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Ab tract

This paper is concerned with the nonparametric estimation of a distribution

function F, when the data are incomplete due to grouping, censoring and/or

truncation. Subsets BI,B 29 ... ,BN of the real line are given and there are

N independ nt observations XI,X 2,... ,XN, where Xi is drawn from the

truncated di ribution F(x;B.) -Howiver X may not be

observed exactly and is known only to lie in the set A. C B..I The situation

occurs frequently in survivorshipreliability,and recidivism analysis. Using

the idea of self-consistency, a simple algorithm is constructed and shown to

converge monotonically to yield a maximum likelihood estimate of F. The

procedure compares favourably with the more cumbersome Newton-Raphson method.

A test is proposed for comparing two distributions when data on one or both

is incomplete and some other applications of the empirical distribution

function are indicated.

I
I
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I. INTRODUCTION

In this paper we will be mainly concerned with the nonparametric

estimation of the distribution F of a real valued random variable X,

when the sample data are incomplete due to restricted observation brought

about by grouping, censoring and/or truncation. More precisely the situation

3 is as follows. Subsets BI,B 2,... ,BN of the real line are given and there

are N independent observations X1  X1,... ,XN XN, where X. (i < i < N)

is drawn from the truncated distribution F(x;B.) P(X < x1X e Bi), x C B..

Thus X. is truncated by B. or, in other words, the experimenter would
1 1

not have been aware of the existence of that observation had X. not belonged1

to B.. Moreover X. ( < i < N) may not be observed exactly and is known

only to lie in the set A. where A. C B.. Thus X. is censored into the
I 1 1 -- 1 1

set A1. Grouped data can be naturally considered as censored, where each

1 observation is censored into one of a fixed collection of disjoint sets.

The observed data are then the N pairs (A1 ,B1 ), (A2,B2 ),...,(ANBN

The truncating sets {B.} can either be viewed as fixed or as1

random. We can now think of a partition of the set B. and A. is that

member of the partition into which XI falls. Again the partition can be

viewed either as fixed or as having arisen from some random mechanism

independent of Xi. In many cases, the partition of Bi will be unknown

(except for the fact that Ai belongs to it); these assumptions will make

knowledge of the partition irrelevant to the estimation of F. The case of

I grouped data can be considered as one in which the partitions are known and

are the same for each 1 (1 < i < N).

If BE = (-i,-) then Xi  is not truncated, and if Ai consists of a

I single point then Xi is uncensored, i.e. is exact. We say that Xi is

interval censored if Ai is of the form L ,Ri ] and Xi is riht (left)

I--7
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censored if R. + (L. - ). Of course if L. = R., then X. isI 1 1 1 1

exact. Interval, right and left truncation are defined similarly. A sample

is said to be singly censored if all the data is either exact or right

censored; and doubly censored if the data is all either exact, right censored

or left censored. This is now standard terminology.

Examples of right censoring are very common e.g. in medical follow-up

and industrial life-testing situations. Interval censoring occurs naturally when

the {X.} represent response times. Let us suppose that periodic inspections are
1

made at times t < t2 <... <t in order to see whether a certain event has
1 2 m

yet happened. If it has already occurred by the first inspection, the

observation is left censored in (-,t1 ]. If the response is first observed to

have occurred at the k'th inspection (2 < k < m) then the observation is

censored into (tk-l'tk], while if the event has still not happened by the

last inspection, the observation is right censored in (t ,oo). Examples of

interval censoring are, for instance, described in Harris, Meier and Tukey

(1950), Cohen (1957), Hartley (1958), Gehan (1965), Peto (1973) and Turnbull

(1974). Also the bioassay problem discussed by Ayer et al (1955) can be

considered an extreme case of double censoring when there is no exact data.

The same situation arises in the estimation of gap acceptance distributions in

traffic studies (see Miller, A.J. (1974).).

In most practical situations, each set A. will be an interval or a1

point. However the problem is not made much more complex if we allow the

(A.} to be unions of intervals and points. This could arise if, in1

grouped data, non-adjacent groups had been pooled; for example, readings off

the scale of the measuring instrument whether too high or too low might have

been pooled. This more general type of censoring pattern has also been

considered by Mantel (1967).

Truncation can occur if the population from which Xi  is drawn has been

A -. __ ____ ____'_____........



3

subject to some screening procedure In which all items with x-values outride

Pi have been removed. This situation can arise in consumer product testing,1

for example. If several data sets have been pooled to produce the sample then

the {B.} will not necessarily all be identical. Another example of truncation1

occurs when the instrument which is measuring X needs a certain minimum

level before it will respond at all.

