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essary and sufficient condition is derived. The construction is then used to
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I. INTRODUCTION

Consider the two dimensional vector ordinary differential equation

X = A X + .Uq s 8n (rv
x
+ sv

2
" °) » C 1 )

2 2
r + s

constant matrix whose characteristic polynomial is

where r + s > , u~ is some non-zero constant vector, and A is a

A + 2yX + (y
2
+ w

2
) , y > .

Equations of this type commonly arise in systems involving ideal relays.

We refer to the curve rv + sv - c = as the switching line in these

applications, and to the cases c ^ and c = as biased and unbiased,

respectively. In this paper, we investigate necessary and sufficient

conditions under which (1) will have periodic (limit cycle) solutions.

We shall show that existence of a limit cycle in the unbiased case is a

necessary and almost sufficient condition for existence of a limit cycle

in the biased case, however, that not all biasings (i.e., values of

c ^ 0) will produce cycles. We also develop an extremely powerful and

interesting geometrical interpretation of the necessary and sufficient

conditions, and use this interpretation to demonstrate a bifurcation

into two cycles for the same value of c under certain circumstances.

Equations of this type have been considered by Fleishman [2],

ti

Davis and Fleishman [l] s and Flugge-Lotz [3], among others. However, Davis and

Fleishman consider primarily the special cases when only even order

ii

derivatives are present, and Flugge-Lotz does not give a complete



characterization of the limit cycles. Also, neither author considers the

question of multiple limit cycles in the general case.

For the purposes of our investigation, it is convenient to introduce

a non-singular linear transformation and time scaling (Appendix A) that

reduces (1) to:

*1
= ~ 2SX

1
" ( ^

2
+ 1)X

2
+ a

i
Sgn (X

2
" C) '

*2 = X
l

+ a
2

sgn (x
2

- c) , (2)

2 2
where 3 > and a + a >

This now represents a damped system, forced by a relay switching along

the transformed switching curve x
?

= c . It can be shown that a

necessary and sufficient condition to avoid the phenomenon called

"chatter" in (2), and to insure that a solution will exist at each point

in the (x ,x ) plane, is a >_ . We now make that restriction.

Furthermore, (2) involves only odd functions of x and x ; hence we

can assume, without loss of generality, that c ^_



II. THE PHASE PLANE

Our analysis of (2) begins with the observation that, viewed

separately in the regions x„ > c and x < c , (2) reduces to a linear,

constant coefficient system. Elementary methods then yield the solutions

* * -3t ^ * -3t
x (t) = - c.e (3 cos t + sin t) + c^e (cos t - 3 sin t) - a ,

* * -3t ,. *-3t .
, ,

(2Ba
2
+ a

l>
x
9
(t) = c e cos t + c_e sin t + -

1 (3+1)

in the region x (t) > c , and

(3a)

— fit" —fit"

x (t) = -c e (3 cos t + sin t) + c e (cos t - 3 sin t) + a ,

(3b)

(23a + a )

,„v -6t ^ -3t . ^ 2 V
x (t) = c.e cos t + c_e sin t_1 2

(B
2
+ 1)

for x (t) < c . Thus the trajectories in the phase plane are simply

(arcs of) decaying (since 3 > 0) counterclockwise spirals, centered at

(23a + a )

(- a_ , f ^-
) (4)

(3
Z
+ 1)

for the region x > c , and at

(23a + a )

( a_ , f L
) (5)

(3 + 1)



for the region x < c . These centers will be asymtotically stable

critical points if and only if they are actually above and below

x = c , respectively, e.g., (4) describes a critical point if and only if

23a
2

+ a

2 > C
*

(3
Z
+ 1)

Note that, if and only if c = , the origin is also a critical point,

but obviously an unstable one.

A representative view of the phase plane behavior can be obtained by

considering the region x„ > c . There, in the case

(26a
2
+ a ) £ c(3

2
+ 1) ,

the center for trajectory arcs is located in the region x~ <_ c , with

an x co-ordinate of -a„ <_ . Thus, because the spiral arcs are

counterclockwise, every arc emanating from a point in x > c intersects

the switching line at an x < in some finite time, and exits the

region. Furthermore, since the angular frequency is unity, then each

arc spends no more time than tt in the region, with a time equal to tt

occurring only when the center of the arcs is located on the switching

2
line (i.e., when (26a + a ) = c(B + 1) )

.

