

DISPOSITION INSTRUCTIONS:

Destroy this report when it is no longer needed. Do not return it to the originator,

DISCLAIMER;

ġć.

i.

<u>ي</u> ۲ The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

「「「「「」」」」

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DOUMMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. JOVT ACCESSION NO. CIPIENT'S CATALOG NUMBER R-CR-76-037 TITLE (and Subtitle) COVERED ELECTROCHEMICAL MACHINING OF CARTRIDGE CHAMBER Technical reply AND RIFLINC CONTOURS FOR SMALL ARMS . ERFORMING ORG. REPORT NUMBER AUTHOR(.) CONTRACT OR GRANT NUMBER(+) IEW Charles/Maiorano 縄 Raymond A./Kirschbaum DAAF01-70-C-1076 PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Anocut Engineering Company 2375 Estes Avenue AMS Code 1932.06.6770 Elk Grove Village, Illincis 60007 1. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE CDR, Rock Island Arsenal Sept GEN Thomas J. Rodman Laboratory, SARRI-LR THE R. LEWIS CO. 27 Tel 33 Rock Island, Illinios 61201 <u>47</u> 4. MONITORING AGENCY NAME & ADDRESS(If different for m Controlling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED 154. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited. 17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, il different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary a Identify by block number) 1. Machining Rifling 4. 2. Electrochemical 5. Cartridge chambers Gun Barrels 3. 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The feasibility of electrochemically machining rifling and cartridge chamber contours in gun barrels was determined. Electrochemical machining (ECM) tests were conducted using single-electrode, continuous-feed, straight-plunge cutting. Multiple-groove, straight rifling was formed successfully in 7.62mm and 20mm, Cr-Mo-V steel (MIL-5-46047) gun barrel sections. Cartridge chambers were machined in 20mm sections of AISI 1018 cold rolleds cont.) over DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE 1 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Deta Ente

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. (Cont.)

steel and Cr-Mo-V steel. Although ECM tests were successful with the mild steel (1018), shape and surface-finish tolerances were not concurrently achieved in the low alloy steel (Cr-Mo-V). Test results did indicate that ECM of cartridge chambers in the low alloy steel could be possible with additional experimentation.

Based on program test results and state-of-the-art, when compared to the efficiencies of other forming processes such as rotary forging and broaching, it is recommended that no immediate efforts be made to apply ECM in the production of small arms gun barrels. However, future developments in ECM should be monitored for application of small arms rifling and chambering, especially for gain twist rifled gun barrels. (Maiorano, C. and Kirschbaum R. A.)

11

ACCLUSION IN			/
NTIS DUC UNANNOUNCED JUSTIFICATION	Write Section Buff Section		
SY	/AVAILABILITY (COBES	
Hat. A	YAIL and/or SI	PECIAL	
1/ 11	1		1

£

and a second and a second man when a subsection of the

UNCLASSIFIED

SECURITY CLASSIFICAT ON OF THIS PAGE(When Data Entered)

FOREWORD

Contraction of the second

4

This report was prepared by Charles Maiorano of Anocut Engineering Company, Elk Grove Village, Illinois 60007, in compliance with Contract DAAF0:-70-C-1076 and by Raymond A. Kirschbaum of the Research Directorate, GEN Thomas J. Rodman Laboratory, Rock Island Arsenal, Rock Island, Illinois 51201.

The work was authorized as part of the Manufacturing Methods and Technology Program of the U.S. Army Materiel Development and Readiness Command, and was administered by the U.S. Army Industrial Base Engineering Activity.

Þ

CONTENTS

ì

Ì

ć.

			Page
DD	FORM	1473	i
FOR	EWORD		; ; ; ;
TAB	LE OF	CONTENTS	iv
ТАВ	ULAR	DATA	v
1.	INTR	ODUCTION	1
2.	PROC	EDURE	1
	2.1	General	1
	2.2	Methods and Techniques	2
	2.3	Tests	4
3.	RE S UI	LTS AND DISCUSSION	7
	3.1	20mm Rifling	7
	3.2	7.62mm Rifling	10
	3.3	20mm Cartridge Chamber	10
4.	CONCL	LUSIONS AND RECOMMENDATIONS	11
	4.1	Conclusions	11
	4.2	Recommendations	11
APPE	END I X	A - Photographs of Tooling	12
APPE	NDIX	B ~ Results of 20mm Rifling Tests	25
		C - Results of 7.62mm Rifling Tests	35
		D - Results of 20mm Chambering Tests	38
DIST	RIBUT		ل ا

i٧

.

TABULAR DATA

Ľ

- Section 21

ある町

i V Þ

ŗ,

TABLE		PAGE
۱.	Workpiece Blank (20mm) Inspection Readings	3
2.	20mm Rifling Tests Machining Conditions	5
3.	7.62mm Rifling Tests Machining Conditions	6
4.	20mm Chamber Tests Machining Conditions (Material: MIL-S-46047)	8
5.	20mm Chamber Tests Machining Conditions (Material: 1018 Cold Rolled Steel)	9

I. INTRODUCTION

Small caliber gun barrels are generally rifled by broaching, and chambered by step drilling, contour reaming, and polishing. The operations are slow and expensive, particularly for the machining of prototype barrels of new, difficult-to-machine alloys. Consequently, this program was conducted to determine the adaptability of electrochemical machining to replace or augment these operations. The feasibility of eliminating the multistep conventional machining operations through the use of single-step electrochemical processing has been of particular interest, even for machining conventional materials, for possible reduction of machining time and for elimination of costly tool wear. During feasibility testing, the sharpness of contours and the quality of finishes obtainable by various combinations of electrochemical machining parameters were of particular concern. The parameters tested in various combinations were those of electrolyte strength, pressure, temperature, voltage, amperage, electrode feed rate, and starting gap. Work materials used in the testing were Cr-Mo-V steel (MIL-S-46047) and 1018 cold-rolled steel.

2. PROCEDURE

2.1 General

The testing was conducted in three parts:

a. The rifling in a 20mm gun barrel was electrochemically machined in accordance with section D-D, Rock Island Arsenal Drawing 77980, sheet 1.

b. The rifling in a 7.62mm gun barrel was electrochemically machined in accordance with section B-B, Rock Island Arsenal Drawing 11701204, sheet I.

c. The cartridge chamber in a 20mm gun barrel was electrochemically machined in accordance with U. S. Army Weapons Command Print 7790801, sheet 2, section E-E.

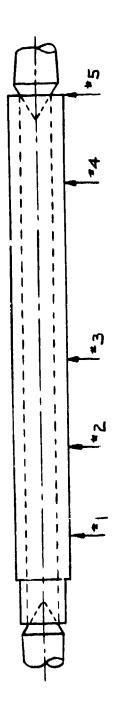
Straight (rather than spiral), short length (maximum length of 8 inches) rifling grooves were machined. This method was used for more simple and economical testing since some means of accurately rotating the gun barrel section or tool would have been required for spiral grooves. Although such a rotating mechanism could have been constructed, this action would have been unnecessary and costly for feasibility tests. Also, the straight-plunge machining of the grooves minimized any difficulties, e.g., vibrations and dimensional inaccuracies, which, if introduced by a rotating mechanism, could have "masked" other problems encountered. The workpiece blanks, listed in Table I, were provided by Rock Island Arsenal.

Fixtures, cathodes, cathode guides and electrolyte inlet manifolds were fabricated for rifling and chambering tests. Photographs of this tooling are presented in Appendix A. The fixtures were built to hold the gun barrel sections for test machining in standard (8 - 16 in. maximum stroke) 10,000 amp Anocut underdrive machines. The guides were designed to ensure that the cathode entered the workpiece at the correct location and the proper angle, remained straight and held to a minimum of vibration.

The electrolyte entered the top of the workpiece, proceeded through the combination manifold and guide (moving downward around the outside of the cathode) and emerged from the bottom of the workpiece. This flow direction was selected to produce the best possible surface finish on the sides of the cut. Fresh and uncharged electrolyte flowed down between the previously-cut hole and the sides of the cathode when this flow direction was used. Charged electrolyte from the cutting zone exited through the unfinished predrilled hole in the bottom of the part, The Anocut machine used for this testing was equipped with a large electrolyte pump capable of producing 200 psi of electrolyte pressure at a flow rate of 200 gpm. The electrolyte system of the machine contained a by-pass valve so that varying amounts of electrolyte could be directed around the tooling and returned directly to the electrolyte tank, With this high-pressure pump and electrolyte system, tool electrolyte pressures up to a maximum of 200 psi were easily attainable. The relatively small clectrolyte outlet hole beneath the workpiece served to restrict the flow through the cutting area and to produce back pressure when higher inlet pressures were used.

2.2 Methods and Techniques

Electrolytes carry a charge when leaving the cutting zone and this charge can cause some etching as it passes over the workpiece surface. Although metal removed by such etching can seldom be measured, the etching does cause deterioration in the machined surface. Consequently, in all the machining tests, electrolyte flow was directed from the top through the bottom of the predrilled workpieces to produce better surface finishes. Fresh, uncharged electrolyte flowed downward between the already-cut hole and the side of the cathode; when charged from the cutting zone, it emerged from the unfinished, predrilled hole in the bottom of the part. Also, whon any holes are electrochemically machined where the length-to-diameter ratio is large (above 15:1), an accurate guide is essential for the cathode. So, the cathode guides used in the rifling tests facilitated hole location, angle, concentricity and surface finish.


TABLE 1. WORKPIECE BLANK (20MM) INSPECTION READINGS

n ya Manazarta

Ł

R. .

فريخا مساليهما

÷

			PARTS	S			
	-	٨	М	4	ŋ	و	¥
	5000	0400	.0015	.0010	.0008	.0005	0200.
		0400	20015	2100	2000.	.0025	. 0030
2 U		0 2 00	8100	.0005	. 0006	2200-	2200.
		8100	0020	.0002	9000.	1200.	2100.
	.0005	8200.	. 0005	1000.	.0005	0100.	2000.

Readings (in inches) taken 2 5 places on parts between centers to show lack of concentricity between 1.D. & 0.D. before ECM.

. •

Anocut Eng. Co. Part #11701204 Sect. "19-8" G.H.K.

The direction of electrolyte flow was particularly important for precision during test machining of the cartridge chambers. Generally, clean electrolyte was supplied to the finishing end of the electrode for final generation of the part size and finish.

Electrolyte pressures are measured at the point where the electrolyte enters the tooling or machining area. Measuring pressures at this location is expedient although it is not the area in which the electrolyte is cutting. Positive control of pressure is desired in the machining gap between the workpiece and the cathode or tool. Therefore, the pressure in the electrolyte inlet manifold should not be assumed to be equal to the pressure in the machining gap. Pressures in these two places are seidom the same and are not linearly related.

2.3 Tests

and the second secon

ŀ

2.3.1 20mm Rifling Tests

The 6 in. long blank used for this testing had a predrilled hole through its entire length. A V-block fixture was used to locate and clamp the part. Preliminary experimentation was conducted at electrolyte inlet pressures of 150 and 175 psi. The bulk of the testing was conducted at 210 psi. Machining conditions in each complete experiment were generally the same, except the cathode feed rates were increased from 0.050 to 0.210 in. per min. The performance of this operation was not satisfactory at the 0.210 in. per min. feed rate so the cathode feed rate was reduced to 0.180 in. per min.; this appeared to be optimum with a 210 psi electrolyte pressure. Machining conditions used during the testing are listed in Table 2.

2.3.2 7.62mm Rifling Tests

A V-block fixture was used to locate and clamp the part. Again, tests were conducted at electrolyte inlet pressures of 150, 175 and 200 psi. The tooling appeared to perform best at 175 psi, and all complete test runs were conducted at this pressure. The cathode feed rate was varied from 0.180 to 0.275 in, per min. The voltage was varied from 12 to 11 volts and the amperage was varied from 12.5 to 10.5 amps. Machining conditions used during the testing are presented in Table 3.

