

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

Thesis and Dissertation Collection

1976

Lifting surface theory for wings of arbitrary planform.

Parks, John Leroy

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/17835

Downloaded from NPS Archive: Calhoun

Calhoun is a project of the Dudley Knox Library at NPS, furthering the precepts and goals of open government and government transparency. All information contained herein has been approved for release by the NPS Public Affairs Officer.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

LIFTING SURFACE THEORY FOR WINGS OF ARBITRARY PLANFORM

John Leroy Parks

NAVAL POSTGRADUATÉ SCHOOL Monterey, California

THESIS

LIFTING SURFACE THEORY FOR WINGS OF ARBITRARY PLANFORM

Ъy

John Leroy Parks

March 1976

Thesis Advisor:

T.H. Gawain

Approved for public release; distribution unlimited.

T174146

Unclassified

READ INSTRUCTIONS							
L REPORT NUMBER	2 GOVE ACCESSION NO	BEFORE COMPLETING FORM					
	2. GOVT ACCESSION NO.	S. REGISTENT S CATALOG NUMBER					
4. TITLE (and Sublitio) Lifting Surface Theory for	5. TYPE OF REPORT & PERIOD COVERED Engineer's Thesis;						
of Arbitrary Planform		(March 1976) • PERFORMING ORG. REPORT NUMBER					
7. AUTHOR()		8. CONTRACT OR GRANT NUMBER(4)					
John Leroy Parks							
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK					
Naval Postgraduate School Monterey, California 93940	0	AREA & WORK UNIT NUMBERS					
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE					
Naval Postgraduate School	2	March 1976					
Monterey, California 93940)	13. NUMBER OF PAGES					
Naval Postgraduate School	t from Controlling Office)	Unclassified					
Monterey, California 93940	C						
		SCHEDULE					
	n Black 20 II dillaran in	Banat					
TY. DISTRIBUTION STATEMENT (of the source unless							
14. SUPPLEMENTARY NOTES		· · · · · · · · · · · · · · · · · · ·					
-							
19. KEY WORDS (Continue on reverse elde il necessary and	d identify by block number)						
Lifting Surface							
Wing Aerodynamics							
20. ABSTRACT (Continue on reverse elde il necessary and This theory permits the	e calculation	of pressure					
distributions over a thin airfoil in steady, inviscid, incompress-							
ible flow; or given a desired chordwise pressure distribution the							
camber line of an ideal wing can be determined. The method treats							
variable strength covering the wing planform and trailing down-							
stream to infinity. The result	ts of the pre	esent numerical solution					
for the pressure distribution	solution are	not satisfactiry. How-					

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered

ever the solution for the camber line of an ideal wing are in reasonable agreement with published two dimensional results.

Lifting Surface Theory For Wings of Arbritrary Planform

by

John Leroy Parks Lieutenant Commander, United States Naval Reserve B.S., United States Naval Academy, 1963

Submitted in partial fulfillment of the requirements for the degree of

AERONAUTICAL ENGINEER

from the NAVAL POSTGRADUATE SCHOOL March 1976

E STATES, C L STATES

ABSTRACT

This theory permits the calculation of pressure distributions over a thin airfoil in steady, inviscid, incompressible flow; or given a desired chordwise pressure distribution the camber line of an ideal wing can be determined. The method treats the circulation about the wing as a continuous vortex sheet of variable strength covering the wing planform and trailing downstream to infinity. The results of the present numerical solution for the pressure distribution solution are not satisfactory. However the solution for the camber line of an ideal wing are in reasonable agreement with published two dimensional results.

TABLE OF CONTENTS

I.	INTRODUCTION	10
II.	GENERAL PROBLEM DEVELOPMENT	12
	A. THE WING VORTEX SYSTEM	12
	B. LIFT	16
	C. INDUCED VELOCITY	20
	D. THE CONDITION OF NO FLOW THROUGH THE WING	27
	E. REFERENCE AND ADDITIONAL LIFT DISTRIBUTIONS	29
	F. ANGULAR COORDINATES	33
	G. APPROXIMATE SERIES SOLUTION	36
III.	DESCRIPTION OF NUMERICAL PROBLEM SOLUTION	40
	A. CALCULATION SCHEME	40
	B. MATRIX FORMAT	42
IV.	RESULTS	 -44
	A. RESULTS OF PRESSURE DISTRIBUTION SOLUTION	44
	B. RESULTS OF CAMBER LINE SOLUTION	45
v.	CONCLUSIONS	46
APPE	NDIX A. DERIVATION OF SUBROUTINES	47
COMP	UTER PROGRAMS	50
REFE	RENCES	65
INIT	IAL DISTRIBUTION LIST	66

TABLE OF FIGURES

1.	Wing Coordinates	-14
2.	Velocity Vectors	-15
3.	Vortex Sheet Element	-15
4.	Lift Integration	-18
5.	Induced Velocity in the x-y Plane	- 21
6.	Element of Wing Area	_ 26
7.	Angular Coordinates	_ 33
8.	Calculation Meshes	_ 41
9.	Chordwise Downwash Distribution	_ 44
10.	Camber Line	_ 45

TABLE OF SYMBOLS

R	aspect ratio
Ъ	wing span
С	relative chord function
с	wing chord
ē	mean aerodynamic chord
°1	section lift coefficient
CL	wing lift coefficient
D	substantial derivative
F	influence functions
G	influence functions
h	auxiliary functions
(i,j,k)	Cartesian unit vectors
Н	chordwise pressure functions
ñ	normal vector
P	control point
∞ P	free stream dynamic pressure
R	chordwise summing limit
S	wing area or spanwise summing limit
S	wing semi-span
T	total number of control points
VU	velocity vector on wing upper surface
VL	velocity vector on wing lower surface
Væ	free stream velocity vector
W	downwash velocity
(x,y,z)	Cartesian coordinates

7

wing leading edge function wing trailing edge function angle of attack circulation function vortex sheet strength chordwise relative coordinate spanwise angular coordinate spanwise relative coordinate summing symbol chordwise angular coordinate matrix symbol vector symbol inverse of indicated matrix gradient operator

X_L

 $\mathbb{X}_{\mathbb{T}}$

~

Γ

б

3

θ

γ Σ

ø

{

ACKNOWLEDGEMENT

To Professor T.H. Gawain, I wish to offer my sincere appreciation for the invaluable aid and encouragement he has given me.

To my family, I thank them for their patience and understanding that has enabled me to undertake my graduate education. This analysis is a continuation of two dimensional thin airfoil theory [Ref. 1] and lifting line theory [Ref. 2] into a three dimensional lifting surface theory, using the concept of a continuous vortex sheet over the wing which trails off to infinity in the downstream direction. The continuous vortex sheet differentiates this method from the vortex lattice kernel methods of Multhopp [Ref. 3], Falkner [Ref. 4], Weissinger [Ref. 5], and Watkins et. al. [Ref. 6] and double-lattice finite element methods of Lopez and Shen [Ref. 7] and Giesing et. al. [Ref. 8]. The present method is restricted to steady, inviscid, incompressible flow and thin airfoils which are symmetrical in semispan.

The circulation about the wing is treated as generated by a continuous vortex sheet of variable strength covering the wing planform and trailing downstream to infinity. The vortex sheet strength is set by the Kutta condition at the trailing edge and requiring no flow through the wing at specified control points.

The flow equations for the wing are resolved into downwash angles, with assumed series solutions for the circulation functions. From the known planform geometry and the required solution at the control points, no flow through the wing, the constants of the circulation functions series are determined. The equations are put into matrix form, the matrices being formed by numerical summation over the planform, and solved by matrix algebra. Once the constants of the circulation functions are known all of the airfoil characteristics can be calculated.

This analysis generates the spanwise and chordwise pressure distributions over the wing which are necessary in designing the wing structure. The solution is also done in reverse, that is the pressure distribution over the wing is specified and the shape of the mean camber line of an ideal airfoil is determined.

This analysis uses the consepts of additional and reference lift which is of academic interest in understanding airfoil theory.

II. General Problem Development

A. THE WING VORTEX SYSTEM

The present analysis uses the theory of thin wings to describe the characteristics of lifting surfaces in steady, inviscid, incompressible flow. The most common planforms are those which involve straight leading and trailing edges, as illustrated in Fig. 1, but the present analysis applies also to wings having curved leading and trailing edges. We consider only wings that are symmetrical with respect to the x axis. We also restrict the present analysis to lift distributions which are symmetrical with respect to the x axis.

The wing and the trailing vortex system associated with it are treated as a continuous vortex sheet of variable strength \vec{x} . The sheet strength \vec{x} is regarded as a vector in the x,y plane. The wing vortex sheet is treated as lying in or very close to the x,y plane and \vec{x} is everywhere tangent to the vortex sheet.

The sheet strength $\overline{\delta}$ is related to the velocities Vu and VL just above and just below the vortex sheet at a given point x,y and to the remote velocity \bigvee_{∞} , as indicated in the vector diagram, Fig. 2. From the vector diagram Fig. 2.

$$\overline{V}_{U} = \overline{V}_{\infty} + \frac{1}{2} \overline{Y} \times \overline{k}$$
(1.1)

$$\overline{V}_{L} = \overline{V}_{\infty} - \frac{1}{2} \overline{X} \times \overline{k}$$
(1.2)

It then follows that

$$\frac{1}{2}\left(\vec{V}_{u}+\vec{V}_{L}\right)=\vec{V}_{\infty} \tag{1.3}$$

$$\left(\vec{V}_{U} - \vec{V}_{L}\right) = \vec{Y} \times \vec{k} \tag{1.4}$$

$$\vec{\vartheta} = \vec{k} \times (\vec{V}_U - \vec{V}_L) \tag{1.5}$$

In Fig. 3, consider the circulation $d \Gamma$ around contour AOBB'O'A'A. Line segment AOB lies just above the vortex sheet, and segment B'O'A' lies just below the vortex sheet.

$$\overline{AOB} = \overline{A'O'B'} = ds \tag{1.6}$$

۸́

A

Then

$$d\Gamma = \oint_{C} \vec{\nabla} \cdot \vec{dr} = \int_{A}^{a} \vec{\nabla} \cdot \vec{dr} + \int_{B}^{a} \vec{\nabla} \cdot \vec{dr} + \int_{B}^{a} \vec{\nabla} \cdot \vec{dr} + \int_{A}^{a} \vec{\nabla} \cdot \vec{dr}$$
$$d\Gamma = \vec{\nabla}_{U} \cdot \vec{ds} + 0 - \vec{\nabla}_{L} \cdot \vec{ds} + 0 = (\vec{\nabla}_{U} - \vec{\nabla}_{L}) \cdot \vec{ds}$$
$$d\Gamma = (\vec{\gamma} \times \vec{k}) \cdot ds \qquad (1.7)$$

It is assumed, which will subsequently be confirmed, that the $d\Gamma$ in equation (1.7) is an exact differential. Therefore, there exists a function

L = L(X, A)

such that for any small changes in the coordinates

$$d\Gamma = \left(\frac{\partial\Gamma}{\partial x}\right)dx + \left(\frac{\partial\Gamma}{\partial y}\right)dy$$
(1.8)

Translating this into vector terms gives:

$$d\Gamma = (\overline{i} \frac{\partial \Gamma}{\partial x} + \overline{j} \frac{\partial \Gamma}{\partial y}) \cdot (\overline{i} dx + \overline{j} dy) = \nabla \Gamma \cdot \overline{ds} \qquad (1.9)$$

Comparing equations (1.7) and (1.9) shows

$$\nabla \Gamma = \overline{Y} \times \overline{k} \tag{1.10}$$

or conversely that

$$\vec{Y} = \vec{k} \times \nabla \vec{\Gamma} \tag{1.11}$$

.

Fig. 1 Wing Coordinates

,

Fig. 2 Velocity Vectors

Fig. 3 Vortex Sheet Element

These results confirm that J^{Γ} is an exact differential.

