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1. Introduction

The design of structures requires that members of the structure be

selected with the capacity to perform under the anticipated loading con-

ditions. The selection of member geometry is often fairly simple, once

the critical loading conditions have been established. However, there

are cases, particularly where the member geometry is complex, that the

selection of an optimum member configuration is difficult. In these cases

it is of interest to investigate the possibility of using optimization

techniques which can predict the optimum member configuration directly.

The use of direct optimization techniques could also be particularly

advantageous if the maximum permitted stresses are a function of the member

geometry and loading. Probably the most common situation where this inter-

action between allowable stress and member geometry occurs is in column

design, where the critical buckling stress is a function of length and

the radius of gyration of the section. For most applications the optimum

configurations are tabulated in handbooks and the design engineer can ouickly

select optimum sections.



When new design criteria are developed it is often necessary to

develop new information which will ultimately be tabulated for the practicing

engineer who wishes to avoid the tedious calculations required to select

optimum sections. In this paper we will investigate the possibility of

using geometric programming methods to optimize the geometry of a pitched

tapered beam subjected to uniformly distributed loads. The beam geometry

is shown in Figure 1 and is characterized by the span, 2L, the width b,

the radius of curvature R, the heights at the center H and Hc, the

height at the support Hs, the roof angle , and the slope of the lower

surface (p.

In this paper we have chosen to optimize the design of the pitched

tapered beam with respect to volume. Fox 1] presented a computer program

for minimizing the volume of beams using a technique that required a

detailed understanding of the constraints and employed a rather arbitrary

fixed-step search technique to move along constraint surfaces until a

minimum volume was achieved. This method provided optimal designs in many

cases but because of the arbitrary step sizes used in the program it can

be shown that the attaining of minimum volumes is not always ensured.

Since this program was developed it has been shown by Barrett et al. (2]

that the tensile strength perpendicular to grain of timber is not inde-

pendent of member geometry as has been previously assumed. In particular,

given a set of design parameters xi which characterize the beam geometry,

the stresses and deflection are checked using formulae normally specified

in building codes. Stresses and deflections so calculated must not exceed
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the maximum (or allowable) values. These relationships can, therefore,

be expressed in the form of inequality constraints

OjX ) < F. (1.1)

where a is the computed stress component and F is the maximum

allowable value for that stress component. In addition to stress con-

straints, deflection constraints are usually employed to keep the

deflection D of the member below a specified fraction of the span and

accordingly the constraint will have the form

(x i ) < as (1.2)

where a is the appropriate fraction and S is the beam span.

In general, there will be other relations which control beam

geometry. For example in beam design often the ratio of beam height to

width is restricted to satisfy lateral stability requirements. In the

case of the pitched tapered beam there will be requirements for a minimum

length of tangent on the beam lower surface. These constraints can be

written in the form

f j(Xi) < 1 .(1.3)

The allowable tensile strength perpendicular to grain for pitched

tapered beams is given by
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F = 324 (1.4)

rb

where b is the beam width, H the height at the centerline, R them

radius to midheight and qp the angle in radians between the centerline

and the tangent point. The allowable stress according to Eq. (1.4) is

generally lower than the 65 psi used previously, thereby requiring

modification of the beam configurations which have been tabulated in 131].

The optimal beam geometry will be found by formulating the

optimization problem as a generalized geometric (signomial) programming

problem. In the next section the detailed engineering formulation of

the problem will be presented. The signomial programming formulation is

derived in Section 3 and in Section 4 the results of a few sample

designs are given.

2. Engineering Considerations

Given specifications for the uniformly distributed design dead

load cb and snow load ms, the total span 2L and the roof angle 3,

the design engineer must develop a beam of adequate capacity. The

capacity of a beam is assessed by evaluating stress, deflection and geometric

criteria which are normally specified by building code authorities or

dictated by manufacturing requirements. For this paper the design

criteria for allowable shear and bending stress, F and F B and the

ds" deflection constraints are those specified by the Canadian Standard
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Association Standard CSA 086-197o (4]. Currently the allowable tension

perpendicular to grain stress Fr, permitted in Canada for Douglas fir,

dry service condition and normal load duration is 65 psi. It has been

shown that this allowable stress is not adequately conservative for large

beams and for this paper the allowable stress shall be that recommended

by Barrett et al. (2].

In design the engineer strives to produce a minimum cost structure

consistent with the requirements for public safety and protection of

property. This may be accomplished by minimizing the volume of material

used in the members. Accordingly, in our optimization problem the

objective function to be minimized is the volume of the beam subject to

the design constraints developed below.