2.3.3 20mm Cartridge Chamber Tests

Experiments were conducted in machining a cartridge chamber cavity in each of five Cr-Mo-V steel gun barrel sections. Unexpected difficulty was encountered with the occurrence of striations (grooves and channels) in the surface of the cavities, and more difficulty arose with size tolerance than was expected. After these five workpieces had been machined, considerably more testing appeared to be necessary to reach conclusive results. Therefore, Anocut prepared additional coldrolled steel blanks for continuation of the testing, and Rock Island Arsenal prepared additional blanks of Cr-Mo-V steel. A total of sixteen

TABLE 2. 20MM RIFLING TESTS MACHINING CONDITIONS

4

2). 2).

and the second s

فيتعلقه والمتحديد

P

ADDITIONAL DATA	FEED INCREASED IN STEPS TO .300 IN/MIN AND PRESSURE INCREASED TO 200 PSI MHILE RUNNING		VOLTAGE INCREASED IN STEPS TO 15 VOLTS AND BACK TO 13 VOLTS WHILE RUNNING	FEED INCREASED TO ,240 IN/MIN WHILE . RUNNING		TIMES NOTED ARE FOR 6" LONG SECTIONS.
MACHINE TIME (MIN)	ų	,			29	33
PRES. FLOW TEMP. STARTING PSI DIR, °F. GAP(IN.)	.020	,020	.020	.020	.020	.020
ЧЦ ЧЦ	6	90	92	33	56	95
FLOW DIR.			- ROM -	CK02	a	
PRES. PSI	150	200	200	150	200	210
FEED VOLT AND IN/MIN	.050	.150	. 150	.150	.2:0	.180
đ	8	150	20	150	150	150
VOLT	12.5	<u>.</u>	<u>n</u>	<u>5</u>	<u>5</u>	
MACHINE	Vu-6388 12.5 100	Vu-6888	Vu-6888	Vu~6888 13	Vu-6888 13	Vu-6888
test NO.	-	2.	'n	4	5.	6.

5

.

TABLE 3. 7.62MM RIFLING TESTS MACHINING CONDITIONS

and see a warman and the second

ATAQ JANDITIOCA	AT 1" DEPTH FEED INCREASED TO .200 IN/MIN: AT 2" DEPTH FEED INCREASED TO .250 IN/MIN						
MACHINE TIME (MIN)	27	30	24	24	24	- 24	22
PRES. FLOW TEMP. STARTING PSI DIR. "F. GAP(IN.)	.020	•020	.020	.020	,020	.020	.020
TEMP.	<u> 65</u>	- 2 6	93	92	76	06	66
FLOW DIR.	an - an an an - an - an		MOT:	I-SSOA:)	****	
PRES. PSI	175	175	17 5	175	175	175	175
FEED	180	.200	.250	.250	.250	.250	, 275
QWD	2	12	12	12	12.5	12.5	10.5
VOLT AMP	2	12	12	12	12	12	2
TEST MACHINE NO. NO.	Vu-6888	Yu-6888	Vu-6888	Yu-6888	Yu-6888	Vu-6888	Vu-6888
TEST NO.	: .	2.	ň	[,] च	5.	6.	٦.

6

` (*

tests were made with the 1018 cold-rolled steel blanks. Tests were completed with the ten additional Cr-Mo-V steel blanks provided by Rock Island Arsenal to bring the total of cartridge chambering tests to thirty-one.

Various cathode feed rates and various electrolyte pressures were tried during the first series of tests on the Cr-Mo-V steel workpieces. Back pressure was used throughout these tests and was established by use of an electrolyte flow restrictor at the electrolyte exit from the tooling. Restrictors of 3/8 and 1/4 in. diameter bores were alternatively tried in the initial testing and the 3/8 in. restrictor was used in most of the succeeding tests. The cathodes used were altered for the difference in electrochemical machinability of the Cr-Mo-V and cold-rolled steel workpieces. Cross sections were examined to determine part tolerances. Machining conditions used during the testing are presented in Tables 4 and 5.

3. RESULTS AND DISCUSSION

3.1 20mm Rifling

Electrochemically machining the rifling in 20mm gun barrels is feasible. The 6 in. long samples produced were within tolerances for geometric sizes and had a very smooth surface finish.

Further effort is required to produce tooling and machinery for handling the full-length barrels and to develop a turning mechanism to provide the rifling spiral. The tooling for full-length barrels should embouy the principles developed in this test tooling. Also, machining parameters should coincide with those developed in this test work, e.g.,

> Electrolyte: 3.25 lbs. of NaNO₃ per U.S. gal. of water Electrolyte temperature: 95°F Machining voltage: 13 volts Machining current: 150 amps. Cathode feed rate: 0.180 in. per min. Electrolyte pressure: 210 psi

The inspection results of the test machining are given in Appendix B.

TABLE 4. 20MM CHUMBER TESTS MICHINING CONDITIONS (MATERIAL: MIL-S-46047)

Ļ

ATAL DATA		TAPERED PORTIONS OF CUT RAD RAD	STRIATIOUS		STRIATIONS - CHT UNDERSIZE	CATHODE DIA REDUCED BEPORE NEXT CUT		STRIATIONS - INSULATION OF CATHODE	DAMAGED DURING RELOCK - LEFT FLAT IN PART		DEEP STRIATIONS ON FORWARD PART	OF CUT	SAME STRIATIONS AS RUN 44 ONLY ONE ROCK ISLAND SANFILE	PART LEFT - DECIDED TO MAKE MURE STMITATED PARTS PROM	COLD ROLLED STEEL IN ORDER TO CONTINUE TESTING		BAD STRIATIONS814" DIM. IS .881"	MEED MORE ROCK ISLAND ARSENAL PARTS			SOME STRIATIONS834" DIM IS .882"			LESS STRIATIONS834" DIM. IS 870"	.834" DIA. IS .845" CATHODE TO BE	1.0524" DIA. IS 1.048"	1.158" DIA. IS 1.178 REMORKED	.834" DIA IS .822"	1.0524" DIA IS 1.048" REFEAUE INSULATION TO	1.058" DIA IS 1.172" INCREASE FLOW		SAME AS & 10 TI TO INCREASE FICK AND	DENII	NEVICE BACK FREQUENC	SLIFT 15 6 10				STRIATIONS634" DIA. IS .621"	CUT ONLY 1.875" DEEP TO SEE WHEN STRIATIONS	START. THEY WERE IN STRATCHE PORTION	OP CIT	SOME STRIATIONS		TO IMPPOVE FLOW	CUT ONLY 1.150" DEEP TO SEE WHEN	STRIATIONS START.	THERF MERE NONE			RAD STRIATIONS
	1.280	PROH	ED	1.280	PROM	END	1.280	FROM	ERD	1.290	FOH	END	1.230	FROM	6,3	1.280	FROM	EXD.	1.230	FROM	END	1.230	FROM	END	1.260	FROM	EYD	1.280	FROM	EXD	1.230	MORT		1 200	FROM	E FIL	1.280	FROM	END	1.280	FROM	E	1.155	FROM		1.280	FROM	613	2.430	FROM	END
196			06			8	2		0 6			ŝ			Ş			88			8			96			8			60	2		6	R		6	ł		60	ł		8	2		86			8			8
PLOU DIR.		_																					MC.	71.	1 5	:90	Æ) -				_																			
BACK PRES. PSI			1			ł			ł			1			1			3/8" Dia. Ne-	striction in	exit.	1			1			1			ı			ł			1			3/8" Dia. Re-	striction in	exit.	2			z			*		1	r
PRES. PSI			140			140			125			210			210			210			210			210			210			210			010			210			210			210			210			210			210
TLED TN/HIN	090.	3	000	<u>8</u>	5	430			.450			8			300			000.			 00 00 00 00 00 00 00 00 00 00 00 00			400			2005			.500			Ş			.500			.500			500			500			500		,	200
AC.	200	ţ	1700	200	ţ	3300	300	ţ	3500	200	20	2300	200	ţ	2200	200	5	2100	200	ţ	2200	200	3	2350	200	5	2800	200	ţ	2650	200	ţ	3700		3 2	2650	200	5	1400	1400	2	2650	200	2	700	700	to	2700			
TION			12			12	1		12			11			12	1		12			12			11			12			12			13	4		12			12.5			13	1		12			2			12
MACHINE RO.			Vu-67			Vu-67			Vu-67			Vu-67			Vu-67			Vu-6485			Vu-6485			Vu-6485			Vu-6485			Vu-6485			2242-17			Vu-6485			Vu-6485			Vii-6485			Vu-6485			Vu-6485			Yu-6485
ISI N	ĺ		.			2.			Э.			÷.						6.			7.						9.			10.			=	•		12.			11.			144.			148.			15A.			158.
															٠																																				

8

·• ·

TABLE 5. 2004 CHARGER TESTS MICHINING CONDITIONS (MITERIAL: 1018 COLD ROLLED STFFL)

2.0

7

٠

ADDITIONAL DATA		AND STATL STRIATIONS		TART CUMMIN UTTIN INCREASED BACT	PERCENT WIT 0 010" TH 0.019" THE 1ABO	PART 15 0.020" OVERSIZE						0.001" TO 0.006" OVERSIZE IN CATHODE RECUT		LARCE DIA OK - 1.052" BUT	0.834" DIA IS 0.026" UNDERSIZE		SAVE AS RUN # 5 - CATHODE TO	BE REPORKED		"AAA" OF "CPA, UNW AT ATG "AFG	CATHORE TO BE REMORED		DEST FART TEL, BUT .034 DEA LO Dist to old? Citring 144 to to	and to the case of the sector	KEDUCLD LN THUS AKEA	BURRS ON CATHODE LEFT LINES 534 DIN 15	STILL .838" TO .543" - THIS AREA REDUCED	.003	.634" DIM IS .847" TO .648"!		:	1.0524" DIH IS 1.051" AND .834"	"[[8. OT "[[8. S] MID			070' ST 'UTA +('0'		6.11" TTM TE BOTCH			1678 84 MAG 1768			8	.634" DIM. ZS .641"			.834" DIM. 15 .834" TO .037"	
STATTING GAP(IN.)	1.250		1.280"	1000		1.280"	FROM			107.1	FROH	Ē	1.280"	PROF		1.250"	FRAI	E:10	1 280"		EN.	1 2004				1.280"	FROM	1 10	1.280"	FROM	END.	1.280"	FROM		087.7	r KOM	1 280"				1.1200			-082 T	FROM	Ē	1.200"	L T	E
Ë		5	k		G	R		ş	R			2			32			8			Ş	2		1	R			8		•	8			81	R	2 S	3:	2 1	2		R	8	R	7	2	3			
PIR.	•			-	_																					MC		1 9	390	æ) -		_																-
NGT PUPS. PSI	•	•	1 /8" NTA		TU EVIT	1/4" nTA	The Provide Line of the Pr	NEALAST TOTAL	TA LAL		RESTRICTION	IN EXIT	3/8" DIA	RESTRICTION	IN EXIT	3/3" DIA	RESTRICTION	IN EXIT	ATA "8/ F	DECTOR/CTOR	TW FYTT	14 LALA	VIGR/C	NLDIKICI CON	IN EXIT	3/8" DIA	RESTRICTION	IN EXIT	3/8" DIA	RESTRICTION	IN EXIT	3/8" DIA	RESTRICTION	IN FXIT	3/8 DIA	RESTRICTION	1141 11			11 LALI	V10	NESTRICTION	TIXE NI	VIG8/C	RESTRICTION	TIX: NI	3/8" ntA	RESTRICTION	IN EXIT
nis.		10			010	777			200			200			210			210	ł		016	747			210			210			210			210			017			210			210			210		•	210
		ş	80.		ş	87.			DOF.			.325			000.			300				3			000			000.			000.			200			Br.			000			800			300			995.
8	200	3		3	0000		3	8	2300	200	20	3150	200	ţ	2800	200	2	2800		3	1000	2007	200	3	2800	20	3	2800	200	2	2800	200	. g	2800	200	នរុំ		3	2	0025	200	3	2750	20	5	2 700	22	ţ	2300
VOLT		;	7		;	7		2	7			77			12	}		13	1		-	1			ជ			1	•		ជ			2		;	7		;	7			12.5			2			
MACRENE NO.		:			;	10-04		;	Vu-67			¥u-67	I		Vu-67			The for			5	19-24			Vu-67			Vu-67	1		Tu-67			W-6485		-				Ve-6485			4-6485			Wa-6405	I		Vu-6485
					4			,	ri							5		ų	;												10.			Ħ		:	12.			: :			μ.			15.			16.

9

•.•

3.2 7.62mm Rifling

In this test machining, considerable difficulty was encountered in maintaining location. The predrilled holes in the gun barrel sections were not exactly concentric with the outside diameters of the sections. Also, the end faces of the sections were not exactly square (perpendicular) with the bore. This meant that the line of motion of the cathode, as the cathode moved through the workpiece, was not always parallel to the axes and surfaces of the predrilled holes in the rigidly clamped workpieces. This condition caused the cathodes to cut off center in some tests. in one test, this caused one cathode to break off in the upper manifold-guide. However, electrochemical machining or rifling in a 7.62mm barrel is feasible. The 6 in. long samples produced in these tests had very smooth surface finishes and the rifling forms were within tolerances.

Tooling and machinery for handling full-length barrels and a turning mechanism for the rifling spiral are required. The tooling for full-length barrels should embody the principles developed in this test tooling. Also, machining parameters should coincide with those developed in this test work, e.g.,

Electrolyte: 3.5 lbs. of NaNOz per U.S. gal. of water

Electrolyte temperature: 90°F

Machining voltage: 11 volts

Machining current: 10.5 amps.

Cathode feed rate: 0.275 in. per min.

Electrolyte pressure: 175 psi

The inspection results of this testing are given in Appendix C.

