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SUMMARY

First Semi-Annual Report on Computer Engineering

of Integrated Semiconductor Circuits

Custom integrated semiconductor circuits are often needed
in the electronics industry. This need is particularly important
for military applications. Military requirements involve a vast
number of different, highly specialized, electronic systems,
although seldom are these systems called for in large quantity.
This combination produces an economically prohibitive situation.
The large initiul cost for designing integrated circuits, in
conjunction with a small production requirmment, creates an
unreasonably large cost per IC chip. The source of this diffi-
culty lies in empirical, and costly, engineering techniques used
during both IC design, and production start-up. Empirical tech-
niques are used during IC design to solve problems for which
there is inadequate basic understanding. Similar empirical
techniques are also used during production start-up to overcome
problems that presently cannot be solved by design engineers.

An important source of this problem lies in the lack of
adequate models for design and development of IC structures.
These models are needed in three different areas: (1) for accu-
rately predicting the physical characteristics of an integrated
structure arising from numerous different fabrication process;
(2) for accurately predicting the electrical characteristics of
semiconductor devices from their physical and geometrical proper-
ties; and (3) for accurately predicting the consequence of inad-
vertent fabrication process variables upon the ultimate electricail
characteristics of a monolithic structure. An important goal for
this program is to develop new models in these three areas; models
that can be used in conjunction with existing compucer methods for
integrated circuit design and development.

Programs for model development have been initiated in twc of
the three above named areas. The University of Florida, Gaines-
ville, Florida, has undertaken development of semiconductcr device
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models for IC design. Part I of this report outlines technical
progress in this area during the first six months of the program.

similarly, Stanford University, Stanford, california, has under-
Part II of this

{ taken a program of process model development.

: report outlines technical progress in this area during the first

gsix months of the program.
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Semiconductor Device Modeling

University of Florida
Gainesville, Florida
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Introduction - Part I
Semiconductor Device Modeling

At the University of Florida, afforts are directed toward the

developmerit nf mathematical models *that accurately predict the elec-

trical characteristics of semiconductor devices. Involved here are

three different aspects of the modeling problem: (1) rigorous two-

aimensional models that are based upon an accurate description of

the underlying physical mechanisms; (2) one-dimensional models that

offer the accuracy needed for engineering purposes, yet require

little computer time; and (3) equivalent circuit representations of

device operation that are applicable for circuit analysis purposes.

In addition, developnent has been also initiated on mathematical

models for test patterns to he used during IC fabrication process

evaluation.
Included in this device model development program is the

research needed to further enhance our modeling capabilities. For

example, two-dimensional transient solutions for device operation

cannot presently be attained, from a practical point of view-the

required computer time is prohibitive. Therefore, research is being

directed “oward implementing mathematical technigues that are not

presently used for device analysis; methods that could significantly

reduce the required computer time. Research is also underway on
physical mechanisms of MOS and Bipolar transistor operation that
are known to be inadequately, or inaccurately, described by avail-
able modeling techniques.

Initial studies for these two-dimensional models have been
directed toward the MOSFET. A computer program for MOSFET analysis

was used as a test vehicle for modifications, new algorithm,

development, etc.

analysis program is being written. It is expected that this new

program will be completed, in final form, in approximately six
weeks. In addition, an available computer program for the two-
dimensional analysis of bipolar transistors is now operational at
the University of Florida; this task involved modifying a computer
program designed for operation on a CDC machine, so that it can be

run on an IBM machine.
—13_
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An engineering model for MOSFET operation has been brought
to near completion during the past six months. Present efforts
are directed toward testing this model. A few difficulties
arose through some u-warranted assumptions, and these difficulties
are being corrected. It is expected that this model will be com-
pleted within the next few weeks.

The guasi-static approximation underlies all device models
commonly used in the transient computer simulation of large-
signal bipolar or MOSFET circuits. We propose a test for the
self-consistent validity of this approximation. The test applies
to each device model in a circuit, and is easily implemented in
circuit-analysis programs. It applies to any kind of devwice,
such as the bipolar transistor and the MOSFET, whose intrinsic
structure operates by charge control. Emphasis is given to testing
the extrinsic as well as the intrinsic device, and to the non-
idealities present in actual devices. Prominent among these non-
idealities is the four-terminal nature of the MOSFET. Repeated
application of the test can help determine the degree of complexity
needed, for each device model in a circuit, to assure self-con-
sistency with the quasi-static approximation.

In MOSFET operation, the mobility of inversion layer carriers
undergo important changes, with a change of applied gate voltage.
This difficulty is presumed to result from scattering at the

oxide-semiconductor interface, although there is no adequate model

for predicting its influence on carrier mobility. We discuss here
a program of research directed toward a solution of this important
problem, and the advances made within the first six months of
this contract period.

Initial studies are underway on mathematical methods that
are suitable for the two-dimensional transient analysis of semi-
conductor devices. Extensive effort has been directed toward
converting Poisson's equation to a Fredholm integral equation
and, thereafter, solving this integral by iterative means, using
the Picard technique. In addition, preliminary studies have also

been undertaken of other computational methods: finite elements,

-14-
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weighted residual, and collocation. It is our intent to find a
method whereby these transient calculatdons can be undertaken
without requiring an unreasonable large amount of compute. time.

A statistical model is being developed for test patte.ns used
to evaluate sheet resistance. Unlike other available models, the
present development is aimed toward approximating the statistical
distribution of sheet resistance actually observed during IC
manufacturing. A suitable psuedo random number is needed for
this task. Such a number generator has been acquired, it was
tested for randomness, and it has been found satisfactory.

In device modeling, some regions of large electric field
are known to produce hot-electron mechanisms. Presently, the
consequences of these mechanisms are accounted for by introducing
a field dependent carrier mobility. It can be shown that this
modeling technique is only applicable to homogeneously doped
semiconductor material, and that substantial error arises through
its application to regions containing a large impurity atom
gradient. Research has been initiated on this topic, with an
aim toward accurately modeling the conseéquences of hot electron

mechanisms in semiconductor devices.

University of Florida

D. P. Kennedy

U. Kurzweg

F. A. Lindholm
A. D. Sutherland
M. Zahn
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Chapter I -
Two-Dimensional Matlematical Models for MOS and
Bipolar Transistor Operation
A. D. Sutherland

1.0 Introduction

Two distinct categories of computer models for devices are
required in order to achieve one ultimate objective of this
research program-the ability to model accurately the effects
of statistical variations in process parameters, characteristic
of a given IC production line, upon the performance of a given
IC configuration. The first category of device models, which
will be embedded in computer programs using Monte-Carlo techniques
to simulate statistical process parameter variations, must be
ultrafast; they will be called upon thousands of times during
the course of a single computer run to simulate device charac-
teristics. Thus, this class of models, which we distinguish as
"statistical models" because of their intended use, will generally
be one-dimensional in nature and will make use of both analytic
and empirical approximations of the device physics in order to
achieve both accuracy and high speed. The second category of
device models, which we distinguish as "engineering models,"
serves an entirely different purpose-accurate modeling of the
physical processes within a given device so as to (1) provide
physical insight aiding in the development of good high speed
"statistical models" and (2) serve as an engineering tool for
the design of dewvices per se. This section of this report deals
with the latter category of models.

The development of engineering models under this program
involves more than the achievement of a working computer model
alone. It is our intention to disseminate these models to
government laboratories and industry, and to encourage their use
and critical evaluation of them. We seek to achieve feedback
which will lead to improved 2nd, and possibly 3rd generation
models as the pirogram progresses. To this end, it is vital that

-]19-
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adequate documentation of the models be provided, in order that
others will find them easy to use and understand. ~hus, we are
developing rather complete USER'S MANUALS which will include
detailed instructions for usinc the computer program, detailed
flow charts, a description of how the program functions, including
the various numerical algorithms used, a glossary of FORTRAN terms,
sample INPUT and OUTPUT formats, and a listing of the computer
program itself.

Presently under development, in the above context, are two
2-dimensional steady-state computer models, one devised to simu-
late MOS field effect transistors, the second to simulate bipolar
transistors. Each of these will be described in what follows.
Transient models for each of these devices are planned for the

future.

2.0 Two-Dimensional MOSFET Model
The starting point for the development of a 2-D MOSFET model

has been the prior work of Mock [1l], who provides a somewhat con-
cise description of his basic computational approach in the
reference cited. Good agreement with experiment has been reported

with Mock's model [2].

We have a working version of Mock's computer program, pro=
vided by IBM, which was developed for them under the principal
investigator's direction while he was with IBM. We have docu-
mented this program to an extent sufficient to enable us to run
computations with it, and have used it as a tool to assist in the
development of a one-dimensional "statistical model" for MOSFETs
described elsewhere in this report. But there are substantial
details of that program's inner workings which i< not fully
understcod in terms of the detailed manner in which Mock's algo-
rithms are implemented. Rather than attempt to develop full docu-
mentation for this program in the detail described above, then
seek IBM's agreement to it# dissemination, the author's philosophy

f[l1] M. S. Mock, Solid State Electronics, 16, 601 (1973).

[2] D. P. Kennedy, private communication.

-20-

S e o R i e




TE

aa

has been that he can more effectively provide full documentation
for a computer program whose detailed inner workings he fully
understands, i.e., one written by us. Thus, what is described
below is our own versidon of Mock's basic model, based more on
the methods described in reference [1] than upon his computer
program itself, with some modifications in approach which are

our own.

2.01 The Basic Geometry.—FigﬁréuEll deé{gts the coﬁfigufation

along the channel of a typical n-channel MOSFET structure resulting
from the diffusion of n+ source and drain regions into a p-type
substrate. Since, in such a device, the "action" takes place due
to the formation of a thin inversion layer of mobile electrons
immediately below the silicon-oxide interface, it is reasonable
to simplify the geometry dealt with by the model, as shown in
Figure I-1(b). This is indeed what Mock did in his computer model
although, in reference [l1], he implies the treatment of the more
general geometry of Figure I-1l(a).

The principal reason for selecting the simplified geometry
of Figure I-1(b) as the basis for the model is that it places the
metallurgical junctions between p-substrate and n+ source and
drain at the left and right borders of the rectangular region
under study. Large gradients in electric potential and in elec-
tron and hole number density are to be expected in the near
vicinity of those junctions, as well as in the near vicinity of
the oxide-silicon interface. Since finite-difference methods are
employed to solve the partial differential equations relating

these functions, a rather fine spacing bet n the lattice points
at which these functions are numerically ermined is required
in those regions to achieve adequate res n, whereas the

spacing between lattice points remote from those regions can be
relatively coarse. By placing the source and drain metallurgical
junctions at the borders of the region, such a graded lattice of
points is easily defined. Figure I-2 illustrates the graded lattice

used for a 41 (horizontal) by 25 (vertical) array. The prescription

-2]1-~
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Figure I-1,
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EL T
! | A )
! nt+ ! \ +
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: : (a)
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| |
| |
! |
__;;--
- DRAIN
R (b)
p-SUBSTRATE
SYMMETRY
1 | PLANE

(a) Cross-section of an n-channel MOSFET.

(b) Rectangular region modeled. The metallurgical
junctions between gsource-substrate and drain-
substrate are regarded as planar and at the
left and right borders of the region modeled.
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CHARGE-NEUTRAL REGION

Graded lattice of points used in the finite-
difference equations dealt with in the computer

model.
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followed for generating such a graded lattice is precisely that
suggested by Mock (reference (1], eq. (24)).

2.92 Dimensionless Variables.-To avoid unnecessary repeated

multiplications by redundant constants, such as kT/q, q, etc.,

as well as to provide scaling which causes variables to lie

within reasonable numerical ranges, we introduce normalized vari-
ables. Since variables having physical dimensions will be referred
to only in this paragraph, it is conwvenient to designate them with
primed symbols, enabling the use of the same symbols, but unprimed,
to represent their dimensionless counterparts. Thus, we can
utilize familiar symbols such as 5 for current density, n and p

for electron and hole dens.ty, ¥ for potential, u for mobility,
etc., even though these all represent dimensionless variables.

In this vein, the dimensionless variables employed are defined in
TABLE I-1.

2.03 Basic Equations.-As did Mock, we assume negligible elec-

tron-hole generation/recombination, and ignore the flow of hole
current. These approximations are reasonable for an n-channel
MOSFET under normal operating conditions. Their effect is to cause
the electron current density vector to be divergenceless-a
condition which is readily enforced by deriving that current from
a stream function.

In terms of the dimensionless variables just defined, the
equations describing the physical behavior of electrons and holes
in the p-substrate region of Figure I-1(b) are:

V2y = N, + n-p (I-01)
n = exp(¥-¢ ) (I-02)
P = exp(o V) (1-03)
J = -unv¢ _ (1-04)
o = V¢p (I-05)
v-J = 0 (I-06)

[l] M. S. Mock, Solid State Electronies, 16, 601 (1973).
w P4




TABLE I-1.-DEFINITION OF DIMENSIONLESS VARIABLES. (.cs IS THE
RELATIVE PERMITTIVITY OF SILICON.)

pefine:
K € l(lel/ql) 1/2
L' = s 0
D qlnil ’
Un' ’
Then Let:
' = (k'T'/q" )Y
o' = (K'T'/q')
¢pl - (lel/ql)d)p
[ ] — [ ]
ND ni ND \
] = L]
NA ni NA
n' =n.'n
i
" = '
p n, p
x' = LD'x
y' = Lp'y

(lel/ql)unlnilql

Intrinsic Debye length of
silicon

Low Field electron mobility

Electric potential, and
electron & hole quasi-
Fermi potentials

Donet, acceptor, electron,
& hole number density

cartesian coordinates

i o o L - 3 o 4 e ot iy cide el e madhs s miend oY m i B

J' = T J electron current density
D
u' = un'u 7 electron mobility
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Equation (I-01) is Poisson's equation for the electric potential
¢, (1-02) and (I-03) express the use of Boltzmann statistics
(i.e., nondegenerate doping is assumed), (I-04) relates the
electron current density vector to the electron number density
and to the electron quasi-Fermi potential in the usual manner [3].
(I-05) enforces zero hole current, while (I-06) assures conser-
vation of charge under the assumed condition of zero generation/
recombination of electron-hcle pairs.

The above equations apply in the p-substrate region of
Figure I-1(b). The conditicnus in the oxide region are described by:

viy = 0 . (1-C7)

and p=n=3=0, with approprie:e boundary conditions applied to
tangential and normal electric fields to match the solutions of
(I-01) and (I-07) at the oxide-silicon interface.

2.04 TIteration Method.-We adopt Mock's iterative procedure for
solving the above set of coupled nonlinear partial differential

equations. At each step m in the iteration, the unrelaxed poten-—
tial function v(x,y)(m) is computed, satisfying (I-01) and (I-07)
in the substrate and oxide regions, respectively, subject to the
boundary conditions to be discussed in a later subsection. The
electron and hole densities n(m) and p(m) used in computing v(m)
are those determined using the potential w(m) oBtained in the
preceding iteration step, in a manner also to be described later.
Then given v(m), the improved approximation w(m+1) to the correct
potential ¥ (x,y) is obtained from:

by @D = oy ™ s e ey ™ - by ™

e tyoey) ™ - v,y ™ (1-08) ‘

The iteration is terminated when the maximum residual,
v(m)-w(m)l, falls below a specified value.

Max

[3] S. M. Sze, Physics of semiconductor Devices, P. 96, Wiley,
N.Y. (1969).
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The relaxation parameters O, and Bm appearing in (I-08) are
assigned the Chebyshev sequence of values discussed by Mock, and
are reinitialized in the manner described by him whenever the
maximum residual obtained at a given step of the iterative process
fails to be less than that obtained at the previous step. Since
the rate of convergence of this iterative scheme depends upon the
total number of free carriers in the system, weé follow Mock's
idea for speeding convergence by dealing with modest source
and drain doping levels, e.g. 1017cm_3, until the iteration has
terminated, following which the doping levels in those regions
are set to their desired values, with further iterative operations
then using a linearized version of (I-01), obtained by invoking
Gummel's algorithm [4]. (See reference [1], Section 4.)

The initial approximation w(x,y)(o) required to initiate the
above iterative scheme is determined in the manner now to be
described. Given fixed applied gate and substrate voltages V.
and VSUB' the use of the model usually involves the sequential
selection of a number of ascending values of the applied drain
voltage V. with the above iterative scheme applied to achieve
a self consistent solution of (I-01) through (I-07) at each such
VD. (This effectively traces out a curve of ID versus VD' with
Vg fixed, as one does experimentally with a curve tracer.) Thus,
once this sequence 1is started, w(x,y)(o)
values for n(x,y)(o) and p(x,y)(o) are merely chosen to be those

, and the corresponding

values just previously found for a lower value of VD' Thus, we
need only have a means for approximating w(x,y)(o) at the initia-
tion of the sequence of drain voltage values.

By initiating such a sequence with VD set to zero, a reason-
able approximation for w(x,y)(O) can be achieved by solving a one-
dimensional version of (I-01) and (I-07), with the direction along
which y varies being perpendicular to the gate electrode. This

we do,:using the same iterative scheme described above, but

[4] H. K. Gummel, IEEE Trans. Electron Devices, ED-11, 455 (1964).
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starting with the one-dimensional solution obtained using the
lepletion approximation to initiate the one-dimensional iteration,
the latter being analytically expressable. Again, this basically
follows the procedure adopted by Mock.

2.05 The Stream Function.-In view of.(I-06), we introduce, as
does Mock, a stream function 6 (x,y) such that:

520
Jx =3 Joay (xIY)I
» (I-09)
Jy = -JO BX (x,¥)

which assures the satisfaction of (7-06). Here, Jo is a scalar
constant. We seek next the differential equation which must be
satisfied by this stream function.