There are constraints on the bending stresses at the beam center-

line and tangent point (TP, Figure 1), the shear stress at the support

(A, Figure 1) and tension perpendicular to grain stress at the centerline.

The specific form of these constraints for the pitched tapered beam

subjected to a uniformly distributed load is as follows.

For the bending stresses qB, we require aB < FB where FB is

the given allowable bending stress. Bending stresses must be checked at

two positions, at the centerline and at the tangent point. Therefore at

the centerline the constraint has the following form

6Mc= l + 2.7 tan 8] < FB (2.1)

BbHB
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where M, the bending moment at the centerline is given by

2
M 2 (11 (2.2)Mc =27

Similarly, the bending stress at the tangent point is given by

y - [1 + 2.7 tan P <F B  (2.3)

where 14T, the bending moment at the tangent point is given by

m=Mc 2 sin2 cp/24 . (2.4)

Here,

H, HT - beam heights at centerline and tangent point, respectively,

inches,

L = half-span, inches,

b = beam width, inches,

= roof angle, degrees,

= uniformly distributed load, pounds per lineal foot.

The beam loading tends to increase the radius of curvature of the

beam, thereby introducing stresses in the radial direction. The magnitude

of the tension perpendicular to grain stress a r is given by
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6m
cr = K r <F (2.5)

r rbH 2  r
where

K = A + B(-) + c(-)26)
r Rm Rm

and

R = radius to midheight (R + H/2), inches

A,B,C = functions of f, tabulated in [1]•

The shear stresses T at the support are required to satisfy the

relation T < F and this constraint is formulated as follows

3 v< F (2.7)
2 bH-s

where
1L (2.8)

and

Hs = beam height at the support, inches

v = shear force, pounds

A constraint on the midspan deflection of beams is normally imposed

to prevent excessive deflection which could damage ceiling materials. The

maximum allowable deflection . is usually expressed as a function of

the total span. The corresponding constraint in our case is

45w
4

where

Y = 0.2 + 0.8 Hc/Hs, (see [I) (2.10)

I = bH3/12 (2.11)I

and
E = modulus of elasticity, psi

H = height at centerline for the double-tapered component of
c

the beam, inches.
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The final constraints are constraints on geometry. The first is

introduced to ensure that the tangent point (T.P., Figure 1) is

positioned at an adequate distance from the end of the beam. This

constraint is required to prevent springback when the beam is released

from the clamps after curing of the glue is complete. For convenience

the constraint is formulated as follows

L - R sin q) > CeH (2.12)

where a is a given constant.

To complete the engineering formulation it is necessary to specify

the allowable values to be used in the stress and deflection constraints.

These values depend on the species of wood used in the beam. If

Douglas fir is used the allowable values are as follows

F B = 2760(1 - 2000(t/R)2 ) (psi) (2.13)

where

t lamination thickness, inches.

Fr= K(biRm 4))-0" 2  (psi) (2.14)

F = 150 (psi)s

where

K = 324 (if 'i is in radians)

2L
mx= - 2.16)

max

where we assume = 180.
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The above formulas for F and F include a 15% increase in allowable,B s

stress for snow load conditions.

Finally, the radius of curvature R is constrained to be greater

than or equal to 330 inches so that excessive stresses will not be

introduced when the beams are fabricated.

The variable portion of the half-beam volume, to be minimized, is

given by (see Figure 1)

V = Lb(H + H ) + bR2 (tan qo - g) (2.17)

The total half-beam volume is equal to V - L2 b tan .

This concludes the engineering formulation of the optimal design

problem.

3. Signomial Programming Formulation

In this section we present a signomial programming formulation of

the optimal beam design problem. The main difficulty in reformulating

this problem as a signomial program is that some of the relations appear-

ing in the preceding section are equations, whereas signomial programming

constraints must be inequalities. As will be shown below, some of the

equations of the engineering formulation are used to eliminate variables

and others are converted into inequalities in such a way that hopeful! -

they hold as equations at an optimum. Another minor problem arises from

the appearance of trigonometric functions in the design formulas. Taylor

series approximations of these functions are used below to obtain

generalized polynomials as required.



Note that converting an equality constraint g(x) 1 into two

inequalities g(x) L 1, g(x) _lis not practical, since the algorithm

used for the numerical solution is based on the assumption that the

interior of the constraint set is nonempty. For this reason, equalities

can only be converted into one-sided inequalities. The sense of the

inequalities is usually determined by physical or design considerations

(see, for example, [51). Unfortunately, there are cases where these

considerations are quite complex and cannot be observed by simple

inspection of the constraints. Consequently, a trial-and-error approach

is necessary. Simple examples can, however, be constructed showing that

not every equality constrained problem can be solved by converting

equations into single inequalities.