Translating equation (1.11) into Cartesian components gives

$$\delta_{x} = -\left(\frac{\partial \Gamma}{\partial \Psi}\right) \tag{1.12}$$

$$\chi_{y} = \left(\frac{\partial \Gamma}{\partial x}\right) \tag{1.13}$$

The vector function $\overline{\mathcal{V}}$ defined by equation (1.11) or by scalar equations (1.12) and (1.13) is non-divergent.

$$\nabla \cdot \overline{\delta} = \frac{\partial \delta_{x}}{\partial x} + \frac{\partial \delta_{y}}{\partial y} = \frac{\partial}{\partial x} \left(-\frac{\partial \Gamma}{\partial y} \right) + \left(\frac{\partial \Gamma}{\partial x} \right) \equiv 0 \qquad (1.14)$$

B. LIFT

Newton's Law applied to a fluid element of fixed mass Paxayaz is

$$\vec{F} = P \Delta x \Delta y \Delta z \frac{D \vec{V}}{D t}$$
 (2.1)

It is assumed that the fluid is non viscous; that is, shearing stresses are absent. The resultant pressure force of the fluid element arising from the static pressure variation in 'the fluid, is the negative of the pressure gradient multiplied by the increment volume.

resultant =
$$(- \text{grad } p) \Delta x \Delta y \Delta z$$

The pressure force plus the weight is the external force, therefore the equation of equilibrium becomes

$$eg - grad P = e \frac{D\vec{V}}{Dt}$$
 (2.2)

which is Euler's equation.

If the fluid is assumed incompressible and equation (2.2) is integrated dropping the unsteady term it becomes Bernoulli's equation

The pressure difference across the wing at an arbitrary point can be found from Bernoulli's equation.

$$\left(\frac{A_{-}-P_{v}}{q_{\infty}}\right) = \left(\frac{\Delta P}{q_{\infty}}\right) = \left(\frac{V_{v}}{V_{\infty}}\right)^{2} - \left(\frac{V_{v}}{V_{\infty}}\right)^{2}$$

$$= \frac{(V_{v}+V_{v})\cdot(V_{v}-V_{v})}{V_{\infty}^{2}} = \frac{2V_{\infty}\cdot(\overline{3}\times\overline{k})}{V_{\infty}^{2}}$$

$$= \frac{2\overline{\iota}\cdot(\overline{3}\times\overline{k})}{V_{\infty}} = \frac{2\overline{\iota}\cdot\nabla\Gamma}{V_{\infty}} = \frac{2}{V_{\infty}}\left(\frac{\partial\Gamma}{\partial x}\right)$$

$$\left(\frac{\Delta P}{q_{\infty}}\right) = 4\left(\frac{y_{y}}{2V_{\infty}}\right) \qquad (2.4)$$

Equation (2.4) ultimately fixes the lift distribution over the wing surface once the circulation function Γ has been found.

In the trailing vortex region behind the wing, there is no wing surface, and hence no pressure difference across the vortex sheet. According to the Kutta condition, the pressure difference drops to zero not only behind the wing but also all along the trailing edge. This is expressed as follows:

$$\left(\frac{\Delta P}{2\omega}\right)_{T} = \frac{2}{V_{\omega}} \left(\frac{\delta \Gamma}{\delta x}\right)_{T} = 4\left(\frac{\gamma}{2V_{\omega}}\right)_{T} = 0 \qquad (2.5)$$

This result shows that the vortex lines behind the wing and along the trailing edge are all parallel to the x axis, with no spanwise components. Spanwise vorticity $\frac{1}{j}Y_{y}$ can occur only along the wing surface.

In Fig. 4, next page, consider the incremental lift dL exerted by the doubly shaded portion of the wing, that lies between y and (y+dy) and between x and x. Thus:

$$dL' = \frac{1}{2} \left(V_{\infty}^{2} \int_{X_{L}}^{X} \left(\frac{\Delta \dot{P}}{q_{\infty}} \right) dx dy$$
$$dL' = V_{\infty} \left[\int_{0}^{r} \frac{\partial \Gamma}{\partial x} dx \right] dy$$
$$dL' = \left(V_{\infty} \Gamma dy \right)$$
(2.6)

This result is a form of the Kutta-Joukowski Law which states

Fig. 4 Lift Integration

that the force experienced by a body in a uniform stream is equal to the product of the fluid density, stream velocity, and circulation and has a direction perpendicular to the stream velocity. Here Γ represents the circulation about a contour C in the Plane y = constant. Contour C passes in front of the wing and pierces the wing surface at point x,y.

If we now extend the upper limit of integration to the trailing x_T , holding y constant, we obtain:

$$X \rightarrow X_{T}$$

$$\Gamma(X,Y) \rightarrow \Gamma_{T}(Y)$$

$$dL' = dL$$

$$dL = PV_{\infty}\Gamma_{T}dY$$
(2.7)

thus Γ_{τ} (y) fixes the spanwise lift distribution over the wing.

In order to reduce equation (2.7) to a convenient dimensionless form, it is useful to introduce the following auxiliary notation.

$$S = t$$
otal wing area, ft² (2.8)

$$2s = b = wing span, ft$$
 (2.9)

$$\bar{c} = \frac{S}{b} = mean chord, ft$$
 (2.10)

$$\mathcal{R} = \frac{b}{c} = \frac{b^2}{S} = \text{aspect ratio}$$
(2.11)

$$\gamma = \frac{y}{s} = \text{spanwise coordinate}$$
 (2.12)

$$d\gamma = \frac{dy}{s} \tag{2.13}$$

$$c_g = \frac{dL}{q \cdot c \cdot dy} = \text{section lift coefficient}$$
 (2.14)

$$C_{L} = \frac{L}{q_{\infty}S} = \text{wing lift coefficient}$$
 (2.15)

By utilizing the above nomemclature, it is easy to reduce the spanwise lift distribution as given in equation (2.7) to either of the following two equivalent forms.

$$\left(\frac{dL}{q_{\infty}S}\right) = dC_{L} = \frac{1}{2}c_{\ell}\left(\frac{c}{c}\right)d\eta = \left(\frac{\Gamma_{\tau}}{V_{\infty}c}\right)d\eta \qquad (2.16)$$

To find the total lift we integrate over the span, For symmetrical lift distribution it is only necessary to integrate over the semi-span and multiply by two. Thus:

$$C_{L} = \int_{0}^{t} c_{2} \left(\frac{c}{\overline{c}}\right) d\eta = 2 \int_{0}^{t} \left(\frac{\Gamma_{T}}{V_{\omega}\overline{c}}\right) d\eta \qquad (2.17)$$

C. INDUCED VELOCITY

The velocity dw_{P}' induced at an arbitrary point P, coordinates x_{p}, y_{p} on the wing surface by an element of the vortex sheet which lies at the point whose coordinates are x,y is found as follows. The vortex sheet element has length ds, width dn and strength \overline{Y} . The circulation strength of the vortex filament involved is $d\Gamma = Ydn$.

The Biot Savart Law for this case may be written in the form:

$$d\vec{w}p = \frac{\vec{r} \times \vec{Y} \, dn \, ds}{4 \, \pi \, r^3} \tag{3.1}$$

where

$$\vec{r} = \vec{i} (X - X_{p}) + \vec{j} (Y - Y_{p}) + \vec{k} (Z - Z_{p})$$
(3.2)

dn ds = dS = element of the wing area

$$\overline{X} = \overline{i} \, \delta_X + \overline{j} \, \delta_Y + \overline{k} \, \delta_Z = \overline{k} \times \nabla \Gamma \tag{3.3}$$

Neglecting the terms $\overline{k}(z-z_p)$ in equation (3.2) and $\overline{k} Y_z$ in equation (3.3).

-

1 7

$$\vec{y} = -\vec{i} \left(\frac{\partial \Gamma}{\partial y}\right) + \vec{j} \left(\frac{\partial \Gamma}{\partial x}\right)$$
(3.4)

also

$$\vec{r} \times \vec{Y} = \begin{vmatrix} (X - X_P) & (Y - Y_P) & 0 \\ -\frac{\partial \Gamma}{\partial Y} & \frac{\partial \Gamma}{\partial X} & 0 \end{vmatrix}$$
$$= \vec{k} \left[(X - X_P) (\frac{\partial \Gamma}{\partial X}) + (Y - Y_P) (\frac{\partial \Gamma}{\partial Y}) \right] \qquad (3.5)$$

5 1

Fig. 5 Induced velocity in the x-y plane

Upon substituting expressions (3.2), (3.3), and (3.5) into (3.1), and integrating over the entire wing surface S (but not yet over the vortex sheet trailing behind the wing) the downwash due to the wing vortex is obtained.

$$\overline{W}_{p}' = \frac{\overline{k}}{4\pi} \int_{S} \frac{\left[\left(x - x_{p} \right) \left(\frac{\partial \Gamma}{\partial x} \right) + \left(y - y_{p} \right) \left(\frac{\partial \Gamma}{\partial y} \right) \right]}{\left[\left(x - x_{p} \right)^{Z} + \left(y - y_{p} \right)^{Z} \right]^{3/2}} dS \qquad (3.6)$$

The incremental downwash velocity $d\vec{w}_{\rho}''$ induced at point P due to the semi-infinite trailing vortex filament of strength $d\Gamma_{T}$ which leaves the wing at the point whose coordinates are x_{T} and y as shown in Fig. 5 is by the Biot Savart Law:

$$df_{\tau} = -\left(\frac{df_{\tau}}{dy}\right)dy$$

$$d\vec{w_{p}} = \frac{\vec{k}}{4\pi} \left(\frac{1}{y-y_{p}}\right) \left\{ 1 - \frac{(x-x_{p})}{\left[(x-x_{p})^{2} + (y-y_{p})^{2}\right]^{1/2}} \right\} \frac{d\vec{h}}{dy} dy \quad (3.7)$$

Integrating this over the entire span of the wing gives:

$$\vec{w}_{p}^{"} = \frac{\vec{k}}{4\pi} \int_{-S}^{S} \left(\frac{1}{y-y_{p}}\right) \left\{ \left| -\frac{(x-x_{p})}{\left[(x-x_{p})^{2} + (y-y_{p})^{2} \right]} v_{z} \right\} \left(\frac{dF}{dy}\right) dy \quad (3.8)$$

The total induced velocity at point P is the sum

$$\overline{W}_{P} = \overline{W}_{P} + \overline{W}_{P}^{"} \tag{3.9}$$

where $\vec{w_{\rho}}$ and $\vec{w_{\rho}}''$ are evaluated respectively from equations (3.6) and (3.7). The first of these integrals represents the velocity induced by the vorticity over the actual wing surface, and the second integral represents the velocity induced by the vorticity trailing behind the wing.

The downwash integrals are now non-dimensionalized and the Cartesian coordinates x and y are transformed into dimensionless relative coordinates z and γ defined as follows:

$$\frac{3}{c} = \frac{x - x_{L}}{c}$$
 = relative chordwise coordinate (3.10)

$$7 = \frac{y}{s} = relative spanwise coordinate (3.11)$$

The following auxiliary definitions are used.

$$\overline{c} = \frac{S}{Zs} = \text{average chord}$$
 (3.12)

$$R = \frac{2s}{\overline{c}} = \text{aspect ratio}$$
 (3.13)

$$X_{L}(\gamma) = \frac{X_{L}}{\overline{c}} = 1$$
 eading edge function (3.14)

$$X_{\tau}(\gamma) = \frac{x_{\tau}}{\bar{c}} = \text{trailing edge function}$$
 (3.15)

$$\frac{c}{c} = (7) = relative chord function (3.16)$$

$$C(\gamma) = X_{\tau}(\gamma) - X_{\lfloor}(\gamma)$$
(3.17)

Note that if the parameter \mathcal{R} is specified and if any two of the three functions involved in equation (3.17) are specified, this information completely defines the wing planform.

