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SOME ASYMPTOTIC RESULTS FOR OCCUPANCY PROBLEMS
Lars Holst

1. Introduction.

Suppose that balls are thrown independently of each other inte N
cells, so that each ball has the probability pk of falling into the kth cell,

pl + ...+ pN =1, let !n denote the number of empty cells after n throws

and let Tb denote the throw on which for the first time exactly b cells re-

main empty, 0 <b < N. The symmetrical case p, =... = p,. = 1/N is dis-
- 1 N

cussed in e.g. Felier (1968), see occupancy or waiting time problems.
Depending on how b, n, N— «, differert asymptotic distributions for

Yn and Tb can be obtained, see e.g. Holst (1971) and for the symmetric

case see e.g, Samuel-Cahn (1974). In thic paper some remaining problems are
investigated for the nonsymmetrical case.
To give precise meanings of the iimits obtained, double sequences

)

(Y ..).. are considered. But in order to simplify the notation the

€.9. N NN

{
ﬂpkN

extra index N will usually be omitted.

Z. A bounded number of empty cells.

The following limit theorem for Yn , the number of empty cells after
n throws, was proved by Sevastyanov (1972).

Theorem !. if the p's eare such that
n
(2.1) max (- pk) -0
I<k <N

and

Sponsored by the United States Army under Contract No, DAAG29-75-C-0024.
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N
n
(2.2) EY) = ), (1-p) =m<ew®,
k=1
then
(2.3) PY =y) ~ m - e/t ,
or equivalently
(2.4) Yn => Po(m), when N -,

Remark. When the p's are equal an expression for P(Yn =y) can be -
obtained from which (2. 3) can be derived by elementary methods, see e.qg.

Feller (1968). In this case (2.1} and (2. 2) are replaced by

{2.5) N . exp(-n/N)-» m< w
or
(2.6) n/N - log N~ -logm> -,

For Tb , the number of balls until b empty cells remain, the limit

distribution is given by:

Theorem 2. I{ b is a fixed integer and for some fixed numbers C and D,

(<. 7) 0<C< Np, £ D<o, forall k and N,
then, when N-» o |,

N Tb 2
(2.8) Y, L-p)° = FxTab),

k=1
and

N e

. P
(2.9) kZJl exp(-T, P, 1 => 3 X" (2(bH)) .
Before proving the theorem the following functions are considered:
N
. t

(2.10) ft) = £ it) = g;' (I-p) , t>0,
and

-2- #1600




N
(2.1) o) = gyt = kz_ji exp(-tp, ).
Lemma l. If Condition (2.7) is satisfied, y >0 is a fixed number, and

=t = t(y) is defined by the equation

N

(2.12) ft) =y,

then

(2.13) 0 < C < lim inf N log N,’tN < lim sup NlogN/tN <D<
N ~ o0 N~ 0

and when N — o

(2.14) () - v,

(2.15) max (1 - pk)[t]—- o,
1<k<N

(2.15) a(t) and g(ft]) - y.

where [t] denotes the integer part of t .

Lemma 2. If f isreplacedby g and g by f in Lemma 1, then the same

conclusions hold.

Proof of Lemma 1. From Condition (2.7}, it foilows that
N t t
(2.17) y= J{l-p) 2 N-({1-D/N).
k=1
Hence ior ¢ » 0 and N sufficiently large

(2.18) logy >log N -t (B+e)/N

and therefore

(2.19) D+e = (D+e) lin. (1/(1-log y/logN)) > lim sup N log N/t
N+ N -~- ®
which proves the right inequality of (2.13).

