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SUMMARY 

First Semi-Annual Report on Computer Engineering 

of integrated Semiconductor Circuits 

Custom integrated semiconductor circuits are often needed 

in the electronics industry.  This need is particularly important 

for military applications.  Military requirements involve a vast 

number of different, highly specialized, electronic systems, 

although seldom are these systems called for in large quantity. 

This combination produces an economically prohibitive situation. 

The large initial cost for designing integrated circuits, in 

conjunction with a small production requirament, creates an 

unreasonably large cost per IC chip.  The source of this diffi- 

culty lies in empirical, and costly, engineering techniques used 

during both IC design, and production start-up.  Empirical tech- 

niques are used during IC design to solve problems for which 

there is inadequate basic understanding.  Similar empirical 

techniques are also used during production start-up to overcome 

problems that presently cannot be solved by design engineers. 

An important source of this problem lies in the lack of 

adequate models for design and development of IC structures. 

These models are needed in three different areas:  (1) for accu- 

rately predicting the physical characteristics of an integrated 

structure arising from numerous different fabrication process; 

(2) for accurately predicting the electrical characteristics of 

semiconductor devices from their physical and geometrical proper- 

ties; and (3) for accurately predicting the consequence of inad- 

vertent fabrication process variables upon the ultimate electrical 

characteristics of a monolithic structure.  An important goal for 

this program is to develop new models in these three areas; models 

that can be used in conjunction with existing computer methods for 

integrated circuit design and development. 

Programs for model development have been initiated in t-vo of 

the three above named areas.  The University of Florida, Gaines- 

ville, Florida, has undertaken development of semiconductor device 
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models for IC design.  Part I of this report outlines technxcal 

progress in this area during the first six months of the program. 

Similarly, Stanford university, Stanford, California, has under- 

taken a program of process model development.  Part II of thxs 

report outlines technical progress in this area during the first 

six months of the program. 
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introduction - Part I 

Semiconductor Device Modeling 

At the University of Florida, efforts are directed toward the 

development of mathematical models that accurately predict the elec- 

trical characteristics of semiconductor devices.  Involved here are 

three different aspects of the modeling problem:  (1) rigorous two- 

dimensional models that are based upon an accurate description of 

the underlying physical mechanisms; (2) one-dimensional models that 

offer the accuracy needed for engineering purposes, yet require 

little computer time; and (3) equivalent circuit representations of 

device operation that are applicable for circuit analysis purposes, 

in addition, development has been also initiated on mathematical 

models for test patterns to be used during IC fabrication process 

evaluation. 
included in this device model development program is the 

research needed to further enhance our modeling capabilities.  For 

example, two-dimensional transient solutions for device operation 

cannot presently be attained, from a practical point of view-the 

required computer time is prohibitive.  Therefore, research is being 

directed toward implementing mathematical techniques that are not 

presently used for device analysis; methods that could significantly 

reduce the required computer time.  Research is also underway on 

physical mechanisms of MOS and Bipolar transistor operation that 

are known to be inadequately, or inaccurately, described by avail- 

able modeling techniques. 
initial studies for these two-dimensional models have been 

directed toward the MOSFET. A computer program for MOSFET analysis 

was used as a test vehicle for modifications, new algorithm, 

development, etc.  All decisions have now been made, and a new MOSFET 

analysis program is being written.  It is expected that this new 

program will be completed, in final form, in approximately six 

weeks.  in addition, an available computer program for the two 

dimensional analysis of bipolar transistors is now operational at 

the university of Florida; this task involved modifying a computer 

program designed for operation on a CDC machine, so that it can be 

run on an IBM machine. 
-13- 
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An engineering model for MOSFET operation has been brought 

to near completion during the past six months.  Present efforts 

are directed toward testing this model.  A few difficulties 

arose through some u warranted assumptions, and these difficulties 

are being corrected.  It is expected that this model will be com- 

pleted within the next few weeks. 
The quasi-static approximation underlies all device models 

commonly used in the transient computer simulation of large- 

signal bipolar or MOSFET circuits.  We propose a test for the 

self-consistent validity of this approximation.  The test applies 

to each device model in a circuit, and is easily implemented in 

circuit-analysis programs.  It applies to any kind of device, 

such as the bipolar transistor and the MOSFET, whose intrinsic 

structure operates by charge control.  Emphasis is given to testing 

the extrinsic as well as the intrinsic device, and to the non- 

idealities present in actual devices.  Prominent among these non- 

idealities is the four-terminal nature of the MOSFET.  Repeated 

application of the te^t can help determine the degree of complexity 

needed, for each device model in a circuit, to assure self-con- 

sistency with the quasi-static approximation. 
in MOSFET operation, the mobility of inversion layer carriers 

undergo important changes, with a change of applied gate voltage. 

This difficulty is presumed to result from scattering at the 

oxide-semiconductor interface, although there is no adequate model 

for predicting its influence on carrier mobility. We discuss here 

a program of research directed toward a solution of this important 

problem, and the advances made within the first six months of 

this contract period. 
Initial studies are underway on mathematical methods that 

are suitable for the two-dimensional transient analysis of semi- 

conductor devices.  Extensive effort has been directed toward 

converting Poisson's equation to a Fredholm integral equation 

and, thereafter, solving this integral by iterative means, using 

the Picard technique.  In addition, preliminary studies have also 

been undertaken of other computational methods:  finite elements, 

-14- 



weighted residual, and collocation.  It is our intent to find a 

method whereby these transient calculatdions can be undertaken 

without requiring an unreasonable large amount of compute, time. 

A statistical model is being developed for test patte.-.ns used 

to evaluate sheet resistance.  Unlike other available models, the 

present development is aimed toward approximating the statistical 

distribution of sheet resistance actually observed during TC 

manufacturing.  A suitable psuedo random number is needed for 

this task.  Such a number generator has been acquired, it was 

tested for randomness, and it has been found satisfactory. 

In device modeling, some regions of large electric field 

arfc known to produce hot-electron mechanisms.  Presently, the 

consequences of these mechanisms are accounted for by introducing 

a field dependent carrier mobility.  It can be shown that this 

modeling technique is only applicable to homogeneously doped 

semiconductor material, and that substantial error arises through 

its application to regions containing a large impurity atom 

gradient.  Research has been initiated on this topic, with an 

aim toward accurately modeling the consequences of hot electron 

mechanisms in semiconductor devices. 

! 

University of Florida 

D. P. Kennedy 

U. Kurzweg 

F. A. Lindholm 

A. D. Sutherland 

M.   Zahn 
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Chapter I   

Two-Dimensional Mathematical Models for MOS and 

Bipolar Transistor Operation 

A. D. Sutherland 

1.0 Introduction 
Two distinct categories of computer models for devices are 

required in order to achieve one ultimate objective of this 

research program-the ability to model accurately the effects 

of  statistical variations xn process parameters, characteristic 

of a given IC production line, upon the performance of a given 

IC configuration.  The first category of device models, which 

will be embedded in computer program? using Monte-Carlo techniques 

to simulate statistical process parameter variations, must be 

ultrafast;  they will be called upon thousands of times during 

the course of a single computer run to simulate device charac- 

teristics.  Thus, this class of models, which we distinguish as 

"statistical models" because of their intended use, will generally 

be one-dimensional in nature and will make use of both analytic 

and empirical approximations of the device physics in order to 

achieve both accuracy and high speed.  The second category of 

device models, which we distinguish as "engineering models," 

serves an entirely different purpose-accurate modeling of the 

physical processes within a given device so as to d) provide 

physical insight aiding in the development of good high speed 

"statistical models" and  (2) serve as an engineering tool for 

the design of deiirices per se.  This section of this report deals 

with the latter category of models. 

The development of engineering models under this program 

involves more than the achievement of a working computer model 

alone.  It is our intention to disseminate these models to 

government laboratories and industry, and to encourage their use 

and critical evaluation of them. We seek to achieve feedback 

which will lead to improved 2nd, and possibly 3rd generation 

models as the program progresses.  To this end, it is vital that 

-19- 
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adequate documentation of the models be provided, in order that 

others will find them easy to use and understand.  Thus, we are 

developing rather complete USER'S MANUALS which will include 

detailed instructions for usinr the computer program, detailed 

flow charts, a description of how the program functions, including 

the various numerical algorithms used, a glossary of FORTRAN terms, 

sample INPUT and OUTPUT formats, and a listing of the computer 

program itself. 
Presently under development, in the above context, are two 

2-dimensional steady-state computer models, one devised to simu- 

late MOS field effect transistors, the second to simulate bipolar 

transistors.  Each of these will be described in what follows. 

Transient models for each of these devices are planned for the 

future. 

2.0 Two-Dimensional MOSFET Model 
The starting point for the development of a 2-D MOSFET model 

has been the prior work of Mock [1], who provides a somewhat con- 

cise description of his basic computational approach in the 

reference cited.  Good agreement with experiment has been reported 

with Mock's model [2]. 
We have a working version of Mock's computer program, pro- 

vided by IBM, which was developed for them under the principal 

investigator's direction while he was with IBM.  We have docu- 

mented this program to an extent sufficient to enable us to run 

computations with it, and have used it as a tool to assist in the 

development of a one-dimensional "statistical model" for MOSFETs 

described elsewhere in this report.  But there are substantial 

details of that program's inner workings which Z.LC   not fully 

understood in terms of the detailed manner in which Mock's algo- 

rithms are implemented.  Rather than attempt to develop full docu- 

mentation for this program in the detail described above, then 

seek IBM's agreement to iti di-ssemitiation, the author's philosophy 

[1]  M. S. Mock, Solid State   Electronics,   16^,   601 (1973),, 

[2]  D. P. Kennedy, private communication. 

-20- 

. ■    . 

 _         "   :   .     ■   ■ :-.  .... 



has been that he can more effectively provide full documentation 

for a computer program whose detailed inner workings he fully 

understands, i.e., one written by us. Thus, what is described 

below is our own version of Mock's basic model, based more on 

the methods described in reference [1] than upon his computer 

program itself, with some modifications in approach which are 

our own. 

2.01  The Basic Geometry.-Figure 1-1 depicts the configuration 

along the channel of a typical n-channel MOSFET structure resulting 

from the diffusion of n+ source and drain regions into a p-type 

substrate.  Since, in such a device, the "action" takes place due 

to the formation of a thin inversion layer of mobile electrons 

immediately below the silicon-oxide interface, it is reasonable 

to simplify the geometry dealt with by the model, as shown in 

Figure 1-1 (b).  This is indeed what Mock did in his computer model 

although, in reference [1], he implies the treatment of the more 

general geometry of Figure I-l(a). 

The principal reason for selecting the simplified geometry 

of Figure 1-1(b) as the basis for the model is that it places the 

metallurgical junctions between p-substrate and n+ source and 

drain at the left and right borders of the rectangular region 

under study.  Large gradients in electric potential and in elec- 

tron and hole number density are to be expected in the near 

vicinity of those junctions, as well as in the near vicinity of 

the oxide-silicon interface.  Since finite-difference methods are 

employed to solve the partial differential equations relating 

these functions, a rather fine spacing bet   n  the lattice points 

at which these functions are numerically letei lined is required 

in those regions to achieve adequate res     .n, whereas the 

spacing between lattice points remote from those regions can be 

relatively coarse.  By placing the source and drain metallurgical 

junctions at the borders of the region, such a graded lattice of 

points is easily defined.  Figure 1-2 illustrates the graded lattice 

used for a 41 (horizontal) by 25 (vertical) array.  The prescription 

-21- 
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- CHANNEL LEW6TH r 
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Figure 1-1, (a) 

(b) 

Cross-section of an n-channel MOSFET. 

Rectangular region modeled.  The metallurgical 
junctions between source-substrate and drain- 
substrate are regarded as planar and at the 
left and right borders of the region modeled. 
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model. 
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followed for generating such a graded lattice is precisely that 

suggested by Mock (reference [1], eq. (24)). 

2.0 2 Dimensionless Variables.-To avoid unnecessary repeated 

multiplications by redundant constants, such as kT/q, q, etc., 

as well as to provide scaling which causes variables to lie 

within reasonable numerical ranges, we introduce normalized vari- 

ables.  Since variables having physical dimensions will be referred 

to only in this paragraph, it is convenient to designate them with 

primed symbols, enabling the use of the same symbols, but unprimed, 

to represent their dimensionless counterparts.  Thus, we can 

utilize familiar symbols such as J for current density, n and p 

for electron and hole density, ty  for potential, y for mobility, 

etc., even though these all represent dimensionless variables. 

In this vein, the dimensionless variables employed are defined in 
TABLE 1-1. 

2.03  Basic Equations.-As did Mock, we assume negligible elec- 

tron-hole generation/recombination, and ignore the flow of hole 

current.  These approximations are reasonable for an n-channel 

MOSFET under normal operating conditions.  Their effect is to cause 

the electron current density vector to be divergenceless-a 

condition which is readily enforced by deriving that current from 

a stream function. 

In terms of the dimensionless variables just defined, the 

equations describing the physical behavior of electrons and holes 

in the p-substrate region of Figure 1-1(b) are: 

'2 ili — V^tp = N,. + n-p 

n = exp(i|;-4)n) 

P = exp((J)p- MIO 

J = -ynV(J)n 

o 

J =   0 

(1-01) 

(1-02) 

(1-03) 

(1-04) 

(1-05) 

(1-06) 

[1]  M. S. Mock, soiid State Electronics,   16, 601 (1973) 
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TABLE 1-1.-DEFINITION OF DIMENSIONLESS VARIABLES.  (K  IS THE 
RELATIVE PERMITTIVITY OF SILICON.) 

: 

Define: 

K e '(k'T'/q') s o 
q'n.' 
^  i 

1/2 

n 

Then Let: 

y,   =    (k'T'/qi)^ 

<t>n'  = (k'T'/q')«)), 

(}) ' = (k'T'/q')*, 

V = n. 
i 

,ND 

"A' 
=  n. 

i 
,NA 

n' =  ni •n 

P' = n. 
i 'P 

x" ■ v X 

y' - LD'y 

•rr» (k'TVq')yn
,ni'q 

y1 = vn'v 

Intrinsic Debye length of 
silicon 

Low Field electron mobility 

Electric potential, and 
electron & hole quasi- 
Fermi potentials 

Donoir, acceptor, electron, 
& hole number density 

cartesian coordinates 

electron current density 

electron mobility 
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equation (1-01) is Poisson's equation for the electric potential 

^  (I..02) and (1-03) express the use of Boltzmann statistics 

(i e ,  nondegenerate doping is assumed), (1-04) relates the 

electron current density vector to the electron number density 

and to the electron quasi-Fermi potential in the usual manner [3], 

(1-05) enforces zero hole current, while (1-06) assures conser- 

vation of charge under the assumed condition of zero generation/ 

recombination of electron-hole pairs. 
The above equations apply in the p-substrate region of 

Figure I-l(b).  The conditions in the oxide region are described by: 

V^ = 0 , (I-C7) 

and ^n=J=0, with appropric-.e boundary conditions applied to 

tangential and normal electric fields to match the solutions of 

(1-01) and (1-07) at the oxide-silicon interface. 

2 04  Ittration Method.-We adopt Mock's iterative procedure for 

solving the above set of coupled nonlinear partial differential 

equations.  At each step m in the iteration, the unrelaxed poten- 

tll function v(x,y)<m) is computed, satisfying (1-01) and (1-07) 

in the substrate and oxide regions, respectively, subject to the 

boundary conditions to be discussed - a later subsection.  Th^ 

electron and hole densities n^ and p(m) used in computing v 

are those determined using the potential *^ obtained in the 

oreceding iteration step, in a manner also ^ be described later 

Then given v^ , the improved approximation ^+1) to the correct 

potential ^(x,y) is obtained from: 

^(x,y)(m+1) = ^(x,y)(m) + am[v(x,y)
(m) " Hx,y)(in)] 

+ 3 [^(x,y)(m) -^y)^!   (I-08) 

The iteration is terminated when the maximum residual, 

Max|v(m)-ip(m)U falls below a specified value. 

[3]  s. M. Sze, Physics of Semiconductor   Devices,   p. 96, Wiley, 

N.Y. (1969)(. 
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The relaxation parameters am and ^  appearing in (1-08) are 

assigned the Chebyshev sequence of values discussed by Mock, and 

are reinitialized in the manner described by him whenever the 

.aximum residual obtained at a given step of the iterative process 

fails to be less than that obtained at the previous step.  Since 

the rate of convergence of this iterative scheme depends upon the 

total number of free carriers in the system, we follow Mock's 

xdea for speeding convergence by dealing with modest source 

and drain doping levels, e.g. lO^cm"3, until the iteration has 

terminated, following which the doping levels in those regxons 

are set to their desired values, with further iterative operations 

then using a linearized version of (1-01), obtained by invoking 

Gummel's algorithm [4].  (See reference [1], Section 4.) 

The initial approximation 1|.(x,y)
(0) required to initiate the 

above iterative scheme is determined in the manner now to be 

described.  Given fixed applied gate and substrate voltages VG 
and V  , the use of the model usually involves the sequential 

selection of a number of ascending values of the applied drain 

voltage Vn, with the above iterative scheme applied to achieve 

a self consistent solution of (1-01) through (1-07) at each such 

V   (This effectively traces out a curve of ID versus VD, with 

VD fixed, as one does experimentally with a curve tracer.)  Thus, 

once this sequence is started, ^(x,y)(o), and the corresponding 

values for n(x,y)(o) and p(x,y)(o) are merely chosen to be those 

values just previously found for a lower value of VD.  Thus, we 

need only have a means for approximating ^(x,y)   at the initia- 

tion of the sequence of drain voltage values. 
By initiating such a sequence with VD set to zero, a reason- 

able approximation for *(x,y)(o) can be achieved by solving a one- 

dimensional version of (I-OD and (1-07), with the direction along 

which *  varies being perpendicular to the gate electrode.  This 

we do, :us.ing the same iterative scheme described above, but 

[4]  H. K. Gummel, IEEE   Trans.   Electron   Devices,   ED;!!, 455 (1964) 
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starting with the one-dimensional solution obtained using the 

iepletion approximation to initiate, the one-dimensional iteration, 

the latter being analytically expressable.  Again, this basically 

follows the procedure adopted by Mock. 

2.05 The Stream Function.-in view of (1-06), we introduce, as 

does Mock, a stream function 0(x,y) such that: 

Jx= ^H'*'*'' 

v 86 
(1-09) 

' -Jo H <*'*> ' 

which assures the satisfaction of (1-06). Here, J0 is a scalar 

constant. We seek next the differential equation which must be 

satisfied by this stream function. 
Solving (1-02) for the electron quasi-Fermi potential <t>n, 

and substituting the result in (1-04), we obtain: 

j = vehine-*). (1-10) 

Identifying the x and y components of (1-10) with the corresponding 

expressions in (1-09), we have: 

^o If = -* 4  '»•■*' 

Divide both sides of these intermediate equations by ye , then 

differentiate the first partially with respect to y, the second 

partially with respect to x and add, obtaining: 

= 0 .      (1-11) 
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In the iterative procedure described above, (1-11) may be 

regarded as a second order differential equation whose solution 

gives etx,y)(m), knowing ^(x,y)(in) at iteration st^p m.  Then, 

using (1-09), the current density vector J(x,y) (In is known, once 

the constant J (m) has been evaluated.  The method of determining 
o 

that constant will be described after we establish the boundary 

conditions imposed upon ty,   9, and n.  Before doing so, however, 

we show how knowledge of i|> and J enables the determination of the 

electron number density n by means of a similar nartial differ- 

ential equation deriveible from (1-10) . 

2.06 The Determination of n(x,y).-Starting with (1-10), divide 

both sides by ye^, then take the divergence of both sides, 

obtaining: 

Then, using the. vector identity V* (gF) = gV-F + F-Vg, where g is 

any scalar function, while F is any vector function, this becomes: 

V2(ne"^) = V V*5 + 5,VvV'- 

In view of (1-06) the leading term on the right side of this 

intermediate result vanishes.  Thus, we obtain: 

vMne^) = J.V (—) .        (1-12) 

As above, in the case of the stream function 0(x,y), (1-12) 

may be regarded as a differential equation in the electron density 

n(x#y) in the iterative procedure.  That is to say, at iteration 

step m, with ^(m) and 9(m) (hence J(m)) being known, (1-12) will 

give n(x,y) (in) . . 
It is of interest to note that, since ne r = e   , from 

(1-02)  then (1-12) is really a differential equation for the 

electron quasi-Fermi potential <bn.     Recognition of this assists 
in establishing boundary conditions for the solutions of (1-12). 

-29- 



wifWM ' —•••■ .ii«yi.,MW,B,ii»...i .JWJ, i."— • — wiMiwwn»! • ■ >■"—-—' ^mmmmmwrnm^f- 

2,07  Boundary Conditions.-We regard the left and right borders 

of the rectangular region of Figure 1-1(b) as synunetry planes, such 

that 4*, 6, n, p, and J are even functions of x, while J is an 

odd function of x.  Image theory then requires that these functions 

are all periodic in x, with a periodicity of twice the channel 

length XL of Figure 1-1(b).  A consequence of this implied periodi- 

city is that the source and drain regions shown dotted in the 

geometry of Figure I-l(a) are essentially "squeezed out of the 
picture-'1  They are replaced by infinitesimally thick source and 

drain "contacts" which serve as "sources or sinks" for electric 

and current flux lines.  This being the case, the electric poten- 

tial i>  and number density n assigned to those "contacts" requires 

careful scrutiny. 
We adopt the common convention of specifying the potential 

of the gate, drain, and substrate with respect to that of the 

source.  Thus, we specify i|; = 0 in the charge-neutral source 

region, even though that region has been "squeezed out of the 

picture" in our model.  In the ah ence of any externally applied 

bias voltages, therefore, the substrate will assume its thermal 

equilibrium potential 4^0» given by: 

^EQ " -ln<W ' (I-13) 

which will also be the potential assumed by the gate electrode, 

assuming zero difference in the work function of the gate metal 

and the p-substrate.  If the substrate is then externally biased 

at a voltage ^aun'   and tae  9ate at a voltage VG (both measured 
with respect to the charge-neutral source) the powntials assumed 

by those electrodes will have the values shown in Figure 1-3(a) 

With regard to that figure, we assume that the lower border of 

the region modeled extends sufficiently deep into the charge- 

neutral substrate region that it can be regarded as an equipoten- 

tial surface tz  which we ascribe the properties of a substrate 

contact electrode. 
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^  = 4^. 

{where  ^ 1) 

i-°- 

*   =   *EQ  + VG 

7 V7////?W'//////} 
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9x 
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'ox   8ij; 
i      KS     9y 3y 

ox 
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Si 

*   =   ^EQ  +  VSÜB 

} 
.|i= o 9x 

.^ = ^ + vD 

9_IJJ_ 

9x 

(a) 

36 
9x =   0 

=   1— 

ZZZZm&ZZ' 
e = o 

98    .   n 
37 " 0^ 

ae 
9x 

=   0 

|i= 0 
9y 

(b) 

fe'--*' - - -V -\\i       ,.  a   VSUB 
ne   '   ~ Nne 

(c) 

^-(ne   r)   =   0 
9x 

Figure 1-3.  Boundary conditions for:  (a) iMx,y), 

(b) e(x,y), and (c) ne~Mx,y) . 
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What potential should be assigned to the source and drain 
"contacts" in Figure 1-3 (a)?  Assuming identical doping of the 

drain and source, the source and drain "contacts" will assume 

identical "built-in" potentials ty   ,   in the absence of any external 

biasing.  With a voltaga V applied to the drain, the drain 

"contact" will assume the value shown in that figure. 

There remains to be specified the potential ips itself, which 

is the potential assumed at the plane of the metallurgical junc- 

tion of the n+ source and the p-substrate,  Kennedy [5] shows 

rigorously that, for an abrupt junction, that potential is given 

by*: 

*S = *T 

D 
NA+WD 

- - 1 A  D 

VND 
1 - exp(-^T) (1-14) 

where ty     is the magnitude of the total potential drop appearing 

across the p-n junction, i.e. the sum of the "built-in" potential 

plus any applied potential difference: 

(Positive V appl. 

(1-15) 

in (1-15) causes the junction to be reverse 

lb = ln(NT.N.) + V  , YT DA    appl. 

biased.) 
In spite of the fact that (1-14) shows ^s to be, in general, 

a function of the total voltage drop appearing across the junc- 

tion, an assessment of typical numerical values shows that \l>s 

can be assumed constant, independent of junction voltage, except in 

cases where it is heavily forward biased.  For example, with 
, N,' = 10  cm   (unnormalized 1 n -"? ^ 9  -3 

n! = 1.5x10 ucm  , ND' = 10  cm  , ^ 
units), ln(N N ) assumes the value 33.7, and the cr.ponential term 

in (1-14) is entirely negligible except for negative values of 
V  , approaching that magnitude.  Since ND >> NA, (1-14) simplifies 

[5] P. Kennedy, IEEE   Trans.   Electron   Devices,   ED-22, 988 (1975) 

* The factor of unity appearing in the leading bracket is not 
present in Kennedy's result. It accounts for the choice of zero 
potential as the n+ region, whereas Kennedy chose the p-region. 
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tremendously under such conditions, becoming: 
to  s -1.0 rs 

(1-16) 

Since the drain junction is always reverse biased, with VD > 0, 

(1-16) is always valid at the drain "contact." 
is the above approximation valid at the source junction, 

which does become forward biased as VG is made positive, due to 

band bending at the p-substrate surface? At the+onset of strong 

inversion, the total potential drop across the n -p source Dunc- 

tion right at that surface becomes ^ = m {VV '  ThUS' USin9 

the same values for ND and NA as in the above numerical example, 

^ = 6.9, and neglecting the exponential term in (1-14) is still 

aTvalid approximation for estimating ^  We conclude that (1-16) 

can be used to specify *s at the source contact, with good accu- 

racy, for Nn/Na ratios of 10
3 or higher.  The approximation begins 

to become questionable when ND/NA « 102 or less, but at the source 

contact only. 
The remaining boundary conditions shown in Figure 1-3(a) 

assure the symmetry assumed at the left and right borders of the 

region modeled, and assure correct matching of the solutions of 

(1-03) and (1-07) at the silicon-oxide interface.  Note that the 

condition imposed on the normal derivatives of * at that inter- 

face allow for the inclusion of surface charge Qss at that inter- 

face, a feature not included by Mock.  (The equation stated for 

the normal derivatives takes on a slightly unfamiliar form because 

of the normalized variables used.) 
Figure 1-3(b) states the boundary conditions imposed upon the 

stream function 0.  The choice of 9 = 1 and 6 = 0 along the sur- 

faces shown assures no normal current flow at those surfaces, 

as does the specification 86/:/ = 0 at the right edge, as ahown. 

This latter condition allows that surface (which is obviously a 

contour of constant 9) to "float" to assume a value of 0 consis- 

tent with Kirchhoff's current law in the event that the substrate 

is biased in such a manner as to draw current. 
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The choice of unity and zero as the bounds on 9 is arbitrary, 

out a convenient one.  (Any other choice would result only in a 

different numerical value of the constant Jo appearing in (1-09). 

The manner in which Jo is determined remains to be described 

below )  The particular choice used allows rapid assessment of 

where current is flowing in the region.  Since contours of constant 

8 are current streamlines, then the value of 6 at any x,y gives 

directly the fraction of the total source current crossing the 

vertical plane through (x,y) between the surface and that poxnt. 

Finally, the specifications on the normal derivatives of 6 

shown at the left and right borders are consistent with the treat- 

ment of those borders as symmetry planes, while that specified 

at the lower border is consistent with our treatment of it as a 

substrate contact electrode.  Note that these conditions imply, 

through (1-09), that current flux lines enter or leave those sur- 

faces perpendicular to them. _^ 
Figure 1-3 (c) states the boundary conditions on ne = (x,y). 

At those surfaces where the normal derivatives of ne" are set to 

zero, no current crosses those surfaces, in accordance with (1-10)• 

At the substrate contact, the value specified assures that 

n = 1/N , P = Na.  To see this, recall (1-02) and (1-03): 

^ "^n 
n = ere 

^P "* p = e ^e r 

(1-02) 

(1-03) 

Setting * = -ln(HDNA) + VSUB in (1-03) and requiring p = ^  one 

finds for $   x 

*p " -lnND + VSÜB ' 

Since * = <D  in the charge-neutral substrate region at the sub- 

strate contact, substitution of this result into (1-02) yields 

„ - 1/N , as it should be.  Similarly, at the source and dram 

contacts, n must take on the value N^"1, since the potential 
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of these contacts is one normalized unit below the potential of 

the charge-neutral source and drain regions, respectively. The 

boundary conditions stated there assure that this is the case. 

U 

2.08 Determination of the Current Constant J .-The constant J  o o 

appearing in {1-091,  which relates the current density vector J 

to the stream function 9, is obtained in the following manner. 

Writing the x-component of (I-IGO: 

ye ^ (ne ) - Jo —• , 

divide by ye , then integrate with respect to x along a horizontal 

line (y = constant) which intersects both the source and the drain 

"contacts."  (Any value of y < YD in Figure l-l(b) will qualify.) 

One obtains; 

XL 

ne 
~ty 

-  ne 
-4, 

= J 

X=XL x=0 /- 

|idx 3y 

Substituting the boundary conditions of Figure 1-3(c) in the left 

side of this intermediate result: 

XL 

-o KM - ^J ^ n dx 
Finally, solving for J , one obtains: 

-4-°"VD- 
XL 

/ 
^^idx 
y ay 

(1-17) 

This is the same result used by Mock for calculating J  (reference 

[1], eq. (1-10)1» except for the factor N-. appearing in (1-17)  which 
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is absent in Mock's result.  The reason for this difference lies 

xn Mock's choice of setting the electron quasi-Fermi potential 

4> = 0 in the charge-neutral source region, which makes ty  - ln(ND) 

in that region, rather than the ^ = 0 reference value that we 

have chosen to use. Note that the sign of J0 changes if one per- 

forms the integration from x = 0 to the "image" drain contact 

at x - -XL.  Thus, J is an odd function of x, as it should be. 

2.09 Finite-Difference Equations.-Figure.-I-4 singles out a mesh 

point of the graded lattice shown in Figure 2, together with its 

four nearest neighbors.  We distinguish such mesh points by means 

of indices i,j. with i and j assuming the values 1,1 at the lower 

left corner of the lattice shown in Figure 2.  The index i signi- 

fies x position, j signifies y position.  The five-point "star" of 

Figure 1-4 forms the basis for forming finite-difference approxi- 

mations of tl-01) and (1-07) for i|>, of (1-11) for 9, and of (1-12) 

for ne"^.  Note the definitions of Ax(i), Ay(j), their average 

values &{i), Ay(j), and the indexing convention adopted fcr them 

in Figure 1-4. 
Except at the silicon-oxide interface, the finite-difference 

equation for electric potential ty  is: 

Ax(i) 
(1-18) 

*• Äy(j)     I yK 7x(i+i)—   )+ \     AHIT       ;; 

- ^(i)^y(j) [p(i,j)-n(i,j)-NA(i,j)l, in silicon 

= 0, in oxide. 

