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ABSTRACT

Two structural tests for random number generators of

the Lehmer congruential type are discussed. They are

known now to be essentially equivalent but are formulated

incorrectly and the computational algorithms to implement

the tests are unnecessarily complicated. New algorithms

for these tests will be sketched.
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I. INTRODUCTION

The history of digital computing is characterized by

the near exponential progress in hardware, operating sys-

tems, programming languages, and numerical computing algor-

ithms. In contrast, the science of pseudo-random number

generation has virtually stood still for the last twenty

five years in spite of literally hundreds of publications

on the subject.

D. H. Lehmer proposed the linear congruential scheme

for the generation of pseudo-random numbers on a digital

computer in 19 51. This scheme has been the singularly most

popular method ever since. Recently, feedback shift-register

methods have been proposed for pseudo-random number generation

but they have not achieved as widespread use.

It is essential to recognize the fact that neither method

produces truly "random" numbers by any definition of random-

ness. Consequently, a great deal of effort has been invested

in examining the sequences produced by random number genera-

tors to establish whether they meet statistical tests for

randomness for relatively short samples. Given that a

generator has "passed" an acceptable battery of statistical

tests, its sequence is considered adequate for use in simulation

experiments

.

An elaborate collection of statistical tests has been

developed over the years and Knuth [Ref. 8] provides an



excellent discussion of these tests. They are, however, not

sufficient for certifying the quality of a generator. The

report by Learmonth and Lewis [Ref. 9] attests to this fact

in that for certain generators known through use to be poor,

the statistical tests were not conclusive in identifying

their weaknesses.

The recent work on testing Lehmer congruential random

number generators has concentrated on characterizing the

entire periodic sequence. The two tests proposed, which are

essentially similar, are the lattice test and the spectral

test. These tests provide deterministic rather than statis-

tical criteria for rating the quality of the sequences

.

The thesis to be examined here is that although these

two tests are a significant advance in the testing of Lehmer

congruential random number generators, they are formulated

incorrectly and the computational algorithms to implement

the tests are unnecessarily complicated.

It will be shown that the proper space in which to

characterize finite periodic sequences is an algebraic group

rather than the space of the natural numbers or the real

line as has been previously assumed. The development to

follow will concentrate on the class of primitive root/prime

modulus random number generators which form a more general

algebraic system, a finite field.

The special properties of finite field arithmetic will

be developed and several new theorems will be presented



regarding primitive roots of prime fields. Using these

properties of finite fields, the structure of linear con-

gruential sequences on finite fields will be examined.

The conventional lattice and spectral tests will be

defined and their algorithms outlined. These two tests

will then be recast for finite field assumptions. New

algorithms will be sketched as potential replacements for

the lattice and spectral tests.

While the surface will only be scratched, the underlying

theory presented will form the basis for future research

in random number generator testing.



II. FINITE FIELDS

In this section, it is intended to make a critical

reevaluation of the assumptions underlying the mathematical

characterizations of linear congruential sequences. Both

the spectral test of Coveyou and Macpherson and Knuth and

the lattice test of Marsaglia and Ahrens and Dieter makes

the very important assumption of an infinite sequence of

integers. As will be shown, for the spectral test this

assumption is critical for the development of the equidis-

tribution properties of linear congruential sequences.

Although the lattice test does not require this assumption,

it is inherent in the development of the computational

algorithm.

Abandoning this assumption and using the more appro-

priate assumption of a finite sequence, it will be seen that

both the theoretical as well as computational development

will be considerably more clear and concise.

A. FINITE FIELDS

The integers resulting from the linear congruential

equation defining a random number generator from an alge-

braic group. A group is defined as a set of elements upon

which is defined a binary operation called multiplication

with the following properties:

1. the operation is closed, that is if a and b are

elements of the group then c = ab is also in the group;



2. the operation is associative, that is

a (be) = (ab) c ;

3. there is an identity element in the group, usually

denoted by the integer 1 such that la = a holds for every

element a of the group;

4. for each element a of the group there is an inverse

denoted a such that a a = 1.

The residues which are relatively prime to a general

modulus m under the operation of multiplication modulo m

form a group as defined above. When the group operation is

multiplication, the group is called a multiplicative group.

Similarly, an additive group may be defined with the group

operation being addition. The inverses in the multiplicative

group fill the role of division. For additive groups, the

inverse is subtraction and the identity element is 0, i.e.,

a + = a. In either case, if the group operation is also

commutative, ab = ba or a + b = b + a, the group is given

another adjective, Abelian.

To recapitulate, for a random number generator

X. , E a X. (mod m) where m is composite, the integer residues

form a finite Abelian multiplicative group under the opera-

tion of modulo multiplication. For the present case the

residues of the random number generator X. ,. 5 a X. (mod p)

,

3 i+l l c

where p is prime, form a more general algebraic system,
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specifically they form a finite field. A field is a gener-

alization of a group wherein the group operations of addition,

subtraction, multiplication, and division are all defined

either as group operations or their respective inverses.

It is the arithmetic properties of finite fields that

will reveal the structure of the linear congruential sequences

B. FINITE FIELD ARITHMETIC

Given a finite field as the algebraic structure on which

the residues from the random number generator are defined,

it remains to examine how the ordinary arithmetic operations

work in this system.

Modulo addition works as would be expected. In ordinary

addition over the integers, the only solution to the equation

a + x = is x = -a. In finite field arithmetic over the

positive integers the solution is given by another positive

integer called the additive inverse. For example, in the

finite field formed by the prime 17, the additive inverse

of the integer 3 is not -3 but 14

3 + 14 = 17 = (mod 17)

Therefore x = 14 satisfies a + x = in this finite field.

Modulo multiplication also works as in conventional

arithmetic. The multiplicative inverse, which plays the role

of a divisor is somewhat differently defined. In ordinary

arithmetic over the integers the solution to ax = 1 is

11



uniquely x = 1/a = a . In finite field arithmetic, the

role of a is taken by another positive integer in the

field. Again referring to the field formed by the prime

17, the solution to3x=lisx=6, i.e., 3x6= 18 = 1

(mod 17) . Therefore 3 = 6 in this field.

Although subtraction and division are defined as the

inverses of the field operations of addition and multipli-

cation, the algebra of equations over the finite field

becomes more difficult. The absence of negatives makes

solutions to simple equations such as 3 - x = 7 impossible.

Since the labelling of the field elements as positive

integers was arbitrary, it is possible to relabel the ele-

ments more conveniently. One such relabelling, is as

follows,

{- i(p-l), - |(p-3), ..., -1, 0, 1, ..., j(p-3), i(p-l)}

Here the elements previously labelled with integers greater

than y(p-l) are mapped into their additive inverses which

are less than or equal to j(p-l) and of opposite algebraic

sign. For instance, in the field formed by the prime 17,

the positive integer 14 is mapped into the element -3. This

mapping preserves the additive inverse of 3 since

3 + (-3) = as required. This new notation will be called

the primitive mark notation.

12



C. PRIMITIVE ROOTS

Before examining the structure of linear congruential

sequences, it will be instructive to examine primitive roots

of primes in the context of finite fields. As previously

indicated, for the type of random number generators to be

examined here, namely the primitive root/prime modulus type,

the, multiplier is required to be a primitive root to guar-

antee a full period. In finite field terminology primitive

roots are termed generators of the field.