\J’

To prove the lef: inequality of {(2.13) the following estimnate follows

from (2.7):
N t t
{2.20) y = L-p) < N-(1-C/N),
1

#1600 -3-
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or
(2.21) logy < log N - tlog(! - C/N)<log N -tC/N .
From this it follows that
(2.22) C = C lim (1 - log y/iog N)} < lim inf N log N/tN .
N-e ©© N—-®
To prove (2.14) we observe that
(2.23) a-p" > a-pp > 0t

and using (2.7)
N

(2.24) (1-D/N)" Y a-p) > I‘ZI)(I-p > §(1 -p)
. i | S 1 | S i k®
or frem (2.12)
(2.25) a- D/N)'ly > f(fth > vy.
From which (2. 14) follows.
Combining (2.7) and (2.13) give for some Kx >0 and N sufficiently
large that
(2. 26) max(t - p ) < (1 - e/l < q- et 0, N
which proves (2.15).
Using (2.7) and (2.13) it follows that for some constant K

- tpk

(2.27) L-e */0-p)'| < K- log N/N,

and therefore
N t "Ry t
(2. 28) €t - g)] < 21-p) - [1-e “/(-p)|
1
N
< K J(-p) log N/N = Kylog N/N =0,
I

which proves {2.16). »

-4- #1600




Proof of Lemma 2. The proof is essentially the same as that for Lemmma .. ®

Proof of Theorem 2. From the definitions it follows that

(2. 29) Y < b <=>T < n
and therefore

{2.30) P(Yn < b) = KT < nj = P(f(Tb) > f(n)).

b

Let y > 0 be fixed and define n = [t] with t =t(y) as in Lemmal, According

to Lemma 1 the assumptions of Theorem 1 are satisfied. Hence

(2.31) P(f(Tb) 2yl = f’(Yn < b~ P¥YL b),

where Y is Pc{y). Furthermere it is well-known that

(2.32) P(Y < b) = P(%xz(?.(bﬂ))z y).

(2.31) and {2.32) prove (2.8). Using Lemma 2,the assertion (2.9)
follows. .

Remark, When the p's are equal the theorem can be written
T

2
(2.33) J-(-1/MN) b s 1 x7 2(b+ln
and therefore
(2. 34) Tb/N - log N = log l% xZ(Z(bH)H .

This result was found by Baum and Billingsley (1965) using complicated
calculations. Using the result in Feller (1968) and the method of proof
of Theorem 2, (2.33) and (2. 34) follows. A consequence of (2. 34) is
(2.35) T, /Nlog N - 1, in probability, as N -2 ,

Now (2. 35) will be generalized. First introduce the distribution
function

(2.36) Hy(x) = # (P : NB < xI/N

#1600 -5-




Lemma 3. If t= tN = t(y) is defined by

{(2.37) g(t) = gM(tN) =y >0,

and there exists a distribution function H(x) on [C,D] such that

(2. 38) HN(X) -~ H(x), N o,
and
(2.39) 6 <C = inf {x; H(x) >0},

then for 1/C > ¢ >0, when N—o

(2.40) gN((s+ 1/C)YN log N)) - 0,
and
(2.41) g fl-€ + 1/C)(N log N))~+ .

Proof. From the definitions it follows that

(Z.42) 0<y = gN(tN) = N-fDexp(-tNx/N)dHN(x) =
C

= | D expl(1- t, /N log N)log N) dH, (x) .
c 2 N
Consider

(2.43) gN((e +1/C) Nlog N) = ch expl{l-x{14¢C)/C) log N)dHN(x) .

Now for C <x < D itis true that 1 - x{14eC)/C < 0 and therefore the expo-
nent in (2. 43) is negative co the integral tend to 0 when N--® , which
proves (2. 40).

For proving (Z. 41) consider

(2.44)  glt-e +1/C) N log N) = [P expltr - x(1 - £C)/Clog N)OH, () .
c

For C<x §_C/(1—Ce) the exponent is positive and as the integran::i is positive

(2. 44) could be estimated by

(2. 45) fc/u'cuexp((l - x{1-eC)/C)log N)dHN{x; — 400
C
by Condition {2. 39). b

-6- #1500
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Corollary to Theorem 2. If the Conditions (2.38) and (2.39) are satisfied

then

(2.46) T, /N log N— 1/C, in probability, N —=o .

Proof. Let g > 0 and e, > 0 be given. Takea &> 0 so that
(2.47) P £ x° (2(b+])) < &) < ez/z .

For N sufficiently large it follows from Theorem 2 that
(2.48) Plgp(Ty) < 5) < eZ/Z

and from Lemma 3 that

(2.42) gN((sl+ 1/CHN log N)}< & .
Hence
(2.50) P(Tb/N logN > g, * 1/C) =

Plgn(Ty) < gy lle 1/C)N log N)) <
\
P(g (T} < &) < ez/z ;
In a similar way it is proven that

(2.51) P(Tb/N logN < -g, + 1/C) < 87/2.

