3 AD-AOBI 451 FLORIDA UNIV GAINESVILLE DEPT OF COMPUTER AND INFORM==ETC F/6 9/2
PRELIMINARY SPECIFICATION OF REAL=TIME PASCAL.(U)

JUL 76 @ J HANSEN: C E LINDAHL N61339=76=C=0017

UNCLASSIFIED

lor |
AD
A03145

NAVTRAEQUIPCEN=76=C=0017=1 NL

| ...
|
|
| ...

~ T

o

£

TECHNICAL REPORT NAVTRAEQUIPCEN 76-C-0C1T-1

pay 1473 abs

oF
PRELIMINARY SPECIFICATION #8® REAL-TIME PASCAL

Ses HOF (’?“/‘7
Lﬁ\ Depazsment of Computer and Information Sciences,
University-of Florida Ui-e.-.
512 Weil Hall
/1 _Gainesville, Florida.. 32611

July 1976

Final Report for period October 1975 through July 1976

DoD Distribution Statement

Approved for public release:
distribution unlimited.

Prepared for

NAVAL TRAINING EQUIPMENT CENTER
Orlando, Florida 32813

NAVAL TRAINING EQUIPMENT. CENTER
ORLANDO. FLORIDA 32813

Mise

~——

NAVTRAEQUIPCEN 76-C-0017-1

GOVERNMENT RIGHTS IN DATA STATEMENT

Reproduction of this publication in whole or in
part is permitted for any purpose of the United
States Government.

\-(_?RELIMINARY SPELIFICATION OF RhAL TIMI PASLAL ‘

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entersd)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T REPORT NUMBER 2 GOVT ACCESSIO 3. RECIPIENT'S CATALOG NUMBER
76-C-0017-1 il "
\‘ = A s » eSS e - 5. TYPE O ORT & PERIOD COVERED
, 6 Final Kefer't.

—

AM_E(0 Jul IProe

G R AR T e aA s e . “—“[’ il i |
= -%;;_ R T CONTRRCTOR FPUMBER(s)

1 |Gilbert .)./éansen & Charles E/indahl) @ N61339-76-C—001%

w
i ——— WE
3 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
] y : AREA & WORK UNIT NUMBERS
University of Florida L
Dept. of Computer & Information Sciences 5741-02
Gainesville, Florida 32611
11. CONTROLLING OF FICE NAME AND ADDRESS : *—u-—ae’u'?'ﬁ?’
Computer Laboratory // Ul% 76
Naval Training Equipment Center 5 TS
Orlando, Florida 32813 8!

4. MONITORING AGENCY NAME & ADDRESS(if duhr'-Ltm-.Caunum_LL) 15. SECURITY CLASS. (of this report)

SCHEDU

% Unclassified
/ ') 15a. DECLASS!F!CATION DOWNGRADING

16. DISTRIBUTION STATEMENT (of this R-yon)

Approved for public release; be—-unlimited

WAV TR E G L PO

I fodtér * ‘ fferent from Report)

5 7@_6-;’/,17'1(

19. KEY WORODS (Continue on reverae alde |l necessary and identily by block number)

High level language PASCAL Portability

Concurrent processes Kernel Microprogramable Machine
Monitors Scope Reliability

Abstract data types Directly Executable Language Security

uling Real-1i i

0. ABSTRACT (Continue on reverse eide If necessary and Identify by block number)

i:is report is the preliminary specification of the PASCAL based language,
Real-Time PASCAL, which is designed to meet the requirements of real-time
training device applications. The language is an amalgamation of ideas that
for the most part have already been proved to be effective and useful. Mod-
ifications and extensions were incorporated in a manner consistent with the
style of PASCAL. They mainly consist of the introduction of concurrent
processes and constructs to control their creation, termination, scheduling
and synchronization; real-time control; and different primitives for perform-

~Xx

s 1473 eoimion oF 1 MOV 68 1S OBSOLETE UNCLASSIFIED

S/N 0[02’01"6601 I

,O / 9 / SECURITY CLASSIFICATION OF THIS PAGE (When Data

S DT Sy e s T o asye

LERS

)

=

~UNCLASSIFIED

URITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block 20

ing 1/0. The language features permit a user to program a stand alone system
assuming no underlying operating system support. Requisite operations
system features can be built upon the kernel of real-time PASCAL which performs
process management, memory management, I/0 management, real-time control,
and gives exclusive access to monitors. Further resecarch effort is recommended
to develop better language facilities for 1/0, exceptional conditions,

allocation of processors to concurrent processes and protection mechanisms.

Also presented are the development phases to be carried out to efficiently
implement and improve the language.

ACCESSION for

RTS8
0oC
w1 OUNCED .
JUSTIFICATION

1A pia iSRS -

UISTNBUIIOI/AVMLAIIUH 0!

st AVAIL_wnd/or SPEOIML

B

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)
et .

R e
P R —

NAVTRAEQUIPCEN-76-C-0017-1

SUMMARY

This report presents the preliminary specification of a high-level language
designed to support all the requirements of real-time, training device appli-
cations. The features of this language are based upon the requirements of
real-time systems and the latest software technology. They were determined
after carrying out an analysis of actual training device programs and a care-
ful study of significant literature pertaining to the area. An attempt was
made to specify a language which is transportable, reliable and secure,
simple, and readable. '

The motivation for designing such a language was to attempt to reduce the
total programming costs - development, maintenance, and modification - which
now exceed hardware costs by an order of magnitude.

The principal result is the specification itself. Further research is
recommended to develop and refine the language constructs necessary to per-
form input/output, handle exceptional conditions, control the allocation of
processors to concurrent processes, and provide protection mechanisms using
capabilities (access rights).

-

NAVTRAEQUIPCEN-76-C-0017~-1

PREFACE

In the development of the preliminary language specification presented in
this report a large number of references were read, and a careful study was
made of those most pertinent to the area of programming language design.

As time passed and the language goals and design criteria became firm, it
was evident that one language stood out above all others: PASCAL developed
originally by Niklaus Wirth. In recognition of this fact and to indicate
our indebtedness to PASCAL, the authors have chosen to call the language
specified herein, '""Real-Time PASCAL." However, other languages were of

significant import, namely, Concurrent PASCAL, PLATON, ALGOL 68, and SIMULA.

Generally, only tested language facilities were included. It is hoped that
the language specification will provide a detailed frame of reference for
future discussion and that it adequately addresses the problems inherent in
real-time systems.

NAVTRAEQUIPCEN-76-C-0017-1

TABLE OF CONTENTS

Section Page
SUMMARYE N T et s era s c8l e s ot s abt o oo shutar sies akssellorulvlmbayors, /e 1
PREBFACE “ J.vic vt anie heis o eiloinleis s wialiailimieholess o s sl uls s\ s alw e aieia v o s o o . 2
I INTRODUCTION ,......ccccc0es sl v iaretstaln Sioeyeieie sie ol e i 5

Contract ObJECTIVES: | ... v vesoise ssoisiosssssosnsssssnsss 5
Design Philosophy and Background Information ,, 5
Design Goals and Criteriace0eveunenne shamsiskeieral -

II OVERVIEW OF THE LANGUAGE ele sl o /bia kbte a nisiatatatele aln) minle T 9
IIT RECOMMENDATTIONST 0 Soitiiie oo etals aiaistalalotesiulictste otaists o\ s aleioie s s o' 14

Append1x A (Real-Time PASCAL Language Specification),, 19
Introduction s o5 arelaacelsia aserarels s oieera o stk on e e ae sressten 20

2. Notation Slel ot ohete v 4 ot eteinie)o)slie e u e o e R S L Eiokeioiviaraln 20k
| BNF (Backus-Naur Form) T AR N 21

202 Syntax Diagrams s T T e |

e Character Set i o e e e e N S e s e e e 22
4. Basic SYMboLS: ', .. v veineieon enmison g 1 e v 23
4.1 Special Symbols ,.......... PR R F PR, 23
Keyword Symbols _................... e asnae 23
Tdentifiers il (v iianeithetass vabecanel 23
Constants S A O SWarie e e e R & e e 24
4 5 SEPATALOTS. . 5 il sl ntasrlicrietiis Skt e s 20
BLOGKS " (S0 aainive oo semiosle Sy O e |
Label DECIATALIONS, ivvvvsssviasivssisisssess 26
Constant DOEINICAONS ceinienvnmvsssunvicessve 27
Data Type DOLIRIRIONS . cvicearsisiisiosnsnssons 2B
8.1 Simple Types e R s e el 128
8.1.1 umeration Types 29

1.1.1 INTEGER Type 30
.1.1.2 BOOLEAN Type 30
s1lale
1.1
o 1, 5

b&b
bblN

o~y

S CHAR DD Con v cvseins 31
N OCRIEF TYPR.ivcvinns 3
5 Subrange Type 32
REAL IVDE. . Jiisioe sudums sunmsas denna 38

sessusassasevesssesses 34

RO S NG

o 0 o

——

&N
ye)
S
&
-
=
®

10.

11.

12.

13.
14.
15.
16.
17.

NAVTRAEQUIPCEN-76-C-0017-1

Page

8.2 Structured TYPeS ceceeeerescernanacaanns 35
8.2.1 ARRAY Type «eotecevsrernrocncanns 36

8.2.2 RECORD Type :tecceocseoccnccsonns 38

8.2.3 SET Type «ceoceccecscsccnnencnnns 40

8.2.4 Pointer Type +steevervcrvvscacnns 40

8.2.5 MONITOR Type ++eevveeennes e 41
Variables P R P RS SR S R P S R P 44
9.1 Variable Declaration «...ecceccesns S eLaara ol
9.2 Variable Denotations «..ccccecscccencasss 44
9.2.1 Entire Variable «ccccecveencnns 45

9.2.2 Array Component S1alsl S sheotetatels 45

9.2.5 Record Component .:ccoceceecncn. 45

9.2.4 Pointer Component «:..cecocecenn 46
Expressions Th s seses T e dn s W de s e R T 47
10.1 Type Compatibility cceceecccccreainnnnns 49
10.2 Operators «--csectrreacnaannan L R 49
Y0221 NOT Operator P RO, A R A 49

10.2.2 Multiplying Operators 49

10.2.3 Adding Operators «weececeoceco-.. 50

10.2.4 Relational Operators 50

10.3 Sets creene e ea T e A e e T 51
Statements ieeisl o e ale P e R e e e OB e S
11.1 Assignment Statementcccccoen dnenen 53
11.2 Compound Statement «:cce.eeececrcencenes 53
11.3 GOTO Statement e S S S e e R A S s 54
11.4 IF Statement cscescesccas v SO e eE b e 54
11.5 CASE Statement eccseececes e e e b e 55
11.6 FOR Statement ceeevsssosscssssossss Slle e s e 55
11.7 LOOP-WHILE Statement «...ccceeceeessasss 57
11.8 UNTIL Statement et o e 05 S R
11.9 NITH Statement «vrsssvonescecasasssessns 39
11.10 Routine Calls +cecceeans o T T o o LR P (0
11.10.1 Procedure Call 3§ TE s e ol
11.10.2 PFunction Call sissscesssnsencees 62
11.10.3 Bvent Call cevseivovenvivsonsnss G2

11.11 INIT Statement «:cceeoves o eueewsavissese 103
11.12 TERMINATE Statement I Doy T o TP RS),
Routine Declarations cecsesecscecvsecscscscccceces 04
12.1 Procedure Declaration R L T O sos 66
12.2 Function Declaration «cccceeececcccceees 67
12.3 Event Declaration seccsccecsscscccecaans 68
Process Declaration CaE RO NN Fenwseieaswssve AU
Concurrent Program +ececceeeecccscocnsscnnncnnes 72
Scope Rules ++ereerrennretinenccacscssnnnnnnans 75
Input/Output tessevacsessssssvsssssesscccccoase 17
Real-Time Control T 81

4
EaEL e R T T

NAVTRAEQUIPCEN-76-C-0017~-1

SECTION I

INTRODUCTION

CONTRACT OBJECTIVES

The objectives of the current phase of this contract and this report are
respectively to develop and to present a preliminary specification for a
high-level computer language designed to support all the requirements of
real-time, training device applications. The features of this language are
based upon the requirements of currently operational simulators and the
latest software technology. They were determined after carrying out an anal-
ysis of actual training device programs and a careful study of significant
literature pertaining to the area.

DESIGN PHILOSOPHY AND BACKGROUND INFORMATION

First and foremost the specified high-level language must address the problems
inherent in what might be called '"hard'" real-time situations, that is, cir-
cumstances in which responses to signals are required within a few micro-
seconds at best. Such response times obviously require efficient object code
and a run-time representation of data for which highly efficient access is
possible. Since both application and system programs are to be written in
the specified high-level language with no degradation in response time, some
technique had to be devised to solve the problem. The best answer appears

to be to consolidate the code for time critical sections, for the basic
real-time control facilities, for necessary primitive input/output operations,
and for the allocation of central processing unit(s) to concurrent processes
into a small, machine code section to be designated the '"kernel" of the
system. The high-level language rests upon this minimal kernel for its run-
time support. High-level constructs have been provided in the language to
allow direct coupling to appropriate portions of the kernel. Hence, the
language specified does not depend upon the run-time environment provided

by an associated operating system. Instead it is intended that the user

will have the appropriate high-level language facilities supported by a
minimal, primitive kernel with which to implement the requisite operating
system or support resources required by an application. Thus, medium term
scheduling, sophisticated input/output procedures, and custom tailored control
of an external simulation environment, for example, can all be carried out

in a high-level language without resorting to imbedded machine code.

In addition to requiring that efficient object code be generated by the
compiler for the language, a most important goal was to attempt to achieve
practical portability of the compiler from machine to machine so that the
language would be as machine independent as possible. This objective has
greatly influenced the language design. For example, it is planned that
the compiler will be written in the specified language and that it will not

NAVTRAEQUIPCEN-76-C-0017-1

generate machine language for a particular target machine. Instead it will
generate a directly executable language or DEL. This DEL represents the
optimal instruction set and data types of an abstract machine for executing
the specified language. Obviously realization of this abstract machine must
be carried out. The best solution for efficiency would be to design a
machine to execute the DEL directly or to write an emulator for a microprogram-
mable machine which directly executes it. Otherwise, the code generators
for the compiler can be rewritten to generate optimized machine code for

any target machine. Transporting the compiler from one machine to another
consists, therefore, of rewriting the small kernel, and either the code gen-
eration phase of the compiler or an interpreter for the DEL.

