

ANALYSIS AND REDUCTION OF FALSE ALARMS AT LASA
A.C. CHANG, R.M. SEGGELKE, and R.R. BAUMSTARK Seismic Date Analyziz Center
Teledyne Geotech, 314 Fhontgomery Street. Alexandria, Virginia 22314

13 MAY 1976

APPROVEO FOR PUBLIC RELEASE; DISTBIRLITION UNLIBITED.

Sponzored By
The Defense Advanced Research Projects Agency
Nuclaar Monitoring Research Dffice
1400 Hilsen Boulevard, ARringfon, Virginia 22209
ARPA Order No. 1920

> Monitured By

VELA Seismologieal Centere^{+}

312 期ontgomery Strect. Alexandris, Vigginia $223: 4$

SECURITY CLASSIFICATION OF THIS PAGE (Hhon Data Entored)

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(then Date Entered)

To reduce the number of false alarms it is necessary to steer detection beams to local areas. By detecting local events on these beams and by using a higher S / N threshold in processing these signals, we can effectively reduce the number of false alarms from the original 57% to 41%.

A new beam set has been developed and deployed which concentrates teleseismic beams in high seismicity areas instead of spacing them equidistantly apart. This arrangement reduced the average detection errors from 200 km to 50 km , there is also some indication of a lowered detection threshold on the order of 0.1 ± 0.1 magnitude units.

ANALYSIS AND REDUCTION OF FALSE ALARMS AT IASA

SEISMIC DATA ANALYSIS CENTER REPORT NO.: SDAC-TR-76-6
AFTAC Project Authorization No.: VELA T/67C9/B/ETR
Project Title: Seismic Data Analysis Center
ARPA Order No.: 2551
ARPA Program Code No.: 6F10

Name of Contractor: TELEDYNE GEOTECH

Contract No.: F08606-76-C-0004
Date of Contract: 01 July 1975
Amount of Contract: $\$ 2,319,926$
Contract Expiration Date: $\quad 30$ June 1976
Project Manager:
Roya1 A. Hartenberger (703) 836-3882
P. O. Box 334, Alexandria, Virginia 22314

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Wés show that many of the false alarms ${ }^{d}$ which require analyst intervention in the preparation of the LASA event summary were due to local or regional. evants. Analyses showed that these false alarms occur predominantly on weekdeys during local working hours, suggesting that the seismic events are of man-made origin. The false alarm ra*e decreases on weekends and holiddays, and LASA reports more teleseismic ev rts.

To reduce the number of false alarms it is necessary to stee: detection beams to local areas. By detecting local events on these beams and by using a higher S / N threshold in processing these signals, we can effectively reduce the number of false alarms \backslash from the original 57% to 41%.

A new beam set has been developed and deployed which concentrates teleseismic beams in high seismicity areas instead of spacing them equidistantly apart. This arrangement reduced the average detection errors from 200 km to 50 km , there is also some indication of a lowered detection threshold on the order of 0.1 ± 0.1 magnitude units.

TABLE OF CONTENTS
Page
ABSTRACT 3
INTRODUCTION 7
CAUSE OF FALSE ALARMS IN THE EVENT PROCESSING SYSTEM 10
DISCUSSION 19
EVALUATION OF THE NEW BEAM SET 21
CONCLUSIONS 30
ACKNOWLEDGEMENTS 31
REFERENCES 32
APPENDIX A - List of Parameters for LBS160 33

$$
-4-
$$

LIST OF FIGUR

Figure No. Title Page
1 Percentage distribution of EP signals in increments 14of S/N ratio for the period 24 June to 30 July 1974,when LBS133 was operative.
2a Diurnal distribution of confirmed signals for LBS133. 15
2b Diurnal distribution of EP false alarm for LBS133. 15
3a Number of duplicate detections (open circles) and 18regional-local events (closed circles) at LASAduring daytime (0800-1600 local time) from 24 Juneto 30 July 1974.Number of identified events (squares) and identified 18later phases (triangles) at LASA during daytime(0800-1600 local time) from 24 June to 30 July 1974.
World map showing locations of LBS160 beams. 22
Comparison of recurrence curves computed for LBS133 26and LBS160.
Percentage distribution of EP signals in increments 28of S / N ratios for the period from 13 June to 30 June1975 when LRS160 was operational.
7 Comparison of travel time errors for LBS133 beams and 29 LBS160 beams.

I.IS' OF TABLES

Table No. Tit1e PageI Classification of EP Events from 24 Juise to 30 July 131974 (Beam Set LBS133).
II Classification of EP Events from June 13 to June 30, 231975 (Beam Set LBSI60).
III Classification of EP Events from June 13 to June 30, 241975 with $10 \mathrm{~km} / \mathrm{sec}$ Velocity Restriction.

INTRODUCTION

The on-line data processing of LASA short-period data at the Seismic Data Analysis Center (SDAC) was operational from January 1971 to June 1975. During this period of operation, the main purpose was to produce promptly and routinely an SDAC/LASA daily event summary. The operation of SDAC was temporarily suspended in July 1975 in order to adjust to the instrument and data reconfigurations at LASA, and to implement modifications which would enable SDAC to accept and process seismic data from additional stations.

Data processing is performed in two parts by utilizing two computers. The first part is the Detection Processor (DP) which performs on-line signal detection $t y$ forming and applying detection algorithms to a number of surveillance beams. The second part is the Event Processor (EP) which selectiveдy processes detected signals and extracts event parameters such as event location, origin time and magnitude.

