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SOME ASYMPTOTIC RESULTS FOR OCCUPANCY PROBLEMS

Lars Holst

1. Introduction.

Suppose that balls are thrown independently of each other into N

cells, so that each ball has the probability pk of falling into the kth cell,

p1 + " + PN = 1. Let Yn denote the number of empty cells after n throws

and let Tb denote the throw on which for the first time exactly b cells re-

main empty, 0 < b < N. The symmetrical case p= "" =N =1/N is dis-
NI

cussed in e.g. Feller (1968), see occupancy or waiting time problems.

Depending on how b, n, N- oo, different asymptotic distributions for

Y and T can be obtained, see e. g. Holst (1971) and for the symmetric
n b

case see e.g. Samuei-Cahn (1974). In this paper some remaining problems are

investigated for the nonsymmetrical case.

To give precise meanings of the limits obtained, double sequences

e.g. (pN (Y are considered. But in order to simplify the notation the

extra index N will usually be omitted.

2. A bounded number of empty cells.

The following limit theorem for Y , the number of empty cells after

n throws, was proved by Sevastyanov (1972).

Theorem 1. If the p's are such that

(2.1) max (I pk)n 0
1 < k < N

and
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N(z. z) E(Y) n -E (I -pk) n  m < 00.
k=1

then

(2.3) P(Y =y) -* e /Y n

or equivalently

(2.4) Y => Po(m) , when N- oo.
n

Remark. When the p's are equal an expression for P(Y = y) can be
n

obtained from which (2. 3) can be derived by elementary methods, see e.g.

Feller (1968). In this case (2. l) and (Z. 2) are replaced by

(2. 5) N . exp(-n/N)-. m < w

or

(2.6) n/N- log N-. -log m > -o.

For Tb, the number of balls until b empty cells remain, the limit

distribution is given by:

Theorem 2. If b is a fixed integer and for some fixed numbers C and D,

(Z.7) 0 < C< Np k < D < oo , forall k and N,

then, when N-. cY
N Tb

(2.8) E U - pk) (Z(b+l))
k=l

and IN
(2.9) exp(-TbP k ) => x(Z(bl)

k=l
Before proving the theorem the following functions are considered:

N
(2.10) f(t) = fN(t) = - (l-D)t , t>0,

k=l

and
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N
(2.1U) g(t) g~t N M exp-tp k).

k =1
Lemma 1. If Condition (2.71) is satisfied, y > 0 is a fixed number, and

t = t N t(y) is defined by the equation

(2.12) f(t) =y

then

(2.13) 0 < C limr inf N log N/t <lim sup NlogN/tN < D <
NN

and when N-'-o

(2.14) ft] y,

(2. 15) max (1 - p k)[ 0

k(2.161 g(t) and g([t]) -y

where [t] denotes the integer part of t.

Lemma 2. If f is replaced b,. g and g by f in Lemma 1, then the same

conclusions hold.

Proof of Lemma 1. From Condition (2.7), it foilows that
N

(2.17) y 0-pk) -( /=
k=l

Hence !or c > 0 and N sufficiently large

(2.18) log y> log N -t (D+ej/N

and therefore

(2.19) D+E = (D+e) lin. (I/fl-log y/logN)) > lim sup N log N/t ,

Iwhich proves the right inequality of (2. 13).

To prove the laft inequality of (2. 131 the following estimate follows

from (2.7):
N

~2. 20) y = ' Z(1-Pk~ < N (1 - C/N)t

01600 -3-



or

(22)log y <log N t tlog(I C/N) <log N - tC/N.

From this it follows that

(2.22) C =C lim (1- log y/Iog N) < lim inf Nilog N/t.

To prove (2.14) we observe thatN-cN

t-1 It] > pt(2.23) (1pk) > (1>P)k

and using (2.7)
N N N

(2.24) (1 -DIN) 0 -P > N Z PkPk

or from (2. 12)

(2,25) D/N) v > f([t])>y

Fron which (2.14) follows.

