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Abptract
This paper is concerned with the nonparametric estimation of a distribution

function F, when the data are incomplete due to grouping, censoring and/or

truncation.

Subsets B ,B_,...,B  of the real line are given and there are

N

N independgnt observations Xl,X2,...,XN, where Xi is drawn from the

ribution F(x;B.) =

truncated di However X; may not be

observed exactly and is known only to lie in the set Ai S;Bi. The situation
occurs frequently in survivorship, reliability,and recidivism analysis. Using
the idea of self-consistency, a simple algorithm is constructed and shown to
converge monotonically to yield a maximum likelihood estimate of F. The
procedure compares favourably with the more cumbersome Newton-Raphson method.
A test is proposed for comparing two distributions when data on one or both

is incomplete and some other applications of the empirical distribution

function are indicated.

Keywords: EMPIRICAL DISTRIBUTION FUNCTION; CENSORING; INTERVAL CENSORING,
TRUNCATION, GROUPING; SURVIVAL CURVE; MAXIMUM LIKELIHOOD; SELF-
CONSISTENCY; NEWTON-RAPHSON; MULTINOMIAL DISTRIBUTION; TWO SAMPLE
TEST; LOGRANK TEST; LEHMANN ALTERNATIVES

AMS 1970 subject classifications. Primary 62G05; Secondary 65K05.
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I. INTRODUCTION
In this paper we will be mainly concerned with the nonparametric

estimation of the distribution F of a real valued random variable X,

when the sample data are incomplete due to restricted observation brought

about by grouping, censoring and/or truncation. More precisely the situation

is as follows. Subsets Bl’B2""’BN

are N independent observations Xl = Xy

is drawn from the truncated distribution F(x;Bi) = P(X < x|X ¢ Bi)’ X € Bi'

of the real line are given and there
..,XN = Xy where Xi (L<i<N)
Thus xi is truncated by Bi or, in other words, the experimenter would
not have been aware of the existence of that observation had Xi not belonged
to Bi' Moreover Xi (1L <i<N) may not be observed exactly and is known
only to lie in the set Ai where Ai c Bi' Thus Xi is censored into the
set Ai' Grouped data can be naturally considered as censored, where each
observation is censored into one of a fixed collection of disjoint sets.
The observed data are then the N pairs (Al,Bl), (A2,82),...,(AN,BN).

The truncating sets {Bi} can either be viewed as fixed or as
random. We can now think of a partition of the set Bi and Ai is that
member of the partition into which Xi falls. Again the partition can be
viewed either as fixed or as having arisen from some random mechanism
independent of Xi. In many cases, the partition of Bi will be unknown
(except for the fact that Ai belongs to it); these assumptions will make
knowledge of the partition irrelevant to the estimation of F. The case of
grouped data can be considered as one in which the partitions are known and
are the same for each i (1 < i < N).

If Bi = (~»,®») then Xi is not truncated, and if Ai consists of a
single point then Xi is uncensored, i.e. is exact. We say that Xi is

interval censored if A1 is of the form [Li’Ri] and Xi is right (left)




censored if Ri 2 4o (Li = -»), Of course if Li = Ri’ then xi is
exact. Interval, right and left truncation are defined similarly. A sample
is said to be singly censored if all the data is either exact or right
censored; and doubly censored if the data is all either exact, right censored
or left censored. This is now standard terminology.

Examples of right censoring are very common e.g. in medical follow-up
and industrial life-testing situations. Interval censoring occurs naturally when
the {Xi} represent response times. Let us suppose that periodic inspections are
made at times tl < t2 <ioes <tm in order to see whether a certain event has
yet happened. If it has already occurred by the first inspection, the
observation is left censored in (-ﬂ,tl]. If the response is first observed to
have occurred at the k'th inspection (2 < k < m) then the observation is
censored into (tk_l,tk], while if the event has still not happened by the
last inspection, the observation is right censored in (tm,w). Examples of
interval censoring are, for instance, described in Harris, Meier and Tukey
(1950), Cohen (1957), Hartley (1958), Gehan (1965), Peto (1973) and Turnbull
(1974). Also the biocassay problem discussed by Ayer et al (1955) can be
considered an extreme case of double censoring when there is no exact data.
The same situation arises in the estimation of gap acceptance distributions in
traffic studies (see Miller, A.J. (1974).).

In most practical situations, each set Ai will be an interval or a
point. However the problem is not made much more complex if we allow the
{Ai} to be unions of intervals and points. This could arise if, in
grouped data, non-adjacent groups had been pooled; for example, readings off
the scale of the measuring instrument whether too high or too low might have
been pooled. This more general type of censoring pattern has also been

considered by Mantel (1967).

Truncation can occur if the population from which Xi is drawn has been
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subject to some screening procedure in which all items with x-values outside
Bi have been removed. This situation can arise in consumer product testing,
for example. If several data sets have been pooled to produce the sample then
the {Bi} will not necessarily all be identical. Another example of truncation
occurs when the instrument which is measuring X needs a certain minimum
level before it will respond at all.