Let us derive now the signomial program for the beam design in

detail. The volume of the beam as given in the engineering formulation

is

V = Lb(H + H) + bR2 (tan T - )s c

Using the identity

H 4 L tan q = H L tan f3.2)
c s

A and a three-term Taylor expansion of tan cp

tan cp = + I + '3.3)
3 15

we obtain the volume to be minimized

V 2LbH - L b tan + + L2 bT +3L b

25 I bR2 + -bL 2C 5  y3.4)
0 15
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where H, the beam height at the support, .:ts been eliminated.

"he variable H is defined ty the identityc

K cOS (7).

in converting this rela.0ion into an inequality we can ensure that in an

optimal solution 'tl± inequalit. will ';old as 'an !;quation by writtng

}H , ! -R~lIR -- 0 -

Since in (3.4) we try to lower the value of i{ as much as possible,
_ C

the inequality in (7.7 will be tight in cni optimal solution. suostituting

15 ('1 4l
coscp 7- (c.7

Lnt.c. and rearrnging yields

H -1 5 7 i4  <i 7.u
F~ - 2q 2- '74 2- {  5

or

-2 - T -l,-2 ]_ 2 I72 <4

2? 1 - tc - . -

The bending stress :nristr~trnt, ac enl-erllne s given by i2.l 2.2 '

and (2.1') as

I'M ',I P.7t n
c < ,7 [i - 0 0 " ].10)

or

rTfu- ori 111

where

1 1. ' '



(I + 2.7 tan P)c

Turning now to the bending stress constraint at tangent point we have

from (2.2), (2.3), (2.4) and (2.13)

6 R sin 27 t - 2o00 (LA-2.7t 15
\ R

or

TRP sin2 .2 F -2 1 1-,,. P i rp !-T + 200C't R ._1 . _.4

The beam height at tangent point H T) is related to the other beam heights

by

T (1 P sin Y) H + (P sin. 15
T L c L s.

From (3.2) and (3- we obtain

I H - R cos q- R tan sin c. .

Instead of converting (3.16) into an inequality and guessing its sense,

we substitute (3.1(,) into (3.14) and by letting

sin r1p p - )-

s - 2 4

we write the bendingr stress constraint at tangent point as
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2 -2 1 -IR4 -1 an i--Lq5 -
PL H + t H-I4 + 2 tan HI- + 2000t2 - 2

+ 50t2 tan H-2 P5 + 2 - P-tan ) -226 + tan H-22

2
2000t 2 H -R-1 q2 +2000t 3tan f3 H-1 RB1 CP + tan2 f3 2000Ct2 H-2 2

(3/4 - tan2 6) 2000t 2 H-2 _ H4R 2 _ t H-IRe

33
2 20020t tan0 t an2 PH c -tan tan 2 H R HH-I

- 4 12tan 1 -2 2 5 
_2000t 2 -L -1 4 2

- - H R pHB - 4000t tan (3H'-(

2000t 2 tan k H-1-l 5  2(1 - tan2  2000t2 H-2 6

• o 45

Next we consider rhe constraint on tension perpendicular to

grain stress. We have by (2.5), 2.') and (2.14)

6 M A H M B 6M CH-2 + C1H-IR- + - R , (3.20)
b b m b m -bHP q 0.2

m

or

6 McA . G2 O - 0 .8 0.2 6MC 0.2 -1.8 0.2
m R - HO 'R-I '2m < I0m

b K b K b K

(3.21)

where

R =R + H . (3.22)

Direct substitution of (3.22) into (3.21) would yield a nonsignomial

constraint and, therefore, should be avoided. Consequently, we must treat

(3.22) as an inequalt.y that has to hold as an equation at optimum.
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Since R has both positive and negative exponents in (3.?1) ihe

sense of the inequality to replace (..22) cannor be determined in advance.

Multiplying, however, the left hand side of (3.21) by the identity

(R + H/2)/R m  yields the new tension-perpendicular-to grain stres. con-

straint

6M A -1 6MB -0.8 -1.8 0.2
RH "R cp b '-KRH R qP

6M C
c RH.2 -2.8 ) 0.2 + 3McA H-0.8 R-0.8 0.2

b K b K

3M B 0.';M C 1.
3MB H0.2R-1.8 0.2 3McC 1.2 -2.8 0.2+ H R + . 0: 11 R C < 1 KS.23)

b K b K

where all the terms on the left hand side are positive and the exponents

of Rm  are all negative. Now we convert (3.22) into the inequality

R <R+ I1 H5.24)

m -2

or

-1_ 1 -l '3.5R I i H -m 2 .5 -

Note that the above considerations are valid if the inequality (5.23) is

tight in the optimal solution. It may happen, however, that both (3.23)

and (5.25) are strict inequalities at optimum. In this case the sense

of (3.25) must be reversed (such a reversal was in fact necessary in one

of the cases solved).