The circulation function Γ is non-dimensionalized as follows. The number four is inserted into these definitions, somewhat arbitrarily, because this reduces the final downwash integrals to a particularly convenient numerical form.

$$\Gamma^{*}(\frac{3}{2}, 7) = \frac{\Gamma}{4V_{\infty}s}$$
 = dimensionless circulation
function along the wing
surface (3.18)

$$\Gamma_{\tau}(\gamma) = \frac{\Gamma_{\tau}}{4\sqrt{2}s}$$
 = dimensionless circulation
function at and behind the
trailing edge (3.19)

trailing edge

The induced velocities $\vec{w_{P}}$ and $\vec{w_{P}}$ are non-dimensionalized to corresponding downwash angles α_{P} and α_{P} as shown below. Those angles are defined as positive if down from free stream velocity.

$$\vec{r} = -\frac{\vec{W}_{\vec{r}} \cdot \vec{k}}{V_{\infty}} = \text{downwash angle point P induced}$$
by vorticity distribution over the
wing
(3.20)

$$x_{e}^{"} = -\frac{w_{e} \cdot k}{V_{\infty}} =$$
downwash angle at point P induced
by vorticity distribution behind
the wing (3.21)

Some useful geometrical relationships are :

$$(X - X_{P}) = S \frac{2}{R} \left[\left(X_{L} + C_{\tilde{f}} \right) - \left(X_{LP} + C_{P} \tilde{f}_{P} \right) \right]$$
(3.23)

$$(y - y_p) = s(\eta - \eta_p)$$
 (3.24)

Also at any point on the wing

$$\Gamma(x, y) = 4V_{\infty} \circ \Gamma^{*}(\frac{3}{2}, \frac{9}{2})$$
 (3.25)

Differentiating equation (3.25)

$$d\Gamma = \left(\frac{\partial\Gamma}{\partial x}\right)dx + \left(\frac{\partial\Gamma}{\partial y}\right)dy = 4V_{\infty}s\left[\left(\frac{\partial\Gamma}{\partial z}\right)dz + \left(\frac{\partial\Gamma}{\partial\eta}\right)d\eta\right] (3.26)$$

Differentiating equations (3.24) and (3.25)

$$dx = s \frac{2}{R} \left[C d \frac{2}{3} + (X_{L} + C \frac{2}{3}) d\eta - 0 \right]$$
(3.27)

$$dy = s d\eta \tag{3.28}$$

The prime marks in equation (3.27) denotes differentiation with respect to y. Substituting equations (3.27) and (3.28)into equation (3.26) gives

$$\frac{d\Gamma}{s} = \left(\frac{\partial\Gamma}{\partial x}\right) \frac{2}{R} \left[C d\xi + \left(X_{L} + C\xi\right) d\eta \right] + \frac{\partial\Gamma}{\partial y} dy$$

$$\frac{d\Gamma}{s} = 4V_{\infty} \left[\left(\frac{\partial\Gamma^{*}}{\partial\xi}\right) d\xi + \left(\frac{\partial\Gamma^{*}}{\partial\eta}\right) d\eta \qquad (3.29)$$

The coefficients of dz and dy must be separately equal on both sides of equation (3.29) since this relation must be satisfied for arbritrary values of dz and dy. Hence

$$\left(\frac{\partial\Gamma}{\partial\times}\right)\frac{2}{R}C = 4V_{\infty}\left(\frac{\partial\Gamma^{*}}{\partial\xi}\right)$$
(3.30)

$$\left(\frac{\partial\Gamma}{\partial x}\right)\frac{2}{R}\left(\mathbb{X}_{L}'+\mathcal{C}'^{2}\right)+\left(\frac{\partial\Gamma}{\partial Y}\right)=4V_{\infty}\left(\frac{\partial\Gamma}{\partial n}\right) \qquad (3.31)$$

Solving those two equations for $\frac{\partial \Gamma}{\partial x}$ and $\frac{\partial \Gamma}{\partial y}$ gives

$$\left(\frac{\partial\Gamma}{\partial x}\right) = 4 V_{\infty} \frac{R}{2C} \left(\frac{\partial\Gamma}{\partial z}\right)$$
(3.32)

$$\left(\frac{\partial\Gamma}{\partial\gamma}\right) = 4V_{\infty}\left[\left(\frac{\partial\Gamma}{\partial\eta}\right) - \left(\frac{\underline{X}_{L} + C\tilde{z}}{C}\right)\left(\frac{\partial\Gamma}{\partial\tilde{z}}\right) \quad (3.33)$$

The element of wing area in relative coordinates may be expressed in the following manner.

$$dS = dx \Big|_{\eta} dy \Big|_{z}^{z} = c d_{z}^{z} \cdot s d\eta$$
$$dS = 2s^{z} \left(\frac{c}{2s}\right) \left(\frac{c}{c}\right) d_{z}^{z} d\eta = s^{z} \frac{z}{R} C(\eta) d_{z}^{z} d\eta \qquad (3.34)$$

Fig. 6 Element of Wing Area

The various quantities of equations (3.6) and (3.8) are transformed into non-dimensional notation.

$$\begin{split} \left[\left(X - X_{p} \right)^{2} + \left(y - y_{p} \right)^{2} \right]^{\frac{3}{2}} &= S^{3} \left\{ \frac{4}{R^{2}} \left[\left(X_{L} + C_{\frac{5}{2}} \right) - \left(X_{Lp} - C_{p} \tilde{\ell}_{p} \right) \right]^{2} + \left(\eta - \eta_{p} \right)^{2} \right\}^{\frac{3}{2}} \\ \left[\left(X - X_{p} \right) \frac{\partial \Gamma}{\partial x} + \left(y - y_{p} \right) \frac{\partial \Gamma}{\partial y} \right] dS &= 4V_{\infty} S \left\{ \frac{2}{R^{\infty}} \left[\left(X_{L} + C_{\frac{5}{2}} \right) - \left(X_{Lp} + C_{p} \frac{5}{2} p \right) \right] \right] \\ \frac{R}{2C} \left(\frac{\partial \Gamma^{*}}{\partial \tilde{\xi}} \right) + \left(\eta - \eta_{p} \right) \left[\left(\frac{\partial \Gamma^{*}}{\partial \eta} \right) - \left(\frac{X_{L} + C_{\frac{5}{2}}}{C} \right) \left(\frac{\partial \Gamma^{*}}{\partial \tilde{\xi}} \right) \right] \right\} S^{2} \frac{2}{R^{2}} \left[d\xi d\eta \\ &= 4V_{\infty} S^{3} \left\{ \frac{2}{R^{2}} \left[\left(X_{L} + C_{\frac{5}{2}} \right) - \left(X_{Lp} + C_{p} \frac{5}{2} p \right) \right] \left(\frac{\partial \Gamma^{*}}{\partial \tilde{\xi}} \right) \right] \right\} d\xi d\eta \\ &= 4V_{\infty} S^{3} \frac{2}{R^{2}} \left\{ \left[\left(X_{L} + C_{\frac{5}{2}} \right) - \left(X_{Lp} + C_{p} \frac{5}{2} p \right) - \left(\eta - \eta_{p} \right) \left(X_{L} + C_{\frac{5}{2}} \right) \right] \left(\frac{\partial \Gamma^{*}}{\partial \tilde{\xi}^{*}} \right) \\ &+ \left(\eta - \eta_{p} \right) C \left(\frac{\partial \Gamma^{*}}{\partial \eta} \right) d\xi d\eta \end{aligned}$$
(3.36)

$$(X_{\tau} - X_{p}) = S \frac{2}{R} \left[X_{\tau} - \left[X_{LP} + C_{P} \xi_{P} \right] \right]$$

$$(3.37)$$

Study of the algebraic structure of these relations shows that the final downwash integrals can be reduced to a relatively concise form by adopting the following auxiliary nomenclature. Let

$$F_{I} = \frac{2\left[\left(X_{L}+C_{\xi}\right)-\left(X_{LP}+C_{P}\xi_{P}\right)-\left(\eta-\eta_{P}\right)\left(X_{L}+C_{\xi}\right)\right]}{\left\{\frac{4}{R^{2}}\left[\left(X_{L}+C_{\xi}\right)-\left(X_{LP}+C_{P}\xi_{P}\right)\right]^{2}+\left(\eta-\eta_{P}\right)^{2}\right\}^{3/2}}$$
(3.38)

$$F_{z} = \frac{Z(\eta - \eta_{P})C}{\left\{\frac{4}{R^{2}}\left[\left(\mathbb{X}_{L}+C_{\xi}\right) - \left(\mathbb{X}_{LP}+C_{P}\xi_{P}\right)\right]^{2} + \left(\eta - \eta_{P}\right)^{2}\right\}^{3/2}}$$
(3.39)

$$F_{3} = \left\{ I - \frac{\frac{2}{R} \left[X_{T} - (X_{LP} + C_{P} Z_{P}) \right]}{\left\{ \frac{4}{R^{2}} \left[X_{T} - (X_{LP} + C_{P} Z_{P}) \right]^{2} + (\eta - \eta_{P})^{2} \right\}^{\frac{1}{2}} \right\} \frac{1}{(\eta - \eta_{P})}$$
(3.40)

The downwash angle integrals equations (3.6) and (3.8) can now be expressed in the following form.

$$\mathcal{X}_{p}^{"} = -\frac{1}{\pi} \int_{-1}^{1} F_{3}\left(\eta; \xi_{p}, \eta_{p}\right) \left(\frac{d\Gamma_{\tau}^{*}}{d\eta}\right) d\eta \qquad (3.42)$$

D. THE CONDITION OF NO FLOW THROUGH THE WING

The shape of the mean wing surface near the x,y plane may be expressed by the function

$$z = z(x, y) \tag{4.1}$$

A unit vector \vec{n}_{P} normal to the above surface at the arbitrary point P on that surface, in terms of its Cartesian components, is given by the expression

$$\bar{\pi}_{p} = \frac{-\left(\frac{\partial z}{\partial x}\right)_{p}\bar{i} - \left(\frac{\partial z}{\partial y}\right)_{p}\bar{j} + (!)\bar{k}}{\left[\left(\frac{\partial z}{\partial x}\right)_{p}^{2} + \left(\frac{\partial z}{\partial y}\right)_{p}^{2} + !\right]^{\frac{1}{2}}}$$
(4.2)

Since $\left(\frac{\partial z}{\partial x}\right)_{\rho}^{z}$ and $\left(\frac{\partial z}{\partial y}\right)_{\rho}^{z}$ are negligible in comparison with unity, equation (4.2) is adequately approximated by the linearized version

$$\overline{n}_{p} = -\left(\frac{\partial z}{\partial x}\right)_{p}\overline{i} - \left(\frac{\partial z}{\partial y}\right)_{p}\overline{j} + (1)\overline{k}$$

$$(4.3)$$

The resultant velocity vector at point P may be closely approximated by the expression

$$\overline{V}_{p} = \overline{i} V_{\infty} \cos \alpha + \overline{k} V_{\infty} \sin \alpha - \overline{k} w_{p} \qquad (4.4)$$

Equation (4.4) implies that the induced velocity w_e is taken as positive if down.

Since \ll is a small angle equation (4.4) may be linearized to

$$\overline{V_{P}} \simeq \overline{i} V_{\infty} + \overline{k} \left(V_{\infty} \times - W_{P} \right) \tag{4.5}$$

The condition of no flow through the wing now requires that

$$\vec{V}_{p} \cdot \vec{n} = 0 \tag{4.6}$$

thus

$$\left[iV_{\infty} + \bar{k}(V_{\infty} \times -w_{p})\right] \cdot \left[i\left(\frac{\partial z}{\partial x}\right)_{p} - j\left(\frac{\partial z}{\partial y}\right)_{p} + \bar{k}(1)\right] = 0 \quad (4.7)$$

or

$$-V_{\infty}\left(\frac{\delta z}{\delta x}\right)_{p} + \left(V_{\infty} \varkappa - W_{p}\right) = 0 \tag{4.8}$$

hence

$$\left(\frac{\partial z}{\partial x}\right)_{p} = \alpha - \frac{w_{p}}{V_{\infty}} \tag{4.9}$$

but

$$\frac{W_{P}}{V_{\infty}} = \alpha_{P} = \alpha_{P} + \alpha_{P}^{"}$$
(4.10)

therefore

$$\left(\frac{\partial Z}{\partial x}\right)_{P} = \alpha - \left(\alpha_{P} + \alpha_{P}^{*}\right) \tag{4.11}$$

The overall wing equation is now found by substituting the integrals of equations (3.41) and (3.42) into equation (4.11). The result is the basic wing equation.

$$\left(\frac{\partial z}{\partial x}\right)_{p} = \alpha + \frac{i}{\pi R} \int_{-1}^{1} \int_{0}^{1} \left\{ F_{1} \left(\frac{\partial \Gamma^{*}}{\partial \overline{z}}\right) + F_{2} \left(\frac{\partial \Gamma^{*}}{\partial \eta}\right) \right\} d\overline{z} d\eta$$

$$+ \frac{i}{\pi} \int_{-1}^{1} F_{3} \left(\frac{\partial \Gamma^{*}}{\partial \eta}\right) d\eta$$

$$(4.12)$$

The influence functions F_1 , F_2 , and F_3 are as defined by equations (3.38), (3.39) and (3.40). These three functions depend only on the planform and aspect ratio of the wing. Theoretically, equation (4.12) must be satisfied at all points in the wing surface for an exact solution. However, an adequate approximate solution can frequently be obtained by satisfying equation (4.12) at a sufficient number of discrete control points suitably distributed over the wing surface.

