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ABSTRACT

This thesis investigates various modelling choices and

modelling decisions that can be used by defense analysts when

solving nonlinear optimization problems. A discussion is

given of separable programming, goal programming, and linear

fractional programming models, and a description of the

manner by which they can be converted to equivalent linear

programs. Transformations of variables recommended in the

literature are tested on several well-known test problems

using GRG and SUMT nonlinear programming codes. The sensi-

tivity of the GRG code to scaling, rotation of coordinates,

and translation of variables is examined. Transformations

to obtain separability of variables and experiments using a

diagonalization algorithm to transform quadratic expressions

into sums of squares are discussed. Barrier and penalty

function transformations are also considered.
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I. INTRODUCTION

In the defense community, military and civilian analysts

are frequently confronted with problems in which one or more

objectives are to be optimized subject to resource con-

straints. By their very nature, many military problems are

very complex and highly unstructured. As a result, the

analyst is faced with many decisions including: what is a

suitable measure of effectiveness; what are the effective

constraints; what assumptions need to be made; can the orig-

inal problem be reduced or transformed to a simpler model

which is easier to solve; how sensitive are the results to

the underlying assumptions?

It is the concern of this thesis to investigate various

modelling choices and various modelling decisions in order

to guide the analyst. Modelling choices include the actual

form of the underlying mathematical model, for example, goal

programming, separable programming, or linear fractional

programming. Modelling decisions describe the operations

that are performed on the mathematical model once a specific

formulation is chosen. Included in this category are trans-

formation of variables, scale changes, translation and

rotation of coordinates. Chapter II will introduce termin-

ology and classification of mathematical programming



problems; Chapter III will illustrate some modelling choices;

Chapters IV and V will describe the various transformations

and scaling operations examined in this thesis.

The scope of the research involved in this study is an

examination of the applicable mathematical programming liter-

ature regarding modelling, transformations, and scaling,

followed by the testing of specific ideas on two commercially

available nonlinear programming codes. The literature search

revealed that little groundwork has been done in this area,

most of what has been found is dated; and, furthermore, no

work of this kind has been done on commercial constrained

optimization codes. The two codes in question are General-

ized Reduced Gradient (GRG) of Lasdon, Waren, Ratner, and

Jain /!/ /2/, and Sequential Unconstrained Minimization

Technique (SUMT) of Fiacco and McCormick /3/ /4/ /5/. System

documentation for this GRG code was dated November, 1975 /6/.

For an analyst who has not gained much experience with

constrained optimization, the chapter on specific modelling

choices will illustrate the types of conversions that can

be made on nonlinear problems to get them into a form where

a commercial linear programming package can be used.

The main thrust of the computational experiments was

to take a few well known test problems for which the optimum

solution was known, transform or scale the problem in some
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manner, and determine what effect the change had on the code,

It needs to be emphasized that SUMT and GRG are just two of

several constrained optimization codes that have been devel-

oped in recent years. Without codes of this type, the

analyst can still solve mathematical programs containing

nonlinearties by using a linear program that approximates

the nonlinear terms. The state of the art in unconstrained

nonlinear optimization techniques is highly developed, but

in constrained nonlinear optimization, although the body of

theory is large, the area of technique has evolved slowly.

The transformations of variables discussed in Chapter

IV can be used to transform some nonlinear problems into un-

constrained or partially constrained problems. If only a

few constraints can be eliminated from a problem, it can

make problems easier to solve using the SUMT code. On the

other hand, empirical results presented in this thesis in-

dicate that the same transformations, when applied to test

problems solved by GRG or SUMT, made the test problems more

difficult to solve. Computation time was considerably in-

creased using transformations, and in numerous experiments,

the GRG code could not find a feasible point. Since these

transformations actually restrict the variables to be non-

negative or take on values in a certain range, a given

problem can be modified significantly by a change of



variables. In addition, transformations may cause some

local optima to be lost.

Transformations to obtain separability of variables is

also discussed in Chapter IV and includes a description of

a diagonalization algorithm to transform quadratic expressions

into sums of squares. The results of experiments that were

conducted in diagonalizing quadratic forms of different

dimensions are included to give the analyst an idea of the

time trade-off that he must make to get such an expression

into separable form. There is also a discussion of barrier

and penalty function transformations, of which the SUMT code

used in the experiments is a prime example.

The final chapter examines the use of scaling, rotation,

and translation operations and discusses the sensitivity of

the GRG code to these techniques. The empirical results

from the test problems considered indicate that proper scal-

ing is critical to the successful utilization of GRG. This

code is also highly affected by attempts at rotation and

translation of coordinates. Multiple rotation operations

on a test problem having nonlinear equality constraints

made that problem much harder to solve. The translation

experiments indicate that translations will increase the

amount of time and the number of iterations required to

find a solution.

10



The principles/ maxims, and heuristics presented here

will not guarantee success, but if adhered to, should pro-

vide the analyst with guidance when attempting to solve con-

strained optimization problems. The codes do not guarantee

the correct optimum solution, and in some cases, will not

construct a solution even though one may exist. Each com-

puter code has a number of adjustable prameters, and these

adjustments in turn, affect the efficiency of the correspond-

ing algorithm. There are recommended average values for the

parameters required by a specific code, but choosing these

values may prevent the code from operating at maximum ef-

ficiency for a given problem. A final caution on the codes

is in order. They have been fine tuned on a number of well-

known properly scaled test problems of varying degrees of

difficulty. The performance of these codes on a real-world

problem is highly dependent upon correct formulation and

proper scaling by the analyst.

As a prelude to the remainder of this study, consider

the weapon allocation problem developed by Koopman /7/,

which is an example of a nonlinear optimization problem.

The basic model is one that maximizes the expected damage

subject to the total number of weapons available, and in

its simplest mathematical form can be expressed as:

11



maximize

subject to

n

z
j=l

v.
D

m
1 - ff exP

j-l

: > x. . < N.

\

1=1,2,

(1)

m

x. . >
ID -

where

.th
V.= value of j target

x. .= number of weapons of type i allocated to target j

N. = total number of weapons of type i

}Jl. .= constant which incorporates the probability of
hitting target j with weapon i, and the rate at
which target value decreases with each direct
hit

This allocation problem will be referred to again in

later chapters. An analyst trying to solve this problem can

either apply transformations to get the problem into separ-

able form, or try to solve it directly with a code like GRG

or SUMT. His approach will be greatly influenced by the

programming codes available to him.

12



II. THE MATHEMATICAL PROGRAMMING PROBLEM

A. DEFINITION OF THE PROBLEM

Let x= (x.,x , ,x ) represent a vector in a space

of n dimensions. Let f (x) , and g. (x) j=l,2,...m, be func-

tions defined in the vector space. The general mathematical

programming problem is to find a x* such that f(x*) will be

the maximum or minimum of f (x) under the constraining con-

ditions:

9-:(2i*) < j=l,2, ,m

B

.

TERMINOLOGY

Before proceeding, it is necessary to specify some

terminology appropriate to the mathematical programming

problem that is used throughout this thesis.

The x vector is an n-dimensional vector of unknown

problem variables . Specification of an x vector determines

a point in n-dimensional space and also determines a value

for f(x) and g .
(x)

.

The g .
(x) in inequality (2) are called constraints ,

and form a closed region in n-dimensional space, thus limit-

ing values of x to points in the closed region.

The closed region defined by the constraints is called

the feasible region for a given problem. A feasible point

is any point x that lies in the feasible region. Points

outside this region are called non-feasible.

13



The function f (x.) is called the objective function of

the problem. Mathematical programming attempts to optimize

f(x) over the feasible region defined by inequality (2).

Optimal solutions are not necessarily unique. More

than one solution may have the same minimum or maximum value.

Necessary conditions for optimality are conditions that an

optimal solution must satisfy, but that other nonoptimal

solutions may also satisfy. A sufficient condition for

optimality is one that, if satisfied by a given solution,

guarantees that the given solution is optimum. For many

general problems, conditions that are both necessary and

sufficient cannot be determined; the best that can be done

is to show that a given solution is a local optimum. A

local minimum (maximum) is any feasible point such that any

small perturbation around it, still remaining in the feasible

region, will increase (decrease) the value of the objective

function. The global optimum is that local optimum for

which the objective function has its smallest (largest)

value.

Co CLASSIFICATION OF MATHEMATICAL PROGRAMMING PROBLEMS

Mathematical programming problems are generally classi-

fied on the basis of the mathematical form of f(x) and g .
(x) .

14



Linear programming results when both f(x) and the g .
(x)

are linear functions of x_. A linear function has constant

values for its partial derivatives with respect to x, and

thus has a constant gradient. Linear programming is the

most well known mathematical programming problem, and com-

puter routines using the simplex algorithm are widely avail-

able and can handle thousands of variables and constraints.

Goal programming is a simple extension of linear pro-

gramming which attempts to handle multiple, and frequently

conflicting goals. The goal programming formulation is dis-

cussed in the next chapter. The goal programming approach

is to combine the multiple goals, weighted by appropriate

factors, into a single objective function that is to be

optimized. Lee ,/8/ ,/9/ has made numerous applications of

goal programming dealing specifically with the problem of

handling a hierarchy of goals, in which the most important

goal has a much higher priority than lower level goals.

When f(x) and/or the g.(x) are not linear functions of

x, the problem is called a nonlinear programming problem.

Definitive general statements of necessary and sufficient

conditions are available only for limited cases. For the

special case of a convex nonlinear programming problem in

which the objective function and constraints are convex,

the necessary conditions that an optimal solution must

15



satisfy are commonly referred to as the Kuhn-Tucker con-

ditions. References /ID/ /1I/ A2/ A3/ provide good de-

scriptions of the Kuhn-Tucker conditions.

When f(x) is a quadratic function of x and the g.(x)

are linear, the problem is called a quadratic program . In

principle, this problem is almost as easy to solve as the

linear programming problem, and differs from it mainly in

that the gradient of f(x) is a linear function of the x.

In practice, the quadratic programming problem is solved

either by conversion to an approximate linear programming

problem, or by solving it directly using a nonlinear pro-

gramming algorithm.

If the constraints are linear and the nonlinear ob-

jective function can be expressed as the ratio of two linear

functions, a special mathematical programming problem known

as linear fractional programming results. It can be solved

by computing the optimum solution to at most two linear pro-

grams.

Many nonlinear problems can be solved by the use of

some linearizing technique followed by the application of

the simplex algorithm. One such technique is called separable

programming which requires that a nonlinear function be

separated into a sum of several terms, each of which is a

function of a single variable. These terms are linearized

16



by calculating their values over a grid of points in the con-

vex region. The simplex algorithm is then applied to the

linearized problem.