The situation when

(23a
2
+ c^) > c(g

2
+ 1)

is significantly different in that the spirals are now centered at a

stable critical point actually located in the region x > c . Thus,

some trajectories never exit the region, but decay down to the critical

point, while others intersect the switching line and exit the region.



The "boundary" between the arcs that exit the region and those that decay

to the critical point is the arc that terminates on the switching line,

directly below the critical point, i.e., at

( -oy c) . (6)

This arc, which also exits the region, is denoted (*) in Figure 1. We

let T denote the time represented by this arc, where clearly

tt < T < 2tt . It is fairly easily shown that every other arc which exits
o

the region x„> c represents less time in the resion than T * , i.e.,
/ o

*
T is the maximum time an arc can spend in x_ > c and still exit there,
o 2

* * *
T can be determined, using (x. (t), x. (t)) to denote the
o LA

solution in the region x > c , by noting that the condition described

by equation (6) and curve (*) of Figure 1 is eauivalent to

x (T ) = -a
1 o 2

x- (T ) = x. (0) = c .

z o Z

Using (3) and simplifying the resulting three equations, we arrive at:

-3T
o * *

e = cos T - 6 sin T , (8)
o o

which can easily be shown to have one and only one solution in (tt, 2tt) ,

*
hence T is uniquely defined,

o

The analysis of the region x_ < c is similar, and so is omitted.

The only point of interest in this case is that, when, a critical point

2
is located in this region (i.e., -(26a + a ) < c(3 +1)) a "maximum

time", T can be defined, similar to (7) by :

o

x-(T ) = a
1 o 2

(9)
x.(T ) = x,(0) = c .

W
Z O Z



Straighforward calculation shows T satisfies (8), hence, since the

solution is unique,

T = T *
. (10)

o o

(For the remainder of this discussion, we drop further reference to

* .

T , replacing it by T .) Again we can show that no curve which
o o

exits x„ < c can spend more than T time there.
2 o



III. THE CONDITIONS FOR A LIMIT CYCLE

To derive the necessary and sufficient conditions for the existence

of a limit cycle solution to (2), we begin with the solutions as given

by (3). We let T denote the time spent by one. trajectory arc in

x < c , and T the time on an arc in x > c . Then, since the

system (2) is autonomous, and since trajectories must be continuous in

the (x ,x ) plane, it follows that a necessary and sufficient condition

for a limit cycle of period (T + T ) to exist is:

Xl (Tl ) = x
x

(0)

Xl (0) = x
x

(T )

x
2
(0) = x

2
(T

1
) = c

(0) = x (T ) = c
4

* T , T < T . (11)
1 2 — o

where it is understood x (0) represents x (0 ) , etc.

The condition given by (11) can be reduced by using the solutions

given by (3) and simplifying the resulting expressions by eliminating

c
9

and c_ . This leads, in the case where neither T nor T

equal it , to the equations:

cosh 6T- - cos T. .

i i . *
c + c
1 sin T, 1

cosh 3T - cos T

sin T
= 0,

sinh BT A sinh 3T (1-6 )a
2

- 8a

1 sin Tl
C
l sinT

2

=
" 2

(g
2
+ ±)

T n
< T

1 — o

2 o

V

(12)

(13)

where

C
l

" C
l

= 2

(26a
2
+ a

±
)

(e
2
+ 1)

(14)



and the value of c for which this cycle occurs is given by

1 / *
C =

1 (C
1
+ C

l > * (15)

These equations express the necessary and sufficient conditions for

existence of a limit cycle, except in the cases noted. (Note these later

cases correspond respectively to c = , if and only if, T = tt and

c. = , if and only if, T„ = tt .) In these cases, expressions similar

•k

to (12)- (14) can be derived. For example, in the case c. = , c ^ ,

the condition for existence of a limit cycle of period (T + tt) is:

sinh 3tt

cosh Btt + 1

cosh 3T - cos T

sin T,

sinh BT (1-6 )a
2

- 26^
sin T, (23a

2
+ a )

T < X
2 - o

(16)

We now develop an interesting, and powerful, geometric interpre-

2 *2
tation of the necessary and sufficient conditions when c. + c. >

Consider (12- (14), which represent the necessary and sufficient conditions

when c-iCi r , and let

T7/4-N sinh gt . v cosh 3t - cos t
* \t; - ~~T~ Z » ^Aw -

sin t sin t
(17)

Then (12) - (14) is equivalent to the vector equation



GO^)

F(T
1

) -c.