For mesh points (i.j) coinciding with the silicon-oxide inter- 

face, a special form of (1-18) results by applying Gauss' law to 

equate the electric flux leaving the dotted rectangle shown in 

Figure 1-4 to the charge enclosed within that rectangle.  One 

obtains: 
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T (i,j+l) 

T Ay(j+l)• 

(i-l,j)  ' 

Ax(i) 
i 
I 

T ̂
(j) = Ay(j)+Ay(j-H) 

|  (i,j)    • 

\x{i+l) A 

(i+l,j) 

Ay(j) —J. 

J 
/N> 
Ax(i) ..  . Ax(i)-fAx(i+l) 

; 

(i,j-l) 

Figure 1-4.  Five-point star of mesh points used in forming 
finite-difference equations. 
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i%      '^ (I-] 

^!5«Vy(j+l)  + Ay{j) 

r(i)   + ^i)A7(J)    [p(i,j)   - n{i,j)   - NA(irJ)]   • 
= Q     Ax 

Hare the first term on the right represents surface charge at the 

•nt^face. «hile the second term represents bul. charge rn the 

oortion of the dotted rectangle lying below the rnterface  Egua 
portion of t „tlsfaction of the boundary conditions 
tion (1-19) assures the satisfaction o „-,,,„>   nur 
on * at the silicon-oxide interface stated in Figure ^_^ 
LtL of treating this boundary condition differs ^^s. 

The finite difference equation for the stream function 9, 

using the same 5-Point star of mesh points, becomes: 

Ax(i) ja(i,:-l/2)  ^Ay(it I V yvJ ' 

+  Ay(j) I a(l-l/2,:)^ Ax(i) / \       "   v 

} 

)} 
',1-20) 

=   0 

where 
-iKi,J-l)_e-^(i'j)     ^ 

e j ■    .        " 

e-^(i,j+l)_£iiiil_ 

r4)(i+l,j)_e-^(i'3) 

a(i,j-l/2) 

a(i,j+l/2) 

a(i-l/2,j) 

a(i+l/2,j)   = ^(i,:)-^!!-!^) J 

(1-21) 
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Equations (1-21) are approximations for the function e ^ at x,y 

positions midway between the points of the star (i.e., where the 

dotted rectangle of Figure 1-4 intersects the "rays" of the star). 

These approximations are obtained by assuming linear variations 

of i|> between neighboring mesh points, then averaging e * along 

the line interconnecting them.  This method of approximating 

e ^ midway between mesh points is a critical factor discussed in 

detail by Mock.  (See reference [1], Section 6.) 

The finite-difference equation (1-20) for G differs from that 

used by Mock for a fundamental reason.  Mock chooses the lattice 

of points at which 9(i,j) is defined not to be the same set of 

points at which ^(x,y) and n(x,y) are defined (i.e., the star of 

points in Figure 1-4) , but rather to correspond to the location 

of the corners of the dotted rectangle shown in that figure. 

Thus, his lattice of points for 9 "interlaces" the lattice of 

points used for ty  and n.  While this convention leads to some 

computational convenience in his method for treating conditions 

at the silicon-oxide interface (he places that interface so as 

to coincide with his 9 lattice, not his ip,n lattice) and in his 

method for determining n (which differs from ours) it leads to 

severe problems in meeting the boundary conditions on 9 at the 

left border of Figute 1-3(b), where 9 must be specified to be con- 

stant (i.e., that portion of the border where 0 = 1 in Figure 1-3 

(b) ) , because the lattice of points at which 9 is defined cannot 

coincide with that border, using Mock's convention.  Thus, how 

can one specify 9-1 there? 

Again, using the same five point star of lattice points in 

Figure 1-4, the finite-difference approximation of (1-12) deter- 

mining the function ne  (x,y) becomes: 
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x(i) {( 
ni^i.j)   ^ne-^(itj-l)^   + / 

WUT   Ay(j+1) Ij 

+Ay(j)H   Ax(i) )       \ Ax(i+1) jj 

{ 
3     e ■i> 9  e 

-^ 
Ax(i)Ay(j).j Jx(i,j)g^    —-   (i,j)   + Jy(i,j)g^ —   (i,j) 

where,   in accordance with   (1-09), 

V^' " Jol|(i'3' 

Jy' -J' =-Joll(1'3'- 

} 
(1-22) 

(1-23) 

Note that the determination of the numerical values of the 

right-side of (1-22) requires the numerical evaluation of several 

partial derivatives, namely 9i|;/9x and 8^/9y in order to determine 

the field-dependent mobility y, then the determination of 

9/9x(e~^/y) and 9/9y(e"^/y), and finally the determination ol 

9e/9x and 9e/9y, in order to find J and J .  If the spacing x     y 
between mesh points were uniform, the determination of these 

partial derivatives is readily achieved by simple differencing. 

For example, 9e/9x(i,j) = [9(1+1,j) - 6(i-1,j)]/2Ax(i).  But with 

a graded lattice of points, a more accurate algorithm for deter- 

mining these partials is required. 
We base our numerical algorithm for so doing on the following 

approach.  Let g(x,y) be the function whose partial derivatives 

are required, with g(x,y) defined numerically at each of the 

lattice points (i,j).  Consider determining 9/9x (g(x,y)) at the 

mesh point (i,j).  Knowing the mesh spacings Ax(i) and Ax(i+1), 

fit a parabola through the points g(i-l,j), g(i,j)/ and g(i+l,j), 

obtaining an analytic expression of the form: 
2 

g(x,y) = ax + bx + c 

y=const 
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where the constants a,b, and c are known.  Then 9g/9x(x,y) * 

2ax + b, which can be evaluated at the value of x corresponding 

to the point (i,j).  A similar approach yields 9g/3y. 
Implementation of the above approach leads to the following 

finite-difference expressions for [8g/3x)(i, j) and (ag/3^(i, j) : 

3q   .v   Ax
2(i)q(i-H,i)-Ax2(i+l)q(i-l,j) + [Ax (i+l)-Ax (i)]g(i,j) 

H^'^   = Ax(i)Ax(i+l) [Ax{i)+Ax(i+l)J 

(1-24) 

8g,. .,  Ay2(i+l)q(i,i-l)-Ay2(j)q(i,i+l) + [Ay2(i)-Ay2(j+l)]g(i>j) 
^'^   = -J—^  Ay(j)Ay(j+l)[Ay(j)+Ay(D+l)J 

These expressions for 3g/3x and 9g/3y reduce to the simple dif- 

ferencing scheme cited above, in the event of a uniform lattice 

point spacing. 
It should be noted that Mock does not use the finite difference 

equation (1-22) to determine the electron number density n.  Instead, 

he develops a method which basicolly involves the numerical eval- 

uation of a line integral, starting from the source or drain con- 

tact where n is known, and terminating at the point (i,j) where 

n is to be determined.  Not only does this method appear to the 

author to invite the accumulation of systematic numerical errors 

inherent in the discretization scheme used to evaluate the line 

integral, but also Mock notes that the method must be applied 

with care to avoid the development of numerical instabilities. 

There remains to be described the numerical determination 

of the hole density p(i,j), and of the current constant Jo.  Con- 

sider first p(i,j).  In Section 2.07, while discussing boundary 

conditions, it was shown that the hole quasi-Fermi potential (|)p 
at the substrate contact is given by: 

*p " -lnND + VSUB * 

Then, in view of (1-05), which enforces the assumed condition of 

zero hole current, this is the value of $    everywhere throughout 
the substrate region.  Equation (1-03) then gives for the hole density 

-41- 
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V 
SUB    ,/• ■> 

P(i,j)  -:  V-   ^    'D (1-25) 

Note that, since ^ = -ln(NDN ) + VSUB at the substrate electrode, 

p = N  there, as it should. 

finally, consider the numerical implementation of (1-17) to 

determine the current constant J .  Here, as did Mock, we imple- 

ment the integration xndicated along a horizontal mesh line, 

j = constant, intersecting the source and drain "contacts," using 

the trapezoidal rule. 

2.10 Method Used for Solving the Finite-Difference Equations.- 

The finite difference equations (1-18), (1-20), and (1-22) for 

ii,   9, and ne  , respective1 y» each may be cast in the form: 

B(i,j)V(i,j-l) + D(i,j)V(i-l,j) + E(i,j)V(i,j) 

+ F(i,j)V(i+l,j) + H(i,j)V(i,j+l) - Q(i,j) ■ (1-26) 

r* where the variable V stands for either ty,   6, or ne r, and the 

coefficients B, D, E, F, H, and the function Q, are to be identi- 

fied with the corresponding terms in (1-18) , (1-20), or (1-22). 

If we define column vectors [V] and [Q]: 

[V]  = 

V 11 

21 

V nl 

V 12 

V 22 

Vn2 

[Q] = 

Q 11 

;21 

^nl 

Q 12 

•22 

9n2 

then the set of equations (1-26) may be expressed as the matrix 

equation: 

[M].[V] = [Q] (1-27) 
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where .H] is a sparse square matrix having only five non-zero 

diagonals: 

[M] = 

E 11 Fll  0   0 ' 
Hll  0 

D21 E21 F21  0  0 H 

0  D31 E31 F31 0  0 

0  0 D41 E41 F41 0  0 

•   \   \   \ 
\   \   \ 
\   \   \ 

N \    \     \ 

21 

H 
31 

H 41 
\ 

0  B. . 
ID 

\ 
\ \ 

\ 

0  D.. E..  F.. 0 
13  ID   ID 

\ \   \    \ 

\   \ 

\ 

".^   

\ 
\ 
\ 
\ 
\ 

H 
ID 

J+l 
ELEMENTS 

\ 
\l 

\ 

^ 

\ 

\ 
\ 

J+l 
ELEMENTS 

If the dimensions of the lattice of points used to model the 

rectangular region, as in Figure 1-2, are J by K, then the matrix 

M has JK rows and JK columns. 
We adopt the very fast iterative matrix factorization method 

developed by Stone [6] for dealing with the problem of finding 

the elements of the column vector [V], given [Q] and [M], when 

[M] has the five-diagonal structure of that shown above.  In this 

manner, the solutions of (1-18), (1-20), and (I-?2) for I(J , 9, 

and ne ^ are obtained. 

[6]  H. L. Stone, SIAM  Jour.   Numer.   Anal.,   5^, 530 (1968) 
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2.11 Status of the Model.-Our computer model consists of an 

executive main program and ten subroutines upon which it calls 

MAIN 

RELAX 

STONE 

POISSN 

STREAM 

FERMI 

GRID 

BORDER 

CURRNT 

PSINIT 

OUTPUT 

Executive program 

Implements the iterative procedure 

Implements Stone's methoa 

Calculates ^ 

Calculates 9 

Calculates ne 

Defines the graded lattice of points 

Assigns boundary conditions 

Calculates the current constant J 

Calculates initial 1-D potential 

Provides output data 

Flow charts for these have been developed and their reduction 

to FORTRAN code is now in progress.  Debugging will commence 

within the next two weeks. 

3.0.  TWO-DIMENSIONAL BIPOLAR TRANSISTOR MODEL 

We have a computer program which was developed to provide a 

two-dimensional model of bipolar transistors.  This computer 

program was developed for us, under subcontract, by Professor David 

Navon, at the University of Massachusetts, under a contract 

between the University of Florida and IBM, in 1974, which was 

concerned with investigations of several factors concerning power 

transistors.  Under the terms of that contract, all results from 

these studies are non-proprietary, and we are free to use this 

computer model as we choose. 
This computer model deals with the same basic equations 

listed in the preceding section for the MOSFET model (equations 

(1-01) through (1-06)) except that the assumptions of zero elec- 

tron-hole recombination and of negligible hole current invoked 

there are removed.  The recombination rate modeled assumes the 

well known Shockley-Reed-Hall steady state law corresponding to 
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uniformly distributed recombination centers with a single energy 

level at the center of the bandgap.  Figure 1-5 shows the rectangular 

region with which this model deals. 
Navon's program was written for use with a CDC CYBER 74 

computer whose word length precludes the need for double precr- 

sion arithmetic operations.  During this reporting interval, we 

have adapted this program for use with an IBM 370/65.  This 

required the introduction of double precision arithmetic, and 

numerous other program modifications.  The program is now opera- 

tional, and provides a starting point for the development of a 

revised version devised to handle bipolar transistor structures 

more typical of IC geometries, e.g., collector contact at the 

upper surface of the structure, the inclusion of a buried n 

layer, etc.  Work on this revised computer model will be deferred 

until the 2-D MOSFET model work has been completed. 
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Figure  1-5.     Basic bipolar  ti dtisistor  structure modeled by 
the   transistor analysis computer program. 
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Chapter II 

A one-Dimensional Mathematical Model for MOSFET Operation 

R. F. Motta and D. P. Kennedy 

i n  Tntroduction .      , 
ilen.entarylosr.T theory 11-51 contains simpllflcatxons ana 

approximations that render it inappiioahle in ™any ^^ 
However this theory offered great mathematioal simplicity and, 

rr arly years of MOS teohnology, it produoed satisfactory 

greLnt «Lh experiment.  In time, the rapid groWth of se.r- 

oonduotor integrated circuit (IC, technology created ^ ^ °n" 

£or which this theory was found to he inadeguats.  Specifically, 

^hen applied to the weaK inversion .ode of operat.cn and/or to 

short-channel structures, this theory yielded results in poor 

agreement with experiment. 
This situation was recognized by many workers and, subse- 

guentiy, extensive research efforts were undertaken to allevxate 

this problem.  From these efforts, a multitude of new theories 

emerged as modifications of elementary MOSFET theory.  In a pre- 

vious study 161, we oarefully reviewed these new theories and 

found them to be extensions of elementary MOSFET theory without 

oonsideration of inherent weaknesses in this theory.  In partrou- 

lar, this theory contains no constraint whereby eleotrio current 

[!,  H.K.J. Ihantola and 7.   L. Moll, Soli*   State electronics,   7, 

423 (1964). im-T* 
[21  C. T. Sah and H. C. Pao, XE£E Tr.ns.   Electron   «vices, ED^3, 

393 (1966). . 
[3,  R H. Crawford, «05rET in Circuit De.i^n, McGraw-Hril 

Company, ""^ '19"'-    TeahIlology  of  „„Conductor «vices, 
[41  A. S. Grove, physics   and   Te=""oi°"67) 

John Wiley and Sons, Inc.. N.Y. (1967). 
,5,  s. M. Sze, Physics of se.iconä.ctor  Devices.  Wrley Inter 

science, N.Y. (1969). 
[61  0. P. Kennedy and -• A- ^olm Ph.sicai «o ea. of 

Devices,   Final Report, HDL-CR-Vb i^J x ^? 
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continuity can be attained in the source-drain channel of this 

semiconductor device.  Moreover, many of these new theories are 

heuristic in nature and require adjustable parameters to obtain 

agreement with experiment.  For any particular device structure, 

these adjustable parameters must usually be determined by labora- 

tory experiments, thus increasing development costs of new 

integrated circuits. 
In a previous study [7], a new theory for MOSFET operation 

was proposed that assures electric current continuity in this 

semiconductor device.  Furthermore, this new theory for MOSFET 

operation was reduced to a simplified one-dimensional system of 

equations that are suitable for engineering purposes.  The ade- 

quacy of this theory was demonstrated for long-channel structures 

operating in the strong inversion mode.  However, although 

implicitly containing the current physics, this new theory also 

failed to yield satisfactory results for the weak inversion mode 

and/or for short-channel structures.  Therefore, the main direc- 

tion of the present research has been to alleviate these diffi- 

culties. 
At the inception of this research program we had completed 

an important revision of this theory.  We therefore initiated an 

extensive evaluation of our revised theory, for a wide range of 

device structures and bias conditions.  This evaluation revealed 

additional errors in our model which have necessitated other 

revisions.  In this report, we present these revisions and discuss 

progress we have made in the development of this model. 

2.0  An Earlier Theory for MOSFET Operation 
in this section, it is our purpose to present an overview of 

an earlier theory for MOSFET operation.  This presentation gives 

the basic structure of our theory, prior to a number of refinements 

we made during the present research program.  Therefore, in addi- 

tion to acquainting the reader with this earlier work, the present 

section constitutes a necessary preliminary to the discussion of 

these refinements which follows in §3.0. 

[7]  D. P. Kennedy and P. C. Murlcy, IBM  Jour,   of  Research  and 
Development,   1J_,   2 (1973). 
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2.1  General Mathematical Development 

In the inversion layer of a MOSFET, both drift and diffusion 

contribute to the source-drain electric current: 

ID = -Wy 
dV 

dx 
kTäQi 
q dx (II-D 

in this expression, ID represents the total electric current 

parallel to the oxide-semiconductor interface (see Fig. II-l). 

If we neglect recombination-generation mechanisms within 

this semiconductor structure, the source-drain electric current 

I must be constant at any location between the source and drain; 
D 
thus from (II-l) we have 

dl_ 
0 = 

dx 
= Wy L 

d2Vs  dQi dVs M d2Qi 0    —  + 
i dx2   dx dx 1 dx! 

From the chain rule of differentiation, 

dQi   dQ, 

"~dx "  dV" 

d^. 

"d? 
dQ. d^,, i   s 
dV. dx' 

d2Q. 

dV 

dV 
 s 
dx 

fdV 
dx 

(II-2) 

(II-3a) 

(II-3b) 

and, by making these substitutions in (II-2), we obtain 

d2V 

dx; 

dV s 
dx 

-2 
kT d2Qi 

^ dV 2 

s 

dQ. 

dV. 
Q.-^^i 1   q dVs 

-1 

(II-4) 

A physically meaningful modification of (II-4) is realized 

by introducing into this expression a separation parameter MVg] 

yielding 

d2V  /dV \"2 

(II-5a) UVs) = 
dx: dx 

X(Vs) = 
kT d2Qi 

, q ^s
2 

dQ, 

dV. Qi " 

, m dQ. kT  i 
q dv^ 1" (II-5b) 
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Figure II-l.  Illustrative Model of a MOSFET. 
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Therefore, 

d2vs 

dx2     s 

fdV s 
dx 

„ 1 dQ. 
A(vs) -h dv1 

s 
- 3. 

k' 

= 0 

= 0, 

(II--6a) 

(II-6b) 

Equations (II-6a) and (II-6b) have the solution equations [6] 

V 

=  Xo  "  El     J exp[ß(5)]dC (ll-7a) 
V 

Q.(V   )   =  Q.   e 
i     s IO 

qV  /kT J    -qVo/kT dQi 
kT      Qio ldVs 

.   _a_ JL 
V   J 

o 

/ exp 

V 
- H + ß^nd5 '] >/ (II-7b) 

respectively, where 

= - J A(n )dn, (II-8) 

These solution equations provide the foundation for our calcula- 

tion of the volt-ampere characteristics for a MOSFET. 

2.2  interpretation of the Separation Parameter X(V ) 
 ——, __s 
In order to obtain explicit solutions from (II-7a) and (II-7b), 

it is necessary to establish the separation parameter X(V ).  From 
s 

(II-5b), the magnitude of this parameter is given by 

1 dQi 

1    Si 

1 - kT 
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A manipulation of (II-9), in combination with (II-l), yields 

Mvg) - diff 
kT  dV log 

fdQ./dx 
i 

e 1dV/dx (11-10) 

where I^-^--- is the diffusion component of the total current I . 
ditt u 

From (11-10), it is evident that the separation parameter 

X(V ) produces a modification of the proportions of drift current 

and diffusion current necessary to yield constant source-drain 

electric current at all locations within this semiconductor 

device. 
From our two-dimensional computer solution for this problem, 

it was found that X(V ) always attains a magnitude of q/kT in the 

limit of weak inversion.  From (11-10), this limit implies that 

all source-drain electric current is attributable to diffusion. 

Furthermore, from this computer calculation it was found that 

\(V ) can be adequately approximated by the first two terms of a 
s 

Taylor series expansion of (11-10) about a location near the 

source junction: 

X 
X(VS) = 1-A(V,-V ) s o 

(11-11) 

where X X(V ). Assuming that X(V ) approaches this same limit 
o s 

at the point of channel termination (where Vs = VG) we have 

A = 
l-(kT/q)X( 

(11-12) 

2.3 The Volt-Ampere Characteristics of a MOSFET 

From the implicit solution equations for V^ (xl and Q^Vg.) 

[(II-7a) and (II-7b), respectively] in conjunction with the approxi- 

mate relation for X(Vg), (11-11), we can readily obtain an expres- 

sion for the volt-ampere characteristics of a MOSFET.  From (II-7a) 

we obtain 

V = V + ^ 
S    O   A 

1 - 1 - (X0 + A)EoX 
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where E  is the magnitude of source-drain electric field at the 
o 

source end of this structure: 

E  = - o 
dVs 
dx x=0 

(11-14) 

In a similar manner, from (II-7b) we obtain 

q(V -V )/kT 
Q.(V)=Q.e  s 0   <1 
is    10 

!   M _i_ rh 
^Qio dVs V J o 

A /A 
Zo    exp(Zo] r(i + -|r z) - va + -~, z) 

A O A 

(11-15) 

where 

6o kT 
1 
A 

Z = Z. 1 - A(V -V ) 
S  O 

(II-16a) 

(II-16b) 

For the range of variables encountered in this boundary value 

problem, it was proposed that (11-15) could be adequately approxi- 

mated by the relation 

W *  Qio 1 - A(Vs-Vo) 
1VA 

(11-17) 

This system of equations has been constrained to yield a 

divergence free electric current.  Therefore, the magnitude of 

this current [from (1-1)], 

dV 
!„ - -WuQ. —3^- D    M i  dx 

kT _l^i 
q Qi ciVs 

(11-18) 

can be calculated at any location along the source-drain channel. 

Selecting for this calculation the source end of this structure, 

(11-18) has the form 

'dV 

^ = -^Qio  I dx 
1 - kT 1 dQ. 

i 

q Q.  I dV 1 w10 I   Si 
, (11-19) 

V J o 

. . . .■  



where V -V (0).  Substituting (11-14) into (11-19) yields 
o   s 

I  = WuQ. E D    M io o ^ Qio  dv
s 

(11-20) 

From (11-17) we obtain the relation 

dV, 
\  s' 

= " XoQio 
(11-21) 

Further, from (11-13) we have, upon recognizing that Vs-VD 

when x=L, 

E0 " (X0+A)L 
1 - 1 - A(VD-Vo) 

X +A o 
A (11-22] 

Thus,   after  substituting   (11-21)   and   (11-22)   into   (11-20),  we 

have an expression  for  the volt-ampere  characteristics of a 

MOSFET 

WyQio 
ID  "   (X0+A)L 1   +  ^ X^ q    o 

1  - 

_ X   +A o 

1   -   A(VD-Vo) 
,.    (11-23) 

It should be noted that (11-23) Contains only two unknown para- 

meters Q.  and X .  Both of these parameters arise at the source 

end of this structure where two-dimensional mechanisms are minimal; 

thus, these parameters can be evaluated on a one-dimensional basis. 

Before determining these paraneters, we fi.V. consider an 

application of (11-23) to the weak inversion mode of operation. 

From (11-12), as Xo - q/kT in weak inversion the parameter A becomes 

small and, therefore, (11-23) has the limit 

•  ,  .   2WDQio 
Lim (ID) - —L  

X  -> q/kT 

1 - e 
-q(VD-Vo)/kT (11-24) 
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Clearly, (11-24) shows an exponential saturation of the source- 

drain electric current with an increase of drain voltage.  Thus, 

from the concept of electric current continuity within the inver- 

sion layer of a MOSFET, we have an expression for current satura- 

tion in weak inversion that is in substantial agreement with both 

experimental observation and other recent theoretical studies [8,9] 

Further insight is gained from (11-24) if we consider the 

drain junction as a minority carrier (electron) sink-like the 

collector junction of a bipolar transistor.  Assuming Boltzmann 

statistics, the term {l-exp[-q(V -V )/kT]} in (11-24) is identical 

in form to the minority carrier sink offered by a reverse biased 

collect 

(11-24) 

collector junction.  In addition, when V,, >> V , we have from J Do 

2WDQ. 
ID = -1-ia . (11-25) 

In this situation I might be assumed a consequence of minority 

carrier diffusion from a source of magnitude Q.  to an ideal sink 3       IO 
that is located a distance L from this source. 

Thus, (11-23) contains all the qualitative requirements for 

the weak inversion mode of operation.  First, this expression 

shows that electric current saturation exhibits an exponential 

form in weak inversion.  Second, in weak inversion (11-23) pre- 

dicts that all source-drain electric current arises from d cfu- 

sion. 

2.4  The Saturation Mode of Operation 

Equation (11-23) and its weak inversion ixmit, (11-24), are 

applicable only when channel length L is a known quantity. This 

situation exists fcr triode mode operation. Assuming that elec- 

tric current saturation arises when we have channel termination 

[8]  M. B. Barren, Solid State Electronics, 1_5, 293 (197,2). 

[9]  R. M. Swanson and J. D. Meindl, IEEE  Journal   of  Solid-state 
Circuits, SC-7, 146 (1972). 
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(i.e., when V > Vr), the source-drain inversion layer maintains 

a total voltage of (VQ-V ) across its length in this mode of 

operation; however, the length of this inversion layer becomes a 

function of drain voltage and decreases with an increase of VD. 

Thus, in electric current saturation (11-23) has the form 

WyQ 
1Ü 

TD "   (X +A)L (VJ 
1 + *T A q  o 

1 - 1 - A(VG-Vo) 

\   +A ) o 
(11-26) 

where L (V ) is a voltage-dependent channel length. 

assuming that the substrate region of this MOSFET has a homo- 

geneous impurity atom density, we apply to this calculation the 

depletion layer theory of abrupt asymmetrical p-n junctions.  From 

this theory, the drain junction space-charge layer extension into 

the substrate is given by 

2K E 
2 _   s o 

MD = qN 
(11-27) 

A 

where N represents the substrate impurity ior density.  Further, 

li 

across a distance of AL, where 

from this depletion layer theory, we have a voltage drop of VD-VG 

AL = WD - 
2K e 

W2 s_o 
WD   qNA (W 

1/2 
(11-28) 

Thus, if we subtract this distance (AL) from the metallurgical 

source-drain channel length (L), we obtain 

W = L -K ~ 
2K e_ 

W2 s_o (v _v j 
D    qNn  ^VD VG; 1 (11-29) 

In current saturation, Lc(Vp) represents the electrical 

channel length across which we have a total voltage of (VQ-VQ). 

Thus, (11-26) in conjunction with (11-29) establishes the drain 

current when V > Vg. 
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2.5 Calculation of Q. 

Before (II-7b) and, hence, (11-23) can be used for a quanti- 

tative evaluation of the volt-ampere characteristics of a MOSFET, 

it is necessary to calculate a magnitude of Q. -the value of 

Q. at the source end of this semicu .  ;tor structure (where 

V =V ;.  From our rigorous computer calculations of MOSFET opera- 

tion, we know that electrostatic interactions between the gate 

and drain are at a minimum near the source junction.  For this 

reason, it is presumed that a one-dimensional calculation of 

inversion charge is applicable in this region. 

From elementary MOSFET theory, this inversion charge has the 

form [1] 

Q. (V ) = Qm-Q^ » -C  (V^-V„) + A^K £ qKLV   ,      (11-30) is    ^T  D     ox  G  s    ¥  s o^ A s 

where Q and Q represent total electrostatic charge and depletion 

charge, respectively, and where 

K . E 
C  E -i-O 
OX    t 

OX 
(11-31) 

represents the static capacitance of a gate oxide of thickness 

t  .  In a previous study [6], we showed that (11-30) neglects ox 
holes in establishing the depletion charge (Q ) and, as a result, 

(11-30) is inapplicable for the weak inversion mode of transistor 

operation.  Further, from this study [6], we have a revised 

expression for Q.(V ) applicable near the source junction for any 
X  s 

degree of inversion: 

(K_e 
Q, (vj = -c (v -v ) +Vr -f-SpI 

ox  G  s       '  D '• ^ 1  s 

-BV, 
+ BVS - 1 

1/2 

(11-32) 

In this expression, L is the extrinsic Debye length. 

L,. = 
K e kT s o 

T 1/2 

q2N A . 

(11-33) 
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it should be noted that (11-32) yields the magnitude of 
Qio = Qi(Vo) exPlicitlY in terms of Vo and implicitly in terms 
of VG.  From a one-dimensional solution of Poisson's equation at 
the source end of this structure [6], we have (11-34) 

-ßv 
+ ßVo - 1 -H 

'n 

N. 

ßV 
- 1 

1/2 

Clearly, this problem represents only a minor mathematical 
complication. 

2.6 Calculation of X 

In the present MOSFEL theory, source-drain electric current 

is given by (11-23).  This equation contains two unknown para- 

meters (Qio and X ) which must be evaluated in order to calculate 

this current.  In §2.5, we gave an expression, (11-32), which can 

be used to evaluate Qio.  Herein we will derive an expression for 

Xo,   the remaining parameter needed for calculating the source- 
drain electric current. 

To obtain an expression for A , we will utilize a general 

relation for A(Vs) given by (II-5b).  In addition, since 

^0 = ^(Vo) represents the magnitude of A(V ) at the source end 

of this semiconductor structure, we will use (11-32) to approxi- 

mate Qi(Vs) in this vicinity.  A substantial degree of mathe- 

matical simplification results if we neglect the term e 

this equation; thereby 

-3V. 
in 

W = -Cox'W +^ 
^s^ol/kT ßV - 1 s 

We can neglect this term when 

1/2 
(11-35) 

Vs >> (kT/q)[l-exp(-qVs/kT)] ,        (11-36) 

which is clearly the situation in all cases of practical interest, 
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From   (11-35),   by differentiating with respect to Vs,  we have 

dQ 1 
—i = c      + —^ 
dV_ ox 

s VT 
s o 

D 

kT 
q 

1/2 
Vs   " 

kT 
-1/2 

(11-37) 

d2Q. 

dV_ 2VT 

K  e 
s o 
LD 

kT 
q 

1I/2 v   - ^ 
S q 

-3/2 
(11-38) 

Substituting (11-35), (11-37), and (11-38) into (II-5b) and, 

thereafter, evaluating the result for Vs = Vo, we obtain 

X     = o 

c  + ^• ox (11-39) 

c  |v -v + ^ ox  Go    q 
2K e qN7V/(V^ - ^)| s o^1 A   o    q 

For V    >> •är  (kT/q) ,    (11-39)   has the approximate  form 
O 2 

X     = 
o 

C        +  t ox       2 
kT 

2K   e  qlL/(V    - ~) s  o^ A       o 5. 

1/2 

'ox [vG-vo^]-[vo-|(^l][-s^V<Vo-^ 
11/2   ' 

(11-40) 

where V is given implicitly by (11-34). 
o 

For the weak inversion mode, (11-34) has the approximate form 

V, V  + o 

V2< £ qN^V  - ££) s  o^ h    o    q (11-41) 
ox 

Upon substituting (11-41) into (11-40) and, thereafter, simpli- 

fying the result through straightforward algebraic manipulations, 

we obtain A  = q/kT.  Thus, our approximate expression for Xo 
yields the corrent magnitude for this separation parameter in the 

limit of weak inversian.  In §3.1, we demonstrate quantitatively 

that Eq. (11-40) provides a satisfactory approximation of Xo for 

any degree of inversion. 
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3.0 Model Evaluation and Refinements 

The original version of our model for MOSFET operation con- 

tained inadequate approximations for Qio and XQ  which rendered 

this model inapplicable to the weak inversion mode.  In a pre- 

vious study [6], we alleviated this difficulty by obtaining 

improved eipproximations and, thereby, we revised our model so 

that it would apply for any degree of inversion.  Therefore, at 

the start of the present research program, we initiated an exten- 

sive evaluation of our revised model for a variety of device 

structures and a wide range of applied bias voltages. 