At the present time it should be emphasized that the language specification
presented herein is a 'preliminary" specification. The reasons for this
statement are many. In the first place, the language's compiler has not
been written; hence the language has not yet been suitably tested. Secondly,
in preparation of the language specification it was found that certain

areas require additional research and development effort. These consist of
the following: input/output, allocation of processors to concurrent processes,
exceptional conditions, and protection mechanisms. Preliminary constructs
have been selected, but they must stand the test of application and time be-
fore a definitive conclusion as to their efficacy can be ascertained and a
definitive language specification issued.

No attempt has been made to include many ''mew'", untested language facilities.
Basically the language being defined is an amalgamation of ideas that for
the most part have already been proved to be effective and useful. Those
who are familiar with the current state of the art of programming languages
will note that the language is not new and is easily recognizable as ¢
variant of the PASCAL language developed originally by Niklaus Wirth

The high-level éanguages from which most of the consgrgcts have beeg taken
include, PASCAL s Seguential and Concurrent PASCAL “’° , ALGOL 68 :

PLATON - and SIMULA ° . Since the basis of the specified language is

1. Wirth, N. '"The Programming Language PASCAL and its Design Criteria' in
State of the Art Lecture Report 7: High Level Languages, Infotech
Information, Maidenhead, Berks England (1972), 451-473.

2. Jensen, K. and Wirth, N. PASCAL User Manual and Report, Springer-Verlag,
Berlin (1974).

3. Hansen, P.B. and Hartmann, A.C. Sequential PASCAL Report, Information
Science, California Institute of Technology (July 1975).

4. Hansen, P.B. Concurrent PASCAL Report, Information Science, California
Institute of Technology (July 1975).

5. Lindsey, C.H. and Van der Meulen, S.G. Informal Introduction to ALGOL 68,
North-Holland, Amsterdam, The Netherlands (1971). IR e

NAVTRAEQUIPCEN-76-C-0017-1

essentially PASCAL, it is proposed that this language be called Real-Time
PASCAL. It has been devised to address the problems inherent in the design
and construction of simulation, process control, and computer operating
systems in the context of a real-time environment.

DESIGN GOALS AND CRITERIA

The overall objective was to specify a language which was transportable,
reliable and secure, flexible, simple, and readable. Obviously many com-
promises have had to be made, for some of the above goals conflict with each
other. Let us now consider the design goals and their associated criteria
in order to better understand the compromises and the specification itself.

TRANSPORTABILITY. As indicated above, practical transportability of the
compiler was one of the important goals to be achieved. This has required
that the compiler be written in the specified language, that it be parameter-
ized with respect to the storage units utilized for each data type, that the
language require minimal run-time support, and that the run-time support
package called the "kernel" of the language be the only code written in the
assembly language of the given target machine.

RELIABILITY AND SECURITY. Reliable and secure software systems require

that the language utilized have the facilities to protect or limit access

to certain program and/or data elements, in some cases as a function of
time. In order to meet this goal the following criteria were established.
The program syntax should allow automatic and rigorous checking of data
types and the interfaces between program modules at compile time. Constructs
should be provided to detect and hence guarantee at compile time that fime-
dependent errors cannot occur when concurrent processes are operating.

The sharing and exchange of data between processes should be aided by
providing the language facilities to restrict the scope of the access to the
variables involved. To aid the compiler all variables and their associated
data types should be declared with no default conditions allowed.

FLEXIBILITY. The programming language should have the flexibility to build
abstractions that are natural for the problem at hand. This implies that the
data types of the language should provide a convenient match to the abstrac-
tions of the problem. Therefore, the language should allow a programmer

6. Sorensen, S.M. and Staunstrup, J. PLATON Refernece Manual, RECAU,
Aarhus, Denmark (July 1975).

7. Ichbrah, J.D. and Morse, S.P. '"General Concepts of the SIMULA 67
Programmirg Language', Annual Review in Automatic Programming, 7, 1
(1972), 65-93. i

NAVTRAEQUIPCEN-76-C-0017-1

to define easily new data type and that these can be defined in terms of
other types previously defined. Only with this capability can the programmer
efficiently match a given problem with the algorithm and the computer hardware
used to solve it.

SIMPLICITY. A programming language should be as simple as possible and yet
retain sufficient power to express easily the algorithms required in real-
time systems. This goal has resulted in the following criteria. The syntax
of the language should be natural for the problem and encourage clear thinking;
it should be designed so that it facilitates fast translation; and it should
be such that the compiler can generate efficient object code without the

need for extensive code optimization.

READABILITY. A reasonable goal is that the programs written in the language
can be easily read and understood. This goal has resulted in the following
criteria being applied. The language structures used should encourage

lucid thinking and should be natural to use. In addition it implies that

the extent of specific language constructs be clearly delineated.

NAVTRAEQUIPCEN-76-C-0017~-1

SECTION 1I
OVERVIEW OF THE LANGUAGE

A Real-Time PASCAL program consists of statements which describe the opera-
tions to be performed on data, and declarations and definitions which describe
the data which are manipulated by the operations.

Statements denote operations cn constants and variables. An identifier

may be a synonym for a constant through an association introduced in a con-
stant definition. Variables occurring in a statement must be introduced by
a variable declaration which associates an identifier naming the variable
with a data type. The data type defines the set of values the variable

may assume and possibly operations that may be performed on the variable.
The data type may be either directly described in the variable declaration,
or it may be referenced by a type identifier previously introduced by a type
definition.

A data type is either simple or structured. The simple types consist of the
enumeration, REAL, queue and reference types. The enumeration type defines
a linear ordered set of distinct values. The values may be defined by
identifiers or by one of the standard enumeration types: BOOLEAN, INTEGER or
CHAR. Values of type BOOLEAN are denoted by the identifiers TRUE and FALSE,
values of type INTEGER and REAL are denoted by numbers, and values of type
CHAR are denoted by quotations. The set of values of type CHAR is the
character set defined on the object machine.

A type may be defined as a subrange of any other already defined enumeration
type be indicating the smallest and largest value of the subrange.

A queue type can only be used within a monitor entry routine (see below) to
delay and resume the execution of a calling process. A reference type is
used to reference an instance of a process.

Structured types specify the types of their components and a structuring
method. A component of a variable of structured type is denoted:by a selector.
The structured types consist of array, record, set, pointer and monitor

types.

An array consists of a fixed number of components of the same component

type. An array selector consists of computable indices of the index type
specified in the array type definition. The index type must be an enumeration
type. The time to select an array component is independent of the indices.

A record consists of a fixed number of fields which may be of different types.
A record selector is not computable, but an identifier uniquely denoting the

_——

o ma

NAVTRAEQUIPCEN-76-C-0017-1

component to be selected. These field identifiers are declared in the record
type definition. As with arrays, the time needed to access a record component
is independent of the selector. A record type may have several variants.
Thus, variables of the same type may have different structures, i.e., contain
a different number of components with different types. A component of the
record, called the tag field, indicates the currently valid variant. The
part common to all variants usually consists of several components, including
the tag field.

A set defines the set of all subsets of values of its base type. The base
type must be an enumeration type.

A variable may either be declared explicitly in which case it is referenced

by its identifier, or generated dynamically by an executable statement in which
case it is referenced through a pointer. Pointers are variables of pointer
type. The pointer type is bound to the given component type so a pointer
variable may only assume values pointing to variables of the same compcnent
type. The pointer constant NIL is an element of every pointer type; it

points to no variable. The use of pointers permits any finite graph to be
represented.

A monitor type defines a data structure and the operations that can be performed
on the data structure by concurrent processes. The monitor can be used for
process communication, synchronization and scheduling. Variables declared
within a monitor are accessible only thirough the monitor's entry routines.
Monitor entry routines are accessible outside the monitor type, but not within
it, only to a process or another monitor. Simultaneous calls on monitor

entry routines by concurrent processes are executed one at a time. Thus a
monitor entry routine has exclusive access to variables declared in a monitor
type. A monitor type also defines an initial statement that will be executed
when a monitor variable is initialized. A system can only have a fixed number
of monitors.

One of the basic operations on a variable is assignment of a new value to
it by an assignment statement. The value is obtained by evaluating an ex-
pression. An expression consists of operands (variables, constants, sets or
functions) and operators in infix notation. The data types of two operands
must be compatible in order for an operation to be performed on them. The
fixed set of operators are:
a. arithmetic operators: addition, subtraction, sign inversion,
multiplication, division, and remainder.
b. Boolean operators: negation, conjunction (and), and disjunction
(or).
c. set operators: union, intersection and difference.
d. relational operators: equality, inequality, ordering, set member-
ship and set inclusion.

10

— T

N

NAVTRAEQUIPCEN-76~C-0017-1

Statements are either simple or structured. The simpie statements are the
assignment statement, procedure call, event call, GOTO statement, INIT
statement and terminate statement. A procedure call causes the execution of
the designed procedure (see below). An event call causes an event (see below)
to be invoked. A GOTO statement breaks the normal sequential execution of
statements by causing the next statement to be executed to be the one labeled
with the spec:ified label. The label must be declared in the block containing
the GOTO statement, and a statment marked with the label

within the same block. The INIT statement causes a process Or monitor to

be initialized. For a process, an instance is created and its statements
executed concurrently with all other processes. For a monitor, its initial

statement is executed. A monitor can only he initialized once within the process

it is declared. A terminate st tement terminates the execution of the
specified process instance.

Simple statements are components of structured statements which specify
sequential, selective or repeated execution of their components. Sequential
execution of statements is specified by the compound statement and WITH
statement. Selective execution is specified by the IF statement and the
CASE statement. Repeated execution is specified by the FOR statement, the
LOOP statement and the UNTIL statement.

A compound statement and WITH statement group a sequence of statements into
a unit. The statements are executed sequentially in the same order as they
are written. The WITH statement permits record fields and monitor entry
routines to be used without qualification of the record or monitor variable
within the statement group.

The IF statement selects for execution one of two statements depending on

the value of a Boolean expression. The second statement is optional. The
CASE statement allows for the selection of one of several statements according
to the value of an enumeration expression.

The FOR statement is used when the number of iteratiors is known beforehand.
The loop statement is used to execute certain statements repeatedly while a
Boolean expression remains true. The UNTIL statement is used to execute

a structured statement until one of the designate events bound to it is
invoked.

An identifier can be associated with a statement. Such a statement is
called a routine and the declaration a routine declaration. There are
three kinds of routines: procedures, functions and events. They are

structurally identical. A routine may ~ontain additional variable declarations,

11

NAVTRAEQUIPCEN-76-C-0017-1

type definitions and routine declarations. The scope of these identifiers

is the program text which constitutes the routine declaration. A routine

has a fixed number of (formal) parameters which are denoted within the routine
by an identifier. There are five kinds of parameters: variable parameters,
constant parameters, universal parameters, and procedure and function
parameters. Upon an activation of a routine, an actual parameter known as

an argument is substituted for the corresponding parameter. For a variable
parameter the arguments must be a variable. The parameter stands for this
argument and may be assigned a value within the routine. For a constant
parameter the argument must be an expression which is evaluated once before
execution of the procedure and assigned to the parameter. Its value cannot
be changed by the routine. For a universal parameter, compatibility checking
of its type and the arguments type is suppressed. In the case of procedure
and furiction parameters, the arguments must be a procedure or function
identifier.

A function is declared like a procedure except the declaration specifies

a result type which must be an enumeration or pointer type. The function-

al result is defined by assigning a value to the function identifier within
the function declaration. Function parameters must be constant parameters.

A function or procedure may be called recursively by a function or procedure
call within its declaration. A procedure or function declaration prefixed
with the symbol ENTRY is known as an entry routine. An entry routine declara-
tion may only occur within a monitor type and cannot be nested within
another routine declaration.

An event declaration represents an event that is bound to a structured
statement by an UNTIL statement. An event call invokes the event and upon
completion causes control to return to the statement after the UNTIL state-
ment instead of to the point after the call.

A process declaration is the prototype for a class of sequential processes.
An instance of the process is created by the INIT statement. Execution of
the sequential processes is concurrent and under control of the kernel.
Concurrent processes communicate only by means of menitors.

The kernel represents the minimal run-time support needed to suppert the
execution of a concurrent program. A underlying operating system is not
required. The kernel permits a user to construct the requisite operating
system facilities and policies needed to support his stand alone system.

Basic I/0 is handled by a standard procedure. It is a primitive operation
that permits a user to construct various device handlers, interrupt handlers,

12

- ————

NAVTRAEQUIPCEN-76-C-0017-1

I/0 exception handling routines, generalized I/0 and control routines, and
file systems.

Real-time control is provided by standard routines that permit a process to
be delayed a specified amount of time and to measure the time for a process
to perform some action.

The complete language specification is contained in Appendix A.

3

TN 0 . <Ay

NAVTRAEQUIPCEN-76-C~0017-1

SECTION III

RECOMMENDATIONS

The development of the preliminary language specification presented in this
report has established the realization that much yet remains to be accomplished.
In particular, a compiler for the language specified must be written, and

the language features must be evaluated by the programming of an actual,
real-time system. Only in this manner can the language's adequacy and
capabilities be suitably tested and its language specification definitely
ascertained.

It is recommended that research and development effort be directed toward

a better understanding of high-level language facilities pertaining to input/
output, the handling of exceptional conditions, the control of allocation

of processors to concurrent processes, and the provision of appropriate
protection mechanisms using capabilities (access rights).

In addition, if the preliminary language specification presented herein is
to form the basis for a continued development effort, it is recommended
that the following steps or development phases be carried out.