The term generator derives from the finite analogy of a

generating function. Any primitive root of the prime finite

field may be used in defining the generating function on

the finite field. The term primitive root also has the very

special connotation of primitive root of unity. A primitive

root serves for a finite field the same special properties

that the primitive root of unity exp {2irik} serves for the

complex field. In fact, the (infinite) field of complex

numbers is the only other field which possesses a primitive

root of unity.

While it is known that every prime possesses at least

one primitive root, the only other significant fact that

number theory offers is that each prime p contains precisely

<j>(p-l) primitive roots. Here <j)(p-l) is Euler's totient

function which is defined to be the number of integers less

than and relatively prime to (p-1) . When constructing a

primitive root/prime modulus random number generator the

greatest problem lies in discovering a primitive root of the

13



given prime. The procedure usually followed is to use a

trial and error technique on small integers and then to

apply the definition of a primitive root to verify if the

number is in fact primitive. This actually is not an easy

task since showing that p-1 is the least positive exponent

such that ap = 1 (mod p) requires considerable computation.

Tables do exist listing several primitive roots for some

primes and this is a great help. Knowledge of one primitive

root provides a rather easy method for finding others. A

simple, but potentially very lengthy algorithm for finding

all the primitive roots of a given prime is as follows

.

Algorithm A :

Al. Factor p-1 into its prime factors. (A sieve

method may be used.)

A2 . Select a known primitive root, say a; set k = 1.

A3. Divide k by each of the prime divisors of p-1.

If any of the prime divisors divides k evenly,

i.e., no remainder, then a is not a primitive

root, go to A4 . Otherwise print a as a

primitive root.

A4. If k is greater than or equal to p-2, stop, all

primitive roots have been found and printed;

otherwise k = k+1, go to A3.

Viewing primitive roots as generators of the finite field

of characteristic p, it is possible to use the properties of

finite fields to discover further knowledge about other

14



primitive roots. All finite field elements may be represen-

ted as power residues of a primitive root of the field, that

is, every element may be represented as a (mod p) for a

unique k. The multiplicative inverse of any finite field

element is found easily using the following lemma.

Lemma 1 : The multiplicative inverse of a finite field

element (not necessarily a primitive root) , a (mod p) , is

simply a'P- 11^ (mod p) .

Proof : aVP-"-* = aV^a"* (mod p)

= 1 (mod p)

since a " = 1 (mod p) by definition of a primitive root.
i

Q.E.D.

This lemma leads to the following theorem concerning the

multiplicative inverses of primitive roots.

Theorem 1 : If a is a primitive root of the prime p, then

its multiplicative inverse a = a p (mod p) is also a

primitive root.

Proof ; The multiplicative inverse of a is, by Lemma 1,

-1 _ (p-l)-l (p-2) , , .

a = a r = a r (mod p)

.

To show that a = a p
) (mod p) is a primitive root of p,

it must be shown that (p-1) is the least positive exponent

such that

15



(a
-l )( p-l) .

(a
(p-2),(p-l) .

1 (mQdp) _

Hence,

(a
-lj (p-1)

E (a
(p-2),(p-l) 5a (p-2)p

a
-(p-2)

= a (P-D (P-D-1 a"(P-2)

1 a"
1

a~ ( P- 2)

= a (F-2) a
-(p-2)

= 1 (mod p)

.

Assume (a (p~ 2),q = 1 (mod p) with < q < (p-1), then

, (p-2) ,q _ (p-l)q -q _ -q . , .

(a r '^ = a e ^ a ^ = a n (mod p) .

Applying Lemma 1 again

a
-q = a (p-D-q (mod p) .

If a q is congruent to 1 modulo p this would imply a " "

is also congruent to 1 and this contradicts the assumption

that a is itself a primitive root, i.e., (p-1) is not the

least positive exponent such that a p = 1 (mod p) . Q.E.D.

16



If the multiplicative inverse of a primitive root is also

a primitive root then it would be logical to examine additive

inverses. Unfortunately the case for additive inverses is

somewhat more restrictive. To examine the additive inverses

of primitive roots it is necessary to separate the primes

into two classes, specifically the classes p = 1 (mod 4)

and p e 3 (mod 4) for primes p > 2. It is trivial to see

that these are the only two classes into which the primes

fall modulo 4.

Theorem 2 : If a is a primitive root of the prime p > 2,

then the additive inverse of a is also a primitive root of

p if and only if p = 1 (mod 4)

.

Proof ; In the unambiguous notation of primitive mark repre-

sentation, the additive inverse of a primitive root a is

-a. To show that -a is a primitive root of p when p = 1 (mod 4)

,

(
_ a)

(p-l) (mod 4)
s (

_a)
_

x (mod p) _

To show that -a is not a primitive root of p when p e 3 (mod 4)

,

, . (p-l) (mod 4) _ , ,2 . 2 _ , , , »

(-a) ^
e (-a) e a = 1 (mod p) .

Since it was assumed that a was a primitive root of p, the

above contradicts the primitivity of a, i.e., p-l is not the

least positive integer such that a " = 1 (mod p) for

primes p > 2. Q.E.D.

17



The two theorems just presented offer some insight into

the distribution of primitive roots over a prime finite field.

Theorem 2 is particularly instructive when considering the

field integers in their primitive mark representation. Know-

ing that the additive inverses are also primitive roots for

certain primes, the <|>(p-l) primitive roots are distributed

symmetrically about the origin at 0. Considering again the

finite field formed by the prime (17 = 1 (mod 4) ) , there

are <J>(16) - 8 primitive roots distributed as follows:

-8-7-6-5-4-3-2-1012345678

The respective multiplicative inverses are indicated.

For the case of primes p = 3 (mod 4) , the situation is

less appealing. Since the additive inverses are not primitive

roots, the symmetry is lost. There is no particular pattern

to the distribution of the primitive roots or their

multiplicative inverses.

18



III. STRUCTURE OF LINEAR CONGRUENTIAL SEQUENCES

The attempts to characterize the sequences emanating from

linear congruential random number generators recently have

focused on structural representations. The lattice test im-

poses a grid on the generated n-tuples of points and charac-

terizes the sequences in terms of the lengths of the sides of

the smallest n-dimensional hypercube which can be constructed.

The spectral test, which can be shown to be a variant of the

lattice test, views the n-tuples as forming waves of hyper-

planes and characterizes the sequence bythe "frequency" of

these waves

.

Marsaglia [Ref. 9] attempted to expose more of the repeti-

tive structure of the generated sequences. Three new theorems

will be presented here to further characterize the structure

of these sequences. By exploiting the primitive mark notation

for finite fields more insight will be gained. These new

theorems will then be contrasted with Marsaglia 's work, lead-

ing to a redevelopment of the lattice test and spectral

test.

A. THE FUNDAMENTAL SUBSEQUENCE

It is known that the period of a primitive root/prime

modulus random number benerator is (p-1) . Using the positive

integer representation for the elements of the finite field,

the sequence appears to have full period. The following

theorem will establish the existence of a more fundamental

half sequence.