Separable programming, goal programming, and linear

fractional programming can be converted into problems solvable

by the simplex algorithm, and will be discussed, in turn, in

the next chapter.

17



III. MODELLING CHOICES

The previous chapter was intended to present an over-

view of the modelling choices available to the analyst to

model a given mathematical programming problem. As the

analyst formulates his model he must bear in mind the trade-

off between simplicity and accuracy. If he oversimplifies

his model by assuming away nonlinear ities, he may wind up

with a linear programming model that gives poor results and

is not representative of the actual problem. If he attempts

to include every detail of the problem, the formulation may

become so complex that the model becomes incomprehensible.

The weapon allocation model cited in Chapter I is an

example of a simple model formulation that can easily be-

come a formidable problem by making a few modifications.

A descriptive problem studied by Bracken and McGill /14/

illustrates how difficult this problem can become. The

application involves the targeting of sea-launched ballis-

tic missiles on strategic bomber bases. The objective is

to allocate submarines to possible launch areas and to

find a targeting pattern against the bomber bases so as to

maximize the numbers of bombers destroyed. There are techno-

logical constraints which prevent launching all of the

missiles simultaneously. Furthermore, the flight time of

18



a missile depends upon the distance between the launch point

and the target. Consequently the enemy can scramble some of

his bombers, with the number scrambled increasing with time.

The objective function will have to be modified further if

the missiles destroy only part of the bomber bases. These

features of time-phased allocations and time deteriorating

values significantly alter the model formulation. The same

authors offer other interesting defense applications in

reference ^.15/.

There is a direct interaction between the mathematical

programming problem and the techniques available to solve it,

The state of the art in nonlinear programming is such that

very large problems can be handled only in special cases for

problems having special structure. The generally available

codes are currently limited to about 100 variables because

of excessive computational time and excessive storage re-

quirements. There is also a tradeoff between obtaining an

exact solution to an approximate problem, or an approximate

solution to an exact problem.

In this chapter three special purpose nonlinear pro-

gramming problems are discussed that can be solved by linear

programming methodology. Separable programming is the only

one of the three that is widely known. Since it uses large

scale linear programming codes, it can be used to solve

19



nonlinear problems having thousands of variables and con-

straints. Goal programming and linear fractional program-

ming are two other models that can also be solved by com-

mercial linear programming codes. However/ the selection

of one of these codes is not necessarily the best approach

to use for a given problem if the problem is of moderate

size. These codes do have the following advantages:

1. They are easy to prepare.

2. They can be of very large size.

3. They can be used routinely in that they are
solvable by generally available, well-documented
linear programming codes.

4. It is easy to perform a sensitivity analysis on
the variables and/or parameters of the problem
to determine the effect of changes in these quan-

tities.

The discussion of these models in this chapter should

provide a framework for the analyst that will assist him in

choosing a specific model.

A. SEPARABLE PROGRAMMING

Separable programming is used to obtain an approximate

solution to nonlinear problems having a separable objective

function and constraints. A separable function is one that

V
can be written in the form f(x)=4-i f.(x.), where f.(x.) is—

' ill 11
a function of a single variable x. . The mathematical formu-

i

lation is:

20



maximize r» f.(x.)
L i i

i=l

(3)

n
subject to: V g..(x.) < b. j=l,2,....,m

i=l ID i - D

x. >
l —

The separable problem is reduced to a linear problem

by approximating each separable function by a piecewise linear

function. There are several excellent references that pro-

vide a thorough description of the procedure for converting

the separable problem to an approximate linear problem.

Dantzig </ll/, Hadley /±3/, Miller ^16/ , and Beale ^17/ /18/

are included on this list.

The weapon system allocation problem (1) can be formu-

lated as a separable programming problem by introducing the

new variable ... £ « «„ . *» problem before *e-

comes

maximize £ v (l-e"
Z
j) (4)

T=i D

subj ec t to : z . - L , /I . . x .
. =0 j =1 , 2 , . . . .

n

J
j 1=1 ^i;j id

J

Lx. . < N. i=l, 2, . . . .m
ID- i

j-l

x. >
ID _
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or equivalently,
-z .

minimize r^ V.e (5)

j=l

subj ect to: z.-\ U . . x .
. =0 j ssl,2,.,..n

V x.. < N. i=l,2/. ...m
L 13 ~ i

j=l

x. . >

Problem (5) can now be approximated by piecewise linear

functions. A section in the following chapter on transfor-

mations describes various methods of converting nonlinear

terms of several variables into separate terms of single

variables.

Some motivations for dealing with separable programming

are as follows:

(1) in the case of convex problems, it allows the

use of large scale linear programming codes;

(2) in the case of nonconvex problems, it allows

the use of linear programming codes with a separable option,

for which there are special basis entry rules (see Beale

/17/ for a discussion of these rules)

;

(3) it is easy to adapt the separable formulation to

a constrained nonlinear programming code such as SUMT (i.e.,

it is much simpler to compute the analytical derivatives

22



required by SUMT when the variables are separated)

;

(4) by removing the interaction between variables,

it is easy to see the effects of transformations on the

variables.

B. GOAL PROGRAMMING

Goal programming is a useful concept when multiple

goals are either in direct conflict, or can be achieved

only at the expense of other goals. A simple example would

be a model that involves two types of manpower in two differ-

ent time periods. Assume that an analyst is faced with the

task of recommending the number of officers and enlisted

personnel to recruit for a special program in the next two

fiscal years. Assume that the only costs involved are the

salaries of the recruits, which are $15,000 for officers and

$10,000 for enlisted men. The budget for the program is

$4,000,000 for the first fiscal year; $6,000,000 for the

second. The desired goals for the number of officers is 50

for the first year, 75 for the second year. The correspond-

ing minimums are 10 and 60 for the two years. The desired

goals for enlisted men in the program are 250 and 400, with

corresponding minimums of 100 and 175.

A goal programming formulation is:

minimize x,-50| + |x -250111 12 I

x
3
-75 + x -400

4

23



subject to: x >_ 10

x„ 100
2 ~

x
3

>60

(6)

where

x„ 175

15x + lOx <_ 4000

15x^ + 10x„ < 6000
3 4 —

x = number of officers in the first year

x = number of enlisted men in the first year

x = number of officers in the second year

x = number of enlisted men in the second year

Figure 1 illustrates several types of objective functions

which can be classified as goal programming problems. Figure

1-A is an absolute value function having asymmetric weights.

2
Figure 1-B is a quadratic function (x.-G.) , and Figure 1-C

is a piecewise linear function.

EIGURE Is Typical Goal Programming Models

(A) (B) (C)
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The goal objective function consists of a sum of func-

tions of a single variable, some of which may be nonlinear

Therefore, the goal programming problem is reducible to

either a linear program or separable program depending on

how the model is formulated.

A more general formulation of the goal programming

problem is

:

= Eminimize f(x)= *? f (Xj)

(7)

subject to: A x :L k
x >_

If the absolute value function is used, the mathe-

matical formulation is:

(8)

minimize
T

c_ x -- G.
D

subject to: A x <_ b

x >

If a quadratic function is used, the formulation is

minimize

subject to:

n

z
j=l

T „ \ 2w . I c x - G.
J \

~ ~ 3

(9)

Ax < b

x >

A more extensive mathematical treatment of goal pro-

gramming can be found in Refs. ^/19/ and ,/20/. .

To handle the nonlinear problem described in (8) , slack

variables y . and z . are added to the problem to represent

25



positive and negative deviation from each goal G.. For each

goal, one or both of these slack variables will equal zero.

Minimizing the sum of absolute deviations is equivalent to

the following linear program:

n
minimize V"* w

.

L J
y .+ z .

: 3
(10)

subject to: c x-y. +z.=G.- - 3 3 3

A x < b

j=l# 2/ . . . .n

x, y_ , z >_

The nonlinear problem described in (9) can be solved by

making piecewise linear approximations to each such term in

the objective function, and using the technique of separable

programming.

The manpower planning model described previously can be

reformulated as the following linear program:

minimize yl
+Z

l
+y

2
+Z

2
+y

3
+Z

3
+y

4
+Z

4

subject to (11)

X
l

"y
l
+Z

l
= 5°

X
2

"y
2
+Z

2
= 25°

X
3

-y
3
+Z

3
= 75

x
4 ~VZ

4
= 40 °

15 x + 10 x < 4000

15 x„ + 10 x, < 6000
3 4 —

x > 10

x„ > 100
2 —

x
3
> 60

x. ,y. z . >li/ i —

1 l*0^m••|Q
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A real world example of a goal programming model is one

that was done by Major Calvin Anderson of the U.S. Army Con-

cepts Analysis Agency, and by professors G.H. Bradley and

G.G. Brown of the Naval Postgraduate School. The model

determined the optimum distribution of officers, by rank, in

various specialties, with the ideal utilization equal to 0.5

in primary and secondary specialties. The total number of

variables was 437, and the objective was to minimize the

sum of deviations between the actual and desired utilization

in the specified billets. The problem was solved using both

absolute value and piecewise linear (6 to 100 segments per

function approximated) approximations to a quadratic goal

function on a FORTRAN network code called GNET /21/. This

asset utilization model illustrates both goal and separable

programming concepts. In increasing the number of segments

to approximate each function from 2 to 6-100, the number of

arcs in the model increased from 874 to 4334, and the

solution time increased from 2.75 to 36.87 seconds.

C. LINEAR FRACTIONAL PROGRAMMING

Fractional programs result when rates such as target

value destroyed to weapons expended, or retention rate of

aviators over a time planning horizon are to be optimized.

The general mathematical formulation is:
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maximize f(x)

q(x)

(12)
subject to: g.(x) <_ j=l,2, m

An excellent theoretical development of fractional pro-

gramming can be found in Ref. ^22/

If f and q are linear and the constraints are linear,

then (12) is called a linear fractional program, and can be

written as:

T
maximize c_ x + Ct

d
T
x + y3

(13)

subject to: A x <_ b

x >_

Where C(and/j are real numbers.