Concerning survivorship analysis, Mantel (1966) mentions left truncation

in the context of merging clinical trials. Here a group of survivors at a

certain point in time is to be incorporated into ongoing study data when the

original size of the group of which these are a remnant is unknown. The

reentry problem, also suggested by Mantel, is an example where there can be a

more general truncation pattern. This situation occurs when a person can be

lost to follow-up, by leaving a health insurance programme for instance, but

then he rejoins at a later date. If he had died in the intervening interval

we would not have been aware of it. Here B. is of the form (-o,b 1] U [b2

but one could envisage a more general situation where a person could enter or

leave the programme several times. Of course, with some effort, we may

uncover information about an individual who might otherwise be lost. However,

not only will this be expensive but it could also introduce a bias if the

success of the search is influenced by whether or not death has occurred. Thus

an unbiased incomplete (truncated) sample may be preferable to complete but

biased data. (Another difficulty is to ensure that the person has not

rejoined because his health has deteriorated. This would violate our assumptions.

We might refer to this situation as "prognostic truncation".)

The problem of the estimation of F when some parametric form for F

is assumed has been treated extensively in the literature. Early work has been

sumnmarized by Buckland (1964, Ch. 2). For example, the case when F is normal

has been considered by Cohen (1957), while recently Selvin (1974) has examined
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tLe Poisson case. Blight (1970) has developed a general method for obtaining

the maximum likelihood estimates of the parameters for any distribution in a

multiparameter exponential family. (See also Hartley and Hocking (1971) and

Sundberg (1974).) Most authors have assumed that the set {BI } are intervals,

the same for each i, and that the observations are either exact or censored

into one member of a fixed set comprising several disjoint intervals.

We shall be concerned with deriving the maximum likelihood estimate (MLE)

of F when no parametric assumptions about its form are assumed. Of course,

if all the data are exact with no truncation, this estimate is given by the

empirical (sample) c.d.f. When the data is subject only to right censoring,

which is common in survivorship and life-testing situations, Kaplan and

Meier (1958) have shown that the MLE of F is given by the product limit

(PL) method. This can be adapted to accommodate left truncation as well by

treating such data as "negative losses" (see p. 463). Trivially, by

reversing the scale, the PL method can be applied to data subject only to

left censoring and right truncation. It can also be used in problems with no

truncation and very special patterns of double censoring (Turnbull (1974,

p. 170)) and of interval censoring (Peto (1973, p. 87)). Explicit estimates

are also available for certain particular interval truncation patterns with no

censoring (see Section 5).

3 For obtaining estimates in more general situations, explicit solutions

of the likelihood equations are not available and iterative methods must be

I used. For interval censored data, Peto (1973) employed direct but rather

3 cumbersome Newton-Raphson search methods to maximise the likelihood. Turnbull

(1974) used the idea of self-consistency (cf. Efron (1967)) to obtain a simple

3 algorithm in the doubly censored case.

7
I
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I The purpose of this paper is threefold. Firstly, a simple iterative

procedure is proposed for finding the MLE of F for the general case of

I arbitrarily censored and truncated data. This method can be considered the

nonparametric analogue of that of Blight (197n). Secondly a new method of proof

of the equivalance of self-consistency and maximum likelihood is presented.

This method utilizes the relation between the values of the likelihood and

successive approximations of the estimates, giving at the same time some

1 insight as to why the theorem should be true. The proof differs from the rather

inelegant and lengthier arguments used previously for the easier special cases

of single censoring (Efrcn (1967, Thm 7.1)) and of double censoring (Turnbull

1 (1974)). Finally, the algorithm is shown to converge, and in a monotone

fashion, a fact conjectured by Turnbull (1974) on the basis of empirical

I evidence.

In Section 2, the likelihood function is examined, and the problem

reduced to a simpler one of estimatingthe parameters of a multinomial

distribution with censoring and truncation. In Section 3, the self-consistency

algorithm is described and, in the following section, is shown to converge to

I yield the MLE of F. In Section 5, properties of the algorithm are discussed

and comparisons made with the Newton-Raphson method. A two sample test when

one or both samples may be subject to censoring and truncation is proposed in

3 Section 6. Finally, some further problems such as large sample properties of

the estimates and the handling of concomitant variables are discussed.I
I
I
I
I
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2. REDUCTION OF THE PROBLEM

We first show that the maximum likelihood estimate, F, of F increases

I in only a finite number of disjoint intervals (or points). We shall use

the same notation as Peto (1973) who obtained a similar result for interval

censoring with no truncation.

