o~ ; P Tkaiidd P ISE—— % " st s
Lo it I T R s . - o BB 2 3 S S e S 3

. &
Fe AIUCR &t R S, T S SO S — . A A A VS P s ot i TNt 359I &

e

' May, 1976 Report ESL-R-661

i ARPA Contract N00014-75-C-1183
i) -~ ‘
.~
<
DIFFUSION MODELS FOR
COMPUTER-COMMUNICATIONS NETWORK |
:
Jos¢ H. Barbera }
DDC ]
|
D NOV © W78
C K D
DISTRIBUTION STATEMENT A
Approved far public release;
Distribution Unlimited
Electronic Systems Laboratory Decisions and Comtrol Sciemces Group
L_!lASSACHUSE'ITS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139
Department of Electrical Engineering and Computer Science
i R i _-.c‘_m'u}u:LLmJLmh.’mmm&’ T




May, 1976

_ ACCESSION for
s White Saction

208 Wif Sectis [
EAYNOUNCER a
JRTIFICATION. ...

| O

BISTRISUTION/AVAILABILITY GOMES

st AVAIL and/er SPECIAL

4

DIFFUSION MODELS FOR
COMPUTER~COMMUNICATIONS NETWORKS

by

José H. Barbera

Report ESL-R-661

This report is based on the unaltered thesis of José H. Barberi,
submitted in partial fulfillment of the requirements for the degree
of Master of Science at the Massachusetts Institute of Technology

in June, 1976.

The research was conducted at the Decision and

Control Sciences Group of the M.I.T. Electronic Systems Laboratory
with partial support provided by the Advanced Research Project Agency
of the Department of Defense under Contract N00014~75-C-1183.

Electronic Systems Laboratory

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

DISTRIBUTION STATEMENT A |

Appr?ved far public release;
Distribution Unlimited

T NN a3 SR

NOV 9@ 1976

Mt~ W
et Lk




SECURITY CLASSIFICATION OF THIS PAGE (When Date .Enlarcd)

REPORT DOCUMENTATION PAGE

! .

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3

»

. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle)

\C; ) o -

/

S..FYPE OF REPORT & PERIOD COVERED
. A R it e

v i S

ﬁ Ky )

A ? RESEARCH
¢ -

Diffusion Models for Computer~Communication /
Ne tworks . =

R TR ———

S
#

7. AUTHOR(s) .

&

. PEREQRMING OG. REPORT NUMBER
7 —

N

ESL-R-661

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Massachusetts Institute of Technology

ngectronic Systems Lal oratory
i . 02139

10. PROGHAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Program Code No. 5T10
ONR Identifying No. 049-383

CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency

1400 Wilson Boulevard
Arlington, Virginia 22209

1.

12, -REPORT DATE
May #976
 NUMBER O S

128

T3, MONITORING AGENCY NAME & ADORESS(if different from Controiling Office)

Office of Naval Research
Information System Program

15. SECURITY CLASS. (of this report)

UNCLASSIFIED

@2 1% lp. /
Code 437 e £~
Arlington, Virginia 22217

15a. DECL AS?_lEFICATION/DOWNGRADING

SCHEDU

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dilferent from

Report)

. SUPPLEMENTARY NOTES

. KEY WORDS (Continue on raverse side if nacessary and identily by block number)

Computer-Communication Networks
Diffusion Model

Message Routing

Load Sharing

20 ABSTRAACT (Continue on reverse sils If necessary and identify by block numhber)

sages is continuous.

network is established and expressions for the diffus

The diffusion theory is used to model a computer-comrunication network in
which mescages flow from one computer center to another. The idea is to approximate
the various queueing processes that occur in the system (of discrete nature
themselves)as continuous-state processes. The messages waiting at the queues to be
transmitted are considered of small duration so that in the limit the flow of mes-

With these ideas a general model for routing of messages in a computer

ion parameters (drift and\\

EDITION OF ' HOV A5 15 2E50L.ET .

'«3‘1“\,{

A ) S A B £ D OB B N Wi

RO P ——
SR —

- S s




ovariance per unit time) are derived in terms of the network traffic. The
mean length of the queues can thus be calculated and procedures to minimize
the system overall queue size may be applied.

Examples for simple networks are shown. One of them corresponds to
a load-sharing computer system and it is indicated how the general diffusion
methods derived earlier for message routing, can be used.

Finally, a comparison is made between the expressions obtained by dif-
fusion techniques and those corresponding to the classical exponential M/M/1

queue. |

T




o e W AR

o I A S0 ST SRS 5.

R T e
bl SN g A

DIFFUSION MODELS FOR

COMPUTER-COMMUNICATIONS NETWORKS

by

José Heredia Barbera

Ingeniero de Telecomunicacidn
E.T.S.I.T., Universidad Politécnica de Madrid
(1971)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
. REQUIREMENTS FOR THE DEGREZ OF
MASTER OF SCIENCE

at the

&SSACHUSETTS INSTITUTE OF TECHNCLOGY

June, 1976
4 7 -
AT e A e e
719 /,{_/"’:’/'/(‘. o A o P R

Sigﬂ‘ture of Author -o-ca:xjfffiglkhmvric.n.aon..-coo-onoo|uoo-¢on-ooaooncco
Department of Electrical Engineering and Computer Science, May 7 1976

‘asn

Certified by 0000000000800 0000000 00000000 OITS

CRCRCRU R BB BB BB B B BB BN B

Thesis Supervisor

S8

Accepted by 0000480080080 000000000000 0000000stesVNetitisridetecsseceerscnnrise

Chairman, Departmental Committee on Graduate Students




Wy, »
N ..

DIFFUSION MODELS FOR
COMPUTER-COMMUNICATIONS NETWORKS

by

José Heredia Barbera

- Submitted to the Department of Electrical Engineering and Computer
By Science on May 7, 1976 in partial fulfillment of the requirements
K] ° for the Degree of Master of Science,

ABSTRACT &

The diffusion theory is used to model a computer-communication
network in which messages flow from ore computer center to another. |
The idea is to approximate the various queueing processes that occur .
in the system (of discrete nature themselves) as continuous-state E
processes, The messages waiting at the queues to be transmitted are L
considered of small duration so that in the limit the flow of messages >
is continuous, 3

With these ideas a general model for routing of messages in a
computer network is established and expressions for the diffusion
parameters (drift and covariance per unit time) are derived in terms
of the network traffic. The mean length of the queues can thus be
N calculated and procedures to minimize the system overall queue size
{ may be applied.

Examples for simple networks are shown, One of them corresponds
to a load-sharing computer system and it is indicated how the general
diffusion methods derived earlier for message routing, can be used,
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1.= INTRODUCTION

1,1, General considerations

ML e T i N et B St

A computer-communication system consists of several computers
interconnected by communication channels, It is usually referred as a |
network in which the nodes represent the computers and the links represent
the interconnecting channels, Messages are originated at some ncde and

have to reach some other destination node according to some routing

s sl ad,

strategy which will try to use the network in an efficient way.

The computer network considered here is assumed to operate in the
’ "store and forward" mode: a message generated at a computer center will
be directed into the appropiate outgoing channel according to the routing

policy and will be transmitted over this channel if it is free for

transmission, If the channel is busy, the message will be stored at the

R B i

node in some buffer joining other possible waiting messages, When the

channel becomes free one of the wating messages is transmitted through

o T T TR
AL S et : :

the channel according to some queueing priority basis, This will be

assumed "firstecome, first-served" (FCFS) as it is usually referred in

§ queueing literature, [7. 12, 22]

1f The queue of messages at each node constitutes a queueing process

of discrete nature nj(t) such that ny(t) = Aj(t) = Dy(t) where A3(t) and
Di(t) represent respectively the arrival and departure processes at node
i, namely the number of arrivals and departures at the queue i up to the

time ¢,




In order to provide mathematical tractability a model for the network
of queues has to be established,

The type of queue depends on the statistics of the interarrival and
service times, The.sinplost type of queues is the M/M/1 queue (*), This
means that the interarrival and service times are independent and obey an
exponential distribution or equivalently that the arrival and service
rates follow a Poisson distribution. Because of the Poisson property
(see [1?] for example) the expressions of the system dynamics are easy
to obtain and the steady-state distribution of the queue length Pp is quite
straightforward [7] 3

Po=(l-pP)P" 1+ n=0,1,2, ... (1-la)
p= X/P. - 1 (1-1b)
where A and)4 are respectively the arrival and service constant rates
expressed in messages/unit time,
The condition A< ).L is necessary to assure that the steady-state
is reached and the process does not blow up,

The expression (l-1) allows to calculate the average queue length

(*) 1In queue literature it is usual to denominate a queue by the
symbols A/B/X/Y/Z where A indicates the interarrival-time distribution
B the service-time distribution, X the number of parallel servers
Y the restriction on the queue length capacity and Z the queue
discipline. Often the last two symbols are omitted and it is
understood that Y =00, that is no restrictions on the maximun
queue length and Z = FCFS ("first come first served").
The symbols used for A and 3 are: D for deterministic, M for
exponential, E, for erlagian type k, G for general and GI for general
independent, (Reference [7] )
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n = 2; n pp. From the same expression, the waiting time distribution
(including also the time spent in the service, i.e. transmission through
the channel) can be obtained and from this the average waiting time can
be drawn. An alternate way is using Little's formula [15] which states
that the average number of customers in a queueing system is equal to the
average arrivsl rate of customers to that system, times the average time
spent in the system:

n= g[r] (1-2)
so that E[ T] can be calculated yielding

(] - m=x (1-3)

In the computer network E[ T] is the average delay a message suffers
going from one node to another and includes the average waiting time at
the entering node plus the average transmission time in the channel,

When a network of queues is considered, the messages arriving at a
new node along their path lose the independence property mentioned above
because of the strong dependency between interarrival times and lengths of
ad jacents messages, For example if a message at node i has a length of s)
seconds and arrives at node j at time t;, it is clear that during the
interval (t;, t;, + sl) no messages can arrive at j from i since they are
transmitted in a sequential order, and therefore the independence assumption
is no longer valid, This makes the analysis very complicated from a
mathematical point of view, Kleinrock [11] overcomes this difficulty by
introducing the "“independence assumprpticn" which specifies that each time

the messages enter a new node they are assigned new independent lengths
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(exponentially distributed).

With this assumption an expression for the average delay over the -
entire network can be found in terms of the average delay in each link,
The desired routing strategy is that which minimizes the average delay

and procedures to obtain the optimal strategy have been derived for

example in [1] .

1.2.~ Existing Models for Networks of Queues

One of the earliest models was established by Jackson 8 , He o
considered an arbitrary network of N nodes each of them consisting of
ry servers with constant exponential mean service time }41. Messages
arrive at each node i from outside the network according to an homogeneous
Poisson process of rate Ai‘ Each message upon being served, is directed
to some other node j according to some px-o':mbilit:y9:‘..j or leaves the
system with probability 1 - g. 6 ij° The transition probabilities eij
are assumed corresponding to a lst order Markov chain., The total arrival

k. rate at each node 1 f; consists of the sum of the arrival rate from

| outside the network (Poisson) and the arrival rates from other nodes

E; within the network:
N

[
Jackson showed that when r;'< Ty M4 for all i as far as the steady | 4
1
state is concerned, the network behaves as if all nodes were independent |

i Poisson processes M/M/r; with rate [, Therefore the steady~state joint

T TRITINE YT
-~
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distribution can be expressed as the product of the corresponding marginal
distributions, and expressions for the queue lengths and average delays
can be easily found,

In a subsequent work [9] Jackson considered a more general network
in which the arrival process still being Poisson, is allowed to have a
rate dependent on the total number of customers in the network. Each node
has r; servers and the service time is exponentially distributed with mean
dependent on the number of customers at that node, Still the joint
distribution factors into the product of the marginal cnes and each node
can be treated independently.