Solving (I-02) for the electron quasi-Fermi potential ¢n'

and substituting the result in (I-04), we obtain:

7 = ue¥v (ne”Y;. (I-10)

Identifying the x and y components of (I-10) with the corresponding

expressions in (I-09), we have:

30 _ ¥ 9o -y
Oy T ne' == (ne ")

30 _ _ Vv 38 -
Jo X ue 3y (ne 7).

Divide both sides of these intermediate equations by uew, then
differentiate the first partially with respect to Yy, the second
partially with respect to x and add, obtaining:

~y -y
9 |e ab - ] e 20 | _ 0
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In the iterative procedure described above, (I-11) may be
regarded as a second order differential equation whose gsoiution
gives e(x,y)(m), knowing W(x,y)(m) at iteration step m. Then,
using (I-09), the current density vector 3(x,y)(m) is kriown, once
the constant Jo(m) has been evaluated. The method of determining
that constant will be described after we establish the boundary
conditions imposed upon y, 6, and n. Before doing so, however,
we show how knowledge of ¢ and J enables the determination of the
electron number density n by means of a similar partial differ-
ential equation derivable from (I-10).

2.06 The Determination of n(x,y).-Starting with~(I-10), divide -

both sides by uew, then take the divergence of both sides,
obtaining:
. v _
VZ (ne W) = V. EF_ J) .
Then, using the vector identity V-(gf) = gV-F + F-Vg, where g is
any scalar function, while F is any vector function, this becomes:
-y - (e™V

Vine V) = S—v-T 4 J-V(—u—>.

In view of (I-06) the leading term on the right side of this
intermediate result vanishes. Thus, we obtain:
e~V

2(ne Yy = J.v (&~ -
Ve(ne ") J-v ( T . (I-12)

As above, in the casze of the stream function 6(x,y), (I-12)
may be regarded as a differential equation in the electron density
n(x,y) in the iterative procedure. That is to say, at iteration
step m, with w(m) and e(m) (hence E(m)) being known, (I-12) will

give n(x,y)(m). 6
It is of interest to note that, since ne—w = e n’ from

(I-02) then (I-12) is really a differential equation for the
electron quasi-Fermi potential ¢n. Recognition of this assists
in establishing boundary conditions for the solutions of (I-12).
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2.07 Boundary Conditions.-We regard the left and right borders

of the rectangular region of Figure I-1(b) as symmetry planes, such
that ¢, 6, n, p, and Jy are even functions of x, while Jx is an
odd function of x. Image theory then requires that tha2se functions
are all periodic in x, with a periodicity of twice the channel
length XL of Figure I-1(b). A consequence of this implied periodi-
city is that the source and drain regions shown dotted in the
geometry of Figure I-1(a) are essentially "squeezed out of the
picture.” They are replaced by infinitesimally thick source and
drain "contacts" which serve as "sources or sinks" for electric
and current flux lines. This being the case, the electric poten-
tial ¢ and number density n assigned to those "contacts" requires
careful scrutiny.

We adopt the common convention of specifying the potential
of the gate, drain, and substrate with respect to that of the
source. Thus, we specify ¢ = 0 in the charge-neutral source
region, even though that region has been "squeezed out of the
picture" in our model. 1In the a! ‘ence of any externally applied
bias voltages, therefore, the substrate will assume its thermal
equilibrium potential wEQ' given by:

which will also be the potential assumed by the gate electrode,
assuming zero difference in the work function of the gate metal
and the p-substrate. If the substrate is then externally biased
at a voltage VSUB’ and the gate at a voltage V., (both measured
with respect to the charge-neutral source) the poicntials assumed
by those electrodes will have the values shown in Figure I-3(a)
With regard to that figure, we assume that the lower border oIl
the region modeled extends sufficiently deep into the charge-
neutral substrate region that it can be regarded as an equipoten-
tial surface t- which we ascribe the properties of a substrate

contact electrode.
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Figure I-3. Boundary conditions for: (a) v(x,y),
(b) 6(x,y), and (c) ne ¥ (x,y).
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What potential should be assigned to the source and drain
"contacts" in Figure I-3(a)? Assuming identical doping of the
drain and source, the source and drain "contacts" will assume
identical "built-in" poteutials ws' in the absence of any external
biasiqg. With a voltagz N applied to the drain, the drain
"contact" will assume the value shown in that figure.

There remains to be specified the potential by itself, which
is the potential assumed at the plane of the metallurgical junc-
tion of the n+ source and the p-substrate. Kennedy [5] shows
rigorously that, for an abrupt junction, that potential is given
by*:

JY I v o1 | P exp(-yp)| (I-14)

v, =0 - T
s T NA+ND NA+ND

where wT is the magnitude of the total potential drop appearing
across the p-n junction, i.e. the sum of the "built-in" potential

plus any applied potential difference:
= 1n(N_N + Vv I-15
li)T TaT{ D A) appl. ( )

(Positive Vappl in (I-1%) causes the junction to be reverse
biased.)

In spite of the fact that (I-14) shows ws to be, in general,
a function of the total voltage drop appearing across the junc-
tion, an assessment of typical numerical values shows that ws
can be assumed constant, independent of junction voltage, except in
cases where it is heavily forward -tiased. For example, with
ni = l.5xlOlocm-3, ND' = lOlgcm_3, NA' = 10]'6cm_3 (unnormalized
units), ln(NDNA) assumes the value 33.7, and the c¢rponential term
in (I-14) is entirely negligible except for negative values of

; n : . ; s _. . ‘e
Vappl approaching that magnitude Since ND NA, (I-14) simplifies

(5] D. P. Kennedy, IEEE Trans. Electron Devices, ED-22, 988 (1975) .

* The factor of unity appearing in the leading bracket is not
presenF in Kennedy's result. It accounts for the choice of zero
potential as the nt* region, whereas Kennedy chose the p-region.
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tremendously under such conditions, becoming:
~ =-1. I-
ws 1.0 (I-16)
Since the drain junction is always reverse biased, with VD > 0,
(T-16) is always valid at the drain "contact."

Is the above approximation valid at the source junction,

which does become forward biased as Vg,
band bending at the p-substrate surface?

the total potential drop across the n+—p source junc-
Thus, using

is made posgitive, due to
At the onset of strong

inversion,
tion right at that surface becomes wT = ln(ND/NA).
the same values for ND and NA as in the above numerical example,
wT - 6.9, and neglecting the exponential term in (1-14) is still

a valid approximation for estimating ¥ _. We conclude that (I-16)
9 Vg

at the source contact, with good accu-
racy., for ND/NA ratios of 103 or higher. The approximation begins
2

~ 10° or less, but at the source

can be used to specify ws

to become questionable when ND/NA

contact only.
The remaining boundary conditions shown in Figure I-3(a)

assure the symmetry assumed at the left and right borders of the

and assure correct matching of the solutions of

region modeled,
Note that the

(I-01) and (I-07) at the silicon-oxide interface.
on tre normal derivatives of ¥ at that inter-
at that inter-

condition imposed
face allow for the inclusion of surface charge st

face, a feature not included by Mock. (The equation stated for

the normal derivatives takes on a slightly unfamiliar form because

of the normalized variables used.)
(b) states the boundary conditinns imposed upon the

=1 and 6 = 0 along the sur-

Figure I-3
stream finction 8. The choice of 6
assures no normal current flow at those surfaces,

0 at the right edge, as shown.

faces shown
as does the specification 38/ly =
ter condition allows that surface (which is obviously a

of constznt 8) to "float" to assume a value of 6 consis-
substrate

This lat

contour
tent with Kirchhoff's current law in the event that the

is biased in such a manner as to draw current.
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The choice of unity and zero as the bounds on § is arbitrary,
out a convenient one. (Any other choice would result only in a
different numerical value of the constant Jj appearing in (I-09).
The manner in which Jo is determined remains to be described
below.) The particular choice used allows rapid assessment of
where current is flowing in the region. Since contours of constant
9 are current streamlines, then the value of 6 at any X,Y gives
directly the fraction of the total source current crossing the
rertical plane through (x,y) between the surface and that point.

Finally, the specifications on the normal derivatives of ©
shown at the left and right borders are consistent with the treat-
ment of those borders as symretry planeé, while that specified
at the lower border is consistent with our treatment of it as a
substrate contact electrode. Note that these coaditions imply,
through (I-09), that current flux lines enter or leave those sur-
faces perpendicular to them.

Figure I-3(c) states the boundary conditions on ne”V (x,y) .
At those surfaces where the normal derivatives of ne_w are set to
zero, no current crosses those surfaces, in accordance with (I-10).
At the substrate contact, the value specified assures that
n = l/NA, p = N,. To see this, recall (I-02) and (I-03):

-9
n = ewe B (1-02)
o, -
p=ePeV . (1-03)
Setting ¥ = —ln(NDNA) + VSUB in (1-03) and requlring p = NA' one

finds for ¢_:
p
¢p = =1nNj + Vgup °
Since ¢ = ¢p in the charge-neutral substrate region at the sub-
strate contact, substitution of this result into (I-02) yields

n = l/NA, as it should be. Similarly, at the source and drain

contacts, n must take on the value NDe—l, since the potential
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of these contacts is one normalized unit below the potential of
the charge-neutral source and drain regions, respectively. The
boundary conditions stated there assure that this is the case.

2.08 Determination of the Current Constant Jo.—The constant Jo ﬁ
:

appearing in (I-09), which relates the current density vector J ;
to the stream function 6, is obtained in the following manner.
Writing the x-component of (I-10):

v 30

= _q) _
ue (he 7) = J 5y

’

=2
X
', then integrate with respect to x along a horizontal

v

line (y = constant) which intersects both the source and the drain

divide by ue

"contacts." (Any value of y < YD in Figure I-1(b) will quaiify.)

One obtairns:

XL

— -y
v e __ 30 4.
oy

-y

U
]

ne = ne

x=XL x=0 o

Substituting the boundary conditions of Figure I-3(c) in.the left

side of this intermediate result:

(I-17)

This is the same result used by Mock for calculating Jo (reference
[1], eq. (I-10)), except for the factor N, appearing in (I-17) which

=35~
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is absent in Mock's result. The reagon for this difference lies
in Mock's choice of setting the electron quasi-Fermi potential

¢n = 0 in the charge-neutral source region, which makes Yy = ln(ND)
in that region, rather than the y = 0 reference value that we
have chosen to use. Note that the sign of Jo changes if one per-
forms the integration from x = 0 to the "image" drain contact

at x = =-XL. Thus, Jo is an odd function of x, as it should be.

2.09 Finite-Difference Equatibns.-Figure;I-4 singles out a mesh
point of the graded lattice shown in Figure 2, together with its
four nearest neighbors. We distinguish such mesh points by means
of indices i,j, with i and j assuming the values 1,1 at the lower
left corner of the lattice shown in Figure 2. The index i signi-
fies x position, j signifies y position. The five-point "star" of
Figure I-4 forms the basis for forming finite-difference approxi-
mations of ({I-01) and (I-07) for Y, of (3-11) for 6, and of (1I-12)
for ne-w. Note the definitions of Ax(i), Ay(3)., their average
values K;(i), Ey(j), and the indexing convention adopted for them

in Figure I-4.
Except at the silicon-oxide interface, the finite-difference
equation for electric potential ¥ is:

~ V(L 9) = VESIHL Y L (i) - $(E,3=1)
A { (Mt amh ) + (H 2 )}

ATe P(iad) = WAL )Y, (Llied) = wliz1d)
¥ eyit) { ( D ) + (Y )}

- EX()E¥(3) [p(i,3)-n(i,3)-N,(i,3)]1, in silicon
= 0, in oxide.

For mesh points (i.j) coinciding with the silicon-oxide inter-

face, a special form of (I-18) results by applying Gauss' law to
equate the electric flux leaving the dotted rectangle shown in
Figure I-4 to the charge enclosad within that rectangle. One

obtains:
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|

R IS TE R ——" —

27T\
2;(1) - Ax(i);Ax(i+l)
(ilj-l)

Figure I-4. Five-point star of mesh points used in forming
finite-difference equations.
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K
(FZ)ay 541 + &y ()
4| s {(w(im - w(-i+1.n)+(w(i,j> = w(i—l.j))}
2 Ax (i+1) Ax (1)

o KX (1) 67 (3)
= g  fX(i) + SWEO) [p(i,3) - n(Ed) - NI

he right represents surface charge at the
ts bulk charge in the

the interface. Equa-

Here, the first term on t
interface, while the second term represen

on of the dotted rectangle lying below

porti
of the boundary conditions

tion (I-19) assures the satisfaction
rface stated in Figure I-3(a). Our

on y at the silicon-oxide inte
Mock's.

s boundary condition differs from

method of treating thi
he stream function 6,

The finite difference equétion for t

the same 5-point star of mesh points, becomes:

using
~ v (1. - . & i3
) {a(i,j_l/z) (6(1.3) 0L, 1) ) N a(i,jﬂ/z)(e(l,z;(giisjm ) }

Ay (3
~/ 9 Ew— . . , . . )
Ty T L e S )

Ax (1)
. (1-20)
where
. mW(i 3D b3
a(i,3-1/2) = g7, -9, 3-D
o e-w(i,j+l)_e‘¢(irj)
a(i,3+1/2) = g, 37-9(1,3+1) L
(1-21)

| | e-w(i—l,j)_e"w(i;j)
a(i-1/2,3) = g7, N-v(1-1,3)

| | e-w(i+l,j)_e'¢(irj)
a(1+l/2,]) = w(l,])—w(l‘lij) J
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Equations (I-21) are approximations for the function e~
positions midway between the points of the star (i.e., where the
dotted rectangle of Figure I-4 intersects the "rays" of the star).
These approximations are obtained by assuming linear variations

of y between neighboring mesh points, then averaging e_w along

the line interconnecting them. This method of approximating

eV midway ketween mesh points is a critical factor discussed in
detail by Mock. (See reference [1l], Section 6.)

The finite-difference equation (I-20) for 6 differs from that
used by Mock for a fundamental reason. Mock chooses the lattice
of points at which 6(i,j) is defined not to be the same set of
points at which y(x,y) and n(x,y) are defined (i.e., the star of
points in Figure I-4) , but rather to correspond to the location
of the corners of the dcttud rectangle shown in that f.gure.

Thus, his lattice of points for 6 "interlaces" the lattice of
points used for Yy and n. While this convention leads to some
computational convenience in his method for treating conditions
at the silicon-oxide interface (he places that interface so as

to coincide with his 6 lattice, not his y,n lattice) and in his
method for determining n (which differs from ours) it leads to
severe problems in meeting the boundary conditions on 6 at the
left border of Figuire I-3(b), where 8 must be specified to be con-
stant (i.e., that portion of the border wherec 6 = 1 in Figure I-3
(b)) , because the lattice of points at which 6 is defined cannot
coincide with that border, using Mock's convention. Thus, how
can one specify 6 = 1 there?

Again, using the same five point star of lattice points in
Figure I-4, the finite-difference approximation of (I-12) deter-

mining the function ne_w(x,y) becomes:
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: ne’(i,j) - ne ' (i J—l)) ne ' (i,j) - ne ' (i,j+1)
i) {( NGy + A7 (3+D) )}

“ ~J -Y,. . =2 ; -V,. . -P . s
N ne "(i,j) - ne "(i-1,3) ne "(i,j) - ne "(i+l,J)
+¢Y(J){( 5% (1) ) ¥ ( Ax (1+1) )}
(1-22)

] [ N s P e-w . . 1 . P e_w 3 s
= —AX(l)Ay(]){:Jx(l,J)EE = (i,3) + Jy(1,3)5§ Tl (1,3)}

where, in accordance with (I-09),

Coay 30 .
i JX(J,J) = Jo ay(1,3)
(I-23)
t Jy,-lj) = -JO —g—}%(l,j).

Note that the determination of the numerical values of the

right-side of (I-22) requires the numerical evaluation of several
partial derivatives, namely 3y/3x and 3y/dy in order to determine

: the field-dependent mobility u, then the determination of

| a/ax(e—w/u) and a/ay(e-w/u), and finally the determination of
368/3x and 36/3y, in order to find JX and Jy. If the spacing
between mesh points were uniform, the determination of these
partial derivatives is readily achieved by simple differencing.
For example, 308/0x(i,j) = [6(i+l,]) - 0 (i-1,3)1/26x(1i). But with
a graded lattice of points, a more accurate algorithm for deter-

mining these partials is required.

f
3 We base our numerical algorithm for so doing on the following
approach. Let g(x,y) be the function whose partial derivatives
are required, with g(x,y) defined numerically at each of the
lattice points (i,j). Consider determining 3/3x (g(x,y)) at the
mesh point (i,j). Knowing the mesh spacings Ax (i) and Ax(i+l),
fit a parabola through the points g(i-1,3j), g(i,j), and g(i+l,3),
obtaining an analytic expression of the form:
g(x,y) = ax® + bx + C
=const
~40~
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where the constants a,b, and c are known. Then 9g/3x(x,y) =

2ax + b, which can be evaluated at the value of x corresponding

to the point (i,j). A similar approach yields 09g/93y.
Implementation of the above approach leads to the following

finite-difference expressions for‘ag/aéyi,j) and(Bg/Bﬂ(i,j):

_ axP(i)g (41,30 =bx? (141 g (i-1,3) + (%% (i+1) ~ax® (1) g (4 ])

39, . .
S2(1.3) AR (D Ex (i+ D) [Ax (1) +Ax (1+1)]
(I-24)
2,. - 2l y 2.5 2h L
395 4y = Ay (3+1)g (i, j-1)-Ay~ () g (i, j+1)+[Ay () -Ay~ (§+1)31g(i,])
By 1) Ay (3YAy (3+1) [Ay (3)+Ay (3+1) ]

These expressions for 3g/3x and 3g/dy reduce to the simple dif-
ferencing scheme cited above, in the event of a uniform 'uttice
point spacing.