Let us assume that each A. (U < i < N) can be expressed as the finite

union of disjoint closed intervals, with the convention that an isolated

I point Ix) is a closed interval [x,x] and that a semi-infinite interval

is semi-closed only. Thus we can write

k.
1

A. = U [L.. ,R..] (i=l,2,...,N)

1 j=l 1)Ri

I where -w< L <R <L < Li < R < Go and R >-,
1 1

L ik < 0. From a practical point of view, this restriction on the form

of A., is unimportant. We now construct a set of disjoint intervals whose

left and right end points lie in the set {Lij; 1 < j < ki, 1 < i < N}

and {R.., 1 < j < ki, 1 < i < N} respectively, and which contain no other

members of {L..} or {R .} except at their end points. We write these

intervals

l qlPl]1, [q 2,P2],...,[%qm ]

where ql < p, < q2 < ... < qm< pm. Also define

I m
C U [qj,pj] . (2.1)

j =1

For example in the case of single censoring, we have k. 1 for all

I!
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1, and L Ril if x. is exact while Ril : +W if x. is right1ii3 iiI

4 censored. Let u (I < u < N) be defined by Lul : max L < If

Lul z R ul (i.e. the largest observation is uncensored), then m is the

numblr of exact observations and q, = p. is the value of the j'th largest

exact observation. If R = +M (i.e. the largest observation is censored),

I then m-i is the number of exact observations, the last interval [q,pm ]

is [L I,'), and q, = p. (1 < j < m - 1) are the values of the exact

1 observations.

Under the assumptions of Section 1, the likelihood is proportional to

N
L*(F) = [P F(A i)/P F(B)]

i=l

N k

= n I [F(R..+) - F(L.. -)]1/P (Bi) (2.2)
I i=l j=l ] F i

We will assume that P ( i) = i , which occurs for instance if at least

one observation is not truncated. The search for that function F that

I maximises (2.2) is facilitated by the following lemmas.

Lemma 1.

Any c.d.f. which increases outside the set C cannot be a maximum

likelihood estimate of F, except in the trivial case when A. (n C = B. (n CI1 1

for all i.I
Proof. Recall that A. C B. and C is defined by (2.1). Suppose that

c.d.f. G assigns non-zero probability p to the set A. - C for some i.1

Then the likelihood can be strictly increased by "transferring" probability

p from A. - C to Ai n C. Similarly if G. assigns positive probability
1 N cto a set B. -A - C or to n Bi , the likelihood can be improved by

1 . . .

U
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"transferring" probability from these sets to C. This improvement is

again strict except in the trivial case mentioned.I
Remdrk. When A. n C = B. n C for all i, the maximum likelihood is1 1

unity and is achieved by any distribution which assigns zero probability

1;to U7 B C. The situation represents one of severe censorship and

truncation; we will exclude such cases from our further discussion.

ILemmd 2.

For fixed values of F(p.+), F(qj-) (i < j < m), the likelihood

is independent of the behaviour of F within each interval [qj,pj].

The proof is obvious.

Now, for 1 < j < m, define!
s. = F(p j+) - r(q-). (2.3)

I Then the* 'ectors s = (s ,s ), where is. 1 and s. > 0,

g define equivalence classes on the space of distribution functions F

which tire flat outside C. We will say that two such functions are equiv-

alent if they have the same k-vectors, as defined by (2.3). All functions

in the same equivalence class will have the same likelihood by Lermna 2,

and Lemma I shows that we can restrict our search for an MLE to these classes.

Therefore the MLE will, at best, be unique only up to equivalence defined

in this way.

For example, for right censored data, the Kaplan-Meier PL estimate

is undefined at the exact observation points and in an interval CL,-),

say, if the largest observation is at L and is censored. Of course one

can obviate the ambiguity when p. qj by requiring F to be right

continuous.

I

-n n n u n innn 7 i
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The foregoing discussion shows the problem of maximising (2.2)

reduces to one of maximising1
N m m

L*(s ... VS ( I s..s./ s , (2.4)
=l j=l 1] 1 j=l

subject to Is. l, s. > 0 (l < j < m), where

CL j if [q..,p.] C A.,

otherwise

( (1 if [q,pj] C B.,

13 I otherwise

We remark that we would be able to write down (2.4) immediately as

the likelihood if there were a discrete scale for X (i.e. X could only

take on values tl~t,...,tm, say). Then we would define s. = P(X t.)
2 3

This was the situation in the double censoring problem considered by

Turnbull (1974), in which it was required to estimate the probabilities that

a certain response time fell in the first month, the second month, etc.

Now since A. C B. for all i, we have that ai = 1 implies 1ij 1. Let

(s19 .... Ss) denote a value of k for which L* attains its maximum

in the region R { I s. 1, s. > 0 (l < i < m)}. We assume that neither

of the following two trivial situations hold:

(A) There exist I,k with 1 < J,k < m and j # k such that

1. = ik for all i (1 < i < N).