A modification of the Jackson's model was considered by Gordon and
Newsell [6] « They consider a closed system of queues which handles a
finite and fixed number-of customers, This model can be made equivalent
to that of Jackson by assuming Xi = 0 for all i and j§1 eij =1,

More general models that allow a service time discipline not
necesarily exponential, have been considered and explicit solutions have
been obtained, [20] -

In all cases the main difficulty comes from the fact that there is
a very large system of equations due to the enormous number of states,

In order to overcome these difficulties and break away from the
sometimes too simplistic models that assume exponential service time,
different approaches to network analysis have been made. Thus for example
Kingman [10] has shown in his treatement of heavy traffiec theory that
properties of nearly saturated queues are rather insensitive to the

specific form of arrival or service distribution,




The heavy traffic appraximation is based upon the central limit
theorem, This leads to the idea of appraximating a discrete-state processes
by continuous-state ones which have been called diffusion processes and
will be explained in a subsequent section,

The idea of approximating a discrete-state process by a diffusion
one is not new, (See for example Feller [ 3] ). Nonetheless is rather
recent, Thus for example, Newell [16] gives an extensive treatement
of queues with time dependent arrival rate by using the diffusion
sppraximation. Gaver [b] applies diffusion approximation techniques to
the waiting time in a M/G/1 queue, He shows that the waiting time is
exponential in the diffusion approximation provided the system was
initially empty. An asymptotic approximation is supplied for the mean
waiting time near saturation and comparisons are made with the exact
solutions provided by the classical methods (see [7] for example), The
results show to be rather accurate for those conditions,

Gaver and Shedler [ 5] have applied the diffusion approximation
to evaluate the CPU utilization of a multiprogrammed system represented
by a cyclic queueing model, Solutions appear to be easier than the classical
ones and yet the accuracy Seems quite adequate for the case studied,

Kobayashi [13, lb] has analyzed a system of queues by diffusion
methods. His model is based on the Markovian model of Jackson (open networks)
and Gordon and Newell (closed networks) which we mentioned earlier, In the
first paper [13] and based upon central limit theorem arguments he finds
the steady-state distribution of a single queue, and a system of queues

(open and closed) assuming independent identically distributed interarrival

Sl i SR it s L L oy




and service times with general distributions, In the second paper [1&]

»
F

- and using diffusion methods too, the transient behavior of those systems
is analyzed, The analysis provides an estimation of the transient period
which shows to be shorter as the system is less congested., A comparison
‘of results with those exactly known by classical methods is given in [19]

and they show *o be rather accurate for utilization factors near 1.

e i i Al

1,3.- Objetives of this thesis

As it was pointed out in the preceeding section when the number of |
states of a Markov model becomes very large, although finite, the search
of solutions appears quite cumbersome., The procedure of approximating the
discrete~state process by a diffusion process can be therefore useful
because mathematical methods associated with a continuous space are very
often more easily treated than those in a discrete-state space, In a
computer-communication network this is the case when the number of computer ;

centers is relatively large,

‘3 : The purpose of this thesis is to consider a general type of computer
network and by using diffusion methods find a model for analysis of the

{
| ¥

Al § behavior of the network., Then a strategy for routing messages throughout
{

the system in an efficient way is to be found, In order to make an optimal

.
.
o S YT

use of the network, messages shall reach their destination as soon as possible

and thus the performance criteria for routing will be to minimize the overall

%? average delay on the entire network.
¥

i{-l ; The ideas for the model set up (Section 4,1) resemble some those
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established by Segall [23] and have been taken from this reference, The
mentioned paper deals with dynamic routing in computer networks and avoids
the "independence assumption" that was mentioned earlier although the model
of [23] assumes a deterministic scheme with known traffic inputs whereas
here the model is stochastic in the sense that the inputs are only known

in terms of their statistics.
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2.- THE DIFFUSION PROCESS

2.,1.~ The random walk process [2]

It is introduced here the concept of random walk as a discrete-state
discrete-time Markov process for the diffusion process can be drawn from
it in the limit, Consider the time divided in intervals of duration

At : 0, At, 2At, ... nAt ... and the state divided in intervals of

length §: 0, 6,26 , ... k6 ... . At time t = O the state is x, = kg 8.

At time t = At the state can jump one step @ upwards with probability p,
one step downwards with probability q or remain the same with probability
1l - p -~ q. No other transitions are allowed, In each interval of time
later the same jumps with the same probabilities can happen and are
independent of the previous jumps., This is graphically shown in Fig,2.l
;and can be considered as the motion of a particle in a one-dimensional
space, If the particle continues to move indefinitely the random-walk

is said to be unrestricted. Noretheless it is frequently necessary to
have the motion restricted in some way, usually by the presence of
"barriers", For example a random walk starting at the origin can be
restricted to move between an upper barrier a > 0 and a lower barrier
at b < 0, Several types of barriers are encountered., One of these is an
"absorbing barrier": when it is reached the particle stays there and the
motion ceases, Another type is a "reflecting barrier" defined as a state

that when crossed in a given direction, say downwards, holds the particle

et i . e L e




10
Xa
state
ke_. s @ © =
1 20
eJ-
B s DRBE Tt
_ tumg
. Fig. 2.1 A random walk ¢

until a positive jump occurs and brings the particle out of the barrier

resuming the motion,

PR SO a
5/
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We shall examine here the properties of a random walk with reflecting

S TR

barriers, It is of interest to determine the steady-state or equilibrium

et SO 43

distribution of the state as t goes to infinity,
'3, Clearly the dynamics of the random walk exposed above are governed
by the following equation:
Peg(n Bt + Bt) =g (n At) 1= p-a)+p; q)g(n At) p s
+ P(k-1)8 (n At) q (2 - 1)

where

Pk (n At) =) Prob, of being at state k@ at time nAt given that the
initial state was ko0 :

E
L3
£
,




2.2.- The diffusion process as a limit of a random walk

Consider the random walk of section 2,1, Assume that 6 and At go
to zero so that n At — t and k@ - x(t). The resultant process x(t)
becomes a continuous-sate continuous-time. Markov process., It is shown

in Fig. 2.2

x(t)
. state

t

time
Fig 2.2: Diffusion process as a limit of a random walk

Equation (2-1) can be rearranged as:

Pke (n At » At) . Pkg (n At)' E_%_‘L { [P(kﬂ.)e (nAt) - Pke (n At)] -

{ [ Pks1)g (RAY) -

&« D

- [pke (n At) - p(k-l)e (n At)] + iz—_——
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- Pgln At)] + [Pke (nAt) - P(k-1)g (nAt)] } (2-2)
When At becomes very small, so that nAt—t, k@ —= x(t) and ky0 —= x,

the state probability: peg (n At) —= p(xst/xg).
Let At = K62 (K being a constant) and divide both sides of (2-2)

by At. Then
plxst + At/xp) - p(xst/x0)
At 33
p+a 1 -p(x+9:t/xo) - p(xit/xg) p(xit/xg) - p(x=Qst/xg)]
e 1 9 “ 5 1

p-q 1 -p(x+9 it/xg) = p(xit/xg) p(x;t/xg) - p(x-egt/xo).‘
: +
2K 6 6 e

- o

Taking limits when At—=0, 6 =0

dp(xst/xg) e p+q 1 [dp(xst/xy)  dp(x-Q t/xg) ]
ot 6-0 T2z '3 dx g (1)
- 2~
p-a 1[3p(xit/xg) dp(x-6it/xy)
i i M

6 =0 K0 2 dx dx |

If i ; = (2-4a)
o~ -

and ii".o L_‘!.K = ﬁ (2-4b)
o{ and ﬂ being constants then (2-3) becomes
dp(xit/xg) 4 &olxst/xy) dp(xit/xy)
FE | SRSl e TR o T g

which is the diffusion equation [2] .

For the conditions (2-4) to be satisfied, the probabilities p and q

must be taken as:

DR L .




p=Kk 3 (x+88) = 5 (ot+v'§- VA®) (2-6)
qzl(%(o(,-ﬁe) =§(K—V§— VatL) (2-7)

that is the probabilities of jumping upwards and downwards have to be

nearly the same, the difference being a term that tends to zero as JA . 3

Notice that the parameters /3 and ok are respectively the incremental

D

mean and variance of the process x(t) per unit time since

B[x(t+ AL - x()/x®)] = 8:(p-a) = (x67) =4Ot

Var[x(t + At) - x(t)/x(t)]= 62(p + ) - 6%p - 1)° —»
—= 0%(x- p2 82 = «- At

TR

that is
’: ) Elx(t+ At) - x(t)/x(t)] E [ Agcgt)/x(t)] (2-8)
; p= 1lim e = lim ;
[ At-=0 At t-=0 At
F il Var [5(} + At) - gt)/x(tj_ o Var[ Ax(t)/x(t)] (2-9)
[ ~ At=0 At At=0 At
{ In general the parameters o and /3 can be dependent on the state x(t).
; We can consider as well a multidimensional diffusion process 3c_(t)
} é with vector mean per unit time é and covariance matrix per unit time
§ A = [dij] . In this case the diffusion equation relates the derivatives

of the multidimensional p.d.f.p(x;t/xy) and the expression (2-7) becomes

dp(x;st/x0) i 1 bzp(gt_:t/_{o) dp(xst/xp)
= - 6—————-——— - 2-10
ot Zl J=1 2 e 5 axJ i= % axi i

where m is the dimension of the process and
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o E[Axy(t)/ x(t)] £
Ryt At=0 At Ve

Cov | Ax.(t) Ax.(t)/ x(t)
dij-:l&m‘o.- (4, = J ) (2-12)

isl, 2. eee m

The probability of each process i (i = 1,2,.,.. m) jumping upwards py
and downwards q; have to satisfy now the conditions (2-6) and (2-7) for
each process x,(t) to be considered as diffusion, and similarly for each
individual process it must be At = Ky 912 where the constant K, are in
principle different,

In the computer-network system we are interested the ;tate of each
process represents the total number of messages that are waiting to be
transmitted at an specific queue, For each queue i there is a lower
reflecting barrier at X, = 0 because the number of messages in a queue
cannot be negative, If there is no restriction on the queue length, then
there is no upper barrier. Practically the size of the queues are limited
by the length of the buffers where the messages are stored., Therefore an
upper barrier is to be assumed too which if reached indicates that the

buffer is full,




b b

TR T T
L L

D ——

3, SOLUTION OF THE DIFFUSION EQUATION

The solution of (2-5) or (2-10) depends upon the conditions imposed
on x(t), If x(t) is allowed to take any value: - 0 <x(t)< +00 the
joint p.d.f. (p(x 3t/50) solution of the diffusion equation is the
corresponding to a multidimensional Wiener process with mean gt and

covariance matrix A t:

up[- 3E-x- g0 (AT x-x- gt

(zﬂ)mlz ,At ,1/2

(3-1)

p(x ; t/x0)

(Taking in (3-1) the derivates O/ 6xi, 52/ bxi bxj and Q/ dt, it can
be easily seen that (3-1) satisfies expression (2-10),

Observe that (3-1) has no steady-state solution when t —=o0o0,

If one reflecting barrier is considered, say at x = O, the solution
of the scalar diffusion equation (2-5) with initial condition p(x;O/xo) =

= &(x - xo) can be found by using the method of images [Zb]and Lteds [2]:

1 [x - %0 - pt] 2 2 1Bl _
P(x;t/xo)=—z-n—;€ exp| = —-?“—?—— + exp| = = 0) .

2

2ot

@ X‘OXoO ﬁt
Jat (3-2)




DERUT TR

"N Pi o
= Yo

wh

ere : 0
@(z) = 1 f Q-uzlz du

Vzn

The first term of (3-2) corresponds to the transient period and the

second one is the steady-state term, By inspection of (3-2) it is easy
to see that when t —= 00 the first term of (3-2) vanishes and the second
one becomes

R B >0
lim p(x; t/xg) = p(x) = . (3-3)

t—e 0
ol oo -2lels] <

for x =20

that is an steady-state solution exist for negative drift ,B which physically
means that the service process has to be faster than the arrival process
so that the length of the queue does not become infinite,
If two barriers are considered at x = 0 and x = a > 0 for example
then the equation (2-5) for the scalar diffusion with initial condition
p(x; 0/xy) = é(x - Xy) and boundaries 0 x(t) € a,can be solved by

the separation of variables method and the solution is: [25]

% exp‘% x)

p(x;t/xg) = 4+ exp (- .2.2. t) exp( '?-L(x - xo)) .
exol £ a]- 1 o
(3=4)
a i x ]
* nal 2 An2 + (B /)2 g s S

for 0LKxga; t>0 -q
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and A = n 1 ] nSO._O_].,zZ, ese
a

Y, (x) = cos lnx + -ﬁTI‘_‘. sin A x

Regardlass of the sign of § there is a steady-state solution when t -= OO,

This distribution denoted by

p(x) = 1im  p(x; t/xg)
t -

san be obtained by taking limits in (3-4)

-
2 X (%x) : ogxKa s (3-5)

sl o exp{% a)- 1l

For the multidimensional process, define a véctor

TR (3-6)

—
-

and then the steady-state distribution of the process 5(1:) can be obtained
by equating to zero the right hand side of (2-10).