Combining (2.7) and (2. 13) give for some K. > 0 and N sufficiently

large that

[t] CN) -K 1NlogN
(2.26) maxA - p < <(1- _I) (1 - CIN) 0, N-mook

which proves (2.15).

'Using (2. 7) and (2. 13) it follows that for some constant K

(2.27) 11 /(- pAI tIk) K -log N/N,

and therefore

N 1
<K E(l-P kt log N/N =K y log N/N 0

which proves (2.16).
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Proof of Lemma 2. The proof is essentially the same as that for Lemma a

Proof of Theorem 2. From the definitions it follows that

(2.29) Y < b <=> Tb < n

and therefore

(2. 30) P(Y < b) = P(Tb < n ) z P(f(Tb) > f(n))

Let y > 0 be fixed and define n = [t] with t = t(y) as in Lemma 1. According

to Lemma 1 the assumptions of Theorem 1 are satisfied. Hence

(2. 31) P(f(Tb) > y) = P(Y < b) P(Y < b)

where Y is Pc(y). Furthei-more it is well-known that

(Z. 32) P(Y < b ) P( Z (Z(b+l) > y).

(2. 31) and (2. 32) prove (2.8). Using Lemma 2,the assertion (2.9)

foljow. a

Remark, When the p's are equal the theorem can be written
Tb Z2

(2. 33) .4 ( -/N) => x (2(b+l)) ,

and therefore

(2. 34) Tb/N - log N -- log ( (2(b+l)))

This result was found by Baum and Billingsley (1965) using complicated

calculations. Using the result in Feller (1968) and the method of proof

of Theorem 2, (2. 33) and (2. 34) follows. A consequence of (2. 34) is

(2. 35) T b /N log N - I , in probability, as N-o.

Now (2. 35) will be generalized. First introduce the distribution

function

(2.36) HN(x) = (p NPk < x)/N

#1600



Lemma 3. If t t tN = t(y) is defined by

(2. 37) g(t) = g M (t) N y > 0,

and there exists a distribution function H(x) on [C, D] such that

(2.38) H N(x) - H(x), N - co

and

(2.39) 0 < C = inffx; Hx) >0},

then for 1/C > c > 0, when N - ,o

(2.40) gd(e + l/C)(N log N)) -~0,

and

(2.41) g 4 (-e + 1/C)(N log N)) m+ o

Proof. From the definitions it follows that

(Z. 42) 0 <y g ~(t) N- fDexp( _tNx /N)dH N~ W

IDexp((l - t,.x/N log ?J)log M~) dH x)

C
Consider

(2. 43) g N((c + 1/C) N log N) f jD exp((l -x4 +c C)/C) log N) d H N W
C

Now for C <x < D it is tbye that I - xfl+eC)/C < 0 and therefore the expo-

nent in (Z. 43) is negative so the integral tend to 0 when N- oo , which

proves (2. 40).

For proving (2. 41) consider

(2. 44) gN(,&+ 1/C) N log N) f 1 D exT((i - x(l - e-C),/C)log N)dH N X)
C

For C <x < C/(l-Ce) the exponent is positive and as the integrand is positive

(2. 44) could be estimated by

(2. 45) fC/(l-CE) exp((l - x(l-cC)/C)log NidHlx) W-+.
C

by Condition (2. 39).U
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tCorollary to Theorem 2. If the Conditions (2.38) and (2.39) are satisfied

then

(2.46) T IN log N - I/C , in probability, N -- I
Proof. Let e 1 0 and e z > 0 be given. Take a 6> 0 so that

(Z.47) P( x 2 (Z{]b+l)) < 6) < e 2/2

For N sufficiently large it foilows from Theorem 2 that

(2.48) P(gNITb) < 6 ) < s2/2

and from Lemma 3 that
(2.49) gN((£l+ I/C(N log N))< 6 .