(B) There exists a subset D such that for each i, 1 < i < N, either

b. nCc D or B. nC CDC.1 - 1 -

_ _ _ _

twmm mm m m
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I If (A) occurs, L* depends on s. and sk only through their sum. InJ

i case (B) only the ratio s /(IkcDS k ) is estimable for j c D and hence

s. is defined only up to a multiplicative constant. (Condition (B)

I modifies a result of Asano (1965, Thm. 5) concerning necessary and

sufficient conditions for the estimability of multinomial probabilities

I with truncated data.)

If either (A) or (B) occurs, s is not unique and the maximum likelihood

estimate F will be determined only as far as belonging to a certain union

I of equivalence classes.

I
I
I
I
I
I
I
I
I
I
I
I
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I i3. THE SELF-CONSISTENCY ALGORITHM

In this section, we describe an algorithm for obtaining the MLE

of k based on the equivalence between the property of maximum

likelihood and that of self-consistency. This latter property will be

defined precisely below; it is an ext 3nsion of the idea first used by

I Efron (1967) for right censored data and later by Turnbull (1974) for

doubly censored data. The algorithm is related to one proposed by

Hocking and Oxspring (1971) for multinomial data subject to censoring

without truncation.

For 1 < i < N, 1 < j < m, let

I if x.

ij 0 otherwise

Because of the censoring the value of I.. may not be known, however

its expectation is given by

m

1E ls[I..ia] s ~ I* a ik S k (3.1)

I ij(k) , say.

Thus V j(k) represents the probability that the i'th observation lies

in [q.,p.] when F belongs to the equivalence class defined by

k= (Sl,...,sm). Also, because of the truncation, each observation

Xi = xi, can be considered a remnant of a group, the size of which is

g unknown and all (except the one observed) with x-values in Bi. (They can

be thought of as X i's "ghosts".) Let Ji, be the number in the group!i
I



I
12

I corresponding to the i'th observation which have values in [qj,p1]. Of

i course J.j is unknown but its expectation, under k, is given by

m
E (J..) (I - .. )s./ I ais (3.2)i] 13 k=l i

1 = v..(s) , say.

U If we treated (3.1), (3.2) as observed rather than expected frequencies, the

proportion of cbservations in interval [qj,p.] is

I N
1P .(S) + vi (s)]/M(s) W (k) (3.3)
1=1 i 1%, It,

say, whereI
N m

M(s) I I[ i.(k) + (I i=l j1 =i i'

Note that M(s) > N with equality if there is no truncation for then

vi 0 for all i,j . We say that the vector of probabilities k is

self-consistent if

S s. i (sS,... ,s) (i < j < m) (3.4)

I
A self-consistent estimate (s.c.e) of is defined to be any solution of

I the simultaneous equations (3.4). The form of (3.4) immediately suggests an

iterative procedure for finding the solution.
0

A. Obtain initial estimates (1 0 U J m). This can be any set of

II _ _ _ _
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I positive numbers summing to unity, e.g. s. = /m for all j.

B. Evaluate (i.(s ) and v (s 0 ) for 1 < i < N and 1 < < m,

and hence M(s ) and w.(sO).

C. Obtain improved estimates s1 by settingI]

I 1 =i.(s ) for 1 < j < m.s j : . - -

I 10

D. Return to Step B with s replacing s , etc.

E. Stop when the required accuracy has been achieved.

(E.g. the rule may be to stop when max kjsk - s k-l < 0.0001, say.
l<j<mls j

Alternatively a stopping rule may be based on the difference between successive

values of the likelihood.)

The procedure is easy to programme on a computer, requiring only

simple operations. If any component of sk  is small then it is possible for

k k.
M(s ) to become very large. However, rounding errors can be avoided if

the sequence of operations for computing the {w} is chosen with care.

Of course, the difficulty does not arise if there is no truncation for then

M(s k ) is always equal to N.

Another way to write w (s), which is useful if relatively few of the

{A.} and {B.} are distinct, is
1 1

() M~ [ AA + BI Bl - I (j))1II(s), (3.5)
A A"(s AIj k B ~Bl B I() k kJkcA kB

I where A is the number of observations censored into the set A, nB is

the number truncated by the set B, and IA( J ) equals 1 if [qj ,pj] C A

and is zero otherwise. Thus IAA = BnB = N and using this relation
A B

I M(R), which is the sum over j of the quantities in square brackets in

(3.5), can be written more simply asI
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I
|I E B S k -IB kEB

I Therefore the computations in Step 3 of the algorithm involve summing

only over the number of distinct {A.} and distinct {B.} which may be
1 1

considerably less than N in the case when X is discrete, for example.

In the next section we show that this algorithm converges and that

self-consistent estimates also maximise the likelihood. In Section 5,

I the algorithm is discussed further and compared with the general

i Newton-Raphson method which has been suggested by several authors in

connection with various special cases.

