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APPLICATION OF CIRCULATION CONTROL ROTOR TECHNOLOGY 
TO A STOPPED ROTOR AIRCRAFT DESIGN* 

Robert M. Williams 

INTRODUCTION 

This paper presents the application of circulation control rotor 

(CCR) technology to a revolutionary new aircraft concept—the X-Wing 

stopped rotor V/STOL.  This design affords the potential for major 

advances In rotary wing aircraft speed, range-payload, productivity, and 

cost through the application of highly Innovative aerodynamic and struc- 

tural design. The technology base for the concept has been derived from 

almost 6 years of related CCR aerodynamic and structural design studies 

at the David W. Taylor Naval Ship Research and Development Center 

(DTNSRDC) and from earlier research in the United Kingdom. Additional 

design insight has been gained from the experience of various stopped 

and stowed rotor concepts of the 1960's and also from more recent studies 

of the NASA "oblique wing" transonic transport concept. 

DESCRIPTION OF CONCEPT 

The basic design is Illustrated in Figure 1 for an attack-type 

configuration.  Salient features Include four highly loaded rotor blades 

(150-psf wing loading) of moderate aspect ratio (12.0), which are 

stopped in flight at the 45-degree azimuth position. The rotor/wing is 

both aerodynamlcally efficient (hover Figure of Merit =0.70, fixed-wing 

lift system equivalent lift-to-drag ratio =20.0) and is also structurally 

ideal (20-percent root thickness ratio, 10-percent tip, and planform taper 

ratio of 2:1).  The high wing sweep. In conjunction with the excellent 

critical Mach number characteristics of the CC airfoils (Figure 2), 

permits the wing to have a drag rise Mach number of approximately 0.90. 

Also, because of a combination of low solidity ratio and the basic 

symmetry of the wing corss-sectional area distribution, the X-Wing 

♦Presented at the First European Rotorcraft and Powered Lift Aircraft 
Forum, Southampton, England, 22-24 September 1975. 



aircraft Is inherently area-ruled without "coke bottling" (Figure 3). 

These features permit design of an internal engine configuration with 

unexcelled transonic drag rise characteristics without the internal 

space problem, structural difficulties, and added subsonic drag penalty 

normally associated with area-ruled designs.  In addition to these more 

obvious characteristics, the X-Wing possesses several other unique 

properties which, when taken as a whole, offer a revolutionary improve- 

ment in V/STOL capability. These are discussed briefly in the following 

section. 

AERODYNAMICS 

The CCR concept is illustrated schematically in Figure 4.  Basically, 

a thin Jet sheet of air is ejected tangetially over the rounded trailing 

edge of a quasi-elliptical airfoil, suppressing boundary layer separation 

and moving the rear stagnation streamline toward the lower surface, 

thereby Increasing lift in proportion to the duct pressure.* For a 

pneumatically controlled rotor application, the azimuthal variation of 

lift is controlled by a simple nondynamic valve in the hub. At higher 

speeds and advance ratios, a second duct and leading edge slot are used 

(Figure 5) so that the rotor can develop significant lift in the region 

of reverse flow. Two-dimensional airfoil experiments have shown that it 

is possible to develop large lift coefficients by blowing from either 

slot individually or from both simultaneously. The latter technique is 

used for advance ratios from 0.5 to 1.0 where the retreating blade 

experiences "mixed flow" (i.e., locally reversed flow on the Inboard 

sections and forward flow on the outer sections). Test results for this 

unique airfoil are shown in Figure 6. 

The significance of CCR aerodynamics can be assessed by noting that 

the critical design parameter for any high speed horizontal rotor concept 

*For reasons of brevity, it is not possible to discuss the details 
of the CC section aerodynamics in the paper. The reader Is referred 
to the bibliography contained In Reference 1 for more information on 
these unique airfoils. 

Stone, M. B. and R. J. Englar, "Circulation Control — A Bibliog- 
raphy of NSRDC Research and Selected Outside References," ASED Report 
4108, Naval Ship Research and Development Center, Bethesda, Maryland (1974) 
A complete listing of references is given on page 26. 