19



Theorem 3 : The sequence of (p-1) integers generated by a

primitive root/prime modulus random number generator, when

expressed as primitive marks, consists of a fundamental sub-

sequence of length y(p-l) . This fundamental subsequence is

followed by a replicate subsequence identical to the first

except for opposite algebraic sign. These two subsequences,

each of length y(p-l) constitute the effective period of

length (p-1)

.

Proof : Without loss of generality, let the sequence begin

with x
n

= 1, then x, = a, the primitive root multiplier. In

th k
general, the k element is x, E a (mod p) . After generating

•s-(p-l) elements of this sequence, the next integer element

is

j(P-1)
x, e 2 (mod p) .

Now, by definition of a primitive root, a El (mod p)

,

therefore

2 2
(p_1) 2

(d-1)
xf E (a^ ) E a^ p

L)
E 1 (mod p) .

f(p-U

This implies that x, = ± 1 (mod p) . In fact,

7<P-U
x- E -1 (mod p; (the primitive mark representation of

y(p-D
(p-1) ) . Since it is known that each integer appears once and

only once in the sequence and +1 appeared as x
Q

, therefore,

beginning with element x, / the same fundamental subsequence
y(p-l)

of primitive marks repeats with opposite algebraic sign. Q.E.D.

20



For illustration, consider the following example using

the prime modulus 17 and primitive root 3.

Deviate X
Q ^ X

2
X
3

X
4

X
5

X
6

X
?

Xg ^ X^ X^ X^ X^ X^ X^ X^

Positive
i 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

integer

Primitive
i 3 _8 _7 _4 5 _2 -6 -1 -3 8 7 4-5 2 6 1

mark

FIGURE 3.1 X.
+1

E a X
±

(mod p) ; a = 3, p = 17

For the lattice test, the consequences of this theorem

are not particularly important. The grid formed by the lattice

of n-tuples is very easily constructed using very few n-tuples

and its regularity is apparent without having to generate the

entire sequence. For the spectral test, however, the ffect

would be a folding of the sequence onto itself.

The next theorem relates the properties of multiplicative

inverses to the resulting sequence generated by primitive

root/prime modulus random number generators

.

Theorem 4 : In the primitive root/prime modulus random number

generator X. , = a X. (mod p) , replacing the multiplier a by

its multiplicative inverse, a , results in a generated sequence

which is precisely the reverse of the sequence generated by

a.

21



Proof : The sequence produced by X. , e a X. (mod p) starting

with X
Q

= 1 is X: = {1, a, a
2

, ..., a (p~ 2)
, a

(p_1)
} (mod p) .

The sequence produced using the inverse a starting with

X* = 1 is X*: = {1, (a"
1
), (a"

1
)

2
(a"

1
)
(p" 2)

, (a"
1

)

(p- 1}
}

(mod p) . By definition of a primitive root, a p ' = 1 (mod p)

therefore,

1 = X* E X j
E a (p" 1)

E 1 (mod p)

.

Similarly,

a = X? = X. n\ a = a a =a (mod p)

By induction, for the general element X*, the corresponding

element of X is X, , ,, , _ , ,,

(p-k-1) , (see Lemma 1)

,

"k „* v (p-k-1) _ (p-1) -k _ -k , , ,

a = X* = X. _k_-,N = a. = a r a = a (mod p)

Q.E.D.

Clearly, the sequence generated when the multiplicative in-

verse is substituted, is precisely the reverse of the one

generated using the original primitive root. Application of

Theorem 3 will reveal that the fundamental subsequences are

reversed also.

Essentially, substituting the multiplicative inverse for

the primitive root multiplier causes the random number generator

to run "backwards."

22



For the special case of prime moduli such that

p = 1 (mod 4) , substituting the additive inverse for the

primitive r-ot multiplier results in further interesting

properties of the sequence as the following theorem

demonstrates

.

Theorem 5 ; In the primitive root/prime modulus generator

X. , = a X. (mod p) , where p = 1 (mod 4) , replacing a by

its additive inverse, -a, results in a generated sequence

with every odd numbered element of the sequence replaced by

its additive inverse. Expressed in primitive mark notation,

the fundamental subsequences are the same as for the multi-

plier a except that the odd numbered elements have opposite

algebraic sign.

Proof : Without loss of generality, let the sequence

X. , E a X. (mod p) begin with X-. = 1, then the generated

sequence is

X: = {1, a, a
2

, ..., a (p~ 2)
, a (p~ X)

} (mod p)

j(p-D
It was shown in the proof of Theorem 3 that a = -1 (mod p)

,

1 1

hence a2 (p~ 1)+1 e a2
"

(p" 1)
a E -1 a e -2 (mod p) . That is,

1

aZvP ^s t^e addj_tive inverse of a. The sequence

generated by X? , = (-a) X* (mod p) beginning with X* = 1

is

X*:={!, (-a), (-a)
2
,..., (-a) (p 2)

, (-a) (p" 1)
} (mod p)

.

23



The elements (-a) for k even is X* are obviously equal to

k kthe elements a in X. The elements (-a) for k odd, that is,

the odd numbered elements of X* are the additive inverses

of the elements a in X in primitive mark notation,

a + (-a) = a - a =0 (mod p) .

The second part of the theorem follows directly from Theorem

3. Q.E.D.

Where Theorem 4 showed how to reverse the sequence using the

multiplicative inverse, using the additive inverse effects

a "half shuffle" of the sequence.

B. MARSAGLIA' S THEOREMS

Marsaglia [Ref. 9] disucssed the idea of a "fundamental

sequence" for the third generator X. + , = a X. + b (mod m)

where m is composite. This theorem will be presented here

and then contrasted with Theorem 3.

Theorem 6 (Marsaglia [Ref. 9]) : The choice of b and the

starting value X
n

are of no consequence for the generator

X.,, = a X. + b (mod m) , in the sense that if X n , X,, X~

,

i+l i ' 12
... is any sequence generated by X. , = a X. + b (mod m) and

if Y
Q

, Y. , Y
2 , ... is the fundamental sequence 0, 1, 1+a,

21+a+a , ..., generated by Y. + , = a Y. + 1 (mod m) , then

there are constants V and W such that X. = V Y. + W. In

24



fact, V = X
Q
(a-l) + b and W = X . Thus the sequence of the

form X.
+1 e a X. + b (mod m) with X

Q
and b arbitrary (includ-

ing b = 0) may be obtained from an affine transformation of

the fundamental sequence.

In addition, if the multiplier a is relatively prime to

m, then the period of the sequence X
Q

, X.. , X
2 , ... with

X. + , e a X. + b (mod m) is the period of the fundamental

sequence for modulus m/d where d = gcd {m, X
Q
(a-l) + b}.

(End of theorem)

.

For the case of the primitive root/prime modulus genera-

tor, m = p, a prime, a is a primitive root of p, and b = 0.