I
I
I
I
I
I
I
I
I
I

SI



1 15

I 4. THE EQUIVALENCE AND CONVERGENCE THEOREM

We now examine the equivalence of the s.c.e. and the m.l.e.

From (2.4), we see that the log-likelihood is given byI
N m m

L(s) [log( ; (c..s.) - log( 1 8..s.)] (4.1)1 1 1 1] ] ~ jl ]

I Consider the effect of increasing a particular component, s. say,]

by a small positive amount c and then dividing all the Isk) ,  including

s. + c, by 1 + c in order to keep the sum equal to unity. We let

d.(s) denote the value of the derivative of L with respect to c at

E 0. Therefore

s s.

d3 1s L...,j ...... m(. ) - , L ( -+H'''] "'--- mI 1+ £ + C1 + El

3 L m aL

s k (4.2)
j k=l k

1(43)
I L ik Sk Y Bik sk

k=1 1 J
for I < j < m. From (3.3), we have

I sN a-B]i
i i( l m

iT (s) (; i~ )I ks k k1 0 iksk

I .L d N '~-lF i~ + I (~ 1, k (4.4)
Mi1 k1l

I



I
where we have substituted for d.(k) by (4.3). However

II
M(s) . LL m +]Im Tn

i aikSk 1 8ikSk-k=i k=l

N m sI ([ ik k)
I il k=l

i Substituting in (4.4), we obtain

1 d.(s)
Y .(s) (+ M s. (1 < j < m). (4.5)^

Now a necessary and sufficient condition for s to be an MLE is that

I for each i

either d.(s) = 0 or d (s) < 0 with s. = 0. (4.6)SIt, \3
Thus from (4.5) and (4.6), we see immediately that the MLE satisfies

ff.(s)r=s for all j, and hence is self-consistent.

Concerning convergence of the algorithm, we let k and k' be successive

approximations where, by (4.5), s! = [I + (d (k)fM(s)fls for 1 < j C m.
I (d1. (j _

Now by a Taylor series expansion we have

m L 2
L(s I (s3 - s + 0(Is' - sli

J= 1 s.)I I(' s k)I

1 m ,L 2 m 2
I sd( S a

M(s)

:- W
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AQ j=l

I
where we have used (4.2) and have neglected terms of second and higher

order. Thus L(s') > L(s) with equality only if, for each j, either

s. 0 or d.(s) 0 . Thus the algorithm converges monotonically, atI0
least for s close enough to s, so that higher order terms can indeed

be neglected. Suppose that the limiting value is s. Then satisfies (3.4).

Hence if all d > 0, it follows by (4.5) that d ) = 0 fcr all j and

s is the MLE s of k. Suppose then that s. 0 for some j and that

d.(s) > 0 in some neighbourhood of s. From the assumption that s. > 0
-k k
for all j it follows that s > 0 and M(s ) < o for k 0,1,2.

We are assuming that s eventually lies in this neighbourhood where
> k

d > 0. However (4.5) implies that sk cannot decrease any further

towards s j = 0, which is a contradiction. Thus if s. = 0 for some j,
1% IV

it follows that d (s) < 0. (In fact the limit of d.(k) as k may
i " ̂  - 3

not exist if some sj = 0, in which case we interpret the previous statement,

and (4.6), as meaning that d1 (s) > 0 throughout a neighbourhood of

A similar argument shows that d () = 0 for any I such that s£ > 0,

I Hence k satisfies the condition (4.6) for maximising L and this completes

the proof of the equivalence of the s.c.e. and m.l.e.
0

Note that for given initial vector , the limit is unique even if

k1 is not. A maximum likelihood estimate F of F is given by

O if x < q1

(x) s + S2 + ... +S if p < x < %+l (I < J < m-)

I % if x > Pro9

i and is undefined for x e [qj,pj] for 1 < j _ m • Therefore, when plotted,
!g
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I
F consists of a series of m + 1 horizontal lines of increasing heights

with ,.,ap-; in between, where the way in which increases occur is arbitrary. The

variances of the non-zero {s.} are given by the inverse of the matrix of

second derivatives of L with respect to the elements of (Sl,S29,...Ism I

corresponding to the non-zero elements of s . Thus estimates of the

variance of F(x) can be calculated for x j C, from which approximate

fstandard errors can be obtained for the height of each horizontal line.
I
I

I
I
I
I
I
I
!
I
!
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5. 1) ',CUSS ION