Is, In fact, the maximum lift capability In the Intermediate advance 

ratio range (0.7 to 0.9) where the retreating side of the disc Is immersed 

in mixed flow of low average velocity. Traditionally, the solution to 

this problem has been to add more blade area, to employ a separate wing, 

or to use a second contrarotating rotor. Without exception, these 

approaches have resulted in large and fundamentally limiting weight 

penalties and usually a hover and/or cruise efficiency penalty. The X- 

Wlng minimizes the transition lift problem by blowing out of both slots 

in the mixed flow region &nd by using a cyclic pressure control schedule 

which shifts the maximum loading to the fore and aft regions of the 

disc. Figure 7 Illustrates the extreme aerodynamic environment which is 

made tractable by these simple pneumatic techniques in conjunction with 

the high lift properties of the basic CC airfoil sections. The crucial 

significance of the transitional lift capability is that it permits the 

X-Wing to develop blade loadings on the order of three times that of 

conventional rotors. Figure 8 Illustrates performance calculated through 

the advance ratio range.* 

The design implications of this blade-loading capability are far 

reaching Indeed for they permit high aspect ratio blades to be used for 

efficient hover while also allowing the aircraft to operate in very high 

speed cruise at the lift coefficient for maximum efficiency. The calculated 

cruise efficiency for one aircraft design shown in Figure 9 (range is 

proportional to L/D ) indicates that a peak vehicle L/D of 10.0 is 

achievable at 350 knots (10,000-foot altitude). 

The details of the transitional aerodynamic performance are too 

lengthy to be described in this paper. Basically, however, the aircraft 

will accelerate as a thrust compounded helicopter up to the transition 

advance ratio of 0.7 (approximately 250 knots). Then while maintaining 

a constant flight velocity, the rotor RPM is rapidly reduced to zero by 

*These theoretical results (,Cjo  - 0.16 at y - 0.7) have just been 
experimentally confirmed at this writing by tests on a 7-foot diameter 
rotor in the DTNSRDC 8- by 10-foot wind tunnel. A DTNSRDC report on 
these tests will be issued In the near future. 



using a rotor brake to decelerate and stop the rotor (approximately 30- 

second total conversion time).    A simple arrestment and lockout system 

Is then used to position the blades during their final revolution.    The 

symmetry of the rotor allows the blades to be stopped In any 45-degree 

location,   thus simplifying the problem of  indexing.    The aircraft can 

then either accelerate up to high cruise speeds or operate in a fixed- 

wing mode at very low forward speeds (below transition speed).    The 

aircraft would also have the capability for STOL takeoffs and landings 

in the "blown" fixed-wing mode with the large compressor power source 

used for transition. 

Another special aerodynamics problem of high speed rotorcraft is 

that the excessive drag associated with the rotor hub may account for 

more than one-half of the total parasite drag.    The X-Wing circumvents 

the problem by eliminating the usual bluff protuberances such as shaft- 

ing,  pitch linkages,  control horns,  etc., which give rise to flow separation. 

The rotor blades and hub are designed to be extremely rigid with a 3- 

degree built-in coning angle.    A limited +7-degree blade pitch travel is 

also included for designs requiring maximum efficient hover operations. 

The pitch change mechanism is designed to fit within the envelope of  the 

root section so that an aerodynamlcally efficient hub fairing can be 

employed.     The half-scale model data shown in Figure 10 for several hub- 

shank designs indicate hub drag values an order of magnitude lower than 

current helicopter hubs  (Reference 2).     The remainder of the body aero- 

dynamic design is relatively conventional so that except for the hub 

contribution,   the fuselage drag levels are representative of current 

fixed-wing designs. 

Two alternate modes of operation also appear attractive for the X-Wing. 

For missions which require extensive low speed operation the rotor could be 

indexed to a 90-degree orientation (thus increasing the effective wing span). 

If supersonic operation were desired the blades could be "scissored" so that 

for an included angle of 60 degrees a Mach number of 1.40 should be achiev- 

able.    The mechanical implementation of the necessary 15 degree increase in 

2 
"Rotorcraft Parasite Drag," special report presented to the 31st 

Annual National Forum by the Ad Hoc Committee on Rotorcraft Drag, 
Washington,  D.C.   (May 1975). 



sweep would be quite straightforward using a variation of the crossed spar 

hub design discussed In the next section. 

EMPTY WEIGHT 

Notwithstanding Its unique aerodynamic capability, possibly the 

most Important characteristic of the X-Wlng Is its potential for sig- 

nificantly reducing the empty weight penalty of a VTOL. By obviating 

the traditional requirement for separate hover and cruise lifting systems, 

the X-Wlng is capable of achieving rotor blade/wing weight fractions 

below 6 percent of gross weight by using aluminum construction and below 

4 percent by using a high modulus carbon fibre composite.  A preliminary 

rotor/wing structural analysis has been employed to design the X-Wing. 

