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APPLICATION OF CIRCULATION CONTROL ROTOR TECHNOLOGY
TO A STOPPED ROTOR AIRCRAFT DESIGN*

Robert M., Williams

INTRODUCTION

This paper presents the application of circulation control rotor
(CCR) technology to a revolutionary new aircraft concept--the X-Wing
stopped rotor V/STOL. This design affords the potential for major
advances in rotary wing aircraft speed, range-payload, productivity, and
cort through the application of highly innovative aerodynamic and struc-~
tural design. The technology base for the concept has been derived from
almost 6 years of related CCR aerodynamic and structural design studies
at the David W. Taylor Naval Ship Research and Development Center
(DTNSRDC) and from earlier research in the United Kingdom. Additional
design insight has been gained from the experience of various stopped
and stowed rotor concepts of the 1960's and also from more recent studies

of the NASA "oblique wing' transonic transport concept.

DESCRIPTION OF CONCEPT

The basic design is illustrated in Figure 1 for an attack-type
configuration. Salient features include four highly loaded rotor blades
(150-psf wing loading) of moderate aspect ratio (12.0), which are
stopped in flight at the 45-degree azimuth position. The rotor/wing is
both aerodynamically efficient (hover Figure of Merit =0.70, fixed-wing
1lift system equivalent lift-to-drag ratio =20.0) and is also structurally
ideal (20-percent root thickness ratio, l0-percent tip, and planform taper
ratio of 2:1). The high wing sweep, in conjunction with the excellent
critical Mach number characteristics of the CC airfoils (Figure 2),
permits the wing to have a drag rise Mach number of approximately 0.90.
Also, because of a combination of low solidity ratio and the basic

symmetry of the wing corss-sectional area distribution, the X-Wing

*Presented at the First European Rotorcraft and Powered Lift Aircraft
Forum, Southampton, England, 22-24 September 1975.



aircraft is inherently area-ruled without "coke bottling" (Figure 3).
These features permit design of an internal engine configuration with
unexcelled transonic drag rise characteristics without the internal
space problem, structural difficulties, and added subsonic drag penalty
normally associated with area-ruled designs. In addition to these more
obvious characteristics, the X-Wing possesses several other unique
properties which, when taken as a whole, offer a revolutionary improve-
ment in V/STOL capability. These are discussed briefly in the following

section.

AERODYNAMICS

The CCR concept is illustrated schematically in Figure 4. Basically,
a thin jet sheet of air is ejected tangetially over the rounded trailing
edge of a quasi-elliptical airfoil, suppressing boundary layer separation
and moving the rear stagnation streamline toward the lower surface,
thereby increasing lift in proportion to the duct pressure.* For a
pneumatically controlled rotor application, the azimuthal variation of
1ift is controlled by a simple nondynamic valve in the hub. At higher
speeds and advance ratios, a second duct and leading edge slot are used
(Figure 5) so that the rotor can develop significant 1ift in the region
of reverse flow. Two-dimensional airfoil experiments have shown that it
is possible to develop large lift coefficients by blowing from either
slot individually or from both simultaneously. The latter technique is

used for advance ratios from 0.5 to 1.0 where the retreating blade
experiences "mixed flow" (i.e., locally reversed flow on the inboard
- sections and forward flow on the outer sections). Test results for this
unique airfoil are shown in Figure 6.

The significance of CCR aerodynamics can be assessed by noting that

the critical design parameter for any high speed horizontal rotor concept

*For reasons of brevity, it 1is not possible to discuss the details
of the CC section aerodynamics in the paper. The reader is referred
to the bibliography contained in Reference 1 for more information on
these unique airfoils.

