if a = [all’ Ayps coes al,]OJ s W wlgi = wﬁgb = w7g7

implies that

20
i
'3?11 i 2?1? : 5“13
TN Bt e - B
1(3 = -3(1“ - .?(11? + ?r!“) aned
a - 3a + Ja .
11 12 16 ”
3a, + 30,4 ~ o + 3 + 2
< i | S ¢ She | il |
) a5 g 3a,6 20 g
3a + 3a - 3a + 3o + 2a
11 -3 X2 ’ 15 + 3 16 D
Wl O - i | B | T T
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2a ]
i £
Zul?
-3 { v
poet e
o, = (l) ~3a11 + 7a12 + ?qlu
-7 2 31 G 15
o = 30 200
11 il 16
~3a - 3a + By + 2a
! 12 = 16 1374
= o) + 30, .. + 2a 206
11 12 15 18
3a11 - ?a]? % 5u1‘ + ?“19
O
~ + +
- g * Wyo ¥ 2005 ¥ 20 40
s W = = = — 3 3 z = ~Bi - 3
Thus Wyg = 72005 2 3045 = Sy, E Ba e b B, § O, fn T T -
C - 3 8 = - = - - - (
+ qlq al,lO and w12 2u1’10 u11 3u12 & ?“15 % + 11,10

= =20, + a,o + B0, +oagt 2a1,10, so the equations of (31) must be

satisfied.

~— -

38 53 0 6ifu, 0

3-8 06 3 3|le, |.]0

1-3 1-3-2 0||aj; 0

-1-3 2 0-1 3|]e,; 0 (31)
*19
| %1,10]

Elementary operations can be used to reduce (31) to

- - G e
1 © ¢ @ 8 © a11 0
6L 8.0 BoGtle. 110
0 ¢ 1=3 <2 © %5 0
00 0 2 1 1ffa L0 45

19
| *1.10
which implies that Ay T Uy, T 0. Thus the linear and quadratic

effects for F, are estimable. Similarly, w = W Woa, = W a

121 = "oy 3%

=Wa =Wa

implies that F and F are estimable, and w = W1g1 udy 5

b 2,7

implies that FS,L and IS,Q are estimable.

Two additional results concerning the aliasing structure for

constructions of type (28) are given in Theorems 5 and 6.




Theorem 5. Let the 3" design T = U {t | Bt = d.}, where B is an
i=1
(n - 1) x n matrix of the form
="
2
2
3
2 In_1 (32)
2
= ' 1 = 5
and 9& (dil’ di?’ et di,n—l) sl R S Ren s i,

k =2, ..., n, the linear and quadratic effects of the kth factor are
estimable from the runs of T if the set of all 9&’ T P P

includes a subset of size three, say d , d and d_, in which d =d
-’ —u —v sY uy

= dvY for v = 1y coeg Ki= b k+ 10 oo, n—- 1, while the kth component

ranges over the three values in GF(3).
Proof. Consider the set of treatment combinations

T, = U {t]Bt=d]), where B is defined by (23) . Since d_,
i=s,u,v ;
gu’ and gv are equal except for the kth component, which ranges over

all three possible values, the levels of Factor k are not associated
with the levels of any other effect by one of the permutations in (26).

Thus given the model E(zk) = X where zk is the vector of random

’k-’

observations corresponding to treatment combinations in Tk,it is not
possible to involve the columns associated with linear and quadratic

Fk in a linear combination equal to 0. Thus in the model for the full

design T the columns of X associated with F are linearly independent

k

of all remaining columns of X, so the linear and quadratic effects of

Fk are estimable. The proof is complete.




Suppose that the conditions of Theorem 5 are satisfied for each

k, k=2, ..., n. If the condition is satisfied for k = 1 after taking
the appropriate linear combination of the rows of B and the elements of
i, i=1,..., r then the design is resolution IV. Example 10 illus-

: : - R ’ 4
trates how this approach can be used to consider estimability in a 3

foldover design of the type discussed previously in Section 3.

|

Example 10. A 3 foldover design for a factorial design involving

factors Fl’ F2, FS’ and F, was given in Section 3 as a union of four

n

intersecting flats. This design can be expressed in the format of
(a S

Theorem 5 as T = U {t | Bt = d.}, where

N
=5
=)
o

and the 9&’ i=1, ..., 9, are the columns of the matrix (33).