The first phase should be the implementation of the compiler. Since
portability of the compiler from machine to machine is of importance, it
is envisioned that this compiler would output a directly executable
language or DEL instead of machine language for a specific computer. The
DEL represents the optimal instruction set and data types of an abstract
machine for executing the specified language. This phase would also in-
clude the specification of the DEL.

Phase II should be devoted to developing the means for executing the DEL.
This could be accomplished by writing an emulator on a microprogrammable
machine (perhaps the best method), an interpreter on a specific computer, or
by using the DEL as input to a program to generate machine code directly

for a target machine.

Once the compiler and a run-time system have been developed for the language
it must be adequately tested, evaluated, and changed if necessary in Phase III.
Initially algorithms pertaining to real-time applications should be written
and tested to determine the effectiveness and suitability of the language.
Finally an actual prototype, real-time system should be programmed as an
exercise. With these tests as a basis it is envisioned that modification

and extensions to the language would be incorporated as needed.

Once the language constructs have been finally determined, Phase IV should

be devoted to developing the most efficient realization of the abstract
machine. Both software and hardware techniques should be considered. Perhaps

14

NAVTRAEQUIPCEN-76-C-0017-1

| additional hardware processors (microprocessors) should be considered.

In summary, the goal should always be kept in mind, namely to support all
the requirements of real-time training device systems in the most cost-

effective manner.

-"

15

(S

NAVTRAEQUIPCEN-76-C-0017-1

BIBLIOGRAPHY

Programming Language Design

1. Enslow, P.H. et. al., "Implementation Languages for Real -Time Systems.
Part 2. Language Design--General Comments', European Research Office
London (England), (April 1975).

2. Hoare, C.A.R. Hints on Programming Language Design. Stanford University
Report STAN-CS-73-403 (Dec. 1973).

3. McKeeman, W.M. '"Programming Language Design" in Compiler Construction:
An Advanced Course, Springer-Verlag, Berlin (1974),
514-524,

4. Pratt, T.W. Programming Languages: Design and Implementation, Prentice-
Hall, Englewood Cliffs, N.J. (1975).

5. Wasserman, A.I. (editor) Special SIGPLAN Notices Issue on Programming
Language Design 10, 7 (July 1975).

6. Wirth, N. ''The Programming Language PASCAL and its Design Criteria"
in State of the Art Lecture Report 7: High Level Languages, Infotech
Information, Maidenhead, Berks England (1972), 451-473.

7. Wirth, N. '"On the Design of Programming Languages' in Information
Processing 74, North Holland, Amsterdam (1974), 386-393.

Programming Languages

8. Bekic, H. '"An Introduction to Algol 68", Annual Review in Automatic
Programming, 7, 3 (1973), 143-170.

9. Department of Defense, Requirements for High Level Computer Programming
Languages "TINMAN' (April 1976).

10. Enslow, P.H. et. al. "Implementation Languages for Real-Time Systems.
Part 3. Command and Control Languages--Specific Comments', European
Research Office London, England (April 1975).

11. Hansen, P.B. Concurrent PASCAL Introduction, Information Science,
California Institute of Technology (March 1975).

12. Hansen, P.B. Concurrent PASCAL Report, Information Science, California
Institute of Technology (June 1975).

16

13.

14.

15.

16.

17.

18.

19.

20.

1.

NAVTRAEQUIPCEN-76-C-0017~1

Hansen, P.B. and Hartmann, A.C. Sequential PASCAL Report, Information
Science, California Institute of Technology (July 1975).

Ichbrah, J.D. and Morse, S.P. '"General Concepts of the SIMULA 67
Programming Language'", Annual Review in Automatic Programming, 7, 1
(1972), 65-93.

Jensen, K. and Wirth, N. PASCAL User Manual and Report, Springer-Verlag,
Berlin (1974).

Lindsey, C.H. and Van der Maulen, S.G. Informal Introduction to ALGOL 68,
North-Holland, Amsterdam, The Netherlands (1971).

Miller, J.S. et. al., CS-4 Language Reference Manual, Intermetrics,
Inc., Cambridge, Mass. (Dec. 1973).

Ministry of Defense, Official Definition of CORAL 66, Her Majesty's
Stationery Office, London (1970).

Newbold, P. HAS/S Language Specification, Intermetrics, Inc., Cambridge,
Mass. (July 1974).

Palme, J. Making SIMULA into a Programming Language for Real-Time,
Research Institute of National Defense, Sweden (June 1974).

Sorensen, S.M. and Staunstrup, J. PLATON Reference Manual, RECAU,
Aarhus, Denmark (July 1975).

Operating System Techniques

22.

23.

24.

25.

26.

27,

Dijkstra, E.W. "Hierarchical Ordering of Sequential Processes' in
Operating System Techniques, Academic Press, New York (1972).

Goos, G. '"Some Basic Principles in Structuring Operating Systems'
in Operating System Techniques, Academic Press, New York (1972).

Hansen, P.B. '"The Nucleus of a Multiprogramming System'", CACM
13, 4 (April 1970), 238-241.

Hansen, P.B. Operating System Principles, Prentice-Hall, Englewood
Cliffs, N.J. (1973).

Hoare, C.A.R. '"Monitors: An Operating System Structuring Concept',
CACM 17, 10 (Oct. 1974), 549-557.

Wulf, W. et. al. "HYDRA: The Kernel of a Multiprocessor Operating
System', CACM 17, 6 (June 1974), 337-345.

17

NAVTRAEQUIPCEN-76-C-0017-1 2

Concurrency

28. Dijkstra, E.W. "Cooperating Sequential Processes' in Programmin
Languages (ed. F. Genuys), Academic Press, New York (1968).

29. Hansen, P.B. "Structured Multiprogramming', CACM 15, 7 (July 1972),
574-577.

30. Hansen, P.B. '"A Comparison of Two Synchronizing Concepts', Acta
Informatica 1 (1972), 190-199.

31. Hansen, P.B. "Concurrent Programming Concepts'', Computing Surveys

32.

S5, 4 (Dec. 1973), 223-245.

Hoare, C.A.R. "Towards a Theory of Parallel Programming" in Operating
System Techniques, Academic Press, New York (1972).

Structured Programming

33.

34.

35.

Dahl, 0.J. "Hierarchiacal Program Structures'" in Structured Programming
by Dahl, 0.J., Dijkstra E.W. and Hoare, C.A.R., Academic Press,
New York (1972).

Knuth, D.E. "Structured Programming with GOTO Statements,'" Computing
Surveys 6, 4 (Dec. 1974), 261-302.

Ledgard, H.F. and Marcotty, M. "A Genealogy of Control Structures'",
CACM 18, 11 (Nov. 1975), 629-638.

36. Wirth, N. Systematic Programming, Prentice-Hall, Englewood Cliffs, KN.J. ‘
(1973).

Portability

37. Poole, P.C. "Portable and Adaptable Compilers'" in Compiler Construction:

An Advanced Course, Springer-Verlag, Berlin (1974), 427-497.

Exceptional Conditions

38.

Goodenough, J.B. "Exception Handling: Issues and a Proposed Notation',
CACM 18, 12 (Dec. 1975), 683-696.

18

- i RN 5 e

T
T —————————— e ——————— g

NAVTRAEQUIPCEN-76~C-0017-1

APPENDIX A

Real-Time PASCAL Language Specification

19

NAVTRAEQUIPCEN-76~C-0017-1

1. INTRODUCTION

Real-Time PASCAL is a language designed to meet the requirements of real-

time training device applications. It is mainly based on PASCAL developed

by Niklaus Wirth [6] and Concurrent PASCAL developed by Per Brinch Hansen

[11, 12]. 1Ideas and constructs were also taken from the programming languages
ALGOL 68 [15], SIMULA [13] and PLATON 21].

There are a number of modifications and extensions incorporated into the
language in a manner consistent with thestyle of PASCAL. The main extensions
consist of the introduction of: 1) concurrent processes and constructs to
control their creation, termination, scheduling and synchronization; 2) real-
time control, and 3) control structures consistent with the philosophy of
structured programming. The main modifications were: 1) addition of delimiters
to terminate statements; 2) change in the scope rules, and 3) different
primitives for performing I/0.

The features of the language permit a user to program a stand alone system
assuming no underlying operating system support. From the language constructs
the user can program the requisite operating system features needed

to support his system. The users operating system is built upon the kernel

of Real-time PASCAL. This kernel controls: 1) the allocation of concurrent
processes to processors, 2) the exclusive access of concurrent processes to
shared data, 3) the peripherals, and 4) interrupts.

It is recognized that there are some technological problems that have to be
overcome in order to obtain the efficiency needed for real-time systems.

Some of the solutions are just now becoming available, e.g., hardware to

permit efficient access to local and global variables and microprogrammable
machines the user can microprogram. Other solutions are not readily available.
To overcome these inefficiencies, modification may have to be made to certain
language constructs, e.g., require the user to give an upper bound on the

number of simultaneous activations of a given concurrent process that can

exist simultaneously, and require the user to give an upper bound on the storage
requirements for a processe's stack,

20

NAVTRAEQUIPCEN-76-C-0017~-1

2. NOTATION

The syntax of Real-time PASCAL constructs is given both in BNF and in the
form of syntax diagrams.

2.1 BNF (Backus-Naur Form)

Syntactic constructs are denoted by metalinguistic variables enclosed between
angular bracks < and >. The metalinguistic variables are English words which
are suggestive of the meaning of the construct. A sequence of constructs
enclosed by the meta-brackets { and } imply their repetition zero or more
times. The symbol <empty> denotes the null sequence of symbols.

Terminal symbols constitute the vocabulary of Real-time PASCAL, i.e., its

basic symbols (cf. Section 4). They are represented by capital letters and
special characters.

Example:
<compound statement> ::= BEGIN <statement> {;<statement>} END

2.2 Syntax Diagrams

The BNF specifies the language syntax whereas the syntax diagrams are designed
for human readability. They are not designed as a basis for parsing, e.g.,
the syntax diagrams for expressions do not reflect the precedence of operators.

A syntax diagram is a directed graph with a single input edge and a single
output edge. It is a graphical representation of a syntax rule. A traversal
of a syntax diagram, starting at the input edge and terminating at the output
edge, corresponds to an application of the syntax rule. To each metalinguistic
variable corresponds a syntax diagram.

The nodes of a syntax diagram are either metalinguistic variables cr terminal
symbols.

Example:

compound statement:

~—— BEGIN ——& <statement> —y—# END —&>

¢ -

21

R i e T S TR B EE e e ———————————— . —————
- AWy)

NAVTRAEQUIPCEN-76-C-0017-1

3. CHARACTER SET

Programs are written in a subset of the Extended ASCII character set.

<character> ::= <graphic character> | <control character>

<graphic character> ::= <special character> | <letter> | <digit> |
<space>

<special character> ::=+ [- [* | /| " | .|, | l:1=1"]¢e]|
< fale by bR 6 L%

<lettexr> 1= A | BlC| Xl vz _

<digit> ::=0 | 1| ... | 8 | 9

Letters are used for forming identifiers (cf. Section 4.3) and strings
(cf. Section 8.2.1). Digits are used for forming numbers (cf. Section 4.4),
identifiers and strings.

<control character> ::= (: <digits> :)
<digits> ::= <digit>{<digit>}

A control character is an unprintable character.

Each character is represented by its ordinal value (cf. Section 8.1.1.1).
The ordinal value of a control character must be in the range 0..127.

22

LA

NAVTRAEQUIPCEN-76-C-0017-1

4. BASIC SYMBOLS

A program consists of symbols and separators.

<symbol> ::= <special symbols> | <keyword symbol> | <identifiers>

<constant>

4.1 Special Symbols

<special symbol> ::=+ | - | * | /| =] < | < | <=]|>]|>]|¢|
s besies) ko Gl L R I e g P an b
(:l:)llo

Special symbols have fixed meanings which will be given in the appropriate
section.

4.2 Keyword Symbols

<keyword symbol> ::= AND | ARRAY | BEGIN | CASE | CONST | DIV | DO |
DOWNTO | ELSE | END | EVENT | FI | FOR | FORWARD | FUNCTION |
GOTO | IF | IN | INIT | LABEL | LOOP | MOD | MONITOR | NEXT |
NIL | NOT | OF | OR | PACKED | PROCEDURE | PROCESS | PROGRAM |
RECORD | REPEAT | REF | SET | SHARED | TERMINATE | THEN | TO |
TYPE | UNIV | UNTIL | VAR | WHILE | WITH
Keyword symbols are reserved words with a fixed meaning; they may not be

used as identifiers. They are written as a sequence of letters and are in-
terpreted as a single symbol.

4.3 Identifiers
<identifiers> ::= <letter>{<letter> | <digit>}

identifier:
—p <letter> re
t<1etter>:—]
<digit>

Identifiers are names denoting constants, types, variables, procedures,
functions, and events.

23

e e S U— —

NAVTRAEQUIPCEN-76-C-0017-1

4.4 Constants
A constant represents a value that can be used as an operand in an expression.

<constant> ::= <constant identifier> | <enumeration constant> |

<real constant> | <string constant> | NIL

Each type of constant will be discussed in the appropriate section.

4.5 SeEarators

At least one separator must occur between any two constants, identifiers, or
keyword symbols, and no separator may occur within such.

<separator> ::= <space> | <end of line> | <comment>

<comment> ::= <left curly bracket> <any sequence of graphic characters
not containing}> <right curly bracket>

<left curly bracket> ::= {

<right curly bracket ::=}

A comment may be removed from the program text without altering its meaning.

24

o

24 1ma

NAVTRAEQUIPCEN-76-C-0017-1

S. BLOCKS

A block is the basic program unit. It consists of declarations of computa-
tional objects and a compound statement that operates on them.

<block> ::= <declarations><compound statement>

Declarations serve to define a label, constant, type, variable, procedure,
function and event, and associate with them an identifier (except for labels
which are integers). The order of the declarations is prescribed: label
declarations, constant and type definitions, variable declarations, and
procedure and function declarations.

All computational objects must be declared before they are referenced except:
1) for a type identifier in a pointer type definition (cf. Section 8.2.4),
2) when there is a forward reference in a procedure or function call
(cf. Sections 11.10 and 12).