Concerning survivorship analysis, Mantel (1966) mentions left truncation
in the context of merging clinical trials. Here a group of survivors at a
certain point in time is to be incorporated into ongoing study data when the
original size of the group of which these are a remnant is unknown. The
reentry problem, also suggested by Mantel, is an example where there can be a
more general truncation ﬁattern. This situation occurs when a person can be
lost to follow-up, by leaving a health insurance programme for instance, but
then he rejoins at a later date. If he had died in the intervening interval
we would not have been aware of it. Here Bi is of the form (—m,bl] ] [bQ,w),
but one could envisage a more general situation where a person could enter or
leave the programme several times. Of course, with some effort, we may
uncover information about an individual who might otherwise be lost. However,
not only will this be expensive but it could also introduce a bias if the
success of the search is influenced by whether or not death has occurred. Thus
an unbiased incomplete (truncated) sample may be preferable to complete but
biased data. (Another difficulty is to ensure that the person has not
rejoined because his health has deteriorated. This would violate our assumptions.
We might refer to this situation as "prognostic truncation'.)

The problem of the estimation of F when some parametric form for F
is assumed has been treated extensively in the literature. Early work has been
summarized by Buckland (1964, Ch. 2)., For example, the case when F is normal

has been considered by Cohen (1957), while recently Selvin (1974) has examined




the Poisson case. Blight (197C) has developed a general method for obtaining
the maximum likelihood estimates of the parameters for any distribution in a
multiparameter exponential family. (See also Hartley and Hocking (1971) and
Sundberg (1974).) Most authors have assumed that the sets {Bi} are intervals,
the same for each 1, and that the observations are either exact or censored
into one member of a fixed set comprising several disjoint intervals.

We shall be concerned with deriving the maximum likelihood estimate (MLE)
of T when no parametric assumptions about its form are assumed. Of course,
if all the data are exact with no truncation, this estimate is given by the
empirical (sample) c.d.f. When the data is subject only to right censoring,
which is common in survivorship and life-testing situations, Kaplan and
Meier (1958) have shown that the MLE of [ is given by the product limit
(PL) method. This can be adapted to accommodate left truncation as well by
treating such data as " negative losses" (see p. 463). Trivially, by
reversing the scale, the PL method can be applied to data subject only to
left censoring and right truncation. It can also be used in problems with no
truncation and very special patterns of double censoring (Turnbull (1974,

p. 170)) and of interval censoring (Peto (1973, p. 87)). Explicit estimates
are also available for certain particular interval truncation patterns with no
censoring (see Section 5).

For obtaining estimates in more general situations, explicit solutions
of the likelihood equations are not available and iterative methods must be
used. For intérval censored data, Peto (1973) employed direct but rather
cumbersome Newton-Raphson search methods to maximise the likelihood. Turnbull
(1974) used the idea of self-consistency (cf. Efron (1967)) to obtain a simple

algorithm in the doubly censored case.




The purpose of this paper is threefold. Firstly, a simple iterative
provedure is proposed for finding the MLE of I for the general case of
arbitrarily censored and truncated data. This method can be considered the
nonparametric analogue of that of Blight (1970). Secondly a new method of proof
of the equivalance of self-consistency and maximum likelihood is presented.
This method utilizes the relation between the values of the likelihood and
successive approximations of the estimates, giving at the same time some
insight as to why the theorem should be true. The proof differs from the rather
inelegant and lengthier arguments used previously for the easier special cases
of single censoring (Efrcn (1967, Thm 7.1)) and of double censoring (Turnbull
(1974)). Finally, the algorithm is shown to converge, and in a monotone
fashion, a fact conjectured by Turnbull (1974) on the basis of empirical
evidence.

In Section 2, the likelihood function is examined, and the problem
reduced to a simpler one of estimating the parameters of a multinomial
distribution with censoring and truncation. In Section 3, the self-consistency
algorithm is described and, in the following section, is shown to converge to
yield the MLE of F. 1In Section 5, properties of the algorithm are discussed
and comparisons made with the Newton-Raphson method. A two sample test when
one or both samples may be subject to censoring and truncation is proposed in
Section 6. Finally, some further problems such as large sample properties of

the estimates and the handling of concomitant variables are discussed.
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2. REDUCTION OF THE PROBLEM

~

We first show that the maximum likelihood estimate, F, of F increases
in only a finite number of disjoint intervals (or points). We shall use
the same notation as Peto (1973) who obtained a similar result for interval
censoring with no truncation.