1

Hence for N sufficiently large

(2.52) P(in/N log ¥ -1/C} > g) < 2,
Thus tke assertion is provad. s

-

3. A smail fraction of emyty cells.

As above, Yn denotes the number of empty cells after n throws.

Theorem 3, 1if

(3.1 0<C<Np, < D<o, forall k and N,
N

{3.2) n/H - =,

and

#1600 -7-




N
_ _ n
(3.3) fn) = E(Y) = Z (1-p) =+,

then, when n- »,

1
(3.4) (Y - f(n))/(f(n))® => N{O,1),
and
1
(3.5) (Y - g(n)/(g(n))® => N(0,1),
where
N

(3.6) g(n) = ) expl-np,)

k=1
Proof. Using (3.1) and (3. 3) it follows that

N
n

(3.7) ;”‘pk’ < N-(1-C/N)" = 40,
hence
(3.8) n/Nlog N = Ofl).

Using (2.1), (3.2), and (3. 8) give

(3.9) ifin) - gm} < exp(-np, ) .

r-aL\4 2

- |exp(n log (1-p,) + nP) -1]<

< exp(-np,) + K- n/N° <

< K- (n/N) - exp(-C n/N)~ 0.
Hence it is sufficient to prove (3.5). This will be established using con-
vergence of characteristic functions.
In Holst (1971) p. 1672 the characteristic function of Yn is given by
(3.10) Elexp(itY ) = (n!/2aN") -

N 1+l it
- (e /2" H (1+ (e -llexp(-Np, z))dz

lz] =n/N

Using Stirling's formula and changing to polar coordinates it follows that

-8- #1600
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(3.11) E(exp(it(Y - w/e)) = (1+o0o(l) .
T -é- io .
f (n/2m)2 . exp(n(e’ -1 - i8)).
-1
N -np . .
T (exp(-ite /o) - (L4 (/7 - Dexpl-np,_e'®)))ae
1
= (14 o(l)- [: h (0,t)d6 ,
where
) N
(3.12) p = o =g = ) exp(-np), o>0.
1

The integral will be studied by the same method as in Holst (1971),

Take 0 < a <1/6 and split the interval -m < @< 7 into

(3.13) A= {8; a< |8l <7},

1
(3.14) B={60""%<]6] <a},
and

a-t

(3.15) C = {6;]8] <n""%2}.
From Lemmas 4-6 below it follows that
(3.16) E(exp(it(Y - w/e) = (1+o(l)j.

2
({;h" + _{3 oo+ j(;hn)—-o+o+exp(-t /2), n-w,

By the continuity theorem for characteristic functions assertion (3. 5) is
proved, and thus the theorem, L

With the same conditions as in Theorem 3 the following lemmas

hold.

#1600




Lemma 4. For every fixed real number t

(3.17) fzs h (8,)d6 =~ 0 , n = .
Proof. As n/N - o and o-- it follows that
1 N
(3.18) |f | < }(1 . née™™. fTT ]exp(npkeie)+eit/0'_llde
A Al
: . N
< K_.n%e || (exp(np, cos a) + o(l))
i
iKZ n?_enZNenccsa -0 . -

Lemma 5 For ever- -ized real number t
(3.19) f h’!f',t)dﬁ -~ 0, n—» o

B
Proof. From the assumptions,it follows that there exist positive numbers
K3 - K9 such that

.
(3. 20) | f1< Kk, n%e™ [ [[(exp(np, cos 8) + O(1/c))de
B ~ 3 B 1 k

1

< K, n%? e " T exp(np, cos n
- 4 1 k

[

a-

) .

(1+K_ - exp(-K6 n/N)/e)

(S,

e " exp(n (1 - Kg nZa-l))

[T

5}~’7n

< exp(-Kgnza)-O, n - o , .