The shear stress constraint is formulated from (2.7) by using

(3.5) and (5.3). We obtain

t 14



L+ L tan )H 1  -l 1L H1  2 L5 -l1 (-6
8bF L c 1 L- H _i. (3.26)5

The deflection constraint is formulated from (2.9), (2.10), (2.11) and

(2.16) as

TH-3 + 4Tf-2H-1 < 1 (3.27)
C C S -

where

O.208w O (3.28)

Multiplying both sides of (3.27) by Hs  and substituting (3.2) yields

H2 _ nL tan H-3 + IL tan cp H-3 + 41 H -2

c c CC

< H - L tan f + L tanp (3.29)- C

and by (3.3) we obtain

5T H- 3 4 1LqpH4 + 2 qL H + L - 4 + LtanP -H1

c c 3 c 15cc

4i -1 - 1 LqN 1 - 2 5 -1- L tan H - L H - H 5 "
c c 3 c ~LH <. (.0

The constraint on the geometry of the beam given by (2.12) is rearranged to

H + R 3in q < 1. (3.31)

and by (3.17) it becomes

H R p - q + 1 p .- 2
L ~L 6L 120L

15



The last geometry constraint, R 330, is not treated explicitly, since

the numerical algorithm for the solution of the beam design problem

requires upper and lower bounds on all the design variables, thus the

A value 330 will be used as the lower bound on P.

The optimal beam design is obtained (after specifying the

appropriate constants) by solving the signomial program of minimizing

(3.4) subject to the constraints (3.9), (3.11) (3.l5), (3.25), (.25),

(3.26), (3.30) and (".32). The variables to be determined by the

optimization are H, Hc, R, Rm, V and (p. Note that an optimal solution

to the signomial programming formulation of the design problem is

acceptable only if the inequalities (3.9),and (3.25) hold as equations

at optimum.

A few sample problems of optimal beam designs were solved by

the computer code GGP, based on the generalized geometric (signomial)

programming algorithm of Avriel, Dembo and Passy [5]. These optimal

design solutions are presented in the next section.

4. Sample Designs

Optimal beam configurations are sought for three different

spans and loading conditions. The specified beam parameters are shown

in Table 1.

p1.



Table 1

Input Parameters for Beaxr Optimization

~Lamination
Roof Angle Half-Span Width Thickness Load

Case f (degrees) L (inches) b (inches) t (inches) wD (lb/ft)

1 9.46 360 6. 75 1.5 1200

2 9.46 240 6.75 1.5 1200

5 9.46 120 3.00 1.5 400

For the above roof angle the corresponding constants are A -0.0567,

B = 0.0794, C 0.213. In addition, the modulus of elasticity is assumed

6to be E = 1.9x × 10 psi and a value of c = 1.5 is taken in (2.12).

Optimal solutions were obtained by the computer code GGP in less

than 10 seconds of CPU time on an IBM 370/168 computer. The optimal

design variables are listed in Table 2.

Table 2

Optimal Design Variables

Volume HC  R m
Case ft3 degrees inches inches inches inches

1 184.32 3.84 70.7 68.3 1063 1099

2 71.05 5.01 50.3 47.0 860 886

3 5.93 6. 16 19.5 17.6 330 340
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It is interesting to observe the binding design constraints at optihmum

for the above cases (in addition to those which must be tight because

they were originally equations).

Table 3

Binding Design Constraints at Optimum

Case Binding Design Constraints

1 Tension ± grain stress (3.23); Shear stress (3.26)

2 Tension ± grain stress (3.23); Shear stress (3.26) 4

3 Bending at tangent point (3.19); Shear stress (3.26)

In Cases 1 and 2 constraint (3.23) is tight at optimum and consequently

(3.25), the defining relation for Rm, is also satisfied as an equation.

In Case 3, however, (3.23) is no longer binding and at first we obtained

a solution in which both (3.23) and (3.25) were strict inequalities. We,

therefore, reversed the sense of the inequality in (3.24) and (3.25) to

R >R+ 1

and

RR +-HR < 1 (4.2)m 2 m--

respectively, and (3.25) was replaced by (4.2) in the program. This change

resulted in the above listed optimal solution for Case 3 in which, of

course, (4.2) held as an equation.

18
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FIGURE 1. Pitched Tapered Beam
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