With no loss of generality, for X
Q

= 1

d = gcd {p, (a-1) } = 1

since (a-1) and all other integers less than or equal to

(p-1) are relatively prime to p. Therefore the period of

this fundamental sequence is theperiod of the sequence for

p/d = 1 or (p-1) as is already known. The sequence generated

by x, +i = a x - (mod p) can be put simply into one-to-one

correspondence with the sequence {4} in the theorem. In the

case of the primitive root/prime modulus generator, Marsag-

lia's theorem is completely uninstructive, and by using

positive integer notation, it actually misses the existence

of the fundamental subsequences of Theorem 3 which uses

primitive mark notation.
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Marsaglia provides another theorem which attempts to

uncover more detail about his fundamental subsequences. It

is presented here.

Theorem 7 (Marsaglia [Ref. 9]) ; Let a be relatively prime

to the modulus m and have multiplicative order t. Then

the fundamental sequence:

Y = °' Y
l

= 1
'
Y
2
= 1+a

'
Y
3

= 1+a+a2
>

•••

Y±+1
= 1 + a Y

i
(mod m) (1)

is made up of a block {B} = {Y
Q

, Y_, . .., Y , } of t distinct

residues of m, followed by translates of that block {B},

{B+c}, {B+2c}, ... where c = 1+a+a + ... +a (t~ ' (mod m)

.

The period of the sequence (1) is tr, where r is the additive

order of c: r = m/gcd {c,m}.

Applying this theorem to the primitive root/prime modu-

lus case where m = p, a prime, b = 0, and a is a primitive

root of p, it is clear that t = (p-1) by definition of a

primitive root. Therefore, Marsaglia' s fundamental sequence

is made up of a block {B} = (Y
Q , Y,, ..., Y

/ D_2) ^ °^ t^e

(p-1) distinct residues of p,i.e., the sequence constitutes

one block of length (p-1) . For the additive order of c,

Multiplicative order is defined as the least positive
integer t such that a = 1 (mod m) when gcd {m,a} = 1.
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c = l+a + a + . . . + a^ p ; (mod p) = E a 3 (mod p)
j-0

1 - a ( P' 1}

1 - a

= 0;

(mod p)

r = p/gcd {0,p} = p/p = 1 and tr = (p-1) .

As in the case of Theorem 6 , this theorem provides no

information. Theorem 3 offers much more insight into the

structure of the linear congruential sequence. The recog-

nition of the finite field and using primitive mark notation

provide the basis for the redevelopment of the lattice test

and spectral test.
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IV. THE LATTICE TEST

The use of the lattice test is a fairly recent develop-

ment even though its proposal as a means of characterizing

linear congruential sequences goes back at least twelve

years. Franklin [Ref. 6] first observed the hyperplane

structure of n-tuples from a linear deterministic sequence.

He was concerned, however, with infinite sequences. Jans-

son's book [Ref. 7] reiterated the usefulness of the lattice

and alluded to its possible use with finite, periodic se-

quences . He did not provide an algorithm or any computational

results.

Marsaglia's famous paper [Ref. 10] focused widespread

attention on the hyperplane structure of the sequences pro-

duced by congruential generators. Papers by Beyer, Roof,

and Williamson [Ref. 4] and Smith [Ref. 13] published the

first algorithms and computational results.

Recent results on the lattice structure of popular gen-

erators come chiefly from the later paper of Marsaglia

[Ref. 9] and the as yet unpublished book by Ahrens and

Dieter [Ref. 2] . Both of these references contain compu-

tational algorithms for performing the test. It is the

difficulty of implementing these algorithms on a digital

computer which inspired the work to follow.
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A. THE ALGORITHMS

The current algorithmic implementations of the lattice

test will now be described with emphasis on the assumptions

made. Marsaglia's algorithm, BEST2, will be discussed first.

In n-dimensional space, it is assumed that a set of

points b,, b
2

, . .., b exist such that all points in the

space are integral multiples of them, that is,

{r
1
b
1

+ r
2
b
2

+ ... + r^; r^r^ ..., r
n

= 0,±1,±2, ...}

constitutes the set of all points spanned by b,, b
2

, ..., b .

These points then form a lattice in n-space.

The points b,, b
2

, ..., b are actually n-vectors so that

when viewed as rows of a matrix they form a basis for the

points in n-space. Any set of n linearly independent vectors

forms a basis for the points generated by the linear con-

gruential generator. The objective of the lattice test is

to start with an initial basis and reduce it through elemen-

tary row operations to a so-called optimal basis. The

characterization of the sequence is given by the ratio of

the longest side to the shortest side of the optimal hyper-

cube defined by the reduced basis vectors.

Ideally, all of the points in n-space will be generated

so that the optimal lattice basis will have all sides of

length one and a unit cell volume of one. Since a linear

congruential generator produces only p points in n-space

where p is the modulus of the generator, the unit cell volume
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will be p . For a good generator, the ratio of longest

to shortest side will be close to one, indicating a sem-

blance of regularity of distribution of the points. An

ad hoc rule is to summarily reject any generator whose side

ratio is greater than two.

A natural starting basis for the case of n = 2 is given

by the vectors

(l,a) and (0,p)

where p is the modulus of the generator. These basis vectors

are derived as follows:

X.^, = a x. - kp
i+l i c

X. ±1 = a x, - lp
3+1 j

for some integers k and 1, so

(xj/ x. +1
)

- (x
i
,x

i+1
) = (L,aL-(l-k)p)

where L is the integral distance between X. and X
i

. In

basis vector form (X.,X. +1 )
-

(Xi'
X
i+i)

= L d,a) " (l-k)(0,p)

hence the vector difference between any two generated points

is the sum of integral multiples of the two basis vectors

(l r a) and (0,p) . This form of a starting basis can naturally

be generalized to an n-dimensional basis.
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Marsaglia formalizes this basis concept with a theorem

for the lattice in 3-space.

Theorem 8 (Marsaglia [Ref. 9]) : Let a., a„, .... a be12 m
the set of points in 3-space of the form (x. , x.^, , x.^_)

i l+l i+2

where the X's are reduced residues of some modulus m gen-

erated by the congruential generator X. , = a x. + c (mod m)

.

There is no restriction on the integers c, a, or m. If the

point b = (0, c, ac+c) is subtracted from each of these

points, then the resulting points, a,-b, a
2
-b, . .., a -b

2all lie on a lattice with unit cell volume m , generated by

2the 3 points (1, a, a ) , (0, m, 0) and (0, 0, m)

.

The generalization to higher dimensions is straight-

2forward; for example, in 4-space, if b = (0, c, ac+c, a C+ac+c)

is subtracted from each of the points of the form (x. , x. , ,

xA^^r x -^->)r then the resulting a.-b, a~-b, ..., a -b all
2,-rZ l+O 1 Z. m

3lie on a lattice with unit cell colume m generated by the

2 3
4 points (1, a, a , a ) , (0, m, 0, 0) , (0, 0, m, 0) and

(0, 0, 0, m)

.

For comparative purposes, this initial basis is of no use.

The object of the lattice test is to employ elementary row

operations on the rows of the initial basis, or unimodular

transformations to the basis matrix, to acquire an optimal,

or nearly optimal, basis which can be used to compare

generators

.

To this end, Marsaglia [Ref. 9] offers the following

algorithm.
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/

Algorithm BEST 2

Given two points a = (a^a^ . .., a
n

) and b = (b,, b
2

, ...

b ) in n-space

Bl. If b is shorter than a, interchange b and a.