1Stone, M. B. and R. J. Englar, "Circulation Control -- A Bibliog-
raphy of NSRDC Research and Selected Outside References," ASED Report
4108, Naval Ship Research and Development Center, Bethesda, Maryland (1974).
A complete listing of references is given on page 26.
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is, in fact, the maximum lift capability in the intermediate advance
ratio range (0.7 to 0.9) where the retreating side of the disc is immersed
in mixed flow of low average velocity. Traditionally, the solution to
this problem has been to add more blade area, to employ a separate wing,
or to use a second contrarotating rotor. Without exception, these
approaches have resulted in large and fundamentally limiting weight
penalties and usually a hover and/or cruise efficiency penalty. The X-
Wing minimizes the transition lift problem by blowing out of both slots
in the mixed flow region and by using a cyclic pressure control schedule
which shifts the maximum loading to the fore and aft regions of the

disc. Figure 7 illustrates the extreme aerodynamic environment which is
made tractable by these simple pneumatic techniques in conjunction with
the high 1ift properties of the basic CC airfoil sections. The crucial
significance of the transitional 1ift capability is that it permits the
X-Wing to develop blade loadings on the order of three times that of
conventional rotors. Figure 8 illustrates performance calculated through
the advance rafio range, *

The design implications of this blade-locading capability are far
reaching indeed for they permit high aspect ratio blades to be used for
efficient hover while also allowing the aircraft to operate in very high
speed cruise at the lift coefficient for maximum efficiency. The calcﬁlated
cruise efficlency for one aircraft design shown in Figure 9 (range is
propurtional to L/De) indicates that a peak vehicle L/De of 10.0 is
achievable at 350 knots (10,000-foot altitude).

The details of the transitional aerodynamic performance are too
lengthy to be described in this paper. Basically, however, the aircraft
will accelerate as a thrust compounded helicopter up to the tramsition
advance ratio of 0.7 (approximately 250 knots). Then while maintaining
a constant flight velocity, the rotor RPM 1is rapidly reduced to zero by

*These theoretical results (C./0 = 0.16 at 4 = 0.7) have just been
experimentally confirmed at this writing by tests on a 7-foot diameter
rotor in the DINSRDC 8- by 10-foot wind tunnel. A DINSRDC report on
these tests will be issued in the near future. a



using a rotor brake to decelerate and stop the rotor (approximately 30-
second total conversion time). A simple arrestment and lockout system
is then used to position the blades during their final revolution. The
symmetry of the rotor allows the blades to be stopped in any 45-degree
location, thus simplifying the problem of indexing. The aircraft can
then either accelerate up to high cruise speeds or operate in a fixed-
wing mode at very low forward speeds (below transition speed). The
aircraft would also have the capability for STOL takeoffs and landings
in the "blown' fixed-wing mode with the large compressor power source
used for transition.

Another special aerodynamics problem of high speed rotorcraft is
that the excessive drag associated with the rotor hub may account for
more than one-half of the total parasite drag. The X-Wing circumvents
the problem by eliminating the usual bluff protuberances such as shaft-
ing, pitch linkages, control horns, etc., which give rise to flow separation.
The rotor blades and hub are designed to be extremely rigid with a 3-
degree built-in coning angle. A limited +7-degree blade pitch travel is
also included for designs requiring maximum efficient hover operations.
The pitch change mechanism is designed to fit within the envelope of the
root section so that an aerodynamically efficient hub fairing can be
employed. The half-scale model data shown in Figure 10 for several hub-
shank designs indicate hub drag values an order of magnitude lower than
current helicopter hubs (Reference 2). The remainder of the body aero-
dynamic design is relatively conventional so that except for the hub
contribution, the fuselage drag levels are representative of current
fixed-wing designs.

Two alternate modes of operation also appear attractive for the X-Wing.
For missions which require extensive low speed operation the rotor could be
indexed to a 90-degree orientation (thus increasing the effective wing span).
If supersonic operation were desired the blades could be '"scissored" so that
for an included angle of 60 degrees a Mach number of 1.40 should be achiev-

able. The mechanical implementation of the necessary 15 degree increase in

2"Rotorcraft Parasite Drag," special report presented to the 3lst
Annual National Forum by the Ad Hoc Committee on Rotorcraft Drag,
Washington, D.C. (May 1975).




sweep would be quite straightforward using a variation of the crossed spar

hub design discussed in the next section.