As indicated in Figure 11, the final structural design must efficiently 

satisfy the diverse requirements of (1) fixed-wing ultimate maneuvering 

loads, (2) aeroelastic divergence of the forward swept blade, (3) rotor 

frequency placement to avoid resonant amplification, and (A) rotor loads 

and fatigue life. Figure 12a Illustrates the typical structural-aerodynamic 

design tradeoff involved for aluminum construction. Minimum weight is 

achieved at combinations of high disc loading and blade loading.  Con- 

sideration of the maximum blade loading during transition flight limits 

the design blade loading to 150 psf. If one then determines that a high 

aspect ratio is desirable for a particular mission (say, a range-payload 

mission), then the indicated point would be a good solution.  The disc 

loading value of 13 psf, although somewhat high for Army helicopters, is 

satisfactory for Navy shipboard use and results in a smaller diameter 

rotor. Figure 12b indicates that the divergence speed for this particular 

design is sufficient for the mission chosen. 

Figures 13a and 13b indicate a similar tradeoff for a graphite 

composite structure with spanwise and 45-degree cross-ply construction. 

Significant weight savings relative to aluminum were found with a con- 

siderably reduced dependence on aspect ratio. The divergence character- 

istics were also markedly superior to aluminum. It is apparent from 

these results that although an X-Wlng could be fabricated with aluminum, 

it is actually ideally suited to the high specific stiffness of composite 

graphite material. The graphite also possesses important advantages in 

natural frequency placement design for the rotating blade conditions. 

5 



The hub and retention system shown in Figure 14 slso represents a 

new area of structural design for the X-Wlng.    The use of a titanium 

"yoke" was found preferable to a composite design  (at this time) In view 

of the requirements for high strength, high fatigue stress, ease of 

fabrication and machining,  and most Importantly the need for a high 

fatigue strength joint with the steel pitch pinion shown In the figure. 

An additional design feature Is the crossed spar layout which permits 

the root moments and shears to be carried efficiently across the hub, 

yet allows the blades to be aligned parallel for storage.     Collective 

pitch actuation was accomplished as shown in Figure 14 by using a single 

spur gear and pinion design with redundant actuators and linkages. 

Another new area of weight technology was  the fan-ln-tail installation. 

This was designed to comply with MIL-8501A specifications and utilized 

current knowledge from several industrial sources.     The remaining component 

designs and their weight calculations were straightforward and used the 

detailed fixed-wing methodology of Reference  3 together with state-of- 

the-art rotary wing methods.     Two levels of materials technology were 

considered:     (1)  all aluminum and  (2)  limited use of advanced materials 

in structural areas which have been demonstrated in current aircraft 

programs and are considered practical for a 1980 prototype aircraft. 

Figure 15 Illustrates the overall impact of  the X-Wlng empty weight 

on traditional trends for rotary-wing VTOL's.     Note that a reversal of 

the weight trend has been achieved by utilizing the rotor as the sole 

lifting system and minimizing the propulsion weight required for efficient 

aerodynamics. 

MISSION ANALYSIS 

The results of  the weight and aerodynamic studies were combined 

with a propulsion/drive system study to provide Inputs for a mission 

analysis.    From weight and performance standpoints,   the optimum propulsion 

arrangement appeared to be a single fan engine for thrust and dual shaft 

3 
Ahl, W.  H.,  Hypersonic Aerospace-Vehicle Structures Program. 

"Volume II — Generalized Mass Properties Analysis," Martin-Marietta 
Corporation,  Technical Report AFFDL-TR-68-129,  Vol.   II,  Part I  (Jan 1969). 
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engines for rotor drive and compressor power. The detailed mission 
calculation shown In Figure 16 Illustrates the potential benefits of the 
X-Wlng for such diverse applications as ASW and civilian transport. It 
Indicates that the potential payload Improvements of the X-Wlng for a 
typical medium range mission may be greater than 100 percent compared to 
other rotary-wing VTOL's.