<declarations> ::= {<label declaration>}{constant or type definition>}
{<variable declaration>}{<routine declaration>}

<constant or type definition> ::= <constant definition> | <type definition>

<routine declaration> ::=<procedure declaration> | <function declaration>
<event declaration>

declarations:
constant

Cetinition” ™)

L<1abe1 declaration><—l L<type definition> £<variab1e declaration>J

<procedure declaration>
<process declaration>

-
l::<function dec laration>ﬁ
<event declaration>
A compound statement is a sequence of statements separated by semicolons and
enclosed by the delimiters BEGIN and END (cf. Section 11.2).

The structure of a program (cf. Section 14), routine (cf. Section 12), process
(cf. Section 13); and monitor (cf. Section 8.2.5) each consist of a heading
and a block. Thus there are no anonymous blocks (as in ALGOL or PL/I).
However, blocks may be nested since routine and system type declarations may
be nested (cf. Section 15 for the scope rules for names deciaored in a block).

25

— e

S PE—

s

NAVTRAEQUIPCEN-76-C-0017-1

6. LABEL DECLARATIONS

A label declaration serves to list all labels defined in a block. Any state-
ment in a block may be marked by prefixing the statement with a label
followed by a colon. A label is defined to be an unsigned integer.

<label declaration> ::= LABEL dabel>{,<label>};
<label> ::= <unsigned integer>
<unsigned integer> ::= <digit>{<digit>}

label declaration:

_— LABEL-‘P <unsigned integexj-p; —

b

Example:

LABEL 1, 15;

26

NAVTRAEQUIPCEN-76-C-0017-1

7. CONSTANT DEFINITIONS

A constant definition introduces an identifier as a synonym to a constant.

<constant definition> ::= CONST ddentifier>=<constant>;{<identifier>=
<constant>;}

constant definition:

——& CONST—><identifier>- =—#=<constant>—ep; ——]—>

'

Examgle:
CONST PI=3.1415927; N=20;

27

———

NAVTRAEQUIPCEN-76-C-0017-1

8. DATA TYPE DEFINITIONS

A data type defines the set of values a variable may assume. Each variable
can be associated with one and only one type. All types are built from
simple types. Variables of simple type can only be operated on as a whole.
The simple types consist of the enumeration types, real, quene and reference
type.

A structured type is a composition of other types. It is characterized by

its components types and its structuring method. A component of a variable
of structured type is denoted by a selector. The structured types consist

of array, record, set, pointer and monitor types.

Monitor, queue and reference types are active types; all other types are
passive types.

Data types of two operands must be compatible in order for an operation to
be performed on them (cf. Section 10.1).

<type definition> ::= TYPE <dentifier>=<type>;{<identifier>=<type>;}
<type> ::= <simple> | <structured type>

type definition:

—_— TYPET> <identifier>—p» = —P=<type>—p» ——]—-»

8.1 Simple Types

A simple type is either defined by the programmer or is one of the standard
types: INTEGER, REAL, BOOLEAN, CHAR, QUEUE, or REF.

<simple type> ::= <enumeration type> | REAL | <type identifier> |

<queue type> | <reference type>

28

T

NAVTRAEQUIPCEN-76-C-0017-1

8.1.1 Enumeration Types

An enumeration type is characterized by the set of its distinct values,
upon which a linear ordering is defined.

<enumeration type> ::= INTEGER | BOOLEAN | CHAR | <scaler type> |
<subrange type>

<scelar type> ::= (<identifier>{,<identifier>})

<subrange type> ::= <enumeration constant>..<enumeration constant>

<enumeration constant> ::= <identifier> | <character constant>

<boolean constant> | <integer constant>

enumeration type:

-8 CHAR
+——# BOOLEAN

———————& INTEGER
— ('><identifier>-]->)

AR

L-b <enumeration constant>-g...-8» <enumeration constant>

The basic operators for variables of enumeration type are assignment (:=)
and the relational operators (<, =, >, <=, <>,:>=), The standard functions
applying to enumeration types are:

SUCC(X) The succeedor value of X in the enumeration (if it exists).
PRED(X) The predecessor value of X in the enumeration (if it exists).

An enumeration value can be used to select one of several statements for
execution (cf. Section 11.5). An enumeration type can be used to execute

a statement repeatedly for a subrange of the enumeration values (cf. Section 11.6).

29

NAVTRAEQUIPCEN-76-C-0017-1

8.1.1.1 INTEGER Type

A value of the standard enumeration type INTEGER is an element of the
implementation defined subset of whole numbers represented by integer
constants.

<integer constant> ::= <digits>
<digits> ::= <digit>{<digit>}

The following operators are defined for integer operands and yield an integer
value:

+ plus sign or add
- minus sign or substract
* multiply
DIV divide and truncate
MOD modulo. amod b = a -((a DIV b)*b)
The standard functions applying to integers are:
ABS (X) The result of type integer is the absolute value of X.
SQR(X) The result is X squared.
CONV (X) The result is the real value, corresponding to the integer X.
CHR (X) The result of type CHAR is the character with the ordinal
value of X.

8.1.1.2 BOOLEAN Type

A value of the standard enumeration type BOOLEAN is one of the logical truth
values denoted by the predefined boolean constants.

<boolean constant> ::= FALSE | TRUE
Type Boolean is defined as:

TYPE BOOLEAN = (FALSE, TRUE)
so that FALSE <TRUE.

The following operators are defined for Boolean operands and yield a Boolean
value:

AND (logical conjunction)
OR (logical disjunction)
NOT (logical negation)

Each of the 16 Boolean operations can be defined using the above operators
and the relational operators. For example, if p and q are Boolean's values:
P<=q implicatibn
P=q equivalence
pP<>q exclusive OR

A Boolean value can be used to select one of two statements for execution
(cf. Section 11.4), or to repeat the execution of a statement while a condition
is true (cf. Section 11.9). 30

NAVTRAEQUIPCEN-76~C-0017~1

8.1.1.3 CHAR Type

A value of the standard enumeration type CHAR is an element of the ordered
set of ASCITI characters represented by character constants.

<character constant> ::= '<character>'

The ordering of characters is defined by their ordinal numbers which are
strickly implementation dependent.

The following standard function applies to characters:
ORD(X) The result of type integer is the ordinal number of the
character X in the underlying ordered character set.

8.1.1.4 Scalar Types

A scalar type defines an ordered set of values by enumeration of identifiers
which denote these values.

¢scaler type> ::= (<identifier>{,<identifier>})
scalar type:
———» (—® <identifier>) —>

A :

The same identifier may not appear in two scalar types.

The standard function with arguments of scalar type is:
ORD(X) The result of type integer is the ordinal number of the scalar
X in the underlying ordered enumeration. The ordinal number
of the first identifier listed is 0.

Example:
TYPE PRIMARY = (RED, YELLOW, BLUE);

SUIT = (CLUB, DIAMOND, HEART, SPADE);
DAY = (MON, TUES, WED, THURS, FRI, SAT, SUN);

31

NAVTRAEQUIPCEN-76~C-0017-1

8.1.1.5 Subrange Type

A type may be defined as a subrange of any other already defined enumeration
type by indication of the least and largest value in the subrange. The first
enumeration constant specifies the lower bound, and must be less than the
upper bound.

<subrange type> ::= <enumeration constant>..<enumeration constant>

Examgles:
TYPE DIGIT = *0G'..'9':
INDEX = 0..16;

WORKDAY = MON..FRI;

8.1.2 REAL Type

A value of the standard type real is an element of the implementation
defined subset of real numbers represented by real constants.

<real constant> ::= <digits>.<digits> | <digits>.<digits>,,<scale factor>
<digits>, <scale factor>
<scale factor> ::= <digits> | <sign><digits>

<sign> 1= 4 l -

real constant:
PR by
— <digits>_l . . —8 <d1gits>|:o " } <digits>—;—T—>

The following operators yield a real value if at least one of the operands
is of type real and the other being of type integer or real:

multiply

divide (both operands may be integers)

add

- subtract

:= assignment (the left operand must be real)

+ S *

The following relational operators are defined for reals and yield a boolean
value:

< less

= equal

> greater

<= less or equal

<> not equal
¥= greater or equal

32

R

.;'." ’:""" .

NAVTRAEQUIPCEN-76-C-0017-1

Standard functions accepting a real argument and yielding a real result
are:

ABS (X) absolute value
SQR(X) X squared
Standard functions with a real or integer argument and a real result are:
SIN(X) trigonometric functions
COS (X)
ARCTAN (X) .
LN (X) natural logarithm
EXP(X) exponential function

SQRT (X) square root

Standard functions with a real argument yielding integer results are:
TRUNC (X) The result is the whole part, i.e., the fractional part is
discarded,
ROUND (X) The result is the rounded integer.
= TRUNC(X + 0.5), Xap
TRUNC(X - 0.5), Xxp

33

NAVTRAEQUIPCEN-76-C-0017-1

8.1.3 QUEUE Type

The type QUEUE may be used within a monitor type (cf. Section 8.2.5) to
delay and resume the execution of a calling process within a shared routine
(cf. Section 12). A queue variable does not have any stored value accessible
to the program. It is either empty or non-empty. Initially it is empty.
Queue variables can only be declared in a permanent variable in a monitor
type.

The following standard function applies to queues:
EMPTY (X) The result is a Boolean value defining whether or not
the queue is empty.

The following standard procedures are defined for queues:

DELAY (X, P) The calling process with priority P is delayed in the
queue X and looses its exclusive access to the given
monitor variables. The monitor can now be called by
other processes. In order to avoid the risk of indefinite
overtaking, priority should be a nondecreasing function
of the time at which the delay commences.

CONTINUE (X) The calling process returns from the monitor routine that
performs the continue operations. If a process is
waiting in the queue X, that process with the lowest
priority immediately resumes its execution of the monitor
routine that delayed it. The resumed process now again
has exclusive access to the monitor variables. The
continue operation is followed immediately by resumption
of the delayed process. There is no possibility of an
intervening call on a monitor procedure by a third process.
Thus the resumed process is guaranteed it will get exclusive
access to the monitor variables.

The above standard procedures and function may be called only within a monitor
type.

34

NAVTRAEQUIPCEN-76-C-0017-1

8.1.4 REF Type

A variable of type REF is used to reference an instance of a process. The
value of such a variable must be well-defined. If the variable is not a
reference to a process, its value is zero.

A reference variable is assigned a well-defined value by means of the
standard procedure
PROSID(X)

This procedure assigns the identity of the calling process to X. If the
procedure is called within a routine, the value assigned to X is the identity
of the process that called the routine. A process identity is a unique
integer. During the initialization of processes, a unique consecutive
integer 1,2,... is associated with a process starting with the initial
process (cf. Section 14). The value of X prior to the procedure call must

be zero.

8.2 Structured Types

A structured type specifies the type(s) of its components and a structuring
method.
<structured type> ::= <unpacked structured type> | <pointer type> |
<monitor type> | PACKED awmpacked structured type>
<unpacked structured type> ::= <array type> | <record type> | <set type>
The prefix PACKED means the internal data representation of the type is

economized with respect to storage at the expense of a possible loss in
efficiency of access.

35

eT— R T T
> b TR

NAVTRAEQUIPCEN-76-C-0017-1

8.2.1 Array Type

An array consists of a fixed number of components of the same component
type. Components of the array are designated by computable indices of the
index type (cf. Section 9.2.2).

<array type> ::= ARRAY[<index type>{,<index type>}] OF <component type>
<index type> ::= <enumeration type>
<component type> ::= <type>

arraz tZEe:

——— ARRAY—» [——# <enumeration type>——]—# OF —8=<type> —p»

& .

The dimension of an array is the number, n, of index types. An array
component is designated by n indices. Index types are static and cannot
be varied dynamically.

Example:

TYPE TABLE = ARRAY[0..N, 0..M] OF INTEGER;
LATE = ARRAY[WORKDAY] OF BOOLEAN;
HASHTABLE = ARRAY['A'..'Z'] CF PERSON;

The component of an array may be structured, in particular, it may be an
array type. Thus, arrays are stored in row major order.

Example:

TYPE = MATRIX = ARRAY([0..10] OF ARRAY[0..10] OF REAL;
and

TYPE MATRIX = ARRAY{0..10, 0..10] OF REAL;
are equivalent.
String type is defined by:
PACKED ARRAY[1..N] OF CHAR

i.e., is a one-dimensional array of N characters

36

T PO

NAVTRAEQUIPCEN-76-C-0017-1

Examgle:
TYPE STRING = PACKED ARRAY[1..10] OF CHAR

Strings are represented by string constants of length N.
<string constant> ::= '<character>{<character>}'
A quote mark in a string is represented by two quote marks.

The ordering of strings is determined by the ordering of the underlying
character set.

The following operators apply between operands that are passive, compatible
array types:
i= assignment
= equal
<> not equal
< less
> greater
= less or equal
>= greater or equal

For strings, the operands must be of the same length.
Standard functions for arrays are:
PACK(A, i, 2) means Z[j]:=A[j-u+i] wusjsv
UNPACK(Z, A, i) means A[j-u+i]:=Z[j], u<j<v
where A is a variable of type ARRAY[m..n] OF T

Z is a variable of type PACKED ARRAY[u..v] OF T
(n-m) 2 (v-u)

37

8.2.2 RECORD Type

A record consists of
which may be of diffe
purposes each compone
identifier, and an as
selected by constant

<record type>
<field list> ::=
<fixed part> ::=
<record section>
<variant part>
<variant> ::= <c
<case label list
<case label> ::=
<tag field> ::=

record type:

NAVTRAEQUIPCEN-76-C-0017~-1

either a fixed number of components called fields,
rent types, or a variant part, or both. For reference
nt must be given a distinct name, called the field
sociated type must be specified. Components are

field identifiers (cf. Section 9.2.3).