B2. Replace b by b - La, where L is the integer closest

to

ab'/aa 1 = Ea.b./Ia.
2

.

B3. If the new b is longer than a, stop. Otherwise, go

to step Bl.

BEST2 starts with the initial basis vectors defined

above. Upon termination, the first row contains the shortest

reduced basis vector and the last row contains the longest

reduced basis vector. The ratio of these two basis vectors

characterizes the lattice produced by the generator in

question.

To further understand the implementation of the lattice

test using BEST2, Marsaglia [Ref. 9] gives the following

example for the case of n = 4

.

Algorithm N

Nl. Start with a basis a,, a
2

, a
3

, a. ordered in terms of

increasing (Euclidean) length |a.jj _< |a
2 | £ |a^| £ I

a
4 1

•

For the congruential generator T(X) = ax + b (mod m)

,

a basis is (1, a, a
2

, a
3
), (0, m, 0, 0), (0, 0, m, 0),

(0, 0, 0, m)

.
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N2. Apply the BEST2 algorithm to a., a
2

then to a.., a
3

then to a^, a. then to a
2

, a_ then to a
2

, a. then to

a_, a.. If these 6 applications of BEST2 do not change

any of a,, a
2

, ^2' a 4 then stoP« Otherwise order the

new basis and repeat this step until the 6 applications

of BEST2 produce no change.

N3. If |b
1 | <_ |b

2 | ± |b-| <_ |bJ is the basis on which 6

applications of BEST2 have no effect, use the ratio

r = |b,|/|b,| to characterize the lattice. A ratio r

near 1 means a good lattice and a large r means a bad

lattice. Typically, good lattices have r < 2 while

r > 3 might be defined as a bad lattice.

The implementation just presented has become popular for

implementation on digital computers. Later in this section,

the inherent computational problems of this algorithm will

be pointed out.

In Marsaglia's own terminology the repeated application

of the BEST2 algorithm results in a nearly optimal basis.

In certain cases it arrives at the optimal, or fully reduced

basis. In certain cases it arrives at the optimal, or fully

reduced basis. Preceeding the work of Marsaglia, Beyer,

Roof, and Williamson [Ref. 4] formulated an algorithm for

obtaining the optimal, fully reduced basis. They approached

the problem of obtaining the basis which would yield shortest

vector lengths as a problem in the solution of positive

definite quadratic forms. In his work on the theory of the
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geometry of numbers , the famour German mathematician

Minkowski established criteria for fully reduced basis

vectors. Ahrens and Dieter [Ref. 2] also use the Minkowski

theory in developing their algorithm which will now be

presented.

A great deal of preliminary definitions and lemmas are

necessary to adequately establish reduced bases in the

Minkowski sense. They will not be repeated here but the

algorithms themselves will be presented to indicate the

computations necessary for achieving reduced bases

.

Ahrens and Dieter propose two algorithms, one for the

case of two dimensions and one for the cases 2 < n <_ 6

.

It should also be noted that full reduction of the basis

vectors in the Minkowski sense has only been proven for

n <_ 4. For the cases n = 5 and n = 6 the sufficiency of

Minkowski's criteria has not been proven and for the cases

n > 6 no criteria exist.

For the two dimensional case the following algorithm

produces a Minkowski reduced basis for the lattice of a

linear congruential sequence.

Algorithm MB2 .

Ml. Set i = 1, j = 2, and s = 0.

M2. Set m = [j + (b
i
b.)/(b

i
b
i
)].

M3. If m ? 0, go to M5

.

M4. Set s = s+1. If s = 2, go to M7, otherwise go to M6

.

M5. Set b. = b. - mb . and s = 0.
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M6. Interchange the values of i and j. Go to M2

.

M7. If |b,| > |b
2 |, interchange b, and b

2
.

M8. Return the Minkowski basis b,, b
2

.

It is assumed that b.. and b
2

are an initial basis as

in the Marsaglia algorithm. In step M2, the bracket notation

represents a truncation to the next smallest integer value.

Products such as (b.b.) represent ordinary vector dot products

Full reduction in the cases n = 3 to n = 6 requires an

auxiliary table, C , of 5560 coefficients. These may be

precomputed and stored or they may be computed within the

algorithm as they are required. The algorithm for these

cases is as follows.

Algorithm BMi .

BMl. Sort the b. such that lb, I < |b
|

< lb-,1 < ... < lb I.

BM2 . Search for an expression

m= [| + (b^.l/lb^)]

which is not zero. If no such n exists, set k = 4

and go to BM4

.

BM3. Set b. = b. - m b., restore the order and go to BM2

.

J J n
BM4. Set j = n and v = E c.b. where the c constitute the

i=l x 1

k-th set of coefficients in the table C
n

-

BM5. If c. = or if the greatest common divisor d = (c.,

.... c ) is not 1 set j = j-1 and restart this step,
n

(The test of d is easy since d ^ 1 occurs in only four

possible cases.) If w < b.b., go to BM7

.
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BM6. If k points at the last vector in the table C
n

(i.e., if k m 26, 80, 402, 4952 for n = 3, 4, 5, 6)

go to BM8. Otherwise set k = k+1 and go to BM4

.

BM7 . Set b. = v restore the order I b, I < |b |
< ... < lb

j ' 1
'
— ' 2

'
— — ' n 1

and go to BM2.

BM8 . Return the Minkowski basis b, , b n , ..., b .

± z n

The table, C , is used to insure that there remain non

unimodular transformations which will further reduce a given

pair of basis vectors. In many cases the basis vectors can-

not be further reduced. Here the Marsaglia algorithm and

the Ahrens and Dieter algorithm would stop at identical bases

The Ahrens and Dieter algorithm proceeds, however, when

further reduction is possible. Ahrens and Dieter offer no

theory indicating which multipliers require the additional

Minkowski reduction.

B. COMPUTATIONAL IMPLICATIONS

Both algorithms just presented are not so complicated

that a programmer would have difficulty coding them for exe-

cution on a digital computer. Ahrens and Dieter provide a

fairly straight forward method for constructing the table of

coefficients, C . Marsaglia has provided examples of his

own algorithm worked out, ostensibly by hand, for some two

dimensional cases.

The real problems arise when it is realized that except

for very small moduli, existing digital computers cannot

express the values which arise during the course of the

algorithm's execution.
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In detailing the algorithms, no mention was made of

reducing the integer values by the modulus. In fact, in

the initial basis the modulus appears as the only non-zero

element in n-1 of the basis vectors. The first vector simi-

larly contains successively higher powers of the multiplier

which can be assumed to eventually exceed the modulus in

magnitude.

The modulus for a random number generator is typically

chosen to be a value very close to the word size of the host

computer. In attempting to implement the lattice test, a

programmer is immediately confronted with the problem of

expressing the values which exceed the modulus and conse-

quently exceed the computer's word size. Knuth [Ref. 8]

has advised that at least 90-bit integer arithmetic is re-

quired to accurately compute the desired results for moduli

of the order 2 . Needless to say, this requirement exceeds

the capacity of existing general purpose computers. One

known method to alleviate the problem is to acquire a soft-

ware package which handles unlimited precision computations

.