Let us assume that each Ai (1 < i <N) can be expressed as the finite
union of disjoint closed intervals, with the convention that an isolated
point {x} 1is a closed interval [x,x] and that a semi-infinite interval

is semi-closed only. Thus we can write

k,
i
A, = U [L,,,R,.] (i=1,2,...,N) ,
i 321 i3?ij
—o ees < L. . : =
where -® < Li) LRy bl Lik, SRy, = and Ry > ==
i i
L < » , From a practical point of view, this restriction on the form

iki
of Ai’ is unimportant. We now construct a set of disjoint intervals whose

left and right end points lie in the set {Lij; 1 <3< ki’ 1<1ic<N}

and {Rij’ 1< :-ki’ 1 < i < N} respectively, and which contain no other

members of {Lij} or {Rij} except at their end points. We write these

intervals

[ql’pl]a [q2’p2]a'°°’[qmapm] ’

where q) <p, <q, < ... <q <p. Also define

m
C= U [q,,p,]. (2.1)
jo1 3P

For example in the case of single censoring, we have ki =1 for all

2.t




i, and L,, = R, if x., 1is exact while R, = +o if x, is right
il il i il i '
censored. Let u (1 < u < N) be defined by L . = max L, < o , If
-tz ul i il
Lul = Rul (i.e. the largest observation is uncensored), then m 1is the
number of exact observations and qi = pj is the value of the j'th largest
exact observation. If Rul = 4o (i,e. the largest observation is censored),
then m-1 1is the number of exact observations, the last interval [qm,pm]
is [Lul,m), and qj = pj (L <j <m~- 1) are the values of the exact
observations.
Under the assumptions of Section 1, the likelihood is proportional to
N
L*(F) = n {[P.(A,)/P_(B,)]

. i F i

i=1

NS

= I ..+) - F(L,. - .). 2.
A {.2 [F(Ry5#+) - F(Lys )1/Pp(B). (2.2)
i=1l j=1

We will assume that PF(UBi) = 1, which occurs for instance if at least
one observation is not truncated. The search for that function F that

maximises (2.2) is facilitated by the following lemmas.

Lemma 1.
Any c.d.f. which increases outside the set C cannot be a maximum
likelihood estimate of F, except in the trivial case when Ai nNncs= Bi nec

for all 1i.

Proof. Recall that Ai S:Bi and C is defined by (2.1). Suppose that
c.d.f. G assigns non-zero probability p to the set Ai - C for some 1.
Then the likelihood can be strictly increased by "transferring" probability

p from Ai - C to Ai N C. Similarly if G- assigns positive probability

N
to a set Bi - Ai -C or to N Bi » the likelihood can be improved by
i=1




"transferring” probability from these sets to C. This improvement is

again strict except in the trivial case mentioned.

Remark. When Ai nc = Bi NC for all i, the maximum likelihood is

unity and is achieved by any distribution which assigns zero propability
N

to U B, - €. The situation represents one of severe censorship and
i=1

truncation; we will exclude such cases from our further discussion.

Lemma 2.

For fixed values of F(pj+), F(qj-) (1 <3 <m), the likelihood
is independent of the behaviour of T within each interval [qj,pj].
The proof is obvious.

Now, for 1 <3 <m, define
Sj = F(pj+) - F(qj—). (2.3)

Then the vectors s = (s.,...,5 ), where Xs. =1 and s, > 0,
v m ] ] -

7°
define equivalence classes on the space of distribution functions F
which are flat outside C. We will say that two such functions are equiv-
alent if they have the same g-vectors, as defined by (2.3). All functions
in the same equivalence class will have the same likelihood by Lemma 2,
and Lemma 1 shows that we can restrict our search for an MLE to these classes.
Therefore the MLE will, at best, be unique only up to equivalence defined
in this way.
For example, for right censored data, the Kaplan-Meier PL estimate
is undefined at the exact observation points and in an interval [L,~),
say, if the largest observation is at L and is censored. Of course one

by requiring F to be right

can obviate the ambiguity when pj = qj

continuous.

ST :




The foregoing discussion shows the problem of maximising (2.2)
reduces to one of maximising

N m

m
L*(s ,...os )= N () a,.s./) B..s,), (2.4)
1 m i=1 j:l 1] ] j=1 1] 1

subject to Zsj =1, sj >0 (1 <73 <m), where

1 .

otherwise ,

1 if [q]. ,pj] c B;,

0 otherwise .

We remark that we would be able to write down (2.4) immediately as
the likelihood if there were a discrete scale for X (i.e. X could only
take on values tl,t2,...,tm, say). Then we would define sj = P(X = tj) .
This was the situation in the double censoring problem considered by
Turnbull (1974), in which it was required to estimate the probabilities that
a certain response time fell in the first month, the second month, etc.

Now since Ai SIBi for all i, we have that aij = 1 implies Bij = 1, Let

5= (;l,...,;m) denote a value of 8 for which L* attains its maximum
in the region R = {EIZ sj =1, sj >0 (1 <3 <m). We assume that neither
of the following two trivial situations hold:

(A) There exist j,k with 1 <3j,k<m and j # k such that
a., =a, forall i (1< i< N),
ij ik - -
(B) There exists a subset D such that for each i, 1 < i < N, either

B, AcED o B ACCOC,
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If (A) occurs, L* depends on sj and s, only through their sum. In

case (B) only the ratio Sj/(zkeDsk) is estimable for j ¢ D and hence
Si is defined only up to a multiplicative constant. (Condition (B)
modifies a result of Asano (1965, Thm. 5) concerning necessary and

sufficient conditions for the estimability of multinomial probabilities

with truncated data.)