The linear fractional program (13) can be reduced to

a linear program by the following variable transformation

proposed by Charnes and Cooper ,/23/:

y= 1 x
"

d
T

x + fi

(14)

1

£ *
+

fi

if d
T
x +R>

The resulting linear program is

T
maximize c_ y + C£ z_

subject to: Ay_-bz_<_

d
T
y_ + Q Z = 1

y_ >_ 0, z_ >

28
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*f & 2£ +P>< ^* this transformation will not work but

can be modified easily as follows:

z- -
T

L

75
*

d
1

x +p
z = - -——

' if d
T

x +H<
"

d
T

x + /5
- - ^

(16)

The new linear program to solve becomes:

. . T
maximize c_ y_ +Q z_

subject to: A y_ - b z. <_

d
T
y_ +Rz = - 1

y_ >_ , z_ >

The case where the denominator is allowed to be zero

in the feasible region is considered in Ref. ^/24/.
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IV. PROBLEM AND VARIABLE TRANSFORMATIONS

Once the analyst decides on a mathematical model,

which may be dictated by the codes available to him, he is

then faced with the decision of whether to apply transfor-

mations. There are several reasons for considering the use

of transformations. First, a computer program for the so-

lution of the transformed problem may be readily available.

Second, the transformed problem may require less computational

time. Third, the problem as initially formulated may be too

difficult to solve and thus require an approximation.

Finally, the reformulated version may also provide the ana-

lyst with more insight and information than was available

from the original problem.

The classification of transformations that are of in-

terest to the analyst are the following:

(1) transformations to an unconstrained or partially
constrained problem by a change of variables;

(2) transformations to a separable programming format;

(3) transformations to an unconstrained problem by
barrier or penalty functions.

These transformations will be discussed in order in the

following sections of this chapter along with a description

of the experiments used to test them.
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A. TRANSFORMATIONS TO UNCONSTRAINED OR PARTIALLY CON-
STRAINED PROBLEMS BY A CHANGE OF VARIABLES

Variable transformations to eliminate constraints have

received little attention in the literature, and it is one

area of mathematical programming that is much in need of

updating. Very little empirical work has been done in this

area. In this section transformations recommended for con-

version of constrained optimization problems to unconstrained

or partially constrained problems are discussed. No previous

work has been done with these transformations in conjunction

with a generally available nonlinear programming code.

These transformations are considered here because an appro-

priate choice can possibly eliminate some constraints and

make the problem easier to solve. In the next section, the

results of testing these transformations on the GRG and SUMT

codes are discussed.

Constrained optimization problems can sometimes be re-

duced to a simpler form in which no constraints appear ex-

plicitly. These problems can then be solved by a wide

variety of unconstrained optimization techniques which

handle general nonlinear functions.

Box j/25/ was one of the first to investigate the possi-

bility of using transformations to eliminate linear con-

straints. The following table lists linear constraints

and some of the change of variables transformations that can

be made. 31



TABLE 1: Change of Variables Transformations for
Linear Constraints

Constraints Trans formations

2 y. I

x . > x . = y . ; x . =e 1 ; x . = y

.

i— ill |ii
2 y

< x. <_ 1 x. = sin y. ; x. = e 1

i — l ^ii

/. < x. < u. x. =/. + (u.-£. ) sin y.^-l-i—i i /u i
v

i ^l' ^l

-1 < x . < 1 x. = sin y.— l
— li

2 2.2
< x. < x. < x. x. = y. , x. = y. + y— i — j — k. 11 3 x j

x
, =y •

2 + y •

2
+y,

2

If each variable in a problem has constant upper and

lower bounds, yC .< x.< u, . , then the feasible region consists
i— i— i

of a rectilinear n-dimensional box. Replacing each x. by

yC- + (u -~v£ • ) s in y- means that an unconstrained optimum

in y_- space is being sought. The periodicity of optimal

solutions in transformed space will not cause any difficulty

if small step-size adjustments are made by the optimization

technique.

These transformations map points in the neighborhood of

y_^ in y_- space into the neighborhood of x~, in x - space.

Although they are not necessarily a 1:1 mapping, these

transformations cannot introduce any additional local optima.
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Experience in the application of these techniques is

limited, but the possibility of their use should be kept in

mind by the analyst whenever he formulates a problem. If

even a few constraints can be eliminated, it should help a

code such as SUMT in which the constraints are included in

the modified objective function.

B. COMPUTATIONAL EXPERIENCE WITH VARIABLE TRANSFORMATIONS

There were three test problems used in the experiments

on the GRG and SUMT codes. The experiments were conducted

on the NPS IBM 360/67 computer system with the Fortran H

Compiler. The codes were loaded on the same data cell and

both used double precision arithmetic. Problems were taken

from the appendix of Himmelblau's text on applied nonlinear

programming /2§/ , and are given in Appendix A of this thesis

along with the original source. They will be referred to

as Himmelblau problems 16,4, and 20 respectively. Before

describing the experiments performed, a few words are in

order regarding the test problems. Problem 16 includes a

quadratic objective function, of nine variables, 13 quadratic

constraints, and one upper bound. Problem 20 includes a

linear objective function of 24 variables, which are sub-

ject to 12 nonlinear equality constraints, two linear

equality constraints, and six nonlinear inequality con-

straints. The 14 equality constraints make it a very
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difficult problem. Problem 4 has a nonlinear objective

function of 10 variables which is a logarithmic function.

It is subject to three linear equality constraints and all

variables have lower bounds. The starting point for each

test problem was infeasible. The experiments were conducted

so that the same starting point was always used for a given

test problem. Table 2 summarizes pertinent information on

the three test problems.

The GRG code used in these experiments was designed to

handle small or moderate size problems containing up to 100

variables and 100 constraints, of which 60, at most, can be

binding at any one time. This limitation is based upon

storage requirements. Lasdon is currently working on a GRG

code that will handle much larger problems. The SUMT code

is limited to problems having less than 100 variables and

less than 200 constraints. The GRG method is described in

Appendix C, and the reader is strongly urged to review this

appendix before reading the following discussion of empirical

results. The SUMT method is discussed in section D of this

chapter in conjunction with penalty and barrier functions.
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TABLE 2: Test Problems Used with GRG and SUMT Codes

Problem Number 16 4 20

Number of variables 9 10 24

Number of equality-
constraints:

linear 3 2

nonlinear 12

Number of inequality
constraints

linear
nonlinear 13 6

Number of lower bounds 1 10 24

Number of upper bounds

CPU time, seconds:

GRG 2.90 1.68 13.56

SUMT 11.69 240.
+*

*0ptimum still not reached when program was terminated

The GRG method is one that follows an inequality con-

straint very closely and therefore is very likely to ter-

minate at a local rather than global optimum. The experi-

ments performed using GRG and SUMT are listed in Appendix B

Experiments #2, #25, and #16 are the reference runs for

problems 16, 4, and 20 respectively using the GRG code. Ex-

periments 28 and 31 are the reference runs for problems 16

and 20 respectively using SUMT. No reference run was made

for problem 4 using SUMT. The SUMT code was not used ex-

tensively in these experiments because the user must supply
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the gradient and Hessian matrix in order for the code to run

efficiently. It was felt that this was too time consuming

(high preparation time) and error producing ( debugging time

excessive) to be worthwhile. GRG, on the other hand, is

very easily modified to account for a change of variables.

This is so because GRG uses finite differencing to evaluate

gradients, although the user can provide a subroutine with

the exact analytical derivatives.

In general, problems with nonlinear equality constraints

and either nonlinear or linear inequality constraints are

the hardest to solve, followed by linear equality constraints

with nonlinear inequality constraints, and lastly, nonlinear

or linear inequality constraints. Therefore, of the three

test problems, the order of decreasing difficulty is 20, 4,

16.

Before discussing the transformations on problem 16, it

must be noted that a fixed parameter in the GRG code had to

be modified before the correct optimum could be obtained.

A parameter called TOL in the DEGEN subroutine had to be

tightened in order to obtain the correct solution for problem

16. The subroutine DEGEN is called when the basis constructed

is degenerate. The change was suggested by Lasdon for this

particular test problem, and will not work for other problems.

Experiments 1 and 2 show the effect of this modification on
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the basic problem. Experiments 3 through 15 show the

effects of various transformations on problem 16. In experi-

ment 3, the problem was modified by placing lower bounds on

all variables, but it yielded only a local optimum.

2 2
In experiment 4, the transformation x. -y . was

attempted which again stopped at a local optimum. The

problems run in experiments 3 and 4 were then run on the

SUMT code (experiments 29 and 30) , both yielding the correct

maximum value but at different values of x. Experiments 5

and 6 were then repeats of experiments 3 and 4, except for

the starting points, which were taken from the optimum x in

the SUMT experiments. Aside from these two experiments all

others were commenced from the same starting point by modi-

fying the input vector as appropriate.

In experiments 7, 8, and 14, the transformation x.=

y. was attempted. The first two of these were with and
I VI

without lower bounds on y. respectively, both yielding

local optima which differed only in that x and x were

reversed. In experiment 14, the initial y_ vector was the

optimum vector from experiment 2 (the reference run), and

no lower bounds were placed on the y. . No feasible point

was found in this run because the final constraint was the

only one not satisfied initially, and in attempting to

satisfy it, the step size was reduced to zero causing

termination.
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y •

In experiments 9 and 10, the transformation x . =e ! was
1

tried, first without lower bounds and then with them. Run-

ning the problem without lower bounds produced an apparent

local optimum, while running it with lower bounds kept the

search outside the feasible region. The reason this happened

y
is evident from a sketch of e 1 which is always positive

(note that e =1) . Constraining y. >_ will always violate

constraints 1, 3, and 12.

Experiments 11, 12 and 13 involved the transformation

2
x.= sin v.. The first two were run without and with lower
l * i

bounds on y. respectively, but both start from the same

initial point which for this transformation is infeasible.

To see why this is so, consider constraint 1 with x re-

2 2
placed by sin y , and x replaced by sin y . This makes

the constraint:

4 4
1- sin y - sin y„->2

3 4 —

Taking the gradient of this constraint with respect to y_

yields the following nonvanishing components.
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= -4(sin y ) (cos y )^y 3
**' **

£*! 4
±— = -4 (sin y ) (cos y )

***

Evaluated at 7T/2 radians, both terms vanish since cos (7772) =0

Thus all elements of the gradient of constraint 1 vanish.

The same holds true for all the other constraints and the

objective function. In experiment 13 a different starting

point was used ( y.= 77/4, i=l,.... 9), and was successful in

reaching a local optimum.

e yj
In experiment 15, the transformation x.= rr?

i y, yi
e i+ e

was tried with no lower bounds on y . . This transformation
l

constrains x. to the interval (0,1). As with the previous

transformation, this one never gets going because the re-

duced gradient at the starting point is zero for all 9

variables.