Asano (1965) considered the problem of estimating the parameters of a

multinomial distribution with truncation (but no censoring). For the

"nested" case when B I B 2 ... D BN  or the "chainedi" ease when

B. n b. # 0 for j = i-l,i,i+l and the intersection is empty otherwise

(with reordering of the X. if necessary), Asano gave explicit expressions1

for s. Thus these two special cases can be added to those mentioned in Section

I as being ones where formulae for the MLE can be written down explicitly

and an iterative procedure is not needed. For the general case, Asano

jsuggested using constrained Newton-Raphson methods. A similar search method

was also proposed by Peto (1973) for the special case of interval censoring

Ionly.
However the Newton-Raphson (NR) procedure involves updating a vector of

first derivatives and the inverse of a large matrix of second derivatives of

1 L at each stage of the iteration. This can be difficult even for moderate

values of m. Furthermore the step size in the NR iterations must be checked

to ensure that the boundary of the region R is not violated. Also an

improvement at each stage is not guaranteed since the step size niay be too

I large and the maximum "overshot". To avoid this, the likelihood has to be

j calculated and if it has decreased the exercise must be repeated with a

smaller step size, and so on. In contrast the self-consistency algorithm is

completely automatic, simple to implement and is intuitively appealing.

In fairness, it should be pointed out that in exceptional cases, the

I convergence of the self-consistency algorithm can be rather slow. This

happens if both s = 0 and d(W = 0 for soe j, i.e. the likelihood has

and unconstrained maximum at s = 0. Why this is so can be seen by Equation

(4.7). For example, suppose m 3, N = 4 and L* = s(s 2 + s 3)s 3(s + s 2I
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This represents the case of no truncation and three intervals with one

X in the first interval, one not in the first, one in the third and one not1 0
in the third. Starting with s. = 1/3 (i 1,2,3), we have

k

sl s 3 (1 s 2)/2 and s 2 (3 + k)-. Hence the convergence towards
the MLE sI  s3 = 1/2, s2 = 0 is quite slow. However such cases are

exceptional and usually the convergence is rapid.

I
I
I
I
I
I
I
I
I
I

I
I

I,

K ,,.',,nmmu.nonn~ -nnm, ~ mUmi i • • I



I.APPLICATION To HYPIOTHE'SIS TESTING

I An important application of the MLE F is to the two sample problem

whorp it s desired to test the equalily of two listributions, and observations

on one or both are subject to arbitrary censoring and truncation. (Extension

to the K sample problem is immediate.) Let us suppose that X I,...

is a sample from Group 1 and the remaining P. = N - N observations are

I from f3roup 2. It is desired to test the null hypothesis H0  that all N

i olservations have the same underlying F (unspecified). The alternative

H is that Group 1 observations have an underlying F = F while

F F a F o  for Group 2 observations. We consider Lehmann alternatives,

i.e. F (x) G(F (x)) where G@ is a specified c.d.f. on [0,1] with

G (y) - y, while F is unspecified. Peto and Peto (1972) have derived
0 0

asymptotically efficient rank invariant tests for interval censored data, and

their procedure can be naturally extended to the situation with arbitrary

censoring and truncation as follows.

The likelihood L. under H0  with F(x) = G (F(x)) of the i'th

I observation represented by the pair (Ai,B.) is

m m^

j=l 3 j=1 
) i

lI
where g(j,0,§) G (s + ... + s.) - G (s + ... + s,_) and {ai 1,

0 1 0 1 j-

I { .} are defined as before. An efficient score for the i'th observation

is given by U. = D log Li/3616 . i e.

m m

U 1 mj J=1

j:i J i

i'!.
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whorl, 7.,) / and we have used the fact that jr(j,o0,l) = r .0=0 0

I1 we 1:;sume that, under H O, the censoring and truncation nechanisnm is rdnd om

and independeont of group membership, a test of any given size can be constructed

u::ing the permutational distribution ofYgroup I U..

The test statistic way not be unique if s is not unique. If this

situation occurs, for small samples the test statistic can be evaluated for

"extreme" values of the possible s and if the decision concerning acceptance
11

or rejection of 1I0 is the same there is no difficulty. In large samples

non-uniqueness of s is less likely to occur and if it does the difference

between sipnificarnce levels for the different values of s will be small.

The above discussion assumes that the same random censoring mechanism is

operating in each group. Tests that do not make this assumption have been

proposed by Efron (1967) for right censored data and Mantel (1967) for

arbitrarily censored data, (with no truncation). Efron uses the MLE's of the

di:;tributions of the two groups calculated separately to derive an estimate

of the probab3lity that an X-value from group 1 is greater than one from

roup 2 and this is used as a test statistic. In theory the test could be,

,±sily extended to arbitrary censoring, however it is difficult to compute the

s.ampling distributions involved. Mantel (1967, Section 7) describes a test

for arbitrari3y censored data which is a generalisation of that of Gehan

(1965) and does not use the estimated c.d.f. A disadvantage of this test

is that it requires knowledge, not always available, of the entire pattern of

restriction for each observation even if it is exact. Also much of the

information in the data is unused and thus the test will be rather inefficient.
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7. CONCIU ION

The definition of slf-consistent estimates does not directly involve

th, iil V,lihood function and so their exact coincidence with the MlE's is, an

,5,hti i andl perhaps unexpected result. The property was first proved for

g sinolv' censored data by Efron (1967) and for doubly censored data by

Turnbull (1974). However their methods were lengthier and involved converting

he l ikelihood equations into the defining equations for self-consistency rather

than the examination of successive values of the estimates given by the

Sa-ori thim.