1t should be noted that Mock does not use the finite difference
equation (I-22) to determine the electron number density n. Instead,
he develops a method which basically involves the numerical eval-
uation of a line integral, starting from the source or drain con-
tact where n is known, and terminating at the point (i,j) where
n is to be determined. Not only does this method appear to the
author to invite the accumulation of systematic numerical errors
inherent in the discretization scheme used to evaluate the line
integral, but also Mock notes that the method must be applied
with care to avoid the development of numerical instabilities.

There remains to be described the numerical determination
of the hcle density p(i,j), and of the current constant Jo. Con-
sider first p(i,j). 1In Section 2.07, while discussing boundary
conditions, it was shown that the hole quasi-Fermi potential ¢p
at the substrate contact is given by:

¢p = -lnND + VSUB 3

Then, in view of (I-05), which enforces the assumed condition of
zero hole current, this is the value of ¢p everywhere throughout
the substrate region. Equation (I-03) then gives for the hole density:

-4]-
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SUB  _, ,: -
p(i,j) = S"ﬁ‘— e~V I(i,3) (1-25)
D
Note that, since V¥ = -ln(NDNA) + VSUB at the substrate electrode,

p : NA there, as it should.

Finally, consider the numerical implementation of (I-17) to
determine the current constant Jo. Here, as did Mock, we imple-
ment the integration indicated along a horizontal mesh line,

j = constant, intersecting the source and drain "contacts," using

the trapezoidal rule.

2.10 Method Used for Solving the Finite-Difference Equations.-

The finite difference equations (I-18), (I-20), and (I-22) fer
-y

¥, 8, and ne ", respective! s, each may be cast in the form:

B(i,j)Vv(i,j-1) + D(i,3)Vv(i-1,3) + E(i,3)V(i,])
+ F(i,J)V(i+l,3) + H(i,J)V(i,j+1) = Q(i,]) - (I-26)

where the variable V stands for either ¢, 6, or ne_w, and the
coefficients B, D, E, F, H, and the function Q, are to be identi-
fied with the corresponding terms in (I-18), (I-20), or (I-22).
If we define column vectors [V] and [Q]:

o =
Vil Q11
Y | %1
vl = v, [l = {0,
V12 Q12
V22 22
Vn2 L{‘;’nz

then the set of edhations (I-26) mav be expressed as the matrix
equation:
M]-[V] = [Q] (1-27)
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where [r] is a sparse square matrix having only five non-zero

diagonals:
/
Ejp F3p O O - Hyj; O \T
D,y Ejy Fp3 O O Hyp
O D3y Ej; Fy3; 0 O Hyy
O O Dyy Ejy Fyy 00 Hyp
\ AN AN AN
N \ S N
’ \ \ \\ AN
[M] = NN N N\
N\ N N N
AN NN Ny Sa
0 B.. O D..E,. F..O0 H
ij ij "ij ij i3
= \ 3 NN T J+1 N\
N NN g ELEMENTS h
NN
AN N AN S
N\ N\ N .
N N = N
\ N\
N\ N B\ “\
N NN AN
AN 2 N\ ;: \
AN N \\ N )
o 341
ELEMENTS

; If the dimensions of the lattice of poin
¢ rectangular region, as in Figure I-2,
M has JK rows and JK columns.
We adopt the very fast iterative ma
z developed by Stone [6] for dealing with

the elements of the column vector [V], g

[M] has the five-diagonal structure of that shcwn above.

manner, the solutions of (I-18), (I-20),

and ne-‘p are obtained.

ts used to model the

are J by K, then the matrix

trix factorizntion method
the problem of finding
iven [Q) and [M], when
In this

and (I-72) for ¥, 6,

H. L. Stone, SIAM Jour. Numer. Anal
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2.11 Status of the Model.-Our computer model consists of an

executive main program and ten subroutines upon which it calls:

MAIN Executive program

RELAX Implements the iterative procedure

STCNE Implements Stone's method

POISSN Calculates Y

STREAM Calculates 8

FERMI calculates ne V

GRID Defines the graded lattice of points

BORDER Assigns boundary conditions

CURRNT Calcul..tes the current constant Jo :
PSINIT Calculates initial 1-D potential |
OUTPUT Provides output data i

Flow charts for these have been developed and their reduction
to FORTRAN code is now in progress. Debugging will commence

within the next two weeks.

3.0. TWO-DIMENSIONAL BIPOLAR TRANSISTOR MODEL i
We have a computer program which was developed to provide a
two-dimensional model of bipolar transistors. This computer

program was developed for us, under subcontract, by Professor David

Navon, at the University of Massachusetts, under a contract
between the University of Florida and IBM, in 1974, which was
concerned with investigations of several factors concerning power
transistors. Under the terms of that contract, all results from
these studies are non-proprietary, and we are free to use this
computer model as we choose.

This computer model deals with the same basic equations
listed in the preceding section for the MOSFET model (equations :
(I-01) through (I-06)) except that the assumptions of zero elec-
tron-hole recombination and of negligible hole current invoked
there are removed. The recombination rate modeled assumes the
well known Shockley-Reed-Hall steady state law corresponding to

-44-
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uniformly distributed recombination centers with a single enexrgy
ljevel at the center of the bandgap. Figure I-5 shows the rectangular

region with which this model deals.
Navon's program was written for use with a CDC CYBER 74

computer whose word length precludes the need for double preci-

sion arithmetic operations. During this reporting interval, we
have adapted this program for use with an IBM 370/65. This

required the introduction of double precision arithmetic, and

numerous other program modifications. The program is now opera-

tional, and provides a starting point for the development of a

revised version devised to handle bipolar transistor structures

more typical of IC geometries, €.9., collector contact at the

upper surface of the structure, the inclusion of a buried n+

layer, etc. Work on this revised computer model will be deferred

until the 2-D MOSFET model work has been completed.
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the transistor analysis computer program.
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Chapter II

A One-Dimensional Mathematical Model for MOSFET Operation
R. F. Motta and D. P. Kennedy

1.0 Introduction
Elementary MOSFET theory [1-5] contains simplifications and

approximations that render it inapplicable in many situations.
However, this theory offered great mathematical simplicity and,
in the early years of MOS technology., it produced satisfactory
agreement with experiment. In time, the rapicd growth of semi-
conductor integrated circuit (IC) technology created applications
for which this theory was found to be inadequate. specifically,
when applied to the weak inversion mode of operation and/or tc
short-channel structures, this theory yielded results in poor
agreement with experiment.

This situation was recognized by many workers and, subse-
quently, extensive research efforts were undertaken to alleviate
this problem. From these efforts, a multitude of new theories
emerged as modifications of elementary MOSFET theory. In a pre-
vious study [6], we carefully reviewed these new theories and
found them to be extensions of elementary MOSFET theory without
consideration of inherent weaknesses in this theory. In particu-

lar, this theory contains no constraint whereby electric current

[1] H.K.J. Thantola and J. L. Moll, Solid State Electronics, 1,

423 (1964).
[21 cC. T. gah and H. C. Pao, IEEE rrans. Electron Devices, ED-13,
393 (1966).

[3] R. H. Crawford, MOSFET in Circuit Design, McGraw-Hill
Company, N.Y. (1967) .

[4] A. S. Grove, physics and Technology of Semiconductor levices,
John Wiley and Sons, IncC.. N.Y. (1967).

[5] S. M. Sze, physics of Semiconductor pevices, Wiley Inter-
science, N.Y. (1969) .

[6] D. P. Kennedy and F. A. Lindholm, Physical Models of MOSFET
pevices, Final Report, HDL-CR-75-193-1 (1975) .
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continuity can be attained in the source~-drain channel of this
semiconductor device. Moreover, many of these new theories are
heuristic in nature and require adjustable parameters to obtain
agreement with experiment. For any particular device structure,
these adjustable parameters must usually be determined by labora-
tory experiments, thus increasing development costs of new
integrated circuits.

In a previous study [7], a new theory for MOSFET operation
was proposed that assures electric current continuity in this
semiconductor device. Furthermore, this new theory for MOSFET
operation was reduced to a simplified one-dimensional system of
equations that are suitable for engineering purposes. The ade-
quacy of this theory was demonstrated for long-channel structures
operating in the strong inversion mode. However, although
implicitly containing the current physics, this new theory also
failed to yield satisfactory results for the weak inversion mode
and/or for short-channel structures. Thereforc, the main direc-
tion of the present research has been to alleviate these diffi-
culties.

At the inception of this research program we had completed
an important revision of this theory. We therefore initiated an
extensive evaluation of our revised theory, for a wide range of
device structures and bias conditions. This evaluation revealed
additional errors in our model which have necessitated other
revisions. 1In this report, we present these revisions and discuss

progress we have made in the development of this model.

2.0 An Earlier Theory for MOSFET Operation
In this section, it is our purpose to present an overview of

an earlier theory for MOSFET operation. This presentation gives

the basic structure of our theory, prior to a number of refinements

we made during the present research program. Therefore, in addi-
tion to acquainting the reader with this earlier work, the present
section constitutes a necessary preliminary to the discussion of

these refinements which follows in §3.0.

[7] D. P. Kennedy and P. C. Murley, IBM Jour. of Research and
pevelopment, 17, 2 (1973).
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2.1 General Mathematical Development

In the inversion layer of a MOSFET, both drift and diffusion

contribute to the source—d;ain electric current:
I, = Wi Qg é;% _ 5% fgi : (II-1)

In this expression, I, represents the total electric current
parallel to the oxide-semiconductor interface (see Fig. II-1).

If we neglect recombination-generation mechanisms within
this semiconductor structure, the source-drain electric current
I. must be constant at any location between the source and drain;

D
thus from (II-1) we have

dI a’v_ 4o, av_ azo.
¢ = "E% =Wulo, —>+ 3= g2 - 22|, ar-2)
dx T gx?
From the chain rule of differentiation,
do. dQ. av
i 7i s .
dx st dx (II-3a)
2
2 2 2
d Qi _ in d Vs d Qi st
= 37 + I (IT1-3b)
dx? s dx? av_?

]

and, by making these substitutions in (II-2), we obtain

-1

..2 -
az?v av d2oQ. do. do.
i kT i . (II-4)

S [__S - | kT 1 _ O = R
o dx q dV52 st i q dVs

A physically meaningful modification of (II-4) is realized

bv introducing into this expression . separation param:ter A(Vs),

yielding
dzvs av, e
A(V) = —_— (I1-5a)
S dxz dx
kp 479 99 xr 995 -
st2 s q dVg
-51-
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Figure II-1. Illustrative Model of a MOSFET.
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Therefore, i
a*v av 2 ’
= = }\(Vs) —= =0 (II--6a)
dx
a0; g [ _[q
=y + A(Vs) = XT av; - KT )\(VS)Qi = 0. (II-6b)
S

Equations (II-6a) and (II-6b) have the solution equations [6]

v
-]
x = x_ - = j’ exp [0 (E) 1dE (II-7a)
(o]
v
(o]
(

qv_/kT -qv_/kT dQ.

= s o -lg9.- 1 j_"i

Q; (Vg) = 0; ¢ e kT~ Q. |av

10 S

v
(o]
‘\ls W
: _[ exp |- %% + Q(g)|4dgy, (ITI-7b)
VO
respectively, where ‘
E ]
Q(g) = - fk(n)dn- (IT-8)
VO

These solution equations provide the foundation for our calcula-

tion of the volt-ampere characteristics for a MOSFET.

2.2 Interpretation of the Separation Parameter A(V)

In order to obtain explicit solutions from (II-7a) and (II-7b),
it is necessary to establish the separation parameter A(Vs). From
(ITI-5b), the magnitude of this parameter is given by

I -1

: =
p doy L _ kT d’Q, fdo, . do,
Q; dVg 1 av_? e

_—— il
Avg) =

(II-9)

oL & i
q Q; dv
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A manipulation of (II-9), in combination with (II-1l), yields

I.. dQ./dx
o OifE __d i _
M) = 1 R T av, t%% |av_7ax | | (I1-10)

where Idiff is the diffusion component of the total current ID'

From (II-10), it is evident that the separation parameter
A(VS) produces a modification of the proportions of drift current
and diffusion current necessary to yield constant source-drain
electric current at all locations within this semiconductor
device.

From our two-dimensional computer solution for this problem,
it was found that X(VS).always attains a magnitude of gq/kT in the
limit of weak inversion. From (II-10), this limit implies that
all source-drain electric current is attributable to diffusion.
Furthermore, from this computer calculation it was found that
A(VS) can be adequately approximated by the first two terms of a
Taylor series expansion of (II-10) about a location near the
source junction:

A ‘o

(v) T:A_(TI;_-V;)_ '

where Ao = A(Vo). Assuming that A(VS) approaches this same limit
at the point of channel termination (where VS = VG) we have

(IT-11)

1-(kT/q))\o
(VG‘VO)

A= (1T-12)

2.3 The vVolt-ampere Characteristics of a MOSFET

From the implicit solution equations for Vs(x\ and Qi(VS)
[(II-7a) and (II-7b), respectively] in conjunction with the approxi-
mate relation for A(VS), (II-11), we can readily obtain an expres-

sion for the volt-ampere characteristics of a MOSFET. From (IT-7a)

we obtain

& 1 - -
Ve =V o3l - (At A)E_x 5, (II-13)
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where Eo is the magnitude of source-drain electric field at the

source end of this structure:
st
(II-14)

E =" = T .
o dx =0

In a similar manner, from (II-7b) we obtain

q(v_-v_)/kT dq.
0.(V) =0. e s O 1 -11 - kT 1 [ ~i
i''s io q Qio dVS
\Y
o
1  (1I-15)
A_/A A A
Z, °© exp(z) [T(L + -%, z ) -T( + =, )],
where
=-_9.1 =
Zo kT A (II-16a)
(II-16Db)

Z2 =12 {1 - A(V_-V )]
o s o

For the range of variables encountered in this boundary value
problem, it was proposed that (II-15) could be adequately approxi-

mated by the relation
A-/A

o
1l - A(VS—VO) . (II-17)

Qi(vs) N Qio
This system of equations has been constrained to yieid\a

divergence free electric ~urrent. Therefore, the magnitude of

this current [from (I-1)]},

av | d0.
e o _Ss _ kT 1 ~i -
1 W, —= |- 30, @, | (II-18)

D
can be calculated at any location along the source-drain channel.
Selecting for this calculation the source end of this structure,

(II-18) has the form

av dQ. ‘
s kT 1 i
I. = -WuQ, — l - — — | = , (II-19)
D io dx S0 q Qio dVS L

o

=55=
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where V = VS(O). Substituting (II-14) into (II-19) yields
] aQ,
- _kr L 2 .
I, wuQ, E_ 1 3 0, |av, 5 (II-20)
\Y
o

From (II-17) we obtain the relation

in
S = - AoQio = (II-21)
Sly
o}
Further, from (II-13) we have, upon recognizing that VS=VD

when x=L,

AR

ST S IR I 3 A —22)
Eo = TR_FAIL 1-11-AW,v) : (II-22)

o

Thus, after substituting (II—Z}) and (II-22) ﬁnto (II-20), we

have an expression for the volt-ampere characteristics of a

MOSFET
o AR
o gl e kT L 1 - p A -
I (AT 1% 55 BB A(Vy-Y,) . (II-23)

Tt should be noted that (II-23)Lcontains only two unknown para-
Both of these parameters arise at the source

meters Q._ and X _.
QlO o
are minimal;

end of this structure where two-dimensional mechanisms

thus, these parameters can be evaluated on a one-dimensional basis.
pefore determining these paraneters, we fi.s’. consider an

application of (II-23) to the weak inversion mode of operation.

From (II-12), as Ao -+ gq/kT in weak inversion the parameter A becomes

small and, therefore, (II-23) has the limit

2WDQi
L

~q(Vy=V,) /KT

O l1-c¢e . (II-24)

Lim (ID)
Ao + q/kT
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Clearly, (II-24) shows an exponential saturation of the source-
drain electric current with an increase of drain voltage. Thus,
from the concept of electric current continuity within the inver-
sion layer of a MOSFET, we have an expression for current satura-

tion in weak inversion that is in substantial agreement with both

experimental observation and other recent theoretical studies [8,9].

Further insight is gained from (II-24) if we consider the
drain junction as a minority carrier (electron) sink-like the
collector junction of a bipolar transistor. Assuming Boltzmann
statistics, the term {1~exp[—q(VD-Vo)/kT]} in (II-24) is identical
in form to the minority carrier sink offered by a reverse biased
collector junction. In addition, when VD >3 Vo’ we have from
(I1-24)

2WDQio

I = =1

{TT=25)

In this situation ID might be assumed a consequence of minority
carrier diffusion from a source of magnitude Qio to an ideal sink
that is leccated a distance L from this source.

Thus, (II-23) contains all the qualitative recuirements for
the weak inversion mode of operation. First, thisz expression
shows that electric current saturation exhibits an exponential
form in weak inversion. Second, in weak inversion (II-23) pre-
dicts that all source-drain electric current arises from & “fu-

sion.

2.4 The Saturation Mode of Operation

Equation (II-23) and its weak inversion iimit, (II-24), are
applicakle only when channel length L is a known quantity. This
situation exists fcr triode mode operation. Assuming that elec-

tric current saturation arises when we have channel termination

[] M. B. Barron, Solid State Electronics, 15, 293 (1972).