We compared calculated volt-ampere characteristics from our 

model with rigorous two-dimensional computer calculations of these 

characteristics.  In this comparison, we obtained satisfactory 

agreement between our model and these computer calculations for 

a long channel structure (L = lOym) with lightly doped substrate 

(N = 2xl015cm~3) and moderately thin oxide (tox = 1000 A).  In 

contrast, we observed significant discrepancies between our model 

and these computer calculations for a structure with a more highly 

doped substrate (NA = 2xl0
15cm"3) and thicker oxide (tox = 2000 A). 

For this structure, our model over predicted the magnitude of 

source-drain current by approximately 50%, in the saturation region 

of these volt-ampere characteristics.  Further, this model also 

over predicted the magnitude of applied drain voltage required to 

produce electric current saturation in this structure.  During 

the present research we determined an important source of this 

error and, thereafter, revised our model to alleviate this diffi- 

culty.  In §3.1, we discuss the details of this rrvijion. 

In other calculations for weak inversion operation, we also 

observed disagreement between our model and our rigorous computer 

solution for MOSFET operation.  From these calculations, our model 

under predicted the source-drain current in this weak inversion 

mode.  A detailed study of this p-sblem revealed that our model 

contained an inadequate approximation for the distribution of 

inversion charge, Q.(V ), within the source-drain channel. 
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Further, we determined that the foregoing discrepancy in our 

volt-ampere expression resulted from an erroneous approximatxon 

for the slope of this inversion charge distribution, dC^/dV.,, at 

the source end of this structure.  This aspect of our model has 

been revised and we now obtain substantially improved agreement 

between our model and two-dimensional computer calculations of 

these volt-ampere characteristics,,  Details of this revision are 

discussed in §3.2. 

3.1 Electric Current Saturation _3 
For a long channel MOSFET (L = lOym) with 2x10  cm sub- 

strate doping and an oxide thickness of 2000 A, we observed a 

substantial discrepancy between our model and rigorous computer 

calculations for the strong inversion mode.  Briefly, our model 

over predicted both the drain voltage required to produce elec- 

tric current saturation and the magnitude of source-drain cur- 

rent in this saturation mode.  From (11-20), this discrepancy 

could arise from our calculation of Qio, Eo, or (dQ^dV^.  By 

checking these calculations against our computer solution, we 

determined that the foregoing discrepancy was produced by an 

error in our calculation of Eo. 
From (11-22), Eo is exceedingly dependent upon the parameters 

A  and A.  Therefore, it was assumed the error in our calcula- 

tion of E could be attributed to either an error in A or X0. 

Thus, we first undertook a detailed assessment of our approximate 

expression for X . 
in our theory for MOSFET operation, \o  represents the magni- 

tude of our separation parameter, X(Vs), at the source end of 

this semiconductor structure, 

qualitative form 

X  = o < 

Thus, from (II-5b), Xo has the 

fdQ, 
idV 

V 

Qio 
~  kT/dQi 
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where Q.  = Q.(V ).  In §2.6, we derived a quantitative relation 

for X     based ipon our revised one-dimensional approximations for 

Q.(V ° and its first two derivatives [(11-35) through (11-37), 

respectively].  To assess the adequacy of using these approxima- 

tions to calculate Xo, we made comparisons between (11-35)- 

(11-37) and a rigorous nonequilibrium solution of Poisson's 

aquation in one spatial dimension (see Appendix A). 
These comparisons are illustrated in Figs. II-2 and II-3, 

for strong inversion operation, and in Figs. II-4 and 11-5, for 

weak inversion operation.  From Figs. II-2 through II-5 we have 

satisfactory agreement between our approximations for Qi and for 

dQ /dV and this rigorous one-dimensional solution of Poisson's 

eqiation.  Moreover, in Figs. II-3 and II-5, we have a qualita- 

tive illustration that good agreement is attained between our 

approximation for d^/dV^ and this rigorous solution.  Thus, 

from the foregoing discussion, we would not expect our approxi- 

mate expression for Xo [(11-40)] to produce a significant error 

in our volt-ampere calculation. 
We next sought to check the adequacy of our expression for 

the parameter A.  From §2.2, the separation parameter, X (V.,) , 

always attains a magnitude of q/kT in the limit of weak aver- 

sion operation.  In the Kennedy MOSFET theory, the parameter A 

was evaluated by assuming X(Vs) - q/kT at the point of channel 

termination (where Vs=VG).  This assumption implies that we have 

a transition between strong inversion operation (at the source 

end of this structure) and weak inversion operation (at the 

drain end) near this point of channel termination.  If, instead, 

this transition takes place at some other location between the 

source and drain (where V^) , our expression for the parameter 

A [(11-12)] would be in error. 15  _3 
For structures with lightly doped substrates (NA = 2x10 cm ) 

and relatively thin oxides (t^ = 1000 A), our computer calcula- 

tions showed that this transition into weak inversion does take 

place near the point of channel termination.  In contrast, ^xmi- 

lar computer calculations for structures with NA > 10 cm  and 
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Figure 11-2. Calculated inversion charge distribution in a 
MOSFET for strong inversior operation. 
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Figure   II-4 Calculated  inversion charge distribution  in a 
MOSFET  for weak  inversion operation. 
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t  - 2000 A showed that this transition can take place prior to 

channel termination.  Prom the foregoing discussion, X(V.J attains 

a magnitude of q/kT in the limit of weak inversion; however, this 

limit is attained at a magnitude of Vs that is less than VQ.  Thus, 

we have an error in our expression for the parameter A (11-12). 

At present, we have no rigorous analytical method to calcu- 

late V at this transition into weak inversion.  However, from 

our one-dimensional solution of Poisson's equation (Appendix A), 

the electron density at the oxide-semiconductor interlace becomes 

negligible when Vs attains a critical magnitude, Vsc, given by 

(11-43) 

Vsc = VG - 
ox   ( 

2C ox 
K e qN, s o^ A 

V„ - 

As a first order approximation, we presume X(Vs) *  q/kT when 

V V  .  Therefore, from (11-11) 
sc 

A = 
1 - (kT/q)X( 

v  =\r sc o 

(11-44) 

It should be noted that this modification of our model 

(11-43) does not alter the qualitative form of our expression 

for E  (11-22) nor that of our volt-ampere relation (11-23). 

Howe/er, for the saturation region of these volt-ampere charac- 
-.    iTT   o^-f 11-29) with the following equations teristics, we replace (11-26) Ui ^i   WJ-1-" 

WyQ 
IO 

ID " Uo+A)Lc(VD) 
1^^113 - 

W, 2 _ 

l-A^sc-V 

2K e s o 
qN. V D 

A >  (11-45) 

(11-46) 

AL = WD - W 2 _ 
2K e 
 s_£ (v -V  ) 
qNA 
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L (V^) = L - <Wn - 
2K e_ 

W2 S_0  (V -V  ) 
D    qN^  v D  sc 

1/2 
(11-48) 

where V  and A ak given by (11-43) and (11-44), respectively. 

With these revisions in'our model [ (11-44)~fIT-48)], we 

obtained improved agreement with our computer solution, for the 

device under consideration.  Specifically, the discrepancy in our 

volt-ampere calculation was reduced from 50% to approximately 5%. 

3.2 Weak Inversion Operation 
in weak-inversion mode calculations, we found an additional 

discrepancy in our model for M05FET operation: oar  approximate 

expression for Q^VJ ,    ^'^i   was found in error, when compared 

with rigorous computer calculations of this inversion charge 

distribut -on.  Moreover, because we used this incorrect expression 

to calculate the term (dQ./dV^ in our volt-ampere relation 

[see §2.3], we also have a discrepancy in our calculation of the 

source-drain current in weak inversion. 

It should be noted that the term (dC^/dV^ is evaluated 

at the source end of this semiconductor structure.  Therefore, 

we can calculate this term using our one-dimensional approxima- 

tion, (11-37).  Substituting (11-22) into (11-20), our volt- 

ampere relation now has the form 

^Qio 
■"■D " (X +A)L 

kT _1_ 
q Q- H  vio 

dQ. 

dV. 
'V o 

<1 1 - A(VD-V0) 

X +A o 

(11-49) 

where (dC^/dV^ is given by (11-37). 
o 

Using (11-49) we again calculated these volt-ampere charac- 

teristics for weak inversion operation and compared these charac- 

teristics with those calculated from our two-dimensional computer 

program.  We obtained substantially improved agreement between 

these two calculations as a result of the foregoing reviso-on. 
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4.0  Conclusions 
An evaluation of our previous theory for MOSFET operation 

revealed discrepancies in both the strong and weak inversion modes 

of operation.  We have identified the factors producing these 

errors and have initiated appropriate revisions in our model. 

During the next quarter, we plan to complete these revisions and 

resume our evaluation of this model.  In addition, we plan to 

make a comparative study between this model ^nd elementary MOSFET 

theory.  From this comparison, we aim to demonstrate the super- 

iority of our model for application to the design and develop- 

ment of MOSFET structures. 

5.0  List of Symbols 

C        capacitance of gate oxide 
ox 

D        electron diffusivity in a MOSFET inversion layer 

11 magnitude of source-drain electric field at source 
0 end of a MOSFET channel 

E        gate-induced electric field 
Y , * E        E at oxide-semiconductor interface 
ys       y 

I        source-drain electric current in a MOSFET 

I .ff    diffusion component of ID 

kT/q     thermal voltage (.0259 volts at T = 300oK) 

L        source-drain distance in a MOSFET 

L        voltage-dependent channel length in a MOSFET 

L extrinsic Debye length in semiconductor substrate of 
D a MOSFET 

n electron density in semiconductor material 
n. intrinsic carrier concentration in semiconductor 
i 

n s 

n 

material 
magnitude of n along oxide-semiconductor interface 

nonequilibrium electron density :.n charge neutral 
1 semiconductor substrate 

NA 
acceptor impurity ion density in 5,emiconductor substrate 

p        hole density in semiconductor matfirial 

p        nonequilibrium hole density in charge neutral semi- 
^        conductor subatr^te 
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J 

q        electronic charge 
0 inversion charge in semiconductor substrate 
^i 
O magnitude of Q. at source end of a MOSFET channel 
vio 1 

t_       gate oxide thickness 

electrostatic potential (referenced to charge-neutral 
regions of semiconductor substrate) 

applied drain-source biasing voltage 

applied gate-source biasing voltage 

magnitude of V at which n = ni 

magnitude of V at source end of a MOSFET channel 

ox 

V 

VD 

VG 

Vi 

V o 

V 

Ks 

surface potential in a MOSFET (electrostatic potential 
3 at oxide-semiconductor interface) 

W        width of a MOSFET 

W       drain depletion layer width 

x       distance from source towards drain, parallel to oxide- 
semiconductor interface 

v       distance from semiconductor surface into substrate, 
perpendicular to oxide-semiconductor interface 

y.       magnitude of y at which n = n^^ 

ß (kT/q)"1 

permittivity of free space 

relative dielectric constant of gate oxide 

relative dielectric constant of semiconductor substrate 

Separation parameter in our model for MOSFET operation 

magnitude of X at source-end o^: a MOSFFT channel 

electron drift mobility in a MOSFET inversion layer 

electrostatic charge density within semiconductor 
substrate 

electron quasi-Fermi potential in semiconductor sub- 
n strate 

4,       hole quasi-Fermi potential in semiconductor substrate 

e 

Ki 

X 

X o 

y 

p 
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F. A. Lindholm 
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Chapter   III 

Equivalent Circuit Studies 

Professor F. A. Lindholm; 

Graduate Student, J. I. Arreola 

The transient computer simulation of large-signal MOSFET 

circuits can disagree sharply with observed behavior.  Hence the 

equivalent-circuit models used to represent MOS transistors in 

network form deserve scrutiny for possible inadequacies.  In the 

present effort, we are examining three defects of present-day 

models in the representation of the internal device physics, 

seeking to set down a basis for removing these defects. 

We identify the three defects in present-day models as 

follows: 

(a) inadequate representation of the MOSFET as a four-terminal 

device; 

(b) inadequate inclusion of the effects of the two-dimensional 

(and three-dimensional) configuration of flux lines present, 

particularly in short-channel structures; and 

(c) inadequacy of the quasi-static approximation, which under- 

lies all models in cotswon use for computer circuit simula- 

tion. 

In relation to (a) ana (b), we have developed a methodology 

yielding network representations that include elements to account 

for four-terminal behavior and for multi-dimensional effects 

during transients.  Because of basic asymmetries in the device 

structure, "capacitive" currents associated with the accumula- 

tion of mobile carriers within the MOSFET require in the network 

representation circuit elements in addition to capacitors.  By 

applying the methodology to a particular physical model of the 

MOSFET, we have shown that appreciable errors can potentially 

result from use of an all-capacitor model.  This work is now being 

refined and extended, and is meant for publication in the final 

report. 
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in relation to the defect labeled (c) above, we have developed 

a test for the self-consistent validity of the quasi-static 

approximation that is easily implemented in circuit-analysis pro- 

grams.  A detailed reporting of this work now follows. 

A SELF-CONSISTENCY TEST FOR DEVICE MODELS IN 

TRANSIENT COMPUTER SIMULATION OF LARGE-SIGNAL 

CIRCUITS 

(F, A. Lindholm) 

1.0  Introduction 
From a fundamental standpoint, the analysis of such semicon- 

ductor devices as MOS and bipolar transistors is based on a set 

of differential equations [1] which express relationships among 

currents, mobile-carrier concentrations, and potential.  In the 

full generality needed to describe large-signal, dynamic response, 

analytic solution of these equations, without approximations, has 

proven to be intractable.  Even by computer, solutions subject to 

the appropriate boundary conditions are done only with great 

difficulty.  Hence, to simplify treatment of these basic equations, 

various methods of approximation have evolved. 
Among these is the guasi-static approximation.  In this 

method, one first omits all time-dependent terms appearing in 

the basic equations.  Analytic solution then becomes possible if 

various additional approximations are employed.  This solution 

yields expressions relating the currents and charge components 

within the device to the boundary conditions, for example, to 

the terminal voltages.  In a strict sense these expressions apply 

only if the boundary conditions are time-invariant.  To obtain an 

approximate solution if the boundary conditions vary with time, 

one makes the quasi-static approximation that the expressions 

hold in general, despite departures from the dc steady state. 

[1]  W. Shockley, Bell   System   Tech.   J., 28, 435 (1949). 
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Because of their origin in conventional device analysis, all 

device models commonly used in the computer-aided analysis of 

bipolar and MOS circuits depend for their validity on the quasi- 

static approximation.  Based on this premise, we develop here a 

test for the self-consistent validity  of  device models that is 

easily implemented in circuit-analysis programs. 

The self-consistency test to be developed applies both to 

MOS and bipolar transistors, and, indeed, to other devices as 

well.  Use of the concept of the ideal charge-control model, 

extended appropriately, enables a development in this generality, 

and with this subject the rest of the paper begins.  Using the 

extended ideal charge-control model, we then develop the test for 

self-consistency and unify alternative views of its meaning. 

Emphc.sis is given to the extrinsic as well as to the intrinsic 

device, and to various nonidealities that distinguish the behavior 

of actual devices from that of the ideal charge-contrpl model. 

Application of the test developed here to a practical MOS 

NAND gate demonstrates marked violations of self-consistency over 

appreciable intervals of time [2].  These violations motivate the 

comments with which we conclude the paper, about various methods 

for improving models to remedy self-inconsistency. 

2.0 Self Consistency 

In conventional device analysis, one of the additional 

approximations referred to earlier involves dividing the device 

into extrinsic  and intrinsic  parts, as Fig. III-l illustrates. 

The self-consistency test to be developed will apply to both of 

these parts.  We begin with intrinsic device. 

2.1 Self Consistency from Extended Ideal Charge-Control Model 

for Intrinsic Device 

The charge-control viewpoint was first applied to restricted 

types of devices:  to photoconductive devices [3] and to junction 

[2]     D. L. Fräser, Jr., and F. A. Lindholra, "Violations of the 
Quasi-Static Approximation in Large-Signal MOSFET Models," 
to be published. 

[3]  A. Rose, "La Photoconductivite," L'Onde Klectrigue, 34, 
64 5-651 (1954). 
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(b) 
Fig. IH-UAlllustrating the division i^o intrinsic and extrinsic 

devices for:  (a) MOSFET, and (b) bipolar transistor. 
The dotted boxes enclose the intrinsic structures. 
(Not to scale.) 
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transistors [4].  In 1959, however, Johnson and Rose [5] and 

Middlebrook [6] introduced charge control as a means for unifying 

the charactfirization of many different kinds of electronic devices. 

It is this unifying attribute that we exploit here, together with 

the property that charge control is rooted in the quasi-static 

approximation. 

Earlier work will guide our treatment.  Previous presentations 

and applications of charge control do not satisfy our needs for 

assessing self-consistency, however, partly because most earlier 

workers concentrated on small-signal, amplifying applications, 

partly because th_y restricted consideration only to the intrinsic 

device, and partly for other reasons that will become plain as 

our treatment progresses. 

Following others [5,6], we begin by considering the generell 

three-terminal, electronic device pictured in Figure III-2.  This 

is a charge-control device, which means that the basis of its 

operation involves the current i2i flowing between  terminals 1 

and 2 being controlled by the charge Q3 placed at terminal 3. 

For this device, we isolate the essence of operatior through 

introduction of an ideal   charge-control   model   defined by the 

following properties: 

(a)  The current iai flowing between terminal 1 (source or emit- 

ter, for example) and terminal 2 (drain or collector, for 

example) is the ratio of a controlled charge Q2i of mobile 

carriers within the device to the mean transit time t2i 

needed for these carriers to move between these two terminals. 

Hence, 

i.i = Qzi/tz!     . (III-l) 

[4]  J. J. Sparkes and R. Beaufoy, Proc.   IRF ,   4_5, 1740 (1957); 
ATE  J.,   12, 310 (1957) . 

[5]  E. 0. Johnson and A. Rose, Proc. IRE,   47^, 407 (1959) . 

[6]  R. D. Middlebrook, Proc. IRE,   106, Part B, Suppl. No. 17, 
887 (1959). 
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(b) The controlling charge Q3 associated with terminal 3 (gate 

or base, for example) exercises total control over the con- 

trolled charge according to 

dQ2i = -dQs . (III-2) 

(c) The current is flows only to change the charge Q3 placed 

there.  Thus, 

i3 = Q3 , (III-3) 

where the dot notation designates time differentiation. 

In all devices, property (a) is an idealization, valid in 

a strict sense only in the dc steady state, but extrapolated to 

apply at each instant during transients by use of the guasi-static 

approximation.  Property (b) is an idealization for most devices 

in that Q3 only partially controls Q21.  For example, in an MOS 

transistor, some of the flux lines starting from gate charge may 

end on depletion charge rather than on the charge of mobile 

carriers in the channol.  As another example, in a short-channel 

MOS transistor, the two-dimensional (or three-dimensional) con- 

figuration of flux lines in the insulator and in the semicon- 

ductor may invalidate the full control expressed in (III-2) . 

Similar violations of (III-2) occur in bipolar transistors and 

other devices.  Property (c) is an excellent approximation for 

some devices; an example is the MOS transistor.  For the bipolar 

transistor, however, it is an idealization because the base fails 

to retain all of the charge Qs placed at its terminal.  Net 

recombination, for instance, occurring within the device or at 

its surfaces or contacts, requires a component of is in addition 

to that expressed in property (c). 

For the purposes of this paper, however, these nonidealities 

are inconsequential.  As we shall see for the bipolar and the MOS 

transistor, formulation of a test for self-consistency of the 

quasi-static approximation can be based on straightforward exten- 

sions of the ideal charge control model defined above. 

To specify the network representation of the ideal charge 

control model, consider first the simple case in which terminal 

2 acts as the sole collector of the transport current iji.  This 
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corresponds to a first-order approximation of forward-active 

operation for the bipolar transistor and of pinch-off operation 

for the MOSFET.  For this case, the properties defined by (III-l) 

through (III-3) imply the network representation of Fig. Ill-3(a), 

in which chain-rule differentiation applied to (III-3) gives for 
the capacitance: 

9Q: 
■3 1 9v 3 1 

9021 

"9V3 1 
V32 

(III-4) 

V32 

Fig. III-3(a) represents the large-signal transient response, in 

contrast to the small-signal representations of Johnson and Rose 

[5] and Middlebrook [6]. 

Some circuit applications reverse the roles of terminals 1 

and 2, with terminal 1 becoming the sole collector of the current 

izi, as in the inverse-active operation of ehe bipolar transistor. 

This corresponds to the network representation of Fig. III-3(b), 

with 

9Q: 
■3 2 - 3v 3 2 

3Q2i 

3V32 

Vsi 

(III-5) 

V31 

In the most general case, terminals 1 and 2 both collect and emit 

the transport current in,   as in the saturated mode of the bipolar 

transistor and the non-pinch-off mode of the MOSFET.  Thus the 

general network representation of the ideal charge-control model, 

extend-.d  to  apply for large-signal applications and to account 

for the dual roles of terminals 1 and 2, derives from a parallel 

combination of Figs. III-3(a) and III-3 (b) .  The general netxi?ork 

representation appears in Fig. III-3(c).* 

Rather than the plausibility argument given, one can derive 
the network representation of Figure III-3(c) by more strict 
reasoning.  This representation follows from chain-rule differ- 
entiation of (1II-3) joined with the implication of (III-2) 
that all flux lines of Coulomb force associated with the control 
of Qai by Q3 must contact terminal 3 (none link terminals 1 and 
2). 
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Fig. III-3. ^Illust mating the development of the 
general network representation, shown 
in (c), of the extended ideal charge- 
control model.  It approximates the 
behavior of the intrinsic  part of 
MOSFETs, bipolar transistors, and other 
charge-control devices. 
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In this network, the circuit elements all are functions of 

the device make-up and the terminal voltages and currents.  The 

particular functional dependencies that apply result from the 

details of the physical modeling used to characterize the charge 

Q2i and the transit time tzi.     For example, the Ebers-Moll model 
[7] implies 

qn?W 
Q21 - -gi-^ exp(qVBE/kT) and t21 « W*/2DB     (111-6) 

B 

for the bipolar transistor in the forward-active mode; and the 

simple square-law characterization [8,91 for light substrate 

doping implies 

Q21 - (2/3)CoZLVGS and t21   « (4/3)L2/yVGS       (III-7) 

for the MOSFET in pinch-off operation.  Here q denotes the elec- 

tron charge; n., the intrinsic carrier density; VL., the quasi- 
1 u 

neutral base thickness; D-« the diffusivity of minority carriers 

in the base; kT/q, the thermal voltage; V-.^,, the base-emitter 

voltage; C , the gate oxide capacitance per unit area; y, the 

mobility in the channel; V__, the gate-source voltage; L, the GS 
channel length, and Z its width. 

Self-Consistency Criteria:  As was noted, the ideal charge-control 

model of Fig. III-3(c) is based on the quasi-static approximation. 

Because this approximation is exact in the dc steady state, we 

take the following as the criterion for self-consistency: that 

the   configuration   of  current   flow  in   the   network   representation 

during   transients   must   correpond   to   only   a   small   perturbation   of 

the  configuration   existing  in   the   dc   steady   state.     Hence, from 

Fig. III-3(c), the criterion is: 

[7]  J. J. Ebers and J. L. Moll, Proc.   IRE,   42, 1761 (1954); 
J. L. Moll, Proc. IRE,   42, 1761 (1954). 

[8]  C. T. Sah, IEEE   Trans.   Electron   Devices,   ED-11, 324 (1964). 

[9]  F. A. Lindholm, IEEE  J.   Solid-State   Circuits,   SC-6, 250 
(1971); and SC-7, 322 (1972). 
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C31V31       +       Ci2V.82 

121 

<<   1   , (III-8) 

or, in more general notation, the merit of which will be seen 

later. 

C, v., 

  << 1 , (III-9) 
Q2l/t21 

where j=3 for the MOSFET of Fig. III-l(a).  Expressions (111-8) 

and (III-9) constitute necessary and sufficient conditions for 

self-consistency.  As we shall see, they form the basis for a 

self-consistency test that can oe implemented in computer pro- 

grams for circuit analysis. 
Viewed from another standpoint, we see that a consistent 

but less demanding necessary condition is 

IQSI      _    |Q2i| 
■   '   JL—:— "  ■   '   TT—r « 1 . (iii-lO) 
|Q2l/t2l|       |Q2l/t21| 

iwt 
Let the applied excitation make Q21 vary in proportion to e 

Then (III-10) becomes 
Uitzi   «   1 , (III-ll) 

which implies self-consistency with the quasi-static approxima- 

tion provided the period of the applied signal much exceeds the 

transit time of the mobile carriers. If this holds, the mobile 

carriers can spatially distribute themselves fast enough to 

assume essentially the same relation to the boundary conditions 

as exists in the dc steady state. 

The self-consistency criteria just developed have followed 

from the assertion that the quasi-static approximation is exact 

in the dc steady state.  Despite the intuitive appeal of this 

assertion, and although it has been advanced by others, the 

recent observations of Cherry [10] , and the earlier ones of 

Macdonald [11], about capacitance indicate that it is not strictly 

[10] E. M. Cherry, IEEE   Trans.   Electron   Devices,   ED-18, 1166 
(1971). 

[11] J. R. Macdonald, Solid-state Elec,   5,   11   (1962). 
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true.  From a practical standpoint, no change in our conclusions 

results, however, from regarding the quasi-static approximation 

as exact in the dc steady state.  The device models we consider 

consist of controlled sources and resistors, which represent the 

flow of conduction current, and other circuit elements [12], 

usually capacitors, which represent capacitive effects.  That the 

magnitude of the capacitors calculated by quasi-static analysis 

may be in error, even for arbitrarily low frequency of excita- 

tion, does not affect our conclusions, because at such frequencies 

the currents flowing through these capacitors are most often 

negligible relative to the conduction currents.  That the magni- 

tude of these quasi-static (or charge-control) capacitors may be 

in error at higher frequencies contained in the excitation like- 

wise does not affect our conclusions.  Rather it influences only 

the strength of the inequalities appearing in such expressions 

as (III-9). 

Effect of Nonidealities on Self-Consistency Criteria:  The cri- 

teria expressed in (III-8) and (III-9) are based on the ideal 

charge-control model, which provides only a first-order approxi- 

mation to the performance of actual devices.  Nonetheless, these 

criteria stay valid in the presence of commonly occuring non- 

idealities, as we shall now show. 
There are several kinds of such nonidealities.  Consider 

first the kind that arises from net recombination or generation 

occurring within the intrinsic device.  The drain current of the 

MOS transistor, for example, can increase its rate of growth with 

increasing drain voltage because of avalanche multiplication of 

[12] F. A. Lindholm and J. I. Arreola, "Network Representation of 
the Large-Signal Transient Response of MOS Transistors, 
Late News   Supplement   of   1975   Int.   Electron   Devices   Meeting, 
paper 11.8, p. 6 (1975); and "Network Representation for 
Self-Consistent Transient Response of Electronic (and other) 
Devices, Including Multi-Terminal Effects," 7th Annual 
Pittsburgh   Conference   on   Modeling   and   Simulation,    (April 
1976). 
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mobile carriers—a form of net generation.  One must account for 

this nonideality in the modeling of the mobile charge, Q21, and 

of the (effective) transit time, t21; but the network representa- 

tion remains that of the ideal charge-control model shown in 

Fig. III-3(c).  Hence the self-consistency criteria of (III-8) 

and '(III-9) remain valid for a three-terminal model of the MOSFET 

despite the occurrence of avalanche multiplication.  The same 

conclusions hold for net recombination or generation in a MOSFET 

that arises from other processes, such as thermal emission or 

capture of carriers, provided the resultant current flowing in 

the dc steady state to the substrate is negligible. 

In contrast, net generation or recombination in a bipolar 

transistor requires the addition of controlled current sources in 

parallel with each capacitor in the network representation of 

Fig. III-3(c).  The time constants normally associated with these 

sources will differ markedly from the transit time for mobile 

carriers.  From a practical viewpoint, however, except for opera- 

tion near avalanche breakdown, the additional sources will carry 

small current relative to that of source i21, and the self-con- 

sistency criteria for the quasi-static approximation remain as 

we have stated the.n. 
In a previous section, we discussed a second kind of non- 

ideality that arises because the controlling charge Q3 fails to 

e>ercise full control over the controlled charge Q21.  One must 

attend to this nonideality in modeling the charges and the tran- 

sit time; but, again, it affects only the functional dependencies 

of the circuit elements in the network representation of Fig. 

III-3(c), rot the representation itself.  Hence, this kind of 

nonideality also requires no change in the self-consistency 

criteria for a three-terminal model of device behavior. 
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Indeed, all three-terrainai large-signal device models for 

the intrinsic bipolar transistor [4,7,13-27] or MOSFET [9,27-35] 

commonly used in computer-aided circuit analysis conform to the 

network representation of the ideal charge control model of 

[13 

[14 

[15 

[16 

[17 

[18 

[19 

[20 

[21 

[22 

[23 

[24 

[25 

[26 

[27 

[28 

[29 

[30 

J. Logan, fleli System   Tech.   J.,   50, 1105 (1971) 

H. K. Guminel and H. C. Poon, Bell   System   Tech.   j., 
(1970). 

D. J. Hamilton, F. A. Lindholm, and J, i 
239 (1964). 

4^, 827 

Narud, Proc.   IEEE. 

C. Rosenberg, D. S. Gage, R. S. Caldwell and G. H. Hanson, 
IEEE Trans. Nucl. Sei. (Special Issue on Nuclear Radiation 
Effects   Conference),   NS-10, 149 (1963). 

J. G. Linvill, Proc.   IRE,   46, 1141 (1958). 

L. D. Miliman, W. A. Massena, and R. H. Dickhaut, "CIRCUS, 
digital computer program for transient analysis of electronic 
circuits - user's guide," Harry  Diamond   Lab.,   Tech.   Rep., 
346-1, Jan. 1967. 

J, G. Bowers and S. R. Sedore, SCEPTRE: A Computer Program 
for Circuits and Systems Analysis. Englewood Cliffs, N.J.: 
Prentice-Hall, 1971. 

A. F. Malmberg, ,,NET-2 network analysis program - prelimi- 
nary user's manual," Harry  Diamond   Lab.,   Tech.   Rep.,   May 
1970. 

T. E. Idleraan, F. F. Jenkins, W. J. McCala and D. 0. Pederson, 
IEEE  J.   Solid-state   Circuits   (Special   Issue   en   Computer-Aided 
Circuit   Analysis   and   Device   Modeling),   SC-6, 188-203 (1971). 

B. R. Chawla, ibid., (Corresp.), SC-6, 262-264 (1971). 

J. G. Fossum, Proc.   IEEE   (Lett.),   6£, 756 (1972); IEEE   Trans. 
Electron   Devices,   ED-20, 582 (1973). 

F. A. Lindholm, Transistor Circuit  Models,   Solid-State 
Materials and Devices, Final Rep. AFCRL-TR-7',-0044, 1974. 

F. A. Lindholra, IEEE   Trans.   Circuit   Theory,   CT-18, 122 (1971). 

P. Rohr and F. A. Lindholm, IEEE  J.   Solid-State   Circuits, 
SC-10, 65 (1975). 

See the categorized bibliography: A. H. Agajanian, solid- 
state  Electronics,   18^, 917 (1975) . 