The computational problems are certainly a hinderance,

but not insurmountable. It will now be shown that all of

these problems are a result of the inappropriate formulation

of the lattice test. By avoiding the over-sophistication of

the previous development, useful results can be obtained

fairly simply.
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C. THE LATTICE TEST IN A FINITE FIELD

In Chapter II it was shown that by viewing the generated

points as elements of a finite field, interesting properties

of the structure of linear congruential sequences could be

revealed. The use of the finite field construct was not a

gimmick to achieve the results of that chapter. It is the

only rational construct to use in examining these finite,

periodic sequences.

All of the computational difficulties with the lattice

test as described above arise from the decision of the authors

to treat linear congruential sequences as infinite sequences

of integers, or worse yet, as the field of real numbers.

The modulus m (composite) or p (prime) is not an element of

the field and cannot legitimately be expressed in the field.

Likewise, the intermediate computations which result in

values greater than the modulus represent quantities not in

the field which is to be characterized.

The same concepts of finite field arithmetic which were

applied to the individual elements of the field in Chapter II

are readily extensible to the finite field of vectors in a

finite n-dimensional space. Arithmetic in a finite vector

space over a field will be examined and an intuitive develop-

ment of the lattice test will now be presented.

Conceptually, an n-dimensional space defined on a finite

field with p elements contains p distinct points or p vec-

tors emanating from the origin (taken to be the vector additive
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identity (0,0, ..., 0)). Arithmetic defined on these vectors

possesses the field properties relating to the operations of

addition and multiplication, that is the properties of clo-

sure, distributivity, commutativity , and the additive and

multiplicative identities.

A linear congruential random number generator with primi-

tive root multiplier and prime modulus produces a periodic

sequence of (p-1) integers. Although the element zero does

not appear explicitly, it will be agreed to include it to

satisfy the requirement of an additive identity for field

arithmetic. Hence the p elements (0,1,2, ..., p-1) are

produced in some permuted order.

The multidimensional properties of a linear congruential

sequence are derived from considering consecutive n-tuples

of the generated elements. Although the n-dimensional finite

vector space defined on a field of p elements contains p

vectors, the set of n-tuples derived from a linear congruen-

tial sequence contains only p of these vectors, that is,

the vectors

( {X« , X, , . . . , X _, } , {X-, X- j • • • *X / / •••/ ^ n— 1 0'*** n—

2

These p vectors satisfy the additive field property, that is,

the sum of any two vectors is also a vector in the field. The

additive identity is defined since for any vector, there is

another vector such that their sum is (p,p,...,p) = (0,0,..., 0)

(mod p)

.
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The lattice test need only be concerned with the p vec-

tors generated by the linear congruential sequence regard-

less of the dimension of the space being considered. The

optimal hypercube in n-dimensional space will be defined by

n vectors of the p possible vectors. The lengths of sides

of the hypercube will be the difference of the vectors

defining adjacent corners of the hypercube, and by the pro-

perties of finite field arithmetic, this vector difference

will also be one of the p possible vectors.

The previous development of the lattice test required a

basis of n linearly independent vectors to span the space.

This is a requirement only when all p
n

vectors are to be

spanned. Since only p possible vectors are to be spanned

in this formulation, only one basic vector is necessary.

A natural starting basic vector is then (l,a,...,a ) (mod p)

.

It is clear that this vector is one of the p possible vec-

tors and all other vectors are integral multiples of this

basic vector. Reduction modulo p is carried out since the

field operations are defined to be modulo addition and modulo

multiplication. Problems of overflow are avoided since the

vector elements never exceed p in magnitude.

The question of a new lattice test algorithm remains.

Which integral multiples of the basic vector constitute the

sides of the smallest n-dimensional hypercube formed by the

p possible vectors?

The two dinensional case will be considered. In the

finite two dimensional space over the prime field of
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2characteristic p, there are p possible vectors. Given a

primitive root/prime modulus random number generator

X^+1
E a X^ (mod p) , the full period will consist of a

permutation of the (p-1) field elements. Again, it will

be agreed to include the additive identity element 0.

Taking successive, overlapping pairs of the elements of the

linear congruential sequence results in p possible vectors

. . 2
in the finite space of p vectors. Since the integer 1

appears in the sequence, the basic vector will be chosen

to be (l,a) . The order in which the vectors are generated

is immaterial. By systematically choosing the vectors, the

lattice spanned by the p vectors can be constructed without

lengthy search.

Assuming the primitive root multiplier to be less than

•sjp, the next vector of interest is the vector (2,2a) = 2(1, a).

Clearly, this vector is one of the p possible vectors and it

can also be seen that it is oriented in the same direction as

(l,a) but with twice the magnitude. Another way to view this

situation is to treat (l,a) and 2(1, a) as points which lie

on the same line emanating from the origin (0,0), each point

maintaining a constant distance from the preceeding point.

To determine how many points lie on this line it is

necessary to determine which value k, causes the quantity

k, a to exceed the modulus p and consequently be reduced

(mod p) . With k,a reduced (mod p) , the vector k
1
(l,a) (mod p)

is no longer oriented in the same direction as the vectors

(l,a), 2(1, a), ..., (lCj-1) (l,a) . The value k
±

is simply
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;p/a where the brackets indicate the greatest integer

function.

Beginning with the point k, (l,a) (mod p) another line is

formed parallel to the first line consisting of the points

{k
1
(l f a) f (k

L
+l) (l,a) , ..., (k

2
-l)(l,a)} (mod p)

.

The value k
2

is 2p/a . This procedure may be continued for

successive parallel lines until all p points have been

covered.

It is, of course, not necessary to generate all of the

p points nor is it necessary to determine how many parallel

lines are contained in the space. To find the shortest

vector emanating from the origin to one of the parallel lines

requires at most a computation of the first element of the

line. This bound is actually much greater than the number

of computations required in practical situations. Assuming

that the vector to a point k. (l,a) (mod p) has been computed,

all starting points k.(l,a) (mod p) which lie on the same

line need not be considered since they are parallel to the

vector and obviously are greater in magnitude.

Some examples will now be shown to clarify the procedure

described above.

Example 1 . x - + i = a X. (mod p) ; a = 3, p = 17.

The basic vector is (1,3). k
1

= 17/3 = 6 , k
2

= 34/3 = 12

> 3. Only two vectors need be considered. The Euclidean
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length of the vector (1,3) is (10)
1//2

. The length of the

1/2vector (6,1) is (37) '
. To complete the search for the

parallelogram with shortest sides, the vector (6,1) - (1,3)

= (5,2) is computed and its length is (29) '
. The side

1/2 1/2ratio of the optimal lattice parallelogram is (29)
/ /(10) '

= 1.70.

Example 2 . x - +1 - a X. (mod p) ; a = 7, p = 17

= 34

1/2

The basic vector is (1,7). k^ = 17/7 = 3, k
2

= 34/7 = 5,

k = 51/7 = 8 > 7. The respective lengths are (50)

(25)
1/2

, and (26)
1/2

. The vector (3,4) with the smallest

1/2length (25) ' will be one side of the optimum lattice

parallelogram. The distance from (3,4) to (5,1), the next

smallest, will be computed to determine if it will yield a

1/2smaller side. Since this length is (13) , the optimum

1/2 1/2
lattice parallelogram has side ratio (25) /(13) =1.39.