~

If either (A) or (B) occurs, s 1is not unique and the maximum likelihood
estimate T will be determined only as far as belonging to a certain union

of equivalence classes.

o e ot e b i
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3. THE SELF-CONSISTENCY ALGORITHM

In this section, we describe an algorithm for obtaining the MLE
of s based on the equivalence between the property of maximum
likelihood and that of self-consistency. This latter property will be
defined precisely below; it is an exte2nsion of the idea first used by
Efron (1967) for right censored data and later by Turnbull (1974) for
doubly censored data. The algorithm is related to one proposed by
Hocking and Oxspring (1971} for multinomial data subject to censoring
without truncation.

For 1 <i<N, 1<j<m, let

1 if x, € [q.,p.]

. i qjyp]

1 0 otherwise
Because of the censoring the value of Iij may not be known, however
its expectation is given by

)
E[(I.,.]=a,.,s./ a,.s (3.1)
S 13 137345 ik 'k

1

uij(g) » Ssay.

Thus uij(g) represents the probability that the i'th observation lies
in [qj,pj] when F belongs to the equivalence class defined by

£ (sl,...,sm). Also, because of the truncation, each observation

Xi = x;, can be considered a remnant of a group, the size of which is

unknown and all (except the one observed) with x-values in Bi. (They can

be thought of as Xi's "ghosts".) Let Jij be the number in the group

11
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B

corresponding to the i'th observation which have values in [qj,pj]. of

course Jij is unknown but its expectation, under £ is given by

m
(1 - Bij)sj/ } s, (3.2)

E (J..)
1 k=1 1

s
] k k

= v..(i) , say.

1]

If we treated (3.1), (3.2) as observed rather than expected frequencies, the

proportion of cbservations in interval [qj,pj] is

N
iél [“ij(f‘,) + vij(g)]/M(g) = wj(ﬁ) s (3.3)
say, where
N m
M = N o .
? igl jgl [”13(5) ' vll(é)]

Note that M(s) > N with equality if there is no truncation for then

Vij = 0 for all i,j . We say that the vector of probabilities § is

self-consistent if

sj = "j(s ...,sm) (1<j<m. (3.4)

l,

A self-consistent estimate (s.c.e) of ] is defined to be any solution of

the simultaneous equations (3.4). The form of (3.4) immediately suggests an
iterative procedure for finding the solution.

A. Obtain initial estimates sg (1 <3J <m). This can be any set of

12




“
e

13
positive numbers summing to unity, e.g. Sj = 1/m for all j.
. 0 0 . .
B, Evaluate uij(g ) and vij(g ) for 1 <i<N and 1 <3j <m,
0 0
and hence M(% ) and wj(g ).
C. Obtain improved estimates s; by setting
1 0 .
s, = n,.(s7) for 1 < < m.
37T ==
X 1 . 0
D. Return to Step B with s replacing S etc.
E. Stop when the required accuracy has been achieved.
k k-1
(E.g. the rule may be to stop when maxlijimlsj - sj | < 0.0001, say.
Alternatively a stopping rule may be based on the difference between successive
values of the likelihood.)
The procedure is easy to programme on a computer, requiring only
simple operations. If any component of Ek is small then it is possible for
M(Ek) to become very large. However, rounding errors can be avoided if
the sequence of operations for computing the {wj} is chosen with care.
Of course, the difficulty does not arise if there is no truncation for then
M(ék) is always equal to N.
Another way to write ﬂj(g), which is useful if relatively few of the
{Ai} and {Bi} are distinct, is
Sk Sk
AN D6, 1,(0) == + Lup1 - 1,3)) M(s), (3.5)
A xk B ) S\
keA keB
where £, is the number of observations censored into the set A, ng is
the number truncated by the set B, and IA(i) equals 1 if [qj ,pj] cA
and is zero otherwise. Thus ZEA = ZnB = N and using this relation
A B
M(g), which is the sum over j of the quantities in square brackets in
(3.5), can be written more simply as
- DY T
- TR
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T In (] s
B B keB k

Therefore the computations in Step 3 of the algorithm involve summing
only over the number of distinct {Ai} and distinct {Bi} which may be
considerably less than N in the case when X 1is discrete, for example.
In the next section we show that this algorithm converges and that
self-consistent estimates also maximise the likelihood. In Section 5,
the algorithm is discussed further and compared with the general
Newton-Raphson method which has been suggested by several authors in

connection with various special cases.

A
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4. THE EQUIVALENCE AND CONVERGENCE THEOREM

We now examine the equivalence of the s.c.e. and the m.l.e.