H. Shichman and D. A. Hodges, IEEE J. Solid-state circuits, 
SC-3, 285 (1968). 

D. Frohman-Bentchkowsky and L. Vadasz, ibid.,   SC-4, 57 (1969). 

D. J. Hamilton, F. A. Lindholm, and A. H. Marshak, Principles 
and Applications   of  Semiconductor   Device   Modeling,   Holt, 
Rinehart and Winston, Inc., New York, 1971, Ch. 5. 
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Fig. III-3(c), provided only that current sources are included 

to account for net recombination and generation in the bipolar 

transistor.  The basic differences among the various models in 

common use occur in the functional dependencies of the circuit 

elements in the network representation.  Apparent differences 

are suggested by the fact that circuit configurations other than 

Fig. III-3 (c) are widely employed to represent the bipolar tran- 

sistor; the transport Ebers-Moll configuration [13] , is one 

example.  However, a simple network transformation will change 

any of these into the circuit representation of the ideal 

charge-control model, modified, as we have stated, by the addi- 

tion of a current source in parallel with each capacitor [24]. 

In MOS transistors, there is another kind of nonideality of 

central importance. Manv large-signal circuit applications cause 

the potential of the substrate to change with time, rapidly some- 

times, relative to the potentials of the source or gate or drain. 

Hence the potential, or charge, associated with the substrate can 

influence the charge Q21 of mobile carriers in the channel. 

This necessitates an extension of our previous view of a 

charge-control device and of the ideal charge-control model.  The 

extension is straightforward.  To the device pictured in Fig. 

III-l add terminal 4 to represent the substrate, and regard this 

terminal as another gate capable of influencing Q21.  Then the 

ideal charge-control model for the resulting four-terminal device 

involves these extensions of its defining properties: 

[31] J. E. Meyer, RCA  Review,   321, 42 (1971). 

[32] R.S.C. Cobbold, Theory and   Applications   of   Field-Effect 
Transistors,   Wiley, New York, 1970, Ch. 8. 

[33] G. A. Armstrong and J. A. Magowan, Electronics   setters,   ]_, 
282 (1971). 

[34] J. J. Kalinowski, Proc. IEEE,   e0_,   1000 (1972). 

[35] F. S. Jenkins, E. R. Lane, W. W. Lattin, and W. S. Richardson, 
IEEE   Trans.   Circuit   Theory,   CT-20, 649 (1973). 
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Property (b) and (111-2) become 

äQzi   = -dQs + dQ^ . (III-21) 

Property (c) and (III-3) become 

is = Qs and i., = Qi» . (111-3') 
Property (a) and (III-l) remain unchanged. 

Thus the reasoning we have followed using the three-terminal 

model and the conclusions derived from it apply equally when the 

fourth terminal must be taken into account.  In particular, the 

se3f-consistency criterion for the quasi-static approximation 

expressed in (III-9) still holds if one extends the meaning of 
the notation so that 

I 
rJn—7=  «   1 (111-9') Q2l/t21 

indicates the self-consistent validity of the quasi-static 

approximation, with  j  =  3  and  4.     Here, the C.. 's designate 

capacitors others [31-35] have used to represent capacitive 

effects occurring in the four-terminal MOSFET. 

Because of the asymmetries in physical structure present 

in the MOSFET, however, capacitors alone cannot completely repre- 

sent these effects [12].  For broadest applicability of the 

criterion expressed above, therefore, one should interpret the 

terms in the numerator of (111-9') as designating the time-rate 

accumulation, within the device, of the components of mobile- 

carrier charge, by whatever circuit elements are needed to 

represent this accumulation.  For the network representations of 

four-^rminal behavior now used widely for circuit ai alysis [31, 

32,35], however, a literal interpretation of (III-91) applies: 

that is to say, the C^'s denote capacitors. 

2.2 Model for the Extrinsic Device 

The division shown in Fig. (Ili-l) determines that the 

intrinsic part is a charge-control device, whose behavior is 

approximated by properties of (III-l) through (III-3) given in the 

previous section.  On the other hand, this same division deter- 

mines that the behavior of the extrinsic part will not depend on 
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charge control.  For example, the number of mobile  carriers con- 

tained within the source or drain islands of a MOS transistor is 

fixed to a good approximation by the resistivity of these regions, 

independently of the charges associated with the terminals 

bordering the regions.  Hence the modeling of the extrinsic device 

follows a different scheme than that described for the intrinsic 

device, which requires approximate solutions for the dc steady 

state of the basic differential equations [1].  The scheme for 

the extrinsic structure depends on intuitive reasoning, and much 

of the modeling is done by inspection [9].  As we shall see, 

however, the self-consistency criterion for the extrinsic part 

greatly resembles the criterion we have already developed. 

Because treatment of the extrinsic part cannot be unified 

in the framework of the charge-control model, extrinsic network 

representation will depend strongly on the details of device 

structure.  Even within one category of device—THE MOSFET, for 

example—differing structure may require differing network 

representation; and, typically, the representations for the MOS 

and bipolar transistors will be highly dissimilar.  For concrete- 

ness, therefore, we shall restrict discussion here to one type 

of device:  the enhancement-mode MOSFET indicated in Fig. (III-l). 

Nonetheless, the line of ar^Wteiit we shall follow, and the general 

statement of the self-consistency criterion deriving from it, are 

meant to apply widely:  to the bipolar transistor and to other 

devices as well. 
Consider first the dc steady state.  The dominant process 

occurrirg within the extrinsic M03 transistor is the conduction of 

current through resistive material; and we model tins, to the first 

order, by the three resistors connecting intrinsic terminals to 

actual terminals shown in Fig. (III-4). 

Consider now the transient response.  In addition to conduc- 

tion, capacitive effects also occur, arising from the overlap of 

the gate metal above the source and drain islands and from the 

pn junctions of these islands.  Because the capacitive effects 

are distributed, RC transmission lines, with nonlinear capaci- 
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Fig. III-4 . j,one possible network represcnLation 
of the extrinsic part of the MOS 
transistor pictured in Fig. 1. 
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tances representing the pn junctions, offer a refined approxima- 

tion of the behavior.  From a computational standpoint, however, 

they pose such severe difficulties in circuit analysis that one 

resorts to coarser approximations [9]:  for instance, the lumped 

circuits of Fig. III-4,   consisting of one resistor and two 

capacitors.  A further reduction to a two-element circuit, gained 

by letting the resistor have zero value, may additionally simplify 

computation [2]. 
Thus the model of Fig. III-4 for the extrinsic device comes 

from approximating a distributed network by a lumped network. 

This is a guasi-static approximation,   which is exact in the dc 

steady-state.  Therefore, as for the intrinsic part, we take the 

following as the self-consistency criterion for tha network 

represertation of the extrinsic device: that   the configuration  of 

current   flow  in   the   network   representation   during   transients   must 

correspond   to   only   a   small   perturbation   of   the   configuration 

existing  in   the  dc  steady   state.     Hence, from Fig. III-4, the 

criterion is 

r 

^GS'^GS'l + ^S'B^S'B' <<  1     (111-12) 

^SS^SS' 

for the network representation of the source island.  An analo- 

gous criterion applies for the drain island.  If more circuit 

elements are used to approximate the distributed line, the same 

criterion holds, with (111-12) now interpreted as applying to 

each three-element section of the network representation. 

2.3  Sell-Consistency Test 
A circuit whose behavior is to be simulated by computer may 

involve many devices, each of which may have a network represen- 

tation composed of the models described here for the extrinsic and 

intrinsic parts.  It is routine in the simulation to compute the 

current in each branch of the network representations at each 

time step in the computation.  Inserting the values of these 

currents in (TII-9') for the intrinsic device and in (111-12), 
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or a suitable counterpart, for the extrinsic device then consti- 

tutes a test for the self-consistency of the quasi-static approxi- 

mation and of the models that are based on it.  Note that the 

intrinsic and extrinsic models of a device must each be tested for 

obedience to the self-consistency criteria. 

The implementation of the self-consistency test in MOSFET 

circuit simulation will be treated elsewhere [2], together with 

discussions of the violations of self-consistency from a physical 

standpoint and of their influence on the system parameters of 
MOSFET circuits. 

3.0 Commentary 

The self-consistency criteria derived here apply generally 

to all electronic devices whose intrinsic structure operates in 

accord with charge control.  The criteria hold for all regions of 

device operation and include consideration of the extrinsic part 

of the device.  In previous related discussions [9,36,37], the 

scope was more limited.  These treated the intrinsic device only 

and concentrated only on the region of operation in which termi- 

nal 3 of Fig. III-2 acts as the sole collector of the controlled 

current:  that is, forward-active operation of the bipolar tran- 

sistor and pinch-off operation of the MOSFET.  Moreover, previous 

treatments have focussed only on a three-terminal model of device 

behavior, ignoring the role of a fourth terminal, which is a non- 

ideality of practical significance during large-signal transients 

in some MOSFET circuits. 

In the present paper, nonidealities are defined  as departures 

from the behavior predicted by the extended ide?I cnarge-control 

model set forth in Section 2.  Nonidealities receive careful 

attention.  Despite their existence, the following statement, 

derived for the ideal charge-control model, holds generally: 

[36] P. E. Gray, D. DeWitt, A. R. Boothroyd, and J. F. Gibbons, 
Physical   Electronics  and  Circuit   Models  of   Transistors, 
John Wiley and Sons, Inc., New York, 1965, pp. 214-222. 

[37] P. E. Gray and C. L. Searle, Electronic  Principles—Physics 
Models  and  Circuits,   John Wiley and Sons, Inc., (1969) 
pp. 293-296, 336-341. 
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I 
the   configuration   of   current   flow   in   the   network   representation 

of   large-signal   device   behavior   during   transients   must   correspond 

to   only   a   small   perturbation   of   the   configuration existing in the 

dc  steady  state.     Otherwise the quasi-static approximation, on 

which the network representation is based, will be violated.  The 

statement applies individually to the representations of the 

intrinsic and the extrinsic part of a device. 

The general statement above is phrased mathematically in 

expressions (III-9) and (III-91) for the intrinsic structure and 

in (111-12) for the extrinsic structure.  It enables self-con- 

sistency to be tested by comparin--, currents in various branches 

of the network representation.  Since these currents are available 

in any simulation of circuit behavior, the test is easily imple- 

mented in circuit-analysis programs [2]. 

3.1 Model Updating 

If a particular device model fails to pass the test in a 

circuit simulation, a more complex model is needed to assure 

self-consistency with the quasi-static approximation.*  To holp 

determine the degree of added complexity that is necessary, ore 

can again employ the self-consistency test, extended by the 

following strategy. 

Recall that the test is to be applied individually to the 

extrinsic and intrinsic models of the device.  Consider first the 

model for the extrinsic structure.  If the simple three-element 

f model of Fig. III-4 disobeys the inequality expressed in (111-12), r 
I and thus violates self-consistency, an additional three-element 

section can be added to give a better approximation of the dis- 

tributed nature of the extrinsic structure.  As was already dis- 

cussed in Section 2.2, self-consistency is then tested again, 

with (111-12) now interpreted as applying for each section of the 

extrinsic model.  This procedure is repeated until self-consistency 

* It is possible for device models to radically fail the self- 
consistency test, and yet to serve adequately in the simulation 
of such system parameters as the turn OFF propagation delay 
time.  This issue is explored in reference [2]. 
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ultimately prevails in the extrinsic model.  That it will pre- 

vail is assured because the capacitance and resistance per 

section both diminish as more sections are added; ultimately, a.s 

more sections are added, the resistive current in each section 

will much exceed the capacitive current and (111-12) will be 

obeyed.  Notice that the self-consistency test will determine 

how many sections must be added to cause this to occur. 

Adding complexity to the extrinsic  model by itself tends to 

favor self-consistency of the model for the intrinsic structure. 

This occurs because the more complex the extrinsic model, the 

more effectively it filters out the higher frequencies contained 

in the excitation at the device terminals, preventing them from 

reaching the terminals of the intrinsic model.  Hence, in accord 

with the alterna'-.ive criterion for self-consistency expressed 

in (111-11), a detailed model for the extrinsic structure tends 

to protect the self-consistency of the model for the intrinsic 
structure. 

Despite the complexity of tne extrinsic model, the model for 

the intrinsic device may still violate self-consistency by railing 

to obey inequalities (III-9) or (III-9').  To remedy this, just 

as for the extrinsic model, one can complicate the network 

representation to give a better lumped network approximation of 

the distributed nature of the intrinsic structure.  One simple 

example of this, which utilizes only models now in common use for 

MOSFET computer simulation, involves the addition of nonlinear capa- 
citors to represent the transient currents flowing to the substrate 

terminals [2].  Notice that the self-consistency test implied by 

(III-9) and {111-9')   would suggest the degree rf idued complexity 

needed. 

Another strategy for model updating would require generating 

multisection models for the intrinsic device, similar to those 

for the extrinsic structure discussed immediately above and in 
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Section 2.2.  Various techniques [30,33] might be used to furnxsh 

such models.  The basic idea here is simple.  Decreasing the sxze 

of the region being modeled will ultimately bring the boundaries 

close enough together to enable mobile carriers within the region 

to distribute themselves so rapidly that they assume essentially 

the same relationship to the boundary conductions during tran- 

sients as exists in the dc steady state.  Thus, use of enough 

sections in an intrinsic model will ultimately yield self-consis- 

tency with the quasi-static approximation.  To determine the 

degree of complexity needed, one could employ the test implied in 

(III-9) and (111-9'), extended in interpretation to apply 

section-by-section. 
Work on multisection models has started, and is meant to 

be the subject of future writings. 

[38] C. T. Sah, Solid-State Electronics.   13- ^ ^^J'   P    ^ 
Status  solidi   (a),   7, 713 (1971); Electrohica   otters. J, 
88 (1972) . 

-97- 

> . 



. I1.4J)" lU.iJilK.,,..,^.,. 15 a 

1.0 

2.0 

3.0 

4.0 

Chapter IV 

Carrier Mobility in an MOSFET 

C. T. Hsing and D. P. Kennedy 

Introduction * * * 
Solution for the Schroedinger's Equation for. 

an MOS Structure Assuming a Constant 
Potential Gradient 

2.1 Formulation of the Problem  

2.2 inversion Layer Carrier Distribution  
in a MOS Structure 

2 . 3  Discussion •  
A Method of Solving the Schroedinger and...•• 

Poisson Equations in a Simultaneous Manner 

Research Plan  

Page 

101 

103 

105 

109 

111 

117 

121 

-99- 

W,]:l:.: ... ■    ■ MJECaDINS PAGE  BLANK.N0T FILMED iuimMM 



:•: 

CHAPTER IV 

Carrier Mobility in an MOSFET 

C. T. Hsing and D. P. Kennedy 

1,0  Introduction 
Conventional theory of MOSFET operation [1,2] is based upon 

an assumed constarc carrier mobility within the source-dram 

inversion layer.  This approximation describes MOSFET operatxon 

only through a limited range of gate voltage.  It has been experi- 

mentally established that the inversion layer carrier mobility 

exhibits a large change, with a change of applied gate voltage, 

throughout the normal range of device operation.  A theory for 

this phenomenon was first formulated by J. R. Schrieffer [3]; he 

proposed that diffuse (random) scattering of the carriers at the 

oxide-semiconductor interface was the basic source of this 

difficulty.  Following his work, other researchers proposed 

theories to explain this change of mobility with gate voltage [4,5]. 

However, none were found to be in satisfactory agreement wxth 

experiment [6] . .-,•,. ^^ 
The reduction of inversion layer carrier mobility xs belxeved 

to result from scattering at the oxide-semiconductor interface, 

yet the details of this scattering mechanism are not adequately 

understood.  It is evident that this scattering process xs xntx- 

mately related to the average distance between these inversxon 

layer carriers and the silicon surface:  a decrease of thxs dxs- 

I  ' [!]  H.K.J. Ihantola and J. L. Moll, Solid State   Electronics,   7, 

423 (1964). 
[2]  R.S.C. Cobbold, Theory   and Application of Field-Effect 

Transistors, Wiley-Interscxence, N.Y. (1970). 

[3] J. R. Schribffer, Phys. Rev., 91., 641 (1955). 

[4]  R. F. Greene, D. R. Frankl, and J. Zemel, Phys.   Rev.,   118, 
967 (1960). 

T, ■   „4- ^r,^ r-  T  Qah Solid   State   Electronics,   11, [5]  R. F. Pxerret and C. i. ban, ^OJ-XU ji.a>. — 
279 (1968). 

[6]  N.S.J. Murphy, F. Berz, and I. Flinn, Solid State Electronics, 

12,   775   (1969) . 
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tance should produce a decrease of carrier mobility.  For this 

reason, a firrt step toward attaining a theory for the mobility 

of these inversion layer carriers is to accurately establish 

their distribution, relative to the oxide-semiconductor interface. 

It is toward this goal the present researcn has been directed. 

in an MOS structure, the inversion layer carriers are 

bounded within a potential well; on one side there is the oxide 

and semiconductor interface, and on the other side a large sub- 

strate electric field.  For this reason, it was postulated that 

these inversion layer carriers would exhibit a quantized energy 

distribution, as in most problems of this type [7].  The proof 

was obtained for this quantization in the form of 

snubneknov-ae Hass oscillations [8].  Thereby, it was establisned 

that mechanisms otner tnan traditional electrostatics determine 

the carrier distribution in the inversion layer of an MOSFET. 

in traditional theory of MOSFET operation it was initially 

assumed that the inversion layer carrier distribution could be 

established from solutions of Poisson's equation.  This proof of 

quantization in energy clearly established that a true evaluate 

of this carrier distribution required a simultaneous solution of 

both Poisson's equation and Schroedinger's equation [9,10].  To 

date, all available solutions for this problem have utilized a 

simplifying approximation that is unwarranted from a physrcal 

point of view, and which is inadequate for surface scattering 

calculations.  Namely, it is assumed the oxide-semiconductor 

f        potential barrier is exceedingly large and, thereby, all exgen- 

functions are zero at this location.  Because tunneling has, 

[7] 

[8] 

[91 

j  R  Schrieffer, Semiconductor   Surface  Physics, (edited 
by R*. A KingstoA), Univ. of Pennsylvania Press (1957). 

A. B. Fowler, F. F. Fang, W. E. Howard and P. J. Stiles, 
Phys. Rev.   Letters,   16, 901 (1966). 

F. Stern, Phys. Rev. Letters, 21, 1687 (1968). 

[10] F..Stern, Phys. Rev. B,   5, 4891 (1972) 
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indeed, been observed into the gate oxide [11], a zero eigenfunc- 

tion boundary is inconsistent with experiment.  Further, previous 

calculations were based upon an equilibrium solutxon for Poisson s 

equation, which is inapplicable to studies of MOSFET operation. 

in the present investigation we aim toward a rigorous numeri- 

cal solution of this Schroedinger-Poisson problem.  Clearly, all 

numerical solutions of this type require a first "guess"; the 

quality of this supposition will significantly influence the com- 

puter lime  required to attain a complete solution of this problem. 

The present work is directed toward solving the Schroedinger's 

equation, based upon the inversion layer potential distribution 

obtained by a rigorous solution of Poisson's equation.  From the 

solution of Schroedinger's equation, we can thereafter introduce 

into Poisson's equation the calculated inversion layer carrier 

distribution, and obtain an improved estimate of the inversion 

layer potential distribution.  In this fashion, a Picard itera- 

tion between Poisson's equation and Schroedinger's equation can 

be used to obtain an accurate numerical evaluation of the inver- 

sion layer carrier distribution. 
The following discussions outline the procedure of solving 

these two equations conjunctively.  A first trial solution of 

Schroedinger's equation, assuming a constant potential gradient 

at the interface, is also presented. 

2.0  solution for the Schroedinger's Equation for an MOS Struc- 

^nr^ Assuming"a Constant Potential Gradient [12] 

During'an early phase of this research, an analytical solu- 

tion for the Schroedinger's equation was obtained by assuming a 

constant potential gradient at the interface.  This solution can 

be stated analytically in terms of airy functions.  This linear 

potential distribution is based upon an assumption that a large 

electric field of constant magnitude extends from the oxide-semi- 

conductor interface into the substrate, see Figure IV-1. 

[11] M. A. Green, F. D. King, and J. Shewchun, Solid State 
Electronics,   !]_,   551 (1974). 

[12] C. T. Hsing and D. P. Kennedy, HDL-CR-75-193-1   Final   Report, 
October (1975). 
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REGION  I 
(Si) 

REGION   II 
(Si02) 

EB-ee0x 

Fig.   IV-1.     Simplified  energy  diagram at  the   interface 
of  Si-SiCh . 

-104- 

  



  ~  ■■ . 

2.1  Formulation of the Problem 

In  Figure IV-1 all potential energies are measured with 

respect to the conduction band edge of the semiconductor.  For 

this reason, the Fermi level (EF in Fig. IV-1) is a negative 

quantity, whereas the energy eigenvalues (E^ are positive quanti- 

ties. 
Thus, separate forms of Schroedinger's equation must be speci- 

fied for the two regions of this semiconductor structure.  There- 

after, the solutions of these two equations can be matched at 

their boundary (x=0): 

Region I 
(x ^ 0) 

d2^ 
_li + ZH (E. + ee x) ^T. = 0 
dx2  h2   1    s   II 

(IV-1) 

Region II   ^Ili + 2m (E   E + ©e xj i|»TT. « 0 
(x i 0)    ...2     *2 ^i    B     o   ^IIi (x i 0)    dx2    h2 

(IV-2) 

In (IV-1) and (IV-2), m represents the effective mass of electrons 

in a direction perpendicular to the semiconductor-oxide interface. 

Substantial simplification of these equations is obtained 

through a change of variables. For this reason, we assume the 

following: 

*Ii = <,)l(ai) 

^IIi= ^II^ 

(IV-3) 

(IV-4) 

where 

and 

a. = 
i 

E 
X + ee a 

h  =  - 

s 

E. - E 
x + 

B 
ee. ß' 

a 

1/3 

1/3 
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Introducing these expressions into (IV-1) and {IV-2) we obtain 

d2<J> 
x ^ 0    d^ + aA = 0 (IV-9) 

x   >   0 
dH 
dß. pivIl 

II (IV-10) 

It can be shown [13] tha  solutions for (IV-9) and (IV-IO) 

have the form: 

^(ct.) - aV^Jx/a^i) + bV^J-i/B^i5        (IV-11) 

*„(&.) - cVT^K^^) (IV-12) 

where J./3 and J_1/3 are Bessel functions of the first kind and 

of orders 1/3 and -1/3, respectively.  Similarly, K1/3 is a modi- 

fied Bessel function of the second kind, and of order 1/3.  The 

parameters Ci and ii  are given by 

3/2 
bi   3  i h-^i 

3/2 
(IV-13) 

In (IV-11) and (IV-12), the terms a, b, and c arbitrary constants 

used to satisfy the particular boundary value problem under con- 

sideration. 
The relative magnitudes of a and b in (IV-11) are readily 

established using (IV-3) in conjunction with Fig. IV-1.  Because 

x ^ 0 in Region I, the variable ai becomes negative when 

x < -E./ee  and, thereby, the Bessel functions of (IV-11) have a 

negative argument yielding 

^(a.) = -aVfa^ 1^0   + bYRj I.^ «V ,   (IV-14) 

where I (a.) is a modified Bessel function of the first kind, 
n  i 

[13]  F. B. Hildebrand, Advanced   Calculus   for  Applications, 
p. 156, Prentice-Hall (1962). 
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insight is gained by considering an approximation for 

I   (a.) and I ,/^(a.) that is valid when 0^ is very large [14] 
X/j   X X/J   -L 

iq 
Il/3(ai) = ^l/S^i5 = 

2^1^ I 
(IV-15) 

Equation (IV-15) is unbounded when ou = 00. Clearly, no valid 

solution for this problem can be unbounded; this situation is 

avoided in (IV-11) by setting a = b, thus 

4)I(ai) = a^i Jl/3{5i) + J-l/^i] (IV-16) 

= aAi(-a.) 

where Ai(m) is the Airy function [15]. 

Similarly, (IV-12) can be written in terms of the Airy 

function: 

(6,) = cVfT K 4). V3(?i) « cAiit.) (IV-17) 
II ^1'   ~ ' "1 

Thereby, the two solutions for this problem are obtained in one 

common functional expression. 

Next we establish the arbitrary constants (a and b) asso- 

ciated with (IV-16) and (IV-17). This is readily accomplished 

by assuming continuity for both the magnitudes and derivatives 

of t  and (}>_- at the semiconductor-oxide boundary (x = 0) : 

<J,I(ai) 

d<\>. 

- ♦ii<ei' 

da . 
1 

x=0 

da. 
1 

dx 

dd) II 
d2i 

x=0 

as, 
dx 

x=0 

(IV-18) 

(IV-19) 

x=0 

[14] F. B.  Hildebrand, Advanced   Calculus   for  Applications,   p.   151, 
Prentice-Hall (1962). 

[15] M. Abramowitz and I. A. Stegien, Handbook  of Mathematical 
Functions,   U. S. Dept. of Commerce, Washington, D.C. (1964). 
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Substituting (IV-16) and (IV-17) into (IV-18) yields the 
equality 

aAi(-aoi) = cAi(ßoi)  , (IV-20) 

where a . and ß . designate the magnitudes of a. and 3. at x=0, 01     01 i     i      ' 
respectively.  Similarly, after substituting (IV-16) and (IV-17) 

into (IV-18), we obtain 

ahi{~aoi)Ka'   "  "cAi(ßoi),C3 '       (IV-21) 
■ 

where Ai(m) represents the first derivative of the Airy function. 

From (IV-20) and (IV-21), we obtain the relation 

Ai(ßoi)Ai(-aoi) + ^ Ai(-aoi)Ai(3oi) = 0 ,   (IV-22) 
a 

and this relation establishes the energy eigenvalues (E.) for this 

boundary value problem. 

Thus (IV-16) and (IV-17) represent solutions for this prob- 

lem when x < 0 and x > 0, respectively.  Furthermore , (IV-18) 

and UV-19) ais continuous at x = 0 when the individual eigen- 

values (E.) satisfy the equality of (IV-22).  In addition, the 

arbitrary constant of (IV-16) is (from (IV-20)) given by 

Ai(~a .) 
ci " ai Ai(3 0)  ' (IV-23) or 

Therefore, the eigenfunctions of this problem are given by 

x £ 0  ^(x) = aiAi[-ai(x)j   , (IV-24) 

Ai(-a .) 
x>0  ^IIi(x) = ai Ai(B 0^  Ai[3i(x)] ,      (IV-25) 

where a.   is determined  from the normalizing requirement 

oo 

la.l2    J       U.U)!     dx =  1     . (IV-26) 
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2.2  inversion Layer Carrier Distribution in a MOS Structure [16] 

in section 2.1 we established the energy eigenvalues (E^ and 

the associated eigenfunction solutions for Schroedinger's equation 

[$.(x)l.  From these solutions, we can obtain the spatial prob- 

ability for inversion layer carriers I^U)!2 at each allowed 

energy level (E.).  This probability distribution, in conjunction 

with the densitj of carriers (N^ at each energy level (E^ , 

yields the spatial distribution of these particular energetic 

carriers NJI^U) 
2,  After summing the carrier distributions from 

all energy ""eigenvalues, we obtain an expression for the total 

distribution of inversion layer carriers within this semiconductor 

device: 
00 

n(x) = )   Ni|^i(x)|2 . (IV-27) 

in this section we derive a rigorous mathematical expression for 

this inversion layer carrier distribution. 
The density of states in an inversion layer can be written 

as: 
D(E) = Di (E)D2(E)  , (IV-28) 

where Di(E) is the density of states in a plane parallel to the 

oxide-silicon interface, and D2(E) is the density of states in a 

direction perpendicular to this interface. 
First we consider directions parallel to the oxide-semicon- 

ductor interface.  The total number of states per unit area in 

this pain residing between E and E+dE is given by 

Dj (E)dE = dHE) = 2? ' dk 

The electron energy in this direction is 

p - _£!_ fk2 + k2) = E " 2m' (Ky  V 2m' 

(IV-29) 

(IV-30) 

[16] The methods used here are from Gnädingers and Talley, 
Solid-State   Electronics,   1_3, 1301 (1970). 

-109- 

.   _ .^-= --_.-■ ■■ ■ - ■   -  : 



PPS-JIIIW I — «SW«fc::J  rfgWK-f-g—»■■■— niii...^,.-  ..  

„here „• is the effective electron denslty-of-states mass in the 

y-z direction.  Thus, from (IV-29), in conjunction with (IV-30), 

we have 
dr(E) = dr(E)/dk = k/27T  B m (iv-31) 

Di (E) " "dE     dE/dk    h2k/in  2TTh2 

The total density of states perpendicular to the oxide-semi- 

conductor interface D2(E) can be written as 

D2(E) = n H(E - Ei) 
(IV-32) 

„here n Is the degeneracy factor. This factor depends upon the 

crystalVlentatlon, with respect to the semiconductor surface. 

in (IV-32), H(E-Ei) is a step function, and is defined by 

H{6) = 1 
= 0 

6 > 0 

< 0 
(IV-33) 

From (IV-28), (IV-31), and (IV-32), the density of states 

for each energy eigenvalue within the inversion layer of a MOS 

structure is given by 

(IV-34) 
Di(E) = 

m'n v 

7rh: 
H(E - Ei) 

In (IV-34,, a factor t„o has heen introduced for spin <^eneracy. 

The total number of electrons at each energy level ^ 

therefore given by 

Ni=   / Di 
(E)f (E)dE (IV-35) 

where f(E) is the probability an electron occupies the energy 

Level E.  Assuming Fermi-Dirac statistics, f (E) is gxven by 

f (E) = {1 + exp[(E - EF)/kT]} 
-1 (IV-36) 

„here EF is the Fermi energy.  Mte- substituting into (IV-35) 

the expressions given in <IV-34, and (IV-36,, „e obtarn the 
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carrier density at each energy eigenvalue: 

m'kTn 

Ni=/Di 
(E)f(E)dE =    -^ loge {1 + exp[(EF - E^/kTl) . 

irh (IV-37) 

Having calculated the carrier density N^ (IV-27) yields 

the density distribution of these carriers within the inversion 

layer of a MOS structure: 

m'n kT 
rt(x) 

1,nvkT  ")   log  {1 + exp[q(EF - E^/kTlll^Cx)! 

TTh       i = 1 ( (IV-38) 

2.3  Discussion 
Figs. IV-2 and IV-3 illustrate the calculated inversion layer 

energy levels for two different values of electric field at the 

semiconductor surface:  ^ = 1.25 x 105 v/cm and ^ - 3.4 x 10  v/cm, 

These two illustrations establish a general trend that has thus 

far been verfied in this analysis:  an increased level of energy 

quantization is realized with an increase of electric field.  From 

a practical point of view, implied here is an increase level of 

quantum mechanical mechanisms with an increase of electric field. 

Thus, in strong inversion we can assume the inversion layer car 

rier distribution will be poorly described by traditional MOS 

theory.  As the gate voltage is reduced and the structure enters 

weak inversion, these quantum mechanical mechanisms should tend 

to disappear.  Thus, it is suggested that in the normal range of 

MOSFET operation, the inversion layer carrier distribution will 

change between those regions where quantum mechanical irechamsms 

are significant (strong inversion), and those regions where 

traditional electrostatic mechanisms dominate (weak inversion). 