The term "false alarm" has been historically used to depict noise detection. False alarm in this sense means detections on fluctuations of noise, and an include instrumental noise such as transmission errors. Efforts to reduce chis type of false alarm have been made in the past. Lacoss (1972) argued that since false alarms are detections of noise fluctuations, both noise level and noise variance can affect the rate of false alarms. Studies of noise variance and its effect on signal detectability have been performed at NORSAR (Bungum and Husebye, 1974; Bungum and Ringda1, 1974; and Steinert. Husebye and Gjoystdal, 1975). In particular, Steinert showed that the noise

Lacoss, R. T., 1972, Variation of false alarm rates at NORSAR: Semiannual Technical Summary, June 1972, Seismic Discrimination MIT Lincoln Laboratory, Cambridge, Massachusetts.
Bungum, H. and E. S. Husebye, 1974, Analysis of the operational capabilities for detection and location of seismic events at NORSAR: Bull. Seism. Soc. Am., v. 64, p. 637-656.
Bungum, H. and F. Ringdal, 1974, Diurnal variation of seismic noise and its effect on detectability: NORSAR Scientific Report No. 5-73/74, UTNFiNORSAR, Kjeller, Norway.
Steinert, O., E. S. Husebye, and H. Gjoystdal, 1975, Noise variance fluctuations and earthquake detectability: Geophys. J. R. Astr. Soc., v. 41, p. 289-302.
stability, which is the measure of the ratio of noise average to noise variance, is indeed the most effective indicator of ne false alarms. The NORSAR DP is currently operating with varying detection thresholds based on the noise level and noise stability. Chang (1974) argued that if the noise fluctuations can be considered as random occurrences, then the requirement for a number of consecutive threshold crossings wuld effectively reduce such false alarm detections. In comparing LASA and NORSAR detection algorithms, Chang found that the temporal requirement of consecutive tireshold crossings was set to one at NORSAR, but LASA DP required three consecutive crossings. In any case, study of past operations at LASA confirms thr ${ }^{+}$noise detections were indeed rare at LASA and did not pose a significant problem to the DP and EP operations.

Chang's comparison of LASA and NORSAR short heriod array performances shows that in both arrays about 12% of the DP decections are ultimately published as events in daily event summaries. This of course does not mean all DP detections are processed by EP. Of all DP detections approximately one third were processed by EP. An initial reduction of DP detections is made in EP by a higher threshold setting and by a grouping algorithn. Our atter in is drawn to the fact that of all signals completely processed by EP, only . c half of them were confirmed by an analyst and published in the daily sunm- . In the early evaluation of the LASA/SAAC system, Dean (1972) reported that only 37.3% of EP processed signals were reported on the LASA Daily Summary. If half of the signals processed by EP are false (EP false alarms), the nature of these signals should be investigated. Since it seems clear that DP detections are relatively free of notse detections, we conclude that EP false alarms are seismic signals that cause difficulty in the processing and production of the event bulletin.

In the future SDAC Network Event Processor, carefully selected signals of one station will be associated with detections of other stations. The

Chang, A. C., 1974, A comparison of the LASA-NORSAR short-period arrays: SDAC-TR-74-5, Teledyne Geotech, A1exandria, Virginia.

Dean, W. C., 1972, A geophysical evaluation of the short-period LASA/SAAC system: SAAC Technical Report No. 5, Te1edyne Geotech, Alexandria, Virginda.

$$
\begin{aligned}
& \text { carefully selected signals are those detections processed with some type of } \\
& \text { process which will be in fact identical to the EP process. Therefore if } \\
& \text { these siganls contain many false alarms, it will be difficult to obtain good } \\
& \text { results. In this study false alarms are classified into several categories } \\
& \text { and analyzed to show the rate of occurrence of each type. Discussions of } \\
& \text { how false alarms cause detections and possible methods to reduce them are } \\
& \text { tested with the on-line detection processor. }
\end{aligned}
$$

CAUSE OF FALSE ALARMS IN THE EVENT PROCESSING SYSTEM

The detection threshold of the LASA DP processor has been set to 10 dB . With this threshold, there are approximately 300 detections per day. Not all of these detections are processed by EP. A reduction in the number of detections in EP depends mainly on two conditions: threaholding and grouping. The first condition simply raises the processing threshold to 14 dB , thus eliminating approximately two thirds of the detertions. The remaining 100 detections are then screened by the growing algnctthm, The grouping algorithm checks each detection and searches for consecutive detections that are restricted in area and in a specified time window. Only the first detection in the grouped detections is processed. This algorithm further reduces by 30% the number of detections reaching EP. The detections screened through these two conditions are processed by EP on a routine daily basis. There are approximately 70 of such events per day that reach EP for final processing.

The task of the analysts is to examine results of the automatically processed EP events by displaying waveforms and seismic parameters on the Experimental Operations Console (EOC). The analyst can confirm, adjust, submit for reprocessing, or reject the processed event. The final results are published in the SUMMARY OF SDAC/LASA VELOCITX-BEAM LOCATIONS, which contains an average of 30 events per day. The anaiyst therefore rejects more than 50% of the events that reach $E P$ in daily operations. These rejected events, the $E P$ false alarms, are the main interest of the current analysis.

A data period of 37 days from 24 June to 30 July, 1974, was selected and all EP processed events were studied and grouped into seven categories. These seven categories are: (1) identified events, (2) identified secondary phases, (3) duplicate detections, (4) regional or local events, (5) velocity failures, (6) weak signals, and (7) data dropouts. Categories (1) and (2) contain confirmed signals and the rest are EP false alarms. Definitions of these seven categories are given in the following:
(1) Identified events: The event has been examined by the analyst and confirmed as a P phase of an event. Events in this category are published in the beam location summary.
(2) Identified phases: The signal has been confirmed as an arrival of a secondary phase of an identified event. Since the SDAC bulletin does not report events without first confirming P phase, the signals in this category are always associated with category (1).
(3) Duplicate detections: The signal is apparently detected by a neighboring beam (side lobe detections), or the signal is a coda detection. When waveforms of a duplicate detection are displayed, they are easily recognized and rejected by poor signal alignment throughout subarrays or they are obviously part of the coda of an event.
(4) Regional or local events: Then the signal characteristics vary distinctly from subarray to subarray, it indicates that the signal is a regional or local seismic event arriving at LASA. The variation in signal characteristics is mainly due to the heterogeneity of the crustal structures beneath the array, so that signal coherencies are very poor. In such cases the signal alignment, and the subsequent attempt to define the beam parameters either by machine correlation or analyst adjusted alignments are not reliable. As a result, the analyst rejects the event.
(5) Velocity failures: The apparent velocity of the signal is higher than the theoretical limit of P phase velocity. The signal could well be a good signal transmitted through the Earth's interior core from a distant location. However, since EP is not presently designed to recognize core phases unless it is being controlled by an analyst, this type of signal is rejected in automatic processing. Note that although this signal is rejected because of operational restrictions, it can be very useful in association with P phase detections from other seismic stations.
(6) Weak signals: The signal is so weak in amplitude or coherency that neither the computer nor the analyst can find an adequate solution to define a beam. However, it is possible for an experienced analyst to recognize the difference between a weak signal and a signal from a local event.
(7) Data dropouts: The detection is caused by bad samples in the data stream (glitches) or the detection is triggered on a sudden data dropout-restart situation.