EMPTY WEIGHT

Notwithstanding its unique aerodynamic capability, possibly the
most important characteristic of the X-Wing is its potential for sig-
nificantly reducing the empty weight penalty of a VIOL. By obviating
the traditional requirement for separate hover and cruise lifting systems,
the X-Wing is capable of achieving rotor blade/wing weight fractions
below 6 percent of gross weight by using aluminum construction and below
4 percent by using a high modulus carbon fibre composite. A preliminary
rotor/wing structural analysis has been employed to design the X-Wing.

As 1ndicated in Figure 11, the final structural design must efficiently
satisfy the diverse requirements of (1) fixed-wing ultimate maneuvering
loads, (2) aeroelastic divergence of the forward swept blade, (3) rotor
frequency placement to avoid resonant amplification, and (4) rotor loads
and fatigue life. Figure 12a illustrates the typical structural-aerodynamic
design tradeoff involved for aluminum construction. Minimum weight is
achieved at combinations of high disc loading and blade loading. Con-
sideration of the maximum blade loading during transition flight limits
the design blade loading to 150 psf. If one then determines that a high
aspect ratio is desirable for a particular mission (say, a range-payload
mission), then the indicated point would be a good solution. The disc
loading value of 15 psf, although somewhat high for Army helicopters, is
satisfactory for Navy shipboard use and results in a smaller diameter
rotor. Figure 12b indicates that the divergence speed for this particular
design is sufficient for the mission chosen.

Figures 13a and 13b indicate a similar tradeoff for a graphite
composite structure with spanwise and 45-degree cross-ply construction.
Significant weight savings relative to aluminum were found with a con-
siderably reduced dependence on aspect ratio. The divergence character-
istics were also markedly superior to aluminum. It is apparent from
these results that although an X-Wing could be fabricated with aluminum,
it 1is actually ideally suited to the high specific stiffness of composite
graphite material. The graphite also possesses important advantages in

natural frequency placement design for the rotating blade conditions.
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The hub and retention system shown in Figure 14 also represents a
new area of structural design for the X-Wing. The use of a titanium
"yoke'" was found preferable to a composite design (at this time) in view
of the requirements for high strength, high fatigue stress, ease of
fabrication and machining, and most importantly the need for a high
fatigue strength joint with the steel pitch pinion shown in the figure.

An additional design feature 1s the crossed spar layout which permits
the root moments and shears to be carried efficiently across the hub,
yet allows the blades to be aligned parallel for storage. Collective
pitch actuation was accomplished as shown in Figure 14 by using a single
spur gear and pinion design with redundant actuators and linkages.

Another new area of weight technology was the fan-in-tail installation.
This was designed to comply with MIL-8501A specifications and utilized
current knowledge from several industrial sources. The remaining component
designs and their weight calculations were straightforward and used the
detailed fixed-wing methodology of Reference 3 together with state-of-
the-art rotary wing methods. Two levels of materials technology were
considered: (1) all aluminum and (2) limited use of advanced materials
in structural areas which have been demonstrated in current aircraft
programs and are considered practical for a 1980 prototype aircraft.

Figure 15 illustrates the overall impact of the X-Wing empty weight
on traditional trends for rotary-wing VIOL's. Note that a reversal of
the weight trend has been achieved by utilizing the rotor as the sole
lifting system and minimizing the propulsion weight required for efficient

aerodynamics.

MISSION ANALYSIS
The results of the weight and aerodynamic studies were combined
with a propulsion/drive system study to provide inputs for a mission
analysis. From weight and performance standpoints, the optimum propulsion

arrangement appeared to be a single fan engine for thrust and dual shaft

3Ahl, W. H., Hypersonic Aerospace-Vehicle Structures Program.
"Wolume II -- Generalized Mass Properties Analysis,' Martin-Marietta
Corporation, Technical Report AFFDL-TR-68-129, Vol. II, Part I (Jan 1969).
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engines for rotor drive and compressor power. The detailed mission
calculation shown in Figure 16 illustrates the potential benefits of the
X-Wing for such diverse applications as ASW and civilian transport. It
indicates that the potential payload improvements of the X-Wing for a
typical medium range mission may be greater than 100 percent compared to
other rotary-wing VTOL's. k