From (2.4), we see that the

log-likelihood is given by

N m m
L(s) = J [log( )} (a,.s.) - log( ] B,.s.)] (4.1)
v izl j:l l] ] j=l 1] ]
Consider the effect of increasing a particular component,
by a small positive amount ¢ and then dividing all the including
sj + €, by 1+ce¢ in order to keep the sum equal to unity.
dj(g) denote the value of the derivative of L with respect to ¢ at
€ = 0. Therefore
s + s
d (q) = _a_ L (_—l__ ’ ‘QS] © 9 ;] m )
T 3¢ 1+e 1+e 1+ ¢ |€=0
m
L y 3L
= . - g, — (4.2)
535 oy K 3s,
N a, .
S S - i (4.3)
i=1 ‘i‘ ‘f
B a,. s B.\S
el KKy ik
for 1< j <m. From (3.3), we have
s N o, 1l -8, ]
- 1. 1] ij
RO NP SCTPCNEN S P
k=1 k=1
-y
s N m
= -4 . d(R) + I (Y 8,8) ol I (4.4)
M(%) i=1 k=1
- m————

w ———
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1t
where we have substituted for dj(%) by (4.3). However
N om a.s (1 - 8y5)s,
M(s) = )} =11 +
Vo=l §El ? % 0
& S s
kel kg ik
N m
-1
= 7 () 8.,s)
i=l k=1 kk
Substituting in (4.4), we obtain
d.(3)
(s>-(1+—%—r)s (1<3 <m. (1.5)
Now a necessary and sufficient condition for § to be an MLE is that
for each 1
either d.(s) = 0 or d,(s) <0 with s, = 0. (u.6)
— 3 - - 3 )
Thus from (4.5) and (4.6), we see immediately that the MLE s satisfies
nj(s) = Sj for all j, and hence is self-consistent.
N
Concerning convergence of the algorithm, we let g and E' be successive
approximations where, by (4.5), si =[1+ (dj(ﬁ)/M(E))]Sj for 1< <m
Now by a Taylor series expansion we have
m
L(g') - L(g) = ('—s) + 0(]|s' - s
(g Ed gl 84 j I ”
= %5
L
’M(s) ES 4% 3
i=1 3
m m
1 oL .2 ) "N
= [ ] s,° - (] s, 2244
M(QS j=1 i 38_j 351 3 asj

S L T ——
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1 e 2
= ﬁ-@ ]gl dej (E) > 0, (u.7)

where we have used (4.2) and have neglected terms of second and higher
order. Thus L(s') > L(s) with equality only if, for each j, either
n, - N

Sj = 0 or dj(Q) = 0. Thus the algorithm converges monotonically, at

least for %0 close enough to $» SO that higher order terms can indeed

be neglected. Suppose that the limiting value is %. Then % satisfies (3.4).
Hence if all Ej > 0, it follows by (4.5) that dj(%) =0 far all j and
% is the MLE s of 8+ Suppose then that gj = 0 for some j and that

N

dj(i) > 0 in some neighbourhood of %. From the assumption that s? >0

for all j it follows that s§ > 0 and M(ﬁk) < » for k = 0,1,2,...

We are assuming that gk eventually lies in this neighbourhood where

dj(%) > 0. However (u4.5) implies that s? cannot decrease any further

towards gj = 0, which is a contradiction. Thus if gj = 0 for some 7j,

it follows that d.(S) < 0. (In fact the limit of d.(g) as s = % may
JA — ]

not exist if some gj = 0, in which case we interpret the previous statement,

and (4.6), as meaning that dj(g) > 0 throughout a neighbourhood of g )

"

0 for any £ such that s, > 0.

Hence % satisfies the condition (4.6) for maximising L and this completes

A similar argument shows that dl(%)

the proof of the equivalence of the s.c.e. and m.l.e.

0 RS T . .
Note that for given initial vector 5 the limit 3 is unique even if

% is not. A maximum likelihood estimate F of F is given by

0 if x < q,

- " A n

F(x) = s; + Syt oo ¥ sj if pj < x < qj+l (1<jiz<m-1)
1 if x> Py

and is undefined for x ¢ [qj.pj] for 1 <3 <m. Therefore, when plotted,
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I consists of a series of m + 1 horizontal lines of increasing heights

with paps in between, where the way in which increases occur is arbitrary. The
4"

variances of the non-zero {sj} are given by the inverse of the matrix of

second derivatives of L with respect to the elements of (81,82,...,5

m—l)
v .
corresponding to the non-zero elements of $ - Thus estimates of the

variance of F(x) can be calculated for x ¢ C, from which approximate

standard errors can be obtained for the height of each horizontal line,




5. DISCUSSION

Asano (1965) considered the problem of estimating the parameters of a
multinomial distribution with truncation (but no censoring). Ior the

"nested" case when B >8B

1 _? .v. D BN or the "chained" case when

2
Bi n Bj # ¢ for j = i-1,i,i+l and the intersection is empty otherwise

(with reordering of the Xi if necessary), Asano gave explicit expressions

for é. Thus these two special cases can be added to those mentioned in Section
1 as being ones where formulae for the MLE can be written down explicitly

and an iterative procedure is not needed. For the general case, Asano

suggested using constrained Newton-Raphson methods. A similar search method

was also proposed by Peto (1973) for the special case of interval censoring
only.

