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Abstract

The constraint set {x I Ax = b, x > 0} has all integer extreme points

-t
T

for any integral b iff every basis of A is unimodular. This condition is

of obvious importance for integer linear programs, but it is not easily

determined. A useful means of testing for unimodularity of bases is implicit
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in the simple result presented here.
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4 A square matrix* M is unimodular iff |det M| = 1. An nxm matrix A is

totally unimodular iff every non-singular submatrix of A is unimodular. The
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£ importance of these concepts to integer programming is established by the
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following fundamental characterizations (Hoffman and Kruskal [4], Dantzig

and Veinott [1]):

E Property 1: every basis of A is unimodular iff all extreme points of

{x | Ax = b, x > 0} are integral for any integral b.

Property 2: A is totally unimodular iff all extreme points of (x | Ax < b,

x > 0} are integral for any integral b.
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Clearly every totally unimodular matrix has all bases unimodular. However,

a matrix all of whose bases are unimodular is not necessarily totally unimodular

(e.g. Garfinkel and Nemhauser [2]).

A standard way of approaching an integer linear program is to first
determine whether the solution set has integer extreme points. If all extreme
points are integer, then at least the problem can be solved using the simplex
method of linear programming. From the preceeding results, determining
integer extreme points is tantamount to establishing for the constraint matrix

either unimodularity of bases or total unimodularity, as appropriate to the
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constraints. Total unimodularity is the more easily determined property

since several very general sufficient conditions are known (e.g. Iri [5],
Hoffman and Kruskal [4]). Less readily applicable, but still potentially
helpful are the several algebraic and graph-theoretical characterizations

of total unimodularity (e.g. Padberg [6]). Unimodularity of bases, however,
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is a more general condition as well as a more useful property since any
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2 -4 *Lower case letters represent vectors and upper case letters represent
v 7 matrices. All vectors and matrices in this discussion have integer entries.
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system of inequalities may be enlarged to a system of equalities by the
addition of slack and surplus variables. But at the same time, unimodularity
of bases is difficult to test for since every basis must be examined. The
following observations help to determine integer extreme points by relating
unimodularity of bases to total unimodularity.

Theorem: Let the nxm (n < m) matrix A = [B, N] be of full rank and let B be a
unimodular basis of A. Then all bases of A are unimodular if and only if

B—lN is totally unimodular.
Proof: From Property 1, all bases of A are unimodular iff {(xB, xN) | BxB

+ NxN = b, (xB, xN) > 0} has integer extreme points for all integer b, or
equivalently { (x5, xg) | Ixg + B-leN -B-.lb, (x5, xy) > 0} has integer extreme
points for all integer b. Since B is unimodular, B_lb is integer for all
integer b. Also, any (m x 1) integer vector b can be expressed as b = B-lb
for some integer b. Therefore {(xB, xN) | IxB + B—leN =b, (xB, xN) > 0}

has integer extreme points for all integer b iff A has all unimodular bases.
Now by the correspondence of extreme points, {xN | B-leN 5_5, XN 2 0}

has integer extreme points iff A has all unimodular bases. Hence from
Property 2, B-IN is totally unimodular iff A has all unimodular bases.

Q.E.D.

Thus to establish that A has all unimodular bases, it is sufficient to
show that some basis B is unimodular and the nx(m - n) matrix B-1N is totally
unimodular. Note also that any problem with a constraint matrix having all uni-
modular bases may be transformed to a problem with a totally unimodular
constraint matrix.

Using a similar proof technique, one may easily derive the following results
that are also of use in determining whether a problem has integer extreme |
points: (i) a square nonsingular matrix B is totally unimodular iff B‘l is :

totally unimodular. (ii) a matrix A is totally unimodular iff every basis 1

of A is totally unimodular,




These results may also be deduced from the work of Heller [3] who .

defined and studied unimodular sets of vectors.
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