This gives [1u]

m
p(x) = lim  p(xst/xe) = [ pyxg) (3-7a)
t—=00 =1 :
where
l’ix
¥ °
py(x) = = T 1 0SSx S ay (3-7b)
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4,- DIFFUSION MODEL, FOR MESSAGE ROUTING IN A COMPUTER NETWORK

4,1, The general Model

Let us consider a general network of N computer centers (nodes).

The same notation as in [23] will be followed, Each node can be connected

|
|
|
|
|
|

to any of the remaining (N-1) nodes in both directions, We have then a
possible total number of communication lines N(N-1),
The nodes will be represented by letters i (i=1,2, ...,N) and the
branches by pairs (1,3) (1,3 = 1,2, ... N 3 44 3). Call
I(1) the set of branches entering node i
D(i) the set of branches coming out from node i
At each node there can be a maximun of (N-l) queues where messages
with destination any of the other remaining nodes wait to be transmitted,
Clearly the total number of queues in the whole system M is such that
M < N(N-1),

The queueing processes are of discrete nature themselves as was

pointed out in a preceding section, The diffusion model that is stablished
here makes the approximation of considering them as continuous processes.

E In order to do this, the messages (that in principle have different lengths)
i are assumed to be divided in small packets of duration At units of time,
The time will be assumed divided in intervals (t, t +At) small enough

so that the following events will occur:

aij(t) = Prob, that a message of length At with final destination node
J arrives at node i from outside the network.
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1 - 24j(t) = Prob that no message of length At with final destination j
arrives at node i from outside the network

1.J=1.2....N li*j
Therefore during (t, t + At) only these former events can occur. The
probability that more than one message comes is zero,

ul{j(t) = Prob. that a message of length At with final destination k is
transmitted from node i to node j.

l- uEJ(t) = Prob, that no message of length At with final destination k
is transmitted frcm node i to node j

LI w22, i B 5343

€4y = Prob. that no message of length At is transmitted succesfully from
node i to node j.

1.331.2. ewss N H i*j

Observe that c,. corresponds to the capacity of the link (i,j)

ij
expressed in terms of probabilities rather than in traffic units,

In Fig 4,1 a diagram of such a general network is depicted.

The capacities cy; are fixed for each channel (i,j). The incoming
traffic probabilities aij(t) are quantities that depend on the amount of
users' demand at the specific time t, We shall consider this demand rate
to be stationary so that it will not be dependent on time but a constant
8450

The outcoming traffic probabilities u:j(t) are the quantities we

want to find according to the input traffic and the network fixed capacities

so that the system performance is satisfied, according to some criteria
as we shall see later. For the same reason as aij(t), the probabilities
uf §(t) will be independent of time,

From the previous definitions, notice that each channel (1,3) can

PR R
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Fig 4.1: General configuration of a computer-communication
network,

handle messages with different final destination, Thus the total traffic
the channel (i,j) carries is composed of all the messages going during
(t,t + At) from node i to node j whatever the final destination is, In
order for the transmission to be succesful this traffic has to be less

than or equal to the capacity cij' that is:
k
‘;uij € oy € 1 (4=la)




2l

and clearly uy = 0 v Vi, (4=-1b)

The constraint (4=la) is necessary to have an errorless transmission,

Now consider the queueing process representing the number of messages
nij(t) that are waiting at node i to be transmitted to node j at the time
t. If finite capacities are assumed for the buffers, that is Nij is the
maximun number of messages that can be stored at i to be transmitted to j,
then the ratio

Pwe 20 (4-2)

oo

Nij
represents the normalized queueing process so that
0SS x;()K 1 1,3=1,2, N3 14
(&=3)

When the message lengths At become very small it is clear that
xij(t)’ representing the amount of messages filling the buffer with respect
to its total capacity, becomes of continuous nature and can be approximated
by a diffusion process with two reflecting barriers at x = 0 and x = 1 as
indicated in (4=3), The lower barrier represents the queus completely
empty and the upper one representing the queue full.

At each node we can have at most N ~ 1 queues and in the whole system
the maximun number of queues is N(N-1), This can be visualized in Fig 4.2
for N = 3 in which node 1 has been magnified to indicate all the queueing
processes that take place,

The switch 512 represents that the channel ¢), can handle messages
from x,,(t) with probability us, and messages from x13(t) with probability
u%z such that ufz . “%2 < ¢y

Similarly for the other switches: messages travel from node 2 to node
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Fig. 4,2, Detail of the queueing process at one node
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1 with probability “gl entering queue x13(t) and waiting to be transmitted

to its final destination node 3,

4,2,~ Diffusion approximation for the routing model |

We saw in section 3 the steady=-state solution of the M-dimensional

diffusion equation (2-12),

The case we are dealing with is M < N(N-1) and the barriers for all
queues are O and 1,

The joint p.d.f. of the system is given by (3-7) with ay = 1 for
all 4,

It was established in section 1.3 that the performance criteria

will be to minimize the overall delay messages experience (on the average)
when they are transmitted from their origin to their final destination,

An equivalent condition is to minimize the average queue size of the
whole system, To see this, consider one queue nij(t). If we call Aij(t)
the number of arrivals at node i with destination j during (0,t) and
Dij(t) the number of departures from this queue in (0,t) then

nyy(t) = Agj(t) = D, (¢) (4=3)

represents the total number of messages waiting at that queue at time t.
The quantity

t
nij(T) de (=)

is the total time all messages have spent in that queue during (O,t).

The average delay per message at that queue will be:




t
f nys(T)de
s[ry] = o (4-5)

Aij(t)

and the average number of messages waitir: at the queue:

t :
f "13( T )dt 3
E [nij(t)] = 9 . (4=6) :

Therefore from (4=5) and (4=6) we see that minimizing the average :

delay is equivalent to minimizing the aversge queue length or normalizing
acording to (4=2), minimizing E [xij(t) ] .
In the discussion of section 3 about the diffusion process we

implicitely assumed that there were no idle periods, that is when the
process reaches the lower barrier it does not stay on there but jumps
up. This has not to be the case in general because with some probability .
there will be certain idle periods in which the queue will be empty. This
probability of idle periods can be expressed in terms of the utilization
factor [12] which is defined as the ratio of the rate at which the jobs
enter the system to the maximun rate (capacity) at which the system can
perform this work. Calling this factor p (<1) the probability of idle
period will be 1 - P,

Therefore the p.d.f. (3-7b) shoud be modified to include the
effect of idle periods and this can be taken into account by splitting
the p.d.f. into two parts. One representing the probability of empty
queue (an impulse of weight 1-;) and the other representing the cortinuous

distribution when the queue is not empty -
Pi(x) = (1 )J( ) Uiea’ix 0€x<1 4=?)
P x) + Py g Gl (47
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wvhich is represented in Fig 4.3,

barrier

barrier ¢ :
al x=

af X220

N

(1-1)

x

M AN ARG | R SRR L) g

o

-

Fig., 4.3 Steady-State p.d.f. of a diffusion process

The expected queue length for the i-th queue is calculated from (4-7)

§i

E(x,) = fx py(xy) dxy = P e - 1 (4=8)
- B s o LA

In Fig. 4.3 the expression (U~8) is represented, As it ca be seen
0 <E(xi) < fi' In the same figure it is represented the function
~ 1/ ¥ ( §4 < 0) which would be the mean value in the case of no upper
barrier. We can see that for values of Ji less than =3 both curves

are very close, The presence of the upper barrier prevents
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the queue length from increasing without limit and therefore it does not
become unbounded at Bi =0,

The significance of the parameters 31 can be seen from Fig, 4.4:

£
L
E
'
5
¢
§
4
£

‘1< 0 means the queue is on the average less than 0.5 P, full and
xi>o more than 0,5 full,

The overall mean value is given by

| F(E) " — (4=9)
| ( » fi .‘i -1 B 5i 9

and this is to be minimized over some region of the M -space determined

from the constraints of the problem as we shall see ir section 4,5,

4,3, Calculation of the diffusion parameters

—y

We want to find the components of the vector mean per unit time é

and the elements of the covariance matrix per unit time A defined in
section 2 (Eqs, (2-11) and (2-12)),

‘ Consistent with the notation in section 4,1 let us redefine 8 and A

i as

| i £ [xn(t + At) - xy 5(t) _:g(t)] 3

f i At=0 | At
s (4=10)
: ::; ‘;‘ B E [Axij(t) .’E(t')]

S At=o0 At

o —— =

T
L S
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%193, 0e1)
4 Cov ( [xij(t»At) - xij(t)] [xkl(t»At) - xkl(t)] z(t))
k- = 11'[ -
At—0 At
Cov [Axij(t) Ax (t) .’E(t)]
-3?-—0 At (4=11)

(230, C KLY ml, 2 asner K t M < N(N-1)
When At tends to zero the jumps at each queue eij tend to zero too

according to
2
At =% (6" , V) (4=12)

where the constants Ki 3 account for the possible different buffer lengths,

We are now going to calculate the parameters ﬁij’ d(ij);(kl) in terms

of the probabilities defined in section 4.1,

Mij(t)

/ Xij(t)

Vai(t)

\<\ \?'Lin (t)

Fig 4.5: Arrival and departure processes in a queue

Consider the queue xij(t) (Fig. 4.5)
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then
3 J
x (t) = (t) Z Voi(t) = Z Vi (t) (4=13)
Az, Hagtri i1 e pED(3) B
m#J
where for all t,}),ij(t). ))ii(t). l’iﬁt) are Bernoulli independent random

variables that can take the following values:

}‘Ll'(t) =0 with probability a,;
J 13 (4=14) |
5
= 0  with probability (1 - a;,) i 4
5 : ; 3
t) =@.. with probability :
vmi ij P Ymi (4=15) ‘
= 0  with probability (1 - uly)

Vin(t) = @.. with probability %

1 in (4=16)

0  with probability (1 - uin)

according to what was established in section 4,1

ey T e == e

Caleulation of the incremental mean coefficients

The mean value of Axij(t) is from (4=14) - (4=16)

E[Axij(t)l xt)] = E[Axij(t)] »

e

u
mEI(1) mi  nED(4) M
m#J
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Substituting 9i s ;gl/ %) Vat and taking limits in (2-13) when 1
At =0, we obtain

5 [Ax, j(t)]

= lim ek} e T O N
(4-18)

g i
S 15;) “mt n€0(1) »

=1Am m#j/
t—=0 1/2
Kyy - At

for all pairs (ij) =1,2, ... M ; M < N(N-1)

Calculation of the covariance matrix elements

=== Diagonal elements : from (4=13). since Axij(t) is a sum of independent

random variables we have:

Var [Axij(t)] = Var [),(ij(t) ] + me[:(i) Var [9;:1(1:) ] *»

m#j i

(4-19)
+ Z Var[Vin(t) ]

neD(1)

and substituting the value of the variance corresponding to a Bernoulli

random variable we obtain:

.8 J
Var Axij(t) = eij(aij(l-a I 2 “mi(l‘“ v ]
m# L
l-
5 nG;i) “inl “in) ;T




"k.l(t) (Fig. 4.6)

e=e Off-diagonal elements: Consider two different queues xij(t) and

Mij(t) M)
:,7* X)) o a0 A %e® [ Vu®
Vail(t) k)