3.3 20mm Cartridge Chamber

Results of test machining the 20mm cartridge chamber were less promising than the results of the rifling tests. Problems were encountered in an attempt to concurrently achieve both size and finish tolerances. The striations occurring in the machined cavity surface, particularly in the test blanks of Cr-Mo-V steel (MIL-S-46047) material, were the most difficult problem. Although both size and finish tolerances were achieved in electrochemical machining of the cartridge chamber cavity in a coldrolled steel test blank, the combination of both size and surface-finish

tolerances was not achieved in the MIL-S-46047 blanks. The striations appeared to be related to the alloy. Although the exact causes are not known, striations are affected by electrolyte pressure, electrolyte composition, electrolyte flow in the machining gap (which is related to the surface finish on the electrode), and by the composition and heat treatment of a given alloy.

In summary, although size and surface tolerances were not obtained with MIL-S-46047 material, these tests indicated that cartridge chambers could probably be electrochemically machined with additional experimentation. Testing of various combinations of electrolytes, electrodes, and work material heat-treatments or preshaping would be required.

The inspection results of this testing are given in Appendix D.

4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

X

F

4.1.1 Rifling. Multiple groove, straight rifling of 7.62 and 20mm contours can be electrochemically machined in gun steel (MIL-S-46047); and no significant technical problem is foreseen in development of special equipment to electrochemically machine spiral rifling in such gun bores. Machining rates in the tests conducted indicate that ECM would be faster when compared to conventional broaching of rifling. However, for bores of smaller diameter, contemporary limits of ECM have to be considered. For example, in conventional direct shaping by continuous flow of a salt-base electrolyte and travel of the tool or workpiece, the minimum radius obtained at the intersections of machined surfaces is approximately 0.002 in. and the maximum ratio of length-to-bore diameter of a rifled barrel is approximately 70 to 1. Smaller radii and larger ratios are possible but special equipment, electrolytes and techniques would have to be developed.

4.1.2 Chambering. Although ECM tests were successful with the mild steel (1018), shape and surface-finish tolerances were not concurrently achieved in the low-alloy steel (Cr-Mo-V) by direct-plunge cutting with a center hole flow-through cathode of the 20mm cartridge contour. Test results did indicate that successful machining would be accomplished with further development work. However, as is the case for rifling, the minimum radius obtainable is approximately 0.002 in. and additional development would be required to approach the tolerances required in small-bore cartridge chambers.

4.2 Recommendations

Based on program test results and state-of-the-art, when compared to the efficiencies of other forming processes such as rotary forging and broaching, it is recommended that no immediate efforts be made to apply ECM in the production of small arms gun barrels. However, future developments in ECM should be monitored for application of small arms rifling and chambering, especially for gain twist rifled gun barrels. it is also recommended that ECM be considered as a preparatory process, prior to chamber reaming and/or rifling, to achieve stress-free surfaces for improved machinability and formability in close-tolerance shaping.

APPENDIX A

)

and the second se

· · ·

a strange of the standard and the

A CARDING AND A

1

Photographs

Figure		Page
ł	ECM Tooling, Rifling and Chamber	13
2	20 mm Rifling Tools	4
3	30 mm Rifling Tool Arrangement	15
4	Workpiece Holder for 20mm Rifling	16
5	7,62mm Rifling Tools	17
6	7.62mm Rifling Tool Arrangement	18
7	7.62mm Rifling Cathode Tip and Guides	19
8	Workpiece Holder for 7,62mm Rifling	_ 20
9	20mm Cartridge Chamber Tooling	21
10	20mm Cartridge Chamber Tool Arrangement	22
11	20mm Cartridge Chamber Cathode - Workpiece	23
12	20mm Cartridge Chamber Workpiece Holder	24

12

;

. .