This type of situation is generally consistent with other 

well known solutions of Schroedinger's equation for electrons 

in a potential well.  Under conditions of weak inversion the sub 

strate electric field is small and, hence, the interface poten- 

tial well is very wide; little energy quantization is therefore 

observed.  Contrasting with this weak inversion case, under strong 
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Fig. IV-2.  Calculated electron energy levels in 
the surface potential well. 
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Fig. IV-3.  Calculated electron energy levels in 
the surface potential well. 
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inversion the substrate electric field is very large and, hence, 

the potential well is very narrow.  A narrow potential well tends 

to produce a larcie separation between the energy eigenvalues of 

Schroedinger's equation and, therefore, quantum mechanical 

mecahnisms tend to dominate. 

Figs. IV-4 and IV-5 present a comparison between the inver- 

sion layer mobile carrier distribution derived from this quantum 

mechanical solution and from traditional solutions of Poisson's 

equation. 

There are several interesting aspects of the results shown 

in Fig IV-4 and Fig. IV-5: 

(1) The width of the inversion layer (channel) was much thinner 

than expected.  This is clearly due to the assumption of an 

inaccurate constant electric field.  The electric field in 

actual device should vary from maximum at the interface to 

nearly zero in the substrate; 
o 

(2) The maximum carrier density was located at about 20 A from 

the interface, and there was finite carrier density at the 

interface.  Qualitatively, this situation is due to quantum 

mechanical reflection at the semiconductor-oxide boundary. 

The large coulomb forces attract inversion layer carriers 

toward the interface.  Upon reaching this interface, these 

energetic carriers either reflect bick into the semiconductor 

or, instead, tunnel into the oxide.  This reflection mechanism 

produces a maximum carrier density at some location removed 

from the reflecting surface (or potential barrier); and 

(3) An increase in electric field will increase the maximum 

carrier density and decrease the inversioii ".ayer width: 

the carriers are pushed harder toward the interface. 

Although this solution is not adequate for MOSFET analysis, 

it does show some qualitative insight of the characteristic of 

the inversion layer in an MOS structure.  A rigorous approach will 

be discussed in the next section of this report. 

-114- 

^.L.,.J.,„ 



■Wr^-^y ■■:■■.■■■-■■■'■■ „,.,,...„..,,-..,,,,-  v...-r.... .,...■,..:,..■. ■. , ..^■■.... ■,,,-'^■.^■;.-. ..;■,.:,■■.-.-;-.„. ..^.- ...-..^w- ..- .,■■■'-7 :".,—-v ■■■■■- 

^v!^-:.,..:-.:':i- «"Vli  ■ 

18 

I 

1 
3 16 

Co'5 
o 
o 
_J 

 ! ! T "T  T"  "I ■          ! —T— 

- 

ry\ €ss 1.25 xlO5 VOLTS/CM 
- 

■ \     ^^^^^ 

- 

■ \ 

^   CLASSICAL 
^"vT    SOLUTION - 

\QUANTUM 
\ MECHANICAL 
1 SOLUTION "" - 

i         li            i -J   1 1 1  1 

14 - 

13 - 

0   100  200  300  400  500  600  700  800  900 
x—(X) 

Fig. IV-4.  Comparison between quantum mechanical solution 
and classical solution of the inversion layer 
carriers. 

-115- 



50        100        150 200      250 300       350      400      450 

Fig.   IV-5. sr^toS^ii^rsS^^-^f"" 
fields   (es)• 

(A) 

(B) 

-   1.25  x  105   V/cra 

=   3.4  x  10'   V/cm 

-116- 



m-'-   ■ ....,,, 

3.0  A Method of Solving the Schroedinger and Poisson Equations 

in a Simultaneous Manner 

A.  Schroedinger's Equation 

The Schroedinger's equation can be written as 

h2     ^i 
H^   =   "  ^      +  V(x)iK   »  E.^.    , (IV-39) zm       ,2 ill dx 

where 

p 2 

(i)      H  S  -  2-- -£- +  v(x)    ; 
^m     j   2 dx 

(ii)  V(x) = potential energy from the solution of 

Poisson's equation; 

(iii)  E.,^.  are the eigenvalue and corresponding 

eigenfunction, respectively. 

The boundary conditions for ^.(x) are 

^. (oo) = o and ty • (-00) = 0. 

There are two methods to solve (IV-39): 

(1)  Green's Function Technique:  This method starts with solving 

the differential equation for Green's function: 

HG(x,t) = ~ d G(x>t) + V(x)G(x/t) = 6(x-t)  (IV-40) 
2m    dx2 

with the boundary conditions 

G(-,t) = G(-~,t) = 0 . 

After obtaining the Green's function G(x,t), the wavefunc- 

tion ty,   can be obtained by the following integral equation: 

^i ̂
x) = Ei  T G(x,t)ij;i(t)dt (IV-41) 

Since the wavefunction ^. appears as a part of inte- 

grand in (IV-41), it requires an iterative process to find 

the wavefunction. 

117- 



:-i-:.- 

(2)  Rayleigh-Ritz Method:  By expressing the wavefunction in 

terms of a series of linearly independent functions, the 

eigenvalues can be obtained with a very good accuracy.  The 

desired wavefunction can be easily obtained once the eigen- 

values are known.  This method has important advantages: 

it does not require the t: .ae-consuming iterative process. 

Therefore, the Rayleigh-Ritz method [17] will be used in the 

present research, and it is described in detail in the fol- 

lowing paragraphs. 

The Rayleigh-Ritz method is used to calculate the upper 

bounds D£ the eigenvalues of a positive definite differen- 

tial operator H*.  In the present problem, H is the differ- 

ential operation defined in (IV-39).  If we let the sequence 

of eignevalues for which we seek upper bounds be denoted by 

Ei, E2 f •••/ E , . 

^1 / i> 21 *, 

. which corresponding eigenfunctions 

, then 

E     =  min[ (H^,ip)/(^,ip) ]   =    min 

with   dK^g)   "  0;   s   =  1,   2, 

-00 oc 

I ^Hijjdx/ / i|)4jdx 

L-00 

r-1. 

(IV-42) 

For any interger n, let us choose an arbitrary set of 

n linearly independent functions f.(x) such that t .{<*>)   = 

f. (-«) ■ 0, 
1 

Now we can write iMx) as: 
n 

<Mx) -  £ Cifi(x). 
i=l 

(IV-4 3) 

[17] S. H. Gould, Variationai Method   for   Eigenvalue   Problems, 
2nd ed., p. 75, Univ. of Toronto Press, 1957. 

*   A differential operaton H is called positive definite if 

b 

(f,Hf) = f f(x)Hf(x)dx >0 

a 

for all values of f(x) except f(x) = 0.  a and b are the end 
points of range under consideration. 
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For each function ♦(x) written as (IV-43), we have 

(H*,*) - (H V C^,  £ Ckfk) - Z    'Hfi'VClCR 

and 

i=l k=l 

Z Aikci 

i,k 

c (IV-44) 
k 

W 
\i=l      i=l   /  i,k 

)  b..C.( 
(-',      ik i 
i,k 

k  ' 
(IV-45) 

where aik = (Hf^f^ = j     f,, (x)Hf i (x) c:: 

and b.k = (f f, dx. 
k 

—oo 

Then from (IV-42) we can obtain a set of n equations: 

n 

z.. ..■ 
C.(aik-Ebik) =0  k = 1, 2, ..., n   (IV-46) 

i=l 

For non-trivia 

the determinant 

1 solution of the simultaneous equations for C^'s, 

det (aik-Ebik) =   0 (IV-47) 

th 
Equation (IV-47) can be expanded into a polynomial of n 

degree which, in general, have n distinct roots E's.  These n 

roots are the upper bounds of the eigenvalues.  As n increases, 

the upper bounds of the eigenvalues decrease, i.e., they are 

getting closer to the true eigenvalues.  Therefore, the accuracy 

or eigenvalues obtained by the Rayleigh-Ritz method depends upon 
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the number (n) of terms used in (IV-43).  If we choose the set 

of linearly independent functions such that each of them has 

close resemblance to the wavefunction if) (x) , then the resulting 

eigenvalues will be more accurate for a given n.  From the solu- 

tion stated in Section 2, we know that the Airy function is a good 

choice for this expansion and it will be used in the eigenvalue 

calculations. 
By substituting each eigenvalue into (IV-46), the coeffi- 

cients C.'s of the corresponding eigenfunction can be found up to 

an arbitrary constant.  This arbitrary constant is determined by 

the normalization condition of iMx) , i.e., 

{$,$)   =  1 (IV-48) 

After obtaining the wavefunctions, the carrier density dis- 

tribution within the MOS inversion layer is given by (IV-38): 

■  i m 
n 

n(x) =  v__ y    log^   {1 + exp[q(EF-Ei)/kT]}Ui(x) |z,  (IV-49) 

1=1 

where (i) m1 = effective mass in the direction parallel to the 

interface; 

(ii) n  is the degeneracy factor; 

(iii) E  is the Fermi energy; 
(iv) E. and ty•   are the eigenvalue and eigenfunction, respec- 

tively. 

B.  Poisson's Equation 

The potential distribution within the MOS structure is given 

by the solution of the Poisson's equation: 

d!u = _3l [n(x) + Na - p{x)] = f(x) ,        (IV-50) 
dx 

where    (i) U = r%; =  normalized potential; 

(ii) e is the dielectric constant of silicon; 

(iii) n(x) and p(x) are the density functions of elec- 

trons (inversion charge for p-type substrate) and 
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holes, respectively, and p(x) = n./n(x), where n. 

is the intrinsic carrier density in silicon; 

(iv) NA is the acceptor density in the substrate. 

The boundary conditions for (IV-50) are: 

U{L) = Us and U{0) = 0, 

where L is the width of space charge region (see Fig. IV-6) and 

Us is the normalized surface potential.  The solution of (IV-50) 
is 

x L 

Ü - i (x-L) J tf(t)dt + ^ f (t-L)f(t)dt + ^ Us .    (IV-51) 

o x 

The self-consistent solution of the Schroedinger's equation 

and the Poisson's equation can be obtained by calculating (IV-49) 
and (IV-51) iteratively. 

4.0  Research Plan 

The computer program is being written for above calculations. 

It is expected that the complete solution would be obtained within 

the next three months.  Then, our effort will be directed toward 

the study of effective surface mobility of inversion change car- 

riers, which is the main object of the present research. 
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Fig.   IV-6.     Potential  distribution  at  the  interface  of 
Si-SiCh . 
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Chapter V 

integral Methods for the Analysis of Semiconductor Devices 

U. H. Kurzweg, M. Zahn, and R. E. Wyatt 

1.0  Introduction 
One of the more important and yet incompletely solved prob- 

lems in microelectronics is the determination of the potential 

and carrier density distributions in two dimensional semiconduc- 

tor devices of specified geometry, impurity distribution, and 

applied external voltage.  In principal, one should be able to 

determine these characteristics numerically by solving the govern- 

ing nonlinear partial differential equations.  In practice, how- 

ever, such calculations, which have almost exclusively relied on 

the finite difference approach [1-4], require lengthy compu- 

tation times and, therefore, are of questionable value from an 

economic point of view.  The origin for these numerical diffi- 

culties lie in the nonlinear nature of the equations, and the 

need to use a large number of mesh points to adequately represent 

large potential gradients in certain regions of the semiconductor 

device.  It is the objective of this mathematical study to inves- 

tigate alternate methods of analysis for numerically determining 

the carrier and potential distributions in two dimensional semicon- 

ductor devices (such as the MOSFET), and to develop techniques 

which yield shorter overall computer times. 
The coupled partial differential equations we wish to analyze 

can be found in the literature [5], and are given by: 

[1]  H. K. Gummel, IEEE Trans. Electron Devices, 11, 455 (1964). 

[2]  M. S. Mock, Solid State   Electronics,   16, 601 (1973). 

[3]  H. H. Heimeier, IEEE Trans. Electron Devices, 20, 708 
(1973). 

[4]  0. Manck and W. L. Engl, IEEE Trans. Electron Devices, 22, 
339 (1975). 

[5]  S. M. Sze, Physics   of  Semiconductor   Devices,   John Wiley and 
Sons,   Inc.,   N.Y.    (1969). 
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V2v =  3_ {N^-N, + p-n} 
Ke    DA o 

3t    q    n 

(V-l) 

(V-2) 

9t   q    p 
(V-3) 

Jp = "^p7? ~ q^pP77 (V-4) 

J  = qD Vn - qy nVV 
n  ^ n    ^n 

(V-5) 

0 = V- (J +  J     + J^) n    p    D 
(V-6) 

where V is the potential, N and N the spatially dependent donor 

and acceptor impurity distributions, n and p the electron and 

hole number densities, and R the Shockley-Reed-Hall recombination 

factor.  The remaining quantities in these equations have their 

standard meanings.  These equations represent the Poisson equa- 

tion, made  nonlinear because of the approximate exponential 

dependence of n and p on V, coupled with continuity equations for 

the electron and hole currents. 

Various limiting forms of these equations have been treated 

by earlier investigators.  The first such finite-difference model, 

that due to Guramel [1], deals with a one-dimensional steady state 

problem.  Mock [2] and Heimeier [3] treat two-dimensional geome- 

tries in the steady state, while Manck and Engl [4] deal with 

the time-varying problem in two dimensions.  In Mock's model for 

MOSFETs the computer time is somewhat reduced by letting R=0 so 

that the continuity requirements (V-2) and (V-3) become equiva- 

lent to having divergence free hole and electron currents. 

In the present study we set ourselves the goal of treating 

a simplified version of the governing equations by other than 

the finite difference technique, with the objective of reducing 

the requires computer time.  Further, we have the longer range 

aim of using such improved numerical approaches to solve both 

steady and time-dependent BIPOLAR and MOSFET problems.  Drawing 

See references [l]-[4] on page 125. 
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on some of our experience on the treatment of boundary value 

problems in the area of mechanics, we decided early in the program 

that a promising alternate numerical technique should be the 

integral equation method.  This method consists essentially of 

converting a given differential equation and an appropriate set 

of boundary conditions (via a Green's function) to a Fredholm 

integral equation and then solving this equation by a Picard itera 

tion.  The advantages of such an integral approach include the 

elimination of the hiaher derivatives, and the ability to place 

the  nonlinear terms under an integral. 

The specific problem we wish to analyze below, using the 

proposed integral equation approach, is obtained from equations 

(V-l), (V-2) and (V-3) by assuming no electron or hole current, 

zero time dependence and recombination, and that all functions 

depend on one independent variable x only.  In this limit the 

governing equations decouple and one is left with solving a one- 

dimensional Poisson equation, subject to an x dependent impurity 

distribution (N (x) and NA(x)).  Our reason for considering this 

very simple version of the governing equations is to establish 

the numerical advantages of an integral approach, without obscur- 

ing this point by introducing unnecessary numerical complications. 

Our ultimate objective is to extend these one dimensional studies 

to two dimensions, and this will involve the need to generate 

Green's functions, which satisfy the mixed boundary conditions 

encountered there. 

The order of our discussion below will be as follows.  We 

begin with a derivation of the Fredholm integral equation corre- 

sponding to the  nonlinear Poisson equation.  This is followed 

by a description of the Picard iteration technique for solving 

such integral equations; this discussion also includes a consid- 

eration of the convergence criterion for this successive approxi- 

mation approach.  Next, a method of under-relaxation is discussed, 

and it is shown how such a method may be used (under certain cir- 

cumstances) to obtain convergence when an unrelaxed Picard itera- 

tion is unstable.  Finally, we present some calculations for the 
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constant gradient junction.  Here we demonstrate the utility of 

the integral method and discuss briefly our proposed extension 

of the integral method to two dimensional problems. 

2.0  Integral Solution Method 

For previously mentioned reasons we chose to investigate 

the potential and carrier distribution densities in semiconductor 

devices using a Green's function-iterative solution technique. 

In view of the utility of integral equation approaches for solving 

boundary value problems in areas such as mechanics, it appeared 

that this approach is warranted for the problem under considera- 

tion.  In order to simplify the calculations, we confined our 

initial attention, as previously mentioned, to the limiting form 

of (V-l), (V-2), and (V-2) for which there is no time dependence, 

the current is zero, there is zero recombination, and all quanti- 

ties vary with only one independent variable x.  In this limit 

the governing equations decouple, and one obtains the one-dimen- 

sional  nonlinear Poisson equation 

— =  -     i^Ff [P(U)-n(u) + ND(x)-NA(x)] = F(x,U)        (V-7) 
dx2      o 

subjected to the non-homogeneous boundary conditions U(O)=0 and 

U(W)=UT.  Here the hole number density p{U) and the electron 

number density n(ü) in (V-l) are given by the standard Boltzmann 

relations.  Typically x=0 corresponds to the metallurgical junc- 

tion and x=W is of the order of one thousand Angstroms; this 

distance represents the approximate depletion layer half-width 

for a constant gradient function under equilibii'im conditions. 

This boundary value problem may be converted to a nonlinear 

Fredholm integral equation by means of the familiar triangular 

Green's function kernel as discussed by Tricomi [6].  After inte- 

grating (V-7) twice and using the left boundary condition one 

finds 

[6]  F. G. Tricomi, Integral   Equations,   p. 116, Interscience 
Publishers, Inc., N.Y. (1957). 
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X 

!)(x) - xU' (()) >  I   dr  |   F(t:,IJj(lL (V-8) 

o 

x       r 

where r and t are dummy variables.  Next, eliminating the deriva- 

tive U'(0) by use of the second boundary condition U(W)=U , and 

applying the Leibnitz rule to reduce the double integrals to 

single integrals, one obtains the desired  nonlinear integral 

equation 

U x    X W 

u(x) = ~- -   [   ^-J^-F(t,u)dt- f  X(^"t) ret,(mil..  (v-9) j t^x, F(t/U)dt    f ^t. 

Although equation (V-9) has no obvious analytic solution, 

even for very simple doping distributions Nn(x)-NA(x), xt is 

always possible to solve this equation numerically.  One of the 

better techniques for doing this is the method of successive 

approximations (Picard method) [6j used in conjunction with a 

trapezoidal or Simpsons rule for evaluating the integrals.  In 

this method (V-9) is approximated by the iterative form 

x W 
un+1

(x) =■ -I- - f ^F1 f(t'Vdt - [ ^^F1 "(*'"„)" (v-io) 

with Ui, U2, U3, .... forming a sequence converging to the solu- 

tion U(x), if the convergence criterion 

|Un+1(x) - Un(x)|<e for n > N (V-ll) 

is met.  This iteration method, when it converges, has advantages 

over other solution techniques of (V-9); the nonlinear term 

appears under the integrals and, thus, does not require lineari- 

zation in determining the iterate U  ,(x).  In actual calcula- 

tions to be presented below, the solution is said to be obtained 

and the iteration terminated when e in criterion (V-ll) is less 

than 10"3 for all points in the range 0<x<W.  As a starting value 

in this iteration procedure one typically uses the linear term 

UTx/W for Uo(x). 

[6]  F. G. Tricomi, Integral   Equations,   p. 116, Interscience 
Publishers. 
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Unfortunately, the iterative procedure given by (V-10) 

converges only for restricted values of F and W.  This fact is 

well established for Picard iterative solutions of the corre- 

sponding linear Fredholm equation, and can be partially infered 

by the following modified argument to one given by Tricomi [7]. 

Consider the iterative form for a slightly generalized /ion-1 inear 

Fredholm equation 

W 

(7-12) 

ö 

U ..(x) = f(x) + A    Hlx,t,U (t)]dt n+1 I   i » » n * /J 
/ 

where f(x) is a specified function of x, X a constant and 

H(x,t,U ) is a  nonlinear function of x,t and the nth iterate U 

of U(x).  Letting the maximum value of H be M for all x and t in 

[0,W], and introducing the Lipschitz condition. 

|H(x,t,Un+1(t) - H(x,t,Un(t))|<C|Un+1(t) - Un(t)|,  (V-13) 

where C is a constant, it follows from (V-12) that 

W 

U, (x) - U (x) = X 
i       o 

r H(x,t,uc (t)dt <AMW 

or, more generally, that 

Un+1(x) - Un(x) < MCn(AW)n+1 

(V-14) 

(V-15) 

Comparing this last in-quality with the convergence condi- 

tion (V-ll) one sees that convergence of the Picard iterative 

procedure is guaranteed when 

H{x,t,Un) - H{x,t,Un_1) I" 
|XW Max U  - U  , n   n-1 

<1 (V-16) 

[7]      F.   G.   Tricomi,   Integral   Equations,   p.   117»   Interscience 
Publishers,   Inc.,   N.Y.    (1957). 
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where Max refers to the maximum value of the term in the inside 

brackets.  We note that this last condition is quite stringent, 

suggesting in a qualitative sense that convergence is attained 

only when W remains small, and the variation in H between succes- 

sive iterations is not too large.  Unlike the corresponding con- 

vergence criterion for the associated linear problem [8], cri- 

terion (V-16) involves U explicitly and thus the above interpre- 

tations are necessarily of a qualitative nature as U is not 
n 

known a priori. 

for typical functions F and values W encountered solving 

(V-9) by Picard iteration one can expect the convergence criterion 

(V-16) to be violated and hence have the likelihood of convergence 

failure.  Under such circumstances it is sometimes possible to 

obtain convergence by introducing a relaxation relation of the 

form 

U*   = U + ^ (U ... - U ) n+1   n  V       n+1   n' (V-17) 

where K is an under-relaxation parameter greater than one used 

to slow down the rate of variation between the iterates U  , and 
n+1 

U .  This procedure is quite successful in stabilizing solutions 

for linear problems (see Forsythe and Wasow [9]) and can be 

expected to aid in the convergence of the non-linear iteration 

problem (V-10) under conditions where the unrelaxed iteration 

sequence U , U (corresponding to K=l) fails  to converge. n-  n+1' " 
Mock [2] has also suggested improved relaxation procedures invol- 

ving the use of a sequence of relaxation parameters for problems 

where the use of (V-17) still fails to produce convergence.  It 

should be pointed out that when the relaxation procedure (V-17) 

[2]  M. B.   Mock,   Solid   State   Electronics,   16, 601 (1973). 

[8]  F. G. Tricomi, integral   Equations,   p. 51, Interscience 
Publishers, Inc., N.Y. (1957). 

[9]  G. E. Forsythe and W. I  Wasow, Finite   Difference  Methods 
for   Partial   Differential   Equations,   p. 246, John Wiley and 
Sons, Inc., N.Y. (1960). 
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is used in conjunction with the iteration (V-10), the term U in 
F is replaced by U*. n 

n 

3-0  Results for the Constant Gradient Junction 

To obtain some specific numerical results using the integral- 

iteration method described in the preceding section we considered 

the special and relatively elementary case of the constant gradient 

p-n junction where the impurity distribution near the metallurgical 

junction (at x-0) goes as ND(x) - ryx) = Ax, with A being the 

grade constant having a magnitude 1022 atoms/cm" in the present 

calculations.  in this case the one-dimensional Poisson equation 

(V-7), in the presence of an applied forward potential V , has 

been shown by Morgan and Smitz [10] to have the form 

d2U 

dx2 

2n.q2 

KE kT 
o 

^A 
2kT 

sinh U(x) - — exp 
n. 
i 

qVA 
2kT (V-18) 

subject to the same boundary conditions used above, except that 
qVA 

now UT - Uo + 2j^p ,  with Uo being the equilibrium junction poten- 

tial.  The corresponding integral equation follows directly from 

(V-9) 

UTx 

- Y 

w      r 

x      L 

sinh U{t) - At 
2n exp - 

qVA 
2kT dt 

sinh U(t) - At 
2n. 

i 
exp - 

qV; 

?kT dt   (V-19) 

where y  = qvj 
2niq

2 exp ^^J /(KeokT).  The integration interval 

[0,W] here extends into the n-type region, with the resulting 

solution U(x) having odd symmetry about x=0. 

[10]  S. P. Morgan and F. M. Smitz, Bell   System   Tel.   Jour.,   29, 
1573 (1960). — 
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Equation (V-19) was programmed for solution using an IBM 

370/65 computer.  The program was designed to iterate (V-19) 

according to the successive approximation scheme shown in (V-10) 

until the convergence condition (V-ll) was met for a value of 

e = 10~3.  The integrals occurring in the iteration were evaluated 

using Simpsons rule with 141 mesh points in the interval [0,W]. 

Our first computer run was for equilibrium conditions (V =0), with 
o A 

an integration interval of 1200 A.  No convergence was obtained, 

under these conditions, without the use of under-relaxation. 

Instead, the output between successive iterations was found to 

oscillate between the two potential distributions shown in Figure 

V-l.  This unstable behaviour suggested the introduction of the 

under-relaxation procedure (V-17) into the calculations, and this 

was done.  Using under-relaxation, in conjunction with the Picard 

iteration method for the same problem, convergence was obtained 

for a relaxation parameter K> 1.5.  The most rapid convergence, 

requiring only twelve iterations (n=12), occurring at K=2.  This 

convergence behaviour is shown in Figure V-2.  The corresponding 

equilibrium potential U(x) is shown in Figure V-3 together with 

the potential distribution predicted by depletion layer theory. 

The two curves agree at points near the metallurgical junction, 

as expected, and differ near x=W by about kT/q volts.  Our com- 

puter solution agrees well with the earlier results of Kennedy 

and O'Brien [11] who employed the finite difference method.  It 

should be stressed that the solution using the above integral 

method took approximately " --econds of computer time at K=2, 

compared to substantially greater times for the finite difference 

approach. 

We next examined the case of a 0.5 volt applied forward 

voltage using the same 1200 A width.  Again, for convergence, 

under-relaxation was required to obtain stability, and the values 

of K had to be increased.  The number of iterations, n, needed 

[11]  D. P. Kennedy and R. R. O'Brien, IBM  Jour. .Res. Dev.,   11, 
May 1967. 
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for convergence at e - lO"3, as a function of K, is shown in 

Figure V-4.  From a comparison between the optimum value of the 

under-relaxation parameter in this figure with that obtained for 

equilibrium conditions, it is suggested that K may have to be 

determined for each new situation. 
The calculated potential for this forward bias case is shown 

in Figure V-5.  Our last computer run was done for zero applied 

bias, and for a wider integration range (W=2500 A).  This 
time, even with the use of under-relaxation for values as high as 

K=75, no convergence could be obtained.  The calculated potentials, 

U , oontinually increased in magnitude, with each successive 

iteration, until the computer capabilities were exceeded (over- 

flow) .  It is evident from this result that an improved relaxation 

procedure, such as used by Mock [2], is needed if convergence is 

to be obtained when very large violations of the stability cri- 

terion (V-16) can be expected.  We are presently trying to sup- 

press this observed numerical instability. 

4.0 Direction of Future Work 
It has been shown that the one-dimensional Poisson equation 

can be converted to a non-linear Fredholm equation and that the 

resultant equation can be solved iteratively using the Picard 

method in conjunction with an under-relaxation procedure.  The 

solution method is found to be rapidly convergent for narrower 

integration ranges, but exhibits convergence problems for wider 

intervals.  Our efforts at the moment (and in the immediate 

future) are directed toward improving the relaxation procedure 

used by allowing K in (V-17) to change with both x and with each 

iteration.  In view of the success demonstrated by Mock [2] in 

the use of a changing sequence of relaxation parameter, this 

approach should lead to convergence over a wider range O^W. 

Once having accomplished this, we plan to extend our calculations 

to more complex impurity profiles including the Gaussian and 

error function distributions associated with diffusion fabrica- 

tion of semiconductor devices. 

[2]  M. S. Mock, Solid State  Electronics,   16, 601 (1973) 
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Some work has also been initiated on extending the above 

described integral approach to the two-dimensional geometry of 

a typical MOSFET.  In this case the calculation of the Green's 

function is a formidable task; we encounter a more complicated 

geometry, and the introduction of mixed boundary conditions. 

Some preliminary studies conducted by us show that, even for a 

simple rectangular region subjected to homogeneous boundary 

conditions, the inversion of the Laplacian operator in (V-l) leads 

to a fairly cumbersome double infinite series form for the Green's 

function.  It therefore appears that a better way to determine 

the Green's function for two-dimensional problems is to utilize 

numerical methods for its determination, in conjunction with tape 

or d sc storage of this information.  We plan to do this, and now 

have the required program (see Chapter 1). 

Assuming that convergence problems associated with the 

Picard iteration can also be overcome for the two-dimensional 

case, where the iterative procedure also involves double integrals, 

we ple.n to use this method to examine the potential and carrier 

distributions in other two-dimensional devices such as bipolar 

transistors.  It is envisioned that eventually adequate knowledge 

will be gained to solve equations (V-l) to (V-6) simultaneously, 

and with a substantial reduction of computer time over the finite 

difference method. 

5.0 List of Symbols 
K       Relative dielectric constant of silicon (12.0) 

e .     Permittivity of free space (8.854 x lO-1'1 Farad/cm) 
o 

k       Boltzmann constant 

T       Temperature in degrees Kelvin 

p       Hole concentration (cm-3) 

n 

q 
ni 

Electron concentration (cm-3) 

Charge on electron (1.6 x 10~19 coulombs) 

Intrinsic carrier concentration (1.4 x 10  cm"' 

Hole mobility (cm2/volt-sec) 

-140- 

■ 



u Electron mobility (cm /volt-sec) Hn 
N Donor concentration (cnT ) 
D 

N Acceptor concentration (cm- ) 
A 
R SRH recombination factor 

U Normalized potential (U = qV/kT) 

U Value of potential at x=W 
0 

W Width of integration interval in A 

V Applied bias voltage in volts 
A 
K Relaxation parameter 

A Grade constant (cm"1*) 
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Chapter VI 

Test Pattern Model Using Monte Carlo Methods 

S. C. Taylor and D. P. Kennedy 

1. 0  Introduction 

Sheet resistance measurements are used extensively for moni- 

toring integrated circuit fabrication processes.  This measure- 

ment technique offers many advantages:  it is easily implemented, 

it is nondestructive, and sheet resistance test patterns can be 

measured (and tabulated) using high-speed automatic equipment. 

For this reason, a large segment of the semiconductor industry 

uses sheet resistance test patterns for production line monitoring 

and control. 
Statistical studies have been undertaken on sheet resistance 

measurements derived from IC test sites.  These studies show that 

a given type sheet resistance measurement, when viewed statistically 

on a given production line, produces a distribution, rather than 

one single value (see Fig. VI-1).  Further, these studies also 

show that a large degree of correlation exists between the sheet 

resistance distribution and inadvertent processing variations in 

a given IC manufacturing process.  As a consequence, contained 

within any statistical sample of sheet resistance measurements is 

process variability data.  These data, in conjunction with other 

test pattern measurements, can be used in mathematical models of 

device operation to evaluate the manufacturability of a given IC 

design, assuming a specific manufacturing line. 