However the Newton-Raphson (NR) procedure involves updating a vector of
first derivatives and the inverse of a large matrix of second derivatives of
L at each stage of the iteration. This can be difficult even for moderate
values of m. Furthermore the step size in the NR iterations must be checked
to ensure that the boundary of the region R is not violated. Also an
improvement at each stage is not guaranteed since the step size may be too
large and the maximumn "overshot". To avoid this, the likelihood has to be
calculated and if it has decreased the exercise must be repeated with a
smaller step size, and so on. In contrast the self-consistency algorithm is
completely automatic, simple to implement and is intuitively appealing.

In fairness, it should be pointed out that in exceptional cases, the
convergence of the self-consistency algorithm can be rather slow. This

happens if both 8 = 0 and dj(%) = 0 for some j, {i.e. the likelihood has

and unconstrained maximum at Bj = 0. Why this is so can be seen by Equation

(4.7). For example, suppose m = 3, N= 4 and L% = sl(s2 + sa)sa(s + 32) .

1
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This represents the case of no truncation and three intervals with one
X in the first interval, one not in the first, one in the third and one not

. . . . 0 .
in the third. Starting with Sj =1/3 (j = 1,2,3), we have

\§ = S; = (1 - s;)/Q and s; = (3 ¢+ k)—l. Hence the convergence towards
the MLE s, = s_ = 1/2, s, = 0 1is quite slow. However such cases are

1 3 2

exceptional and usually the convergence is rapid.

B e TN
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. APPLICATION TO HYPOTHESIS TESTING

An important application of the MLL I 1is to the two sample problem
where it is desired to test the equality of two distributions, and observations
on one or both are subject to arbitrary censoring and truncation. (Extension

to the K sample problem is immediate.) lLet us suppose that Xl,...,XN
1
is a sample from “roup 1 and the remaining Nz = N - Nl observations are

from Group 2. It is desired to test the null hypothesis HO that all N
observations have the same underlyinpg 1 (unspecified). The alternative

Hl is that Group 1 observations have an underlying T = Fs while
0

for Group 2 observations. We consider Lehmann alternatives,

o

i.e. Fe(x) Ce(Fe (x)) where G is a specified c.d.f. on [0,1] with

0
G {y) =y, while Fe is unspecified. Peto and Peto (1972) have derived
0 0

asymptotically efficient rank invariant tests for interval censored data, and

]

their procedure can be naturally extended to the situation with arbitrary
censoring and truncation as follows.

The likelihood Li under Ho with F(x) = Ge(F(x)) of the i'th

observation represented by the pair (Ai’Bi) is

]

m
L, = g

- m -
g£(3,0,8)a../ § £(j,0,5)8..
l §4 1] j:l ﬁ/ l]

where g(3,0,§) = Ge(sl +oo.. 4 Sj) - Ge(sl + ...t Sj—l) and {aij},

{Bii} are defined as before. An efficient score for the i'th observation

is given by U, = 3 log Li/aG[e =8, , i.e.




N

3) = an/ao|0:00‘ and we»havo used the fact that ﬂ(j’ﬂo’%
I we assume that, under H

whore  olj] ) = s
R

0’ the censoriny and truncation mechanism is random
and independent of group membership, a test of any given

size can be constructed

using the permutational distribution of u..

Zgroup 171

The tesu statistic may not be unique if é is not unique. If this
situation occurs, for small samples the test statistic can be evaluated for
“"extreme" values of the possible % and if the decision concerning acceptance
or rejection of ”O is the same there is no difficulty. In large samples

~

non-uniqueness of 3 is less likely to occur and if it does the difference
between sipnificance levels for the different values of % will be small.
The above discussion assumes that the same random censoring mechanism is
operating in cach group. Tests that do not make this assumption have been
proposed by Efron (1967) for right censored data and Mantel (1967) for
arbitrarily censored data, (with no truncation). Efron uses the MLE's of the
distributions of the two groups calculated separately to derive an astimate
of the probabjlity that an X-value from group 1l is greater than one from
group 2 and this is used as a tvest statistic. In theory the test could bef
sasily extended to arbitrary censoring, however it is difficult to compute tﬁe
sampling distributions involved. Mantel (1967, Section 7) describes a test
for arbitrari’y censored data wﬁic% is a generalisation of that of Gehan
(1965) and does not use the estimated c.d.f. A disadvantage of this test
is that it requires knowledge, not always available, of the entire pattern of

restriction for each observation even if it is exact. Also much of the

information in the data is unused and thus the test will be rather Inefficlent.



7. CONCLUSION

The definition of self-consistent estimates does not directly involve
the likelihood function and so their exact coincidence with the MLE's i an
aesthetic and perhaps unexpected result. The property was first proved for
sinvly censored data by Efron (1967) and for doubly censored data by
Turnbull (1874), However their methods were lengthier and involved converting
the likelihood equations into the defining equations for self-consistency rather
than the examination of successive values of the estimates given by the
alyorithm.