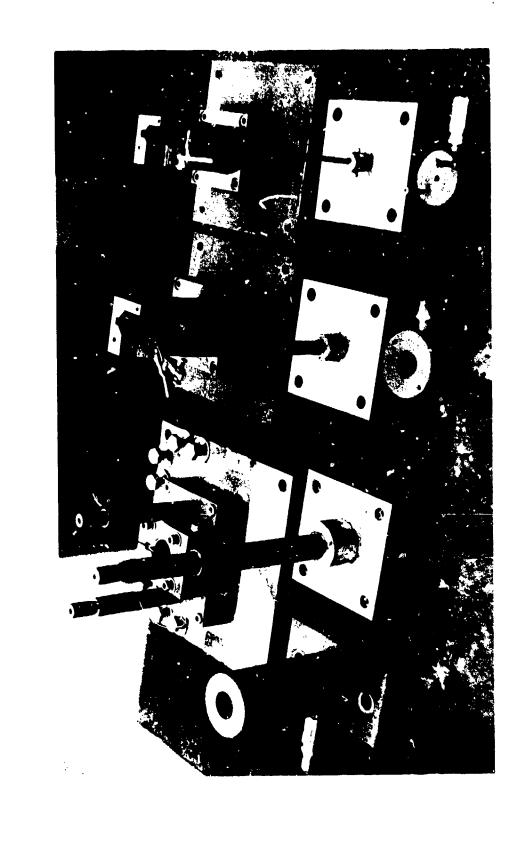
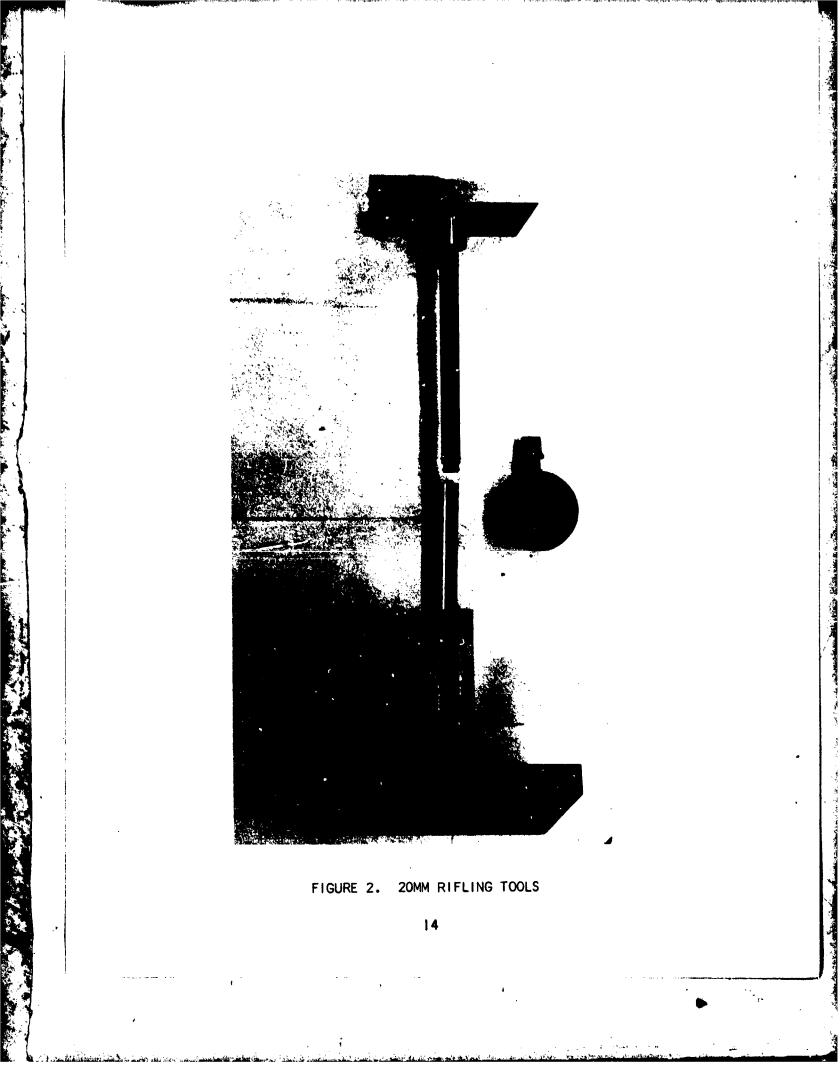
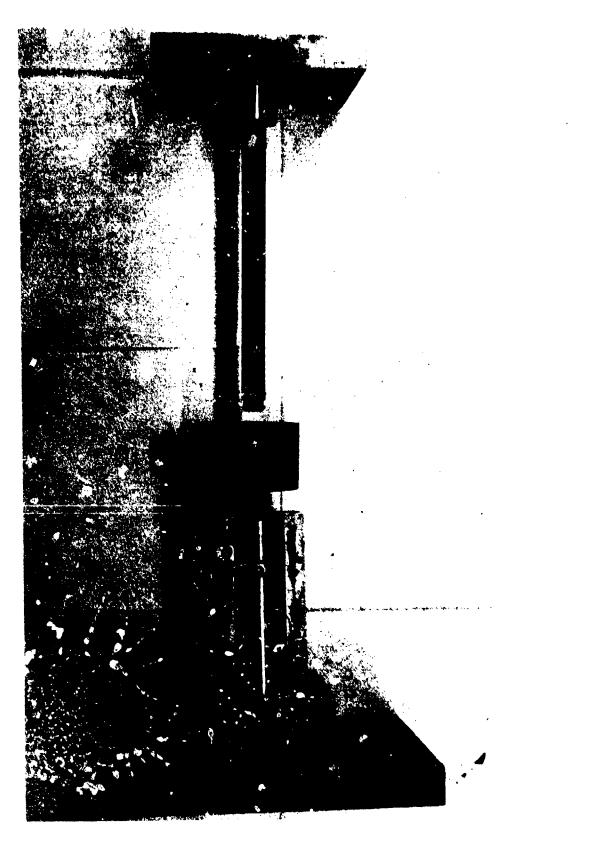
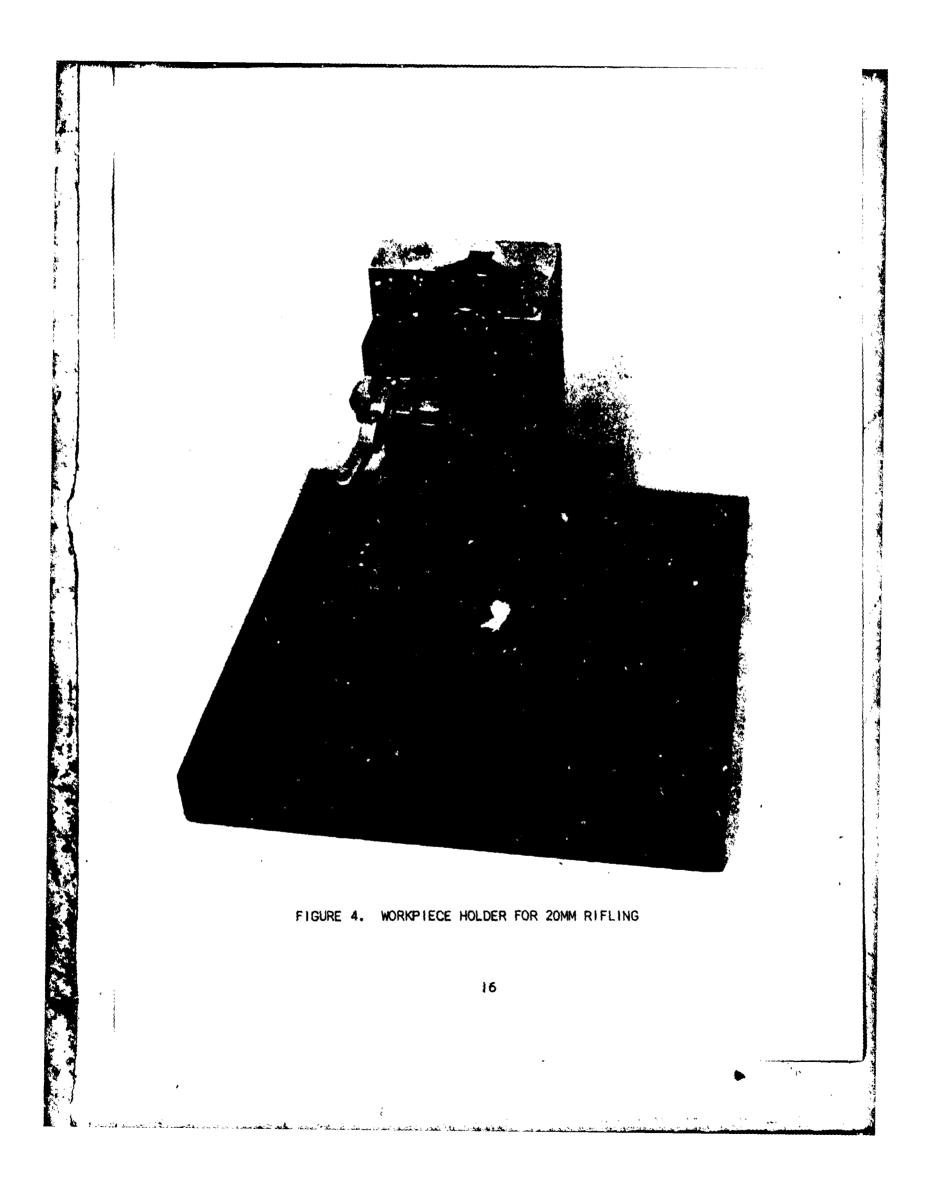
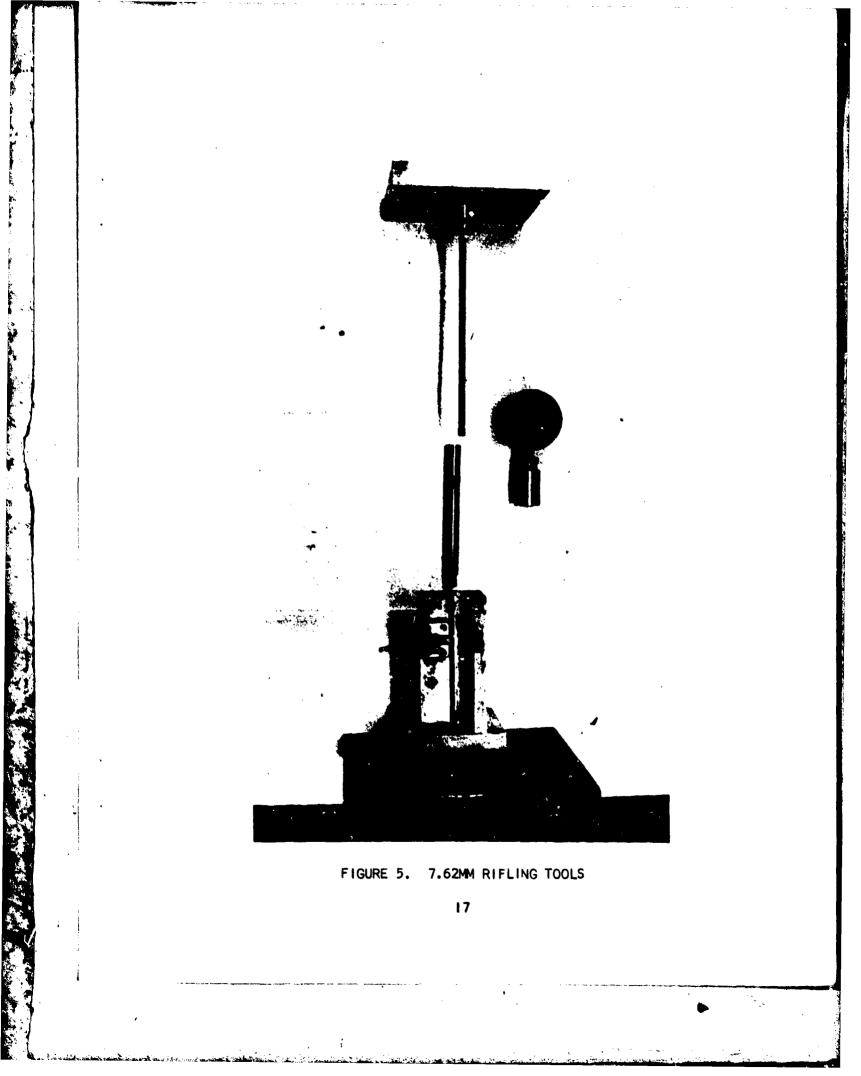
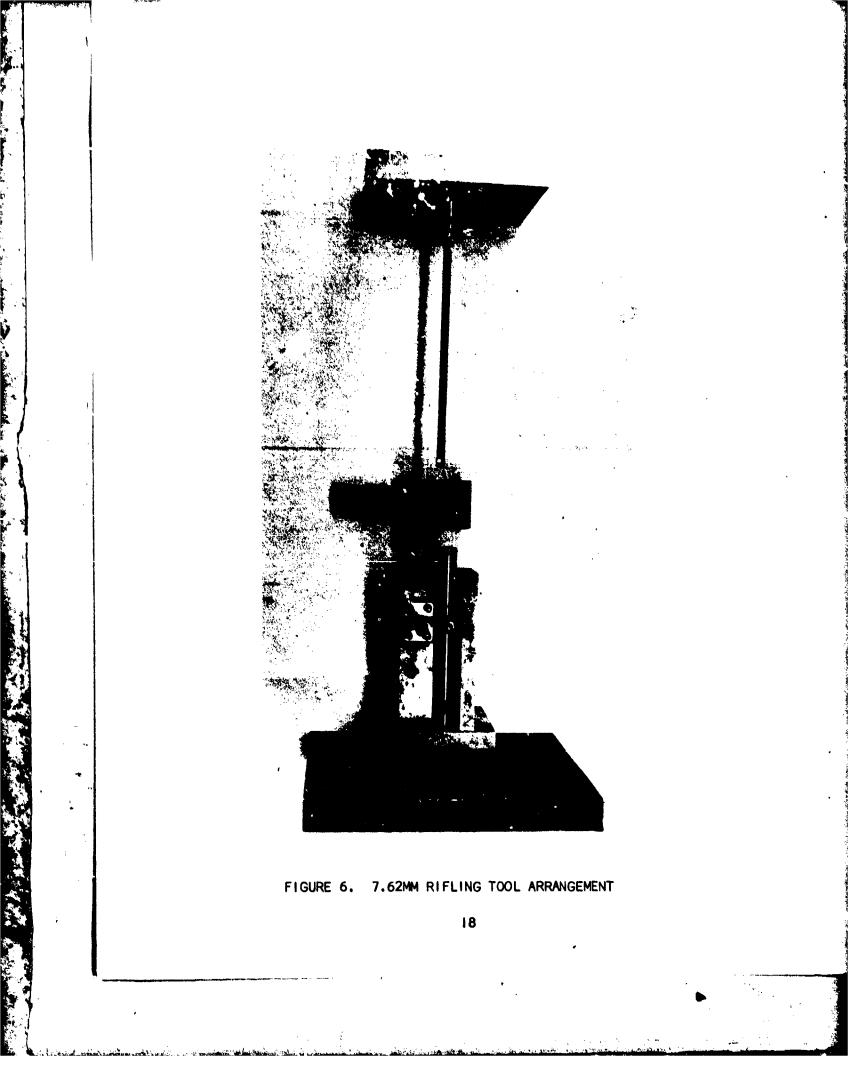
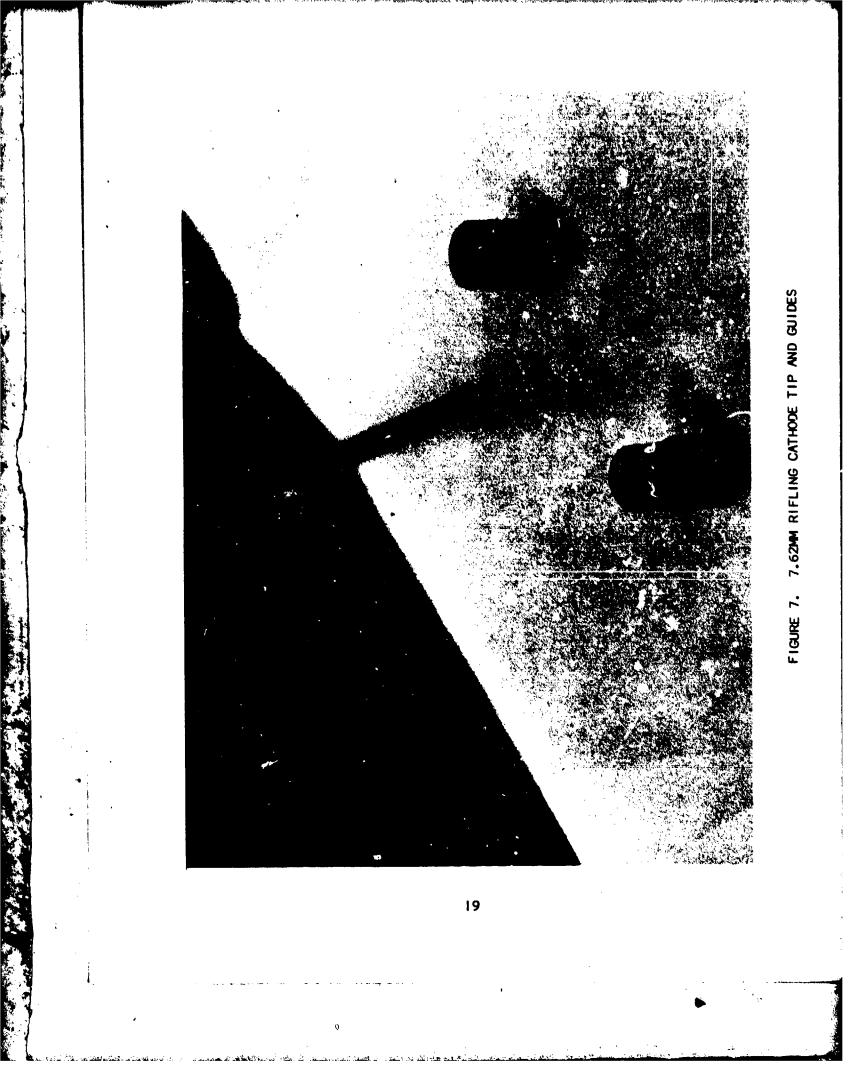
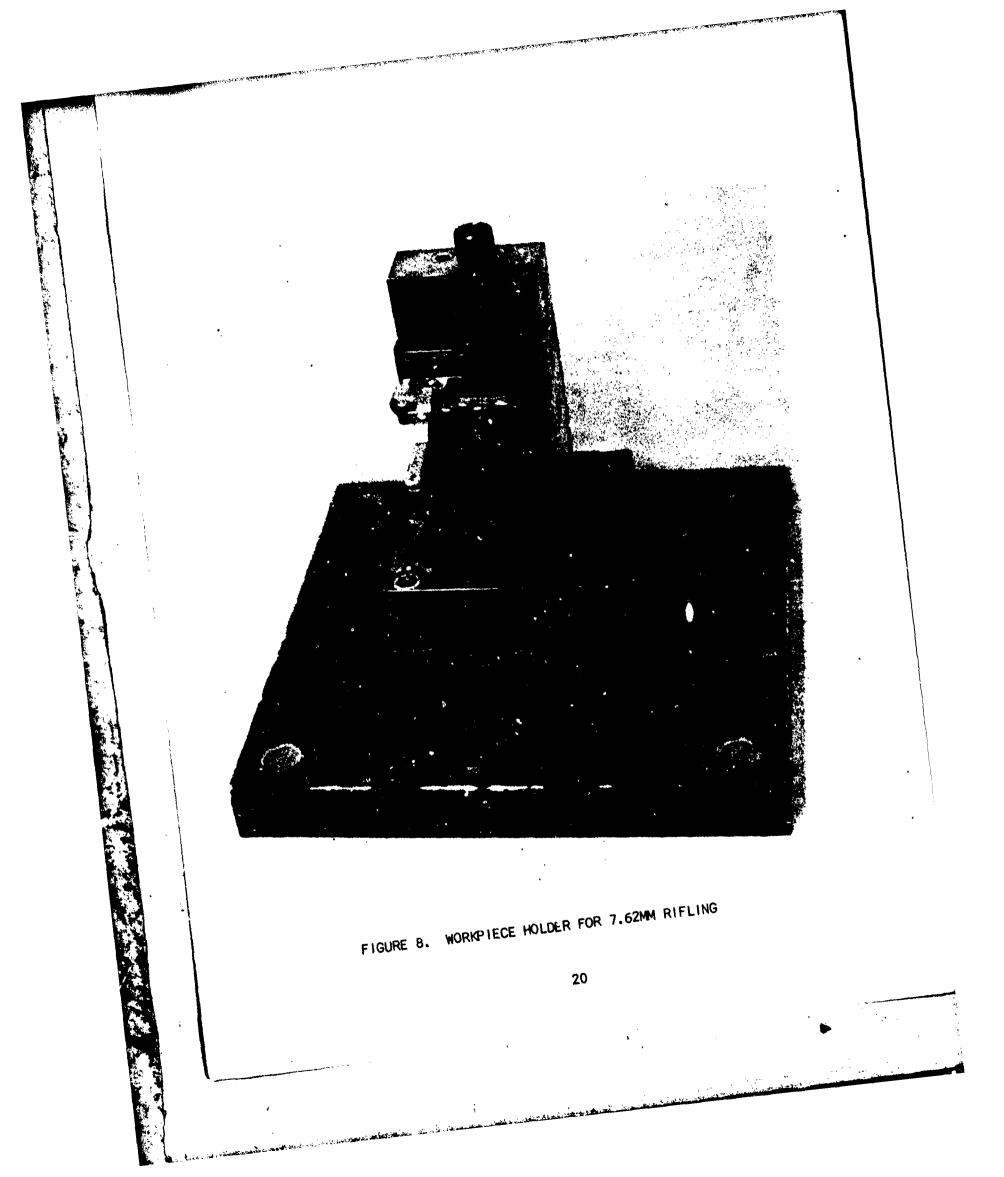