[9] R. M. Swanson and J. D. Meindl, IEEE Journal of Solid-State
Circuits, SC-7, 146 (1972).
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(i.e., when VD > VG), the source-drain inversion layer maintains
a total voltage of (VG-VO) across 'its length in this mode of
operation; however, the length of this inversion layer becomes a
function of drain voltage and decreases with an increase of VD'
Thus, in electric current saturation (II-23) has the form

AO+A

WuQ.
= i0 kT -1 - - A e
D (A0+A)LC(VD) 1 + g Xo 1 1l A(VG VO) ’ (IT-26)

I

where LC(VD) is a voltage-dependent channel length.

issuming that the substrate region of this MOSFET has a homo-
geneous impurity atom dersity, we apply to this calculation the
depletion layer theory of abrupt asymmetrical p-n junctions. From

this theory, the drain junction space-charge layer extension into

the substrate is given by

2Ks€o
wlz) - vy (11-27)
L\

where NA represents the substrate impurity io» density. Further,

from this depletion layer theory, we have a voltage drop of VD--VG

across a distance of AL, where

2K € 1/2
S O

- - 2 _ = L
AL = WD WD qNA (VD VG) . (I1-28)

Thus, if we subtract this distance (AL) from the metallurgical

source-drain channel length (L), we obtain

1/2
s o

= = ] 2 = 3 - —
LC(VD) = L WD WD qNA (VD VG) . (11-29)

2K €

In current saturation, Lc(VD) represents the electrical
channel length across which we have a total voltage of (VG—VO).
Thus, (II-26) in conjunction with (II-29) establishes the drain

>
current when VD VG'
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2.5 Calculation of Qio

Before (II-7b) and, hence, (II-23) can be used for a quanti-
tative evaluation of the volt-ampere characteristics of a MOSFET,
! it is necessary to calculate a magni’ de of Qio-the value of
§ Qi at the source end of this semicu. ... *tor structure (where
; VS=VO). From our rigorous computer calculations of MOSFET opera-
tion, we know that electrostatic interactions between the gate
and drain are at a minimum near the source junction. For this

reason, it is presumed that a one-dimensional calculation of

inversion charge is applicable in this region.
: From elementary MOSFET theory, this inversion charge has the
; form [1] j

1 Q; (V) = Q=0 = -C__(Vg=V,) +\/§KssoqNAvs , (II-30) J

where QT and QD represent total electrostatic charge and depletion

charge, respectively, and where

AR TR

Ki€o
c =

oX t
oX

(I1-31)

represents the static capacitance of a gate oxide of thickness g
t g+ INn a previous study [6], we showed that (II-30) neglects ﬁ
i holes in establishing the depletion charge (QD) and, as a result,
(IT-30) is inapplicable for the weak inversion mode of transistor i
operation. Further, from this study [6], we have a revised

expression for Qi(vs) applicable near the source junction for any Q

degree of inversion:

K_E -8V 1/2
- . s o]l kT s _ L
| Q, (V) = =C_ (V,=V ) + 2 (LD )( A1 + BV, -1 . (II-32) :
| ;
| In this expression, L, is the extrinsic Debye length, ;
il
{ |
] i
| KseokT 1/2 k
L = — . (II_33) :
i D g?N
A L "l
-59-~
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1t should be noted that (II-32) yields the magnitude of
Qo = Qi(Vo) explicitly in terms of vy and implicitly in terms
of VG' From a one-dimensional solution of Poisson's equation at

tihe source end of this structure [6], we have (I1I-34)
] 2 1/2
K t -Bv n. RV
v = v+ V2 [E)oXIKTV ) "o gy _g 4 i) e o :
G o L L g o N
1 D ] A

Clearly, this problem represents only a minor mathematical
complication.

2.6 Calculation of Ao

In the present MOSFE. theory, source-drain electric current
is given by (II-23). This equation contains two unknown para- '
meters (Qio and Ao) which must be evaluated in order to calculate |
this current. 1In §2.5, we gave an expression, (IT-32), which can
be used to evaluate Qio' Herein we will derive an expression for
Ao' the remaining parameter needed for calculating the source-
drain electric current.
To obtain an expression for Ao' we will utilize a general
relation for A(VS) given by (II-5b). In addition, since
Ao = A(Vo) represents the magnitude of A(Vs) at the source end
of this semiconductor structure, we will use (II-32) to approxi-
mate Qi(VS) in this vicinity. A substantial degree of Tgshe—

matical simplification results if we neglect the term e S in

this equation; thereby

K _E 1/2
PP AT _
Qi(VS) 2 Cox(VG VS) + y2 LD q LBVs 1 A (II-35)
We can neglect this term when
v, >> (kT/q) [1-exp(-qV_/kT)] , (II-36)

which is clearly the situation in all cases of practical interest.
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From (II-35), by differentiating with respect to Vs’ we have

in . 1 Ksfo kT 1/2 kT =1/2 -37
i - Cox +i7§: I = Vg = , (11-37)

S

2 —
a7Q; 1 Ke€o | [k |1/2 xr | ~37/2

= - . ¥ o= e . (II-38)

av_2 2V 2 Ly q s g

S

Substituting (11-35), (II-37), and (II-38) into (II-5b) and,

thereafter, evaluating the result for Vs = Vo' we obtain

1/2 -ﬂ
1 KT 1 [kT KT
Cox ¥ 2 [ZKssoqNA/(Vo q;] L’+ 5( Q)(VO q)

A = , ». (II-39)
o 1/
kT 3 (kT kT
Cox[vG Ve, * _E] [Vo 5(_5)] [ZKssoqNA/(Vo _E]
4
For V_ >> % (kT/q), (II-39) has the approximate form
1/2
1 s _ kT
_ Cox ¥ 2 [2KS€OQNA/(VO q)] _
A , (II-40)
o C V.-V +k_T - |V -ék—T 2¢_e gN, /(V “k—T) e
(0).4 G o q o] 21 g s oq A o] q

where VO is given implicitly by (II-34).
For the weak inversion mode, (II-34) has the approximate form

KT
jng € gqN_(V_ - ==)
V.~V + so A © d i (II-41)

G o C
ox

Upon substituting (II-41) into (II-40) and, thereafter, simpli-
fying the result through straightforward algebraic manipulations,
we obtain AO = q/kT. Thus, our approximate expression for XO
yields the corrent magnitude for this separation parameter in the
1imit of weak inversign. 1In §3.1, we demonstrate quantitatively
that Eq. (II-40) provides a satisfactory approximation of Ao forx
any degree of inversion.
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3.0 Model Evaluation and Refinements
The original version of our model for MOSFET operation con-

tained inadequate apprnximations for Qio and Ao which rendered
this model inapplicable to the weak inversion mode. 1In a pre-
vious study [6], we alleviated this difficulty by obtaining
improved approximations and, thereby, we revised our model so
that it would apply for any degree of inversion. Therefore, at
the start of the present research program, we initiated an exten-
sive evaluation of our revised model for a variety of device
structures and a wide range of applied bias voltages.

We compared calculated volt-ampere characteristics from our
model with rigorous two-dimensional computer calculations of these
characteristics. 1In this comparison, we obtained satisfactory
agreement between our model and these computer calculations for
a long channel structure (L = 10um) with lightly doped substrate

i o)
(N, = 2x1015cm 3) and moderately thin oxide (tOx =-1000 A). 1In

coﬁtrast, we observed significant discrepancies between nur model
and these computer calculations for a structure with a more highly
doped substrate (N, = 2x10°cm °) and thicker oxide (t,, = 2000 R) .
For this structure, our model over predicted the magnitude of
source-drain current by approximately 50%, in the saturation region
of these volt-ampere characteristics. Further, this model also
over predicted the magnitude of applied drain voltage required to
produce electric current saturaticn in this structure. During

the p.esent research we determined an important source of this
error and, thereafter, revised our model to alleviate thisg diffi-
culty. In §3.1, we discuss the details of this revision.

In other calculations for weak inversion operation, we also
observed disagreement between our model and our rigorous computer
solution for MOSFET operation. From these calculations, our model
under predicted the source-drain current in this weak inversion
mode. A detailed study of this prcblem revealed that our model
contained an inadequate approximation for the distribution of

inversion charge, Qi(Vs), within the source-drain channel.
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Further, we determined that the foregoing discrepancy in our
volt-ampere expression resulted from an erroneous approximat .on
for the slope of this inversion charge distribution, in/st, at
the source end of this structure. This aspect of our model has
been revised and we now obtain substantially improved agreement
between our model and two-dimensional computer calculations of

these volt-ampere characteristics. Details of this revision are

discussed in §3.2.

3.1 Electric Current Saturation
For a long channel MOSFET (L = 10um) with 2x10]'6cm=‘3
o}
strate doping and an oxide thickness of 2000 A, we observed a

sub-

substantial discrepancy between our model and rigorous computer
calculations for the strong inversion mode. Briefly, our model
nver predicted both the drain voltage required to produce elec-
<ric current saturation and the magnitude of source-drain cur-
rent in this saturation mode. From (II-20), this discrepancy
could arise from our calculation of Qio’ Eo’ or (in/st)Vo. By
checking these calculations against our computer solution, we
determined that the foregoing discrepancy was produced by an
error in our calculation of E .

From (II-22), EO is exceedingly dependent upon the parameters
Ao and A. Therefore, it was assumed the error in our calcula-
tion of Eo could be attributed to either an error in A or Ao.
Thus, we first undertook a detailed assessment of our approximate
expression for Ao.

In our theory for MOSFET operation, Ao represents the magni-

tude of our separation parameter, A(Vs), at the source end of

this semiconductor structure. Thus, from (II-5b), Ao has the
qualitative form
2
( kT d Di ) in A
9 dUSZ dvs v
?ﬁ o ‘
N = ; (II-42)
o) g, =~*E[2
io g | dv
=]
v
[
\ /
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where Q = Q (V ). In §2.6, we derived a guantitative relation
for A based upon our revised one-dimensional approximations for

(V ) and its first two derivatives [(II-35) through (11-37),
respectlvely] To assess the adequacy of using these approxima-
tions to calculate Ao’ we made comparisons between (I1-35)-
(11-37) and a rig.rous nonequilibrium solution of Poisson's
equation in one spatial dimension (see Appendix A).

These comparisons are illustrated in Figs. II-2 and II-3,
II-4 and II-5, for

for strong inversion operation, and in Figs.

weak inversion operation. From Figs. II-2 through II- 5 we have

satisfactory agreement between our approximations for Qi and for
in/st and this rigorous one-dimensional solution of Poisson's
equation. Moreover, in Figs. II-3 and II-5, we have a qualita-
tive illustration that good agreement is attained between our
approximation for dZQ.l/st2 and this rigorous solution. Thus,

from the foregoing discussion, we would not expect our approxi-
[(II-40)] to produce a significant error

T N T B

maté expression for Ao
in our volt-ampere calculation.

We next sought to check the adeguacy of our expression for
From §2.2, the separation parameter, A(Vs),
the limit of weak inver-

i —— e

the parameter A.
always attains a magnitude of g/kT in
Tn the Kennedy MOSFET theory, the parameter A

sion operation.
) » g/kT at the point of channel i

was evaluated by assuming A(V

termination (where V —V )T ThlS assumption implies that we have

a traunsition between st*ong inversion operation (at the source

end of this structure) and weak inversion operation (at the

drain end) near this point of channel termination. I1f, instead,
%

this transition takes place at some other location between the

source and drain (where V JV ), our expression for the parameter

A [(II-12)] would be in error
For structures with lightly doped substrates (N = 2x1015cm_3)

and relatively thin oxides (t - = 1000 A), our computer calcula-

tions showed that this transition into weak inversion d

In contrast, simi-

> 106cm™3 and

oes take :

place near the point of channel termination.

lar computer calculations for structures with N,
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Figure II-2. Calculated inversion charge distribution in a

L MOSFET for strong inversiorn operation.
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t = 2000 g showed that this transition can take place prior to
channel termination. From the foregoing discussion, X(Vs) attains
a magnitude of g/kT in the limit of weak inversion; however, this
limit is attained at a magnitude of Vs that is less than VG. Thus,
we have an error in our expression for the parameter A (I11-12).

At present, we have no rigorous analytical method to calcu-
late V at this transition into weak inversion. However, from
our one-dimensional solution of Poisson's equation (Appendix A),
the electron density at the oxide-semiconductor interiace becomes

negligible when V. attains a critical magnitude, Veor given by

(I1-43)

¥
_ KsquNA 2Cox kT ni ]
v =V, - 1 + e aN VG - = 41 - g J -1
S oq A 9 A

As a first order approximation, we presume A(Vs) + gq/kT when
Vv -+ V . Therefore, from (T1-11)
s sC

1~ (kT/q)ko

A= ——3 (I1-44)

It should be noted that this modification of our model
(II-43) does not alter the qualitative form of our expression
for Eo (II-22) nor that of our volt-ampere relation (II-23).

However, for the saturation region of these volt-ampere charac-

teristics, we replace (II-26) - (II-29) with the following equations:

A tA
WuoQ. T
= io kT e _ A e
In = O FM L (V) [1 * g Ao] L [1 AV Vo) (II-45)
o c'D
2 2KSEO
Wy = no Vb (II-46)
A
7
. _ 2¥s% L/2
AL = WD = WD e qNA (VD"'VSC) (II-47)
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L (Vp) = L = (W, - Wl - qf] S (VY ,  (II-48)

A

i
where Vsc and A afe given by (II-43) and (II-44), respectively.
With these revisions in our model [(II-44)~(IT-48)], we
obtained improved agreement with our computer solution, for the
device under consideration. Specifically, the discrepancy in our

volt-ampere calculation was reduced from 50% to approximately 5%.

3.2 Weak Inversion Operation
In weak-inversion mode calculatiors, we found an additional

discrepancy in our model for MOSFET operation: our approximate
expression for Qi(VS), (II-17) was found in errox, when compared
with rigorous computer calculations of this inversion charge
distribut.on. Moreover, because we used this incorrect exprersicn
to calculate the term (in/st)V0 in our volt-ampere relation

[see §2.3], we also have a discrepancy in our calculation of the
source-drain current in weak inversion.

Tt should be noted that the term (in/st)Vo is evaluated
at the source end of this semiconductor structure. Therefore,
we can calculate this term using our one-dimensional approxima-
tion, (II-37). Substituting (II-22) into (1I-20), our volt-
ampere relation now has the form
3 XO+A
Qi A

- WuQ,
- io _ kT _1 " . _ - _
e e - Eowl G20 T D e v,) ., (1I-49)
o 10 SV

° 1

where (in/dVS)V is given by (II-37).
o

Using (II-49) we again calculated these volt-ampere charac-
teristics for weak inversion operation and compared these charac-
teristics with those calculated from our two-dimensional computer
program. We obtained substantially improved agreement between
these two calculations as a result of the foregoing revision.
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4.0 Conclusions

An evaluation of our previous theory for MOSFET operation

revealed discrepancies in both the strong and weak inversion modes

of operation. We have identified the factors producing these

errors
During
resume

make a

theory.

iority

and have initiated appropriate revisions in our model.

the next quarter, we plan to complete these revisions and

our evaluation of this model. 1In addition, we plan to

comparative study between this model and elementary MOSFET
From this comparison, we aim to demonstrate the super-

of our model for application to the design and develop-~

ment of MOSFET structures.

5.0 List of Symbols

Cox
D

B

capacitance of gate oxide
electron diffusivity in a MOSFET inversion layer

magnitude of source-drain electric field at source
end of a MOSFET channel

gate-induced electric field
EY at oxide-semiconductor interface

source-drain electric current in a MOSFET
diffusion component of ID

thermal voltage (.0259 volts at T = 300°K)

source~-drain distance in a MOSFET

voltage-dependent channel length in a MOSFET

extrinsic Debye length in semiconductor substrate of
a MOSFET

electron density in semiconductor material

intrinsic carrier concentration in semiconductor
material

magnitude of n along oxide-semiconductor interface

nonequilibrium electron density :n charge neutral
semiconductor substrate.

acceptor impurity ion density in siemiconductor substrate

hole density in semiconductor material

nonequilibrium hole density in charge neutral semi-
conductor substraic
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electronic charge
inversion charge in semiconductor substrate

magnitude of Qi at source end of a MOSFET channel

gate cxide thickness
electrostatic potential (referenced to charge-neutral
regions of semiconductor substrate)

applied drain-source biasing voltage
applied gate-source biasing voltage

magnitude of V at which n = n.

magnitude of VS at source end of a MOSFET channel

surface potential in a MOSFET (electrostatic potential
at oxide-semiconductor interface)

width of a MOSFET
drain depletion layer width

distance from source towards drain, parallel to oxide-
semiconductor interface

distance from semiconductor surface into substrate,
perpendicular tO oxide-semiconductor interface

magnitude of y at which n = n,

(kT/q) "t

permittivity of free space

relative dielectric constant of gate oxide

relative dielectric constant of semiconductor substrate

Separation parameter in our model for MOSFET operation

magnitude of A at source-end o a MOSFFT channel

electron drift mobility in a MOSFET inversion layer

electrostatic charge density within semiconductor
substrate

electron quasi-Fermi potential in semiconductor sub-

strate

hole quasi-Fermi potential in semiconductor substrate
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Chapter III
Equivalent Circuit Studies

Professor F. A. Lindholm;

¢raduate Student, J. I. Arreola

The transient computer simulation of large-signal MOSFET
circuits can disagree sharply with observed behavior. Hence the
equivalent-circuit models used to fepresent MOS transistors in
network form deserve scrutiny for possible inadequacies. In the
present effort, we are examining three defects of present-day
models in the representation of the internal device physics,
seeking to set down a basis for removing these defects.