This same group of transformations was then tried on

problem 20. As previously noted, experiment 16 is the

reference run for this problem using GRG, and the optimum

value of x is listed there. Experiment 17 handles the

lower bounds explicitly as inequality constraints. Although

it arrives at the optimum point, it takes 70 per cent

longer to run than the reference experiment.
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the transformation x.= y.
i i

2
In experiment 18, the transformation x . =y . was tried.11

and the transformed problem succeeded in reaching the opti-

mum point but required more than double the time of the

reference run. The transformation attempted was x.= ly.l
l

I
i|

in experiment 19. Here too, the optimum point was reached

but in nearly triple the reference time. In experiment 20,

was tried but with lower bounds

on the variables removed. No feasible point was found with

eight of the 14 equality constraints still violated at

termination of the program. The problem became much more

difficult to solve by allowing the y. to be unrestricted,

which made the equality constraints more difficult to satisfy,

2
The transformation x. = sin y. was used in experiment 21

and the optimum point was found in the transformed problem

in 2.76 times the reference time.

A careless error was made in experiment 22 using the

ytransformation x.=e i. Lower bounds were left on all 24
l

variables, but no compensation was made for the fact that

negative values of y. were necessary to start from the same

starting point as in the other experiments. This error was

corrected in experiment 23 by the same transformation but

with the lower bounds removed, however, no feasible point

was found and the program was making very slow progress.

In experiment 24, the transformation x.=e i /{e + e i) was
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attempted, but was unsuccessful in finding a point that would

satisfy all constraints.

Two transformations were tried on problem 4. The ref-

erence run and optimum point is listed in experiment 25.

The transformation x . =e yielded a slightly improved ob-

jective function in experiment 26 and a different optimum

point, but also took slightly longer to solve. In experi-

ment 27, the transformation x.=|y.|was used and it was found
l

|
1

l

to yield the same optimum as the reference run, and in about

y±
the same time. The transformation x . =e was also tried on

l

problem 4 using the SUMT code (experiment 32) and provided

the correct optimum, but in over five times the CPU time

required by GRG for the same transformed problem.

Note from experiment 31 that SUMT still had not reached

the optimum point in problem 20 after four minutes of CPU

time. Thus none of the transformations considered here

were tried on problem 20 using SUMT for two reasons:

(1) excessive computation time to reach an optimum solution,

(2) excessive preparation time to determine all the ana-

lytical first and second derivatives of the transformed

problems.

From the preceding discussion, the following obser-

vations should be kept in mind when considering a transfor-

mation of variables using the nonlinear programming codes
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GRG and SUMT:

( 1) transformations generally make a nonlinear program

harder to solve and can substantially increase the com-

puter time required;

(2) transformations are less likely to cause difficulty when

used in problems subject to finite lower or upper bounds;

(3) starting points and bounds on variables must be handled

and adjusted carefully when preparing a transformed

problem;

(4) when confronted with a real-world problem whose solution

is not known in advance, it is always wise to try several

different carefully chosen starting points to determine

if the solution can be improved.

In view of these observations, it can be concluded that

variable transformations have an adverse effect on nonlinear

programming codes such as SUMT and GRG, and that they should

not be attempted unless the codes have difficulty in reach-

ing a solution using the original variables.

C. TRANSFORMATIONS OF VARIABLES TO OBTAIN SEPARABILITY

Once the analyst decides upon separable programming as

a method for solution, he is faced with the problem of how

to transform his model to separable form. This section dis-

cusses some of the transformations that can be used to elimi-

nate interaction between variables.
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Converting a nonlinear programming model into an approxi-

mate version with separable functions increases the size of

the model in two ways. First, the separability transfor-

mation introduces new constraints and variables. Second, the

subsequent linearization expands the number of constraints

and variables even further.

The transformations described in this section are located

in several references including Hadley ,/13/, Beale ^17/ ,/18/f

Wagner £21/ , and McCormick ,/28/. No single reference pro-

vides a complete treatment of all the transformations dis-

cussed here.

1. Transformations for Product Terms and Exponential
Expressions

Any product term of the form x.x. appearing in a

constraint or objective function can be eliminated by defining

two new variables y. and y. as follows:
1 3

X . + X . X . -x
.

y
i
= ^r^ •

yj=^2-^ (i6)

2 2
Then x. x.= y. - y. which provides a separable form in the

new variables. For every product term in the problem formu-

2 2
lation, substitute y . -y . , and add the two additional con-

i D

straints defined in (16). Since y. involves the difference

of the original variables, it will be unrestricted in sign

even if x. and x. are non-negative,
i 3
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An alternative method to separate x. x. is a log trans-

formation which can be generalized to handle product terms

of three or more variables. The original variables, however,

must be strictly positive since In 0= - oo , and the logarithm

of a negative argument is undefined. Setting y = x. x. and

taking the natural logarithm yields:

y= In x.+ In x,
,
, _.

k i D (17)

In the original problem formulation, each x.x. term is re-
i D

placed by y , and the additional constraint (17) is imposed.

If the only nonseparable term in the problem is x.x., intro-

duction of the variable y, and the additional constraint
k

will result in a separable format.

To separate expressions of the form exp.
\

r
h
i
(x

i»

2
an example of which is exp. (ax + bx ) , introduce the new

variable y, , and take the natural logarithm as follows:
k

yk
= exp. (ax + bx

2
)

2
(18)

In y. = ax. + bx^
-^k 1 2

For expressions of the form x. x , x. >0, x. > 0, take
1 j i 3

-

the natural logarithm and proceed as follows:

3 3
*

z = v . In x .

3 i

v. = y. + y.DID
In x .

= y . -y .

l i j

(19)
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Therefore z=v . In x. can be replaced in the formulation by:
3 i

z=Y
i "Yj (20)

Himmelblau problem 16 has numerous cross product terms

in both the objective functions and constraints. All cross

product terms were replaced by transformations of the form

2 2
y . -y . . The effect of these transformations was to in—
i 3

crease both the dimensionality and degree of difficulty of

problem. Refer to experiments 33 and 34 in Appendix B.

The original problem had nine variables and 13 nonlinear

inequality constraints. The transformed problem had 41

variables, 13 nonlinear inequality constraints, and an

additional 32 equality constraints. The two experiments

differed only in a parameter tolerance; however, each con-

structed the same local optimum point. Therefore, when

using GRG, the analyst should avoid making product trans-

formations because of the additional complexity entailed.

However, if only a linear programming package with separable

option is available, the analyst must make these transfor-

mations.

2 . Transformation of Quadratic Expressions Into
Diagonal Form

Every quadratic form can be expressed in terms

of a symmetric matrix Q associated with its coefficients.

The quadratic programming problem can be formulated in
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matrix notation as follows:

minimize x Q_ x

(21)
subject to: A x <_ b

x >_

A quadratic form is defined to be positive definite if

T
x ^ x is strictly positive for all x / 0; it is defined to

T
be positive semi-definite if x Q x is non-negative for all

x.

By a suitable change of variables

x=R x (22)

the quadratic problem can be transformed to

. . . T T
minimize y_ R Q R y_

subject to: A R y_ <_ b . .

R y_ >_ 0_

T
If an R matrix can be found that will make R Q_ R

T T
diagonal, then this will make ^ R Q R y_ a sum of squares

and therefore separable. It is possible to diagonalize

any symmetric, nonsingular matrix without the laborious

effort entailed by the Gram-Schmidt orthogonalization

process in solving for eigenvalues (see Ref . /29/) . For a

symmetric matrix Q_, a sequence of elementary row operations

followed by the same sequence of elementary column oper-

ations will diagonalize the matrix. The same sequence of

operations when applied to the identity matrix will yield
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T T
a matrix R , such that R Q_ R is a diagonal matrix.

To illustrate this point, consider the following sym-

metric matrix..

7 1 2 -3

a- 2 5 -4

-3 -4 8

(24)

The first step is to augment it with the identity matrix:

1 2 -3 1

2 5 -4 1

-3 -4 8 1
(Q'D =

Step 2: pivot on row 1, to yield:

-3

-1

-2

3

Step 3: pivot on column 2, to yield:

10 ' 1

-1

-2

\ 2

Step 4: pivot on row 2, to yield:

10 Oil
-2

-5

1

o\

1

l/

1

1

2 1

(25)
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Step 5: pivot on column 2, to yield a diagonal matrix

T T
(R £ R, R )

-

1 1

1 -2 1

-5 7 -2 L
l

(26)

The actual computation involved Gauss-Jordan elimin-

ation pivoting on row 1, column 1, row 2, column 2 in order,

so as to reduce all off diagonal elements to zero. These

simple operations can be programmed easily. A program was

written for this study to determine the amount of compu-

tation time required to diagonalize matrices of different

sizes. The results of the experiments are presented in the

next subsection.

Complications arise whenever there is a zero element

along the diagonal in which case the Gauss-Jordan reduction

scheme breaks down. The algorithm can be made to handle the

case of an arbitrary zero element along the diagonal, or

the case in which all diagonal elements are zero. In the

first case, the matrix can still be diagonalized by inter-

changing the row in which it appears with the next lower row

in which the diagonal element is non-zero. This is followed

by interchanging the corresponding two columns. This has the
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effect of moving the zero element down the diagonal to the

next lower position, allowing normal pivot operations to be

continued. It should be observed that each iteration of the

algorithm can introduce a zero in those diagonal elements

below the current pivot row. Whenever a zero element is

encountered, this procedure is repeated.

If all diagonal elements are zero, choose i,j such that

a. M 0, and apply the row operation R.—*R.+R., and the
lj 1 j 1

corresponding column operation C .—*- C . +C . (where —*> means

"is replaced by") . This has the effect of bringing 2a.

.

into the a. . diagonal position. This element can then be

moved to the first diagonal position by another interchange

of row and column. An a. . ^ must exist because the Q
ID

matrix is required to be nonsingular. The £ matrix will

be in the following form:

\a. . l a. .

11

0- r (27)

a. . I B
ID -

Here B is a symmetric matrix of order less than Q_,

still having zeros along its diagonal. The diagonalization

algorithm is then used to zero out the elements in the first

row and column. This process is then repeated until, by

induction, £ is brought into diagonal form.
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There are several observations to be made regarding this

T
transformation. First, the matrix R will be lower triangular

only if no zero elements appear along the diagonal during ex-

ecution of the algorithm. When this is the case, R will be

upper triangular. Second, the diagonal form resulting from

this algorithm does not yield the eigenvalues of the matrix

£., but rather a simple way of transforming a quadratic form

into separable form. Third, the algorithm must include a

test at each iteration to determine if the diagonal element

in the pivor row is equal to or very close to zero.