-G(T
2
)

F(T
2
)

2(28a
2
+ a )

(6
2
+ 1)

(18)

(1 - 8 )a
2

- Bo^

(26a
2
+ a

x
)

- ,

if (28a + a ) ^ . But this means that the three vectors in (18) are

3
linearly dependent, i.e., lie in the same plane in R . Clearly this

plane cannot coincide with the z = 1 plane, yet since each vector in

(18) terminates on the z = 1 plane, linear dependence then requires that

the end points of the three vectors lie in a line in that plane. Thus,

(12)-(14) can be satisfied if and only if the vectors

G(T )

F(T
1

)

G(T
2
)

F(T
2
)

and
(1 - •) a

2
- ga

-(26a
2
+ o^)

(19)

lie in the same straight line. But by drawing the parametric curves:

C. = {(G(x), F(x)) < x < T } ,

1 — — o

C
2

= {(-G(x),F(x)) 0<t<T
o

)

(20)

plus the point

(1 - 6 ) a - 8a
P = (0, *

) , (28a + a ) 4 , (21)
°

(28a + a )

l

we have that (provided c c 4- , and (28a + a ) 4 0) , any line



through P and both curves generates a limit cycle, and, conversely,

for any limit cycle, there must be a straight line through the point and

both curves.

Straighforward but laborious calculation, plus liberal application

of hyperbolic identities, shows that both F(t) and G(t) are positive

and monotonically increasing on (0,tt) , and negative and convex down on

(tt, 2tt) . Furthermore G(t) has its maximum to the right of T

(i.e. G(t) increases monotonically on (ir,T )) , while F(t) has its

maximum at a T < T . Also, £., and £« are convex up in the uppermo 1 z

half plane, intersecting at (0,3 ) , and convex down in the lower half

plane, being asymptotic to the lines

_ sinh Bit . .

cosh $tt + 1

and

.sinh 3tt , 9
-,

u - - r~r—T7T w - 3 (23)
cosh 3tt + 1

respectively, asx^-fr (w •*• ± °° ) . Thus £ and £- must have

the approximate shapes shown in Figure 2. Figure 3 shows one situation

which would lead to a limit cycle. Observe from (12) that the ratio of

the horizontal intersections on £ and ?_ , which we denote:

G(T
X
) c

±

*

P = -
r /T n = ~—

. (24)
G(T

2
) C]

_

satisfies (from (14) and (15));

(23a
2
+ c^) (1 + p)

(3
2 + 1) (1 - p)

c - £ (a, + c
t ) - — (25)

2 1 1 /^ 2

10



Thus, since p is just the ratio of horizontal co-ordinates, we could

easily compute, from the geometrical configuration, the value of c for

the cycle shown in Figure 3. (Assuming values for R , a- and a

are known.

)

Equations (24)-(25) will be especially useful in discussing the

range of values of c for which cycles can occur, and, since it will

become important later, note that on any interval not including p= 1,

c as given by (25) is a monotonically increasing [decreasing] function

of p for (26a
2
+ a )> [(26a

2
+ a )< 0] .

In the discussion so far, this geometrical interpretation has been

k
limited to the cases c

-i
c

-i
^ , and (26a + a ) ^ . However, the

2 *2
interpretation can easily be extended to all cases where c. + c. >

by extending the interpretation of a line intersecting the point and both

curves to allow intersection in the limit at infinity. Thus, for example,

it

the case c = , c ^ and (23a + a ) ^ is treated (refer to

(24)) as the limiting case

G(T ) -» ± °° .