::= RECORD <field 1list> END

<fixed part> | <fixed part>;<variant part> | <variant part>
<record section>{;<record section>}
::= <field identifier>{,<field identifier>}:<type> | empty>

::= CASE <tag field><type identifier> OF <variant>{;<variant>}

ase label list>:(<field list>) | <empty>
> ::= <case label>{,<case label>
<enumeration constant>

<identifier>: | <empty>

———— RECORD — g <field list> ——a» END —p»

field list:

__L.. <fixed part>—-[—'——.. <variant part>—r—b

fixed part:

__ET.. <identifier> l ’b c - <type>——l—->

’

variant part:

———» CASE ——l—> <identifier> —&» : -—t—’ <type identifier>->0|F

ion constant>—-]-—->:——.(—-><fie1d list>~) —

%T’ <enumerat

’

A record type may have several variants. The list of components for a
variant is enclosed in parenthesis and labeled by a case label which is a
unique enumeration constant(s) of the type of the tag field. The tag field

is a component of the
variant. A component

record itself and indicates the currently valid
of a variant can only be referenced if the value of

the tag field is equal to one of the variants case labels.

38

ST e e
%y it

-

NAVTRAEQUIPCEN-76-C-0017-1

The notation for referencing a component of a record type can be abbreviated
by using the WITH statement (cf. Section 11.9).

The following operators apply between operands that are passive, compatible

records:

Example:

assignment

equal

not equal

less

greater

less or equal
greater or equal

TYPE STATUS = (STUDENT, FACULTY, ADMINISTRATION);

COMPLEX = RECORD RE, IM: REAL END;
DATA = RECORD MONTH: (JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEPT,
OCT, NOV, DEC);
DAY: 1..31;
YEAR: INTEGER
END;
PERSON = RECORD
NAME: RECORD FIRST, LAST: PACKED ARRAY[1..10] OF CHAR;
END;
SOCIALSECURITY: INTEGER;
SEX: (MALE, FEMALE);
PIRTH: DATE;
COLLEGE: (AS, ENG, BUS);
CASE S: STATUS OF
STUDENT: (GRADUATE: BOOLEAN;
YEAR: (1..7));
FACULTY: (TENURE: BOOLEAN;
RANK: (INST, ASSTPROF, ASSOCPROF, FROF));

ADMINISTRATION: (POSITION: (ASSTDEAN, DEAN, CHAIRMAN, OTHER);

STAFF: BOOLEAN)
END;

39

ey

s ot v st

Ve

s

NAVTRAEQUIPCEN-76-C~0017-1

8.2.3 SET Type

A set type defines the set of all subsets of values of the base type, in-
cluding the empty set. The base type must be an enumeration type.

<set type> ::= SET OF <base type>
<base type> ::= <enumeration type>

A set type offers facilities similar to a bit string.
Sets are built up from expressions of the base type (cf. Section 10.3).

The following operators apply between operands that are compatible sets:
+ set union
* set intersection
- set difference
<=, >= set inclusion (contained in, contained)

assignment
= set equality
<> set inequality
IN set membership. The first operand must be an enumeration type

and the second must be its associated set type. The result is
TRUE when the left operand is an element of the right operand;
otherwise FALSE.

Example:

TYPE COLOR = SET OF PRIMARY;
BYTE = SET OF 0..7;
CHARSET = SET OF CHAR;

8.2.4 Pointer Txpe

A pointer type consists of an unbounded set of values pointing to components
of a given component type. The pointer type is bound to the given component
type and may not be bound to any other type. The component type must be a
passive type.

<pointer type> ::= 4t<type>

The operators applying to pointer operands with compatible component types
are:

(= assignment

= equal (result is true if pointer operands are associated with the
same component)

<> not equal

40

~—

e

NAVTRAEQUIPCEN-76-C~0017~-1

The pointer constant NIL is an element of every pointer type; it points to
no element at all. All pointer variables have the initial value of NIL.

New pointer values may be generated by the following standard dynamic storage
allocation procedure;
NEw (P) Allocates storage for a new component with P's component
type and assigns the pointer to it to the pointer variable P.

Storage for a pointer component can be deallocated by the standard procedure:
DISPOSE (P) Storage allocated to the component referenced by the
pointer P is freed.

Examples:

TYPE CHAIN = 4 NODE;
MODE = RECORD
VALUE: INTEGER;
LINK: CHAIN
END;

8.2.5 Monitor Type

A monitor type defines a data structure and the operations that can be
performed on the data structure by concurrent processes. The monitor can
be used to synchronize concurrent processes, transimit data between them,
and schedule processes competing for shared physical resources.

The variables declared within a monitor type are accessible only within the
monitor type. Only monitor entry routines have access to them. (cf. Section
12). These variables exist forever after initialization of a variable of
type moniter. They are permanent variables.

The routines declared within a monitor are either simple routines or

entry routines (cf. Section 12). A simple monitor routine is accessible

only within the monitor while a monitor entry routine is accessible out-

side the monitor type (but not within it). Only a process or another monitor
type may call a monitor entry routine. If concurrent processes simultaneously
call monitor routines, the calls will be executed strictly one at a time.

In this way a monitor entry routine has exclusive access to the permanent
monitor variables while it is being executed. A process waiting to enter a
monitor is delayed for a short period of time until a monitor entry routine
is finished executing. This short-term scheduling of simultaneous monitor
calls is handled by the virtual machine on which concurrent processes run.

41

s

NAVTRAEQUIPCEN-76-C-0017-1

However, it must also be possible to delay processes for longer periods of
time because certain conditions are not satisfied (e.g., a process requesting
information from an empty buffer must be delayed until another process

sends more data). Monitor entry routines can control this medium-term
scheduling of processes by using the queue data type (cf. Section 8.1.3).

A process delayed in a queue loses its exclusive access to the permanent
monitor variables until another process calls the same monitor and wakes

it up again.

Monitor entry routines can call entry routines defined within other monitor
types (in order to facilitate hierarchical design). However, entry pro-
cedures cannot be called recursively, either directly or indirectly.

A monitor type also defines an initial statement that will be executed when
a variable of the monitor type is initialized by means of the INIT state-
ment (cf. Section 11.11).

A variable of type monitor must be declared within a process or monitor
type. It cannot be declared within a routine. Because monitor variables
are declared, there are a fixed number of monitors in a system.

<monitor type> ::= <monitor heading><block>
<monitor heading> ::= MONITOR

Examples: (cf. Hoare [26])

CONS N= ...; M= ...; {note: M = N-1, N is the number of buffers}
TYPE PORTION = RECORD...END;

VAR BOUNDED_BUFFER : MONITOR

VAR BUFFER: ARRAY(O..M] OF PORTION;

LASTPOINTER: 0..M; {points to the buffer position into which
the next append operation will put a new
item}

COUNT: 0..N; {number of filled buffers}

NONEMPTY, NONFULL: QUEUE; { COUNT>p, COUNT<N respectively}

42

NAVTRAEQUIPCEN-76~-C-0017~-1

PROCEDURE ENTRY APPEND(X:PORTION);
BEGIN IF COUNT = N THEN DELAY(NONFULL, 0) FI;
BUFFER [LASTPOINTEN := X;
LASTPOINTER := (LASTPOINTER + 1) MOD N;
COUNT := COUNT + 1;
CONTINUE (NONEMPTY)
END {APPEND};
PROCEDURE ENTRY REMOVE (VAR X:PORTION);
BEGIN IF COUNT = 0 THEN DELAY(NONEMPTY, 0) FI;
X := BUFFER[(LASTPOINTER - COUNT) MOD N];
CONTINUE (NONFULL)"
END {REMOVE};
BEGIN {initial statement of monitor}
COUNT := 0; LASTPOINTER := 0
END {BOUNDED_BUFFER};

(cf. Section 13 for examples of concurrent processes that use the monitor
4y BOUNDED_BUFFER)

43

NAVTRAEQUIPCEN-76-C-0017-1

9. VARIABLES

A variable is a named data structure that can contain values of a single
type. The basic operations on a variable are assignment of a new value to
it and a reference to its current value.

9.1 Variable Declaration

All variables must be declared in a variable declaration prior to their use.

<variable declarations> ::= VAR <variable declaration>{;<variable d
<variable declaration> ::= <identifier>{,<identifier>}:<type>

variable declarations

eclaration>};

)

—& VAR t l > <identifier>-7—> Emisr LI S

Examples:

VAR 1I,J: INTEGER;
M1, M2, M3: MATRIX;
P1: PERSON;
K: 1..18;
Bl, B2: BOOLEAN;
HUE: COLOR;
OPCODE: (ADD, SUB, MPY, DIV);
X,Y: REAL;
WORKWEEK: WORKDAY;
PT1, PT2: CHAIN;

9.2 Variable Denotations

An entire variable is a variable declared with a simple type and is denoted
by its identifier. A component variable is a variable declared with an
array, record, or pointer type. A component of such a variable is denoted

by the variable's identifier followed by a selector specifying the component.

The form of the selector depends on the structured type of the variable.

<variable> ::= <entire variable> | <component variable>
<component variable> ::= <array component> | <record component> |
<pointer component>

44

NAVTRAEQUIPCEN-76-C-0017-1

9.2.1 Entire Variable

An entire variable is denoted by its identifier.

<entire variable> ::= <variable identifier>
<variable identifier> ::= <identifier>

9.2.2 Array Component

A component of an n-dimensional array variable is selected (denoted) by

the variable identifier followed by n index expressions enclosed in square
brackets and separated by commas. The index expressions must be compatible
with the index types declared in the definition of the array type, and equal
in number to the dimensionality of the array variable.

<array component> ::= <array variable>[<expression>{,<expression>}]
<array variable> ::= <variable>

array component:

——— <variable> ———p» [——= <expression> ——r—s] —

A

>

Examples:
VAR M: MATRIX; LATEDAYS: LATE;

M[I+J, K]
LATEDAYS [TUES]

9.2.3 Record Component

A component of a record variable is selected (denoted) by the record
variable's identifier followed by the field identifier of the component
separated by a period.

<record component> ::= <record variable>.<field identifier>
<record variable> ::= <variable>
<field identifier> ::= <identifier>

record component:

—— <variable> > - — <identifier> ——p

45

P .

NAVTRAEQUIPCEN-76-C-0017-1

Examgles:

P1.NAME. LAST
P1.SEX
P1.DATE. DAY
P1.S

P1.RANK

9.2.4 Pointer Component

The component of a pointer variable is selected (denoted) by the pointer
variable followed by the symbol +. Given

VAR P:4T;
then P denotes a pointer variable and its pointer value while P+ denotes the
variable of type T referenced by P.

<pointer component> ::= <pointer variable>+
<pointer variable> ::= <variable>

pointer component:

= <variable> —p» ¢+ —b»

Examples:

VAR P:4NODE;
P+.VALUE
P+.LINK
P+.LINK+.VALUE

46

NAVTRAEQUIPCEN-76-C-0017-1

10. EXPRESSIONS

An expression is a rule of computation for obtaining a value by application
of operators to operands. Expressions are in infix notation. The sequence
of cperations is from left to right with the following priority rules:
first: factors are evaluated
second: terms are evaluated
third: simple expressions are evaluated
fourth: expressions are evaluated
<expression> ::= <simple expression> l <simple expression><relational
operator><simple expression>
<simple expression> ::= <term> | <simple expression»<adding operator>
<term> | <adding operator><term>
<term> ::= <factor> | <term><multiplying operator><factor>
<factor> ::= <variable> | <constant> | <function call> | <set>

(<expression>) | NOT <factor>

<set> ::= [<element list>]
<element list> ::= <element>{,<element>} | <empty>
<element> ::= <expression> | <expression>..<expression>

expression:

—— <simple expression>

T —

—
T I*N <simp le‘lexpressiom

A
v
A
]

:

r.—u—
- A

simple expression:

‘F'_+'-—'
- <term>

T L | :
Ltem,J 5

47

Ex

NAVTRAEQUIPCEN-76-C-0017-1

term:

—p <factor>

<factor> "

factor:

— <variable> ——————p
——————& <constant> —-——>1
= <function call> ———p
> <set> —
— = (=P <expression> —ps)—p
=% NOT— <factor> ——

les:

Factors: 1 Terms:
10
F(X+Y, X)
t
[RED]
(X+Y)
NOT BOL

Simple expressions: X+Y
--2
B + SQRT(B*B-4*A*()
[RED, YELLOW] + HUE]

Expressions: X = 5
P>=Q
[RED] IN HUE1

48

X*Y

I DIV J

X/Y

(X<>Y) AND (Y>2)

NAVTRAEQUIPCEN-76-C-0017~-1

10.1 Type Compatibility

An operator can only be applied to two operands if their data types are

compatibl
1)
2)
3)
4)

5)

: }
Thus there is no conversion of types except integer to real.

e. Two types are compatible if:

both types are defined by the same type definition, or

both types are subranges of a single enumeration type, or

both are string types of the same length, or

both are set types whose members are of compatible base types

(the empty set is compatible with any set), or

one is of type integer or a subrange thereof and the other is of

type real.

10.2 Operators
10.2.1 NOT ggerator

NOT denot

es the negation of its Boolean operand.

10.2.2 Multiplying Operators

<multiplying operator> ::= * | / | DIV | MOD | AND
Operator Operation Type of Operands
* Multiplication INTEGER, REAL
Set intersection set type T
/ Division REAL, INTEGER
DIV division with INTEGER
truncation
MOD modulu s INTEGER
AND logical and BOOLEAN
49

“_

e o e e e e S—

- RN /05 6 ¥ Ty

Type of Result

INTEGER, REAL
i

REAL

INTEGER

INTEGER

BOOLEAN

NAVTRAEQUIPCEN-76-C-0017-1

10.2.3 Adding Operators

<adding operator> ::= + | - | OR

Operator Operation Type of Operands Type of Result

pinary + Addition INTEGER, REAL INTEGER, REAL
Set Union set type T T

binary - Subtraction INTEGER, REAL INTEGER, REAL
Set difference set type T s

OR logical or BOOLEAN BOOLEAN

unary - negation INTEGER, REAL INTEGER, REAL

unary + identity INTEGER, REAL INTEGER, REAL

10.2.4 Relational Operators

<relational operator> ::= = | <> | < | <= | >= | > | IN
Operator Operation Type of Operands Type of Result
= equal passive Boolean
equivalence Boolean
<> unqqual passive
exclusive or Boolean
> greater enumeration, REAL Boolean
< less string
<= less or equal enumeration, string, Boolean
REAL
contained in set type T
implication Boolean
>= greater or equal enumeration, string, Boolean
REAL
contains set type T
IN membership Left operand is of Boolean

enumeration type and
the right operand is
of set type whose mem-
bership type is compat-
ible with the left
operand.