An alternative nonparametric approach is to estimate the hazard

rat' ass,_)ciated with F rather than F itself. The work of several authors

i:s :;umarised by Barlow (1968, Section 3). Usually the hazard rate is assumed

to i~, -,tep function, constant within each interval, the set of intervals

1.in,-, fixed. For instance, Harris, Meier and Tukey (1950) treat an interval

consoriir situation and use a similar "prorating" idea as the basis for an

iteritive scheme for obtaining approximate MLE's of the hazard rates in the

variou!; intervals.

ConF;istency and other large sample properties of the maximum likelihood

festimate F will depend on the censoring and truncation mechanism. Cn)nsider

the case when the range of X is finite, {tl,t2" ..,tmI say, and when the

mechanisms are random as described in Section 1. If we suppose that the sets

B and the partitions with non-zero probability are such that conditions (A),

(B) as stated in Section 2 do not occur for N sufficiently large, then

q p t. (i < j < m) and s is unique - again for N sufficiently

large. Then consistency and asymptotic normality of the MLE's of the

non-zero s. follow from the standard theory, regarding the pairs (A.,B.)

as i.i.d. random variables involving a finite number of parameters including

the {s.} Large sample properties of F when m does not remain boundedK i
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s N -o is an interesting open question. (Results are known for the case

of single censoring - see Breslow and Crowley (1974).)

For the s ituition when there is concomitant information available for

vich observation, tjere appears to be no natural extension of the powerful

methods that Cox (1972) has proposed for singly censored data. However in

a recent paper on regression with censored data, R.G. Miller (1974) uses F

as a basis for inference and thus it appears that his methods can be extended

to the case of arbitrary censoring and truncation.

It is interesting to note that Sackrowitz and Strawderman (1974) have

shown that, for a wide class of reasonable loss functions, the MLE F is

inad.Hmissihle for the case when the range of X is finite and there is

extreme double censoring (no exact observations). Thus in general the MLE

will be inadmissible. However, unless a prior measure can be assigned to

the space of possible c.d.f.'s F, there is no apparent substitute to be

preferred to the MLE. Indeed self-consistency provides a justification for

using maximum likelihood even in relatively small samples.



I 25

S 8. ACKNOWLEDGEMENTS

The author is grateful to Richard Peto and Nathan Mantel for some useful

conversations.

I
I
I
I

I"I

I
I

I
I

I
I
I
I

~I



I 2£

I A r:NEN t J" IniIIi[, 1)1'

IIiC~flHj)ttt :.smlpl:;. Anti. Inst. t;t tia ,t . MJth. , '], 1 - 3.

I [21 Ayer, M. Brunk, H.D. Ewing, G.M., Reid, W.T. and Silverman, E. (1955)
An empirical distribution function for sampling with incomplete

information. Ann. Math. Statist., 26, 641-647.

I H] Iarlow, R.E. (1968) Some recent developments in reliability theory.

I;elected Statistical Papers, Mathematical Centre, Amsterdam,

2, 49-66.

[+1 Blight, B.J.N. (1970). Estimation from a censored sample for the exponential
family. Biometrika, 57, 389-395.

[51 Breslow, N. and Crowley, J. (1974). A large sample study of the life

table and product limit estimates under random censorship. Ann.
I Statist., 2, 437-453.

[6-] Ruckland, W.R. (1964). Statistical Assessment of the Life Characteristic.
London: Griffin.

[7] Cohen, A.C. (1957). On the solution of estimating equations for truncated

and censored samples from normal populations. Biometrika, 44, 225-236.

[8] Cox, D.R. (1972). Regression models and life tables. J.R. Statist. Soc.
B, 34, 187-220.

[9] Efron, B. (1967). The two sample problem with censored data. In
Proc. 5th Berkeley Symp. on Math. Statist. Prob., pp. 831-853.
Berkeley: University of California Press.

[10] Gehan, E.A. (1965). A generalized two-sample Wilcoxon test for doubly
censored data. Biometrika, 52, 650-653.

[111 Harris, T.E., Meier, P. and Tukey, J.W. (1950). Timing of the distribution

of events between observations. Human Biology, 22, 249-270.

f [12] Hartley, H.O. (1958). Maximum likelihood estimation from incomplete
data. Biometrics, 14, 174-194.