The result of analyzing all EP signals during this test period is summarized in Table I. Identified P phases constitute 33.4% of the totals which is comparable to the result of an earlier study made by Dean (1972). The 9.3\% in Category 2 is the result of the analyst's effort to identify later phases after the P phase is confarmed. The sum of these two categories, 42.7%, are signals from confirmed events. The remaining 57.3% are EP false alarms of which 36.4% are due to duplicate detections and 11.6% are regional-local events. There are no false alarms due to noise detections, but data dropouts occurred 22 times which amounts to an insignificant 0.8% of the total.

It is clear from Table I that duplicate detections and regional-local events are the dominant causes of EP false alarms. We ask whether we can reduce them by simply raising EP thresholds. In Figure 1 we present again the seven catogories of EP signals incrementally grouped in signal-to-noise ratios ranging from 14 to 38 dB . Percentages of each signal sategory in dB increments are computed and they are shown in a form of histogram. This regrouping shows that the percentage of confirmed events steadily increases as the threshold is raised. However, in order to obtain better than 50% chance of confirmed events, the threshold must be raised to about 24 dB .

The analysis of Figure 1 shows that the distribution of regional-local events is fairly constanc throughout all S / N ranges, indicating that close range events are frequently detected whether or not there is a beam directed toward them. The rate of occurrence in each S / N range is approximately 10%. This demonstration clearly indicates chat raising the EP threshold will not reduce the false alarms due to regional-local events.

Our analysis shows that there a:e pronounced diurnal variations of false alarm rates. To demonstrate and investigate diurnal variations of EP false alarms, we regrouped all signals accordjng to local time of the day at LASA. In Figure 2, cumulative hourly frequencies of each signal category are tabulated in terms of local time and peesented in two histograms. This analysis

TABLE I
Classification of EP Events from 24 June to 30 July 1974 (Beam Set LBS*133)

Figure 2a. Diurnal distribution of confirmed signals for LBSI33.

Figure 2b. Diurnal distribution of EP false alarm for LBS133.
showed that both duplicate detections and regional-1ocal events are highly concentrated in the local daytime period from 0800 to 1600 hours. The close correlation of both categories indicates both are due to close range events, giving us the first concrete evidence of the relation between these two categories of false alarms. In order to reduce the number of these false alarms it will be necessary to develop some method for monitoring nearby events.

The remaining question is the cause of the high concentration of close range events in the local daytime. From our experience in operating LASA we know local mining activities can generate signals that result in detections. However, whether the local seismic areas such as Yellowstone Park area or coastal areas of Oregon-Culifornia are seismically more active during the daytime is not known. Since the signal detection is based on S / N ratio, more signals are detected during the quiet nighttime than noisy daytime (Chang and Seggelke, 1975). This effect is demonstrated in the diurnal distribution of confirmed events shown in Figure 2a. In this figure the rate of confirmed events is higher during local nighttime, which is in agreement with the result of Chang and Seggelke that showed an excellent correlation of the rate of confirmed events with the hourly noise level. We do not assume that the overall seismicity within the surveillance range of LASA shows diurnal variations as was suggested by Shimshoni (1971) and was criticized by Flinn et al. (1972).

What remains to be clarified is whether particular local areas do or do not have diurnal seismicity changes that can be related to the sharp increases in both regional-local events and duplicate detections during daytime. In Figure 3a we have plotted the number of daily occurrences of duplicate detections and regional-local events during 0800 and 1600 hours. This figure shows

Chang, A. C. and Seggelke, R. M., 1975, The effect of band pass filters on LASA detection performance: SDAC-TR-75-9, Teledyne Geotech, Alexandria, Virginia.
Shimshoni, M., 1971, Evidence for higher seismic activity during the night: Geophys. J. R. Astr. Soc., v. 24, p. 97-99.
Flinn, E. A., R. R. Blandford, and H. Mack, 1972, Comments on "Evidence for higher seismic activity during the night" by Michael Shimshoni: Geophy. J. R. Astr. Soc., v. 28, p. 308-309.
that these two categories are low during weekends and holidays, suggesting that local disturbances are the result of man-made activities, and are not due to diurnal seismicity variations.

It is also likely that codas from local man-made activities will raise the ambient noise level and somewhat impair the detection capabilities of teleseismic signals. In Figure 3b we have plotted the number of daily occurrences of identified events and identified later phases during 0800 to 1600 hours. A good inverse correlation can be found between Figures 3a and 3b in that the number of identified events is higher on Saturdays and Sundays. This result coincides with the work of Woolson (1976) which shows that LASA's detection threshold (90% confidence level) is approximately $0.15 \mathrm{~m}_{\mathrm{b}}$ better on Sundays when compared to the same threshold for weekdays. This analysis clearly shows that local cultural activity is a major problem in the LASA's detection performance; it raises the rate of false alarms and lowers its detection capabilities.

[^0]

Figure 3a. Number of duplicate detections (open circles) and regionallocal events (closed circles) at LASA during daytime (0800-1800 local time) from 24 June to 30 July 1974.

Figure 3b. Number of identified events (squares) and identified later phases (triangles) at LASA during daytime (0800-1600 local time) from 24 June to 30 July , 1974.

The good correlation between the daily occurrences of duplicate events and regional-local events shown in Figure 3 a indicates that duplicate events result mostly from regional-local disturbances. A good reason for this is that there are no regional-local beams in this beam set. Because regionallocal event's are generally associated with large amplitudes, misaligned signals are detected on teleseismic beams as side lobe detections and coda detections.

Because the real interest in detecting and locating events with large arrays is in the teleseismic range, and also because of operational difficulties associated with detecting and locating close range events, past operation with LASA has not used beams aimed at local areas. Regional and local events arrive at LASA with relatively low apparent phase velocity, and many beams will be required to maintain adequate surveillance. Even if the signal were correctly detected, because of its high frequencies and changing signal characteristics from subarray to subarray, it would be difficult to locate the event correctly. The mission of the array, computational time and core requirements, and geophysical difficulties, discourage attempts to treat regional-local events. These are the reasons why the DP beam set, LBS133, does not have any beams within 23 degrees of LASA.