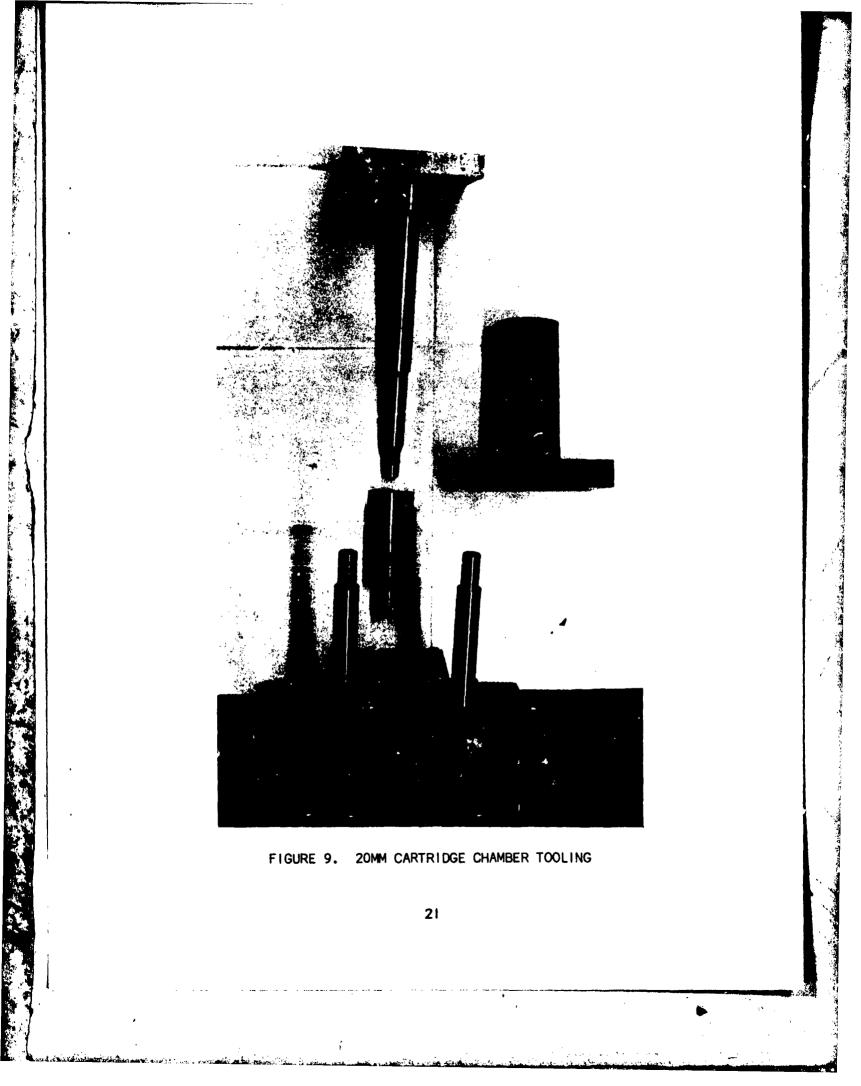
 FIGURE 1. ECM TOOLING, RIFLING AND CHAMBER

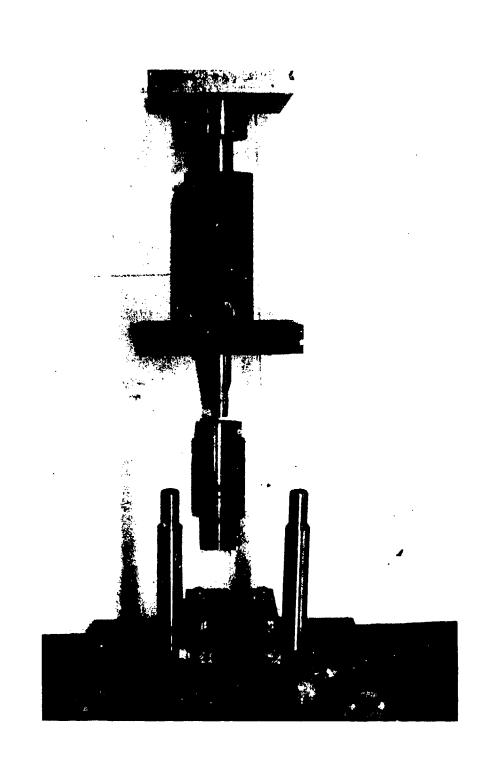
13

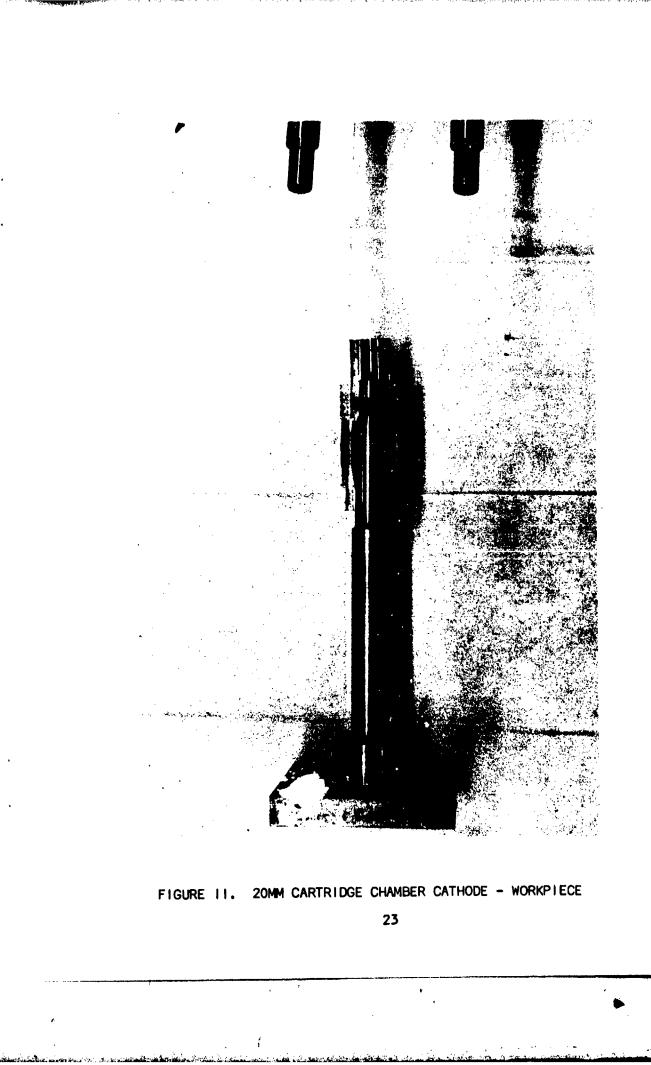
,

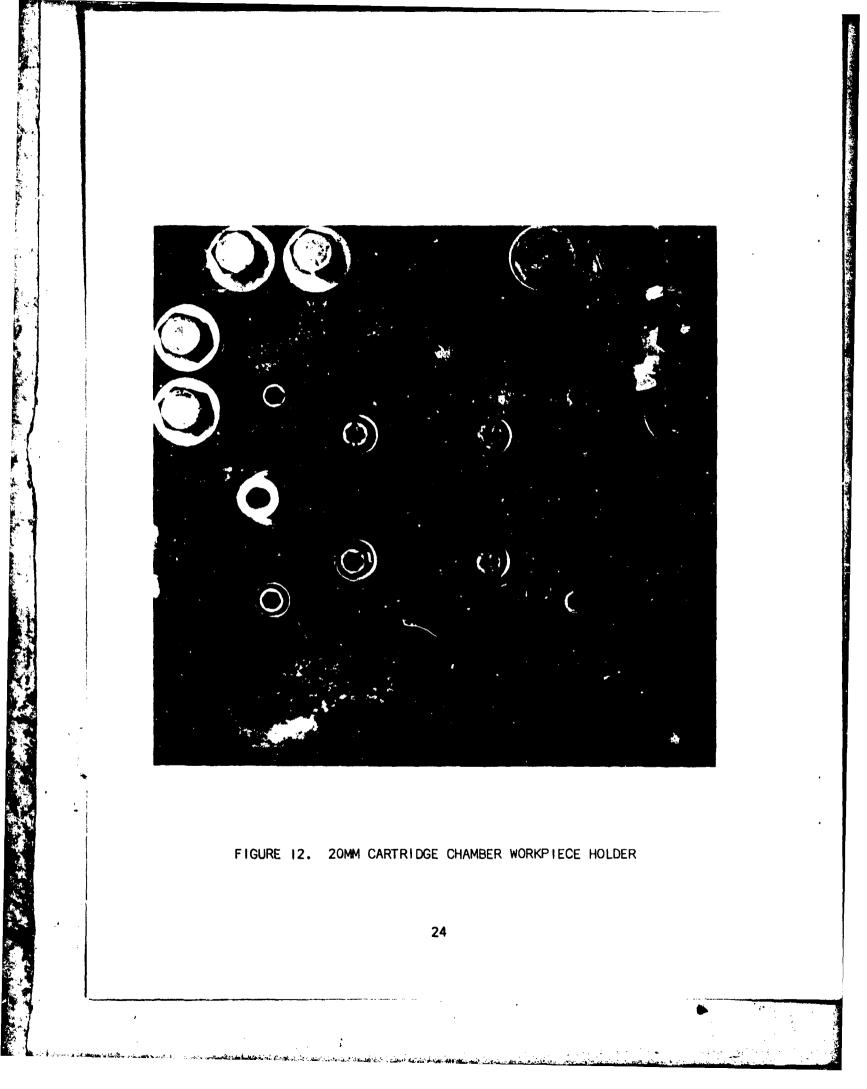







FIGURE 3. 20MM RIFLING TOOL ARRANGEMENT

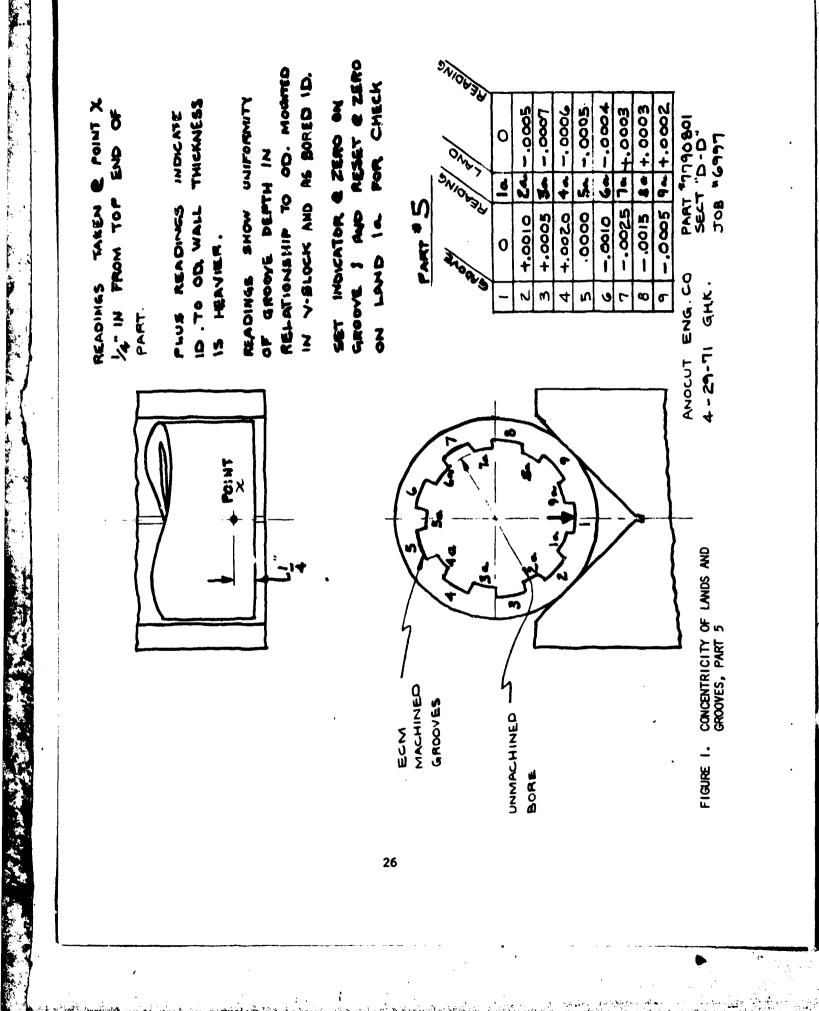








Ĩ,



APPENDIX B

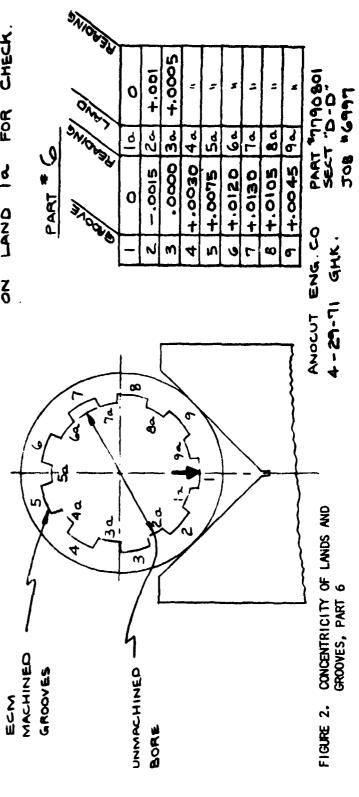

Inspection Results of 20mm Rifling Tests

Figure		Page
ł	Concentricity of Lands and Grooves, Part 5	26
2	Corcentricity of Lands and Grooves, Part 6	27
3	Cathode Inspection	28
4	Land and Groove Diameters, Part B	29
5	Land and Groove Diameters, Part C	30
6	Groove Depths, Part 5	31
7	Groove Depths, Part 6	32
8	Land and Groove Diameters Through Part 5	33
9	Land and Groove Diameters Through Part 6	34

and the same of the same state of the same state

10 m 1

Roint

E POINT X END OF FROM TOP READINGS TAKEN 14. IN PART.