We identify the three defects in present-day models as
follows:

(a) 1inadequate representution of the MOSFET as a four-terminal
device;

(b) inadequate inclusion of the effects of the two-dimensional
(and three-dimensional) configuration of flux lines present,
particularly in short-channel structures; and

(c) inadequacy of the quasi-static approximation, which under-
lies all models in cr<wn use for computer circuit simula-

tion.

In relation to (a) ana (b), we have developed a methodology
yielding network representations that include elements to account
for four-terminal behavior and for multi-dimensional effects
during transients. Because of basic asymmetries in the device
structurec, "capacitive" currents associated with the accumula-
tion of mobile carriers within the MOSFET require in the network
representation circuit elements in addition to capacitors. By
applying the methodology to a particular physical model of the
MOSFET, we have shown that appreciable errors can potentially
result from use of an all-capacitor model. This work is now being
refined and extended, and is meant for publication in the final

report.
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In relation to the defect labeled (c) above, we have developed
a test for the self-consistent validity of the gquasi-static
approximation that is easily implemented in circuit-analysis pro-

grams. A detailed reporting of this work now follows.

A SELF-CONSISTENCY TEST FOR DEVICE MODELS IN
TRANS IENT COMPUTER SIMULATION OF LARGE-SIGNAL
CIRCUITS
(F. A. Lindholm)

1.0 Introduction
From a fundamental standpoint, the analysis of such semicon-

ductor devices as MOS and bipolar transistors is based on a set
of differential equations [1] which express relationships among
currents, mobile-carrier concentrations, and potential. In the

: full generality needed to describe large-signal, dynamic response,
analytic solution of these equations, without approximations, has
proven to b2 intractable. Even by computer, solutions subject to

I the appropriate boundary conditions are done only with great

| difficulty. Hence, to simplify treatment of these basic equations,
various methods of approximation have evolved.

Among these is the quasi-static approximation. 1In this

methad, one first omits all time-dependent terms appearing in
the basic equations. Analytic solution then becomes possible if
various additional approximations are employed. This solution

f yields expressions relating the currents and charge components

within the device to the boundary conditions, for example, to

the terminal voltages. 1In a strict sense these expressions apply

only if the boundary conditions are time-invariant. To obtain an
approximate solution if the boundary conditions vary with time,

one makes the quasi-static approximation that the expressions

hold in general, despite departures from the dc steady state.

[1] W. Shockley, Bell System Tech. J., 28, 435 (1949).
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Because of their origin in conventional device analysis, ail
device models commonly used in the computer-aided analysis of
bipolar and MOS circuits depend for their validity on the quasi-
static approximation. Based on this premise, we develop here a
test for the self-consistent validity of device models that is
easily implemented in circuit-analysis programs.

The self-consistency test to be developed applies both to
MOS and bipolar transistors, and, indeed, to other devices as
well. Use of the concept of the ideal charge-control model,
extended appropriately, enables a development in this generality,
and with this subject the rest of the paper begins. Using the
extended ideal charge-control model, we then develop the test for
self-consistency and unify alternative views of its meaning.
Emphesis is given to the extrinsic as well as to the intrinsic
device, and to various nonidealities that distinguish the behavior
of actual devices from that of the ideal charge-contrpl model.

Application of the test developed here to a practical MOS
NAND gate demonstrates marked violations of self-consistency over
appreciable intervals of time [2]. These violations motivate the
comments with which we conclude the paper, about various methods

for improving models to remedy self-inconsistency.

2.0 Self Consistency

In conventional device analysis, one of the additional
approximations referred to earlier involves dividing the device
into extrinsic and intrinsic parts, as Fig. III-1 illustrates.
The self-consistency test to be developed will apply to both of

these parts. We begin with intrinsic device.

2.1 Sself Consistency from Extended Ideal Charge-Control Model

for Intrinsic Device

The charge-control viewpoint was first applied to restricted

types of devices: to photoconductive devices [3] and to junction

[2) D. L. Fraser, Jr., and F. A. Lindholm, "Violations of the
Quasi-Static Approximation in Large-Signal MOSFET Models,"
to be published.

[3] A. Rose, "La Photoconductivité," L'Onde Electrique, 34,
645-651 (1954).
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Fig. III-1l,4Illuscrating the division into intrinsic and extrinsic
) devices for: (a) MOSFET, and (b) bipolar transistor.
The dotted boxes enclose the intrinsic structures.

(Not to scale.)
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transistors [4]. In 1959, however, Johnson and Rose [5] and

Middlebrook [6] introduced charge control as a means for unifying

the characterization of many different kinds of electronic devices.

It is this unifying attribute that we exploit here, together with

the property that charge control is rooted in the quasi-static

approximation.

Earlier work will guide our treatment. Previous presentations
and applications of charge control do not satisfy our needs for
assessing self-consistency, however, partly because most earlier
workers concentrated on small-signal, amplifying applications,
partly because th.y restricted consideration only to the intrinsic
device, and partly for other reasons that will become plain as
our treatment progresses.

Following others [5,6], we begin by considering the genercl
three-terminal, electronic device pictured in Figqure III-2. This
is a charge-contrnl device, which means that the basis of its
operation involves the currerit i, flowing between terminals 1
and 2 being controlled by the charge Q; placed at terminal 3.

For this device, we isolate the essence of operatior through

introduction of an ideal charge-control mecdel defined by the

following properties:

(a) The current i,; flowing between terminal 1 (source or emit-
ter, for example) and terminal 2 (drain or collector, for
example) is the ratio of a controlled charge Q,, of mobile
carriers within the device to the mean transit time t,,
needed for these carriers to move between these two terminals.

Hence,

iy = Qa1 /t2y . (I11I-1)

[4] J. J. Sparkes and R. Beaufoy, Proc. IRF, 45, 1740 (1957);
ATE J., 13, 310 (1957).

[5] E. O. Johnson and A. Rose, Proc. IRE, 47, 407 (1959).

[6] R. D. Middlebrcok, Proc. IRE, 106, Part B, Suppl. No. 17,
887 (1959).
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(b) The controlling charge Qj; associated with terminal 3 (gate
or base, for example) exercises total control over the con-
trolled charge according to

dQz: = -dQs3 . (I1I-2)

(c) The current i; flows only to change the charge Qs placed
there. Thus,
iy = Qs (I1I-3)

where the dot notation designates time differentiation.

In ail devices, property fa) is an idealizaticn, valid in
a strict sense only in the dc steady sta’e, but extrapolated to
apply at each instant during transients by use of the guasi-static
approximation. Property (b) is an idealization for most devices
in that Qs only partially controls Q:;. For example, in an MOS
transistor, some of the flux lines starting from gate charge may
end on depletion charge rather than on the charge of mobile
cerriers in the channel. As another example, in a short-channel
MOS transistor, the two-dimensional (or three-dimensional) con-
figuration of flux lines in the insulator and in the semicon-
ductor may invalidate the full control expressed in (III-2).
Similar violations of (fII-2) occur in bipolar transistors and
other devices. Property (c) is an excellent approximation for
some devices; an example is the MOS transistor. For the bipolar
transistor, however, it is an idealization because the base fails
to retain all of the charge Q; placed at its terminal. Net
recombination, for instance, occurring within the device or at
its surfaces 6r contacts, requires a component of i; in addition
to that expressed in property (c).

For the purposes of this paper, however, these nonidealities
are inconsequential. As we shall see for the bipolar and the MOS
transistor, formulation of a test for self-consistency of the
quasi-static approximation can be based on straightforward exten-
sions of the ideal charge control model defined above.

To specify the network representation of the ideal charge
control model, consider first the simple case in which terminal

2 acts as the sole nollector of the transport current i,:. This
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corresponds to a first-order approximation of forward-active
operation for the bipolar transistor and of pinch-off operation
for the MOSFET. For this case, the properties defined by (III-1)
through (III-3) imply the network representation of Fig. III-3(a),
ir which chain-rule differentiation applied to (III-3) gives for
the capacitence:

9Q3 9Q21
C31 = X YT (ITII-4)
V32 V32

Fig. III-3(a) represents the large-signal transient response, in
contrast to the small-signal representations of Johnson and Rose
[5] and Middlebrook [6].

Some circuit applicat.ons reverse the roles of terminals 1
ard 2, with terminal 1 becoming the sole collector of the current
i, as in the inverse-active operation of cthe bipolar transistor.
This corresponds to the network representation of Fig. III-3(b),
with

Q3 0Q2,
Ciz =5;;; = 5;;; (III-5)
Vii Vii

In the most general case, terminals 1 and 2 both collect and emit
the transport current i»:i, as in the saturated mode of the bipolar
transistor and the non-pinch-off mode of the MOSFET. Thus the
general netwcrk representation of the ideal charge-control model,
extend-d to apply for large-signal applications and to account

for the dual roles of terminals 1 and 2, derives from a parallel
combination of Figs. III-3(a) and III-3(b). The general network
representation appears in Fig. III-3(c).*

Rather than the plausibility argument given, one can derive

the network representation of Figure III-3(c) by more strict
reasoning. This representation follows from chain-rule differ-
entiation or (III-3) joined with the implication of (III-2)

that all flux lines of Coulomb force associated with the control

of Q21 by Q3 must contact terminal 3 (none link terminals 1 and
2)-
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Fig. III-3. «Illust_:ating the development of the
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in (c¢), of the extended ideal charge- 1
contol model. It approximates the ]
behavior of the intrinsic part of :
MOSFETs, bipolar transistors, and other
charge-control devices.
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In this network, the circuit elements all are functions of
the device make-up and the terminal voltages and currents. The
particular functional dependencies that apply result from the
details of the physical modeling used to characterize the charge
Q231 and the transit time t:3:. For example, the Ebers-Moll model
[7] implies

qniWE 2
Qo1 = ——Z—NB— exp(qVBE/kT) and t,; = WB/ZDB (ITI-6)

for the bipolar transistor in the forward-active mode; and the
simple square-law characterization [8,9] for light substrate

doping implies

Q1 = (2/3)C_ ZLV4g and tp; = (4/3)L/uV g (I11-7)

GS
for the MOSFET in pinch-off operation. Here g denotes the elec-

tron charge; n., the intrinsic carrier density: WB' the quasi-
neutral base thickness; Dy the diffusivity of minority carriers
in the base; kT/q, the thermal voltage; Vpg! the base-emitter

voltage; Co’ the gate oxide capacitance per unit area; u, the

mobility in the channel; V the ga*e-source voltage; L, the

Gs'
channel length, and 2 its width.

Self-Consistency Criteria: As was noted, the ideal charge-control

model of Fig. III-3(c) is based on the guasi-static approximation.
Because this approximation is exact in the dc steady state, we
take the fcllowing as the criterion for self-consistency: that
the configuration of current flow in the network representation
during transients must correpond to only a small perturbation of
the configuration existing in the dc steady state. Hence, from

Fig. III-3(c), the criterion is:

Ebers and J. L. Moll, Proc. IRE, 42, 1761 (1954);
Moll, Proc. IRE, 42, 1761 (1954).

J
L
[8] C. T. sah, IYEEE Trans. Electron Devices, ED-11, 324 (1964).
A
7

. Lindholm, IEEE J. Solid-State Circuits, SC-6, 250
1); and S8C-7, 322 (1972).
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|C31V31‘ + |C32V34

'i21|

or, in more general notation, the merit of which will be seen

Z,kak

k#l << l
Q21/t21
where j=3 for the MOSFET of Fig. III-l(a). Expressions (III-8)

and (III-9) constitute necessary and sufficient conditions for

<< 1, (ITI-8)

later,

’ (ITI-9)

self-consistency. As we shall see, they form the basis for a
self-consistency test that can 5e implemented in computer pro-
grams for circuit analysis.

Viewed from another standpoint, we see that a consistent

but less demanding necessary condition is

Iés' == IQ21|
<< 1 . ITIT-10
T621/E21l T621/t21| ( )
Let the applied excitation make Q,; vary in proportion to elwt.
Then (III-10) becomes
wty; << 1, (III-11)

which impiies self-consistency with the quasi-static approxima-
tion provided the period of the applied signal much exceeds the
transi* time of the mobile carriers. If this holds, the mobiie
carriers can spatially distribute themselves fast enough to
assume essentially the same relation to the boundary conditions
as exists in the dc steady state.

The self-consistency criteria just developed have followed
from the assertion that the quasi-static approximation is exact
in the dc steady state. Despite the in*uitive appeal of this
assertion, and although it has been advanced by others, the

recent observations of Cherry [10], and the earlier ones of

Macdonald [11], about capacitance indicate that it is not strictly

[10] E. M. Cherry, IEEE Trans. Electron Devices, ED-18, 1166
(1971; .

[11] J. R. Macdonald, Solid-State Elec., 5, 11 (1962).
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true. From a practical standpoint, no change in our conclusions

results, however, from regarding the quasi-static approximation |
as exact in the dc steady state. The device models we consider i
consist of controlled sources and resistors, which represent the 1
flow of conduction current, and other circuit elements [12], |
usvally capacitors, which represent capacitive effects. That the ;
i magnitude of the capacitors calculated by quasi-static analysis
may be in error, even for arbitrarily low frequency of excita-
tion, does not affect our conclusions, because at such frequencies
the currents flowing through these capacitors are most often
negligible relative to the conduction currents. That the magni-
tude of these quasi-static (or charge-control) capacitors may be
in error at higher freque..cies contained in the excitation like-
wise does not affect our conclusions. Rather it influences only
the strength of the inequalities appearing in such expressions

as (III-9).

Effect of Nonidealities on Self-Consistency Criteria: The cri-

teria expressed in (III-8) and (III-9) are based on the ideal

charge-control model, which provides only a {irst-order approxi- ;

mation to the performance of actual devices. Nonetheless, these
criteria stay valid in the presence of commonly occuring non-

idealities, as we shall now show. |

There are several kinds of such nonidealities. Consider g

first the kind that arises from net recombination or generation 1

1

|

occurring within the intrinsic device. The drain current of the

as

MOS transistor, for example, can increase its rate of growth with

increasing drain voltage because of avalanche ml+tiplication of

[12] F. A. Lindholm and J. I. Arreola, "Network Representation of
+ha Large-Signal Transient Response of MOS Transistors," d
Late News Supplement of 1975 Int. Electron Devices Meeting, %
paper 11.8, p. 6 (1975); and "Network Representation for 5
Self-Consistent Transient Response of Electronic (and other)
Devices, Including Multi-Terminal Effects," 7th Annual
pPittsburgh Conference on Modeling and Simulation, (April

1976) .
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mobile carriers--a form of net generation. One must account for
this nonideality in the modeling of the mobile charge, Q2:1, and
of the (effective) transit time, t;; but the network representa-
tion remains that of the ideil charge-control model shown in

Fig. III-3(c). Hence the self-consistency criteria of (III-8)
and (IIT-9) remain valid for a three-terminal model of the MOSFET
despite the occurrence of avalanche multiplication. The same
conclusions hold for net recombination or generation in a MOSFET
that arises from other processes, such as thermal emission or
capture of carriers, provided the resultant current flowing in
the dc steady state to the substrate is negligible.

In contrast, net generation or recombination in a bipolar
transistor requires the addition of controlled current sources in
parallel with each capacitor in the network representation of
Fig. III-3(c). The time constants normally associated with these
sources will differ markedly from the transit time for mobile
carriers. From a practical viewpoint, however, except for opera-
tion near avalanche breakdown, the additional sources will carry
small current relative to that of source i,;, and the self-con-
sistency criteria for the quasi-static approximation remain as
we have stated theun.

In a previous section, we discussed a second kind of non-
ideality that arises because the controlling charge Q3 fails to
exercise full control over the controlled charge Qz2:1. One must
attend to this nonideality in modeling the charges and the tran-
sit time; but, again, it affects only the functional dependencies
of the circuit elements in the network representation of Fig.
ITI-3(c), rot the representation itself. Hence, this kind of
nonideality also requires no change in the self-consistency

criteria for a three-terminal model of device behavior.
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Indeed, all three-terminal large-signal device models for
the intrinsic bipolar transistor [4,7,13-27]) or MOSFET [9,27-35]
commonly used in computer-aided circuit analysis conform to the

network representation of the ideal charge control model of

[13] J. Logon, Bell System Tech. J., 50, 1105 (1971).

[14] H. K. Gummel and H. C. Poon, Bell System Tech. J., 49, 827
(1970).

[15] pP. J. Hamilton, F. A. Lindholm, and J. A, Narud, Proc. IEEE,
239 (1964).

(l16] C. Rosenberg, D. S. Gage, R. S. Caldwell and G. H. Hanson,
IEEE Trans. Nucl. Sci. (Special Issue on Nuclear Radiation
Effects Conference), NS=10, 149 (1963).

[17] J. G. Linvill, Proc. [RE, 46, 1141 (1958).

[18] L. D. Miliman, W. A. Massena, and R. H. Dickhaut, "CIRCUS,
digital computer program for transient analysis of electronic
circuits - user's guide," Harry Diamond Lab., Tech. Rep.,
346-1, Jan. 1967.

[19] J. G. Bowers and S. R. Sedore, SCEPTRE: A Computer Program
for Circuits and Systems Analysis. Englewood Cliffs, N.J.:
Prentice-Hall, 1971.

[20] A. F. Malmberg, "NET-2 network analysis program - prelimi-
nary user's manual," Harry Diamond Lab., Tech. Rep., May
1970.