The purpose of this modeling effort is to develop computa- 

tional methods whereby this process variability data can be 

extracted from a sheet resistance frequency distribution.  For 

illustrative purposes. Fig. VI-1 shows the frequency distribution 

of sheet resistance for a boron diffusion into silicon.  Contained 

within Fig. VI-1 is the frequency distribution of boron surface 

concentration. Fig. VI-2, associated with this particular IC 

manufacturing line.  Figures VI-1 and VI-2 were obtained using a 

mathematical model of the type presently under development. 
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2.0  Approach to the Problem 

The sheet resistance test-site model represents a simple 

numerical calculation of sheet resistance for a given impurity 

atom profile.  This calculation must be accomplished in a manner 

requiring very little computer time.  Further, the overall model 

must contain two distinctly different mathematical representations 

for the impurity atom distribution:  one to represent impurity 

atoms after an initial deposition step, and a second to represent 

these impurity atoms after drive-in (or oxidation). 

This first mathematical representation is easily implemented. 

During an initial impurity atom deposition negligible silicon is 

lost during oxidation, and the overall impurity profile can be 

described by 

Ni (x,t) = Coi Erfc x 

2^t 
- CB(x) , (VI-1) 

where CB(x) represents a background impurity atom distribution 

of opposite type. 

The second profile representation is adequately approximated 

by the integral [1] 

00 

N2(x,ti,t2) = J G(x/t2;x
1
ft

1)Ni (x^t^dx1  , (Vl-2) 

The term G (x, t2 »-x1 , t!) in (VI-2) represents a Green's Function 

relation of the form 

G(x#t2;x
1,t1) = 

VWTta-t1) 
exp (x-x1) 1 \ 2 

+ exp 

and NiCx^ti) is given by (VI-1) . 

4D(t2~t
1) 

(x+x1)2 

4D(t-t1) 
(VI-3) 

[1]  D. P. Kennedy, Proc.   IEEE,   52, 5 (1964) 
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For sheet resistance measurements, these impurity profiles 

must be modified to account for the fraction of impurities that 

are substitutional and interstitial within a semiconductor lattice, 

In addition, other corrections are needed to establish the frac- 

tion of substitutional impurities expected to be ionized at the 

measurement temperature, and the redistribution of impurities due 

to solubility differences between SiCh and silicon.  The resulting 

mobile carrier distribution n(x) can thereafter be used to 

establish the sheet resistance 

ps = - 
(VI-4) 

where 

a = x . 
j / 

ax. 
1 

qy (N)n(x)dx (VI-5) 

Included in (VI-5) is the impurity dependent mobility of elec- 

trons/holes in silicon [2] . 
Both of these mathematical representations contain terms 

traditionally assumed constant although, in practice, are not. 

For example, the surface concentration (Coi) in (VI-1) undergoes 

variations from  ie location to another on a c-ven silicon wafer. 

Similarly, this parameter exhibits variations from one silicon 

wafer to the next, in a given diffusion run, and from one diffu- 

sion run to the next, using a given diffusion furnace.  Parameter 

variations are also found between various diffusion furnaces in 

a given manufacturing line. 
Such variability is statistical in nature, when viewed in 

terms of individual IC structures produced by a given manufac- 

turing line.  Correlation does, indeed, exist from one location 

to another on a single silicon wafer, and from one location to 

another within a single diffusion run.  Nevertheless, this corre- 

lation is lost if we view Coi variations upon the completed 

[2]  Irving, Bell   System   Tech.   j., 41, 387 (1962) 
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product.  Measurements upon ar arbitrary selection of completed 

integrated circuits show little (or no) correlation for a given 

process parameter and, therefore, randomness represents a reason- 

able approximation, with a specified frequency distribution. 

in this particular calculation we find the following typical 

process parameters that must be assigned both a median value and 

a frequency distribution 
Co j impurity atom surface concentration 

c Background impurity concentration 

Tl Temperature of deposition diffusion 

T2 Temperature of drive-in (oxidation) diffusion 

tj Deposition diffusion time 

t2 Drive-in (oxidation) diffusion time 

Wo Oxide width from oxidation cycle 

in our model we approximate these process parameters, and 

their variabilities, by a psuedo-random number generator contain- 

ing adjustable statistical filters in the output.  Each parameter 

in (VI-1) and (VI-2), subject to variability, is given a speci- 

fied median value, and a specified frequency distribution.  There- 

after, the generator yields sets of numbers that are statistically 

typical of the fabrication parameter process found in any arbi- 

trarily selected sheet resistance test-site.  Using this number 

generator, in conjunction with the forementioned impurity atom 

profile representations, thousands of sheet resistance calcula- 

tions can be performed and, thereby, we can generate a sheet 

resistance distribution similar to Fig. VI-1. 

3 o  Present Activities 
^^T^is statistical calculation we must first require 

a suitable psuädo-random number generator.  This generator must 

produce a sequence of uniformly distributed random numbers in the 

interval (0,1).  Thereafter, the uniform, or rectangular, output 

from this generator is statistically filtered to provide the 

necessary distribution of process parameters:  the normal distri- 

bution with a given mean and standard deviation, or a log-normal 

distribution with a specified skewness. 
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Such a random number generator was acquired from the Harwell 

Subroutine Library (Program FA01AS).  This generator uses the 

linear congruential method for generating a set of uniformly dis- 

tributed random numbers.  These numbers, <U >, are obtained 

through an application of the recursion relation 

U ^ = (aX +c)Mod m      n ^ 0  , n+1     n 

which represent a linear congruential sequence.  The Harwell 

generator uses the following numbers in the above recursion rela- 

tion: 

a = 315 

c = 0 
m - 0 3 2 m — z 

X = 21845 o 

Our first task is to establish the randomness of this Harwell 

number generator and, thereby, verify its applicability for 

particular problems at hand. 

4.0 Statistical Evaluation of the Harwell Generator 

The field of statistics offers many quantitative testing 

procedures for determining the randomness of a particular sequence, 

The fact that a particular sequence passes an arbitrary number 

of these tests is no guarantee that it will pass all such tests. 

However, in practice several tests are carried out, and with each 

successful test our confidence in the generator increases.  After 

several such tests have been applied with good results, the 

generator is assumed to produce a suitably random sequence of 

numbers. 

The following statistical evaluation methods were selected 

(from Knuth [3]) to test the Harwell generator sequence: 

a. The Equidistribution (Frequency) Test 

b. The Gap Test 

[3]  Knuth, Donald E., The  Art   of  Computer   Programming,   "Semi 
numerical   Algorithms",   Addison-Wesley (1071). 
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c. The Permutation Test 

d. The Maximum of t Test 

e. The Serial Correlation Test 

Two general procedures are employed by these evaluation methods: 

(1) The Chi-Square Test, and (2) The Kolmogorov-Smirnov Test. 

The Chi-Square Test 

Assume that every observation from this generator falls into 

one of k categories. A fairly large number of independent obser- 

vations is made.  Let p be the probability that each observation 

falls into category s, and let Y  be the number of observations 

which actually do fall into category s, 

is formed from n observations: 

k_ 

V 

■3=1 

(Ys-nPs) 

The following statistic 

(VI-6) 

Assuming k categories in (VI-6), it can be shown that the 

parameter V has K degrees of freedom, where K = k-1. Thus, from 

Chi-Square tables we can establish the probability that V will 

assume a particular value.  Suitably applied, this evaluation 

method is used to test a random number generator in several of 

the above listed categories. 

The Kolmogorov-Smirnov (KS) Test 

The distribution of a random quantity U can be specified in 

terms of a distribution function, F(x), where 

F(x) = probability that U < x . 

For a uniformly distributed random number within the interval 

(0,1), this distribution function assumes the ideal form: 

F(x) = x  0<x<l 

F(x) =1   l<x<°° 

This KS test involves the generation of such a distribution from 

the number generator under investigation, and comparing this dis- 

tribution with the ideal. 
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This test is accomplished by acquiring a large sequence of 

numbers from the generator (Ui , Uz,   U3, 

the distribution function F (x) where n 

U ), and developing 

Fn(x) Quantity in sequence < x 
n (VI-7) 

Thereafter, Fn(x) - F(x) establishes the deviation of this 

sequence from an ideal type of random distribution.  Specifically, 

a maximum value is established for both positive and negative 

deviations of F (x) from the ideal: 

*% 
Kn  =  Max   {Fn{x)-F(x)}     where  -oo<x<oo 

K     =  Max   {F(x)-F   (x) }     where  -oo<x<o0 

(VI-8) 

As in the Chi-Square test, statistical tables have been developed 

to establish the level of significance for K+ and K~. 
n     n 

The five previously mentioned tests are now described.  Each 

test is applied to a sequence: 

U n U 1 1 U 2 , u 
n 

of real numbers, supposedly uniformly distributed, where O^U £l. 

a.   The Equidistribution (Frequency) Test 

This test determines if the numbers of a sequence are uni- 

formly distributed on the interval of definition.  There are two 

ways to perform this test, one employing the Chi-Square test, the 

other the KS test. 

For the Chi-Square test we generate from the sequence <U > 

a new sequence <Y > where ^       n 

<Yn> = Yj, Y2, Y3, n {VI-9) 

and Yn = [dUnJ, where d, a constant, is selected from other con- 

siderations.  Thereafter, a frequency distribution is generated 

from the sequence <Y > for an interval division r where o<r<d. 

Next, the Chi-Square test is applied to this distribution assuming 

K = d and the probability p = 1/d for each category. 
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This testing technique was applied to two different sequences 

of numbers from the Harwell Generator: 

Number Sequence Value of (VI-6) 

1-1000 V - 75.58 

3821-4821 V = 68.93 

From the Chi-Square tables, the probability of exceeding V = 75.58 

is about 2 5% whereas the probability of exceeding V = 68.93 is 

about 35%. 

A similar evaluation was conducted using ehe Kolmogorov- 

Smirnov (KS) test.  This is accomplished by generating a distri- 

bution for (VI-7) and thereafter determining the magnitudes of 

K+ and K~ (VI-8).  This test was made for three sequences of 
n     n 

numbers from the Harwell generator: 

Number Sequence 

0-1000 

1001-2000 

Probability of 
Max exceeding 

<- 
0.6261 29% 

Kn = 
0.2566 78% 

K+ = n 
0.6893 39% 

Kn = 
0.356 78% 

K+ = 
n 

0.8197 25% 

Kn = 
1.074 12% 

1191-2911 

Although evaluating a random sequence is subjective, at 

best, it is suggested that the Harwell generator properties are 

adequate to assure that its frequency distribution is satisfac- 

torily uniform [3]. 

b.   Gap Test 
This test is used to examine the length of "gaps" between 

occurrences of specific numbers.  We want to establish the lengths 

of consecutive sequences of numbers from the output of this 

generator, U., Ü   , U.+2  , Ü  , in which Uj+r lies within 

the range a<U.  <ß but the others do not.  This sub-sequence 

U.   represents a gap of length r. 
D+r  

[3]  Knuth, Donald E., The   Art   of   Computer   Engineering,   "Semi- 
numerical  Algorithms,"  Addison-Wesley (1971). 
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This test is performed by setting up an output "bucket" 

for the random number generator of size ß-a, and evaluating the 

lengths of gaps in the output distribution.  Thereby, we can 

tabulate the number of gaps n of lengths 0,1,2 ... , t-1, and 

the number of gaps .>t.  Thereafter, the Chi-Square test is applied 

to this distribution of gap lengths, with suitable probabilities: 

P0 " P# P1 * Pd-P), P2 = p(l-p)
2   

Pt-1 = Pd-P)1""1' Pt = d-P)* 

where p = ß-a, the probability that a U will fall within the 

subinterval (a,ß). 

This gap test was applied to the Harwell generator for dif- 

ferent sequences of numbers.  For all sequences, evaluations were 

made for gaps (ß-a) "above the mean," (.5,1), and "below the 

mean , " (0,.5): 

Probability 
of Exceeding 

69% 

38% 

19% 

42% 

75% 

63% 

It is suggested (3] that these Chi-Square probabilities are 

indicative of a satisfactory generator. 

c.   Permutation Test 

In this test, a sequence of numbers from the Harwell generator 

<U> is tested to assure that it does not contain ordered sub- 

sequences.  For example, if we divide the sequence into n sub- 

sequences of 3 numbers, there are 31 possible combinations for 

these numbers.  Because each combination has the probability 1/31 

we can apply the Chi-Square test to determine whether the different 

orderings are uniformly distributed. 

This permutation test was applied to the Harwell generator 

with the following results: 

Number Sequence (ß-a) Val ue of (VI-6) 

1-1901 Above mean 3.068 

Below mean 5.468 
1911-3820 Above mean 7.86 

Below mean 5.104 
1-3600 Above mean 3.432 

Below mean 4.168 

[3]  Knuth, Donald E., The   Art   of  Computer   Engineering,   "Semi 
numerical   Algorithms,"   Addison-Wesley (1971). 
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Number Sequence Value of (VI-6) 

1-1500 7.384 

1501-3000 6.016 

4501-6000 1.648 

1-3600 20.907 

Probability 
of Exceeding 

22% 

32% 

88% 

59% 

Again, it has been suggested [3] that this number generator is 

adequate for our needs. 

d.   Maximum of t Test 

In this test we generate sequences of numbers from the 

generator 

Vj 
max (Utj, üt(j+1), Ut(j + 2) t(j+t-l) 

and apply the Kolmogorov-Smirnov test to the resulting sequence 

Vo, Vi, V2 .... V  1 with the distribution function F(x) = x . 

In this test, we must show that the distribution function for 

V.: is F(x) = x .  This test is based upon the fact that, the 
j 

probability of Max (Uj, U2, U3.... U.) < x is the probability 

that Ui < x and U2 < x . . . . , and this is the product of each 

individual probability — x.x.x   = x . 

This test was performed for several different sequence of 

numbers from the Harwell generator: 

Number Sequence 

1-1500 

Max 
Probability of 
Exceeding 

K n 1.103 

1911-3410 

1-3600 

K  = 0.278 n 

K = 0.9110 n 

K~ = 0.3853 n 

K = 0.8154 n 

K" = 0.3399 n 

11% 

84% 

21% 

74% 

26% 

79% 

[3]  Knuth, Donald E., The   Art   of   Computer   Engineering,    "Semi' 
numerical   Algorithms,"   Addison-Wesley (1971). 
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As before, it is suggested 13] the resulting probability indi- 

cate satisfactory randomness in the number generator. 

e•   Serial Correlation Test 

The intent of this test is to evaluate the degree of corre- 

lation at the output of this generator between two sequential 

numbers, (U., U.+1).  This correlation test is performed by cal- 
culating the following correlation coefficient: 

c = n(U0Ul + U1U2—• + Un-2Un-l+ün-lV '   < VV'' •+Vl> 2 

niul  + U^ + .... + ^ - (üo + ^ ......0^)2   (VI-IO) 

This coefficient always lies between -1 and +1.  when c is zero 

(or very small) it indicates U., Uj+1 are relatively independent 

of each other.  when the correlation is near ±1 it represents a 
complete linear dependence. 

A good value of c is conjectured to be between yn -2a and 
yn + 2a [3] where 

un = -   -      „„ _  1    n{n-3) Pn    (n-1)    an - JPT  I^Tl (VI-11) 

It has been found that when a normal distribution is assumed for 
(V-10), these are the values for (VI-11). 

Applying this test to the Harwell number generator, we obtain 
the following results: 

Number Sequence Values of (VI-11) 

1-1000 c = -0.0573 

1911-3820 c = -0.0120 

For adequate lack of serial correlation, the first run (1-1000) 

should lie between (c = -0.0642) and (c = 0.0622), and the second 

run (1911-3820) should lie between (c = -0.0463) and (c = 0.0452), 

Clearly, this test indicates little serial correlation at the 
output of this number generator. 

[3]  Knuth, Donald E., The   Art   of   Computer   Engineering,    -semi 
numerical   Algorithms,"   Addison-Wesley (1971). 
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5. 0  Conclusions 

The Harwell random number generator failed none of the above 

tests.  in no way does this evaluation imply the numbers from this 

generator are truly random.  Instead, implied here is that this 

generator is adequate for our purposes. 

6.0  Future Work 

Having completed evaluating this number generator, the next 

task is to obtain normal and log-normal distributions from its 

output.  The present generator has a statistical filter for the 

normal distribution; this must be similarly tested, probably 

using a standard Chi-Square test.  Thereafter, we can easily 

modify this normal distribution to obtain the needed log-normal 

distribution.  It is emphasized that this number generator will 

also be used for other mathematical modeling tasKs associated 

with this project. 

After completing this number generator task, we will next 

undertake the development of a mathematical model for sheet 

resistance measurements.  This is a relatively straightforward 

problem, c'/id no technical difficulties are foreseen. 
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Chapter VII 

Hot Carrier Mechanisms in Semiconductor Devices 

j. T. Wang and D. P. Kennedy 

1.0  Introduction 

The theory of semiconductor device operation [1-3] is based 

upon solutions of a system of differential equations first pro- 

posed by Van Roosbroeck [4] in his studies of mobile carrier trans- 

port in semiconductors.  Contained within this system of equations 

is an expression for the electric current density produced by 

mobile electrons: 

Jn = en(x)ynUx) + eDn ^Ll  .       (vil-l) 

In (VII-1) it is assumed the total electric current, due to elec- 

trons, can be represented as the superposition of a drift term, 

and a diffusion term.  Furthermore, Van Roosbroeck assumed the 

diffusivity of electrons (Dn) and their drift mobility (yn) are 

related by the Einstein relation [5], 

D_   k_T 

y 
n _ o L > (vil-2) 

n 

In an early study of this subject, Shockley [6] proposed 

that (VII-1) would be applicable only when thermal equilibrium 

exists between mobile carriers and the semiconductor lattice, 

i.e., the carrier temperature T equals the lattice temperature TL. 

[1]  A. S. Grove, Physics   and   Technology   of   Semiconductor   Devices, 
John Wiley and Sons, Inc., N.Y. (1967). 

[2]  S. K. Ghandi, The   Theory   and   Practice   of  Microelectronics, 
John Wiley and Sons, Inc., N.Y. (1968). 

[3]  S. M. Sze, Physics   and   Semiconductor   Devices,   McGraw-Hill 
Book Co., N.Y. (1969). 

[4]  W. Van Roosbroeck, sell Sys. Tech.   j. , 29^, 560 (1950). 

[5]  S. Wang, Solid   State  Electronics,   McGraw-Hill Book Co., 
N.Y. (1966). 

[6]  W. Shockley, Bell   Syst.   Tech.   J.,   30^, 990 (1951). 
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Furthermore, he suggested that this equilibrium situation can be 

altered in the presence of a large electric field.  During elec- 

tric conduction, Shockley proposed that electrons gain energy from 

an externally applied source and, therefore, the carrier tempera- 

ture Te can differ from the lattice temperature T .  Assuming 

acoustic intravalley scattering, Shockley  uggested that these hot 

carriers Lose energy to the semiconductt    ttice and, thereby, 

the average drift velocity is no longer proportional to the elec- 

tric field.  Quantitative calculations based upon this proposed 

situation yielded a field dependent electron drift mobility 

(Mnar
1/2). 

The first experimental verification of this theory was given 

by Ryder [7] in 1953.  Ryder demonstrated that at large electric 

fields, the electric current in homogeneously doped semiconductor 

material did, indeed, exhibit non-ohmic behavior.  In addition, 

Ryder experimentally demonstrated that MnaK~1/2  when the carrier 

velocity exceeded some critical value, v  , and at another 

critical velocity, v „, (where v , < v 0) y c^"1. 
c* cl    c2   n 

The success of Shockley"s theory stimulated additional 

research in this area.  Gunn [8] found he was unable to experi- 

mentally verify the relation yar1/2 at small values of carrier 

velocity, although other workers did, indeed, verify Ryder's con- 

clusions [9].  in addition, Morgan [10] suggested that the high 

current mobility, yaC~ , for germanium could result through the 

mechanism of optical phonon scattering; later, Conwell [11] theo- 

retically verified this concept.  Thereafter Harrison [12], 

Long [13], and Duh [14] undertook a similar evaluation for silicon; 

[7] 

[8] 

A. C. Prior, J. Phys.   ehem.,   12,   175 (1959). 

T. Morgan, Bull. Am.   Phys.   soc.,   2,   No. 2, 265 (1959) 

E. J.- Ryder, Phys. Rev.,   9J3, 766 (1953). 

J. B. Gunn, Progress   in   Semiconductors,   Vol. 2, p. 213, 
John Wiley & Sons, N.Y. (1957). 

[9] 

[10] 

[11] E. M. Conwell, Phys.   chem.   Solids,   8, 234 (1959). 

[12] W. A. Harrison, Phys. Rev.,   104, 1281 (1956). 

[13] D. Long, Phys. Rev.,   120, 2044 (1960). 

[14] C. Y. Duh and J. L. Moll, Solid-State   Elec,   11, 917 (1968) 
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it was concluded that Ryder's experiments could be explained 

through a combination of intervalley and intravalley scattering. 

In general, the hot-carrier concept has qualitatively 

explained  nonohmic behavior of electric conduction in homo- 

geneously doped silicon, at large values of electric field.  Fol- 

lowing Ryder [7], many device designers [15-17] adopted his 

experimental results with little consideration of associated 

implications.  A frequently used model for hot-carrier mechanisms 

is to assume that Ryder's critical velocities (v ,, v „) are ci  cz 
attained at specific values of electric field (£ ,, K   o)•  Further, 

ci   cz 1/2 
these models assume u = u  when £,<£,,, y = y^C^^i/C)    when M   'o cl o  Ci 
C ,<£;<£; 9, and y = y {? -/^) when ?  <^.  Although this model 

contains an obvious ambiguity in regions where drift and diffusion 

are both important (D/y ^ k T /e), little consideration is given 
O L 

to problems produced by this model in regions of a device con- 

taining an inhomogeneous impurity atom distribution. 

For example, it is generally accepted that large values of 

electric field (C) can reside in inhomogeneously doped silicon 

at equilibrium, and that this electric field can exceed £ ,.  For 

such regions, the carrier temperature T must, from thermodynamic 

considerations, remain equal to the lattice temperature T . 
Li 

Despite this situation, the present device model predicts hot- 

electron mechanisms, and hence y = f(^), at equilibrium.  In fact, 

a theory for device operation is available [18] in which hot 

electron mechanisms are assumed within the charge neutral base 

region of a bipolar transistor. 

[7] 

[15] 

[16] 

[17] 

[18] 

E. J. Ryder, Phys.   Rev.,   90, 766 (1953). 

G. C. Dacey, Phys. Rev.,   90, 759 (1953). 

G. C. Dacey and I. M. Ross, Bell Syst. rech, 1149 (1955). 

S. R. Hofstein and G. Warfield, IEEE   Trans,   on   Electron 
Devices,   129, March (1965). 

L. K. Makeshivari and S. N. Ihanwar, int.   j.   Electronics, 
Vol. 37, No. 3, 435 (1974). 
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A second approach to this modeling problem was suggested by 

Stratton [19-21], Goldberg [22], and Stokoe [23-24].  In this 

approach, it is assumed that large values of electric field do 

not alter the basic velocity distribution of mobile carriers (it 

remains Maxwellian).  Instead, it is assumed these carriers can 

be described by the Maxwell velocity distribution at an effective 

electron temperature, Te, where Te f ^     Through this assumption 

they eliminate a previously stated objection D/y = koT/e; in 

this model 
D    k T 
_n = _^_e    . (VII-3) 
^n   e 

Implied here is another unsatisfactory situation.  If the 

electron distribution remains Maxwellian at a temperature Te 
(where T ^ T ), electron-electron scattering, alone, must pre- 

dominate!  This implication could be reasonable for regions con- 

taining a large electron density, but it is questionable to imply 

that electron-electron scattering predominates in all regions of 

a semiconductor device. 
As a consequence of this situation, it is our aim to inves- 

tigate hot-electron mechanisms in silicon, and to develop a model 

for this mechanism rhat is applicable to device analysis. 

2.0  Approach to the Problem 
in previous studies [25-28] researchers have investigated 

the validity of (VII-1) and (VII-2).  A frequently used approach 

[19]  R. Stratton, J. Appi. Phys. , 40, No. 11, 4582 (1969). 

[20]  R. Stratton, J. ÄppI. Phys., 38, No. 12, 45?'J (1967). 

[21]  R. Stratton, Phys. Rev., 126, 2002 (1962). 

[22]  colman Goldberg, J. Appi. Phys., 40, No. 11, 4612 (1969). 

[23]  T. Y. Stokoe and J. E. Parrott, Solid State Elec.,   17, 477 
(1974) . 

[24]  T. Y. Stokoe and J. E, Parrott, ibid.,   18, 811 (1975). 

[25]  R. Stratton, IEEE   Trans.   Elec.   Dev.,   ED-19, No. 12 (1972). 

[26]  J. D. Gassaway, IEEE   Trans.   Elec.   Dev.,   ED-18, 175 (1971). 

[27]  A. H. Marshak and D. Assaf, Solid state Elec,   16 (1973). 

[28]  B. R. Nag and A. N. Chakravarti, ibid.,   18, (1975). 
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to this problem is to expand the mobile carrier distribution func- 

tion f(r,ic) in a series of Legendre polynomials, and retain only 

the first two terms of the resulting series: 

f(r,%)   =  f (r,E) + kg(r,E)cos(j) (VII-4) 

where f (r,E) is the spherically symmetrical part and kg (r/E)cost}) 

is the asymmetrical part (both in k-space), respectively.  There- 

after, (VII-4) is substituted into the steady-star.e Boltzmann 

transport equation, and g(r,E) is established in terms of fo(r,E). 

Because the drift component of electric current arises from the 

generation of asymmetry in f(r,k), a quantitative evaluation of 

g(r,E) provides a means to calculate the drift component of elec- 

tric current, due to an assumed electric field. 

Using this approach, it can be shown [25] that (VII-1) is 

applicable only when the symmetrical part of (VII-4) can be writ- 

ten as the product of a position dependent carrier density n(x) 

and an energy dependent relation (f (r,E) = n(r)W(E)).  Further, 

it can also be shown that the Einstein relation (VI±-2) is appli- 

cable only when W(E) assumes the Maxvellian form 

W(E) a axp(-K/koT)  , (VII-5) 

assuming T is constant. 
Our approach to this problem is to utilize the same simpli- 

fied polynomial expansion (VII-4) for f(r,ic), without introducing 

the other, traditional, simplifying assumptions.  By retaining 

(VII-4) we require that a large electric field in silicon produces 

asymmetry in f(r,k), although this asymmetry must be small. 

Implied here is that the associated carrier collision mechanisms 

produce a large degree of velocity randomization, when compared 

with mechanisms tending to reduce this randomness [29] .  Such a 

simplification appears reasonable, except at exceedingly large 

values of electric field where, for practical reasons, few ques- 

tions arise in device modeling. 

[25]  R. Stratton, IEEE   Trans.   Elac.   Dev.,   ED-19, No, 12 (1972). 

[29]  E. M. Conwell, High   Field   Transport   in   Semiconductors.     In 
Solid State Physics, Supplement No. 9, Academic Press, N.Y. 
(1967). 
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rJ hereafter, substituting (VII-4) into the steady-state form 

of Boltzmann's transport equation, 

'3_f | 
at 

'coll 

we  obtain 

9f(r,k) 

hk 
m 

jrad f(r,k) 
r •- 

+  enx)i   .   grad f(r,k) (VII-6) 

dt 
ftk 

m 
coll 

3f  c 
9x 

-  e^(x) 
3f 

c 
9E 

COS()) 

2eEUx)      iä  +  2E      83.  _   gjW   q 
3Ti 9E       3Ü"     3x n 

(VII-7) 

The orthogonal properties of the Legendre polynomial permits r.s 

to separate (VII-7) into two separate equations. 

9f o 
9t I 

= 2E 9£ _ eUx)   _ 2eEUx)  M 

coll 

and 

93 
9t 

3tl 9x 

ft 9fo  öftUx) 9fo 

3-h 9E 

m     9x m 9E 

(VII-8) 

(VII-9) 

coll 

In   (VII-8)   and   (VII-9),   the collision process  in  silicon can 

be written  in  integral  form,- 

31 
9t 

JO 11 

-i—   |fp(k,kMf(?,k)-P(k1,k)f(?,^)]d3k1 

(2TT) 
3  JL J 

(VII-10) 

where P(k,k1) and Pdc1,^) denote the transition probabilities 

from the k to ^ states and from P   to t  states, respectively, 

From Fermi's rule, the transition probability from k to k1 

is given by 

PU^M =|^ l<^1|H1|k>|26(E^E^i + I) 
K  K 

(VII-ll) 

in (VII-ll) the term ^k^H1!^! is the transition matrix element, 

0(E) is the Dirac delta function, and I is the phonon interaction 

term.  In this expression, I = ftw for phonon absorption, 
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I = -Tico for phonon emission, and I - 0 for no phonon interaction 

(for example, impurity scattering). ^ ^ 

Substituting our approximation (VII-4) for f(r,k) into 

(VII-10) this collision integral can be separated into two colli- 

sion integrals:  one integral for the symmetrical part of our 

distribution function. 

'Us 
I3t 

'coll 

1    r[p(k1,k)f (?,E1)-P(k,k1)fo(?,E)|d3k1  (VII- 
(2TT) 

3 J L J 
12) 

and another for the asymmetrical part 

'9[kxg] 

3t 
(2TT) 

P(S1,^)k1g(r,E1)-P(k,k1)kxg(r ,E)j d^1.  (VII-13) 

coll 
Classical methods are available to evaluate (VII-12) and (VII-13) 

for the numerous scattering mechanisms encountered in silicon: 

(a) Acoustic Intravalley Scattering, 

(b) Intervalley Scattering, 

(c) Impurity Scattering, 

Thereby, expressions can be derived for the left side of (VII--8) 

and (VII-9). 
After completing this sequence of calculations, one obtains 

from (VII-8) and (711-9), a second order partial differential 

equation in r and E and is of an elliptic^type, and it provides 

a means to calculate both fo(r,E) and kg(?,E)cos* in (VII-4). 

If, indeed, these equations are to be solved without introducing 

traditional simplifying assumptions, numerical techniques must 

be applied, using a computer.  From such a calculation we thereby 

obtain the carrier distribution function for a specified field 

distribution g(x). 

For an inhomogeneously doped semiconductor we cannot assume 

that the electric field Ux) is a constant.  As a consequence, 

the Boltzmann equation must be solved subject to the constraint 

3j/9x = 0 where 
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J    =    -    —       /      k    f(f,k)d3k , 
m    I      x 

(VII-14) 

and from the resulting distribution function f(r,k) we can 

determine the drift and diffusion components, 

VTi 8 V 2Trm 1/2. 

'diff 3Tr 
{TE)f E1/2dE 

o 

|1 E  f E1/2dE 
9x  /  o 

(VII-15) 

8i2vm1/2i 
Jdrift 3h: 

eUx) dE (VII-16) 

In this type semiconductor material an applied biasing 

voltage, in conjunction with a modified carrier distribution func- 

tion, will necessitate a calculation of the electrical distribu- 

tion Ux) to be used in the solution of the Boltzmann equations 

(VII-8) and (VII-9).  This is readily obtained from a numerical 

solution of Poisson's equation 

d2^ 

dx2 
KE 

ND(x) - n(x) (VII-16) 

where N (x) is the impurity ion distribution and 

n(x) » f (?,k)d3k 
o 

(VII-18) 

represents the electron density distribution.  Equation (VII-17) 

must be solved simultaneously with (VII-8) and (VIx-9); this is 

to be accomplished by numerical means, on a computer. 