3 . Experiments in the Diagonalization of Quadratic
Forms

Table 3 lists the experiments that were conducted

using the diagonalization algorithm described in the pre-

vious subsection. Two types of matrices were diagonalized.

The first type was tridiagonal in which the main diagonal

and the adjacent diagonals all had non-zero integer elements

from the interval range (-50,50). The entries were deter-

mined by a random number generator. The second type was a

random entry matrix in which the random number generator

was used to determine not only the magnitude of the element,

but also its location in the matrix. For both types of

matrices, the size of matrices tested were 20x20, 40x40,

60x60, and 80x80. Each random entry matrix size tested
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TABLE 3: Application of a Diagonalization Algorithm

A. Tridiagonal Matrix

Nonzero Time to Total CPU
Matrix Size Elements Diag. (sec) Time (sec )

20x20 58 0.12 0.94

40x40 118 1.12 3.65

60x60

80x80

178

238

3.93

9.24

9.42

18.58

B. Random Entry Matrix
Nonzero

Matrix Size Class Elements

20x20

40x40

Sparse
Medium
Dense

Sparse
Medium
Dense

40
200
360

160
800

1440

Time to
Diag. (sec )

0.15
0.13
0.13

1.12
1.12
1.22

Total CPU
Time (sec)

0.98
1.01
1.14

3.61
4.03
4.93

60x60

80x80

Sparse
Medium
Dense

Sparse
Medium
Dense

360
1800
3240

640
3200
5760

4.05
3.95
3.86

9.49
9.80
9.26

9.97
10.66
11.64

18.96
21.55
22.72
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was further classified and tested as sparse, medium, or

dense, depending on the number of non-zero elements. The

classification sparse, medium, and dense was used to des-

cribe matrices having, respectively, 10%, 50%, and 90% of

its elements non-zero. A timer routine was used to compute

the actual time spent in diagonalization, since the larger

matrices took a proportionately greater time in generating

matrix elements.

The computational algorithm used did not take advantage

of the degree of sparseness of the test matrices, so the

diagonalization time is essentially the same for a given

matrix size. The time did not vary in direct proportion

to the number of matrix elements but instead increased more

rapidly as the size increased. In fact, when the number

of rows ( and columns) is increased by a factor of k, the

3
time can be expected to increase by a factor of k . For

example the 80x80 matrix was 1.33 times as large as the

60x60 matrix, but the computational time increased by a

factor of 2.41.

The analyst must be aware of the time and preparation

necessary to convert a quadratic expression into diagonal

form, and must weigh this against whether to apply a series

of product type transformations in order to separate the

variables.
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To conclude this section, the analyst must keep

in mind that transformations to separable form can greatly

increase the size of the model and thus make it less

economical to solve. The analyst should also be aware that

the next step, in the conversion of the separable form to

piecewise linear approximations of the functions involved,

expands the model further by introducing special sets of

variables.
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D. TRANSFORMATION TO UNCONSTRAINED PROBLEMS
BY USE OF PENALTY AND BARRIER FUNCTIONS

A general nonlinear programming problem can be reduced

to a sequence of unconstrained optimization problems by a

transformation which combines the objective function and

constraints. The minima of the new unconstrained function

approximate the solution to the constrained problem.

Exterior point techniques compute a sequence of points

generally outside the feasible region of the original

problem. This is accomplished by addition of a penalty

term to the objective function that is a function of only

the violated constraints. A useful penalty function for

inequality constraints of the form g.(x) > is:

P.(x) = min (0,g.(x))
2

(28)

The optimization problem becomes the minimization of:

m

D

j-l

f(x) + r
k £ P^(x) (29)

where r is an appropriate weight. In the limit as r

becomes large, constrained minima of the original problem

are approached by unconstrained minima of the transformed

problem.

An important attribute of the penalty-function

approach is that the initial search point does not have

to satisfy the constraints. A simultaneous solution to the

constraint equations is attained concurrently to the

attainment of constrained relative minima. A major
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disadvantage of exterior point transformations is that the

transformed problem becomes progressively ill-conditioned

as the penalty function increases. In addition, the numeric-

al errors in the penalty terms become significant for large

penalty coefficients. Because of these difficulties, it

may be very difficult to satisfy the constraints with any

desired accuracy.

Interior point techniques compute a sequence of

feasible solutions to the original problem. The inside

penalty function establishes a barrier within the feasible

region which can not be crossed by a search for the con-

strained minimum. This transformation prevents the

solutions from violating the inequality constraints which

are gradually approached as the barrier is relaxed. Use-

ful barrier functions are /g.(x)/ and ln(/g.(x)/ ).
3 3

The optimization problem becomes:
m

minimize f(x) + rv £ B.(x) (30)k
j=l J

where r is an appropriate weight and there are m such

inequality constraints.

The starting point for interior point techniques must

be a point which strictly satisfies the constraints. After

a minimum has been obtained for one value of r, , a new and
k

smaller r, is used in the next search. Each constrained
k

relative minimum of f(x) is approached asymptotically by a

relative minimum of (30)

.
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Interior point methods are incapable of handling

equality constraints and are combined with a penalty term

to counter this difficulty. The sequential unconstrained

minimization technique (SUMT) of Fiacco and McCormick /3/

is a mixed interior-exterior penalty function technique.

For the general nonlinear programming problem:

minimize f(x)

subject to:

g.(x)^. j= l,2,....m

h.(x)= j= m +l,....m

(31)

the SUMT code minimizes the unconstrained penalty function

trans formation

:

m m 2

P(x,r, ) = f(x) - r. Z Ing (x)+ 1 Z h
-; (2/

(32)

The objective function and inequality constraints can be

nonlinear functions of the variables but the equality con-

straints must be linear functions of the variables in order

to guarantee convergence to the solution of the nonlinear

programming problem.

There are several disadvantages associated with the

mixed interior-exterior point methods. The first is that

the Hessian matrix of the P(x, r ) function becomes progressively
K.

more ill-conditioned as the minimum is approached, so search

directions may be misleading. Second, the rate of convergence
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is slowed considerably as the structure of the unconstrained

problem becomes more unfavorable. The biggest disadvantage

from the user's standpoint is the amount of preparation time

required to compute the analytical first and second deriva-

tives of the original objective function and constraints.

Unless most of the derivatives are zero or constant, this

will not only require a lot of time but is also more prone

to human error.

References /30/-/33/ give good discussions of barrier

and penalty function techniques. The excellent treatment

of unconstrained nonlinear programming techniques makes

Ref. /30/ particularly useful as a general reference.

Although it is not the intent of this thesis to

compare the efficiency of the SUMT and GRG codes, it should

be noted that the SUMT method generally required a signifi-

cantly greater amount of computation time than did the GRG

method. As pointed out in various sections of this chapter

and the next one, GRG is a very versatile code in that

scaling and transformations can be applied easily by

modifying the user supplied subroutine GCOMP. On the other

hand, SUMT requires computation of analytical gradient and

Hessian functions for the GRADl and MATRIX subroutines.

This can require a substantial amount of preparation and

debugging time. However, SUMT does have an option that
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enables it to compute numerical approximations for the

gradient and Hessian functions by finite differencing.
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V. THE USE OF SCALING, ROTATION, AND

TRANSLATION IN CONSTRAINED OPTIMIZATION PROBLEMS

A. USE OF SCALING IN NONLINEAR PROGRAMMING PROBLEMS

The objective of this chapter is to determine how

sensitive the GRG code is to scaling in nonlinear programming

problems. The analyst is responsible for scaling his problem

and very real difficulties can be encountered if he attempts

to solve a problem using GRG without making an effort to

scale it first. Commercial linear programming codes are

forgiving in the sense that the code will perform row and

column scaling operations on the problem tableau. This is

not true of GRG.

Although scaling is important in both linear and

nonlinear programming problems, it is especially critical

in nonlinear programming. Attempting to solve a linear

programming problem without scaling is to run the risk of

introducing round-off errors which alter the original

problem and may even result in a false optimum being

designated. However, in the nonlinear programming problem,

if the problem is poorly scaled, there is a good possibility

the nonlinear programming code used will be unable to even

find a feasible solution, let alone provide an optimal

solution.
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The efficiency and rate of convergence of optimization

methods depends very critically on the given function f(x)

and the scales used for the variables. A great deal of

caution must be used with even the simplest scale changes,

such as x.= a.y., a.> 0, since many important aspects of the

optimization algorithm will not be left invariant.

To illustrate some points consider the following

problem:

2 2
Minimize f (x) = x. + x

XV x
2
-° (33)

x° = (1.1)
T

The function isocontours are concentric circles in

this case. The method of steepest descent gives the descent

m m
direction d = -yf(l,l) - (-2,-2), and the solution x*=(0,0)

in one step. By introducing new variables:

yx
= 0.1 x

±

(34)

J
2 2

the efficiency of steepest descent is radically changed.

The isocontours of the new objective function

f(y.) = 100 y
x

2
+ y

2

2
(35)

form a deep and narrow valley along the y coordinate, and

the gradient vector calculated at the same point as before,

n T
d = -Vf(-l#l) = (-20,2) makes an angle of nearly 90
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degrees with the y axis. Thus steepest descent is in-

efficient in handling the rescaled problem.

Second order Newton methods using the Hessian matrix

do not have this drawback, and may be considered invariant

with respect to linear changes of scale of the variables.

The direction vector is reoriented towards the solution in

the scaled system of variables. For the example of this

section:

d - - Hess (.l,!)"
1

\7f(.l,l) = - .005

.5

20

2

d = - (.1,1)
T

(36)

When f(x) is a very complicated function of its

variables, it may be very difficult to scale the problem.

Intuitively, in general constrained nonlinear optimization

problems, "well-scaled" problems are those in which similar

changes in the variables lead to similar changes in the

objective function.

For a quadratic function of n variables, it is

possible to diagonalize the quadratic form Q, as suggested

in the preceding chapter, and then scale the diagonal

Telements of the R^R matrix so that they are approximately

equal. The next section presents and discusses detailed

experiments that were done on two well-scaled problems

using the GRG nonlinear programming code.
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The problem of scaling has another interesting aspect,

-5 -2
In a simple two-dimensional problem, if 10 <_ x <_ 10 and

-2 3
10 <_ x <_ 10 , the feasible region has the shape of a very

narrow band. It would be very difficult to search for a

minimum in such a band because the step length would have

to be very short to avoid violation of the constraint im-

posed by x
1

.