ROTOR AEROELASTICITY AND DYNAMICS 
The critical aeroelastlc and dynamic aspects of the design are (1) 

aeroelastlc bending divergence In the stopped wing mode, (2) resonant 
amplification of blade vibratory bending stresses during rotor slowing 
and stopping, and (3) potential high frequency coupled instabilities of 
Isolated blades, multiblades, and the rotor/body combination. The divergence 
design has been alluded to previously. In general, it is not found to 
impact the blade weight fraction for blade aspect ratios below approximately 
13.0. The mode of divergence is dominantly a clamped root pure bending 
condition and, as such, is straightforward to analyze. Resonant ampli­

fication of blade airloads is a potentlall> serious problem for any 
variable RPM rotor. Although the problem was not found to be severe 
with an unloaded rotor (Reference 4), it will be of much greater significance 
for the highly loaded X-Wlng. The major excitation will occur with the 
lower blade modes at tip speeds near maximum. For example, a stress 
buildup was known to occur on previous unloaded, slowed and stopped 
rotors when the first flatwise bending crossed the 2 per rev excitation 
near 60-percent RPM. This was due partially to the frequency coalescence 
and partially to a significant second harmonic airload content at the 
high advance ratio range. The solution for this problem with X-Wing has 
been twofold: (1) the rotor is decelerated rapidly by using a mechanical

Fradenburgh, E. A., R. J. Murrill and E. F. Klely, "Dynamic Model 
Wind Tunnel Tests of a Variable-Diameter, Telescoping-Blade Rotor System 
(Trac Rotor)," USAAMRDL Technical Report 73-32, U. S. Army Air Mobility 
Research and Development Laboratory, Ft. Eustis, Virginia (Jul 1973).

-rrm
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brake so that only a limited number of high fatigue cycles will occur; 
and (2) the first flatwise blade frequency has been placed above 2 per 
rev. The latter condition Is quite unusual for rotor design as it 
Implies extremely high stiffness. However, the constraint is compatible 
with good divergence design so that a value of approximately 2.2 per rev 
is obtained for composite construction without varying either mass or 
stiffness distributions from the values needed for the basic wing design. 
Figure 17 indicates the frequency characteristics of a 30,000-pound 
design.

The potentially high frequency Instabilities are currently being 
analyzed for X-Wlng. The design philosophy has been to use high stiff­

ness In all modes in order to avoid strong coupling effects. However, 
the nature of the section design requires the elastic axis and mass 
center to be coincident at midchord. It thus remains to be seen whether 
the rotor system can be designed to be flutter free at very high speeds.

STABILITY AND CONTROL
The stability and control characteristics of X-Wing are very 

specialized. Traditionally coupled rotor/body low frequency dynamics 
during transition has constituted the most critical stability and control 
problems as stopped/stowed rotors. A promising solution (Figure 18) is 
to employ four blades, to transition around zero angle of attack and to 
use blowing to obtain the lift and control required. This should reduce 
the oscillatory rolling and pitching moments on the X-Wing very sub­

stantially even when allowing for gust effects.

SUMMARY

A new aircraft concept has been presented which employs circulation 
control rotor technology to achieve an efficient compromise of hover and 
cruise performance with only a single lifting system. The concept also 
offers a speed potential approaching Mach 1.0 with excellent fixed-wing 
maneuvering capability. A low empty weight fraction appears possible by

N

rd



using the efficient structure of the rotor bledes. Certain potential 

dynamic and stability and control problems are currently being studied 

both analytically and experimentally. At the present time, there do not 

appear to be any fundamentally limiting technical problems vhlch will 

prevent the timely development of this unique aircraft. 
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Figure 4 - Circulation Control Rotor-Basic Concept 
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Figure S - Dual Blowing Concept for Transition dirough High Advance Ratios 
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Figure 7 - Rotor Aerodynamic Environment during Transition Flight 
(^«0.7.0, = 0.0,,^-0.129) 

Figure 7a - Angle of Attack Distribution, Degrees 
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Figure 7b - Mach Number Distribution 
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Figure 7c - Lift Coefficient Distribution, CL 
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Figure 9 - X-Wing Aircraft Equivalent Lift-to-Drag Ratio 
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Figure 11 - Wing/Rotor Design and Weight Analysis Approach 
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Figure 15 - Impact of the X-Wing Design on Rotary Wing VTOL Empty Weight Trends 
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Figure 16 - Comparison of X-Wing Payload Capability with Other 
Rotary Wing VTOL Aircraft 
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Figure 17 - X-Wing Rotor Blade Frequency 
Characteristics 
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Figure 18 - Effect of Four Blades on the Reduction of Peak-to-Peak Moments 
during the Rotor Revolution 
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