E. REFERENCE AND ADDITIONAL LIFT DISTRIBUTIONS

Let the wing slope function $(\frac{\partial z}{\partial x})_{P}$ be known at every point 3, η_{p} of the wing. Also let the entire leading

edge of the wing lie exactly in the x-y plane and the trailing edge lie in the x-y plane at midspan. In general, however, z is not necessarily zero at other points along the trailing edge. Let $\int_{r}^{r} (2, \eta)$ be a function which satisfies equation (4.12) when \varkappa has a particular value α_r . The subscript r stands for reference condition. Thus at the reference condition equation (4.13) becomes

$$\frac{\left(\frac{\partial z}{\partial x}\right)_{P}}{\left(\frac{\partial z}{\partial x}\right)_{P}} = \kappa_{r} + \frac{1}{\pi R} \int_{-1}^{1} \int_{0}^{1} \left\{F_{1}\left(\frac{\partial \Gamma_{r}}{\partial \overline{z}}\right) + F_{2}\left(\frac{\partial \Gamma_{r}}{\partial \eta}\right)\right\} d\overline{z} d\eta$$

$$+ \frac{1}{\pi} \int_{-1}^{1} F_{3}\left(\frac{d \Gamma_{r}}{d\eta}\right) d\eta$$

$$(5.1)$$

The general solution $\int (\xi, \eta)$ or equation (4.13) can now be written as the sum of the reference solution and an additional solution in the form

$$\Gamma^{*}(\xi, \gamma) = \Gamma^{*}(\xi, \gamma) + (\chi - \alpha_{r}) \Gamma_{\alpha}(\xi, \eta)$$
 (5.2)

To demonstrate that equation (5.2) is valid, and to obtain the equation that governs the form of the additional solution function we proceed as follows. Substitute equation (5.2) into equation (4.12). Substract equation (5.1) from the result. Finally divide through by the factor $(\alpha - \alpha_r)$. The result is

$$O = I + \frac{1}{\pi R} \int_{-1}^{1} \int_{0}^{1} \left\{ F_{1} \left(\frac{\partial \Gamma_{\alpha}^{*}}{\partial \overline{z}} \right) + F_{2} \left(\frac{\partial \Gamma_{\alpha}}{\partial \eta} \right) \right\} d\xi d\eta$$

+ $\frac{1}{\pi} \int_{-1}^{1} F_{3} \left(\frac{\partial \Gamma_{\tau\alpha}}{\partial \eta} \right) d\eta$ (5.3)

Thus equation (5.1) governs the reference solution or the particular solution while equation (5.3) governs the additional solution. The specific value of \varkappa_r in equation (5.1) is fixed by the particular condition that

$$z = 0 \text{ at } 3 = +1, \eta = 0$$
 (5.4)

given that

$$z = 0 \text{ at } \vec{j} = 0 \text{ for all } \vec{j}$$
 (5.5)

The reference solution depends not only on the wing planform and aspect ratio but also on the wing slope function and the angle of attack α_r . However, the additional lift function involves only the wing planform and aspect ratio. It will be shown later that the wing lift curve slope depends only on the additional lift function Γ_{α}^{*} and is independent of the reference solution Γ_{r}^{*} . Therefore, the wing lift curve slope depends on wing planform and aspect ratio only, and is independent of the wing slope function.

To specify the design of a wing it is necessary to fix two planform functions $X_{L}(q)$ and C(q), the aspect ratio \mathcal{R} , and the wing slope function $(\frac{\partial z}{\partial x})_{P}$ at all points $\mathfrak{F}_{P}, \eta_{P}$ on the wing. For a wing of specified design, equation (5.1) must be solved for the initially unknown function $\Gamma_{P}^{*}(\mathfrak{z}, \eta)$ and equation (5.3) must be solved for the initially unknown function $\Gamma_{\alpha}^{*}(\mathfrak{z}, \eta)$.

In the case of equation (5.1) the above procedure can also be partially reversed, that is, the function $\int_{c}^{*} (\frac{1}{2}, \eta)$ can be specified arbitrarily, within certain limits, and the equation can then be solved for $(\frac{\partial z}{\partial x})_{p}$ as the unknown. This reversed solution procedure had two advantages. Firstly, it means that the lift distribution over the wing in the reference condition can be stipulated independently and that the wing slope function can always be found such as to yield the desired reference lift distribution. Secondly, it happens that equation (5.1) is much easier to solve when the wing slope function is the unknown than when the reference lift distribution is the unknown because, in the latter case, the unknown function is under the integral sign. If $(\frac{\partial z}{\partial x})_P$ is the unknown, equation (5.1) can be solved by direct integration; usually this must be performed numerically. Repeated integrations of equation (5.1) are required, a separate numerical integration being needed for each discrete point at which the wing slope function is being evaluated. In order to represent the wing slope function adequately it is necessary to choose a sufficient number of discrete points suitably distributed over the wing.

Unfortunately, the above reversed solution procedure cannot be applied to the additional lift distribution Γ_{∞}^{*} as governed by equation (5.3). Of course, the equation can still be solved, at least approximately.

The choice of the reference angle of attack \ll_r which fixes the corresponding reference solution Γ_r^* is to a certain extent arbitrary. The most common choice is to set \ll_r equal to the angle of zero lift of the wing, that is to the angle which yields a wing lift coefficient of zero. For a symmetrical lift distribution the lift coefficient is

$$C_{L} = \int_{0}^{1} c_{g} \left(\frac{c}{\varepsilon}\right) dn \qquad (5.6)$$

The restriction that the lift coefficient equal zero does not necessarily mean that the integrand is identically zero all along the span, just that the net area inder the curve sums to zero. Thus at $C_L = 0$, portions of the span may be exerting upward forces, while other portions are exerting downward forces. A wing that behaves in this way at $C_L = 0$ may be said to be aerodynamically twisted. Conversely a wing that at $C_L = 0$ yields $c_k \frac{c}{c}$ identically zero for all values of γ may be said to be aerodynamically untwisted; this however does not imply the **absence** of camber.

The reference condition for this analysis is that which corresponds to the angle of attack for which the wing lift coefficient equals zero. This particular lift distribution is also commonly labeled as the basic lift distribution.

32

F. ANGULAR COORDINATES

A further shift from the linear relative coordinates 3, 7 to corresponding angular coordinates \emptyset , ϕ , is now made. See Fig. 7. The basic conversion relations are

$$\vec{j} = \frac{1}{2} \left(1 - \cos \phi \right)$$
 (6.1)

$$\gamma = \cos \Theta \tag{6.2}$$

then

$$\frac{d\tilde{\ell}}{d\phi} = \frac{1}{2}\sin\phi \qquad (6.3)$$

$$\frac{dn}{d\Theta} = -\sin\Theta \qquad (6.4)$$

$$\frac{\partial}{\partial \xi} \left(\right) = \frac{z}{\sin \phi} \frac{\partial}{\partial \phi} \left(\right) \tag{6.5}$$

$$\frac{\partial}{\partial n}() = -\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}() \qquad (6.6)$$

Fig. 7 Angular Coordinates

The downwash integrals can now be converted as follows

$$-\alpha_{p}^{\prime} = \frac{1}{\pi R} \int_{-1}^{1} \left\{ F_{1} \left(\frac{\partial \Gamma}{\partial \xi} \right) + F_{2} \left(\frac{\partial \Gamma}{\partial \eta} \right) \right\} d\xi d\eta$$

$$-\alpha \rho' = \frac{1}{\pi R} \int_{\pi} \int_{\pi} \left\{ F_{i} \frac{2}{\sin \varphi} \left(\frac{\partial \Gamma}{\partial \varphi}^{*} \right) - F_{2} \frac{1}{\sin \varphi} \left(\frac{\partial \Gamma}{\partial \varphi}^{*} \right) \right\} \frac{1}{2} \sin \varphi \left(-\sin \varphi \right) d\varphi d\varphi$$

$$-\varkappa_{p} = \frac{1}{\pi R} \int_{0}^{\pi} \left\{ F_{i} \sin \Theta \left(\frac{\partial \Gamma}{\partial \varphi} \right) - F_{z} \frac{\sin \varphi}{2} \left(\frac{\partial \Gamma}{\partial \Theta} \right) \right\} d\varphi d\Theta$$

$$-\alpha p' = \frac{1}{\pi R} \int_{0}^{\pi} \int_{0}^{\pi} \left\{ G_{1} \left(\frac{\partial \Gamma^{*}}{\partial \varphi} \right) + G_{2} \left(\frac{\partial \Gamma^{*}}{\partial \Theta} \right) \right\} d\phi d\Theta \qquad (6.7)$$

$$-\alpha_{p}'' = \frac{1}{\pi} \int_{-1}^{1} F_{3}\left(\frac{d\Gamma_{\tau}}{d\eta}\right) d\eta = \frac{1}{\pi} \int_{\pi}^{0} F_{3}\left(\frac{d\Gamma_{\tau}}{d\Theta}\right) d\Theta$$

$$- \alpha''_{P} = - \ddagger \int_{0}^{\pi} F_{3} \left(\frac{d \Gamma_{\tau}^{*}}{d \Theta} \right) d\Theta = \frac{i}{\tau \tau} \int_{0}^{\pi} G_{3} \left(\frac{\partial \Gamma_{\tau}^{*}}{\partial \Theta} \right) d\Theta \qquad (6.8)$$

where

$$G_1 = F_1 \sin \theta \tag{6.9}$$

$$G_2 = -\frac{F_2}{2}\sin\phi \tag{6.10}$$

$$G_3 = -F_3$$
 (6.11)

Now by refering to the above relationship and to the previous

•

equations which define the functions F_1 , F_2 , and F_3 it is possible to summarize the final wing equations as the culmination of a series of systematic calculation steps. The following scheme of auxiliary notation is used.

$$\frac{3}{2} = \frac{1}{2} \left(1 - \cos \phi \right)$$
 (6.12)

$$\overline{\beta}_{p} = \frac{1}{2} \left(1 - \cos \phi_{p} \right)$$
(6.13)

$$7 = \cos \Theta \tag{6.14}$$

$$\gamma_{P} = \cos \Theta_{P} \tag{6.15}$$

$$h_1 = X_L(\Theta) + C(\Theta)$$
 (6.16)

$$h_{1P} = X_{L}(\Theta_{P}) + C(\Theta_{P}) \overset{2}{\xi}_{P}$$
(6.17)

$$h_{2} = \frac{d}{d\Theta} \left[X_{L}(\Theta) \right] + \underbrace{\operatorname{d}}_{\Theta} \left[C(\Theta) \right]$$
(6.18)

Depending on planform, the derivatives $\frac{d \Sigma_{L}}{d \Theta}$ and $\frac{dC}{d \Theta}$ may be multi-valued at midspan, however for a symmetrical planform they are set to zero.