50

NAVTRAEQUIPCEN-76-C-0017-1

10.3 Sets

Set values are constructed from one or more expressions enclosed in square
brackets and separated by commas. The value is the set consisting of the
expression values. The set expressions must be of compatible enumeration

types.

set:

3

—— [L— <expression> —yp——— | ——p

t :

The empty set is denoted by [].

51

e ———

NAVTRAEQUIPCEN-76~-C~-0017-1

11. STATEMENTS

Statements denote operations on constants and variables. They may be
prefixed by a label which can be referenced by a GOTO statement. Simple
statements cannot be divided into smaller statements. Structured statements
are composed of other statements.
<statement> ::= <unlabelled statement> | <label> : <unlabelled statement>
<unlabelled statement> ::= <simple statement> | <structured statement>
<simple statement> ::= <empty statement> [<assignment statement> |
<procedure call> | <event call> | <goto statement> | <init statement>
<terminate statement>

<structured statement> ::= <compound statement> | <basic structured
statement>
<basic structured statement> ::= <until statement> | <conditional statement>

<repetitive statement> | <with statement>

<conditional statement> ::= <if statement> | <case statement>
<repetitive statement> ::= <for statement> | <loop statement>
<empty statement> ::= <empty>

statement:

-
- <assignment statement> ———;{

———————<procedure call> ———
p———————p<event call> —
[———#<goto statemant> —————8>
——————®<compound statement>————»
<if statement> >
——————P<case statement> ————————4fn
—-<for statement> ————————fn
————=<l00p statement> ——————=
p——————=-<until statement> ——————————gn-
————~<with statement> ——————
<init statement> ————————
—<terminate statement>

52

- E PR A‘A'f -‘ o

NAVTRAEQUIPCEN-76-C-0017-1

11.1 Assignment Statement

The assignment statement serves to replace the current value of a variable
by a new value specified by an expression. The type of the variable and the
expression must be compatible.

The variable must be of passive type and may not bc a constant parameter.
Assignment to a function identifier must occur within the block of the function's
declaration. There must occur one or more explicit assignment statements

of which at least one must be executed.

<assignment statement> ::= <variable> := <expression> | <function identifier>

1= <expression>

assignment statement:

—» <variable> ————p = — <expression> ———p»

& <function identi fier>’

Examples:
I :=1
M[1, J+K] := SQR(J) - I*J
P1.NAME := 'PASCAL'

HUE := [RED, SUCC(YELLOW)]

11.2 Compound Statement

A compound statement defines a sequence of statements to be executed
sequentially in the same order as they are written. The sequence of state-
ments are separated by the statement separator ; (which does not act as a
statement terminator).

<compound statement> ::= BEGIN <statement>{;<statement>} END

compound statement:

~—> BEGIN ———#» <statement> — END —

¢

BEGIN TEMP := X; X :=Y; Y := TEMP END

53

e e e e e ovm——

s

NAVTRAEQUIPCEN-76-C-0017-1

11.3 GOTO Statement

A GOTO statement breaks the normal sequential execution of statements by

defining its successor explicitly by a label, i.e.,
executed is the one labeled with the specified label.

the next statement
The label of a GOTO

statement must be declared in the block containing the GOTO statement, and

a statement within such block must be marked by the label.

scope of a label is the block within which it is defined.

<goto statement> ::= GOTO <label>

11.4 IF Statement

That is, the

The IF statement selects for execution one of two statements depending on

the value of a Boolean expression

If the Boolean expre551on is true

then the first statement is executed, else the second is executed. The
second statement is optional.
<if statement> ::= IF <expression> THEN <statement component> FI |

IF <expression> THEN <statement component> ELSE <statement component>

FI

<statement component> ::=

n

<statement group> ::

<statement> | <statement group>

<basic statement>{;<basic statement>

<basic statement ::= <simple statement> | <basic structured statement>

The THEN-ELSE, ELSE-FI or THEN-FI act as delemeters around the statement

component so that the delimiters BEGIN and END are not needed..
may never preceed an ELSE or FI.

A semicolon
The syntactic ambiguity arising from

nested IF statements is resolved by associating an ELSE with the first THEN

preceding it.

if statement:

—IF ——><expression>-ﬁ

Examgles:
IF I»N THEN N := I; M[N]

IF X>=Y THEN MAX := X; MIN :=

e S ———

—®=<statement> —}L
—f=<statement group>

:= 0 FI

Y ELSE MAX := Y; MIN

54

ELSE+
<

= X FI

statement>

statement group>

NAVTRAEQUIPCEN-76-C-0017-1

11.5 CASE Statement

The CASE statement selects one of several statements for execution based on

the value of an enumeration expression. Each statement is labeled by one

or more unique enumeration constants of the same type as the enumeration
expression. The statement labeled with the current value of the expression

is executed. If no such label exists, the one statement with the label DEFAULT
is executed. If no DEFAULT label exists, none of the statements will be executed.

<case statement> ::= CASE <expression> OF <case element>{;case element} END
<case element> ::= <case label list> : <statement>

<case label list> ::= <case label>{,<case label>}

<case label> ::= <enumeration constant> | DEFAULT

case statement:

— CASE—#<expression> —# OF —#»<case element> —y—# END —&>

t

’

case element:

)
—'ﬂu:eration constant> 1» : -»-<statement> —=
DEFAULT ——’

Example:
CASE OPCODE OF

ADD: X := X+Y;

SUB: X := X-Y;

MPY: X = X*Y;

DIV: X := X/Y;

DEFAULT: ERROR('ILLEGAL OPCODE')
END;

11.6 FOR Statement

A FOR statement specifies that a statement is to be repeatedly executed

for a subrange of enumeration values that are assigned to the control variable.
The control variable may not be a constant parameter, a record field, a
function identifier or an array element.

55

T

NAVTRAEQUIPCEN-76-C-0017-1

The repeated statement may not change the value of the control variable.

The subrange of enumeration values is specified by expressions defining the
initial and final values which are evaluated only once. The control variable,
the initial value, and the final value must be of compatible enumeration type.

The control variable can either be incremented from its initial value TO

its final value or decremented from its initial value DOWNTO its final value.
The statement is not executed if the initial value is greater (less) than
the final value in the case of TO (DOWNTO). The final value of the control
variable is undefined upon normal exit from the for statement.

<for statement> ::= FOR <control variable> := <for list> DO
<statement component> NEXT

<for list> ::= <initial value> TO <final value> | <initial value>
DOWNTO <final value>

<control variable> ::= <identifier>

<initial value> ::= <expression>

<final value> ::= <expression>

for statement

T ey
—# FOR—p=<identifier>— := —-><expression>—-E' |
DOWNTO—

@—— NEXT <’+—<statement component> <@—D(Q <#—— <expression>

A FOR statement of the form:
FOR ID := E1 TO E2 DO SC NEXT
is equivalent to the sequence of statements:
IV := E1; F¥ := E2;
IF IV <= FV THEN
ID := IV; SC;

ID := SUCC(ID); SC;
ID := FV; SC
FI

56

o

NAVTRAEQUIPCEN-76-C-0017-1

A FOR statement of the form:
FOR ID := E1 DOWNTO E2 DO SC
is equivalent to the sequence of statements:
IV := El; FV := E2;
IF IV >= FV THEN
ID := IV; SC;
ID := PRED(ID); SC;

ID := FV; SC
FI

A semicolon may never preceed a NEXT.

Examples:
FOR K :=1 TO 10 DO
X := X + M[I,K]
NEXT

FOR WORKWEEK := MON TO FRI DO
IF LATEDAYS[WORKDAY] THEN
PAY := PAY - DAYWAGE FI

NEXT

11.7 LOOP-WHILE Statement

The LOOP-WHILE statement specifies that certain statements are to be executed
repeatedly while a Boolean expression remains true.

<loop statement> ::= LOOP <statement component> WHILE <expression> :
<statement component> REPEAT

loop statement:

—— LOOP —p><statement component>=#> WHILE—# <expression> —p- :
<@—— REPEAT <*—<statement component>‘:l

57

NAVTRAEQUIPCEN-76-C-0017-1

Two important cases occur when either statement component is empty. If the
first statement component is empty, the form is:
LOOP WHILE B:

SC

REPEAT
This is the "while B do S" statement found in other languages. If the
Boolean expression is initially false the statement component is not executed;
otherwise it is executed repeatedly while the Boolean expression remains true.

If the second statement compgnent is empty, the form is:
LOOP
SC
WHILE B: REPEAT
This is the ''repeat S until-B'" statement found in other languages. The
statement component is executed at least once. The statement component is
executed until the Boolean expression becomes false.

A semicolon may never preceed a WHILE or REPEAT.

Example:

{Quicksort of array elements A[m] to A[n]}
I :=M; J :=N; V := A[N];
LOOP

LOOP WHILE A[I]<V : I

LOOP WHILE A[J]>V : J :
WHILE I<J :

A[I] := A[J];

I := I+1; J := J-1
REPEAT

I+1 REPEAT;
J-1 REPEAT;

11.8 UNTIL Statement

The UNTIL statement specifies that a structured statement is to be executed
until one of the designated events bound to it is invoked within the structured
statement. When the event is invoked (cf. Section 11.10.3) control leaves

the structured statement and the next statement is executed, i.e., execution
of the structured statement is terminated. If no situation is invoked,
execution of the structured statement terminates in the normal manner.

Events provide a mechanism for exiting from nested structured statements,
in particular, a multilevel loop.

58

NAVTRAEQUIPCEN-76-C-0017-1

<until statement> ::= UNTIL <event identifier>{,<event identifier>} :

<structured statement>
<event identifier> ::= <identifier>

until statement:

—— UNTIL—— <event identifier>—r—s» : — <structured statement>—

{ :

Examples:
UNTIL ERROR :
BEGIN

IF AVAIL=NIL THEN ERROR('AVAILABLE SPACE EXHAUSTED') FI;
END
UNTIL EXITFOR :

FORI :=1TON
1

DO
FOR J := 1 TO M DO

IF M[I, J] = @ THEN EXITFOR FI; {both for loops are terminated}

NEXT
NEXT

11.9 WITH Statement

The WITH statement permits record fields and monitor entry routines (out-

side the monitor type in which they are declared) to be used as variable
identifiers within the qualified statement, i.e., it is unnecessary to qualify
them with the identifiers of the record or monitor variable. No assignments
may be made in the qualified statement to any elements of the with variable
list. However, assignments are possible to the components of these variables.

<with statement> ::= WITH <with variable list> DO <qualified statement>
<with variable list> ::= <with variable>{,<with variable>}

<with variable> ::= <record variable> | <monitor variable>

<qualified statement> ::= <statement>

59

NAVTRAEQUIPCEN-76-C-0017-1

e

with statement

—_— WITH—T—» <variable> -» DO —p <Statement> w————gp
’

The use of more than one <with variable> is equivalent to the use of nested
WITH statements, i.e,,

WITH V1, V2, .., Vn DO S
is equivalent to

WITH V1 DO
WITH V2 DO
WITH Vn DO
Example:

WITH P1, NAME, BIRTH DO
BEGIN LAST := 'PASCAL';
SOCIALSECURITY := 200308394;
MONTH := JAN;
S := FACULTY;
POSITION := DEAN
END

11.10 Routine Calls

A routine call specifies the execution of a procedure, function or event
with a list of actual parameters known as arguments. The arguments are
variables, expressions, procedure identifiers and function identifiers, and
are substituted for the corresponding (formal) parameters defined in the
routine declaration (cf. Section 12). The arguments are substituted for

the parameters before the routine is executed. The number of arguments must
equal the number of parameters specified in the routine declaration, and the
correspondence is established by position. Arguments corresponding to
variable parameters must be variables while arguments corresponding to
constant parameters must be expressions. Components of a packed structure
may not be arguments corresponding to variable parameters. Arguments
corresponding to procedure/function parameters must be procedure/function
identifiers.

An argument type must be compatible with the corresponding parameter
types with the following exceptions:

1) an argument corresponding to a constant non-universal string parameter

may be a string of any length,

2) an argument corresponding to a universal parameter may be any
passive type (except a pointer type) that occupies the same number
of store locatioms as the parameter type.

60

NAVTRAEQUIPCEN-76-C-0017-1

<arguments> ::= <empty> | (<argument list>)
<argument list> ::= <argument>{,<argument>}
<argument> ::= <expressior> | <variable> | <procedure identifier> |

<function identifier>

arguments:
———=&- <expression> 1
— (——&<variable> -) —

———> <procedure identifier>
b <function identifier>

3

A monitor type may not call its own entry routines but it may call an entry
routine declared within another monitor type. A monitor type may call one
of its own simple routines.

An entry routine declared in a monitor type can be called simultaneously by
one or more processes or monitor types. The calls will be executed strictly
one at a time if the monitor entry routines operate on the same parameters
and variables of the monitor.

There are three kinds of routine calls: procedure call, function call and
event call.

<routine call> ::= <procedure call> | <function call> | <event call>

11.10.1 Procedure Call

A procedure call is a statement that specifies the execution of a procedure.

A sinmple procedure is denoted by its identifier. An entry procedure is
denoted by qualifying the procedure identifier with the identifier of a
variable or the monitor type defining the procedure.

The use of the procedure identifier in a procedure call within its declaration
implies recursive execution of the procedure.