ROTOR AEROELASTICITY AND DYNAMICS

The critical aeroelastic and dynamic aspects of the design are (1)
aeroelastic bending divergence in the stopped wing mode, (2) resonant
amplification of blade vibratory bending stresses during rotor slowing
and stopping, and (3) potential high frequency coupled instabilities of
isolated blades, multiblades, and the rotor/body combination. The divergence
design has been alluded to previously. In general, it is not found to
impact the blade weight fraction for blade aspect ratios below approximately
13.0. The mode of divergence is dominantly a clamped root pure bending
condition and, as such, is straightforward to analyze. Resonant ampli-
fication of blade airloads is a potentially serious problem for any
variable RPM rotor. Although the problem was not found to be severe
with an unloaded rotor (Reference 4), it will be of much greater significance
for the highly loaded X-Wing. The major excitation will occur with the
lower blade modes at tip speeds near maximum. For example, a stress
buildup was known to occur on previous unloaded, slowed and stopped
rotors when the first flatwise bending crossed the 2 per rev excitation
near 60-percent RPM. This was due partially to the frequency coalescence
and partially to a significant second harmonic airload content at the
high advance ratio range. The solution for this problem with X-Wing has
been twofold: (1) the rotor is decelerated rapidly by using a mechanical

4Fradenburgh, E. A., R. J. Murrill and E. F. Kiely, "Dynamic Model
Wind Tunnel Tests of a Variable-Diameter, Telescoping-Blade Rotor System
(Trac Rotor)," USAAMRDL Technical Report 73-32, U. S. Army Air Mobility
Research and Development Laboratory, Ft. Eustis, Virginia (Jul 1973).
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brake so that only a limited number of high fatigue cycles will occur;
and (2) the first flatwise blade frequency has been placed above 2 per
rev. The latter condition is quite unusual for rotor design as it
implies extremely high stiffness. However, the constraint is compatible
with good divergence design so that a value of approximately 2.2 per rev
is obtained for composite construction without varying either mass or
stiffness distributions from the values needed for the basic wing design.
Figure 17 indicates the frequency characteristics of a 30,000-pound
design.

The potentially high frequency instabilities are currently being
analyzed for X-Wing. The design philosophy has been to use high stiff-
ness in all modes in order to avoid strong coupling effects. However,
the nature of the section design requires the elastic axis and mass
center to be coincident at midchord. It thus remains to be seen whether

the rotor system can be designed to be flutter free at very high speeds.

STABILITY AND CONTROL
The stability and control characteristics of X-Wing are very

specialized. Traditionally coupled rotor/body low frequency dynamics
during transition has constituted the most critical stability and control
problems as stopped/stowed rotors. A promising solution (Figure 18) is
to employ four blades, to tramnsitior around zero angle of attack and to
use blowing to obtain the 1lift and control required. This should reduce
the oscillatory rolling and pitching moments on the X-Wing very sub-

stantially even when allowing for gust effects.

SUMMARY
A new aircraft concept has been presented which employs circulation
control rotor technology to achieve an efficient compromise of hover and
cruise performance with only a single lifting system. The concept also
offers a speed potential approaching Mach 1.0 with excellent fixed-wing

maneuvering capability. A low empty weight fraction appears possible by
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using the efficient structure of the rotor blades. Certain potential
dynamic and stability and control problems are currently being studied
both analytically and experimentally. At the present time, there do not
appear tc he any fundamentally limiting technical problems which will
prevent the timely development of this unique aircraft.
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Figure 4 — Circulation Control Rotor--Basic Concept
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Figure 7 — Rotor Aerodynamic Environment during Transition Flight
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Figure 7b — Mach Number Distribution
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(1) X-WING DESIGN POINT CONDITIONS
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(2) EXTERNAL BLADE GEOMETRY
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(6) WEIGHT CALCULATION
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Figure 11 — Wing/Rotor Design and Weight Analysis Approach
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Figure 12 — Aluminum Blade Construction: Effect of Design Parameters
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Figure 13 — Graphite Composite Construction: Effect of Blade Design Parameters
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