[21] T. E. Idleman, F. F. Jenkins, W. J. McCala and D. O. Pederson,
IEEE J. Solid-State Circuits (Special Issue cn Computer-Aided
Circuit Analysis and Device Modeling), SC-6, 188-203 (1971).

[22] B. R. Chawla, ibid., (Corresp.), SC=6, 262-264 (1971).

[23] J. G. Fossum, Proc. IEEE (Lett.), 60, 756 (1972); IEEE Trans.
Electron Devices, ED-20, 582 (1973) .

[24] F. A. Lindholm, Transistor Circuit Models, Solid-State
Materials and Devices, Final Rep. AFCRL-TR-74-0044, 1974.

[25] F. A. Lindholm, [EEE Trans. Circuit Theory, CT-18, 122 (1971).

[26] P. Rohr and F. A. Lindholm, IEEE J. Solid-State Circuits,
SC-10, 65 (1975).

[27] See the categorized bibliography: A. H. Agajanian, Solid-
State Electronics, 18, 917 (1975).

[28] H. Shichman and D. A. Hodges, IEEE J. Solid-State Circuits,
SC-3, 285 (1968).

{29] D. Frohman-Bentchkowsky and L. Vadasz, ibid., SC-4, 57 (1969).

[30] D. J. Hamilton, F. A. Lindholm, and A. H. Marshak, Principles
and Applications of Semiconductor Device Modeling, Holt,
Rinehart and Winston, Inc., New York, 1971, Ch. 5.
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Fig. III-3(c), provided only that current sources are included
to account for net recombination and generation in the bipolar
transistor. The basic differences among the various models in
common use occur in the functional dependencies of the circuit
elements in the network representation. Apparent differences
are suggested by the fact that circuit configurations other than
Fig. III-3(c) are widely employed to represent the bipolar tran-
sistor; the transport Ebers-Moll configuration [13], is one
example. However, a simple network transformaﬁion will change
any of these into the circuit representation of the ideal
charge-control model, modified, as we have stated, by the addi-
tion of a current source in parallel with each capacitor [24].

In MOS transistors, there is another kind of nonideality of
central importance. Many large-signal circuit applications cause
the potential of the substrate to change with time, rapidly some-
times, relative to the potentials of the source or gate or drain.
Hence the potential, or charge, associated with the substrate can
influence the charge Q;; of mobile carriers in the channel.

This necessitates an extension of our previous view of a
charge-control device and of the ideal charge-control model. The
extension is straightforward. To the device pictured in Fig.
III-1 add terminal 4 to represent the substrate, and regard this
terminal as another gate capable of influencing Q:;. Then the
ideal charge-control model for the resulting four-terminal device

involves these extensions of its defining properties:

[31] J. E. Meyer, RCA Review, 32, 42 (1971).

[32] R.S.C. Cobbold, Theory and Applications of Field-Effect
Transistors, Wiley, New York, 1970, Ch. 8.

[33] G. A. Armstrong and J. A. Magowan, Electronics uetters, 1,
282 (1971).
[34] J. J. Kalinowski, Proc. IEEE, 60, 1000 (1972).

[35] F. S. Jenkins, E. R. Lane, W. W. Lattin, and W. S. Richardson,

IEEE Trans. Circuit Theory, CT-20, 649 (1973).
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Property (b) and (III-2) beccme
dQz1 = =dQs; + dQu . (ITI-2"')

Property (c) and (III-3) become
is = Qs and iy = Qu . (III-3')
Property (a) and (ITI-1l) remain unchanged.

Thus the reasoning we have followed using the three-terminal
model and the conclusions derived from it apply equally when the
fourth terminal must be taken into account. In particular, the
sel f-consistency criterion for the quasi-static approximation

expressed in (III-9) still holds if one extends the meaning of
the notation so that

Z “3kV5k

k#3j -9
Q21/t2) = (ITT=91)

indicates the self-consistent validity of the quasi-static

approximation, with j = 3 and 4. Here, the Cjk's designate
capacitors others [31-35] have used to represent capacitive
effects occurring in the four-terminal MOSFET.

Because of the asymmetries in physical structure present
in the MOSFET, however, capacitors alone cannot completely repre-
sent these effects [12]. For broadest applicability of the
criterion expressed above, therefore, one should interpret the
terms in the numerator of (III-9') as designating the time-rate
accumulation, within the device, of the components of mobile-
carrier charge, by whatever circuit elements are needed to
represent this accumulation. For the network representations of
four-torminal behavior now used widely for circuit aralysis [31,
32,35], however, a literal interpretation of (III-9') applies:
that is to say, the Cjk's denote capacitors.
2.2 Model for the Extrinsic Device

The division shown in Fig. (III-1) determines that the

intrinsic part is a charge-control device, whose behavior is

approximated by properties of (III-1) through (III-3) given in the

previous section. On the other hand, this same division deter-

mines that the behavior of the extrinsic part will not depend on
_90_
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charge control. For example, the number of mobile carriers con-
tained within the source or drain islands of a MOS transistor 1is
fixed to a good approximation by the resistivity of these regions,
independently of the charges associated with the terminals
bordering the regions. Hence the modeling of the extrinsic device
follows a different scheme than that described for the intrinsic
device, which requires approximate solutions for the dc steady
state of the basic differential equations [1]. The scheme for

the extrinsic structure depends on intuitive reasoning, and much
of the modeling is done by inspection [9]. As we shall see,
however, the self-consistency criterion for the extrinsic part
greatly resembles the criterion we have already developed.

Because treatment of the extrinsic part cannot be unified
in the framework of the charge-control model, extrinsic network
representation will depend strongly on the details of device
structure. Even within one category of device--THE MOSFET, for
example--differing structure may require differing network
representation; and, typically, the representations for the MOS
and bipolar transistors will be highly dissimilar. For concrete-
ness, therefore, we shall restrict discussion here to one type
of device: the enhancement-mode MOSFET indicated in Fig. (III-1).
Nonetheless, the line of arcvment we shall follow, and the general
statement of the self-consistcncy criterion deriving from it, are
meant to apply widely: to the bipolar transistor and to other
devices as well.

Consider first the dc steady state. The dominant process
occurrirg within the extrinsic MO3 transistor is the conduction of
current through resistive material; and we model this, to the first
order, by the three resistors connecting intrinsic terminals to
actual terminals shown in Fig. (III-4). ” R

Consider now the transient response. In addition to conduc-
tion, capacitive effects also occur, arising from the overlap of
the gate metal above the source and drain islands and from the
pn junctions of these islands. Because the capacitive effects

are distributed, RC transmission lines, with nonlinear capaci-
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tances representing the pn junctions, offer a refined approxima-
tion of the behavior. From a computational standpoint, however,
they pose such severe difficulties ir circuit analysis that one
resorts to coarser approximations [9]: for instance, the lumped
circuits of Fig. III-4, consisting of one resistor and two
capacitors. A further reduction to a two-element circuit, gained
by letting the resistor have zero value, may additionally simplify
computation [2].

Thus the model of Fig. III-4 for the extrinsic device comes
from approximating a distributed network by a lumped network.
This is a quasi-static approximation, which is exact in the dc
steady-state. Therefore, as for the intrinsic part, we take the
following as the self-consistency criterion for thz network
represertation of the extrinsic device: that the configuration of
current flow in the network representation during transients must
correspond to only a small perturbation of the configuration
existing in the dc steady state. Hence, from Fig. III-4, the
criterion is

|c +

es'Vgst | + 1Cqipi¥sip |

<< 1 (ITI-12)
|Rag 1V al
SS' 'sS

for the network representation of the source island. An analo-
gous criterion applies for the drain island. If more circuit
elements are used to approximate the distributed line, the same
criterion holds, with (III-12) now interpreted as applying to

esach three-element section of the network representation.

2.3 ©Self-Consistency Test

A circuit whose behavior is to be simulated by computer may
involve many devices, each of which'may have a network represen-
tation composed of the models described here for the extrinsic and
intrinsic parts. It is routine in the simulation to compute the
current in each branch of the network representations at each
time step in the computation. Inserting the values of these

currents in (III-9') for the intrinsic device and in (I11-12),
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or a suitable counterpart, for the extrinsic device then consti-
tutes a test for the self-consistency of the quasi-static approxi-
mation and of the models that are based on it. Note that the
intrinsic and extrinsic models of a device must each be tested for
obedience to tre self-consistency criteria.

The implementation of the self-consistency test in MOSFET
circuit simulation will be treated elsewhere [2], together with
discussions of the violations of self-consistency from a physical
standpoint and of their influence on the system parameters of
MOSFET circuits.

3.0 Commentary

The self-consistency criteria derived here apply generally
to all electronic devices whose intrinsic structure operates in
accord with charge control. The criteria hold for all regions of
device operation and include consideration of the extrinsic part
of the device. In previous related discussions [9,36,37], the
scope was more limited. These treated the intrinsic device only
and concentraced only on the region of operation in which termi-
nal 3 of Fig. III-2 acts as the sole collector of the controlled
current: that is, forward-active operation of the bipolar tran-
sistor and pinch-off operation of the MOSFET. Moreover, previous
treatments have focussed only on a three-terminal model of device
behavior, ignoring the role of a fourth terminal, which is a non-
ideality of practical significance during large-signal transients
in some MOSFET circuits.

In the present paper, nonidealities aré defined as departures
from the behavior predicted by the extended ideal cnarge-control
model set forth in Section 2. Nonidealities receive careful
attention. Despite their existence, the following statement,
derived for the ideal charge-control model, holds generally:

[36] P. E. Gray, D. DeWitt, A. R. Boothroyd, and J. F. Gibbons,
Physical Electronics and Circuit Models of Transistors,
John Wiley and Sons, Inc., New York, 1965, pp. 214-222.

[37) P. E. Gray and C. L. Searle, Electronic Principles--Physics
Models and Circuits, John Wiley and Sons, Inc., (1969)
pp. 293-296, 336-341.
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the configuration of current flow In the network representation
of large-signal device behavior during trancients must correspond
to only a small perturkbation of the configurationl existing in the
dc steady state. Otherwise the quasi-static approximation, on
which the network representation is liased, will be violated. The
statement applies individually to the representations of the
intrinsic and the extrinsic part of a device.

The general statement above is phrased mathematically in
expressions (III-9) and (III-9') for the intrinsic structure and
in (III-12) for the extrinsic structure. It enables self~-con-
sistency to be tested by comparing currents in various branches
of the network representation. Since these currents are gvailable
in any simulation of circuit behavior, the test is easily imple-

mented in circuit-—-analysis programs [2].

3.1 Model Updating

If a particular device model fails to pass the test in a

circuit simulation, a more complex model is needed to assure
self-consistency with the quasi-static approximation.* To help
determine the degree of added complexity that is necessary, one
can again employ the self-consistency test, extended by the
following strategy.

Recall that the test is to be applied individually to the
extrinsic and intrinsic models of the device. Consider first the
model for the extrinsic structure. If the simple three-element
model of Fig. III-4 disobeys the inequality expressed in (III-12),
and thus violates self-consistency, an additional three-element
section can be added to give a better approximation of the dis-
tributeéd nature of the extrinsic structure. As was already dis-
cussed in Section 2.2, self-consistency is then tested agaiu,
with (III-12) now interpreted as applying for each section of the

extrinsic model. This procedure is repeated until self-consistency

* Tt is possible for device models to radically fail the self-
consistency test, and yet to serve adequately in the simulation
of such system parameters as the turn OFF propagation delay
time. This issue is explored in reference [2].
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ultimately prevails in the extrinsic model. That it will pre-
vail is assured because the capacitance and resistance per
section both diminish as more sections are added; ultimately, asu
more sections are added, the resistive current in each section
will much exceed the capacitive current and (III-12) will be
obeyed. Notice that the self-consistency test will determine
how many sections must be added to cause this to occur.

Adding complexity to the extrinsic model by itself tends to
favor self-consistency of the model for the intrinsic structure.
This occurs because the more complex the extrinsic model, the
more effectively it filters out the higher frequencies contained
in the excitation at the device terminals, preventing them from
reaching the terminals of the intrinsic model. Hence, in accord
with the alternative criterion for self-consistency expressed
in (III-11), a detailed model for the extrinsic structure tends
to protect the self-consistency of the model for the intrinsic
structure.

Despite the complexity of the extrinsic model, the model for
the intrinsic device may still violate self-consistency by railing
to obey inequalities (III-9) or (III-9'). To remedy this, just
as for the extrinsic model, one can complicate the network
representation to give a better lumped network approximation of
the distributed nature of the intrinsic structure. One simple
example of this, which utilizes only models now in common use for
MOSFET computer simulation, involves the addition of nonlinear capa-
citors to represent the transient currents flowing to the substrate
terminals [2]. Notice that the self-consistency test implied by
(ITI-9) and (ITII-9') would suggest the degree c. idued complexity
needed.

Another strategy for model updatin¢ would require generating
multisection models for the intrinsic device, similar to those

for the extrinsic structure discussed immediately above and in
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Section 2.2. Various techniques [30,33] might be used to furnish
such models. The basic idea here is simple. Decreasing the size
of the region being modeled will ultimately bring the boundaries

close enough together to enable mobile carriers within the region

to distribute themselves so rapidly that they assume essentially

the same relationship to the boundary conductions during tran-
sients as exists in the dc steady state. Thus, use of enough

sections in an intrinsic model will ultimately yield self-consis-

tency with the gquasi-static approximation. To determine the

degree of complexity needed, one could employ the test irplied in

(III-9) and (III-9'), extended in interpretation to apply

section-by-section.
Work on multisection models has started, and is meant to

be the subject of future writings.

[38] C. T. Sah, Solid-State Elecironics . 13 1547 (1%870); P sica
Status Solidi (a), 71, 713 (1971); E.ectronics Ticters, S
88 (1972).
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CHAPTER IV
Ccarrier Mobility in an MOSFET

Cc. T. Hsing and D. P. Kennedy

1.0 1Introduction
Conventional theory of MOSFET operation [1,2] is based upon

an assumed constant carrier mobility within the source-drain

I inversion layer. This approximation describes MOSFET operation
only through a 1imited range of gate voltage. It has been experi-
mentally established that the inversion layer carrier mobility i
exhibits a large change, with a change of applied gate voltage,

L throughout the normal range of device operation. A theory for

‘ this phenomenon was first formulated by J. R. Schrieffer [31; he

gt proposed that diffuse (random) scattering of the carriers at the

| oxide-semiconductor interface was the basic source of this

i difficulty. Following his work, other researchers proposed

! theories to explain this change of mobility with gate voltage [4,51.
However, none were found to pe in satisfactory agreement with

) ' expariment [6].

The reduction cf inversion layer carrier mobility is believed

' ’ to result from scattering at the oxide-semiconductor interface,

yet the devails of this scattering mechanism are not adequately

understood. It is evident that this scattering process 1is inti-

mately related to the average distance between these inversion

layer carriers and the silicon surface: a decrease of this dis-

.

! (11 H.K.J. Thantola and J. L. Moll, Solid State Electronics, 7.
423 (1964).

[2} R.S.C. Cobbold, Theory and application of Field-Effect
Transistors, Wiley-Interscience, N.Y. (1970).

(31 J. R. gchribffer, Phys. Rev., 97, 641 (1955).

[41] R. F. Greene, D. R. Frankl, and J. Zemel, Phys. Rev., 18,
0967 (1960).

[5] R. F. Pierret and C. T. Sah, Solid State Electronics, 11,
279 (1968).

[6] N.S.J. Murphy, F. Berz, and I. Flinn, Solid State Electronics,
12, 775 (1969) .
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tance should produce a decrease of carrier mobility. For this
reason, a first step toward attaining a theory for the mobility
of these inversion layer carriers is to accurately establish
their distribution, relative to the oxide-semiconductor interface.
It is toward this goal the present research has been directed.

In an MOS structure, the inversion layer carriers are
bounded within a potential well; on one side there is the oxide
and semiconductor interface, and on the other side a large sub-
ctrate electric field. For this reason, it was postulated that
these inversion layer carriers would exhibit a quantized energy

distributicon, as in most problems of this type [71. The proof
was obtainea for this guantization in the form of

shubneknov-de Hass oscilletions [8]. Thereby, it was establisnhed
that mechanisms other than traditional electrostatics determine
the carrier distribution in the inversion layer of an MOSFET.

In traditional theory of MOSFET operation it was initially
assumed that the inversion layer carrier distribution could be
established from solutions of Poisson's equation. This proof of
quantization in energy clearly established that a true evaluation
of this carrier distribution required a simultaneous solution of
both Poisson's equation and Schroedinger's equation [9,10]. To
date, all available solutions for this problem have utilized a
simplifying approximation that is unwarranted from a physical
point of view, and which is inadequate for surface scattering
calculations. Namely, it is assumed the oxide-semiconductor
potential barrier is exceedingly large and, thereby, all eigen-

functions are zero at this location. Because tunneling has,

{77 J. R. schrieffer, Semiconductor Surface Physics, (edited
by R. A. Kingston), Univ. of Pennsylvania Press (1957) .

[81] A. B. Fowler, F. F. Fang, W. E. Howard and P. J. Stiles,
phys. Rev. Letters, 16, 901 (19¢€6).