Fig. 4.,6: Arrival and departure processes involved in
two queues

3
EMOEY WOR Z Vo, () - Y3 (t)

I(1) n€D(i)
i#J 3

*II

i
Ax .(t) = (t) G Z Vialtd
k::kl Pt # Ik) Yk qeBl) 9

Since )L;j(t) and }*kl(t) are independent:

cov [ Jy(8) Py (@)]= cov 150 V(0] = cov [v3,p @] =0

then

Cov [Axij(t) Axkl(t)] = Z Z vi (t,)\)1 (¢) -

i) ¢ kfl
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(1) qe;c) mi(*) Vig(¥) 1n(t) Y (t) +

= € neD(1) pe I(k)
m *J #1
|
J i
vl )V (8) = Z Z '
" neb® qeg;) ol %36 ne 5(T) pe'T) ™ P ]
m#éj p#l |
o Lid ~
% 2 - x
nefT) qedli) ™ ™M D) peIlx) ® PK
m ¢ p#1l ;
(4=21) :
A
+ Uypn ukq

Consider each term in (4=21) separately (see Fig. 4,7 as an example

for N=4, M= NN = 1) = 12)

1) meI(i) pé€I(k)
m#J pél
p ugi u:k ;i m,i#p, k (a)
V,(6) Yh(e) =4 |
| e 0 imi=pk and jA (b) |
- \ cannot be that; m,i = p,k and j =1 (e) 3 ,f

The above expressions are obtained because:

(a) Vii(t) and V;k are independent (queues at the same different noles)

(b) Messages with different destination (j # 1) cannot go over the same




channel (m,i = p,k) «t the same time t (see Fig 4,7, both queues

are in the same node i = k)

(e) This case corresponds to the Var [\)gi(t)] and was calculated
previously in (4=19), Observe that the terms corresponding to w
i |
(4-22a) when substracting the products of the means to obtain the i 1
covariaice, will yield |
|
vj (t) vl (t) - vJ (t) vl (t) = uj' \11 - uj . ul =0
mi pk mi pk mi pk mi  pk |
' o
and the terms corresponding to (4=22b) will yield :
3
b 1 1 £ [ | 1
vmi(t) Vpk(t) Vmi(t) Vpk(t) = 0-usy upk
2) meI(4) q € D(k)
m#j
3 2L
A T ; m,i# k, (a)
mi kq A
: 1
Vzi(t) qu(t) = J 0 i mi=k,and j #1 (b) (4=23)
: J
’ u jmi=k,qad j=1 (e)
; { mi
) The equations (4=23) are obtained because:
“ (a) and (b) the same reason as in (4=22)
| } (e) it is the same random variable Vii(t) corresponding to two different
E : queues xij(t) and xkl(t) which are in nodes i and k respectively. See
.
E for example Fig 4,7: Consider the processes xlz(t) and sz(t) belonging
{ to nodes 1 and 3 respectively ( i=1, k=3, j=1=2)
_I——

ot e St b T TT—— "
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When m=k=3 and q=i=1 the term

PN 2
Va Y - Phw]® = oy

as indicated by (4=23c)

The term corresponding to (4=23c) in the covariance expression will

be

3 2 j 2 3 NI 3
[Ww]? - Plw]® = o - @y = o a-dp

3) neD(i) ;i pé€I(k)
p#1l '
This case is exactly like 2). Just interchange this subscripts

fjoek, MeeD, qeen, je=l

4) neD(1) ; q € D(k)
This case is similar to 1), The only difference is that it takes the
processes coming out from node i and node k whereas in 1) we had the

processes entering nodes i an k, Therefore the corresponding expression

is
’ X
4 R T T e (a)
\ﬂn(t) 'Viq(t) = ¢ 0 i in=%k,qand j£1 (b)
k cannot be that i,n=k,qand j =1 (e)
(4-24)

According to this we can have several cases:
A) Both queues are in the same node i = k., In this case only the first
and fourth term of (4=20) enter in the covariance (relating the inputs

and outputs respectively):




N s

ol s o o i A A .

i R | 3 3
cov [ Axyy(t) Ax,y(0)] = - mez;) T ne;) Uin Yyn

14541 m# J#i#1 n#i
(N=3)terms (N=1) terms

(4=25)
B) Both queues are m different nodes i # k. In this case the 2nd, and
3rd, term of (4=20) appear. There are two possibilities:

B-1) Both queues have the same destination : j = 1

Cov [[&xij(t) [&xkj(t)] = - “ik (1= “ik) - uii (1= uii)
Ak# . : (4=25)
B-2) The queues have different destinations: j # 1
Cov [Axij(t) Axkl(t)] = uik uik + ul]"i “121
i kfl (4-27)
but observe that if k # j

Cov [Axij(t) ijl(t)] = “ij “i;j (because “gi = 0)

and if 1 = 1

Cov[Axij(t) iji('c)] = “lti “Iti (because uik.-:O)

4,4 Conditions for the diffusion to be valid

Going back to the expression (4=18), if ﬁij has to have a finite
value it is necessary that the numerator of that expression tends to
zero as (At)l/z.

Recall what was established in section 2.2, concerning to the

conditiohs for diffusion: for the variance and mean per unit time to




Y

make sense the probabilitites of jumping upwards and downwards have to
be "nearly" the same, the difference being a quantity depending on
( At)l/z and therefore this difference decreases proportionally to
(At'.)]'/2 when At tends to zero. This is reflected by the expressions
(2-6) and (2-7).

Therefore let us assume that the probabilities a5 and ulij are of
the form of (2-6) and (2-7) that is a constant term plus another

devending on (At)l/z, that is:

= A t 428
agg= Ay 0 pij‘l A ( )
k k
uij=uij+yij\/At (4=29)

The channel capacities which are related with the service process
will be considered of the same form too, that is a fixed term plus another

varying with (At:)l/2 as shown:
VAt (4=30)

which means that the capacity of channel i - j is variable about a fixed
)1/2

c =Ci

i 3 T

value ¢y 3 in a quantity proportional to (At
Then the conditions that have to be satisfied for the diffusion
property, are obtained by plugging (4=28), (4=29) and (4=30) in (4=18),

Thus we obtain:

3 Z 3
+ U - U =0 (4=31)
V7 adT) ™ ep(1) v

m#J

A
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kasa . SRR T STC R Clos PR . oy
s R »

J J
g ¥ . - ‘/Ku Biy (&32)

+
P13 neD(1) 1in

meI(i)
m#

for all pairs (1, j) =1, 2, ... M3 MSN(N =-1)
The constants K, 4 are given by the buffer size. From (4=12) we see

2 2 X .
that xij( eij) = xkl( ekl) but ei:j = l/Nij and thus Kij/Kkl =

= (N /)2,

The expression (4=31) is related with the deterministic flow at
each queue and simply states the balance that has to exist at each node
between inputs and outputs if the traffic were deterministic, whereas
(4=32) gives an idea of the infinitesimal variation during (t,t + At)
since the drift Bij indicates de tendency of queue (ij) to increase

or decrease per unit time., Moreover from the capacity constraints (4-1):

k k
> U Uss =20 4o
cij > i#zk 13 ; ij 2 (4=33)
k k
q, 2 . =0 (4=34)
1 1;1( 713 i

4,5.- Optimization procedure

In the model we have established, we have a network whose channels

ij
on the users' demand so that are considered as fixed quantities too.

c,, are given and have fixed capacities, The input traffics ‘ij depend

The question is to find the best routing strategies within the system

k
which are represented by the probabilities uij defined in section 4.1




k
subject to the capacity constraints (4-1). The quantities uij will be

called routing variables and will have to be chosen to minimize the

average queue length in the system according to the given input

traffic and the fixed capacitites. This is an open-loop type control

B procedure,

Note (Fig 4.7) that the maximun number of routing variables we can ;

!
have per queue is N « 1 so that in the whole system we can have at most

M(N ~ 1) control variables,

The expression of the covariance elements follow from the

expressions (4=20), (4=25), (4=26), (4=27) and (4-11), (4=28), (4-29),

T T e e

Thus we have

'Variance elements (recall (4~20))

a
|
&
i . , . .
3 3 j j
(L=-A, . (1=0", i
E* Ay (14 0) 4 me*zl(i) U QU7 ) + nezD(i)Ui“(l ug,)
1 o&ij)z i = JK 5
i (4-35)
4 Covariance elements: a) i = k; i # j# 1 (recall(l=2 ))
j L - |
v U, o+ Z U, U
w€itd) W 8T L ohlyy B R
P ) X(15),(11) = ~ £ (4-36)
‘ | V Ky Ky
:;fg é b) 1dké j=1 (recall (4-2€))
: U1 -0d) & 0.0l
ik A_EF ki ki (5=37)

o .o
(13),(k3) J};g-g;j




e) 14k j#1 (recall(4-27))

13
U +U0U U

\/KU Ky

(Remember special cases of (4-27) when k = jor i = 1)

%19y, 00"

Therefore the covariace per unit time is a ¥ x M matrix _/_\_ which

depends on the M possible inputs Ai assumed to be given and on the L

J

control variablea U‘; where L M(X - 1) , We write A = A(4,1)

J
where A and U are respectively M and L dimensional vectors,

Notice than the L routing variables U:j may not be chosen
independently, because they have to satisfy the system of equations
(4=31) so that only L « M variables are independent, provided that they
satisfy the capacity constraints (4-33).

We want to minimize the overall mean (4=9) that is

M ‘ij
in F(J) = min e - (4-39)
P L allmqueues i};l Fis e '1j -1 iij

where ‘ij are the elements of the vector J defined as § = 2_/_\_'1 B
The drift vector /B can be expressed in terms of the inputs Pij and

the control variables y;"ji(me I(1) ; m# j) and yin (ne D(i)). From
(4=32) and using matrix notation:

B =p+Hy (4=40)

we 2= [oy]
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13
% s
i

b1

ygi/\}!(ij mel(i)im #
P R ettt e S
i/ ‘/Kij ; neD(1)

for all possible pairs (i j) and where H is a M x L matrix depending
on the specific configuration of the system and whose elements can be
only + 1 for incoming links, -1 for outgoing links and O when there is

no conexion

Then we have: Y
j[ = 21&?1 P+ ZZXfl H y (4=81)

Call for convenience

2A"! p =d (M-dim. vector) (4=t2)
and

2A™ B =D (¥ x L matrix) (4=43)
then

T-dapy (1

and the problem is to find

min F(d + D y) (4=b5)
u

where u = U + y J At. The minimization (4=-45) is to be carried over

the vectors U and y with the constraints (4-31) and (4~33) on the vector

U and with the constraints (4=34) on the vector y.
The constraints the elements of U have to satisfy are those

given by (4=33) (capacity constraints) and (4~31) (flow balance at

b el e RRIEI
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each queue). In general for given inputs Aij and capacities cij’ the
vector U satisfying (4=31) and (4=33) will not be unique, and for
different choices of U the covariance matrix Z& will be different and
so will be the minimum of (4~45). In order to simplify the minimization
(4=b5) it will be assumed in this thesis that /A is fixed, that is we
have chosen a vector U satisfying the requirements of (4~31) and
(4=33) which represents an equilibrium situation for the system and
we shall be interested in how the system will behave for small
alterations about the equilibrium situation. In particular we shall
seek how the routing variables ytj will vary so that the overall
average queue length of the system is minimum,

With this asumption the vector d and the matrix D are constant

and the minimization problem can be stated as :

min F(d+Dy) = min Fl(x) (4-46a)
X L
sub ject to:
k
ig:k Yy < Q5 b ¥y =0 (b-bbb)

The aim is then to find the optimum vector y* that satisfies
the minimization (4=46),

Notice that the function we wani to minimize es a sum of M
functions like the one shown in Fig 4.4 which is convex for UijSE 0
the meaning of this being that the queue is loaded less than or equal
to 0.5)91 on the average, Therefore if for all queues Kijsso then
the function 7( ¥ ) will be convex and will have a well defined minimum

over the constrained region, The convexity property is convenient to




jnclude it when the minimum is searched by numerical methods starting
with some initial guess. Physically it reflects the fact that the messages
arriving at the nodes do not stack up at the queues so that the system

behaves "nicely" and does not become congested. i
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5. ILLUSTRATIVE EXAMPLES

Let us now apply the theory developped in the preceding sections to
some specific examples.,
Our purpose is to minimize a function of L variables subject to some

constraints over a convex region.