61

NAVTRAEQUIPCEN~76-C-0017-1

<procedure call> ::= <simple procedure call> | <entry procedure call>

<simple procedure call> ::= <simple procedure identifier><arguments>

<entry procedure call> ::= <monitor variable>.<entry procedure identifier>
<arguments>

<simple procédure identifier> ::= <identifier>

<monitor variable> ::= <identifier>

<entry procedure identifier> ::= <identifier>

procedure call:

—L — & <monitor variable>_g .—#= <identifier>— <arguments> ——p»

Examgles:

MATRIXMUL(M1, M2, M3); =
INSERT(PT1, I*J);

11.10.2 Function Call

A function call is a factor in an expression (cf. Section 10). The remarks
on a procedure call apply to a function call as well. Just substitute the
word "function" for the word 'procedure'" throughout the text.

Examgles:
X := SIMPSON (0, PI/2, G);
I := A(5,2);

11.10.3 Event Call

An event call is a statement that specifies an event is to be invoked.
Normally a routine returns to the point after the call. However, an event
returns to the statement immediately succeeding the structured statement to
which it is bound. An event may not be called recursively.

<event call> ::= <event identifier><arguments>
<event identifier> ::= <identifier>

Exgggle:
ERROR('AVAILABLE SPACE EXHAUSTED');

62

NAVTRAEQUIPCEN-76-C-0017-1

11.11 INIT Statement

The INIT statement initializes a process or variable of type monitor. For

a process, an instance is created and its statements executed sequentially.
The process is executed concurrently with all other processes, including the
one that initialized it. For a monitor, its initial statement is executed
as a nameless routine. A monitor can only be initialized once. This must
be done within the process in which it is declared. In both cases, the
rules for arguments are the same as for arguments in routine calls (cf.
Section 11.10).

<init statement> ::= INIT <system identifier><arguments>{,<system
identifier><arguments>}

<system identifier> ::= <process identifier> | <monitor variable>

<process identifier> ::= <identifier>

<monitor variable> ::= <identifier>

init statement:

— INIT_T’ <identifier> ————# <arguments>

b

Examglg;

INIT PRODUCER, PRODUCER, PRODUCER, CONSUMER, CONSUMER, BOUNDED BUFFER
{initializes three PRODUCER processes, two CONSUMER processes and the
BOUNDED_BUFFER monitor}

11.12 TERMINATE Statement

The TERMINATE statement terminates the execution of the specified process
instance(s).

<terminate statement> ::= TERMINATE <process reference>{,<process reference>}
<process reference> ::= <variable>

A process reference must be a variable of type REF (cf. Section 8.1.4) whose

value was set by the standard procedure PROSID (cf. Section 13). After
execution of the statement, the value of the process reference is zero.

63

T ———

NAVTRAEQUIPCEN-76-C-0017-1

12. ROUTINE DECLARATIONS

A routine declaration defines a list of (formal) parameters, if any, and a
compound statement that operates on them. Execution of the compound state-
ment can be invoked by a routine call (cf. Section 11.10). The parameter
list defines the type of parameters on which a routine can operate. Each
parameter is specified by its name and type. There are five kinds of
parameters: variable, constant, universal, function and procedure.

A variable (call by reference) parameter represents a variable which within
the routine may be assigned a value. It is prefixed with the word VAR.

A constant (call by value) parameter represents an expression that is
evaluated when the routine is called. Its value cannot be changed by the
routine. It is not prefixed with any word.

A universal parameter causes compatibility checking of parameter and argument
types in routine calls to be suppressed. (cf. Section 11.10). Its type
identifier is prefixed with the word UNIV. Inside the given routine the

parameter is considered to be of its specified non-universal type, and outside

the routine call the argument is considered to be its declared non-universal
type. Universal parameters must be any passive type except a pointer type.

A procedure parameter represents the name of a procedure that may be used
as a procedure call. Specification of a procedure parameter also includes
the kinds of its parameters.

A function parameter represents the name of a function that may be used

as a function call. Specification of a function parameter also includes

the kind of its parameters and the type of the function's values The result
type must be an enumeration or pointer type.

The parameters and variable declared within a routdine are temporary
variables, i.e., they exist only while the routine is being executed.

<parameters> ::= <empty> | (<parameter list>)
<parameter list> ::= <parameter description>{;<parameter description>}
<parameter description> ::= <parameter group> | VAR <parameter group> |

PROCEDURE <identifiers><parameter declarers> |

FUNCTION <identifiers><parameter declarers> : <result type>
<parameter group> ::= <identifiers> : <type identifier> | <identifiers> :

UNIV <type identifier>

<identifiers> ::= <identifier>{,<identifier>}

64

-

NAVTRAEQUIPCEN-76-C-0017-1

<parameter declarers> ::= <empty> | (<parameter declarer list>)
<parameter declarer list> ::= <parameter declarer>{,<parameter declarer>}
<parameter declarer> ::= <type identifier> | VAR <type identifier> |

UNIV <type identifier> | VAR UNIV <type identifier> |
PROCEDURE <parameter declarers> | FUNCTION <parameter declarers>

garamet ers:

v

VAR

PROCEDURE
FUNCTION l"<identifier> <pa1rameter> :=<type identifier>
- l declarers |

parameter declarers:

<identifier> 2 UNIV <type identifier>t#) ————p
gy el R § i |

L ([+ UNIV ———->l <type identifier>.-—-1--—-.) —1——-——.

AR——’

ROCEDURE ==~ ¢parameter declarers> ——

FUNCTION = <parameter declarersd =—————

’

There are three kinds ot routine declarations: procedure declaration,
function declaration and event declaration.

<routine declaration> ::= <procedure declaration> | <function declaration>

<event declaration>

If a routine is referenced before it has been declared, then its heading

followed by the symbol FORWARD must be introduced first. The routine can be

completed later by repeating its heading, without the parameter list,
followed by the block.

65

NAVTRAEQUIPCEN-76-C-0017-1

A procedure/function declaration may be an entry routine in which case it is
prefixed with the symbol ENTRY, otherwise the declaration is knewn as a
simple procedure/function. An entry routine declaration may only occur
within a monitor type and cannot be nested within another routine declaration.

A monitor entry routine is an entry routine declared within a monitor type.
It can be called simultaneously by one or more system types (cf. Section
11.10). A monitor entry routine has exclusive access to permanent monitor
variables while it is being executed.

Parameters of an entry routine may not be of queue type.

12.1 Procedure Declaration

A procedure declaration consists of a procedure heading and a block, the
execution of which can be invoked by a procedure call (cf. Section 11.10.1).

<pro:edure declaratiom> ::= <procedure heading»<body>
<body> ::= <block> | FORWARD
<prccedure heading> ::= PROCEDURE <identifier><parameters>;

PROCEDURE ENTRY <identifier><parameters>;

procedure declaration:

— PROCEDURE ENTRY ——®><identifier> ———#» <parameters>—p-; ma——
FORWARD <#—
<block> -—J

Examples

PROCEDURE MATRIXMUL(A, B : MATRIX; VAR C : MATRIX);
VAR I, J, K : 0..10; SUM : REAL;
BEGIN
FOR I :

10 DO
+ A[I, K] * B[K, J]

z
23

NEXT {1};
END {MATRIXMUL};

66

T

= .

NAVTRAEQUIPCEN~76-C-0017-1

PROCEDURE INSERT (P : CHAIN; V : INTEGER);
{insert a new node after node P in a linear linked list and initialize
its VALUE field to V}
VAR Q : CHAIN;
BEGIN NEW(Q);
WITH Qt DO
BEGIN VALUE := V;
LINK := P4+.LINK
END;
P+.LINK := Q
END {insert};

12.2 Function Declaration

A function declaration consists of a function heading and a block, the
execution of which can be invoked by a function call (cf. Section 11.10.2).
The function heading specifies a result type which must be an enumeration
or pointer type. The result of a function is defined by assigning a value
to the function identifier within the function declaration. Function
parameters must be constant parameters.

<function declaration> ::= <function heading><body>

<body> ::= <block> | FORWARD

<function heading> ::= FUNCTION <identifier><parameters> : <result type>; |
FUNCTION ENTRY <identifier><parameter> : <result type>;

<result type> ::: <type identifier>

function declaration:

~—— FUNCTION —E> ENTRY -—’-—b<identifier> —- <PATAMETET > iy

FORWARD
—— <——[; @— <type identifier>-e- ! -
<block>

67

e e e e o

=

[B SN

NAVTRAEQUIPCEN-76-C-0017-1

Examgles:

{cf. Wirth [35]}
FUNCTION SIMPSON(A, B : REAL; FUNCTION F(REAL)
CONS EPSILON = 0.00001;

VAR I, N : INTEGER;
S; 8S, §1, S2, 84, H :

: REAL) : REAL;

REAL;

{F(X) must be well-defined in the interval A<X < B}
BEGIN N := 2; H := (B-A)*0.5;
SL := H*(F(A) + F(B)); S2 := 0;
S4 := 4*H*F(A + H); S := S1 + S2 + S4;
LOOP SS := S; N := 2*N; H := H/2;
S1 := 0.5*S1; S2 := 0.5*S2 + 0.25*S4;
S4 :=0; I :=1;
LOOP S4 :=S4 + F(A+ 1 *H); I :=1 +2
WHILE I<=N:
REPEAT;
S4 := 4*H*S4; S := S1 + S2 + S4
WHILE ABS(S-SS)>= EPSILON :
REPEAT;
SIMPSON := S/3
END {SIMPSON};
FUNCTION A(M, N : INTEGER) : INTEGER;
{Ackermann's function}
BEGIN
IF M=0THEN A := N + 1
ELSE IF N = 0 THEN A := A(M-1, 1)
ELSE A := A(M-1, A(M, N-1)) FI;
FI

END {Ackermann};
FUNCTION G(X : REAL) : REAL;

CONS A = 3; B = 5;
BEGIN G := 1/SQRT(SQR(A*COS(X)) + SQR(B*SIN(X))) END;

12.3 Event Declaration

An event declaration consists of an event heading and a block, the execution
of which can be invoked by an event call (cf. Section 11.10.3). The compound
statement of the block represents the action to be taken.

68

—

o

NAVTRAEQUIPCEN-76-C-0017-1

<event declaration> ::= <event heading><action>
<action> ::= <block> | FORWARD
<event heading> ::= EVENT <identifier><parameters>;

event declaration:

FORWARD
———> EVENT = <identifier> ——» <parameters>-—-; }.; —
<block>

Example

EVENT ERROR (S : STRING);
BEGIN PRINT('UNRECOVERABLE ERROR:',S) END;

EVENT EXITFOR;
BEGIN END;
{Since the action is empty, invoking the event is equivalent to
exiting from the structured statement the event identifier is

bound to}.

69

NAVTRAEQUIPCEN-76-C-0017-1

13. PROCESS DECLARATION

A process declaration is the prototype for a class of sequential processes.
It consists of a process heading and a block. A sequential process is an
instance of a process declaration whose statements are executed sequentially.
A sequential process is created and its execution initiated by the INIT
statement (cf. Section 11.11). The executions of sequential process are
overlaped in time and under control of the kernel (cf. Section 14). Such
rnrocesses are said to be concurrent.

A process declaration may only be nested within another process declaration.
The entire program is an implied process (cf. Section 12). The parameters
must be constant parameters either of passive type or a monitor component.

Concurrent processes communicate only by means of monitors (cf. Section 8.2.5).
One process cannot operate on the parameters or local variables of another
process.

<process declaration> ::= <process heading><block>
<process heading> ::= PROCESS <identifier><parameters>;

process declaration

——— PROCESS —s><identifier> ————#-<parameters> - —

Examples: (cf. Hoare [26])

TYPE PORTION = RECORD ... END;

PROCESS PRODUCER;
VAR NOTFINISHED : BOOLEAN;
INFO : PORTION;
BEGIN NOTFINISHED := TRUE;
LOOP WHILE NOTFINISHED :
{produce the next portion}
BOUNDED BUFFER.APPEND (INFO); {add portion to buffer}
REPEAT;™
END;

70

B s S
.'”-;\.

NAVTRAEQUIPCEN-76-C-0017-1

PROCESS CONSUMER;
VAR NOTFINISHED : BOOLEAN;
INFO : PORTION;
BEGIN NOTFINISHED := TRUE;
LOOP WHILE NOTFINISHED:
BOUNDED~ﬁUFFER.REMOVE(INFO);
{process portion taken}
REPEAT;

END;

(cf. Section 8.2.5 for examples defining the monit
contains the routines APPEND and REMOVE).

71

{take portion from buffer}

or BOUNDED BUFFER which

e ot 2

-
&

o

NAVTRAEQUIPCEN-76-C-0017-1

14. CONCURRENT PROGRAM

A concurrent program consists of a library prelude followed by a block.

The block is an anonymous paramterless process called the initial process.
An instance of this process is automatically initialized after program
loading. Program loading consists of loading the compiled code for a con-
current program along with the library routines mentioned on its library
prelude. The library prelude consists of constant type and routine definitions.
The library prelude routines consist only of procedure and/or function
headings. The library routines are defined within the library. The library
is a separately compiled program that consists only of constant, type and
routine declarations. The order of the routine definitions must be the

same as the corresponding declarations in the library.

<program> ::= <library prelude><program heading><block>.
<library prelude> ::= {<constant or type definition >}{<library routine

definition >}

<constant or type definition> ::= <constant definition> | <type definition>
<library routine definition> ::= <procedure heading> | <function heading>
<program heading> ::= PROGRAM

program:

r<constant definition>-m r<procedure heading>-=

PROGRAM=———~ <bloCk> =g . —p

L<type definition>@——- qunction heading> -

<library> ::= <library heading><library declarations>.
<library heading> ::= LIBRARY
<library declarations> ::= {<constant or type definition>}{library
routine declaration>}
<library routine declaration> ::= <procedure declaration> | <function
declaration>
library:
r<constant definition> g r<procedure declaration
———p» LIBRARY * -
L<type definition> =& L<function declaration>
72

NAVTRAEQUIPCEN-76-C~-0017-1

A program and the library are the basic units of compilation.

Execution of a compiled concurrent program does not require an operating
system for support. The minimal run-time support needed is contained in

the kernel, a program written in the machine language of the object machine.
The kernel permits a user to construct the requisite operating system
facilities and policies needed to support his stand alone system. In essence,
the kernel creates a virtual machine that a concurrent program interfaces

to.