5 31
Example 3 . x -

+ -i
= a X. (mod p) ; a = 7 = 16,807; p = 2 - 1

The basic vector is (1,16807)". k, = 2
31

- 1/16807 = 127774

1/2
> 16807. The respective lengths are (282475250) ' and

(16521383917)
1/2

. The length of the vector (127774,13971)

to (1,16807) is (16333982425)
1//2

. The side ratio of the two

shortest sides is then (16333982425) 1/2
/ (282475250)

1/2 = 4.74.

Two interesting results should be noted here. First,

this generator has less than optimal two dimensional lattice

characteristics and second, the previously reported results

for this generator used the ratio
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(16521383917) 1/2
/ (282475250) 1/2 = 7.60 from Marsaglia '

s

algorithm. This is evidence of the Marsaglia algorithm

BEST2 not achieving an optimal basis.

This chapter has unfortunately stopped tantalizingly

short of producing an algorithm for use in the many cases

of interest. The last chapter will outline the course of

future work in this direction.
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V. THE SPECTRAL TEST

The spectral test for linear congruential random number

generators is directly related to the lattice test. The

development of the spectral test comes from an entirely-

different theoretical basis, however.

The application of the spectral test to linear congruen-

tial random number generators began with the work of Coveyou

and Macpherson. Knuth [Ref . 8] published a computational

algorithm which, as stated in the previous chapter, requires

90-bit integer arithmetic to achieve accurate results. A

brief historical outline of the basis and development of the

spectral test will be given. The test will then be compared

and contrasted with the lattice test.

A. HISTORICAL DEVELOPMENT

The theoretical basis of the spectral test for linear

congruential sequences is a theorem by H. Weyl in 1916. The

theorem was concerned with the distribution of sequences of

deterministic numbers reduced modulo 1. Although the sequences

to be examined were deterministic in nature, they were also

assumed to be infinite in length and of infinite precision,

in representation.

Assuming an infinite sequence of real numbers, say Xq,X^,

. . . , X , . . . , on the half-open interval [0,1) , select a number

Y also on the interval [0,1) . Let N be the cardinal number

of the first N values of {X} which are contained in the
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subinterval [0,Y). The sequence {X} is then said to be

equidistributed modulo 1 if lim N /N = Y for all values of

Y. Weyl's theorem extends this definition to an arbitrary

number of dimensions.

A 1963 paper by Franklin [Ref. 6] applied Weyl's theorem

to sequences of pseudo-random numbers . Franklin was con-

cerned with the equidistribution of the deterministic se-

quence X
i

= 9 (mod 1) for i = 1,2,.... He proved that this

sequence is completely equidistributed for almost all 9 > 1

and further proved that 9 must be a transcendental number.

Franklin's work was also developed on the basis of infinite

precision of the values X. (mod 1)

.

Although they do not cite Franklin's work as a precedent,

Ahrens and Dieter [Ref. 3] have proposed a FORTRAN implemen-

tation of a random number generator using real arithmetic

and the golden section number as a multiplier. This number

is, of course, irrational but not transcendental. They

claim the equidistribution properties of this generator are

derived from the irrationality of the multiplier.

The Coveyou and Macpherson development was the first

time that Weyl's theorem was applied to finite, periodic

sequences of linear congruential generators. Knuth amplified

the development of the Coveyou and Macpherson test and

offered a complete algorithm for its implementation.
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B. THE ALGORITHM

Weyl's theorem provides necessary and sufficient condi-

tions for equidistribution of infinite sequences of deter-

ministic numbers reduced modulo 1. To introduce Weyl's

theorem, let X., i = 1,2,... be a sequence of n-tuples, that

is, X. = (X . , X
1 . , . . . , X . .) where the X. . all lie

i u,i 1,1 n— l,i 3,1

in the interval [0,1) . The X. are n-dimensional vectors in

the n-dimensional unit hypercube in Euclidean space.

Weyl's Theorem . The sequence of points X.,,X
2 , ... is

equidistributed modulo 1 if and only if

1 P

pi« P j=i
eXp( " 27Ti(q X

0,j
+

*l
X
l,j

+ '" + c

*n-l,*n-l,j )) " °

for all vectors (q. ,q, , . . . ,q _,) with integer elements not

all zero.

The proof of this theorem is rather lengthy and will not

be repeated here. Coveyou and Macpherson [Ref. 5] applied

this theorem to the case of linear congruential random number

generators and provided computational details for an algorithm.

Knuth's development [Ref. 8] of the algorithm will be

outlined.

To begin, the spectral test is only applicable to full

period generators, that is, properly formulated mixed

Jansson, Birger, Random Number Generators , p. 156,
Amlquist and Wiksell, Stockholm, 1966.
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congruential generators with composite modulus or primitive

root/prime modulus generators. Although Knuth treated the

mixed congruential case, the primitive root/prime modulus

case will be substituted in this brief outline.

Let the random number generator be X. , = a X. (mod p)

.

The finite Fourier transform of this sequence is then

f(s
l'

s
2

s
n J =?^ ^P^ ^lV^W-^nWl^

1 K 1 ,-2*1= i S exp(-^ (s(a)X. ))
P k=0 p K

where

s (a) = s, + s~a + . .., s a

Since all values of k appear in the sequence and their order

is immaterial, the following may be substituted:

1 P" 1
-27Ti

f (s,,s
2

, . . . ,s
n

)
=- I exp(—— s(a)k).

Noting that this represents the sum of a geometric series,

the basis formula is

f (s
1
,s

2
, . . .,sn ) =5(s(a)/p) (1)

where 6 (X) = 1 if X is integer and otherwise.
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Application of discrete probability theory yields the

result that the joint probability of any n-tuple (X,, X. .,

. .., ^^n-i^ ^s 1/P hence the value f (s,,s
2 , . . . , s ) /p

n

may be interpreted physically as the amplitude of the

n-dimensional complex plane wave

w(t, ,t~, . . . ,t ) = exp(-~-(s, t, + . . .+s t ) )± z n pii nn

A wave number may assigned to this plane wave corresponding

to the frequency of the wave. The wave number is

2 2 2 1/2
v = (s, +s +...+S *) x/ * for s, p/2.

l 2. n k

In a truly random sequence no waves should be present

except a constant wave of frequence zero. Any generator

which produces a swquence whose transform yields nonzero

frequencies can be considered to be nonrandom. To summarize

2
the spectral test Knuth states:

"If v is the smallest nonzero value of the
n

wave number ... for which f(s,,s
2
,...,s) f

in a linear congruential sequence with maximum

period, then the sequence X /m,x,/m,X
2
/m, . .

.

represents a sequence of random numbers uniformly

distributed between and 1, having 'accuracy'

2
Knuth, D.E., The Art of Computer Programming, Volume 2

Seminumerical Algorithms , p. 85, Addison-Wesley , N. Y . , 1969
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or 'truncation error 1 1/v with respect ton c

the independence of n consecutive values of

the sequence averaged over the entire period."

