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~ Abstract

The constraint set {x Ax — b , x > 0) has all integer extreme points

- for any Integral b 1ff every basis of A is unimodular. This condition is

of obvious Importance for Integer linear programs, but it is not easily

determined. A useful means of testing for unimodularity of bases is implicit

in the simple result presented here.
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A square matrix* M is unimodular 1ff I det MI — 1. An man matrix A is

totally unimodular if f every non—singular submatrix of A is unimodular. The

importance of these concepts to integer prograimning is established by the

following fundamental characterizations (Hoffman and Kruskal [4], Dantzig

and Veinott (1]):

Property 1: every basis of A is unimodular 1ff all extreme points of

- ~ {x Ax — b , x > O} are integral for any integral b.

Property 2: A is totally unimodular 1ff all extreme points of (x Ax < b ,

x > 0) are integral for any Integral b.

Clearly every totally unimodular matrix has all bases unimodular. However,

a matrix all of whose bases are unimodular is not necessarily totally unimodular

(e.g. Garfinkel and Nemhauser [2]).

A standard way of approaching an integer linear program is to f irst

determine whether the solution set has integer extreme points. If all extreme

points are integer , then at least the problem can be solved using the simplex

• 
method of linear progranuning. From the preceeding results, determining

~~ ~ 
integer extreme points is tantamount to establishing for the constraint matrix

either unimodularity of bases or total unimodularity, as appropriate to the

constraints. Total unimodularity is the more easily determined property

since several very general sufficient conditions are known (e.g. In [5],

Hoffman and Kruskal [4]). Less readily applicable, but still potentially

helpful are the several algebraic and graph—theoretical characterizations

of total unimodularity (e.g. Padberg [6]). Unimodularity of bases, however ,

is a more general condition as well as a more useful property since any

5Lower case letters represent vectors and upper case letters represent
matrices. All vectors and matrices in this discussion have integer entries.
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system of inequalities may be enlarged to a system of equalities by the

addition of slack and surplus variables. But at the same time, unimodularity

of bases is difficult to test for since every basis inust be examined. The

following observations help to determine integer extreme points by relating

unimodularity of bases to total unimodularity.

Theorem: Let the nxm (n < in) matrix A — [B, N] be of full rank and let B be a

unimodular basis of A. Then all bases of A are unimodular if and only if

B 1
N is totally unimodular .

Proof: From Property 1, all bases of A are unimodular if f {(xB, xN) I BxB
• 

I 
+ Nx.H — b , (XE, XN ) > 0) has integer extreme points for all integer b, or

equivalently {(x B, XN) I IXB + B
~~

NxN 
uii B~~b , 

~XE’ 
xN) > 0) has integer extreme

j points for all integer b. Since B is unimodular, B
1b is integer for all

integer b. Also, any (m x 1) integer vector b can be expressed as b — B 1b

for some integer b. Therefore 
~XE’ xN) I IXE + B L

NXE ~~~~~
, (xe, XE) ~ 0)

has integer extreme points for all integer ~ 1ff A has all unimodular bases.

Now by the correspondence of extreme points, {x
N I B~~Nx~ < E, x~ > O}

has integer extreme points 1ff A has all unimodular bases. Hence from

Property 2, B~~N is totally unimodular 1ff A has all uniinodular bases.

Q.E.D .
5’ Thus to establish that A has all unimodular bases, it is sufficient to

show that some basis B is unimodular and the nx(m — n) matrix B 1N is totally

unimodular . Note also tha t any problem with a constraint matrix having all uni—

modular bases may be transformed to a problem with a totally unimodular

constraint matrix.ri
Using a similar proof technique, one may easily derive the following results

that are also of use in determining whether a problem has integer extreme

points: (1) a square nonsingular matrix B is totally unimodular iff B ’ is

totally unimodular. (ii) a matrix A is totally unimodular 1ff every basis

of A is totally unimodular.
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These results may also be deduced from the work of Heller [3] who

- - defined and studied unimodular sets of vectors.
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