However, the results of our analysis in the previous section showed that one way to reduce the false alarm rate is to eliminate local and near regional events. Without beams in close range areas these signals are detected on teleseismic beams and cause and increase in the number of false detections. The fact that we cannot escape detecting local events leads us to argue that perhaps local areas need to be monftored by several DP beams. By detecting signals on close-in beams, side lobe detections in teleseismic beams can be identified and discarded. Since locating nearby events is difficult, a simple algorithm may be devised to eliminate them from further processing by limiting EP to teleseismic signals.

Adding near distance beams to the existing beam set may exceed the computational and core limits in the computer, and this aspect must be discussed beiore the implementation. The old concept applied to the LBS13? was to deploy beans to known seismic areas with equal beam separation in a hexagonal pattern so that any signal from a seismic area will be detested in one of these beams.

The consequence of rigidly adhering to a pattern is that few of these beams are exactly placed on the known selsmic areas, thus all DP detections are made with initial location errors. If DP beams are selected on the basis of world seismicity and are aimed directly at these areas, the required number of. DP beams can be reduced and the initial lccation accuracy can be increased. To avoid missing events from non-seismic areas, coarsely spaced beams can be applied as a safety precaution. The saving in the required number of beams can be used for local beams to reduce the number of false alarms.

In gereral, side lobe detections will occur when the peak half-cycle on one instrument is added to the following or preceding peak on another instrument in the beamforming process. This type of faise alarm will occur within one or two cycles of the main peak of the signal. Since teleseismic signals are known to have a dominant frequency near 1 Hz , side lobe detections occur within one or two seconds of the main detection. A detection algorithm with spatial and temporal constraints of three consecutive threshold crossings will eliminate this type of false alarm. However; during the analysis we found another kind of large scale side lobe detection associated with large signal arrivals. Suppose as an example a large signal has just arrived at the northern most subarray. At this instant this data is being used to form beams aimed toward the south; thus a large signal in one subarray, even when reduced by a factor of N because it is not present on the remaining subarrays, will produce a false detection and may be reported as an event arriving from the south. Since this false detection is spatially and temporarily separated from the main detection, it may appear as a near simultaneous arrival of two independent events from opposite directions. Similax detec $\ddagger 10$ rs can be observed after a large signal has already passed through the array except for one or two subarrays at the edges. The result of a large signal arrival from the north is a set of three detectinns in south-north-south beams with a few seconds separation. For an array with 50 km in diameter and a large signal with an apparent velocity of $15 \mathrm{~km} / \mathrm{sec}=3.3$ seconds before and after the main detection. Since side lobes are much smaller than the main detection this spurious detection pattern can occur only with a large signal. We think that the pattern of detections, the size of the main detection, and time constraints can be programmed to eliminate this kind of false alarm.

In consideration of the reasons discussed in the previous section, a new beam set was designed and tested with the on-line DP for the data from the period of June 13 to June 30 , 1975. In this section we analyzed and compared the performance of this new beam set, LBS160, with the old beam set LBS133.

The new beam set has a total of 183 teleseismic beams aimed at locations for which we have LASA travel time corrections (Chiburis and Ahner, 1973). Since these locations are calibrated for travel time corrections, we expect these beams will have minimal signal losses due to travel time errors. In addition, 60 close distance beams and 14 high velocity beams were selected on the basis of regional and PKP-range seismicity. For the purpose of covering non-seismic areas and detecting rare events, 84 beams are added to the beam set. As a result LBSI60 has a total of 341 beams compared to 300 beams in the LBS133. Figure 4 shows the distribution of LBS 160 beam locations. Detailed beam parameters are given in Appendix A.

All EP signals which were processed during the period of LBS160 operation were analyzed and compared in the same way as the previous analysis. The summary of signal classifications are given in Table II. Comparing the respective categories in Table I, we find that the percentage of the identified events has increased from 33% to 42% of the total, and Duplicate detections have decreased from 36% to 30%. There is an increase from 11.6% to 13.4% in the regional-local cvents presumably because the new beam set has a better detection capability in close range events.

Next we conduct a recount of all EP signals shown in Table II with a restriction of $10 \mathrm{~km} / \mathrm{sec}$ to reject all regional-local detections. This restriction eliminates all signals detected within 20 degrees from LASA. The result showed 21 identified events, 161 duplicate detections, 91 regional-local events and 15 weak events were eliminated from processing. Table III shows

Chiburis, E. F. and R. O. Ahner, 1973, LASA regional travel time corrections and associated nodes: SDAC-TR-73-6, Teledyne Geotech, Alexandria, Virginia.

TABLE II

Classification of EP Events from June 13 to June 30, 1975
(Beam Set LBS*160)

Category	Number of Events	$\%$
(1) Identified events	599	42.4
(2) Identified secondary phases	87	6.2
(3) Duplicate detections	422	29.9
(4) Regional or local events	189	13.4
(5) Velocity failures	55	3.9
(6) Weak signals		30
(7) Data dropouts		29
		1411

TABLE III
Classification of EP Events from June 13 to June 30, 1975 with $10 \mathrm{~km} / \mathrm{sec}$ Velocity Restriction

Category	Number of Events	$\%$	
(1) Identified events	578	51.5	
(2) Identified secondary phases	87	7.8	
(3) Duplicate detections	261	23.2	
(4) Regional or local events	98	8.7	
(5) Velocity failures	55	4.9	
(6) Weak signals	15	1.3	
(7) Data dropouts	Total	1123	100.0

the percentage distribution of each signal category. Comparing respective categories in Table II, we find the percentage of identified events showed an increase from 42.4% to 51.5%. There are also marked reductions in false alarms; duplicate detection from 29.9% to 23.2%, regional-local events from 13.4% to 8.7%, and weak events 2.1% to 1.3%. The result proves that the velocity restriction is indeed a very effective criterion to reduce false alarms.

Although this velocity restriction had eliminated a total of 267 false aiarms, it had also eliminated 21 good local events. Among these 21 events, we found one signal detected at 16.5 dB , three detections between 18 to 20 dB , and 17 remaining everts with better than $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ detection. It is therefore possible to set a higher threshold at about 18 dB to process local detections occurring within 20 degrees from LASA.