1 [131 Hartley, H.O. and Hocking, R.R. (1971). The analysis of incomplete data.
Biometrics, 27, 783-823.

j[14] Hocking, R.R. and Oxspring, H.H. (1971). Maximum likelihood estimation with
incomplete multinomial data. J. Am. Statist. Assoc., 66, 65-70.

[15] Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from
incomplete observations. J. Am. Statist. Assoc., 53, 457-481.

[161 Mantel, N. (1966). Evaluation of survival data and two new rank order
statistics arising in its consideration. Cancer Chemotherapy
Reports, 50, 163-170.I



1 27

[17] i.tt., N. ( 1it7). Ranking procedure; for, arbitrarily restricted
observations. Biometrics, 23, 65-78.

[181 Miller, A.J. (1974). A note on the analysis of gap-acceptance in
traffic. Appl. Statist., 23, 66-73.

[19] Miller, R.G. (1974). Least squares regression with censored data.
Technical Report, Stanford Univ.

[20] Peto, R. (1973). Experimental survival curves for interval-censored
data. Appl. Statist., 22, 86-91.

[21] Peto, R. dnd Peto, J. (1972). Asymptotically efficient rank invariant
test procedures. J.R. Statist. Soc. A, 135, 185-206.

[22] Sackrowitz, H. and Strawderman, W. (1974). On the admissibility of the
M.L.E. for ordered binomial parameters. Ann. Statist. 2, 822-828.

[23] Selvin, S. (1974). Maximum likelihood estimation in the truncated
or censored Poisson distribution. J. Am. Statist. Assoc., 69,
234-237.

[24] Sundberg, R. (1974). Maximum likelihood theory for incomplete data from
an exponential family. Scand. J. Statist., 1, 49-58.

[25] Turnbull, B.W. (1974). Nonparametric estimation of a survivorship
function with doubly censored data. J. Am. Statist. Assoc., 69,
169-173.

I
L
I

K'_



111nclassified
AF I , ' I' , " " 6 A ,,;,

REPORT DUCt NTATIOrN PAGE ''

h4FBITRAR!LY ROUPED,.. CENSORED, AND TRUNCATED :...... ,- ,,

Lruc W./urnbull N 7 -7sC-0586

&;.:~At A 6 P' ' Nj T N~i" 4

f chool of Operations Research & Industrial
1:n;,"'eerfng, College of Engineering
-'ornll University, Ithaca, NY 14853

i. % . , -L?..M AND) AD')RFSS REM A

ponsoring, Military Activity JU/
IT AmReerhOffice______________

I urham, N.C. 27706 27 ......II. m',O1ETN, OFFIC NAM, AND ADDRESS " scu Y.CLAIS ,...

, F~onsoring Military Activity Unclassified

'tatistics and Probability Program

O f fice of N'aval Research ,5. L a I c iA I N N , .,

Arlington, Virglinia 22217

SA~proved for ublic release, distribution unlimited.," : 2!l - (

SC; . PA T i 'I a * f , "lf are I f'ork d.!) I! jl.,er-f Irorm 5.',, )!

I .- ",,)' (Cd Ut,* 4,. 9! ..... y rid n"r . .

Fmpirical distribution function; censoring; interval censoring, truncation,

rouping; survival curve; maximum likelihood; self-consistency; Newton-Raphson;

multinomial distribution; two sample test; logrank test; Lehmann alternatives

A-- - 1---- --- -- -. '. -11---J01f' -- ,f '__ _ __

II.' A.. .. .. ..... .... ..... *j ......- dIIt y boc w b

This paper is concerned with the nonpa etx'ic "timation of a distribu-

tion function F, when the data are incomplete due to grouping, censoring

and./or truncation. Subsets BI,B 2,... ,BN of the real line are given and there

are N independent observations XI,X2,.. ,XN9 where X. is drawn from the
_1

truncated distribution F(x;B ) , :P(X<x XcB ), x c B However X may not

D l) 1,73 rC.i-C.h Of I I-vV 0 IS O SOLI ' 
/1'

SN C,( IUJ 6 1 6601 1 Ci t, 1ir Y l 1 ,Ci A -e ', ;! [ I S. ,



. , ' .' .IF IC A. Il l,
'  

O # f 1" I -A.. A l ~t n }h I fll' I-f- dnr

be observed exactly and is known only to lie in the set A. C B.. TheI
situation occurs frequently in survivorship, reliability, and recidivism

analysis. Using the idea of self-consistency, a simple algorithm is construct-

ed and shown to converge monotonically to yield a maximum likelihood estimate

of F. The procedure compares favourably with the more cumbersome Newton-

Raphson method. A test is proposed for comparing two distributions when data

on one or both is incomplete and some other applications of the empirical

distribution function are indicated.
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