Difficulties are also encountered by performing

arithmetic operations with numbers of different orders of

magnitude. To scale the variables so that they are of the

same order of magnitude, where^£. <_ x . <_ u . , introduce a

new variable y. defined as follows:
l

y. = 2 a. x. - a. (/. + u.) (37)J i li l ^i l

1 A"l

where y. lies in the interval (-a./ a.). If all a. are
i 11 i

taken equal to one, then all variables would be located

within a hypercube of length 2 about the origin of the new

coordinate system.

References </34/ and </35/ contain descriptions of

self-scaling algorithms for unconstrained minimization

problems.

B. COMPUTATIONAL EXPERIENCE WITH SCALING, TRANSLATION,
AND ROTATION OPERATIONS ON NONLINEAR PROGRAMMING
PROBLEMS

The effect of translation, rotation, and scaling
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operations can be illustrated by the following sketches of

a two-dimensional quadratic function.

Figure 2: Effect of translation, rotation, and scaling
operations on a quadratic function

x.

Original Problem

(A)

x.

x.

Translation

(B)

*

Scaling

(D)
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The original problem is transformed to a new coordinate

system by translation of the old origin to the minimum of the

function. The axes are then rotated to achieve symmetry of

the function contours with respect to the new coordinate

system. Finally, the coordinates are scaled to make the

function contours circular.

Appendix B enumerates the experiments of scaling,

translation, and rotation that were applied to problem 16

and 20 using the GRG code. All the experiments were con-

ducted using GRG because the user supplied subroutines

could be easily modified by the simple addition of a few

Fortran statements, and the appropriate adjustment of the

input vector.

The experiments on scaling were done in a reverse

sense, that is, given a fine-tuned properly scaled test

problem to begin with, at what point would different scale

magnitudes affect the ability of GRG to find a solution.

Refer again to Appendix C for a description of GRG. The

authors of that code feel that proper scaling of variables

and functions is critical to success of the code. They

further recommend that constraints be scaled to have

absolute values below 100. There are no printouts of the

gradients of the constraints and objective function, but

the user should suspect scaling problems if there are
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large values in the reduced gradient array which prints out

with final solution information. These values should all

be approximately zero when the program terminates.

The experiments were run by reading in an initial

vector y_, multiplying the components of y_ by appropriate

scaling factors to get a new vector x which was used to

evaluate the constraints and objective function. In

successive iterations the code tries to optimize the y_

vector, and in so doing, should construct the equivalent

optimum x vector. The starting point was modified so that

the same starting x vector is used in the functional

evaluations. There was no way to use constraint values

to predict scaling difficulties in these experiments. The

test problems were adjusted to account for scaling factors

in such a manner that the same starting point was always

used. Consequently, the initial constraint values were

always the same.

In experiments 3 5 and 38 on problem 16, the initial

components of the y_ vector had the value 0.01,0.1, or 1.

Both experiments ran to the correct optimum. Likewise,

experiment 39 resulted in the correct optimum with the

initial components of y_ each being 0.1. In experiment 36,

the y_ vector initially had components of .0001 or 1,

-7
causing the initial step size to be .8 (10 ), which was
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quickly reduced to zero in an attempt to satisfy the con-

straints. This caused the program to terminate. Experiment

37 produced the same result. The initial y_ components were

either .001, .01, or 1; the initial step size was (10 )

which was quickly reduced to zero causing program termination,

It should be noted in the experiments where the scaling

factors did not prevent GRG from finding the optimum point,

the time required to solve the problem increased over the

reference time of 2.90 seconds.

Problem 20 proved to be a much harder problem to

solve when using scale factors. Its sensitivity is probably

due to the equality constraints, and the ratios of one

variable to a weighted sum of several variables appearing

in most of the constraints. In experiments 49 through 52,

although only moderate scale factors were used, each pro-

gram eventually terminated without finding a feasible point

when the step size was reduced to zero. In each of these

experiments, what was most noticeable was the difference

in magnitude of the components of the reduced gradient.

The largest difference occurred when all variables were

scaled by the same factor. The scale factor of 10 produced

reduced gradient elements as large as 10 while terms as

5
large as 10 occurred when the scale factor was 2. At the

optimum point, all elements of the reduced gradient should
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equal zero. Only in experiment 53, where a scale reduction

was tried, was GRG successful in reaching the optimum point,

taking about 1 second longer than the reference run.

Translation of coordinates was tried in experiment

40 on problem 16 and in experiment 54 on problem 20. The

simple translation made was:

x. = y. + B. i= 1, ,n (38)ill
where y. is the i ' component of the input y_ vector, and

th
x. is the l component of the vector used in the functional

evaluations. Both problems were solved easily, each taking

approximately one second longer to solve than the corres-

ponding reference run. Translation did not appear to be

important in these experiments. A case where it might be

of use is in a goal programming model formulated for use

with GRG in which each decision variable has the same goal.

Finally, a number of pairwise rotation experiments

were tried on problems 16 and 20. These comprise experi-

ments 41 through 48, and experiments 55 through 64. Single

pair rotations were of the form:

x.= y.-y.113
(39)

x . = y . +y

.

3 i 3

where, as previously, y. is a component of the input vector

and x. is a component of the vector used in evaluating
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constraints and the objective function. All of these single

pair rotations worked although the global optimum was not

always reached. In general, experiments on problem 16 took

about 0.5 seconds, and experiments on problem 20 about 5.0

seconds longer than the corresponding reference runs.

In experiment 47, a multiple pair rotation was tried

on problem 16 and was successful 'in reaching the global

optimum. The final experiment on problem 16 was experiment

48 in which the input vector y_ was premultiplied by an

arbitrary matrix consisting of + l's, -l's, and 0's. A

Gauss-Jordan reduction program was used to determine the

initial y_ vector to provide the same starting x vector.

Again, GRG solved the problem quickly with the correct

optimum.

Experiments 60 to 62 were multiple pairwise

rotations of the y_ coordinates, but each failed to provide

a feasible point. The probable cause of failure was the

difficulty of satisfying the 12 nonlinear equality con-

straints. Two or more of these constraints were violated

in each experiment. Experiment 63 was another multiple

pair rotation, in which 4 of the single pair combinations

from previous good experiments was tried. This experiment

resulted in a non-optimal solution. The final experiment

tried was pairwise rotation of 12 pairs of variables
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(treated consecutively), but it too failed to determine a

feasible point.

To sum up the results of the experiments in this

section, it can be stated that scaling is a significant

factor, affecting the ability of GRG to find the feasible

region, and then to optimize the function successfully. It

is hard to give guidelines for scaling a constrained non-

linear program, but a first step would be to convert the

coefficients in the objective function and constraints to

the same order of magnitude. If the code fails to find a

feasible point, look at the values of the constraints to

see if any exceed the recommended figure of + 100. Finally,

check the reduced gradient in the solution information, to

see if there are any large components. At the optimum

point, these values should be essentially zero.

The experiments with translation and rotation oper-

ations indicate that these operations make it harder for

the GRG code to find the optimum point, and thus are not

recommended.
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APPENDIX A

Test Problems Used with GRG and SUMT Codes

A. HIMMELBLAU PROBLEM 16

Source: J.D. Pearson, On Variable Metric Methods of
Minimization, Research Analysis Corporation
Report . RAC-TP-302, MCLean, Virginia, May
1968.

Number of variables: 9

Number of constraints: 13 nonlinear inequality constraints
1 upper bound

Objective function:

Maximize: f(x)= 0. 5(x.x -x,,x_+x x -x_x_+x x -x x )— 142339595867
Constraints

' 2 2
l-x

3
-x

4

X -X
5

"X
6

2 , ,2
1-x - (x

2
-x

9<

1- (x
1
-x

5
) - (x

2
-x

6

2
1- (x

x
-x

7
) - (x

2
~x

8

1- (x
3
-x

5
)

2
- (x

4
-x

6

!" ^ x
3
-x

7 ) " (x
4
~x

8

l-x
7

2
-(x

8
-x

9

X
1
X4"X

2
X
3

X
3
X
9

"X
5
X
9

X
5
X8"X6

X
7
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Starting point:

x.=l
1

i= 1, ,9

f(x)=0

Optimum point:

x*=( 0.9971, -0.07 58, 0.5530, 0.833 1,0. 9981, -0.0623,
0.5642,0.8256, 0.0000024) T

f(x*) = 0.8660

B. HIMMELBLAU PROBLEM 4

Source: J. Bracken and G.P. McCormick, "Selected
Applications of Nonlinear Programming, " John
Wiley and Sons, Inc., New York, 1968.

Number of variables: 10

Number of constraints: 3 linear equality constraints

10 bounds on independent variables

Objective function:

Minimize: f(x) =
10

I
i=l

x

Constraints: h, (x) = x, +2x +2x+x^+x., -2=0
1 — 1 2 3 6 10

h (x) = X.+2X +x_+x -1 =0
2 — 4 5 6 7

h (X) X
3
+X

7
+X

8
+2X

9
+X10-1=°

x. >0
l —

Starting Point: x.=0.1 i=l,

i-1. ,10

10

f(x)= -20.961
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Optimum Point:

x*=( 0.0406, 0.1477, 0.7832, 0.00 14, 0.4853, 0.0007
0.0274,0.0180,0.0375,0.0969)

f(x*) = - 47.761

Data:

c =-6.089 c
2
=-17.164

c =-24.721 c =-14.986
5 6

C. HIMMELBLAU PROBLEM 20

c =-34.054 c =-5.914
3 4

c =-24.100 c =-10.708

c =-26.662 c =-22.179
9 10

Source: D.A. Paviani Ph.D dissertation, The
University of Texas, Austin, Texas, 1969

Number of variables 24

Number of constraints: 12 nonlinear equality constraints

2 linear equality constraints

6 nonlinear inequality constraints

24 bounds on independent variables

Objective function

Minimize f(x) =
24

I
i=l

a .x.

Constraints

h.(x}= x
(i+l?)

24 ,,

1
o
1

j-13 b
j

-1 =

c
i x

i

b
(i+12)

24

h
i3

(x)= E *i
"

12
40b . r x •

i L -1
j=i b.

= i=l, ,12

i=l
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h
14

(x) y *j + f y
xi" 1.671 =

irt
d
i i=13 x

where f=(0. 7302(530) •

14.7

40

x. + x, . , _,
l (i+12)

24

X
(i+3) +

x (i+15)

+ e. > 1=1,2,3
l —

24

Z x
:

j-i

J + e. > i=4, 5,

6

l —

x. > i=l, .