Lemma 6. For every fixed real number t,
2
(3.21) / h (6,t)d8 = exp(-t°/2), n-w,
C
Proof., Expanding in series gives

(3. 22} log h_(0,t) = -n 0%/2 + o(l)

N i0 it/
+ E {log (1 + exp{-np, e ) (e1 ¢
i k

-10- #1600
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Now, when n- « |
N

i0, it 2
(3.23) S lexp(-2np,_ e (e /o 12

1 k

N 2
= o(l) - ), exp(-np )/e" = o(l) ,
1
and therefore
N
(3.24) Ylog (L4 ...)-...)
1

N i6
= Z (exp(-np, e
I k

Furthermore, using (3.8), (3.9) and the assumptions; it follows that

(eit/ o

) -1 - it exp(-npk)/o') +o(l) .

N
(3.25) Z exp(-nP, em)/w2 -1,
1
and therefore (3. 24) can be written
N N i6 2,, 2
(3. 26) 2, (-.0) = Jexp (-np, e )it/ - t°/207)
1 1

it exp(-npk)/cr) + ofl)

N .
it ;(fexp(-ru:)k(e18 - 1)) - 1) exp(-n pk)/o-
~ %2 + oll).

Now, when n -~ « ,
N 2 2
(3.27) IZ(npk) 0 exp(-np, /o <

1
< K1 (n/N)2 nza-1 N2 exp(-KZ n/N)—- 0.

From this it follows that
N

(3.28) Yooy = et
1

-~z

npk exp(-npk)/'cr - tz/z + ofl).

#1600
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Hence for 0 in C,

N
(3.29) log hn(e,t) -7 log(2n/n) = -nez/Z + ot Z np, exp(-npk)/o-
1

2 1 N1 2
-t°/2 + o(l) = -(n% -t Z n?® P exp(-npk)/a) /2
1
N ,

-t21-( ¥ n? P, exp(-nB)/r))/2 + oll) .
T
Now, when n - o

1 L
n® P, exp(-npk)/o' < K3 n® N L, N

N

(3.30)

-2 .

exp l-K4 n/N)- o0,

e

Thus with ¢ = n®@ the integral (3. 21) can be written

1
(3.31) [ b =] (2m)2
c l¥]<n

- exp(-(-o(N?/2 - t%/2 + o(l) dy ,

which converges to exp(-tZ/Z) when n-ewo , s

4. The waiting time for a small fraction.

As above let 'I‘b denote the number of balls thrown until exsctly

b = bN cells remain empty. Let tb be the unique solution of the equation
N
(4.1) b = git,) =k_21 exp(-t, p, ).

Theorem 4. If, when N -~ ’

{4.2) by = +°,
(4. 3) bN/N - 0,
and
(4. 4) C<C_<_Npk§D<°o, forall k and N,
then
1 N
-2
(4.5) by (T, - t,) »ezf" exp(-t,p ) = N(0,1).
=12«
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Proof, TFrom the assumptions it follows that

(4.6) Cb/N < A =

=1z

Thus for N sufficiently large
(4.7 ) 0<C<A-Nb<D<wm,

As in the prcof of Theorem 2 the following relation holds

1
{4.8) PUT, -t} &b® < x) = MY < B,
where

1
(4.9) n = [t + xb*/4.

It is seen that

1
(4.10) g(n) (1 + o)) = g(tb + x E%/A)

1
) _Z-t’ /1
2 exp(-tp) - (1 - xp, b3/A + OQ/L,

L
b - x-bZ + O),

[}

and thus
(4.11) g{n) - +%0,

and from (3.9 it follows that

(4.12) fln) - +%o,
Furthermore,
(4.13) b = g(ty) > N exp(-T t, /N),

implying that
(4.14) t /N = +oo,

and therefore

(4.15) n/N - 4,

- /
P, exp(-t p) < Db/N .

i
Coni i A
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Hence the assumptions of Theorem 3 are fulfilled and (4.8) and (4.10) give

(4.16)

where

the theorem.

-14-

1
2 b — —
P(T, -tbm/b < x) = P(Yn < b) =

]

1
d((b - g(n)) / (g(n))?) + o(l) =

1 Py
d((xb% + OM)/(b(l + o(1)))?) + ofl) = &(x) ,

®{x) is the standardized normal distribution function. This proves
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