Because of the exponential nature of the function (4-8) even with a
small number of vafiables it is not possible to find analytic solutions
and one therefore has to use numerical procedures.

The minimization procedure that will be used is based upon the method
of Zangwill [27] whichis a modification of Powell's algorithm [18] .

Basically an initial point and a set of L directions are chosen,
Along each direction the minimum coordinate is found, In the next step the
first L - 1 directions are taken as the L-1 last directions in the first
step, The L-th direction is taken as the difference between the initial
point and the minimum found in the preceding iteration and so on until

convergence is reached.

5.1.~ £xample with two gqueues

In Fig 5.1 it is shown an example of three computers: Messages come
to nodes 1 and 2 and have to be transmitted to node 3 either directly or
via the indirect path, When messages get to computer 3 they leave the
system, No messages enter at 3.

According to what was stated in section 4.1 the time is divided in




small intervals (t,t + At) and during this time we call ), snd 59 the

A S it el e

Fig 5.1.- Network of three nodes: two sources and one
destination

probability that a message enter node 1 and node 2 respectively.

The traffic a.. can go directly through the channel )3 or through

13
P and c23. Similarly for the traffic axy.

As it can be seen in Fig 5.2 there are only two queues in the system,
one x13(t) corresponding to node 1 and the other x23(t) corresponding to
node 2, There are no queues at node 3 because this is only destination

node, Similarly there are no queues xlz(t) at node 1 and x21(t) at node

2 because neither of those nodes are final destination but traffic source




Fig. 5.2, UNetwork of three nodes. Queues detail

or intermediate destination nodes,

The capacity constraints are

3
“23‘ €13 u23‘ Cyq } “22 < 0223 "gl £ ¢ (5-1)
The capacities are assumed to be of the form (4=30)
c13 = Cl + ql J At
3 3 (5-2)
®23 = G + 4y VAL
- kit e ek i s i RN REPBIORERW Lt e




b7

c = C PR N At
12 12 12 (5-2)
ey = 021 + aq, VAt

The external and internal inputs and outputs are of the form of
(4=28) and (4=29)

T P \/-A_t-
% = Ay o+ by VB
by = 0y 72 Vat (i
Wy = U e Yg3 Var
wy = B, + ¥, VA
“31 " Ugl %5 ygl Va.

The proportionality constants K13 and 1(23 which relate the time
interval At and the queue step sizes 913 and 923 will be taken as unity.
Then we have At = 953 = 933 that is the step size in both queues is the
same and tends to zero as (At)llz. This makes sense in the case that both
buffers have the same capacity and it will be assumed so,

The expressions for the means per unit time are from (4=32)

3 3

B & By ”21 Tavly YA (5-4)
3 5, 3

By = Py + Y15 = Y3 = T

and the .flow equations from (4=31)




gl P Vet G rlpie i, oL SRt

‘13’"21'”2'03’ 0
“23’“32'”2'"3' 9

3 21

(5-5)

The elements of the covariance matrix are; From (4=35)
o( S 0y = A3l - A13) + U2 (1 - 02,) 4 024(1 - u3n)
(13).(13) * Y3 13 13 21 21/ + U313 3 *

+ U351 - U3p) (5-6)

®(23),(23) T Opp = Ayy(l = Ap3) 4 U3p(1 = 03,) + Uga(l - Ug3> +

(5=7)
+ Ugl(l - Ugl)
From (4=37)
p E 0, = - sl = U2,) - ui(1 = 621) (5-8)
(13),(23) § Ky =-U32 12) = U121 - U3y 5
The expression we want to minimize is (4=39)
J s 1 ¥z 1 (5-9)
F()) = S - + P2 e = =
hj,in_l 71_5) f3eb'23_1 323
where
and such that =2 A.l B=yv B (5-11)
b and B=(8, ﬂ23)T (5-12)
4
: 0 Xy
, From JAR (5=13)
3;2 X2 O
qt
I




We obtain

3 %
o &y, -tf,

S8
2
oy Oy = X7

2

o,
g
ol o Xy

le ==2

Observe from (5-6), (5-7) and (5-8) that Vll' sz and V,, are

< \')
non-negative and that V,, 2V,, and V,,, P v12'

Notice that (5-4) can be rearranged es:

= (p ->'3)—(.'>'3 -y
ﬁ13 13 713 18 A (3-18)

- - e Aed wgd
,623- (p23 Yg3) (y12 y21)

so that jL_as well as ji are only dependent on three variables rather than

four; they are
3 - ng ¥, - Yh

Call for convenience

61 o Wy U0




S0

8 =Py - v (5-20)
ey, - ¥4 (5-21)

Py = D>
(5-22)

Therefore from (5-11)
le = Vn ﬁ13 + le ﬁ23 Vu Jl + le JZ - (Vu - le) z (5-23)

823 =12 Bis+ Va2 Bag = Y1z 014 Vg 6o v (Vgp = Vpp) 2 (5-24)

The utilization factors are:

Al + Uzl
f13 = c 3 p (5‘25)
33 T s
3
A + U
P = 23 = (5-26)
L R

Minimizing (5-9) requires 613 and 323 as negative as possible
(Fig 4.4,) Therefore from (5-23) and (5-24) since the coeficients of 61
and ‘2 are non negative, Jl and Jz must be as small as possible or

from (5-19) and (5-20) ’%3 and y??B must have the maximun value which

is the corresponding capacity, that is: Y]3.3 94 (5-27)
Yy s (5-28)
SRR

N

&b iin e




as we could have expected from Fig 5.2, because there is no reason for

not using éhe channels‘qu and q23 at full capacity.

Then the expression (5-9) is only a function of the variable z =

= ygz - ygl which is bounded by the capacitites qy, and Uy ?
“~q, ® 3 &£ %o (5-29)

Let us take some values to illustrate the example, Assume:

3

A =08 v = 0.6 cC =0,
13 13 13 @
i 2 i
AZB = 0.4 023 = 0.6 C23 = 0,75
U3 = 0.2 l C,. = 0,75
12 3 12 .
e &
U2, = 0 Cpy = 0.75

which satisfy the flow equations (5-14) and (5-15) and the capacity
< i3
constraints 0 < Uij < Cij : \i(lj)

The covariance elements have the value

0&1 = 05 ; &, = 0.64 0&2 = =0,16 and

V11 = 3.8462 ; Voo = 3.3654 ; Vipg = 0.9616

the utilization factors Piy = 0.53 , p,; = 0.40

then 513 = 3,8462 d’l + 0,9616 Jz - 2.88U46 2 (5-30)
¥,y = 0.9616 d) + 3.3654 d’z + 2,4038 z (5-31)

bearing in mind that &, = Byg = qy; and d, = pyy = ap3.
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Several cases are shown in Fig 5.3 to Fig 5.8,
Consider first Fig 5.3. for which we have chosen:

P ipn®t o S8t dn 3
and ql3 varies between 0 and 1, For q__ = 1 the optimum value of

13
' ";12

As ql3 decreases ( Jl increases),both 713 and ‘2 increase but the

Ygl = 0,2380 and the value of Fmin = 0,1918,

effect is more remarkable on 3'13 because V,, >V, (See expressions (5-37)
(5-38) and (5-4&#), (5-45), In order to have this increase as small as
possible, ¢ will increase because its coeficient in the expression. for

This physically means that when the capacity of the link connecting nodes

is negative, This is what can be seen in Fig 5.3 as ql3 decreasses.

1 and 3 decreases, more messages tend to be sent via node 2 to partially
compensate the capacity loss. As a consequence of the overall capacity

reduction the overall mean value increases,

Fig 5.4
p13=p23=0 H q13=q12=q21=1

and now it is Q23 what varies., By a similar argument we can see that
when 93 decreases 62 increases and 6'13 and ‘23 increase too although
the latter more, Therefore z has to decrease to compensate for, that
is less messages travel from node 1 to node 2,

We can observe that in both cases (Figs. 5.3 and 5.4) the overall
mean has the same value, The reason for this can be drawn from equations

(5-23) and (5-24). In the case of Fig 5.3 d, = -1 and d, =4 varying

between -1 and 0O, In the case of Fig 5.4 Jl = «1 and Jz =(‘S varying

between -1 and O, Then

% SRS TR TR R
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¥i5= V116 = Vyp = (V3q = Vpp) 2’ ‘ =i
§o3= V9o = Vpp + (Vg = Vyp) 2! ]
3
B35 <y * Vo0 -(Vyy = V) } ;
Fig 5.
{” ==V, + szcf + (Vy, = Vp5) 2" )

From this equations we can see that whenever z' - z" =1 +d then
’13 513 and 523 6'2'3 so that the overall mean value is the same,
Fi .51 Now

1

21
1, z = 0,2380 so that there is

4 St < B b Mt
and ql2 varies between 1 and O, For ;5

no effect ehen decreasing 9, until it reaches the value 0,238, From
this point on the value of 2z = qy,.
Therefore the effect over the overall mean takes place only when

z € 0.2380, The reason for this is that when z decreases in (5-23) 513

increases and in (5-24) 523 decreases, Therefore the change in the

overall mean is less.

Fig 5.6.+ Decreasing 459 has no effect because this channel was not

.Ll % used, The overall mean does nct change either.

Fig 5,7: Now all qij e 1, 1.723 = 0 and p13 increases, The effect of P13
inereasing from 0 to 1 is the same as 95 decreasing from 1 to O in

Fig 5.3 because in both cases 61 increases from 1 to O, At some point

2z reaches its maximum value 1 and cannot increase any more. The overall
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value increases then faster.

Fig. 5.8.- All Q5 = 3 pl3 = 0 and P23 increases,

The efeffect of p23 jncreassing from O to 1 is the same as q23
decreasing from 1 to 0 in Fig. 5.54, For p‘23 > 1 we can see there is a
minimum point in the overall mean velue and then z increases again until

4t reaches 1. This can be explained from the expression of the derivative

of F(¥) with respect to z, From (5-9) it is obtained

dF OF %13 OF d¥3
% e R T

The utilization factors were calculated: f13 = 0,53 and f23 = 0,40

and the derivatives of 613 and ¥ 23 with respect to z are straightforward

from (5-30) and (5-31) yielding:

df _ . 0.53 (~2.8846) __g.f.. + 0.40 (2.4038) '%IL e

dz 813 23
OF OF
= - 1.5384 + 0,9615 —5o— (5-31a)
3%, 5 %
where
OF  _ - S & (5-31b)
'57_ ] (e - 1)2

The expression (5~32b) is represented in Fig 5.8a.
From the observation of equations (5-30), (5-31) and (5-32) we can
see how the variation of the optimum z is going to be when P23 ( or

equivalently é 2) increases.
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For pzs = 0 (&, = -1) we obtain z* = 0,24 and thus 613 = =5.49
and 823 = =3,75 so that the expression of dF/dz in (5-32a) is null,
Ir pz3 increases, say Ppy = 0.2 ( 6'2 = =0,8) for the same value

of z = 0,24 the values of 3'13 are from (5-30) and (5-31):

b’n = =5.30 ; 823 = <3.08 ylelding

:I; = 0,0066 > 0 forz=0.28 and 62 = «0,8

The derivative dF/dz being positive means that the length increase
rate in queue x23(t) due to the input increase, is greater than the
corresponding to queue xlB(t) so that in order to minimize the total
effect, more messages are sent from node 2 to node 1 (z* decreases)
As p23 keeps on increasing both 3’13 and 523 increase, the latter !
one more (see (5-30) and (5-=31)) so that for some value of JZ' 823 .
becomes positive whereas 61 3 increases too but remains negative,
From Fig 5.8a it can be seen that for this situation QF/ 6313
increases and OF/ 00'23 decreases for Jz increasing so that dF/dz will
be negative and z* will have to increase in order to reach the minimum.
For example for Pp3 = Xie 62 = 0,2) the optimum 2z* is z* = ~0,10
and the corresponding 613 and 523 are from (5-30) and (5=31).
Y5 =-3.36 §,5=-0.54  so that dF/dz is null
If P23 increases: ‘p23 = 1.4 (Jz = 0,4) for the same value of
z = «0,10 tha values of 5'13 and 523 are
3'13 = «3,17 " J23 = 0,13 yielding

E- = -0,0080 < 0 for 2 = -0,10 and O, =04
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The derivative dF/dz being negative means that the length increase

rate due to the increase of p23 is greater in queue xlB(t) than in
queue x23(t) and therefore more messages have to be sent from node 1
to node 2 (z* increases). This change of behavior of z* occurs when
queue xzj(t) becomes too loaded (above half the full-capacity). Ehen
this is the situation and the input traffic at node 2 increases more,
the increase of the queue length ?s more reflected on queue xlj(t)
(which is below half the full-capacity) than in x23(t) precisely
because of the upper barrier for the queues which causes the
corresponding queue length to be of the form shown by Fig 4.4 ;nd
therefore for Ui >0 the rate of length increases is slower.