.

l — ,24

Starting Point: x.=0.04 1=1,.... ,24
l

f(x) = 0.14696

Optimum Point:

x* = (0.0,0.1072,0.1114,0.0,0.0,0.0,0.0755,0.0,
0.0,0.0,0.0,0.0112,0.0,0.1928,0.2886,0.0,
0.0,0.0,0.2129,0.0,0.0,0.0,0.0,0.0004)

f(x*) 0.055658041

Data:

l l

1 0.0693 44.094

2 0.0577 58.12

0.05

0.20

0.26

58.12

137.4

120.9

c

.

1
d.
l

e.
l

123.7 31.244 0.1

31.7 36.12 0.3

45.7 34.784 0.4

14.7 92.7 0.3

84.7 82.7 0.6
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Data: Cont'd.

i a .

l
b.
l

c .

l
d.
l

e

.

i

6 0.55 170.9 27.7 91.6 0.

7 0.06 62.501 49.7 56.708

8 0.10 84.94 7.1 82.7

9 0.12 133.425 2.1 80.8

10 0.18 82.507 17.7 64.517

11 0.10 46.07 0.85 49.4

12 0.09 60.097 0.64 49.1

13 0.0693 44.094

14 0.0577 58.12

15 0.05 58.12

16 0.20 137.4

17 0.26 120.9

18 0.55 170.9

19 0.06 62.501

20 0.10 84.94

21 0.12 133.425

22 0.18 82.507

23 0.10 46.07

24 0.09 60.097
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APPENDIX B

Experiments Conducted with SUMT and GRG Codes

A. VARIABLE TRANSFORMATIONS USING GRG-HIMMELBLAU PROBLEM 16

Experiment Number 1

f(x*)= .43305879 iterations=8 CPU=1.71 sec.

x*= (.8660, .4999, .8660, .4999,0.0,0.0, .8660,1.5000,1.0)

Experiment Number 2

-4
TOL parameter changed in DEGEN subroutine to 10

f(x*)= .86603619 iterations=17 CPU=2.90 sec.

X*=( 0.0,0.0, .8660, -.5, 0.0, -1.0, .8660, .5,1.0)

Experiment Number 3

Lower bounds placed on all variables

f(x*) = .50000076 iterations=10 CPU=2.18 sec.

x*=( .8660, .5000, .5006, .8657,0.0,0.0, .8660,1.5,1.0)

Experiment Number 4

Lower bounds on all variables

2
Transformation: x . =y

.

11
f(x*)= .50001561 iterations=20 CPU=3.56 sec.

x*=( 1.0,.9948, 0.0, 1.0,0.0, 1.0,0.0, .9948,1.0)

Experiment Number 5

Run experiment number 3 from optimum generated by SUMT

f(x*) = .86602621 iterations=ll CPU=1.98 sec.

x*= ( .9306, .7071, .02 54,1.0, .9308, .7067,0.0,1.0,0.0)
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Experiment Number 6

Run experiment number 4 from optimum generated by SUMT

f(x*)= .86601997 iterations=5 CPU=1.38 sec.

x*= ( .8660, .5000,0.0,1.0, . 8660 ., 5000, . , 1 .0 , . 0)

Experiment Number 7

Transformation: x.=
i

y. I *Y- °
i i —

f(x*)= .50000076 iterations=10 CPU=2.33 sec.

x*= ( .8660, .5000, .5000, .8657,0.0,0.0,8660,1.5,1.0)

Experiment Number 8

Transformation: x.= y. ; no lower bounds
l i

f(x*)= .43301447 iterations=12 CPU=2.47 sec.

x* = ( .8660, .5000, .8660, .5000, 0.0,0.0, .8660,1.5,1.0)

Experiment Number 9

yTransformation: x . =e i ; no lower bounds
l

f(x*)= .4833425 iterations=22 CPU=5.77 sec.

x*= ( .9845^2034, .08, .9968, .0215, .0613, .3403, .9682, .0279)

Experiment Number 10

yTransformation: x . =e i ,y. >
l i

_

No feasible point found

Experiment Number 11

2
Transformation: x.= sin y.; no lower bounds

l i

No feasible point found
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Experiment Number 12

2
Transformation: x.=sin v.; y. >

l ii —

No feasible point found

Experiment Number 13

. 2
Transformation: x.=sin v.; no lower bounds

i i

y_°= (.7854, .7854, ,.7854)

f(x*)= .50035409 iterations=12 CPU=2 . 59 sec.

x*= ( .9898, .1548, .1485, .9889, .0017, .0008, .2533, .8311,
.2971)

Experiment Number 14

Transformation: x.= y. ; no lower bounds
i l

Start from reported optimum (see Appendix A)

No feasible point found

Experiment Number 15

YiTransformation: e x
; no lower bounds

x. =

o 4- o * -I-e ' + e

No feasible point found

B. VARIABLE TRANSFORMATIONS USING GRG-HIMMELBLAU PROBLEM 20

Experiment Number 16

f(x*)= .055658041 iterations=30 CPU=13.56 sec.

x* = ( .0.0, .1072, .1114,0.0,0.0,0.0, .0755,0.0,0.0,0.0,
0.0, .0112,0.0, .1928, .2886,0.0,0.0,0.0, .2129,0.0,
0.0,0.0,0.0, .0004)
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Experiment Number 17

Lower bounds changed to inequality constraints

f(x*)=. 055658019 iterations=28 CPU=23.03 sec

Experiment Number 18

2
Transformation: x . =y . ; y.11 i ""

f(x*)=. 055668194 iterations=47 CPU=28.25 sec

Experiment Number 19

Transformation: x.=
i

; y. >
i —i

f(x*)=. 05565887 iterations=70 CPU=40.11 sec

Experiment Number 20

Transformation: x.=
l

y
i

; no lower bounds

No feasible point found

Experiment Number 21

2
Transformation: x.=sin y.

i l

f(x*)= .055672184 iterations=51 CPU=37.40 sec

Experiment Number 22

yiTransformation: x . =e , y. >
l l —

£ - (-3.281, ,-3.281)

Did not run because y_ violated lower bounds

Experiment Number 23

Transformation: x.=e i, no lower bounds

No feasible point found
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Experiment Number 24

yTransformation:
j_x -

-
_^ ; no lower bounds

e
Yi + e

"yi

No feasible point found

C. VARIABLE TRANSFORMATIONS USING GRG CODE-HIMMELBLAU
PROBLEM 4

Experiment Number 25

f(x*)= -47.606887 iterations=9 CPU=1.68 sec.

x*=( .1278, .1678, .6454, .0033, .4838, .0018, .0273, .0303,
.0265, .2439)

Experiment Number 26

Transformation: x . =e 1
l

f(x*)=-47. 751577 iterations=12 CPU=2.62 sec.

x*=( .0270, .1465, .7820, .0038, .4854, .0035, .0219, .0159,
.0339, .1124)

Experiment Number 27

Transformation: x.=
l

y
i

, Y >i—
f(x*)= 47.606887 iterations=9 CPU=1.59 sec.

x*=( .1278, .1678, .6454, .0033, .4838, .0018, .0273, .0303,

.0265, .2439)

D. VARIABLE TRANSFORMATIONS USING SUMT CODE

Experiment Number 28 HIMMELBLAU PROBLEM 16

f(x*)=. 8660277 67 points CPU=11.69 sec.

x*=( -.4924, -.3562, . 5076, -. 8616, -.4924, -.870 3 , .5076,
-.3475, .5141)
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Experiment Number 29 HIMMELBLAU PROBLEM 16

Place lower bounds on all variables

f(x*)=. 8660196 59 points CPU=15.29 sec.

x*=( .9753, .2208, .2965, .9550, .9753, .2208, .2964, .9550,
0.0)

Experiment Number 30 HIMMELBLAU PROBLEM 16

2
Transformation: x . =y

.

11
f(x*)= .8660178 70 points CPU=15.78 sec.

x*= ( .8660, .4999, .0016, .9998, .8660, .4985, .0003,1.0,0.0)

Experiment Number 31 HIMMELBLAU PROBLEM 20

f(x*)=. 06520525

Program was terminated after four minutes of CPU time
without having reached optimum point.

Experiment Number 32 HIMMELBLAU PROBLEM 4

y.
Trans formation : x . =e !

l

f(x*)= -47.76488 57 points CPU=13.22 sec.

E. PRODUCT TRANSFORMATIONS USING GRG CODE-HIMMELBLAU
PROBLEM 16

Experiment Number 33

2 2
Transformation: y. -y . =x.x.iD ID
f(x*)= .43302779 iterations=12 CPU=33.51 sec.

x*= (.8660, .5000, .8660, .5000,0.0,0.0, .8660,1.5000,1
)

80



Experiment Number 34

2 2
Transformation: y. -y . =x . x

.

i ] i 3

-4
TOL parameter changed in DEGEN subroutine to 10

f(x*)=. 43302779 iterations=12 CPU=33.7 sec.

x*=( .8660, .5000, .8660, .5000,0.0,0.0, .8660,1.5000,1.0,
)

F. SCALING EXPERIMENTS USING GRG-HIMMELBLAU PROBLEM 16

Experiment Number 35

Scaling Factors:

x, —*x„: 100 x,—»x^: 10 x_—» x^ : 113 4 6 7 9

f(x*)=. 86603674 iterations=24 CPU=4.5 sec.

Experiment Number 36

Scaling Factors:

x, *x,_: 10000 x^—^x^: 115 6 9

No feasible point found

Experiment Number 37

Scaling Factors:

x. —*x.,: 1000 x, —»-x^: 100 x_—^x rt : 1
1 3 4 6 7 9

No feasible point found

Experiment Number 38

Scaling Factors:

x.—^x^: 1 x„

—

vx: 10 x —>x : 10013 4 6 7 9

f(x*)= .86604509 iterations=19 CPU=3.24 sec,
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Experiment Number 39

Scaling Factors

x —»x : 10 x _>x : 10 x _> x : 10

f(x*)= .86600928 iterations=17 CPU=3.47 sec

G. TRANSLATION EXPERIENT USING GRG-HIMMELBLAU PROBLEM 16

Experiment Number 40

Translation: x=y. +0.5
l i

y =(0.5,0.5, ,0.5)

f(x*)= .86602981 iterations=19 CPU=3.88 sec.

H. ROTATION EXPERIMENTS USING GRG-HIMMELBLAU PROBLEM 16

Experiment Number 41

x
1
=y

1
-y

2

x
2
=y+y

2

f(x*)=. 86601039 iterations=18 CPU=3.37 sec.