Now, referring to Figures 2-3, it is obvious "intersection" in this

limiting case occurs if and only if the straight line is through P ,

parallel to the asymptote of £ , intersecting c; . (Figure 4). That

is, there must be a T such that

(1 - 6
2
) a

2
- 6a

1
F(T

2
} +

(26a, + aj
sinh $i\ . ,„

6
v

_ G(T2>
COSh 6TT + 1

But referring to the definitions of F(t) and G(t) it can be seen (26)

11



is identical to (16). A similar process can be followed when

C1* =
° *

c
i ^ ° »

and (2ea
2
+ a

l^
** ° *

Lastly, interpreting (19)-(21) where (26a + a ) = as the

limiting case when P approaches the point at infinity along the verti-

cal axis, we see that an "intersection" can occur if and only if the

points on C
1

and £ lie on the same vertical line, or equivalently

G(T ) = - G(T ) . However, since by (14)-(15) this case corresponds to

c = c = c , this interpretation immediately satisfies (12), and yields

from (13) a cycle occuring for every value of c satisfying:

c = - 2a
2

sinh 6T sinh 6T

sin T- sin T

-1

, (27)

where T- and T are solutions of G(T ) = -G(T ) , and the absolute

value of the quantity in brackets represents the vertical distance

between the two points of intersection.

Thus, including the limiting cases, we see that for all

2 *
2

C. + c. > , the geometrical interpretation is equivalent to the

solution of (12)- (14), and hence it expresses the necessary and sufficient

condition for existence of a limit cycle.

12



IV. EXISTENCE OF LIMIT CYCLES

In this section we apply the geometric construction developed above

to derive necessary and sufficient conditions under which a limit cycle(s)

will exist. Our main conclusion will be to determine existence conditions

Specifically, we show a bound, depen-

dent solely on 3 , such that no cycles exist for any values of c if

in terms of 3 , a and a

the ratio [a /a ] exceeds this bound, and, for all values less than this

bound, there is a c > , depending on 3 , a, , and a_ such that
max 1 2

a cycle will exist if and only if c < cJ
' ' — max

We begin by noting the following result, alluded to in the introduc-

tion to this paper:

Lemma 1: A limit cycle will exist for values of c > if and

only if a cycle of the same period exists for - c

The proof of this, which follows straightforwardly from the oddness

of all functions in (2), is omitted here.

The following theorem gives the condition under which no cycles of

any period are possible, irrespective of the biasing.

Theorem 1: There is an n (3) such that (2) will have no
max

limit cycle solutions if either

(a) a
?

= , or

(b) a
2

4 and > n (3)max

Proof: Let M(3) = - max
(tt, 2tt)

sinh 3t

sin t
> 0, (28)

13



and

ta\ 1 ~ g - 2BM ^ _

max (6 + M)
(29)

(Note - M is the maximum vertical coordinate on both z, and Z, in

the lower half plane.) It is then easily shown that conditions (a) and

(b) are equivalent to

(1 - 3 )a
2

- 6a
1

" M <
(26a

2
+ ql

±
)

£

However, this implies that P (as given by (21)) lies above the line

joining the maxima of Z, and Z, in the lower half plane, but at or

below the juncture of z, and z, in the upper half plane (Figure 5).

The convexity of Z, and Z, and the quandrants in which the curves

are located immediately imply no straight line through P can intersect

both Z, and Z, , hence no cycle can exist.

Note that, by defining

, a
2

4 , (30)

P can be equivalently defined

P
Q
(3,n) = 0, - (l -

g ) - Bn

(23 + n) )• (31)

Then, if the situation when a = is considered as the limiting case

n -* ± °°
, the previous theorem implies cycles can exist only if

-oo<ri<n (3) . We now complete the result by showing that if— max

- oo < x\ < n (3) » a limit cycle will exist for at least one value of c— max

14



Theorem 2: If n = n (6) , a cycle will exist if and only if
max J

c = .

Proof: If n = n (6) , then
max

P = (0,-M) ,
o

that is P lies on the line joining the maxima £., and £_ in
o 12

the lower half plane, (Figure 5). But the convexity of L, and

£„ imply this is also the only line through P intersecting both
2 o

curves. Thus one and only one cycle will occur in this case. From

Lemma 1, c =

The above result is the reason why, in the introduction, we commented

that existence of a limit cycle in the unbiased case was a necessary and

almost sufficient to give cycles for some biasings, for, as the following

shows, only when n (6) = r\ can a cycle exist only for c =
max

Theorem 3: If - °° < n < n (6) , then there is a c > ,max max

such that a limit cycle will exist if and only if

c < c— max

Proof : By Lemma 1 we restrict ourselves to c >_ . The actual

proof is divided into three subcases; -26 < n < n (B) ,

max

n = - 26 , and - °° < n < -26 .