$$h_3 = 2 \sin \{(h_1 - h_{1P}) - (\eta - \eta_P) h_2\}$$
 (6.19)

$$h_{4} = \left\{ \left[\frac{2}{R} \left(h_{1} - h_{1P} \right) \right]^{2} + \left(\eta - \eta_{P} \right)^{2} \right\}^{3/2}$$
(6.20)

$$X_{\tau} = X_{L} + C \tag{6.21}$$

$$h_5 = \frac{2}{R} \left(X_{\tau} - h_{1P} \right) \tag{6.22}$$

$$h_{6} = \left\{ h_{5}^{2} + (\eta - \eta_{\rho})^{2} \right\}^{\frac{1}{2}}$$
(6.23)

$$G_1 = \frac{h_3}{h_4} \tag{6.24}$$

$$G_2 = -\frac{(\eta - \eta_P)C\sin\phi}{h4}$$
(6.25)

$$G_{3} = -\frac{\left(1 - \frac{h_{s}}{h_{o}}\right)}{\eta - \eta_{P}}$$

$$(6.26)$$

The basic wing equations become the following

Reference lift

$$\frac{\partial z}{\partial x}_{p} = \alpha r + \frac{1}{\pi R} \int_{0}^{\pi} \int_{0}^{\pi} \left[G_{1} \left(\frac{\partial \Gamma}{\partial \varphi}^{*} \right) + G_{2} \left(\frac{\partial \Gamma}{\partial \Theta}^{*} \right) \right] d\phi d\Theta$$

$$+ \frac{1}{\Gamma} \int_{0}^{\pi} G_{3} \left(\frac{d \Gamma \Gamma}{d \Theta} \right) d\Theta$$

$$(6.27)$$

Additional lift

$$O = \left[+ \frac{1}{\pi R} \int_{0}^{\pi} \int_{0}^{\pi} \left[G_{1} \left(\frac{\partial G^{*}}{\partial \phi} \right) + G_{2} \left(\frac{\partial G^{*}}{\partial \phi} \right) \right] d\phi d\phi$$

$$+ \frac{1}{\pi} \int_{0}^{\pi} G_{13} \left(\frac{d F_{a}}{d \Theta} \right) d\Theta$$
 (6.28)

G. APPROXIMATE SERIES SOLUTION

The reference and additional distributions can be adequately represented by double series of the following form.

$$\Gamma_{r}^{*}(\phi, \Theta) = \sum_{r=0}^{R+1} \sum_{s=1,3,5\cdots}^{s} B_{rs} H_{r}(\phi) SINS\Theta$$
(7.1)

$$\int_{\alpha}^{*} (\phi, \Theta) = \sum_{r=0}^{R+1} \sum_{s=1,2,s...}^{s} A_{rs} H_{r}(\phi) SIN S\Theta \qquad (7.2)$$

For a spanwise symmetrical lift distribution, only odd values of s are used. Ref. 1. There are (R+1) distinct functions Hr and $(\frac{S+i}{2})$ distinct sine functions in the above series. The total number of initially undetermined constants in each of the above series is therefore

$$T = (R+1) \cdot (\frac{S+1}{2})$$
 (7.3)

If there are (R+1) chordwise stations and $(\frac{S+1}{Z})$ spanwise stations over the semi-span, this establishes T control points. By satisfying each governing equation at each of the T control points we can solve for each set of T constants. Once the constants Brs and Ars are found, all aspects of the wing performance can be readily calculated including lift distributions, slope of the lift curve, induced drag, etc.

The character of the H functions is established as follows

$$\frac{\Delta P}{q^{\infty}} = \frac{2}{V_{\infty}} \left(\frac{\delta \Gamma}{\delta \times} \right) \tag{7.4}$$

$$\frac{\partial \Gamma}{\partial x} = \frac{2 R V_{\infty}}{C} \left(\frac{\partial \Gamma^*}{\partial z}\right)$$
(7.5)

therefore

$$\frac{\Delta P}{2\infty} = \left(\frac{4R}{C}\right) \left(\frac{\delta \Gamma^*}{\delta \xi}\right) = \left(\frac{4R}{C}\right) \frac{2}{\sin \phi} \left(\frac{\delta \Gamma^*}{\delta \phi}\right)$$
(7.6)

For the additional lift, equation (7.2) is substituted into equation (7.6)

$$\left(\frac{\Delta P}{2\omega}\right)_{a} = \left(\frac{4R}{C}\right) \sum_{r=0}^{R+1} \sum_{s=b_{3},s\cdots}^{s} \operatorname{Ars}\left[\frac{z}{s_{1N}\phi}\left(\frac{dHr}{d\phi}\right)\right] s_{1N}s \phi$$
(7.7)

For the reference lift, equation (7.1) is substituted into equation (7.6)

$$\left(\frac{\Delta P}{q_{\infty}}\right)_{\Gamma} = \left(\frac{4R}{C}\right) \sum_{r=0}^{RH} \sum_{s=1,3,5\cdots}^{s} B_{rs} \left[\frac{2}{s_{1N}\varphi} \left(\frac{dHr}{d\varphi}\right)\right] s_{1N} s_{\Theta}$$
(7.8)

It is now possible to make use of the results of thin

airfoil theory and set up the functions in equations (7.7)and (7.8) in an analogous form. Ref. 2. Thus for the special case of r = 0 we use

$$\frac{\partial H_0}{\partial z} = \frac{2}{\sin \varphi} \frac{dH_0}{d\varphi} = \frac{1 + \cos \varphi}{\sin \varphi}$$
(7.9)

and for $r \neq 0$ we use

$$\frac{\partial Hr}{\partial \xi} = \frac{Z}{\sin \phi} \left(\frac{d Hr}{d \phi} \right) = \sin r \phi \qquad (7.10)$$

Equations (7.9) and (7.10) can be integrated to yield

For r = 0

$$H_{o}(\phi) = \frac{1}{2}(\phi + SIN\phi)$$
(7.11)

For r = 1

$$H_{1}(\phi) = \frac{1}{4} \left(\phi - \frac{\sin 2\phi}{2} \right)$$
(7.12)

For $r \ge 2$

$$H_{r}(\phi) = \frac{1}{4} \left\{ \frac{\sin(r-1)\phi}{r-1} - \frac{\sin(r+1)\phi}{r+1} \right\}$$
(7.13)

At the trailing edge, $\not = \pi$, these relations yield

$$H_{o}(\pi) = \frac{\pi}{2} \tag{7.14}$$

$$H_{1}(\pi) = \frac{\pi}{4}$$
(7.15)

$$H_{r}(\pi) = 0 \tag{7.16}$$

By substituting these values into equations (7.1) and (7.2) the corresponding expressions for the trailing vorticity are obtained.

$$[T_{r}(\Theta) = \prod_{4} \sum_{S=1,3,5\cdots}^{S} (2Bos + B_{1S}) SIN S\Theta$$
 (7.17)

$$\Gamma_{\pi a}(\Theta) = \frac{\pi}{4} \sum_{s=1,3,5\cdots}^{s} (2A_{OS} + A_{1S}) SIN S\Theta$$
(7.18)

An ideal wing is one for which $\left(\frac{\Delta P}{q_{\infty}}\right)_{r} = \left(\frac{\Delta P}{q_{\infty}}\right)_{\alpha} = 0$ at the leading edge. This requires that Bos = 0 for all s. If the planform function is arbitrarily prescribed the wing should not be presumed to be an ideal wing and all terms in Bos should be included in the solution. The additional lift is always characterized by the singularity $\left(\frac{\Delta P}{q_{\infty}}\right) \rightarrow \pm \infty$ at the leading edge so that the terms in Aos must always be retained.

A. CALCULATION SCHEME

The calculation scheme in this analysis uses two distinct meshes. There is a coarse mesh of control points, and a fine mesh for the purposes of accurate integration. It is desirable with respect to both meshes that the ratio of the number of spanwise stations over the semispan to the number of chordwise stations should be roughly equal to the aspect ratio divided by two. This gives roughly equal resolution in the spanwise and chordwise directions.

The total angular interval, 0 to π in each case is subdivided into equal sub-intervals and the calculation point located at the center of each sub-interval. The calculation points associated with the fine mesh must not coincide with any of the control points associated with the coarse mesh because this would cause the functions F_1 and F_2 to assume an indeterminate form. While this indeterminacy can be resolved it is best avoided. A good way to avoid this difficulty is to make the fine mesh an even submultiple of that of the coarse mesh. Then the control points will always lie along intersections of the boundaries of the area elements which comprise the fine mesh. See Fig. 8.

The double integration over the wing area reduces in this scheme to a summation over the points of the fine mesh. The number of terms in the series being equal to the number of control points.

If the pressure distribution is to be found for a given wing the coefficients of the reference and additional lift series are solved for first and then the pressure distribution can be calculated.

If an ideal wing camber is to be defined from a given chordwise pressure distribution, the wing equation is solved for $(\frac{\Im Z}{\Im \times})_P$. The terms in H_{\bullet} are dropped which eliminates the leading edge singularity, and an equal number of terms is added on to the end of the series. In other words, Bos is set equal to zero. The induced drag of the wing can be

40

Fig. 8 Calculation Meshes

reduced to an absolute minimum if the terms in sin so are eliminated retaining only the term in sin o . This defines an elliptical spanwise load distribution. These are desirable features to incorporate into the design of an ideal wing, and it also simplifies the numerical solution.

B. MATRIX FORMAT

By analogy with equations (7.7) and (7.8) the reference and additional lift distributions may be written in matrix format.

$$\left\{ \left(\frac{\Delta P}{q_{\infty}}\right)_{r} \right\} = \left[\varphi \right] \left\{ B \right\}$$
(8.1)

$$\left\{\left(\frac{\Delta P}{q_{\infty}}\right)_{\alpha}\right\} = \left[\varnothing\right] \left\{A\right\}$$
(8.2)

The matrix format of the basic wing equations (6.27) and (6.28) become

$$\left\{\frac{\partial z}{\partial x} - \alpha_r\right\} = \left[R\right] \left\{B\right\}$$
(8.3)

$$\left\{1\right\} = -\left[R\right]\left\{A\right\} \tag{8.4}$$

The matricies [Q] and [R] in the above equations are known T by T matricies whose elements depend only on wing planform and aspect ratio.

Solving equations (8.3) and (8.4) for the initially unknown constants B and A gives by matrix inversion

$$\left\{ \mathbf{B} \right\} = \left[\mathbf{R} \right]^{-1} \left\{ \frac{\partial \mathbf{Z}}{\partial \mathbf{x}} - \mathbf{A} \mathbf{r} \right\}$$
(8.5)

$$\{A\} = -\left[R\right]^{-1}\left\{1\right\}$$
(8.6)

Equation (8.6) shows that the A constants depend only on wing planform and aspect ratio while the B constants in equation (8.5) also depend on the wing slope function.

The points used in the Q matrix need not be the same as the control points used in the R matrix, but may be any point on the wing. In this analysis the points for the Q matrix were picked as six stations across the semispan with eighteen chordwise stations at each spanwise station. This permits a good representation of the functions Γ and $(\frac{\Delta P}{2m}) \stackrel{c}{\subset}_{L}$.

If the reference pressure distribution over the wing is specified, coefficients of the lift distribution series can be found, by equation (8.7). Then the wing equation (8.8) can be solved by direct numerical integration.

$$\left\{ \left(\frac{\Delta P}{\varrho_{\infty}} \right)_{r} \right\} = \left[\emptyset \right] \left\{ B \right\}$$
(8.7)

$$\frac{\partial z}{\partial x} - \alpha r = \frac{d \phi d \theta}{\pi R} \sum_{0}^{\pi} \sum_{0}^{\pi} \left[G_{1} \sum_{0}^{R} B_{r} \frac{\sin r \phi \sin \phi}{2} \sin \phi \right]$$

$$+ G_{2} \sum_{0}^{R} B_{r} H_{r} \cos \theta + \frac{1}{4} \sum_{0}^{\pi} G_{3} B_{1} \cos \theta d \theta$$
(8.8)

IV <u>RESULTS</u>

A. SOLVING FOR THE WING PRESSURE DISTRIBUTION

The numerical results of the pressure distribution solution were not satisfactory. The pressure distributions and circulation functions calculated by the computer program were not smooth or in accordance with [Ref. 1] and [Ref. 10]. It is believed this is a result of difficulties with the first chordwise term, Bos. The term by term downwash is plotted in Fig. 9, at a spanwise station near midspan for a wing of elliptical planform and an aspect ratio of 20 using 5 chordwise stations and 10 stations over the span. The integration mesh was four times finer than the control point mesh. The first term should yeild uniform downwash. the rest of the terms are of the general nature expected.