An alternative nonparametric approach is to estimate the hazard

rate associated with ' rather than F itself. The work of several authors
is summarised by Barlow (1868, Section 3). Usually the hazard rate is assumed
te bLe o step function, constant within each interval, the set of intervals
being fixed. For instance, Harris, Meier and Tukey (1950) treat an interval
censoring situation and use a similar "prorating" idea as the basis for an
iterative scheme for obtaining dapproximate MLE's of the hazard rates in the
various intervals.

Consistency and other large sample properties of the maximum likelihood
estimate % will depend on the censoring and truncation mechanism. Consider

the case when the range of X 1is finite, {tl,t .,tm} say, and when the

T
mechanisms are random as described in Section 1. If we suppose that the sets
B and the partitions with non-zero probability are such that conditions (A),
(B) as stated in Section 2 do not occur for N sufficiently large, then

A

9 = Py = tj (1 < j<m) and s is unique - again for N sufficiently
- - v

large. Then consistency and asymptotic normality of the MLE's of the

non-zero sj follow from the standard theory, regarding the pairs (Ai’Bi)

as i.i.d. random variables involving a finite number of parameters including

the (Si} . Large sample properties of F when m does not remain bounded




As N~ o i an interesting open question. (Results are known for the case
of sinple censoring - see Breslow and Cfowley (1974).)

I'or the =ituation when there is concomitant information available for
each observation, there appears to be no natural extension of the powerful
methods that Cox (1972) has proposed for singly censored data. However in
a recent paper on regression with censored data, R.G. Miller (1974) uses %
as a basis for inference and thus it appears that his methods can be extended
to the case of arbitrary censoring and truncation.

It is interesting to note that Sackrowitz and Strawderman (1974) have
shown that, for a wide class of reasonable loss functions, the MLE E is
inadmissible for the case when the range of X is finite and there is
extreme double censoring (no exact observations). Thus in general the MLE
will be inadmissible. However, unless a prior measure can be assigned to
the space of possible c.d.f.'s F, there is no apparent substitute to be
preferred to the MLE. Indeed self-consistency provides a justification fof

using maximum likelihood cven in relatively small samples.

24



25

<

8. ACKNOWLEDGEMENTS

The author is grateful to Richard Peto and Nathan Mantel for some useful

conversations.




N e R

]

[u)

(51

tel

(71

(el

[9]

[10]

[11]

[12]

{131

[14]

(18]

{ie6]

26

FETERENCES

Aoy G0 (eh ) On extimat ing multinomial probabilitie. by poaling
incomplete samples.  Aon. Inost. Statiot, Math., 17, 1-13.

Ayer, M. Brunk, H.D. bwing, G.M., Reid, W.T. and Gilverman, E. (1955)
An empirical distribution function for sampling with incomplete
information. Ann. Math. Statist., 26, 641-647,

bariow, R.E. (1968) Some recent developments in reliability thecry.
Gelected Statistical Papers, Mathematical Centre, Amsterdam,
2, 49-66.

Blight, B.J.N. (1970). Estimation from a censored sample for the exponential
family. Biometrika, 57, 389-395,

Breslow, N. and Crowley, J. (1974). A large sample study of the life
table and product limit estimates under random censorship. Ann.
Statist., 2, 437-u453,

Buckland, W.R. (1964). Statistical Assessment of the Life Characteristic.
London: Griffin.

Cohen, A.C. (1957). On the solution of estimating equations for truncated
and censored samples from normal populations. Biometrika, 44, 225-236.

Cox, D.R. (1972). Regression models and life tables. J.R. Statist. Soc.
B, 34, 187-220.

Lfron, B. (1967). The two sample problem with censored data. In
Proc. 5th Berkeley Symp. on Math. Statist. Prob., pp. 831-853.
Berkeley: University of California Press.

Gehan, E.A. (1965). A generalized two-sample Wilcoxon test for doubly
censored data. Biometrika, 52, 650-653.

Harris, T.E., Meier, P. and Tukey, J.W. (1950). Timing of the distrioution
of events between observations. Human Biology, 22, 2439-270,

Hartley, H.0. (1958). Maximum likelihood estimation from incomplete
data. Biometrics, 1%, 174-194,

Hartley, H.0O. and Hocking, R.R. (1971). The analysis of incomplete data.

- a——————

Hocking, R.R. and Oxspring, H.H. (1971). Maximum likelihood estimation with
incomplete multinomial data. J. Am. Statist. Assoc., 66, 65-70.

Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from
incomplete observations. J. Am. Statist. Assoc., 53, 457-u8l.

Mantel, N. (1966). Evaluation of survival data and two new rank order
statistics arising in its consideration. Cancer Chemotherapy
Reports, 50, 163-170,




. IS

A

{171

(18]

{19]

(20]

[21]

[22]

{23]

{2u]

[25]

27

Mantel, N. (1967). EKanking procedures for arbitrarily rectricted
observations. Biometrics, 23, 65-78.