Cas e I : The case -26 < n < n (6) , corresponds (with our re-
max

striction a >_ 0) to (26a + a ) > , and so, by (25), c >

corresponds to -1 <_ p < 1 . Also, from (29) - (31), we can show

that in this case P (n»6) is located in the lower half plane,
o

below the line joining the maxima there of L, and t, . However,

15



TT

with P so located, we can define 6 , < 6 < —
, as the

o o o «

largest clockwise angle from the horizontal for which a straight line

through P intersects C-, in the third quandrant. Then clearly

any line through P with slope, m , will intersect both £ and

L, if and only if

J

m
J

_< tan 6 . (Figure 6)

However, since p must vary continuously with m (along lines

intersecting both curves), and since p can approach 1 only if the

intersecting line approaches the vertical, then p must be bounded

away from 1 , and there exists a p such that intersection will' max

occur for c > if and only if - 1 < p < p < 1 . It follows— — max

from (25) that a cycle will exist for c >_ if and only if

(23a_ + a.) (1 + p )

r\ „ 2 1 max
< c < c— — max to 2 , -v (1 - P )(6+1) max

since the right hand side of (25) is strictly increasing for

(23a„ + a,) > and -1 < p < 1 . Clearly c depends on 3 , a.
2 1 — max 1

and ot_

Case II : When -23 = H , (23a + «-) =0 , and as we have discussed

before in this case limit cycles exist if and only if c satisfies

(27), where in (27), the quantity:

sinh 3T sinh 3T

sin T. . _
1 sin T

represents the distance between £ and C on any vertical line

16



intersecting both (since P (n) is imagined passed to a limit at

infinity along the vertical axis). Since the distance must clearly

have a non-zero minimum, and since (27) involves its reciprocal,

it follows straightforwardly that there is a c such that c ,max

as defined by (27) satisfies

< c < c— — max

Case III : When - °° < r\ < -26 , the proof is essentially similar

to case I, except P (n,B) is located in the upper half-plane,
o

above the juncture of C, and X, .
]

Theorem 3 completes the description of the necessary and sufficient

conditions under which a limit cycle (s) will exist. Note that although

this theorem predicts at least one cycle for every value of c satisfy-

ing < c < c , it does not address the possibility of more than_ i i _ max

one cycle occuring at a single value of c . We shall pursue this in

the next section. However, we first investigate in some more depth the

properties of r\ (B)
max

Elementary methods show that, for a given B > M(B) as defined by

(29) is given by

sinh BT (B)
m

m(B) = - -r- Tsin T (B)
m

where T (6) is the solution, in (tt,2tt) , of the equation
m

tan t = — tanh Bt
p

Since the right hand side of this equation can be shown to be monotoni-

cally decreasing in B (for fixed t ) , it follows that T
m ($) is

monotonically decreasing in 6 » and

17



lim T (8) = tt .

r, m
0-x»

Further direct calculation will show

dM(3)
T
m ( g ) cosh 3T

m
(B)

d3 sin T (3)m

since tt < T . Thus M(3) is a monotonically increasing, and clearly
m

M(3) -> °° as 6 -*- °° .

With M(3) thus fully characterized, it is easily shown that

ri (3) , as given by (29), is a monotonically decreasing function of
max

3 , asymptotic to the curve n = -23 as 3 * °° . Figure 7 shows the

general dependence of r\ , and it is fairly obvious that
max

n (3) = -23 , 3 > 1 .

max

18



V. BIFURCATION OF THE LIMIT CYCLES

The previous section showed that for - °° < r\ <_ max(B) , there was

a c (n»6) such that at least one limit cycle would exist for every
max '

c satisfying < c : c . In this section we complete theJ ° _ii— max r

description of the limit cycles by showing there are values of c that

allow more than one cycle, how these values are determined, and how the

transition from single to multiple cycles occurs.

Consider the situation represented by figure 8. When the straight

line intersects two curves C-, and £„ , the horizontal co-ordinates of

the intersections and slopes there of these curves are denoted

w- , m and w. , m_ respectively, and a is the angle between the

line and the horizontal. Then, using elementary calculus, it can be

shown that:

d ,

W
l ,

W
l , 2

1
. (Vl*— t — j= — \ m +1)

da w - w- a (m -m ) (m -m )
z 2 l a I a

However, referring to (24), this equation becomes

dP (
2

, n
(m2"m

l
}

,„,
do

7
= p (m

a
+ 1} K-m ) (m -m )

(33)

i. o I a

where m is the slope of the intersecting line. This equation allows

us to determine, relatively easily, the points where -f~ changes sign.