Hence(2.50) P(T b/N log N > + /c)

NTb) < gN((N1 + I/C)(N log N)) <

P(g < 6) < /

In a similar way it is proven that

(2.51) P(T/N log N < -c + I/C) < e /2.
b/

Hence for N sufficiently large

(2.52) P(ITb/N log N - 1/Cl > c < E

Thus the assertion is prove d.

3. A small fraction of empty cells.

As above, Y denotes the number of empty cells after n throws.n

Theorem 3. if

(3.1) 0<C<Np, < D < o, forall k and N,

(3. Z) n/N- Co

and

#1600 -7-



N )n
(3.3) f(n) = E(Y = ( Pk "

k=1
then, when n =o ,

1l

(3.4) (Y - f(n))/(f(n))Z -> N(OY)

and

(3.5) (Y n g(n))/(g(n))Z => N(Ol) ,

where
N

(3.6) g(n) = exp(-nPk)

k=l

Proof. Using (3.1) and (3.3) it follows that
N

(3.7)(l -p < N (I - C/N)n +,

hence

(3.8) niN log N = 0(l)

Using (3.1), (3. Z), and (3.8) give
N

(3.9) If(n) - g(n)j < = exp(-npk)

Iexp(n log (1-pk + nPk) -l<

N
exp(-nPk)- K. n/N' <

< K- (n/N)- exp(-Cn/N)-0.

Hence it is sufficient to prove (3. 5). This will be established using con-

vergence of characteristic functions.

In Holst (1971) p. 167Z the characteristic function of Y is given by
n

(3.10) E(exp(itY)) = (n /Z ri Nn)
n

(e /zI) + (e l)exp(-N Pkz))dz

IzI =r./Nkl
Using Stirling's formula and changing to polar coordinates it follows that

-8- 01600 I



(3.11) E(exp(it(Y - )/or) (1 + o(1))

f* r (n/2Tr). exp(n(e _ 1 - ie)).
-Tr

N -nPk it/v i
*'l- (exp(-it e /-) - (1 + (e - 1)exp(-nPk e )))de

(1 + o(1)), f' t hn (0,t)d0,
IT

where
N

(3.12) p. = T = g(n) = , r > 0.

The integral will be studied by the same method as in Holst (1971).

Take 0 < a < 1/6 and split the interval -Tr < 0 < n into

(3.13) A = {0; a< lel < 7),

(3.14) B = {0; na - T < 101 < a}

and
a(3.15) C = {e ;le1 < n - I

From Lemmas 4-6 below it follows that

(3.16) E(exp(it(Y - F.)/a ) = (1+ (0)).
n

(fh + f h + f h)-O+O+exp(-t 2 /z), n- oo
A B C

By the continuity theorem for characteristic functions assertion (3. 5) is

proved, and thus the theorem.

With the same conditions as in Theorem 3 the following lemmas

hold.

#1600 9



Lemma 4. For every fixed real number t

(3.17) f hn(e,t)dO - 0 , n -oo.

A

Proof. As n/N - oo and o'- oo it follows that
- n N e it/I

(3.18) If I <  nIe •f Iexp(npk +e -ide
A A 1

1 N
< K na e -n H(exp(nPk cos a) + o(1))

2I

-n N ncosa
< K nze 2 e -0 0

Lemma 5 For ever' i /,ed real number t

(3.19) J-h 't),Jq- 0 , n - o c
B

Proof. From the assumptions,it follows that there exist positive numbers

K - K such that3 9N
(3.20) fI < K n? en J- H(exp(npk cos 0)+ O /))d,

B BI

< K n' 1 1 exp(np k cos n
I

(1 + K5  exp(-K 6 n/N)/a-)

-* -n 2a-l))_< 7 n z e exp(n (1 -%K n

< exp(-Kn )-0 , n- )- 0

Lemma 6. For every fixed real number t,

(3. 21) f h n(e,t)de - exp(-t 2 /2), n -- o
c

Proof. Expanding in series gives

(3. 22) log h n(Ot) = -n 02/2 + o(1)

N i0 1 ( it/ (r 1 ) i x ( n k cr 2 o / 7)
-+ (log (1 + exp(-npk e - 1)) - it exp(-n9V/')+' log(n/Zn).