i,

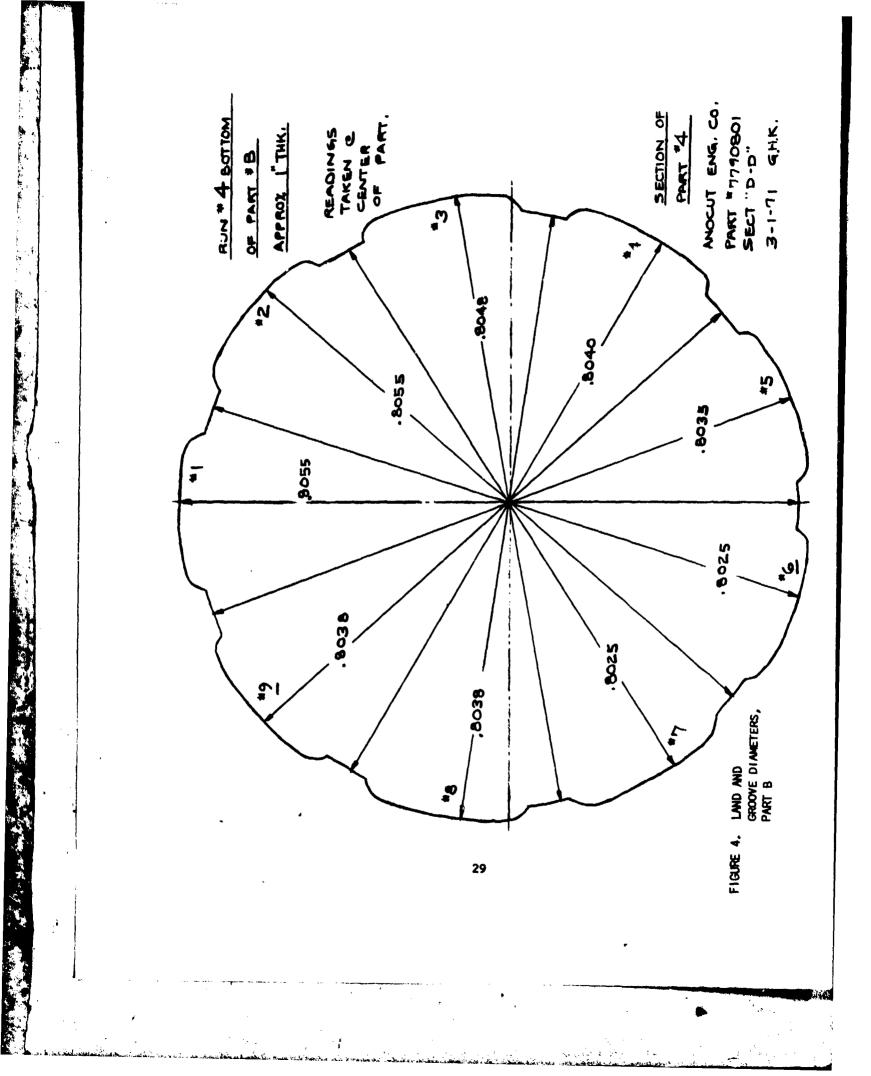
and the state of the second

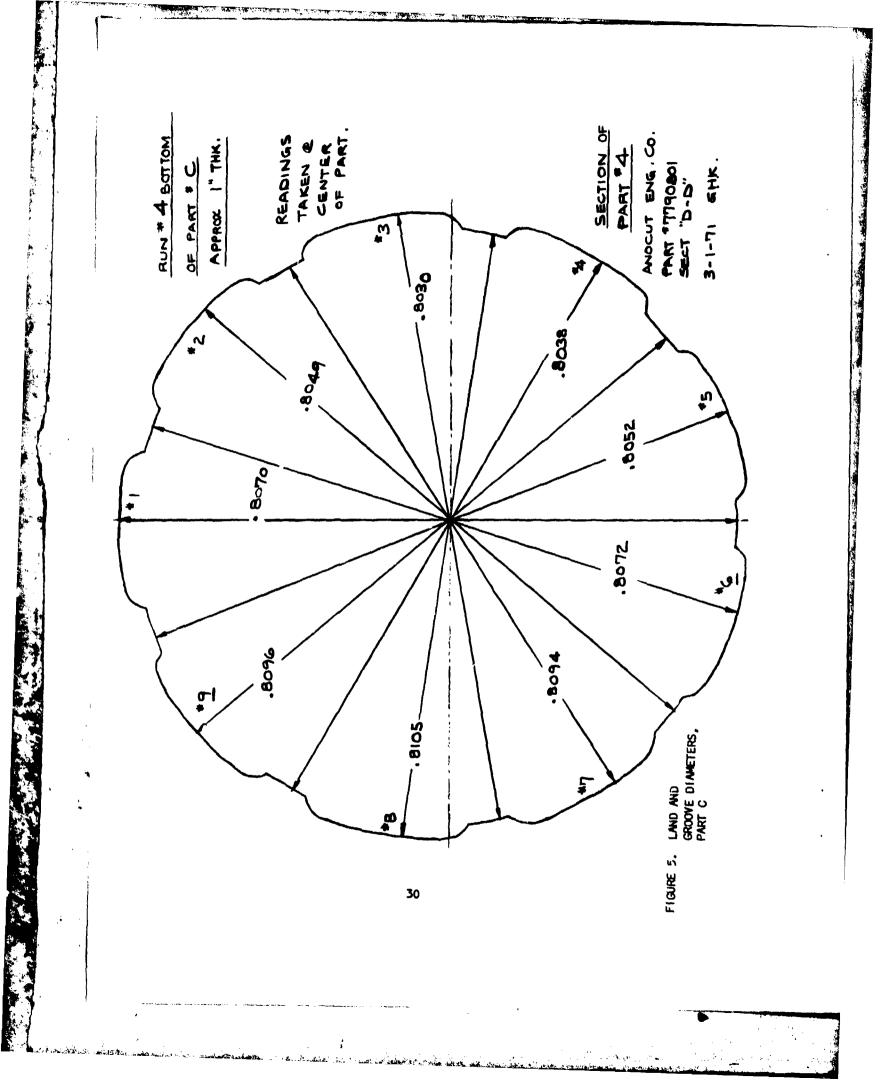
に収入

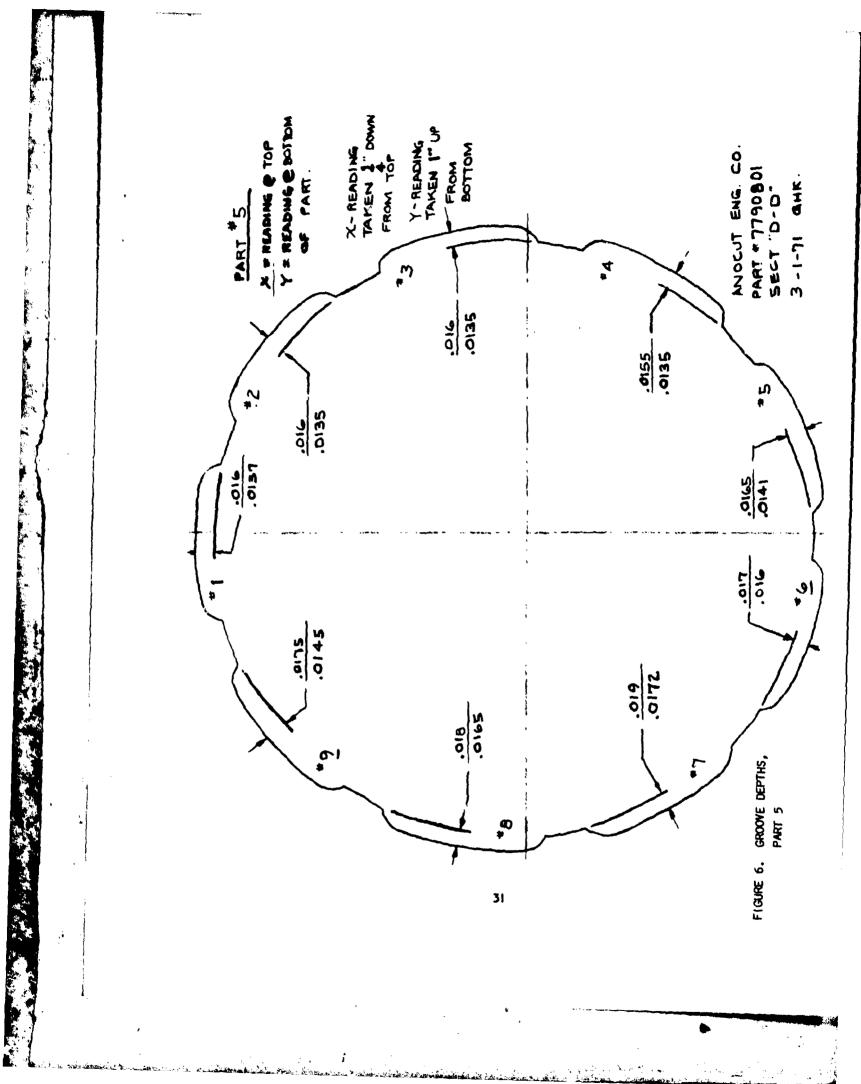
Atalia Arkaza

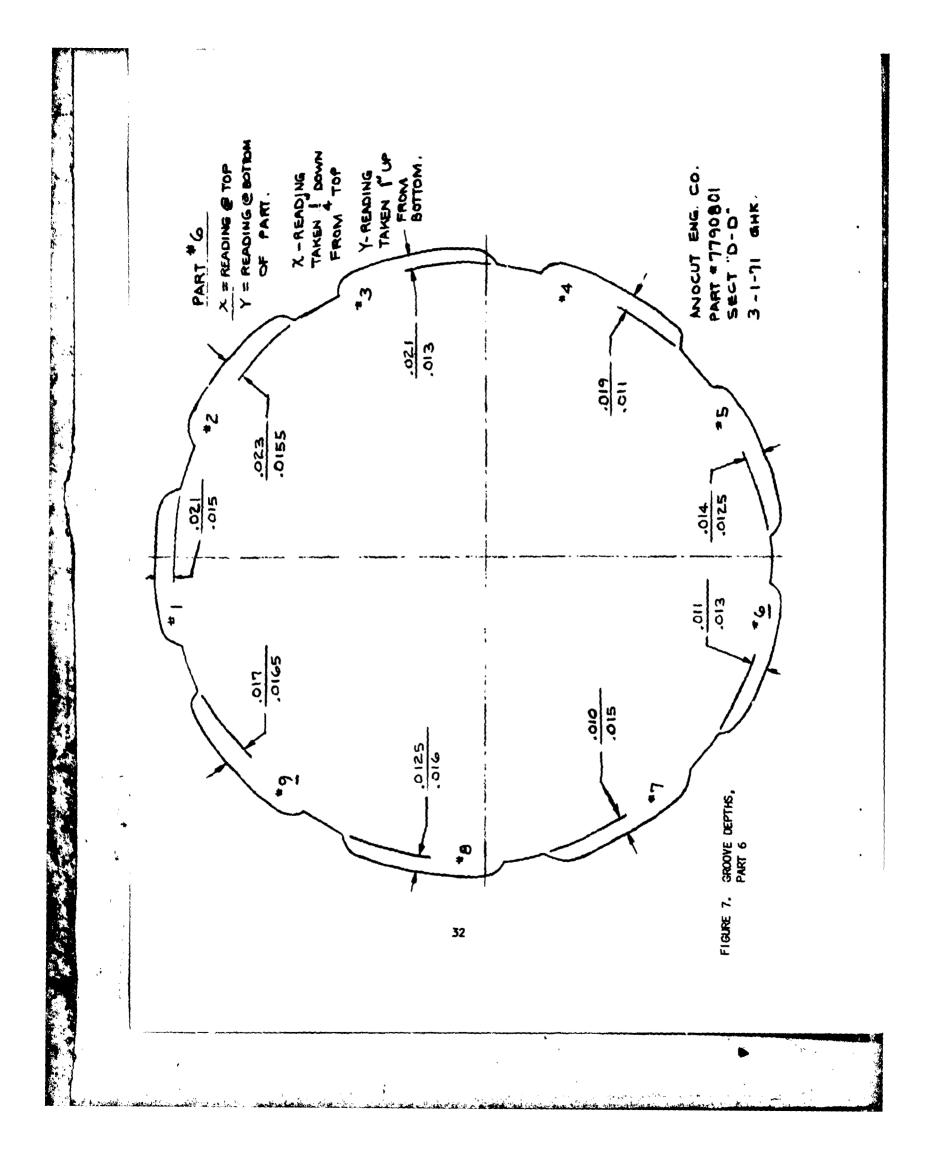
大学の一般の中国に見たいのであった

READINGS ID . TO OD WALL PLUS


INDICATE


THICKNESS HEAVIER . S


RELATIONSHIP TO OD. MOUNTED IN V-BLOCK AND AS BORED ID. READINGS SHOW UNIFORMITY GROOVE DEPTH IN L O


RESET & ZERO FOR CHECK SET INDICATOR & ZERO ON **DND** ON LAND 12 GROOVE |

A REDING OVER CATHODE THE RELATIONSHIP BETWEEN A 18 C CATHODE THE CATHODE THE C	1971 - 1960 - 1971 - 1961 - 1960 - 1961 - 1961 - 1961 - 1966 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980	2950 		7 8 9 7	.0365	0 V	PART * 7790801 SECT D-D Tor * 6997		1-1-71 R.H.K.
TAGO TAGO TAGO TAGO TAGO TAGO TAGO TAGO		5	CATHOOK	200	. 02430 . 05430			B/	
FIGURE 3. FIGURE 3.			N N N			CATHODE	VHODE BODY	ETWEEN A 4 B 0 LOCATIONS	PECT I ON
	•					READING	Į II	11	й.

							L	PART # 5	AMOCUT FNG CO.	PART * 7790801 SECT.D-D	JOB " 6777 ECM TOOLING LAYOUT
	Ľ	.8007	.7995	.8010	.8010	.8010	-108.	6008.	B006.	7997.	180° OffasitE
	ш	.8003	.8000	.8007	.8005	4108-	.8020	2108.	8008.	3000.	
	ION S D	.8004	3002.	3008.	. 3010	.8013	.8024	. 801B	. 2010	1008.	FROM GROOVE TO LAND
	POSITIONS	.8007	8664.	.8003	. 8005	. 8009	- 8021	PIC8.	. 8015	.8005	ON GROOM
	ß	.8006	7997.	3997.	9001	. 8002	8108.	.8020	2208.	. 8007	•
North Start	4	8015	1998	7997	7995	8010	. 8030	. 8050	3029	.8010	READINGS TAKEN
		Caner "									ALL REAL

AL PLAN

の見たる

1

,

L

W

۵

υ

đ

4

١, h H

ļ

ւներ

i

SHOW UNIFORMITY OF ECM GROOVES . or

FIGURE 8. LAND AND GROOVE DIAMETERS. THROUGH PART 5

33

ECM T00LIN

3-1-71 GHK.

1

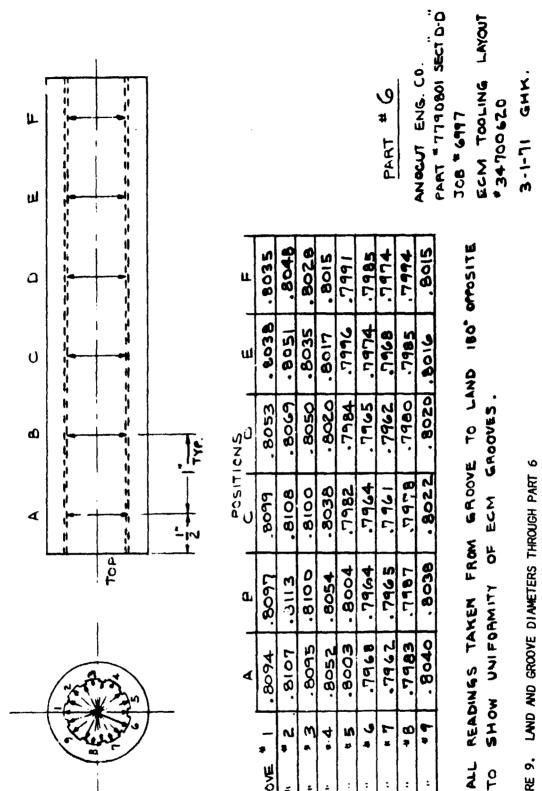


FIGURE 9.

į.

04

: :

: :

34

BROOVE

2 2 ÷

APPENDIX C

Inspection Results of 7.62mm Rifling Tests

Figure		Page
I	Groove Dlameters, Part 7	36
2	Land Diameters, Part 7	37

 $\tau_{\rm eff} = 100$

fur e e traste

The states of

Salar and the second states and

And the low of the second

しる時に見たる

Ĩ,

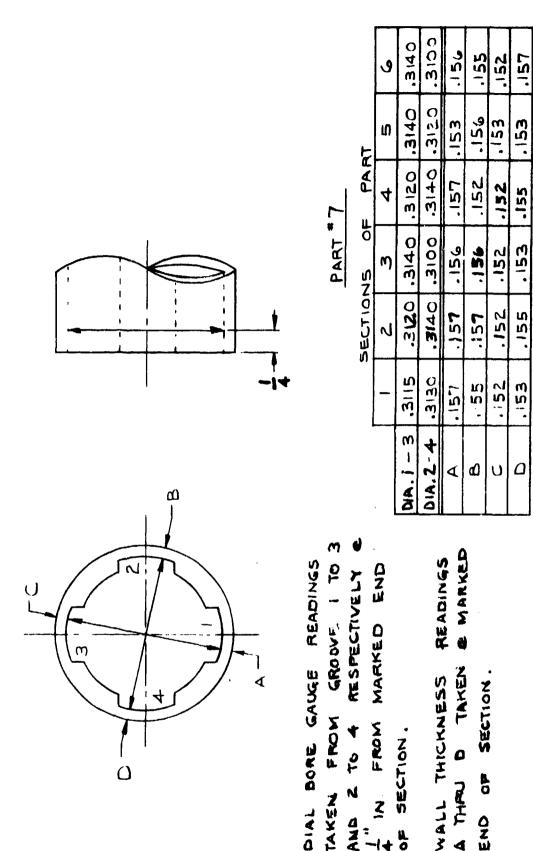


FIGURE I. GROOVE DIAMETERS, PART 7

PART * 1701204 SECTION "B-B"

> ENG. CO. . צוע ANOCUT 6-1-1-1

IL O

36

AND

;

	+ C	PART.			
	a	PLUS READINGS INDICATE 10, TO OD. WALL THICKN	EADINGS INDICATE OD. WALL THICKNESS	JESS	
POINT	-	IS HEAVIER .			
	u	READINGS SH	SHOW UNIFORMITY	11TY	
	U	OF GROOVE	_		
r		RELATIONSHIP TO		OD. MOUNTED	
	-	IN V-BLOCK AND	S A	BORED ID.	
	•	SET INDICATO	INDICATOR & ZERO	ON GROOVE	
	-	ROTATE PART		CLOCKWISE . AECORD	
ECM 13		READINGS & LANDS AND GROOVES	LANDS AND	GROOVES	
(j		PART * 7			
	Ñ	SECTIONS OF	PART		
	7	7	l/ol	9	
	a +.0045	+,0025 +,0040	+.2020 +.0050	+.0070	
	20020	00200060 +.0020	0060 +.0025	070070	
	+	10025 1.0040 1.0015	+.0015 +.0050	5900.+	
		00500030	00600020	0020	
MORE ALL	17	+.0040 +.0040 +.0025	1.0045 4.0045	10060	
		0200- 0200- 0200.	00300030	0020	
	+	+.0040 +.0055	10030	4.0060 4.0070	