[9] F. Stern, Phys. Rev. Letters, 21, 1687 (1968).
[10] F._Stern, phys. Rev. B, 5, 4891 (1972).
” e ‘
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d into the gate oxide {111, a zero eigenfunc-
Farther, previous

indeed, been observe
tion boundary is inconsistent with experiment.
pon an equilibrium solution for Poisson's

cable to studies of MOSFET operation.

calculations were based u

equation, which is inappli
In the present investigation we aim toward a rigorous numeri-

cal solution of this Schroedinger-Poisson problem. Clearly, all

aumerical solutions of this type require a first "guess"; the
nificantly influence the com=

quality of this supposition will sig
e solution of this problem.

puter time required to attain a complet

The present work 1is directed toward solving the Schroedinger's

based upon the inversion layer potential distribution

equation,
's equation. From the

obtained by a rigorous solution of Poisson

solution of Schroedinger's equation, we can thereafter introduce

into Poisson's eqguation the calculated inversion layer carrier
distribution, and obtain an improved estimate of the inversion

layer potential distvribution. In this fashion, a Picard itera-

tion between Poisson's equation and Schroedinger's egquation can

be used to obtain an accurate numerical evaluation of the inver-
sion layer carrier distribution.
The following discussions outline the procedure of solving

these two eguations conjunctively. A first trial solution of

gchroedinger's eguation, assuming a constant potential gradient

at the interface, is also presented.

2.0 Solution fox the gchroedinger's Equation for an MOS Struc-

ture Assuming a Constant Potential Gradient [12]

During an early phase of this research, an ana’ytical solu-

tion for the Schroedinger's equation was obtained by assuming a

constant potential gradient at the interface. This solution can

be stated analytically in terms of airy functions.
potential distribution is based upon an assumption that a large

This linear

electric field of constant magnitude extends from the oxide-semi-

conductor interface into the substrate, see Figure Iv-1l.

{111 M. A. Green, F. D; King, and J. Shewchﬁﬁ, Solid State
Electronics, 17, 551 (1974).

[12] C. T. Hsing and D. P. Kennedy, HDL-CR-75-193-1 Final Report,
October (1975).
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' 2.1 Formulation of the Problem

; In Figure IV-1 all potential energies are measured with
respect to the conduction band edge of the semiconductor. For

this reason, the Fermi level (EF in Fig. Iv-1) is a negative
gquantity, whereas the energy eigenvalues (Ei) are positive quanti-
ties.

4 Thus, separate forms of Schroedinger's equation must be speci-
fied for the two regions of this semiconductor structure. There-

after, the solutions of these two equations can be matched at

B their boundary (x=0):

, ay._ .
i Region I Ii | 2m = _
] % < 0) % + 3 (B, + eex) ¥y =0 (IV-1)
Ij 2
H Region 1T & YIIi , 2m (n _ b 4 ec x) y . = 0 (IV-2)
| (x 2 0) ax2 p2 i B o ITi ’

In (IV-1) and (IV-2), m represents the effective mass of electrons

e T

in a direction perpendicular to the semiconductor-oxide interface.

Substantial simplification of these equations is obtained

e LT

through a change of variables. For this reason, we assume the

E following: .
| by = 0p(0y) (IV-3)
{, q)IIl = ¢II(61) ’ (IV-4)
E where
By
E [
: Ei - EB
Bl = =-|x + —-—ée—"— KB, (IV-6)
o
and
: _Zmeas 1/3
'% Ka = (IV"?)
h2
L.
_ZmEEo 1/3
L3 K = -
8 2 (IV-8)
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Introducing these expressions into (IV-1) and (IV-2) we obtain

d2¢I
x £ 0 a—&;— + ald)]: = 0 (IV-9)
d2¢II

It can be shown [13] tha® solutions for (IV-9) and (Iv-10)

have the form:

¢ (@) = a Vo, Jl/3(?;i) + byfa, J_l/3(?;i) (Iv-11)
orrp (By) = CVBi K1/3(E5) (Iv-12)

where J1/3 and J-1/3 are Bessel functions of the first kind and
of orders 1/3 and -1/3, respectively. Similarly, K1/3 is a modi-
fied Bessel function of the second kind, and of order 1/3. The
parameters ¢, and Ei are given by

3/2

s 372 2
s = 5% £, =38 (1v-13)

-

In (IV-11) and (IV-12), the terms a, b, and ¢ arbitrary constants

used to satisfy the particular boundary value problem under con-

sideration.
The relative magnitudes of a and b in (IV-1l) are readily

established using (IV-3) in conjunction with Fig. IV-1. Because
x £ 0 in Region I, the variable oy becomes negative when
x < -Ei/ees and, thereby, the Bessel functions of (IVv-11l) have a

negative argument yielding

dplay) = -aVT&ii 11/3(ai) + 5V|ai|1_1/3(ai), (Iv-14)

where In(ai) is a modified Bessel function of the first kind.

[13] F. B. Hildebrand, Advanced calculus for Applications,
p. 156, Prentice-Hall (1962).
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Insight is gained by considering an approximation for

11/3(ai) and I_l/3(ai) that is valid when o, 1s very large [14]:
e| Z, |
2m|z, |

Equation (IV-15) is unbounded when a; = ©. Clearly, no valid
solution for this problem can be unbounded; this situation is

avoided in (IV-11l) by setting a = b, thus

¢ (ay) ayao; Jl/3(€i) & J_l/3(ci)} (IV-16)

aAi(—ai) -

It

where Ai(m) is the Airy function {15].
Similarly, (IV-12) can be written in terms of the Airy

function:

¢II(Bi) = ¢ Bi Kl/3(€i) = cAi(Bi) . (IV-17)

Thereby, the two solutions for this problem are obtained in one
common functional expression.

Next we establish the arbitrary constants (a and b) asso-
ciated with (IV-16) and (IV-17). This is readily accomplished
by assuming continuity for both the magnitudes and derivatives

of ¢I and ¢II at the semiconductor-oxide boundary (x = 0):

¢I(ai) = ¢II(Bi) (IV-18)
x=0 x=0
do da d¢ B.
o, dx ds. dx
i | i
x=0 x=0

[14] F. B. Hildebrand, Advanced Calculus for Applications, p. 151,
Prentice-Hall (1962).

[15] M. Abramowitz and I. A. Stegien, Handbook of Mathematical
Functions, U. S. Dept. of Commerce, Washington, D.C. (1964).
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Substituting (IV-16) and (IV-17) into (IV-18) yields the
equality

aAi(-doi) = CAi(Boi) ’ (IvV-20)

where agi and Boi designate the magnitudes of a; and Bi at x=0,
respectively. Similarly, after substituting (IV-16) and (IV-17)
into (IV-18), we obtain

] 1

aAl(-aoi)Ka’ = -cAJ.(Boi)KB P (IV=-21)
]

where Ai(m) represents the first derivative of the Airy function.

From (IV-20) and (IV-21), we obtain the relation

K

AL (B ;)AL (o ;) + eh ML(ag )AL (By) = 0, (1v=22)
and this relation establishes the energy eigenvalues (Ei) for this
boundary value problem.

Thus (IV-16) and (IV-17) represent solutions for this prob-

, (IV-18)
and (7V-19) a:. continuous at x = 0 when the individual eigen-
values (Ei) satisfy the equality of (IV-22). 1In addition, the
arbitrary constant of (IV-16) is (from (IV-28)) given by

lem when x £ 0 and x 2 0, respectively. Furthermore

Ai(~a .)
g ol

i i KITOJ-)—- H (IV=-23)

Therefore, the eigenfunctions of this problem are given by

X220 wIi(x) = aiAi[—ai(x)j ' (IV-24)
Ai(—aoi) .
x20 wIIi(X) = a; KITE;IT_ Al[Bi(X)] ' (Iv-25)

where a; is determined from the normalizing requirement

[e9)

2
|a, |2 f b 0] ax =1 . (IV-26)

-0
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2.2 TInversion Layer Carrier Distribution in a MOS Structure [16]

In section 2.1 we established the energy eigenvalues (Ei) and
the associated eigenfunction solutions for Schroedinger's equation
[w (x)]. From these golutions, we ceén obtain the spatial prob-
ab111ty for inversion layer carriers |y, (x) |? at each allowed
energy level (Ei). This probability dlstrlbutlon, in conjunction
with the density of carriers (N ) at each energy level (E.),
vields the spatial distribution of these particular energetic
carriers N, |w (x) | 2. After summing the carrier distributions from
all energy elgenvalues, we obtain an expression for the total

distribution of inversion layer carriers within this semiconductor

device:

n(x) = j;ﬁ Ni|¢i(x)|2 . (1v-27)
i=1

In this section we derive a rigorous mathematical expression for
this inversion layer carrier distribution.
The density of states in an inversion layer can be written

as:
D(E) = D, (E)D2(E) (IV-28)

where D; (E) is the density of states in a plane parallel to the
oxide-silicon interface, and D, (E) is the density of states in a
direction perpendicular to this interface.

First we consider directions parallel to the oxide-semicon-
ductor interface. The total number of states per unit area in

this paln residing between E and E+dE is given by

D, (E)AE = AT (E) = 5= - dk . (IV-29)
The electron energy in this direction is

hz
2m’

h2

. k2, (Iv-30)

P 2 2y =
E = (ky + kz)

[16] The methods used here are from Gnadingers and Talley,
Solid-State Electronics, 13, 1301 (1970).
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where m' is the effective electron density-of-states mass in the

y-z direction. Thus, from (IV-29), in conjunction with (Iv-30),

we have

]
D, (E) = dgéE) = dgéﬁéﬁdk - k/2m . ®m_ (1v-31)
h2k/m  2wh®
The total density of states perpendicular to the oxide-semi-

conductor interface D, (E) can be written as

0

D, (E) = n, }Z; H(E - Ei) , (IV-32)
l=

where n, is the degeneracy factor. This factor depends upon the
crystal orientation, with respect to the semiconductor surface.

In (IV-32), H(E-Ei) is a step function, and is defined by:

v

H(S) =1 S

0
=0 <0 . (IV-33)

From (IV-28), (IV-31), and (IV-32), the density of states

for each energy eigenvalue within the inversion layer of a MOS

structure is given by
m'nv
D. (E) = H(E - E,) . (IV-34)
o mh? %

In (IV-34), a factor two has been introduced for spin degeneracy.

The total number of electrons at each energy level Ei is

therefore given by

o}

N, = -j Di(E)f(E)dE ' (IvV-35)

o

where f(E) is the probability an electron occupies the energy

ljevel E. Assuming Fermi-Dirac statistics, f(E) is given by

£(g) = {1 + exp[(E - E;)/KT1} == (IV-36)

where Ep is the Fermi energy. Afte- substituting into (IV-35)

the expressions given in (Iv-34) and (IV-36), we obtain the
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carrier density at each energy eigenvalue:

[e 0]

N, =J D. (E)£(E)AE =
1 1 Tl'h2
o (IV-37)

Having calculated the carrier density Ni, (Iv-27) yields

m'kTn

log, {1 + expl(Ep - Ei)/kT]}

the density distribution of these carriers within the inversion

layer of a MOS structure:
[ee]

m'n_kT B , )
nx) = — log, {1 + expla(Ey = Ey)/KTIHY; (0"
i=1 (IV-38)

2.3 Discussion
Figs. IV-2 and IV-3 jllustrate the calculated inversion layer

energy levels for two different values of electric field at the
semiconductor surface: €. = 1.25 x 10° v/cm and €_ = 3.4 x 10* v/cm.
These two illustrations establish a general trend that has thus
far been verfied in this analysis: an increased level of energy
quantization is realized with an increase of electric field. From
a practical point of view, implied here is an increase level of
quantum mechanical mechanisms with an increase of electric field.
Thus, in strong inversion we can assume the inversion layer car-
rier distribution will be poorly described by traditional MOS
theory. As the gate voltage is reduced and the structure enters
weak inversion, these quantum mechanical mechanisms should tend
to disappear. Thus, it is suggested that in the normal range of
MOSFET operation, the inversion layer carrier distribution will
change between those regions where quantum mechanical mechanisms
are significant (strong inversicn), and those regions where
traditional electrostatic mechanisms dominate (weak inversion).
This type of situation is generally consistent with other
well known solutions of Schroedinger's equation for clectrons
in a potential well. Under conditions of weak inversion the sub-
strate electric field is small and, hence, the interface poten-
tial well is very wide; little energy quantization 1is therefore

observed. Contrasting with this weak inversion case, under strong
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Fig. IV-2. Calculated electron energy levels in
the surface potential well.
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Fig. IV-3. Calculated electron energy levels in
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inversion the substrate electric field is very large and, hence,

the potential well is very narrow.

to produce a larage separation hetween the energy eigenvalues of

Schroedinger's equation and, therefore, quantum mechanical

mecahnisms tend to dominate.

Figs. IV-4 and IV-5 present a comparison between the inver-

sion layer mobile carrier distribution derived from this quantum

mechanical solution and from traditional solutions of Poisson's

equation.

There are several interesting aspects of the results shown

in Fig IV-4 and Fig. IV-5:

(1)

(2)

(3)

The width of the inversion layer (channel) was much thinner
than expected. This is clearly due to the assumption of an
inaccurate constant electric field. The electric field in
actual device should vary from maximum at the interface to
nearly zero in the substrate;

The maximum carrier density was located at about 20 X from
the interface, and there was finite carrier density at the
interface. Qualitatively, this situation is due to quantum
mechanical reflection at the semiconductor-oxide boundary.
The large coulomb forces attract inversion layer carriers

toward the interface. Upon reaching this interface, these

energetic carriers either reflect bzick into the semiconductor

or, instead, tunnel into the oxide. This reflection mechanism

produces a maximum carrier density at some location removed
from the reflecting surface (or potential barrier); and
An increase in electric field will increase the maximum
carrier density and decrease the inversio:: "ayer width:

the carriers are pushed harder toward the interface.

Although this solution is not adequate for MOSFET analysis,

it does show some qualitative insight of the characteristic of

the inversion layer in an MOS structure.

be discussed in the next section of this report.
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3.0 A Method of Solving the Schroedinger and Poisson Equations
in a Simultaneous Manner
A. Schroedinger's Equation
The Schroedinger's equation can be written as
n2 4%
HY = - 5= . + V(x)wi = Eiwi ’ (IV-39)
dx
where
2 2
1) mz-2 L sy
dx

(1)

(ii) V{x) = potential energy from the solution of
Poisson's equation;

(iidi) Ei,wi are the eigenvalue and corresponding
eigenfunction, respectively.

The boundary conditions for wi(x) are

Yi(e) = 0 and y. (-=) = 0.
There are two methods to solve (IV-39):
Green's Function Technique: This method starts with solving

the differential equation for Green's function:

_h? a%G(x,t)

3 + V(x)G(x,t) = 8§ (x-t) (IV-40)
X

HG(x,t) =
with the boundary conditions
G(“"’,t) = G(_mrt) =9 .
After obtaining the Green's function G(x,t), the wavefunc-
tion wi can be obtained by the following integral equation:

X

b, (%) = E, _['G(x,t)wi(t)dt (IV-41)

1

- 00

Since the wavefunction wi appears as a part of inte-
grand in (IV-41), it requires an iterative process to find

the wavefunction.
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[17]

Rayleigh-Ritz Method: By expressing the wavefunction in
terms of a series of linearly independent functions, the
eigenvalues can be obtained with a very good accuracy. The
desired wavefunction can be easily obtained once the eigen-
values are known. This method has important advantages:

it does no'. require the ti.e-consuming iterative process.
Therefore, the Rayleigh-Ritz method [17] will be used in the
present research, and it is described in detail in the fol-
lowing paragraphs.

The Rayleigh-Ritz method is used to calculate the upper
bounds ©f the eigenvalues of a positive definite differen-
tial operator H*. 1In the present problem, H is the differ-
ential operation defined in (IV-39). If we let the sequence

of eignevalues for which we seek upper bounds be denoted by

Ei, E2, .., Er’ ... which corresponding eigenfunctions

wll wz, « s o g wr e s o g then

Er = min{(HY,¥)/(Y,¥)] = min J[WHWdX/wade (Iv-42)
oo o

With (w,ws) = 0; s = l’ 2’ « o0 r-lc

For any interger n, let us choose an arbitrary set of
n linearly independent functions fi(x) such that fi(w) =
fl (—oo) = 0.

Now we can write Y (x) as:

n
v(x) = ), Cyf(x). (IV-43)
1

1=

S. H. Gould, variational Method for Eigenvalue Problems,
2nd ed., p. 75, Univ. of Toronto Press, 1957.

A differential operaton H is called positive definite if
b
(f£,Hf) = j’ f(x)Hf (x)dx >0

a

for all values of f(x) except f£(x) = 0. a and b are the end
points of range under eonsideration.

-118~

Ll el BT P g . g T I TR o, e vy e TR O e e R £ abni s L

pEF

1
11



- &S Lo,

For each function Y (x) written as (IV-43), we have

n n
z: Aikcick (IV-44)
i,k

and

n n
W = Y eif Y o= 2 (EEIC0 -
i=1 i=1 i,k

b,.C.C ’ (IV-45)

1%}

where Ak (Hfi,fk) = J’ fk(x)Hfi(x)gx

and bik = (fi,fk) = j. fifkdx'
Then from (IV-42) we can obtain a set of n equations:
n
Z Ci(a;,~Eb;,) = 0 k=1, 2, ..o n (IV-46)
i=1
For non-trivial solution of the simultaneous equations for Ci's,
the determinant

det (aik-Ebik) =0 . (Iv-47)

Equation (IV-47) can be expanded into a polynomial of nth

degree which, in general, have n distinct roots E's. These n
roots are the upper bounds of the eigenvalues. As n increases,
the upper bounds of the eigenvalues decrease, i.e., they are
getting closer to the true eigenvalues. Therefore, the accuracy

or eigenvalues obtained by the Rayleigh-Ritz method depends upon
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the number (n) of terms used in (IV-43). If we choose the set
of linearly independent functions such that each of them has
close resemblance to the wavefunction Y (x), then the resulting
eigenvalues will be more accurate for a given n. From the solu-
tion stated in Section 2, we know that the Airy function is a good
choice for this expansion and it will be used in the eigenvalue
calculations.