3.0 Future Plans 
Present research is directed toward a numerical solution of 

this boundary value problem.  A computer program is being developed 

to simultaneously solve Boltzmann's equation and Poisson's equation 

for inhomogeneously doped semiconductor material. 
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Introduction - Part II 

Integrated Circuit Process Modeling 

In military, industrial, commercial, and consumer applica- 

tions, frequently there is a great necessity for "customizing" 

the design of an integrated circuit to fulfill the critical needs 

of a specific system or class of systems.  A major barrier which 

prevents the economic production of small quantities of high 

performance custom integrated circuits is the cost of design. 

That is, th« initial cost of designing optimum fabrication pro- 

cesses, devxce structures, and circuit configurations is prohibi- 

tively large because of the amount of empirical human effort 

which must be invested.  The root cause of this problem is a 

glaring lack of adequate process, device, and circuit models and 

accompanying computer aided design techniques to ease the burden 

of custom design.  Perhaps the most serious deficiency among these 

is the unavailability of suitable models for accurately predicting 

the physical characteristics of a monolithic structure on the 

basis of the control parameters for the corresponding fabrication 

processes. The  salient objective of this program is the develop- 

ment of new basic models for integrated circuit processes which 

will permit accurate prediction of the characteristics of a mono- 

lithic structure on the basis of its proposed process parameters. 

These models will serve as the basis for economic computer aided 

design of optimum fabrication processes for custom integrated 

f circuits. 
The four key generic integrated circuit fabrication processes 

which are being investigated are (1) ion implantation, (2) thermal 

oxütation and chemical vapor deposition, (3) epitaxy, and 

(4) thermal diffusion.  This report describes the progress which 

has been made in the first six months of this program in all four 

areas. 
In ion implantation, initial studies have been done in two 

areas.  Effects of implantation damage on impurity profiles in 

annealed Si are being investigated.  Here, the effect of the 

vacancies generated by this damage on diffusion of implanted ions 
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is being studied.  We are studying the "knock on" phanomena which 

occurs when a high dose implant is done through a mask.  So far, 

arsenic implantation through Si02 has been studied. 

In thermal oxidation, initial effort is being directed to 

achieve an accurate analytic prediction of oxide thickness for an 

arbitrary oxidation sequence.  The effects of oxidation ambient 

(dry O2 or wet O2),   crystal orientation, substrate doping, and 

chlorine oxidation are included in this study. 

In epitaxy, preliminary effort has been directed toward under- 

standing the kinetics of growth and the mechanism of dopant incor- 

poration in the epitaxial layer.  Work has begun to generate a 

system transfer function for the epitaxial reactor to relate the 

input parameters such as «^as flow, time, temperature, etc. to the 

resulting profile in the epitaxial layer. 

In thermal diffusion, a new mathematical model for the diffu- 

sion of impur-'ties in Si is being generated.  This model will con- 

sider the influence of the internal electric field on the motion 

of impurity ions at elevated temperatures. 

Stanford University 
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Chapter VIII 

Ion Implantation 

1.0  Introduction 

The major effort of the research in ion implantation during 

the first six months of this program has been concentrated in two 

areas. 

(a) Because of the interaction between the vacancies 

produced by damage and the implanted ions, complicated 

diffusion phenomena occur during the annealing, with 

the result that actual impurity profiles may bear no 

simple relation to the original implanted profile. 

Thus, the objective here is to study the interaction 

described above and produce an analytical model to 

predict the profiles of the annealed dopant. 

(b) A study is being done of high dosage implants throuijn 

the mask, including both how the mask itself is affected 

and to what extent secor iary ions (knock-ons) implanted 

from the mask into the semiconductor produce constraints 

on subsequent processing steps. 

2.0  Effects of Implantation Damage on Impurity Profiles in 

Annealed Si 

2.1 Objective.  A major unsolved problem in the field of 

ion implantation is concerned with the general question of how 

the annealing of implantation damage in a crystal affects the 

diffusion of the implanted species.  3riefly, the problem here is 

that implanted impurity ions create damage in the semiconductor 

lattice as they come to rest.  Annealing of this damage produces 

a rich source of vacancies and Si interstitial ions, both of which 

may produce orders of magnitude more diffusion of the implanted 

impurities during the annealing cycle than one would estimate from 

a simple calculation based on the impurity diffusion coefficient 

at the annealing temperature. 

The objective, therefore, is to study the annealing of implanted 

profiles in common semiconductor materials.  The immediate emphasis 
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is placed on dopants such as boron, phosphorus, and arsenic in 

silicon substrates.  The project consists of two phases; one is 

the development of an appropriate computer program for the simu- 

lation of the diffusion processes that take place during annealing, 

and the other phase is the experimental verification of the assump- 

tions used in the models, such as diffusion mechanisms, parameters, 

etc. 

2.2     Approach.  The block diagram in Fig. VIII-1 illustrates 

the building blocks in our approach for accomplishing the objec- 

tives.  The inputs to the Diffusion Solver are:  As-implanted 

profiles, damage profiles, process parameters, and diffusion 

parameters.  Since many parameters are unknowns or not known 

accurately, an optimization of these parameters has to follow. 

Inputs to the optimization routine are the computed and experi- 

mental profiles.  The optimization will be carried out in the 

diffusion parameter space minimizing a cost function (to be defined) 

over the parameter space and additional variables such as depth 

into the material and temperature for the isochronal annealing 

case.  Figure VIII-2 illustrates the experimental data from an 

3 5-minute isochronal anneal in the temperature range of 70Ü to 

1100oC [1].  These data are represented by a family of curves on 

a fictitious experimental surface to be approximated by the calcu- 

lated surface.  The cost function is a weighted measure of the 

difference between th^ surfaces to be minimized over the unknown 

parameters by the Optimization Routine. 

The areas of contribution will be the determination of dif- 

fusion parameters in an initial phase, the prediction of annealed 

profiles subsequently, and ultimately-by inclusion of the process 

parameters in the optimization space-the feasibility analysis of 

desired profiles for a specific device application will be possible. 

Basic requirements are:  generality of the diffusion solver 

and the "correct" diffusion model.  At this point  it is pertinent 

[1]  W. K. Hofke, et al.. Applied  Physics,   2, 1973, pp. 265-278. 
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Process Parameters 
(Anneal Time and Temp.) 

Experimental 
Profile 

Profiles as implanted 

(Gibbons-Johnson-Mylroi) 

Damage Profile 
(0. Brice) 

DIFFUSION 

SOLVER 

Computed 
Pro|f ile 

L 

Parameters Diffusion Coef. 
and Lifetimes 

OPTIMIZATION 

ROUTINE 

Error £  = £   (parameters) 

Figure VIII-1, Block diagram for study of implant annealing 
profiles in nommon semiconductor materials. 
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Duration:  35 min 

Temp.:  (700-11000C} 

14    . 2 
Dose:  10   ion/cm 

Accel.:  70 KV 

From:  W. K. Hofke et al 

^Cvl0"2(BRICE) 

0.8     1.0 
/im 

Figure VIII-2.  Isochronal annealing of boron in silicon. 
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to state that the proof of correctness requires a diffusion solver 

and the comparison with experimental results which are precisely 

as shown in the block diagram we have outlined. 

2-3  The Diffusion Model.  Anderson and Gibbons have proposed 

a new model for the diffusion of boron in silicon [2].  This model 

has the merit of using concentration-independent diffusion coeffi- 

cients for the species, namely, boron-substitutional and boron- 

vacancy pairs.  This basic model will be used in the present work. 

However, in this study the diffusion equations for positive vacan- 

cies will be solved along with the boron and boron-vacancy pairs. 

This three-specie model is temporary; as we build up the block 

diagram, the neutral and negative vacancies will be incorporated. 

Hence, the model for boron in silicon in its general form will be 
formulated as follows: 

The diffusing species, their concentrations, energy levels, and 
diffusion coefficients are: 

boron substitutional 

boron-vacancy pair 

positive vacancy 

neutral vacancy 

negative vacancy 

double-neg. vacancy 

The reactions and concentrations at equilibrium are: 

B^ + ^ = B"V+ CBV = K1CBV      K1 = Ko exp(EBV/KT) 

V° " V+ + f CV+ = CvOK2/n     K2/n = exP(Ev+ " V/KT 

V0 + e = V~ CV- - CvoK3n      K3n = exp(EF - EV_)/KT 
V~ + e = V" CV= = W      K4n = exP(EF " V

)/KT 

where EF and n are the Fermi level and the electron concentration, 
respectively. 

B CD 
  D B B 

BV Cn,r E D 
1- BV BV BV 

'7° 
V EV+ V 
c„ ETI D V V V 

V V V V 
V V V v 

[2]  J. R. Anderson and J. F. Gibbons, "A New Model for Boron 
Diffusion in Silicon" (to be published). 
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Departure froirj equilibrium produces a kinetic problem with 

generation and recombination of species.  This is modeled by the 

following expression for the first reaction. 

K1CBCV ~ CBV 

Notice that the first term in the sum is a nonlinear term, and 

the first order kinetic is modeled by a constant time constant. 

The diffusion equations are a set of partial differential 

equations with nonlinear coupling through the generation and 

recombination terms. 

dCB  _  32CB   „  CBV . CBV =   D„   -   K -      + 
3t B       9x2 OTT 

3CV+  _ 92V C
B

C
V+ j    

CBV       V 
at   v+ 3x2   o  T    T  TV 

9CBV   n   
92CBV , „  CBCV+   CBV 

nonlinear 
coupling 

The recombination term C-./T  accounts for recombination of vacan- 

cies with silicon interstitials or formation of vacancy loops. 

2.4  The Diffusion Solver.  Our approach is to use the trans- 
formation of the partial differential equations into a set of 

ordinary differential equations by partitioning ehe space coordi- 

nate.  Proper ordering of species in space partitions yields a set 

of ordinary differential equations with a banded Jacobian, which 

can be solved very efficiently [3] since it does not require the 

storage of elements outside of the "band." 

[3]  A. C. Hindmarsh, "Solution of Ordinary Differential Equations 
with Banded Jacobian," Lawrence Livermore Lab., University 
of California, Livermore, Calif., Mar. 1975. 
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For instance, for the first three equations in the diffusion 

model, we can use the Crank-Nicholson method [4] to approximate 

the space derivative as: 

32C   C1 - 2CC + Cr 

3x: Ax 

where superscripts 1, c, r designates partitions left, center, 

and right, respectively, and Ax is the partition width. 

Ordering the species in each partition and taking 33 parti- 

tions, the set of three coupled partial differential equations 

becomes a set of 99 ordinary differential equations. 

^(1) = -2Kly(l) + Kly(4) - Ky(l)y(2) + y(3) 

y(2) = (-2Tf2 " V' (2) + K(2)y(5) - Ky(l)y(2) + y(3) 

y(3) = (-2K3 " 1)y(3) + K(3)y(6) + Ky(l)y(2) 

i = (1,2, ..., 31) 

y(3i + 1) = K1y(3i - 2) - 2K1y(3i + 1) + K1y(3i + 4) 

- Ky(3i + l)y(3i + 2) + y(3i + 3) 

y(3i + 2) - K2y(3i - 1) - (2K2 + Kv) y(3i + 2) + K2y(3i + 5) 

- Ky(3i + 1) y(3i + 2) + y(3i + 3) 

y(3i + 3) = K3y(ei) - (2K3 + 1) y(3i + 3) + K3y(3i + 6) 

- Ky(3i + 1) y(3i + 2) 

y(97) = K1y(94) - 2K1y(97) - K1y(97) y(98) + y(99) 

y(98) = K2y(95) - (2K2 + Kv) y(98) - Ky(97) ^(98) + y(99) 

y(99) = K3y(96) - (2K3 + 1) y(99) + Ky(97) y(98) 

where 

[4]  Richtmeyer and Morton, Difference  Methods  for  initial   Value 
Problems,   Chapter 8. 
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K-, » 

K-. = 

v 
Ax2 

v 
Ax2 

K - Eq. Const, 

K
T, = — V   T. 

3    Ax2 

The Jacobian of thr set of ordinary differential equations 

Y- = f-Cy-i» y-» •-•'   yN) / i(l...N) has elements Ji4 given by 

Hence; 

9f. 
Jij  ayj 

Jii = "2Ki " Ky(2) = 3fi/8Yi 

Ji2 = "Ky(1) = 9fi/9y2 

J13 = 1 = 9fl/8y3 

Ji4 = Ki = 3fi/9y4 

etc, 

And, in general, the nonzero elements of J are for i = (0. 

J(3i + l,3i + 1) = -2K. - Ky(3i + 2) 

J{3i + 1,31 + 2) = -Ky{3i + 1) 

Kl 
 >  J(3i + l,3i + 4) =< 

32) 

J(3i + 1,31 + 3) 

0 

i = 32 

i < 32 
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J(3i + l,3i - 2) = < 

K. 

i = 0 

i > 0 

J(3i + 2,3i + 1) = -Ky(3i + 2) 

J(3i + 2,31 +2) = -2K2 - Ky(3i + 1) - Kv 

J(3i + 2,3i + 3) = 1 

K, 

J(3i + 2,3i + 5) = 

K, 

J(3i + 2,3i -!)-=< 

J{3i + 3,31 + 1) = Ky(3l + 2) 

J(31 + 3,31 + 2) = Ky(3i + 1) 

J(31 + 3, 31 + 3) = -2K  - 

J(31 + 3,31 + 6) = < 

K. 

K, 

J(31 + 3,31) = < 

1 < 32 

1 = 32 

0 < 1 

1 = 0 

1 < 32 

1 = 32 

i > 0 

1 = 0 

Schematically, the nonzero elements of the Jacoblan are repre- 

sented by "x" In Table VIII-2.  The Banded Structure Is apparent, 
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TABLE    VI11-2,     NONZERO ELEMENTS OF THE   JACOB IAN . 

yi     y2     y3 y97  y98  y99 

J = 

X          X          X    '    X                               ' 

XXX,                  X                  , 

XXX1                               X     ' 

X                               |    X          X          X     |    X 

x             '   x       x       ;:   '            x 

X     |    X          X          X     |                               X 

•   •   ■ 

1    X          X          X    '    X 

,    X          X          X    |                 X 

1    X          X          X    '                               X 

,    X                                ,    X          X          X 

1                  X                  '    X          X          X 

2.5 Optimization.  A number of optimization routines not 

requiring derivatives have been located [5].  At this point, it is 

premature to compare their adequacy for solving our problem since 

the cost function has not yet been defined.  We will defer this 

topic until the performance of some trial runs. 

3'0 Defects Arising as a Result of Implantation through the Mask 
(Knock-on Phenomena) 

3.1  Introduction.  When an implantation is done through a 

thin mask such as Si02 or SisNi», the highly energetic ions of the 

[5]  M.J.D. Powell, Tha   Computer  J.,   1_,   July 1965, pp. 155-162. 

W. J. Zangwill, The   Computer  J.,   1£, 3, Nov. 1967. 

Gill, Murray, and Pitfield, N.P.L., "Minimize a Real Function 
of N Real Variables Using a Quasi-Newton Method—Derivatives 
Not Required," (Subprogram in Stanford Library.). 
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main beam scatter.  During this process, some of the mask atoms are 

given so much energy that they are dislodged from their lattice 

sitps.  If these recoiled ions have enough energy, they will have 

enough range to reach the silicon substrate.  In the near vicinity 

of the:-'e knock-ons, the semiconductor quality will be very poor 

even after annealing.  Thus, the objective of this work is to study 

this phenomenon and generate an analytical model of it.  During 

the first six months, the work has been mainly concerned with the 

experimental verification of the knock-on phenomena in the case of 

arsenic implantation in Si through a mask of SiOa.  A new method 

also has been developed to calculate the range distribution of 

incident ions as well as the knock-ons. 

3.2  Experimental Measurements of Knock-on Atoms.  The depth 

distribution of oxygen recoils from As implantation was studied by 

employing MOS surface s^ate techniques.  Arsenic was implanted 

into an SiOi   film  on Si such that only the recoil oxygen reached 
the silicon.  By varying oxide thickness, the depth distribution 

could be determined.  The distribution at greater depth is expo- 

nential with a characteristic length of 217 A for an As implant at 

100 keV. 
Moline et al [6] have shown that a recoil effect can be 

expected under these conditions.  Moline and Cullis [7] have further 

demonstrated that recoil oxygen from an As implantation through an 

Si02 film causes residual lattice damage in Si even after annealing. 

Chu et al [8] found by channel experiments that implantation of 

1016 cm-2 As through 480 A SiOa results in about 4 x 10 

atoms in Si. 

1 5 oxygen 

[6]  R. A. Moline, G. W. Reutlinger, and J. C. North, in Atomic 
Collisions  and  Solids   1,   ed. by S. Datz, B. R. Appleton, and 
C. D. Moak, Plenum Press, New York, 1975. 

[7]  R. A. Moline and A. G. Cullis, Appl .   Phys.   Lett.   26^, 551 
(1975). 

[8]  W. K. Chu, H. Müller, and J. W. Mayer, Appl. Phys.   Lett.   25, 
297 (1974). 
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Oxygen in thermal equilibrium in silicon is very difficult to 

detect.  Therefore, very little quantitative experimental data on 

this effect has been available to date.  We have used an MOS 
method that is very sensitive even at low concentrations of oxygen, 

in this study, we implanted As into an oxide film on top of a sili- 

con single crystal such that the projected range of As was well 

within the oxide and only recoil oxygen reached the silicon.  In 

this manner, the two species could be separated.  The oxide thick- 

ness was varied, and the total integrated oxygen concentration in 

the silicon was measured oy  determining the surface state density 

induced by oxygen (Fig. VIII-3).  The correlation of surface state 

density and oxygen concentration was established by implanting 

various doses of oxygen into test samples. 
Fahrner and Goetzberger [9] have shown that ions implanted 

into an Si-Si02 interface produce characteristic surface state 

peaks that can be studied by MOS capacitance techniques.  Fahrner 

[10] has subsequently observed in more detail the behavior of oxygen 

implanted into the interface.  He found that oxygen yields well 

resolvable peaks of surface state density that are correlated 

with implantation dose and annealing conditions.  We have in this 

investigation been able to verify most of Fahrner's observations. 

The experimental conditions were as follows:  silicon crystals 

of <100> orientation and a resistivity of 1-2 ohm-cm n-type were 

oxidized under clean conditions using modern MOS technology.  A 

dry oxidation with subsequent high temperature annealing in nitro- 

gen was employed.  Aluminum metal contacts with an area of 

3.6 x 10"3 cm2 area were evaporated in an e-gun evaporation, 

implantations were carried out before metalization.  All samples 

were annealed at 450°C for 60 minutes in a forming gas atmosphere 

following metalization.  This also constituted the annealing step 

for e-gun and ion implantation damage.  Unimplanted control samples 

had surface state densities and fixed charge densities in the low 

1010 cm-2 range or below. 

[9]  W. Fahrner and A. Goetzberger, Appl.   Phys.   Lett.   21, 329 (1972) 

[10] W. Fahrner, J. Electrochem.   Soc.,   121,   784 (1974). 
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Electrical measurements of surface state density were carried 

out by employing the slow ramp technique [11,12] as in previous 

investigations [9,10].  An automatic data acquisition system per- 

mitted immediate plotting of surface state density versus energy 

in the gap for each sample. 
First, we wish to discuss results on the control runs under- 

taken to establish the correlation between surface state density 

and oxygen concentration.  Since the peak surface state density of 

the oxygen peak measured in units of cm"2 eV1 was used to measure 

oxygen concentration in units of cm"2, a correlation had to be 

established first.  For this purpose, samples with an oxide thick- 

ness of 764±10 A (measured by Talys*:ep) were implanted with varying 

doses of oxygen with the implant energy chosen such that the peak 

of the distribution was at the interface.  Oxygen range was adjusted 

using newly published tables [13].  Since the third moment ratio of 

oxvgen in this energy range is very small, it was assumed that ore- 

half of the implanted dose was located in the silicon and contri- 

buted to the signal.  The following pertinent points were observed 

regarding th« calibration runs:  at low doses only one surface 

state peak located in the middle of the gap could be observed.  At 

higher doses.- a second peak in the upper half of the gap emerged. 

This peak grew at a faster rate and merged with the other peak at 

very high doses.  Figure VIII-4 shows the correlation of both peaks 

with implanted dose.  Only the mid-gap peak was used for our 

f investigations.  An estimate of the total area of the surface state 

peak showed that only about one surface state was observed for 100 

implanted oxygen ions.  The location of the peaks in the gap was 

very sensitive to annealing temperature as well as to implant dose. 

[9]   W. Fahrer and A. Goetzberger, Appl.   Phjs.   Lett.,   21^,   239 (1972) 

[10]  W. Fahrer, J. EJectrochem. Soc,   121, 784 (1974). 

[11]  R. Castagne, compt.   Rend,   Acad.   Sei.,   Paris 267, Series B, 
866 (1968). 

[12]  M. Kuhn, Solid   State   Electronics,   13^, 873 (1970). 

[13]  J. F. Gibbons, W. S. Johnson, and S. W. Mylroie, Projected 
Range   Statistics,   Semiconductors   and   Related   Materials,   2nd 
Ed., Halsted Press Division of John Wiley and Sons, 
Somerville» N.J. 
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The dependence of energy of the two observed peaks on dose is indi- 

cated at each of the measured points in Fig. VIII-4.  It is likely 

that this dependence is causea by the superposition of two or three 

broad peaks, each of which depends differently on dose.  The sur- 

face states are probably caused by complexes of oxygen with resi- 

dual rac iation damage from implantation. 

Another calibration run was undertaken keeping the dose con- 

stant and varying oxide thickness.  The results agreed well with 

those of the previous run.  The results of Fin.  VIII-4 are also 

in good agreement with Fahrner's sparser data.  The position of 

the peaks did not agree with Fahrner's, perhaps because the 

annealing temperature was different. 

For the second experiment. As was implanted at an energy of 

3.00 kev into oxide layers of varying thickness.  The projected 
o 

range for this energy is 473 A.  After an annealing treatment 

identical to that of the calibration samples, both the C-V charac- 

teristics and surface state distribution had the same features 

indicating that the effect was also caused by oxygen.  Potentially, 

As or Si could have interfered with the measurement.  Because of 

the choseh implant energy. As could not reach the interface in 

large concentration.  With high As doses and thin samples, however, 

doping effects due to As were seen.  Si from the SiCh was not 

expected to interfere because its recoil efficiency is much less. 

The results of this experiment are shown in Fig. VIII-3. 

Plotted are total number of oxygen atoms in the silicon versus 

oxide thickness for a dose of 5 x 1013 As cm"2 implanted at an 

energy of 100 keV.  Recall, that although the data were obtained 

for oxygen in Si, Fig. VIII-3 represents the integral of the dis- 

tribution of the recoil oxygens in Si02 because the oxide thick- 

ness was varied and the silicon was only used as a sensor for the 

oxygen atoms.  It is seen that the oxygen concentration follows an 

exponential for larger oxide thicknesses with a characteristic 
o 

length of 217 A.  This curve can be differentiated to obtain the 

real distiibution of recoil oxygen in SiOa.  The exponential part 

gives C(Ox) = 7.34 x 106 $As exp-(x/217) for As implanted at 100 
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keV.  C(Ox) is the oxygen concentration, $As is the As dose cm
-2, 

and x is the depth coordinate measured in Ä.  The distribution 

obtained by differentiation is plotted in Fig. VIII-5, togecher 

with the distribution of implanted As.  It is seen that the number 

of recoil oxygen atoms is slightly larger than that of the As 

implant and that thfeir range is much larger.  This distribution 

is easily converted to one in silicon by considering that in Si 

the range of oxygen is about 20% larger than in Si02. 

3.3  Range Distribution Calculations of Implanted and Knock- 

on Ions Based on Energy Distribution.  In the Lindhard, 

Scharff, and Schiott (LSS) [14] theory, a statistical model has 

been used to arrive at integrals for moments of the range distri- 

bution.  In most of the cases of interest, the first two moments 

of the range are calculated and the approximation of the Gaussian 

profile is assumed [13].  To obtain better accuracy (such as skew- 

ness) higher order moments have to be calculated [13].  Calcula- 

tion of higher order moments is a tedious task.  For implantation 

through a mask, the calculation of moments becomes an impossible 

task.  Furthermore, calculations of the range distribution of the 

knock-ons becomes impossible using the LSS moment approach [15]. 

The purpose of this part of our report is to suggest a new 

technique to calculate the range distribution of the implanted 

ions as well as the knock-ons.  This method is based on calcu- 

lating the energy distribution of the ions in the substrate, 

whereas, in the LSS theory, the probability function corresponding 

to the energy distribution function disappears in the process to 

derive moments of the range.  Because the enerry distribution of 

incident ions can be considered as continuous at the boundaries of 

multiple layers in the target (in our case, a mask on silicon), 

the range distribution in each layer can easily be obtained if we 

calculate the energy distribution in the substrate. 

[13] 

[14] 

[15] 

See page 189. 
J. Lindhart, M. Scharff, and H. E. Schiott, Mat.   Fys. «edd., 
3_3, 14 (1963) . 
S. Furukawa and H. Ishiwara, J. Appl.   Phys.,   43, 3, Mar, 1972, 
pp, 1268-1273. 
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The substrate is divided into a large number of layers, each 
o 

a few A thick, as shown in Fig. VIII-6a.  As the incident ion 

beam travels through each of these layers, its ions are scattered 

by the substrate atoms.  A Boltzmann-type transport equation is 

used to simulate the scattering process.  By knowing the energy 

loss parameters, the energy distribution in each layer can be 

numerically calculated.  Because energy distribution of ions in 

each layer is statistically calculated, using this distribution, 

an ion concentration in terms of energy in each layer is deter- 

mined.  The principle of the technique is illustrated in Fig. 

VIIl-6b.  Where Q(E,x) is the number of incident ions per unit 

energy interval plotted against the energy as a function of dis- 

tance travelled into the Jabstrafe.  Energy E  is considered to 

be so low that ions below this energy are assumed to be stopped. 

Thus, the range distribution can be calculated.  While going 

from one type of medium to the other type (e.g., Si02 to Si), the 

only changes which must be made are the scattering parameters of 

the medium (such as stopping power, screening function, etc.). 

The power of this technique is realized when range distribution 

calculations of the knock-ons is considered.  Using the LSS 

approach, it is impossible to do so.  However, in our method, the 

calculations are based on a two body collision process, and it is 

easy to calculate, at each step, the energy imparted to the sub- 

strate atom by the incident ion.  Once the energy of the knock-on 

avom  is  known, the range distribution can be calculated readily. 

Preliminary calculations have been completed for the case of 

arsenic implanted in Si through SiOa.  The model is being perfected 

at this point to include some second order effects so that the 

analytical predictionp will match the experimental profiles. 
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Figure VUI-fib. Total incident ion flux per unit energy as a 
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Chapter IX 

Thermal Oxidation* 

1,0  Introduction 
The principal goal of the firat year of the program is to 

achieve accurate analytic prediction of oxide thickness for an 

arbitrary oxidation sequence or sequences.  An equation will be 

derived which predicts oxide thickness and incorporates the fol- 

lowing parameters to make it completely general. 

(a) Oxidation ambient (dry O2, wet O2) 

(b) Silicon crystal orientation 

(c) Impurity doping levels (phosphorus, arsenic, or boron) 

in the silicon substrate 

(d) Chlorine concentration (derived from an HCl source) 

present in the oxidizing ambient 

At the present time, the general relationship for silicon 

oxidation incorporates only (a). 

2.0  General Theory 
The basic thermal oxidation model of Deal and Grove [1], based 

on the diffusion of the oxidant from the ambient through the 

existing oxide to react at the Si-Si02 interface, has been pre- 

sented as: 
X2 + AX  = B(t + T) (IX-1) 
o    o 

where 
A =  2Deff d/k +  1/h) 

B =   2DeffCVN1 

x   =   (X?   +  AXi)/B 

[1]  B. E. Deal and A. S. Grove, J. Appl.   Phys.,   36, Dec. 1965, 
pp. o770-3778. 

This work represents a joint effort by the Stanford University 
integrated Circuits Laboratory and Fairchild Camera and 
instrument Corp. Research and Development Laboratory. 
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X xo (t - 0) 

C* = equilibrium concentration of oxidant in oxide 

h = gas-phase transport coefficient (from ambient to 

outer oxide surface) 
D
eff  =  effective diffusion coefficient of oxidant in oxide 

No = number of oxidant molecules incorporated per unit 

volume of oxide 

k = interfacial reaction rate constant 

The relation may be presented in two alternatives, providing more 

workable forms: 

X  =| 
o   2 

1 + t + T 

A2/4B 

1/2 
- 1 

time as input parameter 

(IX-2) 
thickness as output 

X2 - X2 

B 

X  - X. 
J- +  O    l 

"BTF 

desired thickness as input parameter 

(IX-3) 
necessary time as output 

For oxidation time t, long, relative to the characteristic time 

A2/4B, the oxidation model reduces to a parabolic behavior X2 -  Bt 

with B, therefore, termed the parabolic rate constant. 

For oxidation t, short, relative to the characteristic time, 

a linear behavior X « B/A[t +T] results, with B/A = (kh/k + h). 

(C*/Ni) therefore labeled the linear rate constant. 

Examination of the limiting forms indicates that the oxida- 

tion process in the parabolic domain is diffusior.-limited, and in 

the linear region is surface-reaction limited (generally h >> k). 

Both regions should be directly dependent on the equilibrium concen- 

tration of oxidant in the oxide.  Factors affecting the diffusion 

process should therefore be most influential for long oxidation 

times, etc. 

Experiments have indicated that with an initially clean bare 

Si surface, X. = 0 for wet O2 oxidation, while an effective X. = 
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200 A is found for dry 02 oxidation (due to an initial phase of 

rapid oxidation by a different mechanism). 
For moderately p-type boron doped (CB = 1.45 x 10

16 cnT3) Si, 

with <111> surface orientation, it has been found experimentally 

[1] that: 

B(T,p) [y2/hr] = Cipe 
-Ei/kT 

for p[atmospheres], T[K0]    (IX-4) 

Dry Oz:  Ei 

Ci 

Wet O2:  Ei 

Ci 

28.5 kcal/mole - 1.23 eV/molecule 

7.72 x 102 vi2/hr 

16.3 kcal/mole =0.71 eV/molecule 

2.14 x 102 y2/hr 

+E2/kT 
A{T) [y] = Cze for T[K0] (IX-5) 

Dry O2:  E2 - 17.5 kcal/mole =0.76 eV/molecule 

C2 = 1.24 x 10 -u 

Wet 0 E2 

C2 

29.0 kcal/mole =1.26 eV/molecule 

2.39 x 10"6 y 

It is expected that such factors as Si surface orientation, 

percentage HCl, and heavy impurity concentration level will be 

found to be parameters affecting the effective energies Ei and E2 

and/or constants C, and C2 through their effects on the diffusion 

process, surface-reaction rate, oxidant concentration, etc. 

Experimental determination of the constants B and A is made 

easier by rewriting (IX-1) in the following form. 

x .Bi^l-. (IX-6) 

Plotting Xo versus (t + T)/XO yields a straight line with slope B 

and intercept -A.  Such an analysis therefore allows one to obtain 

both the parabolic (B) and linear (B/A) rate constants from one plot 

[1] B. E. Deal and A. S. Grove, J. Appl.   Phys.,   36, Dec. 1965, 
pp, 3770-3778. 
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As indicated above, an jn-tial increased oxidation rate is 

observed during the dry oxidation of silicon.  To obtain the cor- 

rection factor T, which accounts for this initial oxidation, a 

linear plot can be made of oxide thickness versus time, and the 

curve extrapolated back to zero oxide thickness.  Such a plot will 

generate only an approximate value for T since the extrapolation 

is performed on a line with changing slope.  Thus, in the analysis 

of experimental data using (IX-6), little confidence can be placed 

on values of t+T in which the value of x is more than 50% of t. 