OF O SO0 0 e 2 s 2
00 01 20 01 2|=[d,d,...,4] (33)
0 1 2 6.9 0 0.1 2

Estimability of the main effects of F2, Fas and F, is guaranteed by
Theorem 5 as follow§: F2 by QJ, dg and 97; Fy by 91’ d,, and 95;

Faby gd, QQ’ and 98' Since elementary row transformations will trans-

form

[B ] a4
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Theorem 6. Suppose that d
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)
[y
o
o
o

the main effects of Fl are estimable also. Thus the design is resolu-

tion IV.

ds s ﬂr of (28) are selected so that

- = 1 : - ; . ol
for some Lk in 5 = {Ll, L?, LT If} the following conditions are

satisfied.
1. For each j # k, the permutation of (26) that relates Ek to Ej is

ho <ame for aac £ Ie i
the same for each of dl, il e 4.

2. The list of r permutations relating EP to'E Eox il‘ ity Qr’

respectively, includes at least two distinct permutations.
Then design (28) ensures the estimability of the linear and quadratic
effects of E.

.E ’ '
Proof. If necessary, reorder the elements of S so that Rk = L] and

E = EQ. For each 1, 1 = 1, ..., P, write a basis Wi for the null

E . : .
space of Xi in standard form with respect to Ek E]. That 1s,

f2 012 o 2 8] f2 a2 o 0]
0 .2 0 2 2 ¢ 0 2 0o 2 b 21 . 0 4
. 0 : . . 0
12 0 :LZ . -
0 Vi ! . i 0
W= 13
i~ 3 (5 A ¥ . V.
i
0 0 : 0
[ .5 T ] |
where Vii' i =2, 3, ..., £ is determined by (27) according to the
r
permutation relationship between Ek = Ey and Hi. Now w € C(Wi)

i=1




implies there exist a

W
W,
w
3
Il N w = w . (‘1 -
i u 1—1
124
Since V.a. = [w ceeg W " For ¢ gt
itiv [ 52 2 QK] LR —iv
akbl ly 1= 45 ey ws @ Thug

g
£ = ~2[1 .. 1]
[F12]
= =T ... I
for all i. Now
3 411
B Vi2 a
|4 i2
’ a5 -4 '3
ai2 1.2 wu P
Fhus for @ # i
i £ LB e 1 S o 5 S
442 112 p -
s,
-1 13
> Vi? a, .
12

sow e N c(wi) implies Wa = oWy = 0, and it

a such that
S

oA [ . I
-1
= Vj [ He 5 7L] for
&l
=4 £
W
a4
iy T
3 =l s &
= 0, 1 = 1, 5 Dy

follows that the main

effects of E are estimable. The proof is complete.
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Example 11. For the 3 experiment involving factors I1, F?, FE, and
3 LR
F, consider T = U {L l Bt = (_i_i}, where
. i=1
L (L b
S [o 3 1]
and 11 SR R e (R G AT 93 = (2, 0)'. Coefficient matrix B
renerates the alias set g1 s {r P B F F Fz} ind
generates thne allas 5 o = 1°? 9% 39 3ty oty toe dand

121112200 102220011 210001122

012012012 012012012 012012012
TS 1
P = 1012100221 012100221 012100221 (34)

000121212 000121212 000121212

where the spacing indicates the treatment combinations on the indivi-
dual flats. From (34), one sees that the permutation relating F?Fg
to F, is e on flat 1, (012) on flat 2, and (021) on flat 3. Since

s 2 <
Y?F3 1s related to FST” and to FQFu by the (12) permutation for all
runs in T, Theorem 6 guarantees that T provides estimates for the
linear and quadratic effects of Py