The next figures 5-9 to 5-14 are shown for the same example of

Fig. 5.2, but for other values of Uiz and Ugl, that is for
- . b 3 - 3 Rl 3 —
Ay=08 1 Ag=0k , Uj3=06, Ug=06, Up=0.5

and Ugl = 0,3 and the same value for all Cij = 0,75

The covariance matrix per unit time is now

0.86 =0,k
A =
-0,46 0.94
and
-3,1501 1.5416
\'2 -
R 1.5416 -2.8820

And the utilization factors

f13 = 0,73, f23 = 0,60, greater than the former ones, For this reason

the overall mean value is greater for this example

L Y

A ¢
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apliad e

5.2, Example with four queues

Assume a 3-node network as shown in Fig, 5.15

Fig 5.15: Network of three nodes, 3 sources and 2 destinations

Nodes 1 and 2 are sources and receivers and node 3 is only source

so that messages go from 1 to 2 via ¢y, or ¢ _ and c,, and similarly
12 12 32

13
for a, . At node 3 messages go either to node 1 via c.,, or to node 2

31
via c32. Therefore we have one queueing process at node 1: xlz(t), one 3
at node 2: x21(t) and two at nodes 3 x31(t) and x32(t) as in Fig 5.16,
'According to section 4.4 the capacities and traffic rates are of
the form specified in (4=28), (4=29) and (4=30). The system of equations

(4=31) is now
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SAIRE
- ~
b 3 b3
[ ] b Y
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NODE 3

Fig 5.,16: Network of three nodes, Detail of queues at
each node,

gl g 2
Ajp # Uay = Uss » Vg

[}
o
7

1 1 1
Ay + U3z = U3y = Uy

i
o

(5=32)

3 1 1
A31 + U23 - UBl - 032 = 0
2 2 2 /

U"
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and the equations (4=32) where the constants Kij have been taken
equal to 1 for the same reasons as in Section 5.1
2 2 2
Po*dm~¥,, "Ny * B \
Poy + V3o = Vpy = Va3 = Y-
21 2" Sy Toeam T 21
? ? ? (5-33)

1 1 1
Py +¥23 = V31 - V3 = B3y

2 2 2
PtV Yy = By

The expressions of the covariance matrix elements are:

From (4=35)

- 2 2 2 2
O(12),(12)F Oy = Aa(l-App) + U5 (1=05) # U3,(1-03,) + U5(2-053)

= 1 1 1 1 1
K(21),(21) S Kpp = Ayy(1-Ay) + U32(1-032) + Uy (1-05,) + U23(1-U;3)

1 1 1 1 1 1
X (31),(31)8%33 = A31(1-A31) + U33(1-U33) + U3;(1-U3) + U3,(1-U3,)

- 2 2
“(32)v(32)= “u& = A)z(l'Ajz) + U13(1-U13) + U31(1.U ) 32(1-032)

From (4=36)

j & 2 1 2
K(31),(02) = O = U3 U1 = U3z U3z

From (4-37)

*K(21),(31) = O3 = “Up5(1 = U35) = U3,(1 - ” »)

e e 2 o 2 & 2 2
®(12),(32) = Oy = Up3(1 = Upy) ‘ U - U3p)

e . b




73
From (4=38)
“(12).(21) = “12 » -
= S T !
%(12),(31) = %13 = U3 Uy
|
R
= U U
X(21),(32) = % 32 32 -
Then r ]
%, 0 g3 Oy ’
0 0, oy Oy
A = (5-34)

O3 OG3 OhG3 Ky

oy o Oy Ky,

i -

with the former expressions for each element,

To minimize (4=39) we have to take into account the relationship

among the Kij' From (5~33):

2 1 1
By s By ¥ Byt By = (prppp) + (pyy=vz) + (Por-yyy) +

| (Pag=?,) &
. oyt i 4
;: From (3-7) 3+ B = % JAY _8..
'[ E’ Therefore (5=35) becomes
|z y b
Ly
e . & 1 ) i B
i (2 12;1 11) b1z *( 12:'1 % | b ¢ ( %3 ) By %




oA SR~

%

1
+ = 1 ¥ =
2 (’2:1 i ) i (5-36)

= (Pyp = ¥5p) + (py = ¥51) + (py; = y;1) (pyp - y§2)

< MBI A R R, .

Bl e e

The expression (5-36) is a hyperplane in the J-space and the optimum
jL has to be on it, From (5-34) the coefficients of Uij in (5-36) are non=
negative so that the constraint (5-36) will have a smaller minimum when the
k | ¥l 2
'. right hand side is more negative, that is when Y12+ Y210 y3l and Y32 take

on their maximum value, From the capacity constraints (4-34)

yiz < 9, ’;1 < 9
2 2 (5-38)
"%1 *Vn § PVt 2 € 932
Therefore the maximum values are:
b ok SN TR =q
i 127 max 12 21 ‘max 21 (5=39)
(31 max = 1y, (3r32)max =4,
3 and from (5-38) and (5-39)
, - R, SRR
Yga " ¥ya = © (5-40)

Thus we are left in the minimization of (4=39) over the eight

components of y with only two of them yz and yl , the other six being
L 13 23

given by (5-39) and (5-40).

The expression of the elements of B (5-33) becomes then
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2

1
} (5-41) !
By = (o3 = y) + ¥
ﬁ32 = (932 - q32) + Y§3 / ;i

expressions similar to (5~22) of the former example.

In this case the expression of the elements of lL =32 Z&fl is not so

straightforward because it is a 4 x 4 matrix, : 9

Let us take some values for the traffic rates and capacities, Assume:

2 2

A12 = 085 3 UIZ = 0.75 3 013 = 0,40
1 1
AZI = 0,60 U21 = 0.70 & U23 = 0.25
& 1 . 2 -
My & o5 3 Dy e DaSE D = 030
2 1
A32 = 0.25 1 U32 = 0135 i U32 = 0035
and C = 0,75 for all (ij) which satisfy the flow equations (5-32) and

ij
the capacity constraints,

The Eovariance matrix is then:

0,765 0 0.105 -0,450

0 0,865 =0,415 0,2275

A - (5-12)
0,105  =0,415 0.890 -0,3325

<0,450 0,2275 «0,3325 0,9250

= o

and the corresponding ¥ = 2A"!




" 3'?683 -0.“881 109772

-0.4881 3.0710 -0,5283
0,0665 1.2922 0.8503
1.9772 -0,5283  3.5596
In (4=41) call for convenience
(5-44)
Py = 93 = 93 P3z = 9432 = d,
from (3-7) and (5-41) we have
612 = 3.7683 61 - 0,4881 62 + 0,0665 63 + 19772 d, - 5
2 1
§,, = -0.u881 d, +3.0710 8, + 1.2922 63 - 0.5283 4, -
- 0.0802 2, - 1,7788 yéj
r(ﬁ-“S)
By, = 0.0665 &) + 1.2922 §, + 3.15% 4, +0.8503 &, +
+ 0.7838 ¥3q + 1,867 vy,
¥, = 19772 Oy - 0.5283 O, + 0.8503 &, + 3,559 &, +

2 B !
+ 1,5824 Y13 + 1,3786 Y23
and the minimization of (4=39) is carried over,
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In the next figures from 5.17 to 5.16 several results are shown

when one Ji varies, the others being held fixed:

Fig 5.17 : The effect of 9, varying between O and 1 is shown. It can be
seen that when ql2 decreases yiz increases that is when the capacity of
the channel 1 - 2 decreases more messages are sent from 1 to 2 via node
3,
Fig 5.18: Now a5 varies between O and 1, The effect when 9 decreases
is to decrease the rate of messages that go from 1 -—=3 -=2, that is y13
and to increase the rate of messages from 2 —= 3 —=1 because the
capacity qy of the direct link decreases.
As earlier in section 5.3 the overall mean increases when the .

capacity decreases,

Fig 5.19: When q31 decreases y§3 decreases too in order to compensate for

the increase of the drift in x31(t).

Fig 5.20: When q32 decreases y§3 has to decrease to compensate this

effect,

3
Fig 5.21: The effect of Q5 decreasing on ¥y, is null until q13 = 0,1701,
2
From this point on yl3 = q13 and overall mean value Fmin increases

slightly, This effect is similar to that of Fig 5.5..

2
Fig 5,22: Similar to Fig 5.6, There is no effect on Y13 when qu

decreases,

Fig 5.23: Now the capacities qij are held fixed and the input Pyo
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when q,, varies between 1 and O that is y;

value qn = 1, At this saturation point ?-” increases faster,

s NNl . e

increases up to its maximum

Fig 5,26: The input P21 increases. The same effect as in Fig 5.18 for p,,
between 0 and 1, hyudpanl,y%’ keeps on increasing up to some value
and then decrtases very fast, This effect is similar to the one was shown
in Fig 5.8, for the former case

Fig 5,25 and 5,26: When Py and P12 increase respectively, Similar to
Figs. 5.19 and 5,20 for qn and q.’z decreasing. In both cases ’i) decreases
until it reaches 0 and 1%3 - 0,

5.:3+= Diffusion approximation for computer load sharing.

The general model described in Section 4,1 for message routing in a

computer network can be also applied to the load sharing problem among a
system of computers. References for this topic are given in [26] and

1 [21] .

The goal in a loaded sharing system is to increase the processing

3 capabilities of a single computer, so that if transmission channels
interconnecting several computers are provided, the overall system
performance can be increased by taking advantage of the computer different

. ¥ f loads, For instance if one computer in the system becomes more loaded than

R TR

the others, it makes sense to process some of its incoming messages at

AWFL W )
W -

other distant computers that are less loaded., Therefore some messages

arriving at computer A will be sent to some other computers, processed
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there and sent back to their origination point,

mmuuilohnuuthOmuuuunmuondonlym
transmission channels as the servers in the different queves, For the load-
sharing case we have two different types of servers, the transmission
channels and the processors themselves, Therefore there will be a distinetion
between the transmission queues (in both ways: forwards for the programns
that have to be processed in the distant computer and backwards for the
results that come out from the computers)

The model that was established in section 4,1 can be applied here by
considering queues and nodes associated with them so that they are connected
by "links" which can either represent transsission channels or processors,
This is the general formulation for the Statistical Load Sharing Problem”
that Wunderlich suggests [26. chapter 4.3 ] .

The load sharing is formulated as a multicommedity flow problem in
which the optimal flow through the network has to be found for fixed
capacities and given inputs.

To see how the model of section 4,1 can be applied to a load sharing
computer system consider the following example: (Fig 5.27)

There is a system of two computers called 1 and 2 which are connected
by two transmission channels of capacities 1.1 and 12. The jobs entering
computer 1 for example are queued up forming the queueing process xl(t).
They can be served either by the computer 1 (and upon servicing leave
the system) or can be transmitted by channel 1, to the other distant

center, There they wait at queue x 5(t.) until its turn comes and are

processed by computer 2, After being processed they enter queue x6(t) and
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wait their turn for tranmmission to their origination point via channel
12. It can be similarly said about the messages entering computer 2. As
we said earlier there are two types of of queues processing queues and
communication queues,

In order to approximate this case by a diffusion process, let us
consider the time divided in small intervals (t, t + At) and the
messages composed of small blocks of duration At. During this interval

we call
a, = Prob. that a message of lemgth At enters at computer 1,

ci = Prob. that a message of length At enters at computer 2.

b = Prob, that a message of length At waiting at xl(t.) is processed
by computer 1.