Miller, A.J. (1974). A note on the analysis of gap-acceptance in
traffic. Appl. Statist., 23, 66-73,

Miller, R.G. (1974). Least squares regression with censored data.
Technical Report, Stanford Univ.

Peto, R. (1973). Experimental survival curves for interval-censored
data. Appl. Statist., 22, 86-91.

Peto, R. and Peto, J. (1972). Asymptotically efficient rank invariant
test procedures. J.R. Statist. Soc. A, 135, 185-206.

Sackrowitz, H. and Strawderman, W. (1974). On the admissibility of the
M.L.E. for ordered binomial parameters. Ann. Statist. 2, 822-828.

Selvin, S. (1974)., Maximum likelihood estimation in the truncated
or censored Poisson distribution. J. Am, Statist. Assoc., 69,
234-237.

Sundberg, R. (1974). Maximum likelihood theory for incomplete data from
an exponential family. Scand. J. Statist., 1, 49-58.

Turnbull, B.W. (1974). Nonparametric estimation of a survivorship
function with doubly censored data. J. Am. Statist. Assoc., 69,
169-173.

e ——— > — g




U Rl

[ e

e~

Y R A

Unclassified

by

l Approved for public release, distribution unlimited. 21//) //C% 5’,,4’ (
N N

“p v \,u‘ Ty x VA‘ ki ATH ;-. ST AV',' (Wher lia e Prterod?
HEPORT DOC!H- “HTATION PAGE KA S A
TR WA R T T T T T N R e RN W T TR L e T SA s
#305
\ U SIS TS T e PO Rt taigtteny® | | HE D
/1 THE EMPIRICAL DISTRIBUTION FUNCTION WITH Technical x/p- ',
ARBITRARILY (‘ROUPFI) CENS SORED, AND TRUNCATED e J—
JAIA. J J"*" ST YL MotR
I ey I BTN 4 O ,") e
/ DAHCOY-73-C-uBO8 -
NGOLL-75-C-586
D e L CR AL IR L WAEML AnD AL H‘SS.’_*-ﬁ__‘ . <}i¢—‘:~ Tamr v T i w .-’.v:r:(_

A A8 T LT N Wl HY

Hool of Op?Pithh° Research & Industrial
Ingineering, College of Engineering
orn‘ll Unlvergxty, Ithaca, NY 14853

A - w R XY fn;.u. ANDA“)HFSS
‘ﬁon:orlnp Mxlltdry Activity
1.5, Army Research Office
Uurham, N.C. 2770¢

1T,  CONTECITING OFFICE HAME AND ADDRLSS B TU TS TSECURITY CLALS Yot ih
Sponsoring Military Activity Unclassified
“tatistics and Probability Program
(ffice of Naval Research fhea’ e,
ArAanton, Yirpinia 22217 1 L

A T TG ST AT EME L b, Fepart)

T e

- " —LI'- E"A'j «‘)&,h T zl ‘te wiatret entered in U'ork 20, 11 difterent from Repurl)

TR v, TR T ARY NGTES

'y v[ 1 a")u,' {Cant nue o 1E-Otae Al'S fn-(--unry 'Wl toen ify b) bln:h nunder)

Fmpirical distribution function; censoring; interval censoring, truncation,
prouping; survival curve; maximum likelihood; self-consistency; Newton-Raphson;
multinomial distribution; two sample test; logrank test; Lehmann alternatives

i3 ACLIHALT (Cunfimue en reversa ‘o100 11 necnnsar; ad lu'ﬁl Iy by block purber)

This paper is concerned with the nonparametric estimation of a distribu-
tion function F, when the data are incomplete due to grouping, censoring
and/or truncation. Subsets B ,82,...,8

1

of the real line are given and there1
are N independent observations X

N

1 X2,...,XN, where Xi is drawn from the

truncated distribution F(x; By )= P(X<x[XeB )y, X E By However X, & may not

o £ v 4 - t eV eS IS OBSOLETE
u:) 1 .AN 73 1.,73 ECI™HiOM OF t 1CV &5
; “Gla: — e --Mnclassified ... - . &
‘ STCLMITY CLALLIPICATISH OF Thll PASE (- a= J0's od)

yn()3 /‘:.:%S/\ Cl1U2-014- 6601




_Unclassified . .

ST Y CLUAGRICR TGN OF Tl FAGEIWhen Data Lnterad)

be abserved exactly and is known only to lie in the set Ai S‘Bi. The
situation occurs frequently in survivorship, reliability, and recidivism
analysis. Using the idea of self-consistency, a simple algorithm is construct-
ed and shown to converge monotonically to yield a maximum likelihood estimate
of F. The procedure compares favourably with the more cumbersome Newton-
Raphson method. A test is proposed for comparing two distributions when data
on one or both is incomplete and some other applications of the empirical

distribution function are indicated.

SECURITY CLASSIFICATION OF TMIS PAGE(Khen L2:s Entered)

-

el gt et