-10- #1600
-j



Now, when n- co
(3.23)N ieit/(3.Z3 Iexp(-2npk e )e - 1)z

1
N

o(l) exp(-npk)/a = o(1)
1

and therefore
N

(3.24) (log (I +
1

N i0 it/-
(exp(-nP e )(e - it exp(-nPk)/c-) + o(i)

1

Furthermore, using (3. 8), (3.9) and the assumptions;, it follows that

N

(3.25) x-n
* ~ ~ exp(-n~

andthreor (.24 cn e rite
and therefore (3. 24) can be written

N N 10 2 2
(3.26) , (...) = Z(exp (-npk e )(it/ - t /2w

1 1

- it exp(-np k)/O-) + o(1)
N

= (exp(-nP)) - ) exp(-np k)/o-

zI
/2 + o(1)

Now, when n-oo ,
N 2

(3.27) (np ) 8 exp(-nPk)/- <
kJ k

2 2a-1 N< Kl (n/N) n N exp(-K 2 n/N)-- 0.

From this it follows that
N N

(3.28) v ('") = et nP k exp(-nPk)icr - t / Z + 0(l).

1 1
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Hence for e in C,

(3. 29) log h (0, t) -~log(Zir/n) =-nE)2 /2 + et Np x(nn nk ex(nk)/o.

- t/Z + o(l) = (n 0 -t n- n k exp(-np k)/O.) 2/2

2 N

Now, when n - 0

(3.30) N;1  x(-~)o < K3 n'2 N' N

exp(- n/N)- 0 .

Thus with ip=nzO the integral (3. 21) can be written

(3.31) ef(6i-(D/ h 2 2+o~) ~f n f aC ip<na

which converges to exp(-t 2/2) when n--o0 Uo

4. The waiting time for a small fraction.

As above let Tb denote the number of balls thrown until exactly

b =b cells remain empty. Let t be the unique solution of the equationN b
N

(4.1) b g ~= exp(-tb ).
k= I

Theorem 4. If, when N-o

(4.2) bN

N

and

(4.4) CG<C <N Pk < D < ~,for all k and NY

then
L N

(4.5) b N (T b - tb) p k ex(t p N(0,l1).

-12- #1600



Proof. From the assumptions it follows that
N

(4.6) C b/N < A = ,jPk exp(tbPk) < D b/N
1

Thus for N sufficiently large

(4.7) 0 < C < A- N/b < D <0

As in the proof of Theorem Z the following relation holds
1

(4.8) P((Tb - tb) 4/b 2 < x) = P(Y < b) ,

where
I

(4.9) n = [tb + x b2 /AI.

It is seen that

(4.10) g(n) (I + o(1))= g(tb + x

= exp(-t bpk) X ( - x Pk bz/A + O(I/L,

= b - x" b? + 0(l)

and thus

(4.11) g(n) +0o,

and from (3.9) it follows that

(4.12) f(n) -- +O0.

Furthermore,

(4.13) b g(tb > N exp( D tb/N),

implying that

(4.14) t /N -A + -0,

and therefore

(4.15) n/N +ae.

#1600 -13-



Hence the assumptions of Theorem 3 are fulfilled and (4.8) and (4.10) give

(4.16) P(T-tb)4/be < x) P(Y< b) -

= ((b - g(n))/ (g(n))2) + o(1) =

0 *((x b + O(l))/(b(l + o(l)))a) + o(l) -D o(x)

where O(x) is the standardized normal distribution function. This proves

the theorem. U
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