By excluding local events there are a total of 578 teleseismic events during the 17 day period, or an average of 34 events per day. This is the highest daily average we have ever obtained at SDAC. In Figure 5, recurrence curves for LBS160 are shown together with similar curves for LBS133 computed for the year 1973. There are a total of 8197 events during 334 days of 1973, or a dafly average of 24.5 events per day. Detection thresholds for these two recurrence curves were computed with two methods: the first with the marimum likelihood method by Ringdal (1975), and another by fitting a best IInear line estimate between magnitude ranging from 3.8 to $4.9 \mathrm{~m}_{\mathrm{b}}$. By using the maximum likelihood mothod, 90% detection thresholds does not change much, $m_{b}=3.88$ for LBS133 and $m_{b}=3.84$ for LBS160. However, the 90% detection thresholds are quite different if we fit a straight line only to the upper portion of the recurrence curve. We find $m_{b}=3.8$ for LBS133 and $m_{b}=3.55$ for LBSI60. It can be seen in Figure 5 that the maximum likelihood method has a better fit over wide range of magnitudes, but the linear line estimate Is better for the specified range. We think the true detection threshold change lies somewhere between these two values. Since local events are

[^1]

Figure 5. Comparison of recurrence curves computed for LBS133 and LBS160.
excluded in this comparison, we conclude that there is some indication that the more accurate and well calibrated teleseismic beams have improved detection capability by the order of $0.1 \pm .1 \mathrm{~m}_{\mathrm{b}}$.

Figure 6 shows the performance of LBS160 in terms of percentage distribution of EP signals grouped in the seven categories specified eariler as a function of incremental S / N threshold. The most significant improvement in this figure is the disappearance of regional-local events in high S / N ratio detections. This means that although difficulties with small signals still exist, most of large local events can be properly processed and identified.

The accuracy of the teleseismic beams can be evaluated by comparing travel time errros of the DP beams. The travel time errors are differences of the final travel times of identified events (i.e., the travel time associated with the final location) and travel times of the DP beam which detected the signal. Smaller travel time errors indicate DP beams are more accurate and thus associating DP detections with another station will be optimized. Figure 7 shows the comparison of travel time error is -14.385 seconds for LBS133 and -3.733 for LBS160. Standard deviations are 28.56 for LBS133 and 22.96 for LBS160. An obvious skewness can be observed in the distribution curve of LBS133, but no obvious skew can be seen for LBS160. We believe LBS160 is generally superior to LBSI33.

In summary there are three reasons that implementation of new beam set and false alarm criteria will lead to improve performance at LASA. The first reason is the reduction of travel time errors in the new beam set. The mean travel time error for the old beam set is ~ 14 seconds, which is equivalent to an average initial location error of 200 kilometers at $\Delta=65$ degrees. The mean travel time error for the new beam set is ~ 4 seconds and that is equivalent to an average initial location erzor of 50 kilometers at the same distance. Secondly, new beam locations are well calibrated for travel time anomalies and may well therefore have a lower detection threshold. Thirdly, the reduction of false alarms can reduce the computer-analyst workioad so that we can lower the operating threshold without difficulties.

Figure 7. Comparison of travel time errors for LBS133 beaik and LBS160 beams.

As a result of investigating on-1ine seismic signal detections, we found that seismic signals from local and regional events cause most false alarms, and seismic noise causes few false alarms. Codas from these close ranga events also disturb the detection capability of the array by masking small teleseismic signals.

Local and near regional events are technically difficult to confirm; however, we found that steering beams to close range areas somewhat reduces the rate of false alarms. In order to discriminate against local events, detection beams must be deployed into these areas. This arrangement will reduce side lobe detections and coda detections on teleseismic beams.

Although the deployment of local beams alone can reduce false alarms, we found the most effective criterion is to set a velocity restriction to eliminate these signals detected on local beams. Since most local events are detected with high S / N ratios, an ar rangement to set a high S / N threshold on local beams will pass good events and eliminate false alarms.

Instead of using several beams equally spaced in a particular seismic area, we found it more effective to place one beam directly on the center of the area. Comparison of recurrence curves showed that such a new beam set has a lower detection threshold. This is perhaps due to two factors; detection beams are closer to true epicenters (thus less beamformjng loss), and these beams are wel. calibrated for travel time anomalies for the particular areas used. Deployment of new seismic beams showed that the average location errors of DP detections are reduced from 200 km to 50 km .

ACKNOWLEDGEMENTS

We wish to thank Drs. R. R. Blandford and J. H. Goncz for reviewing this . report and offering valueble suggestions.

REFERENCES

Bungum, H. and \mathfrak{F}. Ringdal, 1974, Diurnal variation of seismic noise and its effect on detectability: NORSAR Scientific Report No. 5-73/74, NINF/NORSAR, Kjeller, Norway.
Bungum, H. and E. S. Husebye, 1974, Analysis of the operational capabilities for detection and location of seismic events at NORSAR: Bull. Seism. Soc. Am., v. 64, p. 637-656.

Chang, A. C., 1974, A comparison of the LASA-NORSAR short-period arrays: SDAC-TR-74-5, Teledyne Geotech, Alexandria, Virginia.
Chang, A. C. and R. M. Seggelke, 1975, The effect of band pass filters on LASA detection performance: SDAC-TR-75-9, Teledyne Geotech, Alexandria, Virginia.

Chiburis, E. F. and R. O. Ahner, 1973, LASA regional travel time corrections and associated nodes: SDAC-TR-73-6, Teledyne Geotech, Alexandria, Virginia.

Dean, W. C., 1972, A geophysical evaluation of the short-period LASA/SAAC system: SAAC Technical Report No. 5, Teledyne Geotech, Alexandria, Virginia.

Flinn, E. A., R. R. Blandford, and H. Mack, 1972, Comments on "Evidence for higher seismic activity during the night" by Michael Shimshoni: Geophy. J. R. Astr. Soc., v. 28, p. 308-309.

Lacoss, R. T., 1972, Variation of false alarm rates at NORSAR: Semiannual Technical Sumary, June 1972, Seismic Discrimination MIT Iincoln Laboratory, Cambridge, Massachusetts.
Ringdal, 1975, On the estimation of seismic detection thresholds: Bull. Seism. Soc. Am., v. 65, p. 1631-1642.
Shimshoni, M., 1971, Evidence for higher seismic activity during the night: Geophys. J. R. Astr. Soc., v. 24, p. 97-99.
Steinert, O., E. S. Husebye, and H. Gjoystdal, 1975, Noise variance fluctuations and earthquake detectability: Geophys. J. R. Astr. Soc., v. 41, p. 289-302.
Woolson, J., 1976, LASA detection threshold for 1974; Comparison of Monday through Saturday with Sunday: Internal Memorandum, Teledyne Geotech, March 1976.