But from (25), c is a monotonically increasing function of p for

(26 + n) < , and a monotonically decreasing function for (28 + n) <

Thus every time ~~ changes sign (for fixed values of 8 ,n ) , a bifur-

cation occurs, i.e. two cycles exist for the same values of c

With this formulation, and our main intent being to characterize

the algebraic sign of -£- as given by (33), we proceed. As will emerge

19



more clearly later in the discussion, there are several special subcases,

of increasing complexity, that must be considered. We shall not do this

exhaustively, but essentially look in full detail only at one of these

cases, then comment on the others. In essence, the complex cases arise

when P is located "near" (0,-M) , so that a single line through P
o o

can intersect C, (or C ) twice in the same quadrant.

Consider the case where P is located in the lower half plane,
o

and at or below the intersection of the tangent to t, at T with the
1 o

verticle axis. (Figure 9). Since we can show m. (T ) = -1 , this condi-
1 o

tion can be reduced, using the definition of T , to
o

2

< 2B +
* * "

2(Fff ) - B)
o

where F(t) was defined in (17). Note also this immediately implies

tan 9 > 1 .

o —

In this situation, due to the symmetry and convexity of C and

C_ , no line thru P can intersect either curve more than once in any
I o

quadrant. Furthermore, as noted in the previous section, since

(23 + u) > it follows cycles with c >_ occur only for

-1 £ p < 1 , which equates to lines thru P whose slopes satisfy

- tan 6 < m < ,

o — a —

where was defined in Theorem 3 and Figure 6 .

o

The easiest way to arrive at the information needed to determine

-p is by describing the variation of m and m as a increases from

-6 to zero. In this case, observe that 9 is determined by the line
o o

thru P to (G(T ), F(T )) , the end point of C, . Thus as a
o o o 1

increases to zero, m increases monotonically (due to the convexity of

20



C ) from -1 to a positive value less than

sinh 3tt

cosh Btt + 1

Since, as noted above, tan 9 > 1 , then as a increases to zero,
o —

m = tan a must increase monotonically from -tan 6 to zero. Note
o

that since a line through P as located here cannot intersect C,
o *1

tangentially (except perhaps at the endpoint) , it follows

m < m n for -6 < a <
a 1 o —

Lastly, since m < -1 at -9 , then the line through P at -9
a — o o o

must intersect £ in the second quadrant. (Since here C is asymtotic

to a curve whose slope is greater than -1). Thus as a increases, m

will initially monotonically decrease from a value in (-1, 0) to

sinh 3tt

cosh g-iT + 1 •

at which time the intersection point transitions to the fourth quadrant

(and also p passes through zero, changing sign), then m„ increases

monotonically to a value at a = which is the negative of m at

a=0 . It thus follows m < m„ < in second quadrant, and

m~ < m < in the fourth quadrant for a <
2 a n —

If m- , m„ and m are now plotted based on the above analysis,12a
a picture like Figure 10 will emerge. Observe that nu and m must

intersect exactly once for -9 < a < . Now if we denote the inter-J o

section of m, and nu as -a. , and that of m. and m as -o t ,12b lot
where necessarily -a < -a , we can easily construct Table 1 to give

the algebraic signs necessary to interpret (33).
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m
x

- m
a

m
2

- m
a

m
2

- m
l

P

dp_

da

TABLE I

) < a < - a. -a, < a < -a -a < a <
o b b t t

+ +

+ +

+

+ +

+

From this table it is clear that multiple cycles (for the same value

of c ) can exist in some cases. Furthermore this multiplicity can be

of order exactly two, since ~~ only changes sign once. (Again recall

c is a monotonic function of p .) Lastly, the multiple cycles can

occur only in a band of values of c whose lowest bound is strictly

positive. In fact, due to the sign of -~ on -9 < a < -a, , the value
da o b

of c at which the multiple cycles first occur is precisely the one

found from the value of p for the line with slope -6 . It should be
o

noted that since the phase plane is two dimensional, when double cycles

occur at least one will be unstable. This behavior, existence of a

single cycle for < c < c, , then two cycles for c. < c < c , seems— b d — — max

best described by the statement that a bifurcation occurs at c.