Experiment Number 42

X
3
=y3"y4

X
4
=y

3
+y

4

f(x*)=. 86605021 iterations=18 CPU=3.17 sec.

Experiment Number 43

X
5
=y5-y6

X
4
=y

5
+y

6

f (x*) =.86603622 iterations=19 CPU=3.39 sec.
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Experiment Number 44

X
7
=Y7"y8

X
8=Y7

+y
8

f(x*)=. 50000327 iterations=16 CPU=3.24 sec

Experiment Number 45

X
8
=y8"y

9

X
9
=y

8+Y9

f(x*)=. 5001803 iterations=21 CPU=3.49 sec

Experiment Number 46

x
i
=yry

9

X
9
=y

i
+y

9

f(x*)=. 86604409 iterations=18 CPU=3.20 sec

Experiment Number 47

x
1
=y

1
-y

2
x
3
=y3"y4

X
5
=y5"y

6
X
7
=Y7-y9

x
2
=y1+y2

X
4
=y

3
+y

4

f (x*)=. 86600559

X =v +v
6

y
5

y 6
X
9
=Y

7
+y

9

iterations=18 CPU=3.13 sec

Experiment Number 48

x=P_ y.

1 -1 -1 1 -1
1 1 -1 \

1 1 1 0. -1

1 1

D = 1 1

-1 1

-1 1

I

° 1

° -1 1 -1 l/

f(x*) =.86602427 iterations 1=20 CPU=3.25
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I. SCALING EXPERIMENTS USING GRG-HIMMELBLAU PROBLEM 20

Experiment Number 49

Scaling Factors:

Xl— X
8

: 10 X9-^ X
16

: 10 X17— X
24

: 10

No feasible point found

Experiment Number 50

Scaling Factors:

Xl^X
12

! 10 X13-* X
24

: 1

No feasible point found

Experiment Number 51

Scaling Factors:

x
l-^

x
8

: 10° X9-* X
16

: 10 X17—X
24 =

l

No feasible point found

Experiment Number 52

Scaling Factors:

x
x
_ x

8
: 2 x

9
_x

16
: 2 x

l?
^x

24
: 2

No feasible point found

Experiment Number 53

Scaling Factors:

X1^ X
8

: °* 1 X9— X
16

: °- 1 X17"^X24 : °- 1

f(x*)=. 055658041 i terations=29 CPU=14.76 sec.
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J. TRANSLATION EXPERIMENT USING GRG-HIMMELBLAU PROBLEM 20

Experiment Number 54

Translation: x . =y . + .0411
Y_°= (0.0, 0.0)

f(x*)=. 055658041 iterations=30 CPU=15.01 sec.

K. ROTATION EXPERIMENTS USING GRG-HIMMELBLAU PROBLEM 20

(All lower bounds converted to inequality constraints)

Experiment Number 55

x
1
=y

1
-y

2

x
2
=y1+y2

f(x*)=. 055658019 iterations=26 CPU=19.61 sec.

Experiment Number 56

X
3
=y3-y4

X
4
=y

3
+y

4

f(x*)=. 055658019 iterations=27 CPU=19.89 sec

Experiment Number 57

X
5
=y

5
_y

6

X
6
=y

5
+Y6

f(x*) =.076972898 iterations=24 CPU=15.93 sec
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Experiment Number 58

X
7
=y

7
_y

8

X
8
=Vy8

f(x*)=. 055658019 iterations=29 CPU=20.45 sec

Experiment Number 59

X
9
=y9"yl0

X
10
=y

9
+Y

10

f(x*)=. 055658019 iterations=27 CPU=19.05 sec

Experiment Number 60

X
l
=yry

2
X
3
=Y

3
_y

4
X
5
=y

5
_y

6
X
7
=y

7
_y

8

X
2
=y

l
+y

2
X
4
=Y

3
+Y4

X
6
=y

5
+Y

6
X
8
=Y

7
+y

8

No feasible point; constraints violated = 4, 9

Experiment Number 61

X
9
=y9-y10

X
ll
=yiry12

X
13
=y13"y14

X
15
=y15-yi6

X
10
=y

9
+y

10
X
12

=y
ll

+y
12

X
14

=y
13

+y
14

X
16=Y15

+y
16

No feasible point; constraints violated: 8,9,11,12

Experiment Number 62

X
17

=y
l7~yi8

X
19=Y19~Y20

X
21=Y2l"Y22

X
23=Y23~y24

X
18=Y17

+y
i8

X
20

=y
!9

+y
20

X
22=Y21

+y
22

X
24=Y23+Y24

No feasible point; constraints violated: 4,9,11,12
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Experiment Number 63

X
l
=yrY

2
X
3
=y3"Y4

X
7
=y7"y

8
X
9
=Y9-yiO

X
2
=y

i
+y

2
X
4
=y

3
+y

4
X
8
=y

7
+y

8
X
10

=VyiO

f(x*)=. 11085991 iterations=25 CPU=17.37 sec

Experiment Number 64

Pairwise Rotation of all 24 variables

No feasible point found; constraint violated: 4
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APPENDIX C

Generalized Reduced Gradient Method

The generalized reduced gradient method is an algorithm

that solves nonlinear programming problems of the form:

minimize f(x)

(40)
subject to: h(x)=0, a <. x <. b

where h(x_) is of dimension m.

The reduced gradient method was originally proposed by

Wolfe /36/ for problems with linear constraints and was

generalized to handle nonlinear constraints by Abadie and

Carpentier /37/. The material in this appendix is based on

Himmelblau /1W

.

Inequality constraints are adjusted to the formulation

above by the introduction of non-negative slack variables.

The slack variables are added to the set of n variables.

If a nondegeneracy assumption holds, the GRG algorithm par-

titions the variables into two distinct sets. One set con-

sists of m basic, dependent variables, x . The other set

comprises (n-m) nonbasic, independent variables, x .

K

At each iteration, the reduced gradient method con-

siders the problem only in terms of the independent variables

Since the dependent variables are determined implicitly by

the independent variables, the objective function is a

function of the (n-m) independent variables.
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The basic idea can be illustrated by the following ex-

ample

minimize

subject to

f (x ,x )

h(x1# x )-0

For differential displacements in x„ and x^r 12
df (x) = ^f(x) dx

L
+ ^(x) dx

2
a~K a x

2

dh(x)= ^h(x) dx
x

+ ^h(x) dx
2

=

ax. ^x,

(41)

(42)

Solve dh(x) = for dx

dx
2

= -
c)h(x)/<jx 1 ^
3h{x)/Sx 2

1
(43)

and introduce dx into the differential objective function

df(x)= Mf(x) - ^f(x) ^h(x)/ <^x
1 dx.

\3 X - S*
2

c9h(x)/<^x
2

(44)

to yield the reduced gradient:

df(x) = ^f(x) ^f(x)

dx. c^x. d* 2 L

^h(x)

ax
2J

-1

<^h(x)
(45)

One necessary condition for f(x) to be minimum is

df(x) „
dx.

(46)

Thus the generalized reduced gradient can be expressed as

:

af(x)_ Vx
T
f . V X

T fUV 1

6*
(47)
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As an example of this method consider the following problem:

2 2 2 2 „minimize x, +x^ + x^ + x„ -2x -3x„12 3 4 14
subject to: 2x +x + x +x =7

x1+x2+2x3+x4
=6

x. > 0,
l ~~ 1=1,2,3,4

Select x ,x as the basic variables Then

Vx
i

£ = [
2xr 2

-
2x

2]

Vx
k

f = [2x3 , 2x
4
-3

]

ah =

a x -

ih =

2 1

1 1

1 4

2 1

-1

1 -1
-1 2

(48)

The reduced gradient becomes

<2£i*U (2x3, 2xJ- L-2, 2xJ(j
<**.

-1

2

'1 4

12 1
(49)

K

Simplifying and setting the reduced gradient equal to

zero yields:

2x -6x +2x -2=0

(50)

-6x,+ 4x^ +2x„+3=012 4

Given the feasible point x=(2,2,l,0) the reduced

gradient equals (-8,-1). This indicates that at this point,

x and x are increased together in the ratio of eight to

one. As they increase, x and x increase in such a way as
J- m

to keep the constraints satisfied.
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The algorithm continues as long as the reduced gradient

is not zero. For each new iteration the x vector is changed

by the relation:

(k+1) = (k) ex M d ( k )

- - — - (51)

fY(k) (k)
where ^_ > is the step length/ and d is the direction

vector for the next iteration. The elements of the direction

vector are determined differently for the independent and the

dependent variables.

The search directions for the independent variables are

determined as follows:

(k) „ (k)
, if x. = b. and z . >

,, WJ n ,- D(k) 3 , D(k) _ / 52 )d. =\0 /ifx.=a. and z. < \->*)

UCk)

.th

'
if a

J

< X
J

(k

where z. is the j element of the reduced gradient; a. is
D D

the lower bound on x . ; and b . is the upper bound on x .

.

3 3 3

The search directions for the dependent variables are

determined by linearizing the constraints:

a
(k) . _ (4| l'

1

,^^! JL- (53)

The step size parameter is determined by a unidimensional

dichotomous search. If the step size and step direction com-

(k)
bination cause some elements of x to be infeasible, (de-

A (k)
noted by x ) then the dependent variables are adjusted

to obtain a feasible x
(k+1)

. if at the point (x.
(k+1)

, x ( k+1 ))

"I ~K "I
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the constraints are not satisfied, a first order Taylor

series approximation is made, and the resulting expression

is solved for x_

/

(k+1) (k+1) \ , (k+1) a (k+i)
x , x sjh x / xT~K -I ~K -I

+ ahx (k+1)
, £

(k+1)
|x

T

(k+1)
-x

T

(k+1)
=o

IK I l\
X I

3 x

This last expression is termed an iteration by Newton's

method and continues until one of the following outcomes

occurs:

(1) If the last point obtained is feasible and there has
been an improvement in the objective function, the
Newton method is terminated and the search is con-
tinued starting with equation (51).

(2) If the last point obtained is feasible, but the ob-
jective function has worsened, the step size is re-
duced by some fraction and the Newton method is

repeated.

(3) If the interations by Newton's method do not converge
in a fixed number of iterations, the step size is
reduced by some fraction and the Newton method is
repeated.

(4) If the last point obtained is infeasible, a change in
basis is carried out.

As can be seen from equation (51), if the step size

is reduced to zero during any search iteration or during

execution of the Newton method, the algorithm will terminate,
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