APPENDIX A
List of Parameters for LBS160

 phas:

枱

袆

营
妾

解

能磁

唼

ņolur.		$\begin{gathered} \text { SNID SEE } \\ \text { SJMBER } \end{gathered}$		sunsu	$\sin ^{2 y} x_{1}$	P14,	$\begin{aligned} & \text { Lat } \\ & \therefore \because \vdots \end{aligned}$			prase veluciry		$\begin{aligned} & \text { 2AvGG } \\ & (D E G) \end{aligned}$	$\begin{aligned} & \text { REIJ } \\ & \text { SVOEX } \end{aligned}$
						Sin	2\%	1こうe	1	sj.jhil	11.043	25.52	679
						Pip	4B,	465	1	60.3511	11.046	2:.3j	679
						$\mathrm{SNP}^{\text {\% }}$	40	345	1	63.3511	11.048	125.20	420
165	21,36	1764	35.27	-0.041646	-8.017764	P	2350	$3{ }^{36}$	1	22.3994	86.723	84.35	353
160	21,43	1768	39,2?	-0.364590	-0.016060	p	35N	356	1	15.3281	16.051	52.50	403
167	21,43	1776	47,27	-0.102s00	-0.017708	p	46.1	784	1	7.5664	53.226	19.30	447
168	21,51	1779	50.27	-0.117977	-0.c1862C	p	67.4	зјн	1	8.3726	51.031	14.53	468
169	21.16	1896	13. 29	-. .970749	-0.012296	-	37.5	155\%	1	13.7258	277.859	44.60	611
170	21.25	1817	24.28	0.011340	-0.01196:	Pxpo	is	1346	1	60.6764	316.524	132.90	273
						Sin	50 N	$125 E$	1	63.6744	316.524	15.35	23
						pep	59\%	133 E	1	80.6744	316.524	20.12	19
						5KPO	35	1:SE	1	65.6744	316.524	128.44	274
171	21.28	1820	27.28	-0.003340	-0.015330	PKPJ	as	OSE	1	63.6571	12.275	141.59	429
						SSP	01.	1JJE	1	33.6571	12.275	14.57	679
						${ }_{\text {PCP }}$	65N	37 F	1	63.6571	12.275	19.68	679
						SKPD	35	655	1	83.6571	12.275	136.34	425
172	21,37	1829	30, 28	-0.049449	-0.014715	${ }^{p}$	21.1	${ }^{136}$	1	17.7495	73.1es	77.16	550
273	21.17	1975	18.29	0.046770	-0.088665	p	12 N	16JE	1	21.9291	280.954	83.95	615
:14	21,23	1976	19.29	9. 541036	-0.007579	p	SN	135E	1	24.0173	279.789	92.39	614
175	21.23	2976	19, 29	0.039065	-0.010435	p	5.	148 E	1	24.7316	224.955	97.11	814
176	21,25	2081	24.29	c.015100	-0.0074io	PKPD	${ }^{\text {as }}$	1238	1	57.4082	296.1J8	123.23	286
						SSP	SiN	1298	1	57.4685	296.108	15.69	22
						Pip	52.4	137F	1	57.4683	276.1:8	20.57	21
						SKPO	65	1258	1	59.4085	296.108	120.37	280
17	21.29	lats	28. 27	-0.006030	--0.007549	pkpo	sns	des	1	101.1649	37.565	160.26	428

$\begin{aligned} & \text { 0Eploy. } \\ & \text { AUMER } \end{aligned}$	$\begin{aligned} & R C h-G u L \\ & \text { NUPGERS } \end{aligned}$	ingusez －．j4HER	nispling vjugras	$\operatorname{lsf}_{\left(s^{\prime} x\right)}$	$\begin{gathered} 2 y \\ \left(y^{2} x+1\right. \end{gathered}$	prase	LAT （IDE：	LU．ves ｜ue「．｜	$\begin{aligned} & \text { PRIG- } \\ & \text { RITY } \end{aligned}$	omase vetjeirr	agay azIMITH	rayge （DETi	$\begin{aligned} & \text { zejiJy } \\ & \text { ldJEx } \end{aligned}$
174	21.15	2353	14，32	S． 66120	0．904305	p		107＊	1	15.3964	206.538	53.01	012
195	21.17	2055	16，32	C．053235	6．2．23146	\bigcirc	ITN	1786	t	18.7513	266.597	73.04	615
296	21．22	2389	19，32	1）： 4.820	c．nc3892	P	13	1645	1	24.3673	264.556	94.87	183
197	21．23	2368	19，32	c．2467：0	c．：3537\％	${ }^{\boldsymbol{p}}$	25	166E	1	24．3589	262.484	94．70	183
198	21.35	2084	35．32	－C．044383	9．053510	P	15	22W	1	22.9685	74.733	36.63	4．j6
199	21.45	2335	39，32	－2．565565	0.003700	P	23 H	45＊	1	15.2290	93.235	53.92	433
203	21.51	2799	50.32	－0．123255	i．Úc2377	P	47\％	151w	1	S．1117	71．1：5	3．63	461
201	21． 5	2117	4，33	0.114675	0.207859	P	44id	126W	1	8．33s6	266．243	14．17	30
202	21．23	2132	19．33	9．E゙4666\％	0．05316E	P	105	179E	1	24.1157	258.679	93.57	183
2.23	21.31	2143	30．33	－0．213830	0.009630	PKPD	465	15w	1	57.3385	124．850	121.92	412
						SEP	36 N	95 m	1	59.3385	124.850	15.72	486
						PEP	33N	86\％	1	39.3385	124.850	20.62	507
						SKPD	445	194	1	59.3395	124.850	118．56	$\leqslant 19$
204	21.37	2149	36．33	－0．048260	C．00713C	P	26	294	1	25.4986	98.404	79.72	456
2.35	＊ 21.37	2151	39．33	－0．555c70	0.009350	P	8：	38N	1	17.8694	130.242	69.53	406
206	21．42	2154	41．33	－0．074280	0.011 .312	P	3J	630	1	13.3170	98.433	39．24	4 ぐ2
207	21.13	2189	12．34	c．076317	0.013049	P	32N	148w	1	12.8830	206． 322	35.03	611
208	21.17	2193	16．34	0.552931	0.811511	P	5.3	175\％	1	28．4ill	257．730	71．8d	611
259.	21.25	2196	19．34	0.539290	0．011585	P	155	172E	1	24.4135	253.378	95.23	185
210	21，23	2176	19．34	0.038360	0.015460	P	135	1735	1	24.1792	248．049	93.50	182
211	21．25	2231	24，34	0.312460	0.011350	PKPJ	\＄15	1688	1	99.3314	227.669	121.92	166
						SEP	35N	125E	1	59.3314	227．609	15.72	39
						PCP	31N	124 E	1	59.3314	227．609	20.62	811
						SKPD	493	173 E	1	59.3314	227.664	118．5u	168
212	21．33	223s	29．3\％	－2．01141\％	0.012510	PKPO	533	354	1	27.2653	137.633	118．5y	152