The situation when (26 + n) <^ can be easily constructed in a

manner to the above, and yields essentially the same result - a unique

cycle will exist for < c <c, where c, < c , there for— ' ' b D max

c, < c < c exactly two cycles occur.
b — ' ' — max

The other possible situations which arise become progressively more

22



complicated from a bookkeeping point of view. The reason for this lies

in the geometry, with the convex nature of the curves involved. For,

since £ is convex, the curve formed by C plus the extension of the

tangent line at the endpoint (at T ) to the intersection with the

verticle axis is also convex. Thus, where

2(F(T ) -6)
o

P lies "outside" this extended curve, and hence for at least some
o

angles a , a line through P with slope m will intersect C, twice.
o a 1

Thus m cannot be described by a single-valued function of a , and

the analysis becomes more complex. However, as long as P is located
o

below the line joining the endpoints of £ and £ in the third and

fourth quadrants, the same basic behavior as was found in the simple

cases above can be shown to exist.

However, when P lies on the line joining the endpoints of £,

and z, , i.e. when

< 23 + n = -
p(T

+
) _ -g , (34)

o

a qualitative change in the behavior occurs. For at this point, as

Figure 11 shows, there are two solutions (points (l)-(3) and (2)-(4)) for

which p = -1 , and hence c = . Thus, in addition to the bifurcation

at c, > , there is now a second bifurcation at c = . As P

continues to move toward (0,-M) , eventually a condition is reached

where multiple cycles exist at all values of c

Thus, in conclusions, we have shown that, in all cases, there is a

c, such that two cycles exist for c, < c < c , and in certain cases
b d — ' ' — max
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there is also a c, £ cl such that two cycles can exist for

I I 1
< c < c.— — t>
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VI . SUMMARY

In this paper we have considered limit cycle solutions to

2
x - -23x - (3 +l)x

2
+ a

1
sgn (x -c)

x
2

= x + a
2

sgn (x -c) .

We have derived the necessary and sufficient conditions for limit cycle

solutions to exist, and have presented the conditions in terms of an

equivalent, easily visualized, geometric condition. With the use of this

geometric interpretation, we then showed that, with one exception,

existence of a limit cycle for c = is both necessary and sufficient

for cycles to exist for some range of c ^ . Lastly, we have shown

that multiple cycles, for some values of c , are possible is essentially

all cases.
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Appendix 1

We consider the system

= A v + u sgn(rv. + sv„ - c) (A-l)

2 2
where u is a constant vector, r + s > 0, and A is a real,

~t> =

2
constant 2x2 matrix whose characteristic polynomial is X + 2yA +

2 2
(y + a) ) , where y» <0 > 0. First observe that the non-singular

transformation

a - b v, B =
-r

J

reduces (A-l) to

-1
w = (BAB )w + B_u sgn (ww„ - c)

(A-2)

where, because of similarily, BAB" has the same characteristic

polynomial as A, i.e.

2 2 2
A + 2 Y A + (y + u )

Since co > 0, both off-diagonal terms in BAB must be non-zero

and so BAB will have the form,
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BAB-1
d
ll

d
12

dn d
22

where d-.-d..- ^ 0. Thus d... 4 0, and hence the transformation

Z = £ w
d
21

d
22

J •

is non-singular. This transformation reduces (A-2) to

(C B A B
-1

C
-1

") x + C B u Sgn (wy
2

- c) (A-3)

where r

C (B A B
_1

) C
_1 (d

21 + d
22 ) -(dnd

22 " d
21

d
12

}

Again by similarity, this matrix has the characteristic polynomial

2 2 2
A + 2 Y A + (y + w )

By computing the characteristic polynomial directly, we see

-2Y = (dn + d
22 )

y
2
+ J = dnd

22
- d

21
d
12
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Thus,

2 2
y = - 2Ay - (y + (jJ )y + u sgn (oiy - c)

y 2
= y1

+ u
2

ssn (uy
2

- c)

where

u = C B u— = = —

o

But, now the time scaling cot = t reduces (A-4) to

Y
±

=
-2(J7i

- ((^)
2
+ 1) (uy

2
) + ^ sgn ((ay,,) - c)

(wy
2
) - y1

+ u
2

sgn ((a)y
2
) - c)

which, with the transformation

X
l

= y
i '

X
2

= Wy
2 '

3 =
I

U
l

a
l

= ~
'

a
2

= U
2

becomes (2)

•

(A-4)
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