B. SOLVING FOR THE WING CAMBER

The numerical results of calculating the camber of an ideal wing given the desired chordwise pressure distribution were satisfactory. Fig. 10 compares the results of $\frac{\partial z}{\partial x} \prec_r$ for a wing of aspect ratio 20 and rectangular planform using a 15 term lift distribution series at 5 chordwise points near midspan, with the two dimensional results of [Ref. 10.] It is felt the differences at the leading edge can be resolved by using more terms in the lift distributions series and more integration points. The depicted pressure distribution was imposed at all spanwise stations. The results are normalized to a lift coefficient of one. Table 1 shows the results at various spanwise stations.

AR=20	15 torm	lift dietri	<u>Table 1</u>	ies root	angular ni	anform
2	0.99	0.89	0.71	0.45	0.16	
ð	- dz dx -xr	$\frac{\partial z}{\partial x} - x = -$	dz - xr	DZ -X-	Dz - ar	
0.025	0.0921	0.1400	0.1669	0.1782	0.1817	
0.206	0.0292	0.0561	0.0789	0.0883	0.0913	
0.500	-0.0448	-0.0781	-0.0965	-0.1038	-0.1611	
0.794	-0.0967	-0.1552	-0.1951	-0.2152	-0.2297	
0.976	-0.0998	-0.1456	-0.1884	-0.2142	-0.2256	

V. CONCLUSIONS

The numerical implementation of the theory needs additional work to achieve the correct computer solutions for the pressure distribution solution. The areas of greatest interest are the assumed series solutions for the additional and reference lift, especially the first chordwise term, Bos. The camber line solution is consistent with two dimensional theory near midspan of a high aspect ratio wing and allows the camber line to be determined at various spanwise stations for any aspect ratio. It is felt that this theory has merit and deserves further study to correct the numerical solution of the pressure distribution.

APPENDIX A. DERIVATION OF SUBROUTINES

A. SUBROUTINES FOR THE PRESSURE DISTRIBUTION SOLUTION

QMAT calcualtes the Q matrix of equations (8.1) and (8.2)

$$\left(\frac{\Delta P}{q_{\infty}}\right)_{\alpha} = \frac{4R}{C} \sum_{c}^{RN} \sum_{c}^{s} Ars\left[\frac{2}{s_{N}g} \frac{dHr}{dg}\right] SIN so \qquad (7.7)$$

$$\left(\frac{\Delta P}{q_{\infty}}\right)_{\alpha} = \sum_{\alpha}^{R_{N}} \sum_{\alpha}^{S} Ars \frac{4R}{C} \left[\left[\frac{2}{s_{N}} \frac{dHr}{d\phi} \right] s_{N} s_{\Theta} \right]$$
(A.1)

$$HH1 = \frac{2}{\sin\phi} \frac{dHr}{d\phi}$$
(A.2)

$$SI = SIN S \Theta$$
 (A.3)

$$\varphi(\mathbf{r}, \mathbf{s}) = \frac{4R}{c} \cdot ||\mathbf{H}|_{\circ} \cdot \mathbf{s}_{1}$$
(A.4)

RMAT calcualtes the R matrix of equations (8.3) and (8.4)

$$\left(\frac{\partial z}{\partial x}\right)_{p} - \alpha_{r} = \frac{1}{\pi R} \int_{0}^{\pi} \int_{0}^{\pi} \left(G_{1} \frac{\partial \Gamma_{r}}{\partial \phi} + G_{2} \frac{\partial \Gamma_{r}}{\partial \Theta}\right) d\phi d\phi$$

$$+ \frac{1}{\pi} \left(G_{13} \left(\frac{\partial \Gamma_{r}}{\partial \Theta}\right) d\phi \right) d\phi d\phi$$

$$(6.27)$$

$$\frac{\partial F}{\partial \phi}^{*} = \sum_{n=1}^{R'} \sum_{j=1}^{S} B_{rs} \frac{\partial}{\partial \phi} (H_{r}) SIN S \Theta \qquad (A.5)$$

$$\frac{\partial \Gamma^{\star}}{\partial \Theta} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} B_{rs} H_{r} S \cos s \Theta \qquad (A.6)$$

$$\frac{df_{Tr}}{d\Theta} = \frac{\pi}{4} \sum_{s}^{s} (2Bos + Bis) Scos S\Theta \qquad (A.7)$$

$$\left(\frac{\partial z}{\partial x}\right)_{p} - \alpha r = \sum_{n=1}^{R^{H}} \sum_{n=1}^{S} B_{rs} \left\{ \sum_{n=1}^{T} \frac{d\phi d\theta}{TRR} \left[G_{1} \frac{\partial}{\partial \phi} (H_{r}) \sin s\theta \right] + G_{2} H_{r} s \cos s\theta \right\} + \frac{1}{4} \sum_{n=1}^{S} (ZB_{ns} + B_{ns}) \sum_{n=1}^{T} G_{ns} \sin s\theta d\theta (A.8)$$

$$HH1 = \frac{\partial}{\partial \varphi} (Hr)$$
(A.9)

- $s_{1} = S_{1}NS\Theta$ (A.10)
- $HHZ = Hr \tag{A.11}$
 - SZ = SCOS SO (A.12)

$$R(r,s) = \sum_{o}^{\pi} \sum_{o}^{\pi} \frac{d\phi d\Theta}{\pi R} \left[G_{1} \cdot HH1 \cdot s_{1} + G_{2} \cdot HH2 \cdot s_{2} \right]$$
$$+ \sum_{o}^{\pi} G_{3} \cdot s_{2} \cdot d\Theta$$
(A.13)

B. SUBROUTINES FOR THE CAMBER LINE SOLUTION

QMAT calculates the Q matrix of equation (8.1) which has been simplified with a single term in theta, an elliptical spanwise lift distribution, and the first chordwise term is dropped.

$$\left(\frac{\Delta P}{q_{\infty}}\right)_{r} = \frac{4R}{C} \int Br\left[\frac{2}{s_{N} \phi} \frac{dH_{r}}{d\phi}\right] sin \phi \qquad (A.14)$$

$$HH_{1} = \frac{2}{\sin \phi} \frac{dH_{r}}{d\phi}$$
(A.15)

$$\varphi(r) = \frac{4R}{c} \cdot HH1 \cdot S1 \qquad (A.16)$$

CAMBER is a numerical integration of equation (6.27) simplified for an ideal wing.

$$\frac{\partial z}{\partial x} - \alpha r = \frac{d\phi d\theta}{\pi R} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \left[G_{1} \sum_{n=1}^{R} B_{r} \frac{S_{1} N r \phi S_{1} N \phi}{2} S_{1} N \theta + G_{2} \sum_{n=1}^{R} B_{r} H_{r} \cos \theta \right] + \frac{1}{4} \sum_{n=1}^{\infty} G_{3} B_{1} \cos \theta d\theta (A.17)$$

S		> > > > > > > > > > > > > > > > > > >	SO	
	THE PURPOSE OF THIS PROGRAM IS TO SOLVE FOR THE CHARACTERISTICS OF A WING OF GIVEN PLANFORM USING LIFTING SURFACE THEORY. THE WING IS DIVIDED INTO ELEMENTS IN THE CHORDWISE AND SPANWISE DIRECTION AND THE VORTICITY IS INTEGERATED OVER THE WING USING A SERIES REPRESENTATION. RP1 = THE NUMBER OF CHORDWISE ELEMENTS (MUST BE EVEN) C SP1 = THE NUMBER OF SPANWISE ELEMENTS (MUST BE EVEN) THE ELEMENT MESH (MUST BE EVEN) C DIZDIMA = THE CAMBER LINE SLOPE MINUS THE REFERENCE ANGLE OF	C DIMENSION DTATEMENTS: SPID2= SPI/2 T=SPID2*RP1 W=T**2+3*T C DIMENSION R(T,T),RM(T,T),Q(T,T) C DIMENSION A(T),B(T),D2DXMA(T) C DIMENSION MK(W), DIMENSION MK(W) DIMENSION RR(T,T) DIMENSION Q(T,T)	$\dot{\Sigma}_{cc}$	<pre>MPLIGIT REAL*8 (A-H, 0-2) INTEGER \$P1, RP1, \$5\$P102.T INTEGER*4 TTB3(12)/12*0/ INTEGER*4 TTB3(12)/12*0/ REAL*4 RTB3(12)/12*0/ REAL*4 RTB3(28)/28*0.0/ REAL*4 RTB3(28)/28*0.0/ REAL*4 RTB3(28)/28*0.0/ REAL*4 RTB3(28)/28*0.0/ REAL*8 TTLE1(12) EQUIVALENCE (TITLE1, RTB1(5)) REAL*8 TTLE2(112) REAL*8 T</pre>

```
IDGT=5
CALL LEQT2F(RM,1,T,T,A,IDGT,WK,IER)
WRITE(6,303)
WRITE(6,301)(A(I),I=1,T)
                                                                                                                                                                                                                                                                                                              CALL QMAT(SP1,RP1,AR,Q,PHIP,THETAP)
WRITE(6,300)
WRITE(6,301)((Q(I,J),J=1,T),I=1,T)
                                                                                                                                                                                                                                                                                                                                                                                           CALL RMAT(SP1,RP1,MESH,AR,R)
WRITE(6,302)
WRITE(6,301)((R(I,J),J=1,T),I=1,T)
DATA XIT/1.0,1.0,1.0,1.0,1.0,1.0,1.0/
                                                 READ (5,100) SP1, RP1, MESH
READ (5,600) TITLE1
READ(5,600) TITLE1
READ(5,600) TITLE2
READ(5,600) TITLE2
READ(5,600) TITLE2
SP1+1
SP1D2=SP1/2
T=RP1*SP1D2
READ (5,201)(DZDXMA(I),I=1,T)
                                                                                                                                                                                                         WRITE(6,101)
WRITE(6,102) SP1,RP1,MESH
WRITE(6,103) AR
WRITE(6,104)
WRITE(6,301)(DZDXMA(I),I=1,T)
                                                                                                                                                                                                                                                                                                                                                                                                                                             A VECTOR
                                                                                                                                                                                                                                                                                                                                                                 CCMPUTE THE R MATRIX
                                                                                                                                                                                                                                                                                      CCMPUTE THE Q MATRIX
                                                                                                                                                                                  PRINT INPUT DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DO 1 L=1,T
DO 1 M=1,T
RR(L,M)=R(L,M)
RV(L,M)=-R(L,M)
                                                                                                                                                                                                                                                                                                                                                                                                                                             SOLVE FOR THE
                          INPUT DATA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DO \ge K=1, T
A(K)=1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2
                                                                                                                                                                                                                                                                                                                                                                                                                                  000
                                                                                                                                                                                                                                                                          ပပပ
                                                                                                                                                                                                                                                                                                                                                     ပပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C
              ပပပ
                                                                                                                                                                      ပပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C
```

```
51
```

```
SOLVE FOR THE AUDITIONAL PRESSURE DISTRIBUTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DISTRIBUTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DCLADA= (2.0*A(1)+A(SP1D2+1))*AR/4.0*PI**2
WRITE(6,402) DCLADA
CLR=(2.0*B(1)+B(SP1D2))*AR/4.0*PI**2
WRITE(6,401) CLR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SOLVE FOR THE REFERENCE PRESSURE
                                                                                                                                                                                                                                                         CALL DGELG(B,R,T,1,1.D-4,IER2)
WRITE(6,306)
WRITE(6,301)(B(I),I=1,T)
WRITE(6,501)(B(I),I=1,T)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CALL DGMPRD(Q,B,RPC,T,T,1)
WRITE(6,307)
WRITE(6,301)(RPC(I),I=1,T)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CALL DGMPRD(Q,A,CPA,T,T,1)
WRITE(6,305)
WRITE(6,301)(CPA(I),I=1,T)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       )/DCLADA
/DCLADA
/DCLADA
/DCLADA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          5-4)/CLR
5-3)/CLR
5-2)/CLR
5-1)/CLR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.00-4) 60
                                                                      SOLVE FOR THE B VECTOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DD 30 I=1, RPI
CPA3(I)=CPA(I*5-3)/D
CPA3(I)=CPA(I*5-3)/D
CPA4(I)=CPA(I*5-3)/D
CPA4(I)=CPA(I*5-3)/D
CPA4(I)=CPA(I*5-2)/D
CPA4(I)=CPA(I*5-2)/D
CPA4(I)=CPA(I*5-2)/D
CPA4(I)=CPA(I*5-2)/D
CPA4(I)=CPA(I*5-2)/D
CPA4(I)=CPA(I*5-2)/D
RPC1(I)=RPC(I*5-2)/D
RPC3(I)=RPC(I*5-2)/C
RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC3(I)=RPC
WRITE(6,500) IDGT
                                                                                                                                               DO = \frac{1}{2} I = 1, T
B(I) = DZ DXMA(I)
                                                                                                                                                                                     3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             34
                                      ပပပ
                                                                                                                                                                                                                      S
                                                                                                                                                                                                                                                                                                                                                                                                         000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ပပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C
```

```
DC 40 J=1, KPI U2

DO 40 J=1, KPI U2

DO 41 K=1, RP1

DO 41 K=1, SP2

DO 41 L=1, Sy2

DO 41 DO 55% (HIP(J) + DSIN(2.0 % PHIP(J)))/(FLOAT(K) - 2.00))-(DSIN(K* PHIP(J)))/FLO

DO 42 RED025% (DSIN((K-2) % PHIP(J)))/(FLOAT(K) - 2.00))-(DSIN(K* PHIP(J)))/FLO

DO 42 RED025% (DSIN(1K-2) % PHIP(J)))/(FLOAT(K) - 2.00))-(DSIN(K* PHIP(J)))/FLO

DO 42 RED025% (DSIN(1K-2) % PHIP(J)))/(FLOAT(K) - 2.00))-(DSIN(K* PHIP(J)))/FLO

DO 42 RED025% (DSIN(1K-2) % PHIP(J)))/(FLOAT(K) - 2.00))-(DSIN(K* PHIP(J)))/FLO

DO 42 RED025% (DSIN(1K-2) % PHIP(J)))/(FLOAT(K) - 2.00))-(DSIN(K* PHIP(J)))/FLO

DO 42 RED025% (DSIN(1K-2) % PHIP(J)))/(FLOAT(K) - 2.00))-(DSIN(K* PHIP(J)))/FLO

DO 42 RED025% (DSIN(1K-2) % PHIP(J)))/(FLOAT(K) - 2.00))-(DSIN(K* PHIP(J)))/FLO

DO 42 RED025% (DSIN(1K-2) % PHIP(J)))/FLO

DO 42 RED025% (DSIN(K* PHIP(J)))/FLO

DO 42 RED025% (DSIN(K) PHIP(J)))/FLO

DO 42 RED025% (DSIN(K) PHIP(J)))/FLO

DO 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DD 46 I=1, RP1
GAMMA1(I)=GAMMA(2;I)
GAMMA3(I)=GAMMA(2;I)
GAMMA4(I)=GAMMA(2;I)
GAMMA5(I)=GAMMA(4;I)
GAMMA5(I)=GAMMA(4;I)
GAMMA5(I)=GAMMA(4;I)
GAMMA5(I)=GAMMA(5;I)
GAMMA5(I)=GAMMA(5,I)
CONTINUE
DO 47 I=1, SP1D2
GAMMAT(I)=0.0
DO 47 L=1, S2
GAMMAT(I)=0.0
DO 47 L=1, S2
GAMMAT(I)=GAMMAA+GAMMAT(I)
CCNTINUE
                                                                                                                                                                                                                                                                 THE GAMMA DISTRIBUTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DC 31 I=1, RP1
XI(I)=0.5*(1.0-DCOS(PHIP(I)))
WRITE(6,403)
WRITE(6,308)(XI(I),I=1,18)
  2-12
                                                                          * *
                                            ×
RPC2(I)=RPC(
RPC3(I)=RPC(
RPC4(I)=RPC(
RPC5(I)=RPC(
CCNTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PLOT RESULTS
                                                                                                                                                                                                                                                                    FOR
                                                                                                                                                                                                                                                                 SOLVE
                                                                                                                                                    36
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            46
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 31
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4
                                                                                                                                                                                          0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ပပ
```