D\& pluy.nurger	$\xrightarrow{2.6}$		$\xrightarrow{\text { nuspray }}$	(3 (\% \times ($0 \cdot 145$		(inta	Mimp			${ }^{28} 8.5$	
						5 s	36.	236	1	39.303	137.033	15.81	58
						pis	3 B	\% ${ }^{4}$	1	34.0003	137.63	23.73	$3: 4$
						SkP	43	${ }^{354}$	1	97.0.6:3	137.633	113.65	409
213	21.37	2213	36.36	-..5si923	c.015609	-	$1{ }^{1}$	${ }^{43 \%}$	1	18.7751	1:7.042	13.15	40
214	21,37	2215	38,36	-0.:0:221	w.0.1227	-	$14 \cdot$	454	1	16.2745	1:1.318	60.42	4.3
213	21,65	2222	45,34	-0.:942:6	c.en3315	P	-9,	${ }^{\text {raw }}$	1	12.5154	97.866	21.54	473
216	21.	2246	5.35	3.1155.bc	..019987	P	${ }^{4} 2 \times$	${ }^{1274}$	1	8.5739	260.561	15.91	30
21	21.	2265	19,35	0.330190	0.019980	-	iss	${ }^{1736}$	1	22.7328	242.986	86.17	173
218	21,21	2201	20,35	0.331770	c.019930	-	185	${ }^{175 \%}$	1	23.5181	242.657	89.21	113
219	21.21	2251	20.35	2.034430	c.017420	p	175	${ }^{1784}$	1	23.7001	245.615	93.18	181
220	21,21	2261	26.35	2..36770	c.ecrerte	-	215	1797	1	26.2306	242.994	93.80	181
221	21.31	2271	36.35	-0.c4560?	$\bigcirc 0.016057$	-	ss	${ }^{374}$	1	23.6822	1.9 .936	88.35	528
222	21.15	2317	14,36	$0.6628{ }^{\circ}$	0.022360	-	15*	1,tw	1	14.9712	258.260	52.10	012
223	22.15	2319	14,36	c. 360168	c.025510	P	${ }^{17 \times}$	155w	1	14.4412	252.771	48.30	813
226	21,23	2334	19,36	c.036550	c.c20960	-	${ }^{215}$	${ }^{1764}$	1	23.7756	260.204	93.67	173
225	21.23	2326	19,36	0.c3e150	0.c2005:	-	175	${ }^{1734}$	1	23.5520	241.574	${ }^{87.27}$	114
226	21,21	2325	20.36	0.035320	c.021270	-	245	${ }^{1754}$	1	24.2542	238.943	96.08	175
221	21.34	2338	33, 36	-0.335565	0.022729	-	225	414	1	23.6922	122.582	90.15	528
228	21,39	23.3	38,36	-0.55931	0.020279	P	12v	314	1	15.9537	18.8874	58.40	${ }^{\text {© }} 2$
229	21.17	2385	16.37	C. 555323	e.025153	-	s:	${ }^{103}$	1	16.5295	245.633	62.c9	622
230	22.34	2422	33.37	-0.430606	2.028880	P	275	534	1	${ }^{23.7973}$	133.263	90.82	528
231	22.37	2635	36.37	-0.488621	0.025388	P	45	47\%	1	18.2436	117.650	71.24	528
232	21,63	2459	39,37	-0.564230	0.028303	-	17\%	${ }^{824}$	1	16.2425	113.923	47.35	92
233	21,60	2608	39.37	-5.562473	0.028856	-	1>0	${ }^{614}$	1	14.55866	114.584	49.19	92
234	21,21	2653	25,36	. 32255	0.929939	P	3	\%	1	2.77	27.164	86.31	632