	 -	0	0	0	
	ANOCUT	ENG. CO	PART *	PART * 11701204	
FIGURE 2. LAND DIAMETERS, PART 7		ż	SECTION B-B	. B-B.	

READINGS TAKEN & POINT X L"IN FROM MARKED END (

5

٩.

.

P

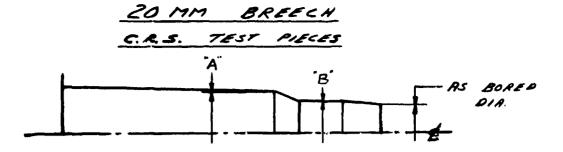
AND AND A

÷

- 0

「「「「「「」」」」

The following page is blank


37

,

APPENDIX D

Inspection Results of 20.mm Chambering Tests

Figure		Page
I	20mm Breech, Cold Rolled Steel	39
2	20mm Breech, Cr-Mo-V Steel (MIL-S-46047)	40

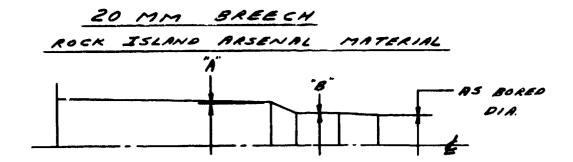
C.R.S. DEST		ENSION 0544 ONA.	"" DIMA .834 /.	SIGN 37 DIA.	FEED RATE	BACK PRESSURE HOLE
NUNGER	GATHODE	PART	CATHODE	PART	IN. / MIN.	DIA.
1	1.032	1.059	.804	.845	. 300	. 375
2	1.032	1.062	. 804	.847	. 300	. 375
3	1.032	1.070	.804	.850	.300	.250
4	1.032	1.058	.804	.835	. 325	. 375
5	1.022	1.052	.780	. 808	.300	.375
6	1.022	1.052	. 780	. 808	.300	. 375
7	1.022	1.052	. 808	.860	. 300	.375
8	1.022	1.053	.795	. 847	. 200	. 375
9	1.022	1.053	. 790	.840	. 300	. 375
10	1.022	1.053	.78.7	.848	. 300	.375
11	1.022	1.051	. 787	, 873	. 300	.375
12	1.022	1.052	.787	. 829	. 300	. 375
13	1.022	1.05 L	.787	. 827	, 300	.375
14	1.022	1.052	.787	.847	.300	,375
15	1.022	1.052	.787	. 841	.300	.375
16	1.022	1.053	.787	. 837	. 300	.375

FIGURE 1. 20MM BREECH, COLD ROLLED STEEL

ļ,

SALAN IN

الأسعاد المتحدث المرا


39

GRS 3-10-72

21.

الرياقة والمركبين

1.5

[R. I. A. TEST	"A" DIMA 1.0524 /1.	ENSION 0544 DIA.	"B" DIM .834 /.8	ENSION 37 DIA.	FEED RATE	BACK PRESSURE
	PIECE NUMBER	CATHOOL	PART	CATNODE	PART	IN. / MIN.	HOLE DIA.
	7	1.026	1.055	. 787	. 882	. 300	-
	8	1.022	1.055	. 787	. 870	.400	_
	9	1.022	1.048	. 787	.845	.500	-
	10	1.022	1.048	. 782	. 8 2 2	.500	
	11	1.022	1.048	. 782	.817	.500	
	12	1.022	1.048	.782	.816	.500	
	13	1.022	1.048	.782	.821	. 500	.375
()	14	1.022		. 782	. 817	.500	
	14-A	1.0ZZ	1.042	. 785	. 828	.500	. 375
(2)	15	1.022		.782	. 829	. 500	_
	15-A	1.022	1.048	.797	.837	.500	
	16	1.022	1.048	.785	.825	.500	. 375
(3)	20	1.022	1.047	.790	.837	. 450	

(1) PARTIAL DEPTH CUT (1.875 DENTH) (1.150 DEPTN) (2) PARTIAL DEPTH CUT

(3) BEST OVERALL

RUN

FIGURE 2. 20MM BREECH, Cr-Mo-V STEEL (MIL-S-46047)

40

GKS 3-10-72

to but had a

Copies Department of Defense Defense Documentation Center ATTN: TIPDR **Cameron** Station 12 Alexandria, VA 22314 Department of the Army Commander U. S. Army Materiel Development and Readiness Command ATTN: DRCRD-E DRCRP-1 DRCQA-E 5001 Eisenhower Avenue Alexandria, VA 22333 Commander U. S. Army Materiel Development and Readiness Command Scientific and Technical Information Team - Europe ATTN: DRXST-STL Dr. Richard B. Griffin APO New York 09710 Commander U. S. Army Armament Command ATTN: DRSAR-PPI-K DRSAR-PPI-WW DRSAR-RDP DRSAR-SC DRSAR-QAE Rock Island, IL 61201 Director U. S. Army Materials and Mechanics Research Center ATTN: DRXMR-M Watertown, MA 02172 Director U. S. Army Maintenance Management Center ATTN: DRXMD-A ington, KY 40507

Β.