53

FORMAT (3110) FORMAT(1, 5X, LIFTING SURFACE SOLUTION FOR A WING') FORMAT(0, 5X, NU. OF SPANWISE ELEMENTS=',12,2X, NO. OF CHORDWISE IELEMENTS=',12,2X,'INTEGERATION MESH SIZE=',12) FORMAT(0, 5X,'WING ASPECT RATIO=',F52) FORMAT(0, 5X,'THE CAMBER LINE SLOPE DZ/DX MINUS THE REFERENCE AND ILE OF ATTACK ALPHA R VECTOR') RTB1(2)=0.5 CALL DRAWP (RP1,X1,CPA5,ITB1,RTB1) TB1(2)=2 CALL DRAWP (RP1,X1,CPA5,ITB1,RTB1) TB1(2)=2 CALL DRAWP (RP1,X1,CPA3,ITB1,RTB1) TB1(2)=4 CALL DRAWP (RP1,X1,CPA3,ITB1,RTB1) TB1(2)=4 CALL DRAWP (RP1,X1,CPA2,ITB1,RTB1) TB1(2)=5 CALL DRAWP (RP1,X1,CPA1,ITB1,RTB1) TB1(2)=5 CALL DRAWP (RP1,X1,CPA2,ITB1,RTB1) TB1(2)=5 CALL DRAWP (RP1,X1,CPA2,ITB1,RTB1) TB1(2)=5 CALL DRAWP (RP1,X1,CPA2,ITB2,RTB1) TB1(2)=5 CALL DRAWP (T,X1,RPC1,ITB2,RTB2) TB1(2)=5 CALL DRAWP (T,X1,RPC3,ITB2,RTB2) TB2(1)=2 TB2(2)=2 TB2(2)=2 CALL DRAWP (T,X1,RPC3,ITB2,RTB2) TB2(2)=2 CALL DRAWP (RP1,X1,GAMA5,ITB2,RTB2) TB2(2)=2 CALL DRAWP (RP1,X1,GAMA5,ITB3,RTB3) TB2(2)=2 CALL DRAWP (RP1,X1,GAMA5,ITB3,RTB3) TB2(2)=2 CALL DRAWP (RP1,X1,GAMA4,ITB3,RTB3) TB3(2)=2 CALL DRAWP (RP1,X1,GAMA4,ITB3,RTB3) TB3(2)=2 CALL DRAWP (RP1,X1,GAMA4,ITB3,RTB3) TB3(2)=2 CALL DRAWP (RP1,X1,GAMA4,ITB3,RTB3) TB3(2)=2 CALL DRAWP (RP1,X1,GAMA1,ITB3,RTB3) TB3(2)=2 CALL DRAWP (RP1,X1,GAMA1,ITB3,RTB3) TB3(2)=2 CALL DRAWP (RP1,X1,GAMA1,ITB3,RTB3) TB3(2)=5 CALL DRAMP (RP1,X1,GAMA1,ITB3,RTB3) TB3(2)=5 CALL DRAM 1001102 103

ANG

C

C

54

ANGLE ", F5.2,2X, "REFERENCE 4 05 FORMAT (2F10.2) 06 FORMAT (9, 552, 22) 00 FORMAT (F10.2) 00 FORMAT (F10.2) 01 FORMAT (9, 552, 7HE 0, 4) 02 FORMAT (00, 552, 7HE 0, 4) 03 FORMAT (00, 552, 7HE 0, 4) 03 FORMAT (00, 552, 7HE 0, 4) 04 FORMAT (00, 552, 7HE 0, 4) 05 FORMAT (00, 552, 7HE 0, 4) 05 FORMAT (00, 552, 7HE 0, 4) 06 FORMAT (00, 552, 7HE 0, 4) 07 FORMAT (00, 552, 7HE 0, 4) 08 FORMAT (00, 552, 7HE 0, 4) 09 FORMAT (00, 552, 7HE 0, 4) 00 FORMAT (00, 552, 7HE 0, 4) 01 FORMAT (00, 552, 7HE 0, 4) 02 FORMAT (00, 552, 7HE 0, 4) 03 FORMAT (00, 552, 7HE 0, 4) 04 FORMAT (00, 552, 7HE 0, 4) 05 FORMAT (00, 552, 7HE 0, 4) 00 FORMAT (00, 552, 7HE 0, 4) 01 FORMAT (00, 522, 60MMA DI STR 18UT 10N 15) 01 FORMAT (00, 222, 900WWA SH ANGLES (10N 1) 01 FORMAT (00, 222, 900WWA SH ANGLES (10N 1) 00 FORMAT (100, 222, 900WWA SH ANGLES (10N 1) 00 FORMAT (100, 222, 900WWA SH ANGLES (10N 1) 00 FORMAT (100, 222, 900WWA SH ANGLES (10N 1) 00 FORMAT (100, 222, 900WWA SH ANGLES (10N 1) 00 FORMAT (100, 222, 900WWA SH ANS (10N 1) 00 FORM 105

0

PLANFORM FUNCTIONS

ں

FUNCTION XL(THETA) IMFLICIT REAL*8 (A-H,O-Z) XL=0.6366198*(1.0-DSIN(THETA) RETURN END

FUNCTION C(THETA) IMPLICIT REAL*8 (A-H,O-Z)

C=1.2732395*DSIN(THETA) RETURN END FUNCTION DXL(THETA) IMPLICIT REAL*8 (A-H,0-Z) DXL=-0.6366198*DCOS(THETA) RETURN END

FUNCTION DC(THETA) IMPLICIT REAL*8 (A-H, 0-2) DC=1.2732395*DCOS(THETA) RETURN END IMPLICIT REAL*8 (A-H, 0-2) INTEGER RPI, SPI, SPID2, S, T DIMENSION RR(25, 25) S= SPI-1 SPID2=SPI/2 MCRI=RP1*MESH MSSJ=SPI*MESH T=SPID2*RPI DELPHI=PI/FLOAT(MSSJ)

RMAT(SP1, RP1, MESH, AR, RR)

SUBROUT INE

ں

DC 4 I=1,T DO 4 J=1,T 4 RR(I,J)=0.0 DO 1 M=1,RP1

S

C

DO 1 M=1, RP1 DO 1 N=1, SP1D2 PHIP=PI/RP1*(M-0.5) THETAP=PI/SP1*(N-0.5) XIP=0.5*(1.0-0COS(PHIP))

ETAP=DCOS(THETAP) HIP=XL(THETAP)+C(THETAP)*XIP MA=M*SPID2-SPID2+N DO 2 K=1,RP1 DO 2 L=1,S2 KL=K*SPID2-SPID2+(L+1)/2	D0 3 I=1, MCRI D0 3 J=1, MSSJ PH1=P1/FL0AT(MCRI)*(FL0AT(I)-0.5) XI=0.5*(1.0-DCOS(PHI)) THETA=P1/FL0AT(MSSJ)*(FL0AT(J)-0.5) ETA=DCOS(THETA) ETA=ETA-ETAP HI=AL(THETA)+(XI*D)*XI H1=AL(THETA)+(XI*D)*XI D1=H1-(THETA)+(XI*D)*XI	H3=2.0*D5IN(THETA)*(DH1-(DETA*H2)) H4=(2.0/AR*DH1)**2+DETA**2)**1.5 G1=H3/H4 G2=-DETA*C(THETA)*DSIN(PHI)/H4 S1=DSIN(L*THETA) S2=L*DCOS(L*THETA)	IF (K-1) 5,5,6 HH1=0.5*(1.0+DCOS(PHI)) GC TO 14 HH1=0.5*(DSIN((K-1)*PHI)*DSIN(PHI)) CONTINUE R1=G1*HH1*S1	IF (K-2) 7,8,9 HH2=0.5*(PHI+DSIN(PHI)) GO TO 13 HH2=0.25*(PHI-(DSIN(2.0*PHI)/2.0)) GO TO 13 HH2=0.25*((DSIN((K-2)*PHI)/(FLOAT(K)-2.0))-(DSIN(K*PHI)/FLOAT(K))) GONTINUE R2=G2*HH2*S2 RR1=(DELPHI*DTHETA)/(PI*AR)*(R1+R2)	IF (I.LT.MCRI) GO TO 12 H5=2.0/AR*(XL(THETA)+C(THETA)-H1P) H6=(H5**2+DETA**2)**0.5 G3=-(1.0-H5/H6)/DETA	IF (K-2) 10,11,12
			5 14	7 8 13		
C	J	(ى ر	د	U (د