The preceding discussion of the aliasing structure for designs

formed as the union of r parallel flats extends readily to designs

specified by (23) as a union of intersecting or nonintersecting

1 " . a0

flats. In this more general case, however, the alias set Si
= HE s = 5K AR :

i1 * ®i2° "*°? “il; that includes effect E depends on A,, and
i

B s 4 : ok

X. is taken to be the submatrix of X, consisting of all columns that
i i

correspond to effects in

B e
%= y ystij

i=1 9=1
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= E 0

where Q = U SI'. That is, S° consists of all effects that are aliased
i=1

with an effect in Q on any flat, i = 1, ..., ». It is, of course,

5 % 2oy . .Q . 5

permissible to eliminate from S° any effect that is known to be

estimable from the treatment combinations on one of the individual

) i o o - . -

flats. Forieach a.03 =4, ... 9, the ﬂi matrix that supplies a basis

: o - -
for the null space of X1 15 composed of one or more matrices of the

type specified in Definitions 2 and 3, depending on how many of
Q

the alias sets generated by A; are included in S°. The notions of

this paragraph are illustrated in Example 12. .

Example 12, Design 3 of Example 8, Section 3, ds
Yy
T= Ut | A.t-= 0}, where
. — ==
i=1
5 S ) NE o B
Al“[o 20 1}’ A?"[z 0 o J'
208 SO D N |
"3‘[2 0 0 1]’ B [o 1 }

all over GF(3). Theorem 1 guarantees the estimability of the main
effects of Factors I’l, F7, and F‘q individually from flats 1, 2, and 3,

respectively. Estimability of the linear and quadratic components of

['u, on the other hand, does not follow immediately from consideration
. S A Flt o . ; P T
of any one flat. In fact, Sy = {[“, I:), Fas FoFay FoFys [3Y“},

s;g“ R s e S e sht - 0000 30 S ATl ST L R
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=
-
N

5 ¥ -
The alias sets needed to construct Wiu, 1 s 3, 4 and thereby

ML SR - F1F2
| i {111?’ FiFgs FyFy)y 5,

- e ~FoF: s 3 S SR e s S
a5 Eabuls JS? 3 = T 5, BE., P00, “u’ =(F,F, .}

complete the analysis are

= Fot

! e

170 Fol
e
and x;l‘“ 2 (B8, B.1.3. The wz”, i=1, 2, 3, 4, which are displayed

in (35), are composites of matrices constructed in the standard form

h;

specified by Definition 2. The unspecified entries in each Wi are
all equal to O.
B =
FL& 1ge s
F T o2 i 0 S SR s R
3y (3 MR 18 . 0
e <2 0
F2}3 0 -2
-2 0
FoFy 0 -2
28 gzl
F1F2 (2R (5
-2 0
"oy B -2
=2 10
o' 0 -2]
Wl {35)
1
-1 3 =
i
L P
Fr 202 92 0
St [0 PR RN o SRR I 4
FF -2 0
253 0 -2
-2 0
' FQFu 6 <3
~ 2R
F1I? @ B @
. -2 0
FyFs 0 -2
£ =3
Flu 0 =2
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Now w € [ C(W.F”) implies there exist a,, a,., a., and @, such that
L 1> &p* I3 2
Py

=Wu Qe (36)

LSl BN 2 %o 3 <5 &y

(36) implies that




[-:II [ 11 ) ,
412 e *11
17 15 %42
( - (
18 al® ol
415 15 DH
. -
O, = 161 ., o = 16 s and g, =] 15
2 | %5 . %17 R b (
o1u :19 [ ) %14 *13 W15
%5 - e Sl B hate BanT
*16 "%12 = Py~ V4]
Since w3 = Q(OLI.l + ulﬂ o W]S) = 2(&11 + 417 - u1n -
= =2 = 2 - - = = 20¢ >
Wy ¥ 20g = Hbg, -8y - oByg - B) = 2oy 0,), and
g = 2(agg + a9) = 2ayy) = 2(-0y -0, -0,

the equations of (37) m

0 3 1+2
-1 0 -1
=20 =4 =1

1 -1 -1

Elementary row operations

i SEE
(085 R |
0 -1 -2
e

]

which implies that @y

implies that a =,

Y10 12

ust be satisfied,

-1 a 0
11
1 o 0
13 =
0 o 0
0 a15 0

will reduce (37 ) to

0 o 0
£
-1 o 0
13 = "
1 o 0
0 a15 0
L7 -

0. A similar consideration of Wi W and

Thus w, = ~a + 3a = 0 and w, = a,_ +a

1 i 1) 12 2 11

0, so the linear and quadratic effects of Fu are estimable.
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