¢, = Prob, that a message of length At waiting at zl(t) is transmitted
through channel 11 to computer 2 and enters queu xs(t) to be

processed.

bi = Prob., that a message of length At waiting at xb(t) is processed
oy computer 2,

¢f = Prob, that a message of length At waiting at x, (t) is transmitted

through channel 12 to computer 1 and enters quede xz(t) to be | 8

processed

b, = Prob. that a message of length At waiting at x,(t) is processed |

by computer 1 and enters queue xj(t) to be retransmitted

¢ = Prob. that a message of length [t waiting at xB(t) is transmitted
to computer 2 and leaves the system,

b' = Prob. that a message of length At waiting at x_(t) is processed
by computer 2 and enters queue xs(t) to be retrénsmitted,

ci = Prob, that a message of length At waiting at 7.6(t) is transmitted
to computerl and leaves the system

The computer service processed are represented by " and TF2, the

computer capacities and defined as the maximum processing probabilities of

A e s i N




s message of length At during (t,ts At) at computers 1 and 2 respectively,
The channel umiunmliulzdoﬁnduwwh' probability
that a message of length [t is transmitted through the respective chamnel
during (t,t+ At).
According to this the computer processing constraints are

b +b, £ 7, and bl +b, €1, (5-46)
and the channel capacities constraints
¢, 4c, € 1; and g +o, €1, (5-47)

As At ean be seen computer 1 processed its own jobs with probability
b]. and jobs from the other center with prebability bz. As soon as a job
gets through the computer it comes out and waits in case it has to go o
the other end, Similarly for computer 2,

The transmission channels are either used to tranmmit jobs to be
processed at the other computer (probabilities c, and e{) or jobs that
have been processed to their origin (probabilities <, and cé)

In order to use for this case the general expressions that were
developed in section & this model will be made equivalent to that of Fig.
4,1 by adding two dummy nodes and considering general capacities for the
links between nodes without specifying whether they are refered to the
computer processing capacities, This is shown in Fig 5.28.

As it can be seen, computer 1 is unfolded in two nodes 1 and 2,
Messages enter at node 1, The “"channel" 1 ~=2 represemts the computer

processing so that ¢ g 1y. Once a message is served is goes out if it

1
was local or waits at node 2 to be transmitted to its origin, The capacity

of the "channel” 2 —= 1 c21 = 1 because the only queueing process for
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retransmission is due to the transmission channel whose capacity is

= 11. Therefore the models of Fig 5.27 and Fig 5.28 are equivalent

provided that:
x),(t) = ll(t) x)“(t.) B :’(z)
X u(t) = x5(¢) Xyp(t) = x ()
Xau(t) = x4(t) Xo(t) = x4(t)
°12-r1<1 ‘1’.11<1
63‘.-22(1 C’l'lz<1
, et i
225 Uy = b
4 2 o
\)12 = bz ‘3‘0 - bz
2 “ .
by - Tl o Sk |
2 4 2 2 1 '
ua-un-u;a-cz ”-nn-un-cz -
The capacity constraints are:
u§20u:2 <€ ! u;“ou;‘ < Ca (5-48)
2 & b 2
Uy ¥ Uy, < &y Gy 9 € oy (5-49)
. and u:J 20 for all u:J (5=50)
: The capacities and traffics are assumed of the form:
cijscijoqu 4At
15 = Mgy * Py V At Vi (5-51)

k —_—
“13"’}3’ 1y VA
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We can obtain the expression of the vector drift components 3

From (4=32) (assume the constants xu = 1 as in the former sections)
2
Pa=rp-7- ’is
4 4
Bu = - ¥
[ ('Y
=Y., =¥
Pz =12 = 1) (5-52)
6 &
By = Py = Y = I
2 2
sz = 713 = V3
2 2
Buz = Y3u = ¥31

Expression of the covariance matrix elements

From (4=35)

%12)12) = Oy = M2lh2) + U5p(1-03,) + U15(1-03)
®(16)(1s) = %2 = 0;1(1-0‘3’1) + U, (e07)
K(au)(2u) = X33 = Uy5(1-075) + “:3‘1'0'{3)

K3u)(3u) = K= Aull-Ag) + U3u(1-034) U3 (103,)
X(32)(32) = Xs5 = 1d5(1-054) + 13,(2-03,)

K(u2)(u2) = %6 = U3u01-03) + 05,0005

From (4=36): a(lZ)(l“) = «12 = -U%z 0‘1‘2

From (4=38) and (4=36) (Remember “;1 = u?,)

i i




Ra12)(2s) =

From (4-38)

X(12)(3w) = %= ©
From (4=37)

G AN il o = S PR o

2 2 2
%(12)(32) = 5 = -U5(1 - Uf3)

K12)u2) = K= O

i 4 4
Hunyan) ¥ Sy = U2l - Uyp)

4y 4 M
K3y = 0y = =Ux(1 - Us)

From (4-38):

dzs = 0
2 &
oy = Uzy Uy

X14)(32)

&X(14)(42)

From (4=37)

& 2u)(3)

From (4=38)

ol o2

&(au)(32)

21y (42) 0= O

From (4=36)

v sl o
&(3u)(32) = Kys = U3, U3y
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From (4-38) and (4=36) (Remember U, = U3)) 1

O R
Xuywz) = Kus = Uy Uy - U3y Uy

From (4-37)

K(y2y(u2) = &g = '3~‘1’“§u’
Then
.
o« &K, &y s
oKy, % &Ky L
%y U3 i g
A=

0 LT Oy,
o s Kiys

o Ky O %g

—

The flow equations are (from (4&31)

2
“12"”52'”13 .

4 4
4 L

4 4
Ajlb - 03“ - 031 & -y

o Ariy
Uyy = Uy

2 2

5
&% .

0 %
% 0
Oy 173

(5-53)

X5 Kes
s e

(5-34)
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for all Uij 20

As we did in the preceding examples, we assume values for cij' ‘13 and
k
UU that satisfy (5-54) and (5-55). For given inputs Py and capacities
qij we want to find the set of ’:j that minimize the overall mean

constrained by:

2 2 4 2
Yia *+ Y q ; Yoy * Y., € 4
12* %2 € % ity (5-56)
2 4 L 2
3¢ 03 €93 1 Ity Say
= k
for all y“ =20
summing up both sides of (5-52):
2 2 4 2

pairs (ij)

From (3-7) é-% A I

6 4 6
1 1 1
z 1§1 o il 1§1 i in: g 1§1 %) By
s (3 f o) b+ & { I Ryt {' ) ¥, =
2 i=1 o S 2 i=1 “15 = 2 i=1 “16 -

2 2 N 2 (5-58)
= P12 * Py = (Y5 * Yqy + Y33 + V)

— o

e e,




From the expressions (5-53) it can be seen that not all the
coefficients of the )’,J in (5=58) have to be positive, Therefore we
2 2 i 2
cannot assume that the optimum values for ’12' yy‘. ’13‘ y31 are
the maximum ones that is 9o 3y qn. qn respectively,
The minimization of (4~39) has to be carried over all the

components of the vector y i

= 2 4 2 - 4 2 s 2 ) %

Let us assume an example, Suppose

A, = 0.8 Cyp = 0.75 Gy = 0.5

Ay =050 Gy = 0.75 G = 050
that is,the computer capacities are greater than the transmission
channel capacitio.s and. computer 1 is more loaded than computer 2,

The set of values

2 2 2 2
UlZ = 0,50 013 = 03“ = 031 = 0,30
4 50 4 4 L
03“ = 0, : U31 = UlZ = 013 = 0,20

satisfy (5-54) constrained by (5-55). Thus the matrix A is determined

[ 0.62 -0,05 0,02 0 Y R
-0,05 0,18 =0.09 =0.09 0 0.03
0,02 -0,09 018 O 0.03 0
A= (5-59)
D, o w000 D 0.58  ~0.12 0,09
-0.21 O 0003 -0012 0.“2 -0021
0 0,03 0 0,09  -0.21 0.2
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Several cases are shown in the next figures:
Consider Fig. 5.29: The inputs P12 = pjb = 0 and the capacities 9, " q;u =
= Qq; = 1 whereas varies,
3 %3 k
For q13 = 1 we obtain the optimum ¥4

2 - L 2 1 2 4 4 2
Yyp = Yy = ¥y = I N3=¥3 = N2 =Yy = 0
4
and yn = 0,8141, As q13 decreases nothing happens until 9, = 0.8141, From
this point on y{B = q13 and because of this decreasing in the capacity the

overall mean F . (y) starts to increase considerably.

Fig 5.30: 3y varies and the other parameters are held fixed, Now we

obtain
2 4 2

V12 =¥y =1 : Yy = 931

2 4 L 2 4
’13 =¥y =Y =Yy = 0 and Y13 decreases with a3y decreasing,

This can be explained from the fact that if the capacity of the link
between computer 2 and 1 decreases, less messages have to be sent from
computer 2 to computer 1 and therefore less messages have to come back.

The consequence of qu decreasing is an increase of the overall mean

Fmin(x)

Fig, 5,31: All qij = 1, Pip = 0 ard Py increases that is computer 2 starts

4 L
being more loaded, It is obtained yiz = y3“ = y§1 =13 y§3 = ygl =¥, =

= gu =0 and y:3 increases from 0,8141 up to 1: messages coming back
to computer 2 have to do it faster,

Fig, 5.32: All q1J = 0, p}b = 0 and Py increases, The effect is the

————
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i
opposite to that of the previous figure that is ’13 decreases, The
overall mean increases more than in the former case,

Let us assume now that the capacities of the transmission channels

are greater than those of the computers, For example:
A'l2 = 0,60 3 C12 = 0,50 s 013 = 0,75
The set of values:
“21’2 =040 3 032:3 e ugu - “§1 = 0.20

L L 4 4
Uaa = 0,20 3 031 = Ulz = Ul3 = 0,10

satisfy (5~54) and (5-55). The matrix A is

P -
0,64 -0,04 0,02 0 +0,16 0
~0,04 0.18 -0,09  =0,09 0. 0,02
0,02 ~0,09 0.18 0 0,02 0
A = (5-60)
0 -0,09 0 0.46 -0,04 0,02
-0,16 0 0.02 -0,04 0,32 =0,16
0 0,02 0 0,02 -0,16 0.32
. -~

The same cases are plotted in the next figures.