Equation (1) represents the spectrum of the linear con-

gruential sequence. It can be seen from (1) that

f (s,,d
2

/ . . . ,s ) = except when

s(a) = s
1

+ s
2
a + ...+ sna

= (mod p)

in this case f (s, ,

s

2
, . . . , s ) = 1. Again directly quoting

Knuth 3
:

"...for linear congruential sequences of

maximum period, the smallest nonzero wave

number in the spectrum is given by

2 2 2 1/2
v = min (s, + s-+...+ s )

'
n 12 n

where the minimum is taken over all n-tuples of

integers (s,,s
2
,...,s ) satisfying (2)."

Knuth then proceeds to develop an elaborate computational

scheme to implement the spectral test. As with the lattice

test algorithm of Ahrens and Dieter, the test algorithm is

formulated in terms of the solution to a positive definite

quadratic form. To find the minimum value of the wave

3
Ibid. , p. 85.

50



number (s
1

+ s^ + ...+ s
n
2

)

1/2 such that

s(a) = Sj^ + s
2
a + ... + s

n
a = (mod p) the problem may

be reformulated as

:

find the minimum value of the quantity

(a
ll

s
l
+a

12
s
2
+ -" +a

ln
s
n ) + '•• + (a

nl
S
l
+a

n2
s
2
+ "* +a

nn
S
n )

This results in the positive definite quadratic form

l'^2' ' ' ' '^n l'^2' ""'^n

where (s, ,s
2

, . . . , s ) is a column vector, not all zero, and

A is any nonsingular matrix of coefficients.

C. THE SPECTRAL TEST IN A FINITE FIELD

The computational algorithm for the spectral test is

somewhat more involved than the algorithm for the lattice

test. Knuth's algorithm, however, is very carefully written

and can very easily be implemented assuming the availability

of multiple-precision arithmetic subroutines.

In view of the finite field approach of this thesis, the

basic assumptions of the spectral test appear entirely in-

appropriate. To begin, consider the discrete probabilistic

basis of the spectral test. In one dimension, the probability

measure assigned to each element is correctly 1/p. However,

in higher dimensions, the probability measure for each n-tuple

in the space is taken to be 1/p . Since only p distinct
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n-tuples are generated by a linear congruential generator,

the correct measure should be still 1/p. This point is more

clearly seen when it is recalled that all n-tuples generated

by a primitive root/prime modulus generator in finite dimen-

sional space are integral multiples of the basic vector

(l,a,a ,...,a ). That is, the set of all possible n-tuples

is

n— 1

{k(l,a,a ,...,a ) (mod p) } , k=l,2,...,p-l

Similarly, the theoretical basis of the spectral test is

the finite Fourier transform defined only in the complex

field. When viewing the sequence generated by the primitive

root/prime modulus random number generator as a finite field,

a more appropriate transform is available, specifically the

number theoretic transforms as developed by Rader [Ref. 12],

Agarwal and Burris [Ref. 1] , and Pollard [Ref. 11] . The

finite Fourier transform has been used since in the complex

field a primitive root of unity exists, namely exp(27rik).

In finite fields, any primitive root of the prime modulus is

a primitive root of unity and consequently a transform (gen-

erating function) is defined. For the case of primitive

root/prime modulus generators, the spectral test may be more

appropriately defined in terms of these transforms.

As in the lattice test, only p possible n-tuples can

be generated, hence the search for the minimum value of the

2 2 2 1/2
wave number (s, + s

2
+ . . . + s

n ) such that
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s(a) - s
1

+ s
2
a + ... + s a e (mod p) becomes impossible

The following theorem demonstrates this fact.

Theorem 9 ; For the primitive root/prime modulus random

number generator X. +1 e a X. (mod p) no solution, to the

basic congruence

s(a) = s, + s
2
a + ... + s a e (mod p)

exists in the finite field of characteristic p.

Proof : Referring to the development of finite fields in

Chapter II and Chapter IV, Section C, the only possible

wave in the spectrum of the primitive root/prime modulus

random generator must be of the form k(l,a,...,a ) (mod p)

for some integer k such that < k _< p-1. Since p is prime,

it has no integral divisors, hence (l+a+...+a ) must be

congruent to modulo p. This cannot happen for any n such

that < n < p-1. Let n = 1, then

(1+a) = (mod p)

since this implies that a = p-1 or a = -1 in primitive mark

notation and ±1 are not, by definition, primitive roots of

any prime p > 2. Let n = p-1, then
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(1 + a + ...+ a
p_1

) = Z a
1 = 1 - ap/l-a

i=0

= 1 - a/l-a

=1^0 (mod p)

.

Let 1 < n < p-1, then

n-1
(1 + a + ...+an ) = = a

1 = l-a
n
/l-a % (mod p)

i=0

since for this to be congruent to would imply that a
n

= 1

which contradicts the primitivity of a for which p-1 is the

smallest positive integer such that ap~ e 1 (mod p) . Q.E.D.

The spectral test, when considered as a special case of

the lattice test, is still useful when characterizing linear

congruential sequences. Unfortunately, the formulation of

the test is, at best, shakey. In simpler terms, the spec-

tral test is designed to determine the minimum Euclidean

distance between consecutive hyperplanes containing points

of the generated sequence. In contrast to the lattice test,

only the shortest side of the hypercube is of interest, rather

than the ratio of longest to shortest side. The spectral

test may be most simply restated for primitive root/prime

modulus random number generatros as

:

find the minimum value of
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v
n
2

= k(l2
+ a

2 + ... + a
2(n" 1}

) (mod p)

over all k such that < k p-1.

As in Chapter IV on the lattice test, this chapter will

stop painfully short of producing a general purpose algorithm

for a new spectral test. As the conclusions will reiterate,

future work will most certainly produce such an algorithm.
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VI. CONCLUSIONS

The development of primitive root/prime modulus sequences

as finite fields has opened an entirely new perspective on

the characterization of congruential random number generators

The results established in the proceeding chapters have been

confined to the class of primitive root/prime modulus genera-

tors but it is felt that the results are readily extendible

to mixed generators with composite moduli.

The lattice test and spectral test have been shown to be

equivalent in their power to characterize sequences , the

choice of one test over the other is merely a matter of

taste. While the theoretical, geometric, and intuitive

appeal of both tests are appealing, their implementation has

suffered from over-sophistication. The sparse results pre-

sented here were worked out by hand calculator. Several

other generators have also been examined by hand and the

results agree with published lattice test results. Some

cases of published results did not work out as simply since

the multipliers were greater than the square root of the

modulus and the multiplicative inverses, which would have

produced the correct results, were too difficult to find.

Further development of the results presented here will

lead to criteria for selecting multipliers which will produce

nearly optimal properties of the sequence as characterized

by the lattice and spectral tests.
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The lattice and spectral test algorithms can be rede-

veloped completely based on finite field properties. The

implementation of such algorithms will be quite natural for

digital computers since all arithmetic on digital computers

is necessarily confined to finite field arithmetic due to

the finite capacity of the registers. ("Real arithmetic",

or floating point, is confined to a finite set of the

rationals .

)

The implications of the results presented here are far-

reaching. On-going research should bring them to fruition.
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