OEPLUY． WUMEER	$\mathrm{NCW}-\mathrm{COL}$ NUPEERS	GRID SEO NUMSER	Display vuybers	$\operatorname{ux}_{\left(\sin ^{\prime}+1\right)}$	$\operatorname{ls}_{\left(s^{\prime \prime} x\right)}$	PHASE	$\begin{aligned} & \text { Lar } \\ & \text { (OEG) } \end{aligned}$	LCNG （DEG）	$\begin{aligned} & \text { OYIG- } \\ & \text { RIIY } \end{aligned}$	phase VELUCITY	BEAM ALIMUTH	$\begin{aligned} & \text { SAVGE } \\ & \text { IOEG) } \end{aligned}$	$\begin{aligned} & \text { RESION } \\ & \text { INJEX } \end{aligned}$
235	21.22	2654	21，38	$0 .: 28054$	S．c325j2	P	355	155w	1	23.2705	220.755	88.14	632
236	22，36	2466	33，38	－0．035986	6．233701	ρ	175	S7w	1	23.2829	133.122	79.61	528
237	21．37	2471	38．38	－n．059222	0.032190	ρ	12N	62W	1	14.8361	118.527	51.16	95
238	21，43	2472	39，38	－0．C6569C	0.032240	ρ	19 N	SSW	1	13.6617	116.176	42.41	90
239	21．4）	$24 ? 2$	39，35	－0．065680	0.630300	P	19：1	54W	1	13.8443	114.592	43.93	91
240	21．43	2472	39．38	－C．064760	0．03093C	p	18 N	64W	1	13.9345	115.533	44.67	91
241	21，45	2478	85，30	－C．094830	0.030420	p	37N	81w	1	10.2412	127.786	20.45	491
242	21． 3	2532	5，39	0.113184	c． 037793	P	41：	126＊	1	0．38C3	251.535	14.60	35
243	21，31	2527	30.39	－c．027900	0.038045	p	395	73W	1	23.7863	154．800	90.74	136
244	21.33	2529	32．39	－0．025400	0.036540	p	335	65＊	1	22.4714	145.196	85.35	141
245	21.38	2534	37.39	－0．052311	c．033761	p	3N	63\％	1	16.3617	122．838	59.11	528
246	21.43	2536	39．39	－2．064200	0.03642 C	$?$	19N	694	1	13.5481	119.586	41.41	89
247	21.43	2539	42．39	－0．379769	0.036918	P	34 N	81\％	1	11.3769	114.835	23.55	511
248	21．6	2566	5．4．）	0.114172	0.042557	p	42N	120w	1	B． 2071	249.557	10.91	32
249	21.17	2574	18.40	2．642076	C． 540229	P	85	148w	1	17．1784	226.286	65.91	632
250	21.35	2573	29．4．5	－c．E1183C	0.040430	r	423	84W	1	23.7387	163.693	90.43	686
251	21.32	2572	31.40	－0．C25280	C．C40790	p	285	7¢\％	1	29.8383	148.211	80.81	122
252	21．32	2572	31．43	－0．621970	c． 039482	P	325	T14	1	22.1330	150.905	84.46	135
253	21.32	2572	31.40	－0．021963	0.03825 C	P	335	75	1	22．6729	150.139	85.97	127
254	21.33	2593	32：40	－0．030343	0．941736	p	215	396	1	17.3822	．143．981	75．74	124
255	21.33	2573	32，43	－0．029880	c． 039920	P	235	67W	1	23．3735	143.259	78.30	128
256	21.33	2593	32.43	－5．0283C0	0.041130	ρ	245	69W	1	20．2298	145.470	78.15	127
257	21.33	2593	32．40	－ 0.326332	0.038770	p	295	67N	1	21.3376	145.818	02.44	138
238	21.33	2593	32，4：	－2．22791：	C． 242376	P	245	15w	1	17．7097	140.626	17．01	122
25）	21．37	2597	38．ちた		E＊ヶ4alC	ρ	18 N	72W	1	13.3889	124.341	39.90	87

$$
\begin{gathered}
\text { UY } \\
15 / k 41 \\
c .545545 \\
E .044660 \\
0.043920 \\
0.045410 \\
0.046650 \\
0.043436 \\
0.043160 \\
0.046570 \\
0.045880 \\
0.043310 \\
0.047544 \\
0.047909 \\
0.050347 \\
0.048126 \\
0.05144 c \\
0.048340 \\
0.047410 \\
0.656243 \\
0.049630 \\
0.049190 \\
0.051400 \\
0.056680 \\
0.047536 \\
3.054526 \\
0.054210
\end{gathered}
$$

PHASE

$$
\begin{gathered}
\text { PHASE } \\
\text { JELOCITY } \\
\text { B.1368 } \\
19.0992 \\
22.7651 \\
21.7321 \\
17.6346 \\
18.5473 \\
19.0994 \\
16.5812 \\
14.3008 \\
14.9373 \\
\hline 12.1143 \\
12.4164 \\
17.3403 \\
23.6017 \\
19.3181 \\
25.6669 \\
21.2888 \\
12.1967 \\
16.9529 \\
16.3671 \\
10.0388 \\
14.2823 \\
14.5292 \\
18.1344 \\
16.0337
\end{gathered}
$$

 ${ }^{1}$ \pm 1

$\begin{array}{cc}\stackrel{\sim}{N} & \underset{\sim}{n} \\ \dot{\sim} & \underset{\sim}{n} \\ \dot{\sim} & \dot{\sim} \\ \underset{\sim}{n}\end{array}$苍

$\stackrel{\circ}{\circ} \stackrel{\circ}{\circ}$ $\begin{array}{ll}\underset{\sim}{\sim} & \stackrel{0}{n} \\ \vdots & n \\ \vdots\end{array}$ n
$\stackrel{n}{n}$
$\underset{\sim}{n}$
n $\begin{array}{cc}\underset{\sim}{n} & \underset{\sim}{\hat{N}} \\ \stackrel{\sim}{n} \\ \underset{\sim}{\sim} \\ \underset{\sim}{\sim}\end{array}$ 8
$\stackrel{8}{\circ}$
$\stackrel{+}{2}$
$\stackrel{y}{2}$ －
 \sim
$\stackrel{\sim}{\square}$
\vdots
\vdots 0
$\stackrel{\circ}{0}$
\vdots
\vdots
0 $\underset{\underset{\sim}{*}}{\underset{\sim}{*}}$ $\stackrel{i}{\stackrel{i}{i}}$

0

\vdots
\vdots
\vdots
0
$\stackrel{\stackrel{0}{0}}{\stackrel{0}{2}}$
$\stackrel{n}{\circ}$
$\stackrel{0}{\circ}$
\dot{m}
\vdots

自え気
\qquad
 $\underset{\sim}{*}$
$\stackrel{\rightharpoonup}{+}$
a
ur
$15 / \times 41$

0.074236

0.075083 c．017690 0.076810
0.079242

0
0
0
0
0
0
0.002619

K
号
\vdots
\vdots
\vdots \circ
0
0
0
0
$\dot{0}$ \circ
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$
$\dot{\circ}$
$\dot{0}$
0.096703 0
0
0
0
0
0
0
0
0.099960 0.099685
0.096841

 $\stackrel{5}{3}$ -0.230020 -0.294365
 $\stackrel{i}{i}$ $\%$ ： －

$$
-
$$

$$
\ldots
$$家

RESIJ:
IVSEX
 Rayge
logel $:$

氠兌 $\stackrel{7}{n}$
צu $\begin{array}{lll}0 & 2 & 2 \\ 0 & 0 \\ 0\end{array}$ $\underset{\sim}{2} \underset{5}{2}$ $\stackrel{2}{8}$

$\underset{(5 / K M)}{\text { UY }}$ 0.113755
0.112963 0.216639
0.115885 0.121020
0.123156

[^0]: Woolson, J., 1976, LASA detection threshold for 1974; Comparison of Monday through Saturday with Sunday: Internal Memorandum, Teledyne Geotech, March 1976.

[^1]: Ringdal, F., 1975, On the estimation of seismic detection thresholds: Bull. Seism. Soc. Am., v. 65, p. 1631-1642.