Coples

Commander U. S. Army Electronics Command ATTN: DRSEL-PP/I/IM Fort Monmouth, NJ 07703

Commander U. S. Army Missile Command ATTN: DRSMI-IIE DRSMI-PRT Redstone Arsenal, AL 35809

Commander U. S. Army Tank-Automotive Command ATTN: DRSTA-RK DRSTA-RCM.1 Warren, MI 48090

Commander U. S. Army Aviation Systems Command ATTN: DRSAV-ERE P. O. Box 209 St. Louis, MO 63166

Commander U. S. Army Troop Support Command ATTN: DRSTS-PLC 4300 Goodfelle: Blvd. St. Louis, M0 63120

Ì

and the second second

. ** Commander Ballistic Missile Defense Systems ATTN: BNDSC-TS P. O. Box 1500 Huntsville, AL 35804

Project Manager Munition Production Base Mod Picatinny Arsenal Dover, NJ 07801

Commander Harry Diamond Laboratories ATTN: DRXDO-RCD 2800 Powder Mill Road Adelphi, MD 20783

Commander U. S. Army Natick Research and Development Command ATTN: DRXNL~EQ Kansas Street Natick, MA 01762

Commander U. S. Army Air Mobility R&D Labs ATTN: SAVDL-ST Fort Eustis, VA 23604

Commander Rock Island Arsenal ATTN: SARRI-PE SARRI-RS Mr. V. Long Rock Island, IL 61201

Commander Watervliet Arsenal ATTN: SARWV-PPP-WP SARWV-PPI-LAJ SARWV-QA Watervliet, NY 12189

Commander Picatinny Arsenal ATTN: SARPA-MT-C SARPA-QA-T-T SARPA-C-C Dover, NJ 07801

Commander Frankford Arsenal ATTN: SARFA-T1000 SARFA-QA SARFA-N5400 Bridge & Tacony Streets Philadelphia, PA 19137

Commander Edgewood Arsenal ATTN: SAREA-QA Aberdeen Proving Ground, MD 21010 Copies

۱

١

1

2

ł

Service March

Copies

2

1

1

1

1

1

1

1

Director U. S. Army Production Equipment Agency ATTN: DRXPE-MT Rock island Arsenal Rock Island, IL 61201

Director USDARCOM Intern Training Center ATTN: DRXMC-ITC-PPE Red River Army Depot Texarkana, TX 75501

Commander U. S. Army Tropic Test Center ATTN: STETC-MO-A (Technical Library) APO New York 09827

Commander Anniston Army Depot ATTN: DRXAN-DM Anniston, AL 36201

Commander Corpus Christi Army Depot ATTN: DRXAD-EFT Corpus Christi, TX 78419

Commander Fort Wingate Depot Activity ATTN: DRXFW-M Gallup, NM 87301

Commander Letterkenny Army Depot ATTN: DRXLE-M DRXLE-MM Chambersburg, PA 17201

Commander Lexington-Blue Grass Army Depot ATTN: DRXLX-SE-1 Lexington, KY 40507

Copies

1

1

1

1

1

Commander New Cumberland Army Depot ATTN: DRXNC-SM New Cumberland, PA 17070

Commander Pueblo Army Depot ATTN: DRXPU-ME DRXPU-SE Pueblo, CO 81001

Commander Red River Army Depot ATTN: DRXRR-MM Texarkana, TX 75501

Commander Sacramento Army Depot ATTN: DRXSA-MME-LB Sacramento, CA 95813

Commander Seneca Army Depot ATTN: DRXSE-SE Romulus, NY 14541

Commander Sharpe Army Depot ATTN: DRXSH-SO DRXSH-M Lathrop, CA 95330

Commander Sierra Army Depot ATTN: DRXSI-DQ Herlong, CA 96113

Commander Tobyhanna Army Depot ATTN: DRXTO-ME-B Tobyhanna, PA 18466

Commander Tooele Army Depot ATTN: DRXTE-SEN DRXTE-EMD Tooele, UT 84074

Section Section 1

Commander Badger Army Ammunition Plant Baraboo, Wi 53913

Commander Holston Army Ammunition Plant Kingsport, TN 37660

Commander Indiana Army Ammunition Plant Charleston, IN 47111

Commander Iowa Army Ammunition Plant Burlington, IA 52602

Commander Joliet Army Ammunition Plant Joliet, IL 60434

Commander Lone Star Army Ammunition Plant Texarkana, TX 75501

Commander Louisiana Army Ammunition Plant P. O. Box 30058 Shreveport, LA 71161

Commander Milan Army Ammunition Plant Milan, TN 38358

Commander Newport Army Ammunition Plant Newport, IN 47966 ____

Copies

1

1

1

1

1

1

1

1

1

Copies

the second

ľ

Anna State Back

A CALLER

Contraction of the second

	Commander	
	Radford Army Ammunition Plant	
	Radford, VI 24141	1
	Commander	
	Ravenna Army Ammunition Plant	
	Ravenna, OH 44266	1
	Commander	
	Riverbank Army Ammunition Plant	
	Riverbank, CA 95367	· 1
	Commander	
	Scranton Army Ammunition Plant	
	Scranton, PA 18501	1
	Commander	
	Sunflower Army Ammunition Plant	
	Lawrence, KS 66044	1
	Commander	
	Twin Cities Army Ammunition Plant	
	New Brighton, MN 55112	1
	Commander	
	Volunteer Army Ammunition Plant	
	ATTN: SARVO-T	
	P. O. Box 6008	
	Chattanooga, TN 37401	1
C.	Department of the Navy	
	Officer in Charge	
	U. S. Navy Materiel Industrial Resources Office	
	ATTN: Code 227	-
	Philadelphia, PA 19112	T
_		
D.	Department of the Air Force	
	Commander	
	Air Force Materials Laboratory	•
	ATTN: LTE	. !
	LTM LTN	1
	Dayton, OH 45433	1

	DISTRIE	UTION LIST UPDATE
	FOR Y	OUR CONVENIENCE
	distribution lists for technic	quire the maintenance of up-to-date al reports. This form is provided te necessary changes or corrections.
	If a change in our mailin the appropriate boxes below. address exackly as it appeared lines, tape or staple the lowe	g lists should be made, please check For changes or corrections, show old on the mailing lab. Fold on dotted r edge together, and mail.
	Restore Humo Poten La.st.	Change or Correct Address
	Old Addigates	Corrected or Her Address:
	• . •	COMMENTS
1		· · · · · · · · · · · · · · · · · · ·
	Date:Si	gnature:
· · · · · · · · · · · · · · · · · · ·	Techniczi Report #	
	SARR: Form 900-643 (One-Time) (F	eb 75)
l		eb /5)

UNCLASS IFIED AD UNCLASS IFIED AD Nachining Electrochemical ELECTR Machining Electrochemical ELECTR Gun Barrels Rifling Electro Cartridge Chambers Manued and carted and carted from DDC DISTR BUTION Chambers (Contri- from DDC DISTR BUTION CONT. Rifling UNCLASS IFIED AD UNCLASS IFIED AD UNCLASS IFIED AD INCLASS IFIED AD UNCLASS IFIED AD INCLASS IFIED AD UNCLASS IFIED AD INCLASS IFIED AD INCLASA IFIED AD INCLASS I	ing Co. UNCLASSIFIED ue ge, IL 1. Machining 60007 2. Electrocheaical Anocut 3. Gun Barreis reeal. 4. Rifling tables 5. Cartridge Chambers	fling s deter- re con- straight- bistraight- bistel Copies available from DDC	Ing Co. UNCLASSIFIED Be IL 1. Machining be IL 1. Machining be 60007 2. Electrochemical Mocut 3. Gun Barrels Anocut 3. Gun Barrels renal. 4. Rifling tables 5. Cartridge Chambers 0)	fiing s deter- re con- re con- pras Distribution steel Copies available from DOC
	Acces Rock [s] and Arsenal Thomas J. Rodman Laboratory Island, Illino[s 6[20] RROCHENICAL MACHINING OF CAN IRG CONTOURS FOR SWALL ARMS. HEG CONTOURS FOR SWALL ARMS. HER CONTOURS FOR SWALL ARMS. Teact DAAF01-70-C-1076, AMS Of Ssified Report.	feasibilty o carrridge ch carrridge ch ied Electroc ied ucting sin ge cutting ed successfu -S-46047) gu	Rock Island Arsenal Fromas J. Rodman Laborat Island, Illinois 61201 ROCHEMICAL MACHINIG 05 ROCHEMICAL MACHINING 05 RECTING Co. and R. Kirs ite CRNJOURS FOR SMALL Recing Co. and R. Kirs rect DAF01-70-C-1076, Issified Report.	feasibility o cartridge ch d. Electroci ge cuting sin- ge cutting. -5-46047) gu
MD Accession Mo. GDR, Rock Island Arsenal Accession Mo. GDR, Rock Island Arsenal Accession Mo. GEK Thomas J. Indome Laboratory 2375. Estes Arente 60007 GEK Thomas J. Indome Laboratory 2375. Estes Arente 60007 ELECTROKENICAL MACHINING OF CARTRIDGE CHAMBER AND Electrobariant and	UNCLASSIFIED 1. Machining 2. Electrochemical 3. Gun Barrels 4. Rifling 5. Cartridge Chambers		UNCLASSIFIED 1. Machining 2. Electrochemical 3. Gun Barrels 4. Rifling 5. Cartridge Chambers	Distriburion Copies available frum DDC

í

1-

- 34

.

Cartridge chambers were machined in 20mm sections of AISI 1018 cold rolled steel and Cr-Mo-V steel. Although ECM tests were successful with the mild steel (1018), shape and surface-finish tolerances were not concurrently achieved in the low alloy steel (Cr-Mo-V). Test results did indicate that ECM of cartridge chambers in the low alloy steel would be possible with additional experimentation.

Based on program test results and state-of-the-art, when compared to the efficiencies of other forming processes such as rotary forging and broaching, it is recommended that no immediate efforts be made to apply ECM in the production of small arms gun barrels. However, future developments in ECM should be monitored for application of small arms rifling and chambering, especially for gain twist rifled gun barrels.

Cartridge chembers were mechined in 20mm sections of AISI 1018 cold rolled steel and Cr-Mo-V steel. Although ECM tests were succassful with the wild steel (1018), shape and surface-finish tolerances were not concurrently achieved in the low alloy steel (Cr-Mo-V). Test results did indicate that ECM of cartridge chembers in the low alloy steel would be possible with additional experimentation.

Ļ

2.5

í. Fr

Besed on program test results and state-of-the-art, when compared to the efficienies of other forming processes svalues rotary forging and broaching, it is recommended that no immediate efforts be made to apply ECM in the production of small arms gun barrels. However, future developments in ECM should be monitored for application of small arms rifiing and chambering, especially for gain twist rified gun barrels.

> Cartridge chembers were machined in 20mm sections of AISI 1018 cold rolled stee) and Cr-No-V s.cel. fithough ECM tests were succassful with the mild stee] (1018), shape and surface-finish tolerances were not concurrently achieved in the 1ow alloy steel (Cr-No-V). Test results did indicate that ECM of cartridge chembers in the low alloy steel would be possible with additional experimentation.

> > •

ł

date for the first

Based on program test results and state-of-the-art, when compared to the efficiencies of other forming processes such as rotary forging and broaching, it is recommended that no immediate efforts be made to apply ECM in the production of small arms gun barreis. However, future developments in ECM should be monitored for application of small arms rifiing and chambering, especially for gain twist rified gun barreis.

Cartridge chambers were machined in 20mm sections of AISI 1018 cold rolled steel and Cr-Mo-V steel. Although ECM tests were successful with the mild steel (1018), shape and surface-finish tolerances were not concurrently achieved in the low alloy steel (Cr-Mo-V). Test results did indicate that ECM of cartridge chambers in the low alloy steel would be possible with additional experimentation. Based on program test results and state-of-the-art, when compared to the efficiencies of other forming processes such as rotary forging and broaching, it is recommended that no immediate efforts be made to apply ECM in the production of small arms gun barrels. However, future developments in ECM should be monitored for application of small arms rifiling and chambering, especially for gain twist rified gun barrels.