By substituting each eigenvalue into (Iv-46), the coeffi-
cients Ci's of the corresponding eigenfunction can be found up to
an arbitrary constant. This arbitrary constant is determined by

the normalization condition of yY(x), i.e.,
(v,9) =1 (IV-48)

After obtaining the wavefunctions, the carrier density dis-
tribution within the MOS inversion layer is given by (IV=-38):

n

m'ndT .
n(x) = ———— E: loge {1+ exp[q(EF-Ei)/kT]}lwi(x)l ' (IV-49)
Th &
i=1
where (i) m' = effective mass in the direction parzilel to the
interface:

(ii) n is the degeneracy factor;
(iii) En is the Fermi energy;
(iv) Ei and wi are the eigenvalue and eigenfunction, respec-

tively.

B. Poisson's Equation

The potential distribution within the MOS structure is given

by the solution of the Poisson's equation:

2 2
d__‘zl = & i) 4 Ny - p()] = £00) (IV-50)
dx

where (i) U = %% = normalized potential;

(ii) e is the dielectric constant of silicon;
(iii) n(x) and p(x) are the density functions of elec-

trons (inversion charge for p-type substrate) and
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holes, respectively, and p(x) = ni/n(x), where n,
is the intrinsic carrier density in silicon;

(iv) NA is the acceptor density in the substrate.

The boundary conditions for (IV-50) are:
Uu(L) = Us and U(0) = 0,
where L is the width of space charge region (see Fig. IV-6) and

US is the normalized surface potential.

The solution of (IV-50)
is

L

X
= B g X - X =
U = I (x-L) J( tf(t)dt + I j' (t-L)f(t)dt + T US . (Iv-51)
o X

The self-consistent solution of the Schroedinger's equation

and the Poisson's equation can be obtained by calculating (IV-49)
and (IV-51) iteratively.

4.0 Research Plan

The computer program is being written for above calculations.

It is expected that the complete solution would be obtained within

the next three months. Then, our effort will be directed toward

the study of effective surface mobility of inversion change car-

riers, which is the main object of the present research.
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Fig. IV-6. Potential distribution at the interface of 1
Si"SiOQ.
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Chapter V

Integral Methods for the Analysis of Semiconductor Devices

U. H. Kurzweg, M. Zahn, and R. E. Wyatt

1.0 Introduction
one of the more important and yet incompletely solved prob-

s in microelectronics is the determination of the potential

lem
and carrier density distributions in two dimensional semiconduc-

tor devices of specified geometry, impurity distribution, and

applied external voltage. In principal, one should be able to

determine these characteristics numerically by solving the govern-
ing nonlinear partial differential equations. In practice, how-

ever, such calculations, which have almost exclusively relied on

the finite difference approach [1-4], require lengthy compu-

tation times and, therefore, are of guestionable value from an

economic point of view. The origin for these numerical diffi-

culties lie in the nonlinear nature of the equations, and the

need to use a large number of mesh points to adequately represent

large potential gradients in certain regions of the semiconductor

device. It is the objective of this mathematical study to inves-

tigate alternate methods of analysis for numerically determlnlng

the carrier and potential distributions in two dimensional semlcon-

ductor devices (such as the MOSFET), and to develop techniques

which yield shorter overall computer times.
The coupled partial differential equations we wish to analyze

can be found in the literature [5], and are given by:

(1] H. K. Gummel, IEEE Trans. Electron Devices, 11, 455 (1964) .

[2] M. S. Mock, Solid State Electronics, 16, 601 (1973).

[3] H. H. Heimeier, IEEE Trans. Electron Devices, 20, 708 §
(1973).

[4] O. Manck and W. L. Engl, IEEE Trans. Electron Devices, 22,
339 (1975).

[5] S. M. Sze, Physics of Semiconductor Devices, John Wiley and
sons, Inc., N.Y. (1969).

-125-

4 FRECEDING PAGE ELANK.NOT FILMED
T P "




2y om = R = - -
vy 5 {ND NA + p-n} (v-1)

O

- _ Lo
3% - qVJn+R (V=-2)
3p - 1 ¢.3 -
5t = v Jp + R (V=3)
J = -gqD_V vV
p = qpp qupp (v-4)
+
Jn = anVn = qunnvv (V-5)
0=V (3 + 3 3 V-6

(Jn + Jp + JD) ( )

D and NA the spatially dependent donor

and acceptor impurity distributions, n and p the electron and
hole number densities, and R the Shockley-Reed-Hall recombination

where V is the potential, N

factor. The remaining quantities in these equations have their
standard meanings. These equations represent the Poisson equa-
tion, made nonlinear because of the approximate exponential
dependence of n and p on V, coupled with continuity equations for
the electron and hole currents.

various limiting forms of these equations have been treated
by earlier investigators. The first such finite-difference model,
that due to Gummel [l], deals with a one-dimensional steady state
problem. Mock [2] and Heimeier [3] treat two-dimensional geome-
tries in the steady state, while Manck and Engl [4] deal with
the time-varying problem in two dimensions. In Mock's model for
MOSFETs the computer time is somewhat reduced by letting R=0 so
that the continuity requirements (v-2) and (V-3) become equiva-
lent to having divergence free hole and electron currents.

In the present study we set ourselves the goal of treating
a simplified version of the governing equations by other than
the finite difference technique, with the objective of reducing
the requirec. computer time. Further, we have the longer range
aim of using such improved numerical approaches to solve both
steady and time-dependent BIPOLAR and MOSFET problems. Drawing

See references [l]-[4] on page 125.
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on some of our experience on the treatment of boundary value

problems in the area of mechanics, we decided early in the program
that a promising alternate numerical technique should be the
integral equation method. This method consists essentially of
converting a given differential equation and an appropriate set
of boundary conditicuns (via a Green's function) to a Fredholm
integral equation and then solving this equation by a Picard itera-
tion. The advantages of such an integral approach include the
elimination of the hicher derivatives, and the ability to place
the nonlinear terms under an integral.
The specific problem we wish to analyze below, using the
' proposed integral equation approach, is obtained from equations
(v-1), (v-2) and (V-3) by assuming no electron or hole current, i
zero time dependence and recombination, and that all functions
depend on one independent variable x only. In this limit the ]
governing equations decouple and one is left with solving a one-
{ dimensional Poisson equation, subject to an x dependent impurity
| distribution (ND(x) and NA(x)). Our reason for considering this
very simple version of the governing equations is to establish
the numerical advantages of an integral approach, without obscur-
ing this point by introducing unnecessary numerical complications.
Our ultimate objective is to extend these one dimensional studies
to two dimensions, and this will involve the need to generate
Green's functions, which satisfy the mixed boundary conditions
encountered there.
The order of our discussion below will be as follows. We
begin with a derivation of the Fredholm integral equation corre-
sponding to the nonlinear Poisson equation. This is followed

by a description of the Picard iteration technique for solving

A nag

such integral equations; this discussion also includes a consid-

eration of the convergence criterion for this successive approxi-
mation approach. Next, a method of under-relaxation is discussed,
and it is shown how such a method may be used (under certain cir-
cumstances) to obtain convergence when an unrelaxed Picard itera- :

tion is unstable. Finally, wve present some calculations for the
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constant gradient junction. Here we demonstrate the utility of
the integral method and discuss briefly our proposed extension

of the integral method to two dimensional problems.

2.0 1Integral Solution Method

For previously mentioned reasons we chose to investigate

the potential and carrier distribution densities in semiconductor
devices using a Green's function-iterative solution technique.

In view of the utility of integral equation approaches for solving
boundary value problems in areas such as mechanics, it appeared
that this approach is warranted for the problem under considera-
tion. In order to simplify the calculations, we confined our
initial attention, as previously mentioned, to the limiting form
of (v-1), (V-2), and (V-2) for which there is no time dependence,
the current is zero, there is zero recombination, and all quanti-
ties vary with only one independent variable x. In this limit
the governing equations decouple, and one obtains the one-dimen-

sional nonlinear Poisson equation

da?u _ 2 o -
T E—gﬁ [p(U)-n(U) + Np(x)-N,(x)] = F(x,0) (V-7)

subjected to fhe nbn—hoﬁogéneous boundary conditions U(0)=0 and
U(W)=UT. Here the hole number density p(U) and the electron
number density n(U) in (V-1) are given by the standard Boltzmann
relations. Typically x=0 corresponds to the metallurgical junc-
tion and x=W is of the order of one thousand Angstroms; this
distance represents the approximate depletion layer half-width
for a constant gradient function under equilibiim conditions.
This boundary value problem may be converted to a nonlinear
Fredholm integral equation by means of the familiar triangular
Green's function kernel as discussed by Tricomi [6]. After inte-
grating (V-7) twice and using the left boundary condition one

finds

[6] F. G. Tricomi, Integral Equations, p. 116, Interscience
Publishers, Inc., N.Y. (1957).
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X r
U(x) = xU'(0) + J’ dr J' F(t,U)dt (v-8)
o

o]

where r and t are dummy variables. Next, eliminating the deriva-
tive U' (0) by use of the second boundery condition U(W)=UT, and
applying the Leibnitz rule to reduce the double integrals to
single integrals, one obtains the desired nonlinear integral
equation

W

X
U(x) =“v_r€" j t(w = F(t, U)dt-kl'i((—vvg—_—t—)-l"(t,U)dt (V-9)
(@)

Although equation (V-9) has no obvious analytic solution,
even for very simple doping distributions ND(x)-NA(x), .t is
always possible to solve this equation numerically. One of the
better techniques for deoing this is the method of successive
approximations (Picard method) [6, used in conjunction with a
trapezoidal or Simpsons rule for evaluating the integrals. 1In
this method (V-9) is approximated by the iterative form

X W

U,.X
N t (W-x) _ X (W-t) r o
1 (x) = W f —n—— F(t,udt f——w F(t,U )dt (V-10)
o X
with U;, Uy, U3, .... forming a sequence converging to the soiu-
tion U(x), if the convergence criterion
|Un+l(x) - U (x) |<e for n > N (V-11)

is met. This iteration method, when it convrerges, has advantages
over other solution techniques of (V-9); the nonlinear term
appears under the integrals and, thus, does not require lineari-
zation in determining the iterate Un+l(x)' In actual calcula-
tions to be presented below, the solution is said to be obtained
and the iteration terminated when € in criterion (V-11l) is less
than 107° for all points in the range O<x<W. As a starting value
in this iteration procedure one typically uses the linear term
UTx/W for Uo(x).

[6] F. G. Tricomi, rntegral Equations, p. 116, Interscience
Publishers.,
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Unfortunately, the iterative procedure given by (V-10)
converges only for restricted values of F and W. This fact is
well established for Picard iterative solutions of the corre-
sponding linear Fredholm equation, and can be partially infered
by the following modified argument to one given by Tricomi [7].
Consider the iterative form for a slightly generalized non-1linear
Fredholm equation

W
(x) = £(x) + A JF H[x,t,Un(t)]dt (v-12)
0

Un+l

where f(x) is a specified function of x, A a constant and
H(x,t,Un) is a nonlinear function of x,t and the nth iterate Un
of U(x). Letting the maximum value of H be M for all x and t in
[0,W], and introducing the Lipschitz condition,

|H(x,t,U_,, (t) - H(x,t,C (t))][<C|U ) = U ()], (v-13)

n+l(t

where C is a constant, it follows from (V-12) that
) W
Ul(x) - Uo(x) = Aj' H(x,t,Uo(t)dt <AMW (V-14)

O

or, more generaily, that

1

(x) - U_(x) < mc” o) (V-15)

Un+l

Comparing this last in:guality with the convergence condi-
tion (V-11) one sees that convergence of the Picard iterative
procedure is guaranteed when

- | <1 (V-16)
Un U

| AW Max

n-1

[7] F. G. Tricomi, Integral Equations, p. 117, Interscience
Publishers, Inc., N.Y. (1957).
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where Max refers to the maximum value of the term in the inside

brackets. We note that this last condition is quite stringent,

suggesting in a qualitative sense that convergence is attained
only when W remains small, and the variation in H between succes-
| sive iterations is not too large. Unlike the corresponding con-

i vergence criterion for the associated linear problem [8], cri-
terion (V-16) involves Un explicitly and thus the above interpre-
tations are necessarily of a qualitative nature as Un is not
known a priori.

i For typical functions F and values W encountered solving
(V=9) by Picard iteration ‘onec can expect the convergence criterion
(V-16) to be violated and hence have the likelihood of convergence
failure. Under such circumstances it is sometimes possible to

¥ obtain convergence by introducing a relaxation relation of the
form

UX . = U_ +

) g . - U)) (V-17)
1

] ’ where K is an under-relaxation parameter greater than one used
to slow down the rate of variation between the iterates U and

n+l
U_. This procedure is quite successful in stabilizing solutions

n
for linear problems (see Forsythe and Wasow [9]) and can be
expected to aid in the convergence of the non-linear iteration
P problem (V-10) under conditions where the unrelaxed iteration

sequence Un’ U ... (corresponding to K=1) fails to converge.

n+l’
Mock [2] has also suggested improved relaxation procedures invol-
ving the use of a sequence of relaxation parameters for problems
where the use of (V-17) still fails to produce convergence. It

should be pointed out that when the relaxation procedure (V-17)

[2] M. S. Mock, Solid State Electronics, 16, 601 (1973).

[8] F. G. Tr-icomi, Integral Eguations, p. 51, Interscience
Publishers, Inc., N.Y. (1957).

[3] G. E. Forsythe and W. k. Wasow, Finite Difference Methods

for Partial Differential Equations, p. 246, John Wiley and
Sons, Inc., N.Y. (1960).
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is used in conjunction with the iteration (V-10), the term U in

F is replaced by U*

3.0 Results for the Constant Gradient Junction

To obtain some specific numerical results using the integral-
iteration method described in the preceding section we considered
the special and relatively elementary case of the constant gradient
P-n junction where the impurity distribution near the metallurgical
junction (at x=0) goes as N (x) - N (x) = Ax, with A being the
grade constant having a magnltude 10 e atoms/cm” in the present
calculations. 1In this case the one-dimensional Poisson equation
(V=7), in the presence of an applied forward potential VA’ has
been shown by Morgan and Smitz [10] to have the form

qVv

A
2 2n,q? ST qv
g S = KelkT e BT Jsinh U(x) - %5 exp |- EE% > (v-18)
dx o i

\ J

subject to the same boundary conditions used above, except that
qv . K3 .

now UT = UO + 2k2 , With Uo being the equilibrium junction poten-

tial. The corresponding integral equation follows directly from

(v-9)

U,.x qv
- . At A
U(x) = —%— -y j' Ei%—ﬁl sinh U(t) - . €¥P = SKT dt
3 1
W
qvVv
, X (W-t) , _ At _ A _
-y -[ I sinh U(t) 53; exp %T dt (V-19)

X

qv
= 2 A . . . 1
where y = [Zniq exp 7??] /(KEOkT). The integration interva

[0,W] here extends into the n-type region, with the resulting

solution U(x) having odd symmetry about x=0.

[10] S. P. Morgan and F. M. Smitz, Bell System Tel. Jour., 29,
1573 (1960).
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Equation (V-19) was programmed for solution using an IBM
370/65 computer. The program was designed to iterate (V-19)
according to the successive approximation scheme shown in (V-10)
until the convergence condition (V-11l) was met for a value of
e = 107%. The integrals occurring in the iteration were evaluated
using Simpsons iule with 141 mesh points in the interval [O,W].
Our first computer run was for eguilibrium conditions (VA=O), with
! an integration interval of 1200 A. Nc convergence was obtained,

under these conditions, without the use of under-relaxation. |

Instead, the output between successive iterations was found to j
e oscillate between the two potential distributions shown in Figure
V-1. This unstable behaviour suggested the introduction of the
under-relaxation procedure (V-17) into the calculations, and this 1
was done. Using under-relaxation, in conjunction with the Picard
iteration method for the same problem, convergence was obtained i
for a relaxation parameter K> 1.5. The most rapid convergence, §
requiring only twelve iterations (n=12), occurring at K=2. This
i ‘ convergence behaviour is shown in Figure V-2. The corresponding

! equilibrium potential U(x) is shown in Figure V-3 together with

T e T E—Y

the potential distribution predicted by depletion layer theory.
The two curves agree at points near the metallurgical junction,

as expected, and differ near x=W by about kT/q volts. Our com-

puter solution agrees well with the earlier results of Kennedy
and O'Brien [11] who employed the finite difference method. It
should be stressed that the solution using the above integral

method took approximately . ceconds of computer time at K=2,

- ea

compared to substantially greater times for the finite difference
approach.

hama

We next examined the case of a 0.5 volt applied forward
. [+]
voltage using the same 1200 A width. Again, for convergence,
under-relaxation was required to obtain stability, and the values

of K had to be increased. The number of iterations, n, needed

o ita -

[11] D. P. Kennedy and R. R. O'Brien, IBM Jour. Res. Dev., 11,
May 1967.
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Fig. V- 3. Solution of Poisson's equation using the
Fredholm integral method.
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for convergence at € = 107, as a function of K, is shown in
Figure V-4. From a comparison between the optimum value of the
under-relaxation parameter in this figure with that obtained for
equilibrium conditions, it is suggested that K may have to be

determined for each new situation.
The calculated potential for this forward bias case 1is shown

in Figure V-5. Our last computer run was done for zero applied
bias, and for a wider integration range (W=2500 R). This

time, even<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>