- 0 RR2=63*0.5*S2*DTHETA 60 T0 15 1 RR2=63*0.25*S2*DTHETA 60 T0 15 2 RR2=0.0 5 CONTINUE RR(MN,KL)=RR1+RR2+RR(MN,KL) 3 CONTINUE 1 CONTINUE 1 CONTINUE RETURN END 10
 - 15 ma-
 - 1
- SUBROUTINE QMAT(SP1, RP1, AR, Q, PHIP, THETAP)

J

IMPLICIT REAL*8 (A-H,O-Z) INTEGER RPI SP1, SP1D2,S,T DIMENSION Q(25,25) DIMENSION PHIP(18),THETAP(6) S=SP1-1 SP1D2=SP1/2 PI=3.1415927 DC 2 K=1,RP1 DO 2 L=1,S,2 KL=K*SP1D2-SP1D2+(L+1)/2 5 DC 1 M=1, RP1 DO 1 N=1, SP1D2 PHIP(M)=P1/RP1*(M-0.5 THETAP(N)=P1/SP1*(N-0.5 MN=M*SP1D2-SP1D2+N 3

C

S

IF(K-1) 3, 3, 4 3 HH1=(1, 0+DCOS(PHIP(M)))/DSIN(PHIP(M)) GC TO 5 4 HH1=DSIN((K-1)*PHIP(M)) 5 CONTINUE S1=DSIN(L*THETAP(N)) S2=S1*4, 0*AR 0 (MN,KL)=HH1*S2 2 CONTINUE 1 CONTINUE RETURN END 45

 $\sim -$

S

SUBRGUTINE DGMPRD(A,B,R,N,M,L) IMPLICIT REAL*8 (A-H,O-Z) DIMENSION A(1),B(1),R(1) IR=0 IR=0 IK=-M DO 10 K=1,L IK=IK+M DO 10 J=1,N IR=IR+1 J=J-N IR=IR+1 J=J-N IB=IR+1 J=J1+N JI=J1+N JI=J1+N JI=J1+N IB=IB+1 IB=I

ပ ပ

INTEGER SP1.RP1, S, SP1D2, T INTEGER*4 If B1 (12)/12*0/ REAL*4 RTB1(28)/28*0.0/ REAL*8 TITLE1(12) EQUIVALENCE (TTTLE1, RTB1(5)) DIMENSION DP (15), Q(15,15), SUMINT(5,5) DIMENSION B(15) DIMENSION B(15) DIMENSION WIGH(5), WING2(15), WING3(15), WING4(15), WING5(15), XI(15) DATA ITB1/1,0.6, 8,0,0,0,2,0,0,0,1/ DATA ITB1/1,0.6, 8,0,0,0,2,0,0,0,1/ DATA ITB1/1,0.6, 8,0,0,0,2,0,0,0,1/ CALL QMAT(NP,AR,Q) WRITE(6,300) WRITE(6,301)((Q(I,J),J=1,NP),I=1,NP) READ (5,100) SP1, RP1, MESH READ (5,100) AR READ(5,108) NP READ(5,600) TITLE1 S=SP1-1 SP1D2=SP1/2 T=RP1*SP1D2 READ(5,201)(DP(1),1=1,NP) WRITE(6,101) WRITE(6,102) SP1, RP1, MESH WRITE(6,103) AR WRITE(6,103) AR WRITE(6,104) WRITE(6,104) SOLVE FOR THE B VECTOR COMPUTE THE Q MATRIX PRINT INPUT DATA 3 I=1,NP INPUT DATA 00 ပပပ ပပပ 0000 SOU

```
CHORDWISE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DISTRIBUTION.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FORMAT (3110)
FORMAT(1,5%, LIFTING SURFACE SOLUTION FOR A WING)
FORMAT(0,5%, NO. OF SPANWISE ELEMENTS=,12,2%, NO.
ELEMENTS=,12,2%, INTEGERATION MESH SIZE=,12)
FORMAT(0,5%, WING ASPECT RATIO=, F5.2)
FORMAT(0,5%, THE DESIRED CHORDWISE PRESSURE DISTRIB
FORMAT(10(2%, F10.4))
                                                                                                                                                                                                                                                                                                                                                   CALL CAMBER(SP1,RP1,MESH,AR,SUMINT,B,NP)
WRITE(6,302)
WRITE(6,301)((SUMINT(M,N),N=1,SPID2),M=1,RP1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DO 30 I=1,RPI
WING2(I)=SUMINT(I;2)
WING2(I)=SUMINT(I;2)
WING5(I)=SUMINT(I;2)
WING5(I)=SUMINT(I;5)
WING5(I)=SUMINT(I;5)
WING5(I)=SUMINT(I;5)
WING5(I)=SUMINT(I;5)
WING5(I)=SUMINT(I;5)
CONTINUE
DO 31 T=1,RP1
PHIP=PI/RP1*(I-0.5)
PHIP=PI/NP*(I-0.5)
PHIP=PI/NP*(I-0.
B(I)=DP(I)
CALL GELG(B,Q,NP,1,1.0E-4,IER2)
WRITE(5,306)
WRITE(6,301)(B(I),I=1,NP)
WRITE(6,501)[ER2]
                                                                                                                                                                                                                                                                  COMPUTE THE CAMBER LINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PLOT RESULTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   103
104
105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              32
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1001
      3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 31
```

C

000

(+I+) 05 FORMAT (*0, 5%, SCALE FACTORS*) 08 FORMAT (*0, 5%, SCALED PRESSURE DISTRIBUTION*) 08 FORMAT (110) 00 FORMAT (F10.2) 01 FORMAT (0, 5%, THE Q MATRIX*) 01 FORMAT (0, 5%, THE Q MATRIX*) 02 FORMAT (0, 5%, THE Q MATRIX*) 03 FORMAT (0, 5%, THE Q WATRIX*) 04 FORMAT (0, 5%, THE Q WATRIX*) 05 FORMAT (0, 5%, THE Q WATRIX*) 06 FORMAT (6A8) 07 FORMAT (6A8) 07 FORMAT (6A8) 08 FORMAT (6A8) 00 FORMAT (6A8) 00

FUNCTION XL(THETA) XL=0.0 RETURN END

FUNCTION C(THETA) C=1.0 RETURN END

FUNCTION DXL (THETA) DXL=0.0 RETURN END

FUNCTION DC(THETA) DC=0.0 DC=1.2732395*COS(THETA) RETURN END

SUBROUTINE CAMBER(SP1, RP1, MESH, AR, SUMINT, B, NP) SUM=0.0 SUM5=0.0 SUM5=0.0 DG 3 I=1,MCRI DG 3 J=1,MSSJ PHI=PI/FLOAT(MCRI)*(FLOAT(I)-0.5) XI=0.5*(1.0-C3S(PHI)) THETA=PI/FLOAT(MSSJ)*(FLOAT(J)-0.5) ETA=C0S(THETA) DETA=ETA-ETAP (MSSJ)*(FLOAT(J)-0.5) HETAP)+C(THETAP)*XIP SUBROUTINE QMAT(NP, AR, Q) N-0-5) SP102 (5,5) DIMENSION Q(15,15) PI=3.1415927 D0 1 M=1 NP PHI=PI/NP*(M-0.5) D0 2 K=1, NP HH1=SIN(K*PHI) S1=4.0*AR/C(PI/2.0) Q(M,K)=HH1*S1 CONTINUE RETURN END 0. INTEGER RP1, SP1, DIMENSION SUMINT DIMENSION B(15) PI=3.1415927 SP1D2=SP1/2 MCR1=RP1*MESH MSSJ=SP1/FLOAT(DFLPH1=P1/FLOAT(HETAP) I/FLOAT 102 -0-(p]*(/SPI 1, RP1 , SPI DO 1 M=1, DO 1 N=1, PHIP= PI /R THETAP= PI /R XIP=0.5%(FTAP=COS(HIP=XL(TH \sim

C

 \odot

S

с С FA)+C(THETA)*XI

Ξ

X =

SUM1=0.0 SUM2=0.0 BD 25 KI (K*PHI) *SIN(PHI)/2.0 SUM1a=FHH *SIN(K*PHI) *SIN(PHI)/2.0 SUM1a=FHH *SIN(K*PHI) *SIN(PHI)/2.0 SUM1a=SUM1A+SUM1 F (K-1) 5.5 (6 HP2=0.25*(FHT-SIN(2.0*PHI)/2.0) GD 70 14 6 HH2=0.25*(SIN((K-1)*PHI)/(FLOAT(K)-1.0)-SIN((K+1))*PHI)/(FLOAT(K)+1) 1.0) 1.10) 1.10) 1.10) 2 CONTINUE 2 CONTINUE 2 SUM2=SUM2*G2 5 SUM2*C1 5 SUM2*C10 5 SUM2+SUM2 5 SUM2+SUM2 5 SUM2+SUM2*G2 5 SUM2+SUM2 5 SUM2+SUM2*C1 5 SUM2+SUM2*G2 5 SUM2+SUM2*G2 5 SUM2+SUM2*G2 5 SUM2+SUM2*C1 5 SUM2+SUM2*C1 5 SUM2+SUM2*G2 5 SUM2+SUM H2=DXL (THETA) +(XI *0C(THETA)) DH1=H1-H1P H3=2.0*SIN(THETA)*(DH1-(DETA*H2)) H4=((2.0/AR*DH1)**2+DETA**2)**1.5 G1=H3/H4 G2=-DETA*C(THETA)*SIN(PHI)/H4 S1=SIN(THETA) S2=COS(THETA) H6=(H5**2+DETA**2)**0.5 63=-(1.0-H5/H6)/DETA SUM4=63*B(1)*COS(THETA) SUM5=SUM4+SUM5 SUM5=SUM4+SUM5 SUM5(SUM4+SUM5 SUM5(SUM4+SUM5 SUM5(SUM4+SUM5 SUM5(M,N)=SUM4SUM5 SUM5(M,N)=SUM5(M,N)=SUM5 SUM5(M,N)=SUM5(9 4 2 S m

J

REFERENCES

- 1. Glauert, H., <u>THE ELEMENTS OF AEROFOIL AND AIRSCREW</u> <u>THEORY</u>, 2nd, ed., Cambridge University Press, 1959.
- 2. Prandtl, L., "Applications of Modern Hydrodynamics to Aeronautics", NACA Report 116, 1921.
- Multhopp, H., "Methods for Calculating the Lift Distribution of Wings (Subsonic Lifting Surface Theory)", British Arc., R&M 2884, 1950.
- 4. Falkner, V.M., "The Solution of Lifting Plan Problems by Vortex Lattice Theory", British Arc., R&M 2591, 1947.
- 5. Weissinger, J., "The Lift Distribution of Swept Back Wings", NACA Tecnnical Report 1120, 1947.
- 6. Watkins, C.E., Runyan, H.L., and Woolston, D.S., "On the Kernel Function of the Integral Equation Relating in Lift and Downwash Distribution of Oscillating Finite Wings in Subsonic Flow", NACA Report 1234, 1955.
- 7. Lopez, M.L., and Shen, C.C., "Recent Developments in Jet Flap Theory and Its Application to STOL Aerodynamic Analysis", AIAA paper number 71-578, revised 1972.
- Giesing, J.P., Kalman, T.P., and Rodden, N.P., "Subsonic Unsteady Aerodynamics for General Configurations", AIAA paper number 72-26, 1972.
- 9. Kuethe, A.M., and Schetzer, J.D., <u>FOUNDATIONS OF</u> <u>AERODYNAMICS</u>, 2nd ed., Wiley, 1959.
- 10. Abbott, I.H., and Von Doenhoff, A.E., <u>THEORY OF WING</u> <u>SECTIONS</u>, Diver, 1959.

INITIAL DISTRIBUTION LIST

No. copies

2

2

1

- Defense Documentation Center Cameron Station Alexandria, Virginia 22314
- 2. Library, Code 0212 Naval Postgraduate School Monterey, California 93940
- Professor T.H. Gawain, Code 57 Gn
 Department of Aeronautics Naval Postgraduate School Monterey, California 93940
- 4. Lcdr. John L. Parks COMRESTACSUPWING NAS New Orleans Belle Chasse, Louisiana 70146
- 5. Chairman, Department of Aeronautics 1 Naval Postgraduate School Monterey, California 93940