Fig. 5.33s For Py, = Pyy = o, 95 = qu = qn =1 and 93 varying it is
obtained:

TN 00 R E ol e N o
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A - B
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and ’25 = qyqe The overall mean increases for qu decreasing.,

Fig, 5.341 For Pyp ® Pju =0 9o "3 * 9y = 1 and 93 varying,
we obtain

2.“-1 2-“:“3230

4 N
’;1' q31 and 13 = 1 for q31 =1, As q31 decreases yl3 remains the same
up to some value of qu.l' 0,8 at which 13 decreases,

Compare Figs. 5.29 and 5,33 and Figs, 5,30 and 5.34, Similar
behavior is observed, In these cases the overall mean is less than in the

former ones because both computers are less loaded,

Fig. 5.35: 9, = qju =Qq)q =Qyy = 1 B P, = 0 and p3“ increases.
It is obtained:

2 . . Rt o ;R 2 4 4 2
Fia™ I3 %913 = 931 ¥ N3 "1 " N2 = T3
Fig, 5.36: Qyp = Gy, = %3 = 31 = 1 1 py, = 0 and Py, increases. It
is obtained:

23“32-.-.1 Q_Z uzO
5 Rl e | YEan Ty
o S 2

and at some value of P, = 0.2 y3“ starts decreasing frem 1 and Y3y
starts increasing from O such that ygb + ygu = q3“ = 1, That is computer
2 processes more jobs from computer 1 until ygu = ygu = q3a/2 = 0,5 .
This load sharing in this case can be explained from the fact that now
the transmission channels are faster than the computers, In Fig. 5.32

there was not such effect because the computer were faster, One can also
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observe that due to that fact the increase on the overall mean is

considerably less than in Fig, 5,32 3

Lot i 2 B N Ber
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6,- COMPARISON OF THE DIFFUSICN MODEL WITH THE M/M/1

The model M/M/1 has been extensively used to study networks of
queues because of its mathematical tractability [11] « Its attractivness
stems from the fact that the interarrival and service times are
exponential, This and the assumption of infinite buffer capacity lead to
simple expressions for the distribution in steady-state, For ¥/M/1/N
queues that is for finite buffer capacity N, the mathematical analysis
becomes much more complicated [?. 12] + Therefore in order to compare
the constinuous-state diffusion model developed in the preceeding
sections for computer-communication networks with a discrete-state model,
M/M/1 queues will be assumed,

The comparison between both models will be made first for a single

queue and then for the network analyzed in Section 5,1 with two queues,

6.1.- Single queue

Consider a single M/M/1 queue with input rate A and service rate )1

The steady-state distribution is : [?]

pn = (1 - %") (%)n s n= 0.1.2,.0. (6‘1)
A<pH

and the mean value

R
el (6-2)

Consider now the diffusion queue x(t) with capacity N messages,
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and where B and of are respectively the mean and variance per unit time

of the process x(t).
As we saw in Section 4,1 the number of messages in the queue is

n(t) = N x(t) so that its mean and variance per unit time respectively

_E_It_n.(-t'_)—] = N E .3 t) = N p (6-31)

t

Var E nStZ] & NZ Var E xgtzl A Nz“ (6-3b)

For the M/M/1 queue the mean and variance per unit time are

E t'n t) - )_ P‘ (6-Lsa)
ar Ln(t)]
"—-t[—-(-‘—] = A+ 1 (6-Ub)

Therefore the diffusion queue has the same mean and variance
per unit time as an M/M/1 queue whose arrival and service rate are

respectively
A= J(arp) (6-5a)

e -g (Nt -8) (6-5b)

Provided B <0 and lpl <N &
Assuming the input and service rates given by (6=5) let us
calculate the expression of the mean value,

Substituting (6=5) into (6~2) we obtain:

;B = —?—é—“—pfﬁ- = ‘N -—g—r - % (6.6)

B<0 and |B] <N«

TEPN ‘Am RN SN
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Let us call ;d the mean value corresponding to the diffusion

queue, Clearly ;d = N X where | 3

X = ) ik (6=7)
3 ( er-l )‘

and is represented in Fig, 4,4 and where [ = 28 /¢ (Romember Sec,3)

Aahi . S e L ay LA

Therefore
Ao=N|-_% _ + o(28/«) (6-8)
" 28 (AT ]

For (28 /&) < -3 the expression (6-8) can be approximated by
- por. = “

Looking at (6=6) and (6=9) we can see that for (28/ct) < <3
both expressions are very close except for the term -(1/2) in (6-6),
but this difference becomes paltry as N increases,

For -3 <(28 /&) < 0 the exponential term in (6-8) becomes

significant and cancels the pole of ®/28 at B= O whereas the

N A ook St

expression (6-€) becomes unbounded for B = 0. This is due to the fact
that the M/M/1 queue has infinite capacity, For P >0 it does not make
sense to compare ;e and ;d because for 3 >0 there is no steady-state
for the M/M/1 queue since this would imply A > M (See expressions
(6-5)).

In Fig 6.1 ;e and ;d are compared in terms of g for a fixed
value of X = 0,5 and for different values of N. '

The solid curves, corresponding to ;d do not become urbounded
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for 8 = 0 but their value at this point is the corresponding to N/2,

At some value of A= ﬁo. ;d and ;. intersect, The value J,
decreases as N increases, For B< Bo ;d and 7\'. differ approximately
in 1/2 as we saw until |8] = Nt in which case 'r'x'. = 0 since this implies
A= 0, For N = 10 this happens for B= 5

Therefore we can conclude that both models are very close when

the M/M/1 queue is far from saturation (A = M)

6.2, System of two queues

In Fig. 6.2 it is reproduced the model of Fig. 5.2 where the
queues nl(t) and nz(t) are of M/M/1 type with the indicated arrival
and service rates,

The arrival and service précessas are assumed independent. The

expressions for the means and covariances per unit times are

EL;_]:S:'_)_].= )\14 Joy = M= My (610a)
E [:2“)] = At fazm Mot fa e
V”t[“l(")L A+ Hoyp tf s Mo gl
v’-’t["z(t)] = At Mot Mot Ay et an

cov [ny () "2(‘)]_

Mz = Ma1 (6-10e)

t




Fig. 6.2: Network of three nodes and two queues

For the diffusion model of Section 5.1, if the maximum queue lengths

is va NZ' respectively we have.

E [nl(t)] E [xl(t)]
e b

=N B

E[nz(t)] oyl xz(t)] i
E o e 8B

t t

Var[ 2('r.)] [x (t)]
t

Var [nz(t)]

——————————

t

1 o431
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Cov [nl(t)nz(t)] Cov [;l(t)xz(t)]
N1N, 5

=N Ny &p  (6-1lc)

t t

equating expressions (6-10) and (6-11) we obtain

|

A1 - T (Nl “11 * ﬁl) - )-‘.21 (6-12a)
N2

Xz ol = (Ny olpp + Bo) + NNy oy, 4 Ho1 (6=11b)
N

K = e (Nyotyy = By )+ NN &yp 4 Ny (6-12¢)
W

Bt >\t = By > o \felat?

Mg % ebe Bas = Ry (6-12e)

where /.(21 can be chosen freely provided the others are not negative,
The equivalent arrival and service rates of queues nl(t) and nz(t)

are respectively

S Rl POM T Mt My S
Az = AZ 0/,(12 : f‘(z = }42 + }421 (6=13b)
and therefors the corresponding mean values are:

B Mok UMyt By

le L ' ok 4 -

M= Ay Myt K- A - My 2B,
(6-1b4a)

- - N “11 - l

= 1 2ﬁ1 3
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- de  _h* Ry

e e

Nk + B,

il RS T N ﬂzlﬁz - M2 25

a =N “22 pri P
2

2
2 pz
provided that
pl <0 H
ﬁz <0 3

(6=-14b)

18] < % x; (6150

B2l < Ny kg (610

For the diffusion queues the corresponding mean values are

5
|
=
-
)

i s ( %
= x, =N s
1\ efi -1

L

deilor e e
"2«1'“2"2'“2( T
/2 =1

where Xl and [2 are the components of the vector l = 2_/_\_.

that is:

= o
f1=2°(2231 12 B>

oy Oy = 0152

{ oo Lo bes S B
2 5 2
Oy Ky =0,

PR (6-16-a)
A
S ) (6=16b)
7,
¢l

-3

(6~17a)

(6=17b)

When fl and f2 are less than -3, the expressions (6-15) can

be approximated by

i
4
o
1
|
5
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g = N ..%_ = -N %_ (6-18a)
1 2 ( B, -—2p )
G2
2
P
Rl % “22 1
Noy =~ -Nz 7—3 ‘Nz “12 (6-18b)

Compare expressions (6-15) and (6-18), The difference ncw is not only
the term 1/2 in (6-15) but the terms affected by the element &, of
the covariance which did not show up in (£-15).

Let us take for instance the values of the first example of

Section 5.1, that is ‘*11 = 0,56, 0(22 = 0,64, “12 = «0,16 and

assume Nl = NZ = 10,

Take dé 7 Qx5 = -1 and cfl = p13 - d14 variable, The value
of 2* that minimizes the overall mean value is represented in Fig. 6.3
as a function of d&. The corresponding values of ﬁ%.and ;E are
given by expression (5=-22) that is

B, =d, -2 (6-19a)
A

¢f2 4+ 2% =<1+ 2* (6-19b)

and the corresponding 3; an }; can be obtained from expressions (6-17)

We want to compare the expressions of the means corresponding to

RR——-

e —
53 o

RN L I
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the diffusion model and to the M/M/1 model when 61 varies. This

is depicted in Fig. 6.4. The values of Kdl and W : are very close
e

whereas ;dz and ng.m not, This is due to the fact that the

pole of ;;l corresponding to B, = 0 occurs at ¢£1 = 1 whereas

the pole of n _ occurs for d = 0,05 so that x* = 1 and B =0.
e2 g i 2

In the same figure sum of the mean values 5; = 551 +n and

e2
n =n_ +n_ ., Similar conclusions to those of Section 6.1 can

n

d dl d2

be drawn: the diffusion model cancals the pole corresponding to
zero drift due to the inclusion of an upper barrier that prevents
the queue length from increasing without limit, As the drifts

become more negatives the mean values corresponding to both

models are nearly the same,
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7.~ CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK ‘

The diffusion approximaticn can be useful for modeling a computer
communication syrtem because it allows to consider the queueing processes
like if they were of continuous nature rather than discrete, Therefore
the increase in the number of states for complex systems can be avoided
simplifying then the mathematical treatment,

In Section 2 the requirements a process has to satisfy in order to
be approximated by a diffusion process was established, This was obtdned
as the limit of a random walk processes when the size of the steps became
very small as well as the time intervals, The probabilities of jumping

up and downwards were nearly the same, the difference being a quantity

dependent on the square root of the time interval and tending then to
4 zero as that becomes very small,The size step O and the time intervals
: At were related ty an expression: At =K 6% so that the variance of
the process makes sense,

This approximation led to the diffusion equation (2-5) which relates
the distribution of the continuous-state continuous-time process by
mean of its derivatives with respect to the state and time, Our interest
was addressed to find the steady~state distribution which gives an idea
L'L of what is to be expected in ths long run and after the transient

period has died off, The procedure was to solve the diffusion equation

when the derivative with respect to time was zero and with the appropiate
boundary conditions,

The same can be applied for a multidimensional diffusion process
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representing all the single diffusion processes that take place in a

j network of queues,

It is to be remarked that the boundaries (called “barriers” in

éiffusion literature) come from the physical fact that the queueing
processes represent the messages waiting to be served and therefore a
lower barrier must exist s‘nce the number of messages cannot be less
than zero, An upper berrier was provided too for each process because
finite length buffers were assumed,

In order to optimize the system operation a performance criterion
had to be taken, This was to consider the sum of all the expected
queue lengths whose expressions are quite straightforward once the

a length distribution is calculated via diffusion equation,

In Section 4 a general mecdel for routing messages in a computer
communication network was established, Then a procedure to calculate
the system parameters is provided, The system parameters are all the
coefficients of the diffusion equation, namely the mean per unit time

of each queue and the elements of the covariance matrix per unit time,

Once the system parameters are known, the expression of the
overall mean can be found and the problem consists of minimizing that

)
f
,Ai : expression by properly chosing the system parameters and subject to

il

3 ‘ 2 the specific constraints of the problem,
In Section 5 several examples are shown for ilustration for

systems o' 2, 4 and 6 queues, The last one though, is a modification

of the general model that was established in Section 4, The difference

is that the computer network is considered as a computer load sharing
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system rather than a general routing network, Nevertheless the diffusion
model can be applied to this case too by considering as generalized
"channels" not only the transmission links but the computer processor
themselves,

Finally, a comparison is made between the established diffusion
model and the exponential M/M/1 for a single queue and for a system of
two queues, The main difference between the two models arises from the
fact that the ¥/¥/1 has no limit for the queue length and therefore a
pole appears for equal arrival and service rates (null drift), The
more negative the drift becomes the more both models resemble and

this resemblance is more evident for larger queue capacity N.

Suggestions for {urther work

It was said in Section 4,5 that although the minimization problem
was dependent on the elements of B (vector drift per unit time) and ZL
(covariance matrix per unit time) we considered that one as fixed and
carried the minimization over the elements of J. This was because the
computations involved became easier, It would be desiderable to accomplish
the minimization problem by including in it the elements of A . The
difficulty arises from the fact that even though the constraints of the
problem are linear, the.function to be minimized is not linear but
exponential,

It could also be interesting to find other algorithms for the

minimization protlem that take advantage of the system structure in

order to investigate and eventually provide faster convergence.
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