The kernel performs the following functions:

1) Process management

The kernel controls the creation, execution and termination
of processes. When a process is created, the kernel allocates a
processor to it. If there are more processes than processors, the
kernel multiplexes processors among them. Selection of a process
to be executed is based on priority with top priority given to
processes executing monitor code. When the process terminates,
its processor is deallocated.

2) Memory management

When a process is created, storage for its stack and heap
are allocated. During execution, storage for a procedure is
automatically allocated and deallocated from its stack upon
procedure entry and exit. The execution stack is located after a
procedure's activation record. Allocation of storage from the
heap is controlled by standard library routines. When a process
terminates, its storage is deallocated. How and when deallocation
is managed is implementation dependent.

3) Gives exclusive access to monitors
The kernel handles the short-term scheduling of simultaneous
calls on monitor entry routines and guarantees that the calls wili
be executed one at a time. A user can, via a monitor, choose his
own strategy of medium-term process scheduling.

4) I/0 management
The kernel makes peripheral devices appear uniform with respect
to simple I/0 and exception conditions. Simple I/0O is performed
via a standard routine which starts a data transfer. The process
calling the I/0 routine is suspended until resumed by the I/0
interrupt (cf. Section 16). A user must guarantee that only one
process at a time uses a peripheral and perform error recovery.

73

o e T TR S T

-

5)

6)

NAVTRAEQUIPCEN-76~C-0017-1

Handles interrupts
When an interrupt occurs, the kernel resumes the process
which is associated with the interrupt.

Provides real-time control

The kernel maintains the time of day clock and the real-time
clock. Standard routines are used to obtain the time of day, and
delay a process for a period of time.

74

-

NAVTRAEQUIPCEN-76-C-0017-1

15. SCOPE RULES

The scope of an identifier is that region of the program text where it
is known with a single meaning. A scope is either a program, routine, monitor
type, record type or WITH statement.

In order to be known, all identifiers must be introduced either by a dec-
laration or a qualification (the singular exception to this rule is a pointer
type which may refer to a type not yet defined). A declaration associates

an identifier with a particular variable, constant, type or routine.
Qualification associates a field or entry identifier with a particular record
variable or monitor variable respectively. A qualification is either the
variable name followed by a period or a WITH statement (cf. Sections 9.2.3,
11.8, 11.10.1).

Two scopes are either disjoint or one is embedded inside the other. When a
scope is embedded within another scope, the inner scope is nested in the

outer scope.

An identifier can only be introduced with one meaning in a scope. However,
tt may be introduced with another meaning in another disjoint or inner scope.

Within a program are known:
a) any standard identifier,
b) constant, type, and routine identifiers introduced within and after
the library prelude (cf. Section 14),
c) labels declared after the library prelude.

Within a monitor type are known:
a) any standard identifier,
b) all identifier and labels introduced within the monitor type itself
except its entry routine identifiers,
c) all constant and type identifiers introduced within a program
different from those in (b).

Within a routine are known:
a) any standard identifier,
b) all identifiers introduced within the routine, including the routine
identifier,
c) all identifiers introduced in its outer scopes different from those
in (b),
d) all labels declared in the routine.

Within a record are known:

a) all standard type identifiers,
b) all type identifiers introduced in its outer scopes.

75

NAVTRAEQUIPCEN-76-C-0017-1

Within the WITH statement are known:
a) any standard identifier,
b) all identifiers introduced by the WITH statement itself and by
its outer WITH statements,
c) all identifiers introduced in its outer (non-WITH statement) scopes
different from those in (b).

76

———

—

NAVTRAEQUIPCEN-76-C-0017-1

16. INPUT/OUTPUT

Basic I/0 is handled by the standard procedure I0, a primitive operation
upon which a user may construct various device handlers, interrupt handlers,
1/0 exception handling routines, generalized I/0 control routines, and file
systems. The parameters of I0 have data types that completely characterize
the peripheral devices available to a user on a particular machine. These
types are available to a user on a particular machine. These types are
recognized by the kernel (cf. Section 14) which treats the devices in a
uniform manner. The kernel suspends the process calling I0, initiates the
I/0 operation, processes the I/0 interrupt, returns I/0 status information
(through one of the parameters to I0) and resumes the delayed process.

The kernel assumes that a device is used by only one process at a time. It
is the user's responsibility to guarantee this assumption is satisfied. Also,
the user must perform error recovery. Since the process calling IO is
suspended until the I/O operation is completed, I/0 requests should be
processed by a process different from the one making the request if the I/0
transfer is to proceed in parallel with the execution of the requesting
process.

The form of the standard procedure IO is:

IO(I0VAR, IOPAR, IODEVICE)
Calling IO is a request that peripheral device IODEVICE perform the I/0
operation specified in IOPAR on variable IQVAR.

IOVAR and IOPAR are variable parameters of arbitrary passive types. The

type of IOVAR depends on the device, e.g., for a terminal device, the unit

of data transmitted may be a single character so the type of the argument
corresponding to IOVAR must be CHAR, or for devices like a disk, printer,

card reader, card punch and magnetic tape the unit of data transmitted is

a string of characters representing respectively a disk record, print line,
card image, punched card and tape block so the type of the argument correspond-
ing to IOVAR must be STRING with an appropriate length.

IOPAR is of type RECORD. This record contains fields representing the

1/0 operation, I/0 result and an I/0 argument whose values vary from device
to device. The I/0 operation field is an enumeration type whose values
are the possible I/0 operations, i.e., whether to send or receive data
and/or control information. The I/0 result field is of enumeration type whose
values are the possible outcomes of the 1/0 operation, e.g., operation
completed successfully, operation failed due to a transmission error, end-
of-file mark sensed, etc.. The I/0 argument field provides additional
information pertinent to the device, e.g., an integer representing a disk
record, or an enumeration constant specifying further the kind of I/0

move operation for a tape unit-i.e., whether to skip forward or backward

a record, rewind the tape, etc..

77

~— T

NAVTRAEQUIPCEN-76-C-0017-1

TODEVICE is a constant parameter of arbitrary enumeration type whose values
represent the various available I/O devices.

The 10 procedure translates characters on input from their internal
representation on the object machine to the internal representation
(ordinal value) defined by the compiler, and vice versa for output.

Example:

Assume the kernel recognizes the following types:

{type of IODEVICE}
TYPE PERIPHERALS = (READER, PRINTER, DISK, TAPE, TERMINAL);

TYPE IOOPERATION = (INPUT, OUTPUT, MOVE, CONTROL);
IORESULT = (COMPLETE, TRANSMISSION ERROR, ENDFILE);

{type of IOPAR}
TYPE IOPARM =
RECORD
OPERATION : IOOPERATION;
STATUS : IORESULT;
CASE ARG : PERIPHERALS OF
DISK : (PAGE INDEX : INTEGER);
TAPE : (MOVE OPERATION : (SKIP_FORWARD, BACKSPACE, REWIND,
OUTEQF));
PRINTER : (LAYOUT OPERATION : (SINGLE_SPACE, DOUBLE_SPACE,
NEW_PAGE))
END;

Then PASCAL's READ(INPUT, V1) procedure (Jensen & Wirth [15]), where the
INPUT file is the card reader, V1 is a variable of type integer, real or
character, would be programmed as follows:

CONS EOL = (:177:); NO_FILES = ...,
TYPE TEXT = PACKED ARRAY [1..81) OF CHAR;
DATATYPE = (INT, REEL, CHR);
INVAR = RECORD
CASE VTYPE : DATATYPE OF
INT : (VI : INTEGER);
REEL : (VR : REAL);
CHR : (VC : CHAR)
END;
FILE = 1..NO_FILES;
BUFFER_TYPE = RECORD

PT : 0..80;
DATA : TEXT;
EOLINE, EOFILE : BOOLEAN {initially TRUE, FALSE}
END;
78

~ TR

NAVTRAEQUIPCEN~76-C~0017~1

VAR F : FILE;
INBUF : BUFFER TYPE;

PROCEDURE GET(VAR BUF : BUFFER TYPE);
{advance the current buffer position to the next character}.
VAR READPAR : IOPARM;
BEGIN WITH BUF DO
BEGIN
IF EOFILE THEN GOTO 1 FI;
IF EOLINE THEN
READPAR.OPERATION := INPUT;
I0(BUF, READPAR, READER);
IF READPAR.STATUS = ENDFILE THEN
EOFILE := TRUE;
GOTO 1
FI;
PT := 0; EOLINE := FALSE; DATA[81] := EOL
FL;
PT := PT + 1;
IF DATA[PT] = EOL THEN
DATA[PT] := ' ';
EOLINE := TRUE
FI;
END
1 : END {GET};

PROCEDURE READI (VAR BUFFER : BUFFER_TYPE, VAR V1 : INVAR);
{scan integer in BUFFER and place in V1}
VAR I : INTEGER;

SIGN : 0..1;

BEGIN WITH BUFFER DO
BEGIN {note: DATA[PT] is the next character to be read}

LOOP WHILE DATA[PT] = ' ' : GET(BUFFER) REPEAT;
SIGN := 0;
IF DATA[PT] = '+' THEN GET(BUFFER)

ELSE IF DATA[PT] = '-' THEN

SIGN = 1; GET(BUFFER) FI
FI1;
LOOP WHILE DATA[PT] >= '0' AND DATA[PT] <= '9':
I := 10*I+ (DATA[PT] - '0');
GET (BUFFER)
REPEAT;
IF SIGN = 1 THEN I := -1 FI;
V1.VI := 1
END
END {READI};

79

PROCEDURE READ (F

BEGIN
CASE F OF
1 {INPUT} :

2 {OUTPUT} :

END
END;

: FILE, VAR V1
{read from file F the value for V1

NAVTRAEQUIPCEN-76-C-0017-1
: INVAR) ;

CASE V1.VTYPE OF

INT : READI(INBUF, V1);
REEL : READR(INBUF, V1);
CHR : READC(INBUF, V1)

END;
ERROR ('READ ON OUTPUT FILE');

Similarly for READR and READC.

80

NAVTRAEQUIPCEN-76-C-0017~1

17. REAL-TIME CONTROL

For real-time applications a user may want to delay a process some specified
amount of time or measure the real time taken by a process to perform some
action. These real-time controls are provided by the following standard
routines:

WAIT(T) The calling process is delayed T units of time where a unit
of time is implementation dependent. If the call occurs
in a monitor, other calls on this monitor will be delayed.

TIME The result is an integer defining the real time in seconds
since system initialization.

It is assumed the object machine has one or more real-time clocks in order
to implement the above routines.

81/82

e ——- N —— . . 1

-

NAVTRAEQUIPCEN-76-C-0017-1

GLOSSARY

active type: a type containing monitor types, queue types and reference
types.

argument: a variable, expression, procedure identifier or function identifier

passed in an argument list, i.e., the actual parameter to a routine.

array type: defines a composite structure with indexable components of
homogeneous type.

concurrent process: a sequential process whose execution is overlapped in
in time with other sequential processes.

constant parameter: a parameter defined without the prefix VAR. Its value
cannot be changed.

data type: the definition of a data structure and the operations that may
be performed on it.

entry routine: a procedure or function prefixed with the ENTRY keyword.
Its scope is that of the monitor type in which it is declared.

enumeration type: a symbolic scalar including Boolean, integer or character
type, or subrange thereof.

event: a parameter mechanism which when invoksd causes an action to be
performed and an exit from an arbitrary nest of control to be taken.

initial process: the block of a concurrent program.

initial statement: the statement of a monitor type that will be executed
when a variable of the monitor type is initialized.

kernel: the minimum run-time support provided a user. It controls the
allocation of concurrent processes to processors, the exclusive access
of concurrent processes to shared data, the peripheral devices, the
interrupts and the allocation of storage for processes.

monitor type: defines a shared data structure and the operations through
which the data structure may be exclusively accessed by concurrent
processes.

parameter: an identifier declared in a parameter list.

passive type: a type not containing a monitor type, queue type or
reference type. :

permanent variable: the variables declared within a monitor type. They
exist forever after initialization of a variable of type monitor.

83

-

o

NAVTRAEQUIPCEN-76-C~0017-1

pointer type: defines a set of values referencing components of a given type.

queue type: defines a queue that may be used by a monitor entry routine
to schedule processes.

record type: defines a composite data structure with labeled components
of heterogeneous type.

reference type: defines a set of values for referencing an instance of a
process.

routine: a procedure, function or event.

scalar type: defines an ordered set of values by enumeration of the
identifiers which denote these values.

set type: defines the set of all subsets of values of an enumeration type,
including the empty set.

sequential process: an instance of a process declaration whose statements
are executed sequentially.

simple routine: & routine that is not an entry routine.

simple type: an enumeration, real, queue or reference type.
string type: a one-dimensional array of characters.

structured type: an array, record, set, pointer or monitor type.

subrange type: an enumeration type that is defined as a subrange of another
enumeration type by specifying its minimum and maximum values.

temporary variable: parameters and variables declared within a routine
that exist only while the routine is being executed.

type compatibility: two types are compatible if:
1) they are defined by the same type definition, or
2) they are subranges of a single enumeration type, or
3) they are string types of the same length, or
4) they are set types whose members are of compatible base types, or
5) one is of type integer or a subrange thereof and the other is of
type real.

universal type: a parameter type defined with the UNIV keyword. Type com-

patibility between a universal parameter type and the corresponding
argument type is supressed in a routine call.

84

L

NAVTRAEQUIPCEN-76-C-0017-1

variable parameter: a parameter defined with the prefix VAR. It re-
presents a variable whose value may be changed within the routine.

-~

-

85

o rr——— g s

_——

P

e ey

NAVTRAEQUIPCEN-76-C-0017~1

DISTRIBUTION LIST

Defense Documentation Center

Cameron Station

Alexandria, VA 22314

Naval Training Equipment Center

Orlando, FL 32813

Naval Air Systems Command

NAIR 340
Washington, D.C.

20360

12 Naval Air Systems Command
Library, NAIR-50174
Washington, D.C. 20360

24 Naval Air Systems Command
NAIR-413
Washington, D.C. 20360

2