The basic oxidation relation has been implemented in form 

(IX-2) as a FORTRAN program on the HP-2100 systen.  At present, it 

assumes as constants the energies and constant coefficients found 

(for the specific experimental conditions noted) above.  It 

accepts as input the desired ambient (dry or wet O2), temperature 

(in 0C), pressure (in torr), and time (in minutes), and produces 

as output the oxide thickness (in Angstroms) .  The use may test 

either single oxidation steps or sequential (e.g., dry-wet-dty) 

oxidation cycles.  Testing of the program against new experi- 

mental data and modifications for the additional implementation in 

form (IX-3) to give required oxidation time as output are being 

pursued at present. 

3.0 Modifications to Account for Silicon Crystal Orientation 

To date, the effect of silicon orientation on silicon oxida- 

tion kinetics has not been extensively investigated.  It is known 

that this effect becomes significant at temperatures below 11000C, 

but no data have been reported with regards to the magnitude of 

this effect.  Thus, in the following experiments, <100> and <111> 

oriented silicoi were used in each kinetic run. 
A log-log plot of thickness versuc time for the thermal oxi- 

dation of <100> and <111>  4-6 ü-cm  n-type silicon in dry oxygen 

at 1000oC is shown in Fig. IX-1.  It can be seen from this plot 

that 10 to 20% differences in the oxidation rate of the two orien- 

tations exist at 1000oC. 
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Fiqure IX-1.  Oxide thickness versus time for the oxidat Ion of 
(100) and (111) oriented N-type silicon ir dry 
oxygen at 1000oC. 
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As indicated previously, a linear plot of X versus time gives 

a value for T, which, for the above data is approximately 0.35 hr. 

Using this value, the resulting plot of X versus (t+T)/X is shown 

in Fig. IX-2.  It may be seen that the points for thicker oxides 

(longer oxidation times) lie reasonably close to a straight line, 

while most deviations from this line occur for the thinner oxides. 

Although some points appear to deviate significantly from the 

straight line, it must be realized that such a plot is extremely 

sensitive to small changes in X . 

Silicon orientation is expected to affect surface reaction 

kineLics and thus to affect the linear rate constant B/A and not 

the parabolic rate constant B.  Indeed, if we rewrite the general 

oxidation relationship ir the form 

X^   X 

-I + B/A = t + ^ 
(IX-7) 

where 

-£i/kT 
B = Cipe 

(IX-8) 

-Ea/kT 
B/A = Cape 

then it is expected that the particular parameter affected by 

orientation is C3.  Thus, the value of C3 used in (IX-8) will 

depend on the orientation of the silicon being oxidized.  Addi- 

tional data are currently being taken on <111> and <100> samples 

to obtain the correct value of C? for these two orientations. 

From a least squares analysis of the data presented in 

Fig. IX-2, the following parameters can be exti acted. 

TABLE IX-1.  DRY O2 OXIDATION PARAMETERS. 

Ambient Orientation T (hr) B (n^/hr) 
A V 

Dry 02, 1000"C 

Dry 02, 1000
0C 

(111) 

(100) 

0.35 

0.35 

0.009 

0.009 

0.101 

0.183 
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Figure  IX-2 Determination of rate constants for the dry 
oxidation of (100) and (111) oriented N-type 
silicon at 1000»C.  The slopes are equal to B 
and the intercepts to -A as per Eq. (IX-6). 
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As expected, no change in B is observed between the <111> and 

<100> silicon orientations.  Also, A is larger for <100> than for 

<111>, and thus B/A is smaller for <100> than for <111>.  This 

accounts for the increase in oxidation rate between the two orien- 

tations observed in Fig. IX-1. 

4.0 Modifications to Incorporate Impurity Doping Effects 

The effects of impurity doping levels on thermal oxidation 

rates are Intimately connected with a widely encountered phenomenon 

in semiconductor processing—namely, impurity redistribution. 

Figure IX-3 illustrates how redistribution and thermal oxidation 
interact. 

As a thermal oxide is grown over a doped silicon, substrate 

redistribution of the impurity results.  in the case of phosphorus, 

arsenic, and antimony, the dopant atoms tend to pile up at the 

surface resulting in a higher surface concentration than background 

concentration (Cs > cy .  In the case of boron, the opposite effect 

takes place resulting in surface depletion (C  < C ). 

In the case of very heavily doped substrates (i.e., C typi- 

cally > 1019), it has been observed [2] for both phosphorus and 

boron, that the oxidation rates can be substantially different 

(generally faster) than those observed on lightly or moderately 

doped substrates.  with respect to Fig. IX-2, the two parameters 

that have been correlated [2] with this increased oxidation are 

Cg, the dopant concentration in the silicon at the surface, and C 

the average impurity concentration in the oxide. 

Intuitively, the effect of C is to reduce the amount of 

energy required to break Si bonds and thus to ^f^ect the surface 

reaction.  Cs would thus be expected to influence B/A, the linear 

rate constant and not B. 

The effect of Cox intuitively is to change the diffusion con- 

stant for the O2 or H2O oxidizing species in the SiOa.  C  would 
^i.   i_ ox 
thus be expected to affect B, the parabolic rate constant. 

ox' 

[2]  B. E. Deal and M. Skalar, J. Flee. Soc, 112, Apr. 1965, 
pp. 430-435.   
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At the present time, work is beginning at Stanford to gather 

data on oxidation over heavily doped phosphorus, boron, and arsenic 

substrates.  A small amount of published data exists in thxs 

area [2,3], and these data will be used where possible.  This 

effort should be completed within the next several months.  During 

the time the data are being gathered, the goal of the analytic 

portion of uhe work will be to incorporate the results into the 

general oxidation relationship, i.e., (IX-6). 

5.0  Modifications to Incorporate HCl in the Oxidizing Ambient 

Recently, it has been shown that addition of a chlorine 

species during silicon oxidation results in improved threshold 

stability and increased dielectric strength [4-7].  Thus, wide- 

spread US3 of this technique at Fairchild and other semiconductor 

companies ensued.  Since it has also been found that chlorine 

addition increases the rate of silicon oxidation, it is proposed 

that the effect of chlorine on the thermal oxidation kinetics and 

on subsequent charge properties be established as part of the 

Fairchild portion of the ARPA program.  The ultimate objective of 

this part of the program is to fit the chlorine oxidation rate 

data into the general relationship for the thermal oxidation of 

silicon and determine the effect of chlorine on the parabolic and 

linear rate constants. 

[2]  B. E. Deal and M. Skalar, J. Elec.   Sac,   112, Apr. 1965, 
pp. 430-435. 

f3]  A. S. Grove, 0. -istiko  and C. T. Sah, .. ^1 •   ^,t   35, 
9, Sept. 1965, pp. 2695-2701. 

M QAVAri  and C. Soncini, .T. tlectrochem.   Soc., 
[4]  G. Baccaram, M. Severi, anu 

120, 1973, p. 1436. 
[5]  iTnirabayashi and J. Iwamura, J. Kiectroche.. Soc,   120, 

1973, p. 1595. . 
•  -,    v  r  Chenq  and D. R. Colton, J. Electrochem. 

[61  R. J. Knegler, Y. G. cneng, duu 
Soc 119, 1972, p. 388. 

t7]  y. .. van der Meulen, C- M Osburn and J. F. Ziegler, 
J. Electrochem.   Soc,   l££, i»/3» f- 
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At the present time, kinetic data have been taken on 1% HCl 

in dry O2 at 1000oC.  The calculated rate constants are shown in 

Table IX-2.  These data will be extended during the next two 

quarters to cover the temperature range between 900oC and 1100oC 

and HCl concentrations between 1 and 10%. 
— 

TABLE   IX-2.      HCl  OXIDATION  PARAMETERS. 

Ambient Orientation T  (hr) BC^/hr) 
m A   (n  ) 

m 

Dry 0o,   l',j HCl,   10000C (in) 0.20 0.014 0.150 

Dry 02,   1% HCl,   10000C (100) 0Ü20 0.014 0.144   to  0.176 
.... 

A] log-log plot of the 1% HCl data shows a 15 to 30% increase 

in oxidation rate as compared to dry oxidation at the same tempera- 

ture. 

It should be noted that a range is given for A in the case 

of O2 + 1% HCl on <100> oriented silicon.  This is due to the fact 

that for this oxidation ambient, B was experimentally determined 

to be 0.12 pm2/hr for <100> oriented silicon, instead of 0.14 yrnVhr 

as determined for <111> silicon.  As discussed above, and indeed., 

as observed for the dry oxygen oxidation, B should be the same for 

both orientations.  Thus, using 0.14 ym2/hr for B for <100> oriented 

silicon, we obtain different A values depending upon how the 

straight line (with fixeä slope) is fitted to the experimental 

points.  The above assumption of constant B for different orienta- 

tions needs further investigation in the case of HCl oxidation since 

it is possible that other effects could enter the expression for B. 

Further inspection of Table IX-2 shows that a decrease in x 

and an increase in B result from the addition of 1% HCl to the 

oxidation ambient.  Such changes are consistent with the generation 

of water vapor in the oxidation tube via the following reaction: 

■  -: 

O2 + 4 HCl -► 2 CI2 + 2 H2O (IX-9) 

since it is known that T is zero for steam oxidation, and also 

-209- 

  



-opp?^"«, -       --■     — -- -■-• -*p*iW« 

that 3 is significantly larger for steam than for dry oxidation. 

At this time, no quantitative correlation between the amount of 

water vapor generated by the above reaction and the observed 

increase in oxidation rate for HCl addition to dry oxygen has 

been attempted. 
It is expected, then, at the present time, that both B and 

B/A will be affected by the addition of HCl to the oxidizing 

ambient.  (Intuitively, it seems reasonable that Cl may affect 

both the surface reaction rate and hence B/A and the diffusion of 

the oxidizing species through the oxide and thus B.)  A joint 

effort between Stanford and Fairchild is currently under way and 

will continue to incorporate the HCl results into the generalized 

oxidation relationship. 

6.0  Summary 
in summary, the principal goal of the first year's work is 

the realization of an analytic expression which predicts accurately 

the oxide thickness resulting from an arbitrary sequence of oxida- 

tion steps.  We are attempting to include the effects of silicon 

orientation, heavily doped regions, and the presence of chlorine by 

obtaining modified parabolic and linear rate constants which include 

these parameters. 
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Chapter X 

Silicon Epitaxy 

1.0  Introduction 

The third part of this program deals with modeling of epitaxial 

growth of silicon on silicon.  Initially, the work was divided into 

three areas: 

(a) kinetics of epitaxial growth 

(b) kinetics of dopant inclusion in the epitaxial layer 

(c) dopant profile measurement techniques 

The progress in these areas during the first six months is reported 

here. During the next six months, we expect also to consider auto- 

doping.  A discussion of these plans is also included. 

All work presented here was done in the commercially avail- 

able horizontal reactor* illustrated in Fig. X-l.  The numbered 

features are: 

(1) water-cooled rf induction coils, 

(2) silicon-carbide-coated graphite susceptor 

(1/4" x 2 1/2" x 10"), 

(3) quartz susceptor cradle to tilt the susceptor to 2°, 

(4) quartz reactor tube (2 1/2" x 3 1/2" x 36"), 

(5) the main gas manifold in which the mixing of the 

reactant gasses occurs 

(6) double-dilution doping system. 

2.0  Kinetics of Epitaxial Growth 

The generally accepted model for epitaxial growth is the 

stagnant layer model [1].  A horizontal reactor cross section is 

shown in Fig. X-2.  Graphs of reactor variables pertinent to the 

stagnant layer model are also given.  It has been shown both 

theoretically and empirically that during epitaxial growth in a 

horizontal reactor, the gas stream above the susceptor divides 

[1]  F. C. Eversteyn et al., J. Electrochem.   Soc.,   117, 7, July 
1970, pp. 925-931. 

*   Unicorp Model HIER II, Unicorp, Sunnyvale, California. 
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into two parts, a turbulent layer and a stagnant layer.  The stag- 

nant layer of about 1/2 cm in thickness is next to the susceptor. 

There is no displacement gas flow in the stagnant layer either 

vertically or horizontally across the wafer.  The turbulent layer 

has horizontal flow corresponding to the main flow displacement 

and also vertical flow due to thermal convection tumbling.  The 

turbulent layer is considered to be well mixed both chemically 

and thermally, and at a relatively low temperature.  Consequently, 

the major portion of the temperature differential is across the 

stagnant layer as graphed in Fig. X-2.  Epitaxial growth proceeds 

by the following steps [2]: 

(1) Mass transfer of the reactant molecules (e.g., SiHiJ by 

diffusion from fie turbulent layer reservoir across the 

stagnant layer to the silicon surface. 

(2) Adsorption of reactant atoms on the surface. 

(3) One or more chemical reactions at the surface. 

(4) Desorption of product molecules (e.g.. Ha). 

(5) Mass transfer of the product molecules by diffusion 

through the stagnant layer, back to the turbulent layer. 

(6) Lattice arrangement of the adsorbed silicon atoms.  This 

step may occur as part of (3). 

Product and reactant concentrations as a function of distance from 

the gas-solid interface are also given in Fig. X-2.  Concentration 

gradients across the stagnant layer are such that there is a diffu- 

sion flux of reactant molecules toward the surface and a flux of 

product molecules away from the surface.  The turbulent layer is 

depicted as having no concentration or temperature gradient. 

The surface-controlled and maes-transport controlled realms 

of SiHi, deposition are easily described by the balancing of mole- 

cular fluxes because no reverse reactions complicate thti SiH^ 

problem.  The growth rate v is given by the relation 

[2]  E. G. Bylander, J. Electrochem.   Soc.,   109, 12, Dec. 1962, 
pp. 1171-1175. 
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V   =   Ks    [SiHJs (X-l) 

=  Ks[&iHl4]t< 1 + 
NSi 

*SiH, 
K 

-1 

(X-2) 

[SiFK]. and [SiH4]  are SiH4 concentrations 

The surface reaction rate constant K has the characteristic 
s 

activation energy of 37 kcal/mole and the units of the growth 

rate (cm/sec), 

(ratio of silane to hydrogen) in turbulent layer and at the sili- 

con surface, respectively.  N . is the atomic density of silicon, 

N0. = 5.0 x 1022 cm-3. tyai„     is the mass transport coefficient 
Si SlH i» 

for SilU, a temperature insensitive constant which relates molecular 

flux to concentration gradient in the stagnant layer.  ^g^H  is 

proportional to the SiHi, diffusion coefficient in Ha and inversely 

proportional to the stagnant layer thickness.  The flux of silicon 

atoms being incorporated into the lattice is (there are two 

limiting cases): 

(1)  Surface reaction control.  At low temperatures, K  is 

(2) 

small enough that [SiH^] 

In this case, from (X-l), 

v = KstSiH,(]t 

Mass transport control.  At high temperatures, K 

becomes large, and [SiHi»]  ~ 0, 

[SiiUK (see Fig. X-4) 

(X-3) 

«I* SiH 
v = N 

"* A 
- [SiH^K = K [SiKj 

Si m 

Then, from (X-2), 

(X-4) 

The rate constant for mass transport control is K m 
(cm/sec). 

Although both (X-3) and (X-4) predict a first order growth 

rate dependence on silane concentration, the surface reaction 

rate constant K  is exponentially dependent on temperature while 

the mass transport rate constant K has been shown to have only a 
m 
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linear dependence on temperature [1] (i.e., essentially no tempera- 

ture dependence over the narrow 1000oC-1100oC range of tempera- 

tures commonly used for SiHM epitaxy). 

Experimental Situ growth rate is plotted versus temperature 

in Fig. X-3.  The surface reaction region has an activation 

energy of AE ■ 39 kcal/mole.  Transfer to the mass transport 
region is nearly complete at 1000oC for all growth rates from 

0.1 y/min to 0.5 y/min.  From 1000oC to 1100oC, the maximum varia- 

tion in growth rate observed is only about 10%.  Figure X-4 is a 

graph of growth rate versus silane concentration for T = 1050oC. 

The slope of the line is the mass transport rate constant value 

K = 7.5 x 10"14 cm/sec =  450 p/min.  These values for activation 
m 
energy [3] and rate constcint [1] are consistent with the litera- 

ture. 

3.0  Kinetics of Dopant Inclusion in the Epitaxial Layer 

One of the major goals of this research is to develop a 

mathematical model for the kinetics of dopant inclusion in the 

epitaxial layer.  Effort was divided into two areas initially. 

First, a model was developed to relate the gas phase dopant con- 

centration to doping density in the epitaxial layer.  In these 

experiments, the layers being grown were homogeneously doped.  In 

the second research area, work is now being done to obtain a 

system transfer fux.-tion of the epitaxial reactor by taking its 

transient response. 

3.1  Doping of Epitaxial Layers.  Epitaxial layers are most 

commonly doped by the incorporation of a small ?rount of dopant 

hydrides (PHs, AsHa, B2H6).  Phosphine, arsine, and diborane are 

easily measured gaseous sources which can be diluted to the ppb 

level required for lightly doped epitaxial layers.  Unfortunately, 

the gaseous antimony hydride SbHa has a half-life which is only 

on the order of one week, when it is stored as a 100 ppre Ha-diluted 

[1]  F. C. Eversteyn et al., J. Electrochem.   Soc.,   117, 7, July 
1970, pp. 925-931. 

[3]  R.F.C. Farrow, J. Electrochem.   Sec,   121, 7, July 1974, 
pp. 899-907. 
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mixture. The liquid source trimethylstibine, ((^3)3 Sb, is more 

stable than stibine, and may be prepared as a dilute vapor in H2 

for use as a gaseous antimony source. 

The doping of SiJU epitaxial layers with dopant hydride 

sources has been described theoretically [4,5].  The dopant is 

transported across the stagnant layer by diffusion in the same 

manner as described for SiH4 in the previous section.  The analysis 

is complicated, however, by the fact that the incorporated dopant 

is nonuniformly distributed in the first few hundred angstroms 

near the surface of the growing layer.  The relevant dopant con- 

centrations in the reactor and in the wafer are depicted in 

Fig. X-5a for the case of PH3.  The turbulent layer (input) dopant 

molar concentration [PH3]  is the flow ratio PH3/K2.  The concen- 

tration of phosphine near the surface of the growing epitaxial 

layer is [PH3] .  The concentration of incorporated phosphorous 

atoms near the surface of the layer [P]  is higher than the 

phosphorous concentration deeper in the bulk material [Pli-  All 

of the incorporated phosphorous is considered to be ionized.  The 

solid state phosphorous concentrations [P]  and [P], have units 

of (atoms P/atoms Si), and must be multiplied by the atomic density 

of silicon N . = 5.0 x 1022 atoms/cm3 to get conventional doping 

concentrations. 

The goal of the analysis is to predict the solid state doping 

[P], from the turbulent layer phosphine concentration [PH ]  as a 

function of temperature and growth rate.  The effective segregation 

coefficient y-„„  relates these two variables: EFF 

f^b 
[PH3]t    YEFF 

(X-5) 

It has been shown [4,5] for doping concentrations which are lower 

than the concentration of free electrons in silicon at epitaxial 

[4]  J. Bloem, J. Crystal Growth,   13/14, 1972, pp. 302-305. 

[5]  J. Bloem, Semiconductor  Silicon   1973,   op. cit., pp. 213-226 
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temperatures (~1019 cm"3) that the segregation coefficient is a 

function of only temperature and growth rate, but not doping level. 

That is, for a set temperature and growth rate, solid si *tu doping 

is a linear function of gas phase dopant concentration. 

The effective segregation coefficient has been measured 

experimentally for a wide range of conditions.  Bulk doping level 

versus monatomic gas phase dopant concentration is given in 

Fig. X-6 for a combination of different dopant sources, silicon 

sources, growth rates, and temperatures.  The doping concentration 

is calculated as th^ effective flow ratio of dopant gas to main 

hydrogen flow.  With reference to the reactor schematic in 

Fig. X-l, this ratio is: (X-6) 

r   . f (dopant)        f (mix)  . f (inject) 
[DX3]t " f(dopant) + f(lst Hz) ' f(mix) + f(2nd Hz)    f(main) 

f is flow in liters per minute.  The concentration given in the 

rijht-hand scale is the usual concentration per cubic centimeter 

divided by Ns..  All the dopants have higher concentrations in the 

bulk than in the gas phase by a factor of 10-200.  The effective 

partition coefficient for the P^/SiH., system of 0.01 is a factor 

of 10 larger than some reported values [4,5] but close to another 

[6].  All the dopants have about the same effective partition 

coefficient, about 0.01, except for AsHs/SiHu at 1050oC and 

(CH3)sSb/SiH-. 

3.2 System Transfer Function of the Epitaxial Reactor-Basic 

Approach 

As stated earlier, the second and more imprr^ant phase of 

this project is to develop a system transfer function of the 

epitaxial reactor from the point of view of dopant inclusion into 

the epitaxial layer.  In this phase of the project, the overall 

characteristics of the dopant incorporation process are being 

modeled by a system approach:  First, an epitaxial layer is grown 

[4] 

[5] 

[6] 

J. Bloem, J. Crystal   Growth,   13/14, 1972, pp. 302-305. 

J. Bloem, Semiconductor Silicon 1973,   op. cit., pp. 213-226. 

B. A. Joyce and R. R. Bradley, J. Electrochem.   Soc.,   110, 
12, Dec. 1963, pp. 1235-1240. 
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with a dopant-gas flow which is c.   function of time.  Then the 

resulting dopant profile in the epitaxial layer is determined. 

By relating the dopant profile in the epitaxial layer (system 

output) to the dopant-gas flow (system input), the system may be 

char? iterized by a transfer function.  It is hoped that this 

transfer function can then be used to calculate the dopant flow 

as a function of time needed to realize a desired dopant profile 

in the epitaxial layer.  In this manner, a controlled graded 

dopant concentration, which can be advantageous in numerous 

devices, can be obtained. 
While such characterization of an epitaxial reactor has not 

been attempted in the past, a brief literature survey indicates 

that the characterization of transient doping effects is promising 

For example, diffusion-rate processes in catalytic reactors have 

been characterized by "admittance functions" analogous to ac 

electrical parameters [7].  In this work, the time-varying output- 

gas concentrations were related to the time variations of the 

input gases.  Further work has considered diffusion through a 

boundary layer, adsorption on a surface, and diffusion into a 

solid [8].  Several of the same kinetic processes are present in 

our study of dopant in epitaxial layers.  In our study, however, 

additional chemical processes are involved since the output is 

not a time-varying gas concentration, but a variation of the 

solid dopant concentration as a function of position in the 

deposited epitaxial layer.  The earlier work does, however, indi- 

cate that the proposed approach is promising. 
In addition to providing a method of fabricating a desired 

dopant profile, this portion of the study will produce basic 

information concerning the various mechanisms involved in the 

dopant inclusion processes.  As indicated by Kobayashi and 

Kobayashi [9], transient studies may reveal the importance of 

[7]  P. F. Deisler, Jr. and R. H. Wilhelm, Jnd. and Eng.   Chemistry, 
45, 1953, p. 1219. 

[8]  J. B. Rosen and W. E. Winsche, J. Chem.   Phys.,   JJL' i^50' 
p. 1587. 

[9]  H. Kobayashi and M. Kobayashi, Catalysis Reviews—science and 
Engineering,   !£, 1974, p. 139. 
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various mechanisms, which may not be apparent in steady-state 

studies.  In particular, consideration of limiting cases may 

allow separation of the several mechanisms involved; e.g., dopant- 

gas flow without film growth would involve only a selected number 

of the mechanisms involved in the total epitaxial doping process. 

Thus, the study will allow the twin goals of the ARPA program 

to be addressed:  The initial results will allow the calculation 

of dopant flow necessary for a desired dopant profile, which can 

be used in specialized devices.  The further study of the mecha- 

nisms entering into the dopant-incorporation process will allow 

more detailed modeling and understanding and may suggest better 

methods of obtaining the desired dopant profile by revealing the 

limiting mechanisms. 

3.3  Experimental Work 

Using the results of the work described in the first two 

sections, the reactor was first optimized for a nominal deposition 

of approximately 0.5 ym/min and uniform doping during the entire 

deposition process.  Silane was used as the source of Si and depo- 

sition was done at 1050oC.  Arsine was use 1 as the dopant gas and 

flow settings were found for the typical dopant concentrations of 

1 x 1015 cm-3 and 3 x 1015 cm-3.  Then layers were grown with a 

step-function change in the dopant gas flow during the continuous 

deposition of an epitaxial layer, that is, the dopant-gas flow was 

changed from one of the previously obtained flow settings to the 

other during the deposition. 

The dopant profile in the epitaxial layer was obtained by 

capacitance-voltage measurements on deep-depletion MOS structures 

and p-n junctions.  The thickness and dopant concentrations used 

in the samples were chosen to be compatible with the C-V technique. 

Figure X-6 shows the dopant profile in the step epitaxial layer. 

The indicated dopant concentration is actually closer to the 

majority-carrier concentration than to the dopa: •; concentration 

since the correction between the two [10] was not applied in the 

[10] D. P. Kennedy and R. R. O'Brien, IBM  j. .Res. Develop.,   13, 
1969, p. 212. 
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data reduction procedure. Subsidiary analysis shows, however, 

that the difference between the two quantities is not large in 

the present case. 

Measurements using the spreading-resistance technique indi- 

cate the same gross features shown by the C-V measurements and 

provide a cross-reference for the depth scale.  However, the raw 

spreading-resistance data have not yet been analyzed to produce 

the dopant profile. 
From Fig. X-7, we see that the transition from one dopant 

concentration to the other occurred in 1.2 ym, corresponding to 

a time of approximately 2 min.  In addition, there is an initial 

time delay between the change of the dopant gas flow and the 

start of the transition rejion.  This time can be attributed to 

delays in the reactor plumbing and diffusion through the stagnant 

boundary layer; the flow-meter which was changed during the depo- 

sition was chosen to minimize the former delay. 

Further epitaxial layers have been prepared with step func- 

tion changes in dopant-gas flow to study the details of the tran- 

sition region more thoroughly.  C-V analyses will be performed on 

these samples. 
The heat cycling during the fabrication of the MOS and p-n 

junction C-V samples produced a VDt of c'nly  0'07 »jm because of the 

low diffusivity of the arsenic dopant in the epitaxial layer. 

Spreading resistance data confirm that there is no significant 

deviation between samples measured after epitaxial deposition and 

after complete C-V sample fabrication.  However, a mesa C-V tech- 

nique is being developed so that other more-rapidly diffusing 

dopants may be used as desired. 
After characterization of increasi   step functions is com- 

plete, decreasing step functions will bt     ied.  The system 

response will not necessarily be symmetric for the two cases 

because of the different mechanisms involved; in particular, 

evaporation of dopant from the already deposited layer and rein- 

corporation into the growing layer may be significant in the 

second case.  After this case is investigated, combinations of 

-226- 

. 



e 

o 
0) •n *- 

<H B o 
S \n 

X 
m 

e 

1     1 
g 

in 

o 
H 
X 

'S 
■ ■ t^ 

• V 4-> 
Ü 

CO •-3 

ft 
Q 
Q Ai 

w 

CO 

. . CD 

0   < 1-. 

. • t • • 
•••••• 

...A* • •' 
• ••   * 
I •••    / 
1   e*  * 

mB en 

m o 
H^ 'S 

o x 0 
o -S H  CM ft. 

., m 

t 

3. 

CO 

w 

01 
+J 
C 
i E 
QJ 
M 

tn 
(3 
(U 
S 
> 
i 
u 
g 
o 
M 

(0 
•H 

(0 
+J 
•H 
a< 
<u 

QJ 
-P 
m 

0) 

-p 

O 

a> 
iH 
•H 
4-1 
o 
u 
a 
en 
c 

■H 
a 
o 
Q 

in 

X 
m 

o 
co 

in 

IN 

O 

(     mo)   M 

t- ■* a) 
CO K -p 
in •H rt 
H m u U 
It % 0 ■P 

a 
CO 

B s (A 

1 U) 8 3 
< H m 

in o 
H 

i 
x 

CM 

-227- 



., !,V.,„,,,,,.,.TV,,,, ,,,„„:„,r ,.„„,..,,,.,r,:^l,,1„: ,,,,..,.„, 

increasing and decreasing step functions will be used in an attempt 

to approximate an impulse in dopant-gas flow. 

3.4  Systems Analysis 
A trial function has been used for characterization of the 

epitaxial dopant.  The dopant concentration in the step epitaxial 

layer has been modeled by quadratic functions, the simplest func- 

tion which is continuous and has a continuous derivative.  With 

the dopant concentration (system output) modeled by quadratic 

functions for a step-function change in the dopant-gas flow 

(system input), the system response can be found by dividing the 

Laplace transform of the two functions.  For this simple case, 

the transfer function is analytic and can be transformed into the 

time domain as the impulse response of the system.  As indicated 

above, in future work, increasing and decreasing step function 

changes of dopant gas flow will be combined to approach an 

impulse input. 
After the limits and validity of the transfer-function 

approach have been established, more detailed characterization of 

the mechanisms involved in the overall transfer response will be 

attempted.  Each process involved in the dopant inclusion will be 

investigated in order to find the limiting mechanisms.  Some of 

these mechanisms will be dependent upon the particular epitaxial 

reactor employed while others will be more or less independent 

of the reactor itself and predominantly influenced by variables 

which can be kept constant from one reactor to another.  One of 

the dominant mechanisms is expected to be diffusion of the dopant 

gas through the stagnant gas layer above the heated susceptor. 

Much recent work [11,12] has involved an investigation of the 

steady-state behavior of the dopant gas in this stagnant' layer. 

We hope to extend this work to the transient case. 

[11] T. Ishii et al., J. Electrochem.   Soc,   122,   1975, p. 1523. 

[12] P. H. Langer and Joseph I. Goldstein, J. Klectrochem. Soc. 
121, 4, April 1974, pp. 563-571. 
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4.o Deep Depletion MOS Capacitance Voltage Measurements to Obtain 

Semiconductor Impurity Profiles 

4.1 introduction.  The high frequency capacitance versus 

voltage characteristics of MOS capacitors, p-n junction diodes, 

and Schottky barrier diodes, have been used for some time to 

determine semiconductor impurity profiles.  There are many prob- 

lems associated with the measurement and analysis techniques used 

to obtain the C-V data and the corresponding impurity distribution. 

One purpose of this investigation was to consider the feasibility 

of collecting C-V data from a relatively new MOS capacitor struc- 

ture.  This device allows the retention of the deeply depleted 

state of the MOS capacitor under large bias conditions by pre- 

venting the formation of an inversion layer at the surface.  Due 

to the nature of the operation of the device, we will subsequently 

refer to it as a deep depletion MOS (DDMOS) capacitor.  In the 

process of examining the use of the DDMOS capacitor, the limita- 

tions of the analysis techniques were investigated in order to 

determine the accuracy and resolution which can be expected for 

various types of impurity distribution.  The discussion to follow 

will refer to structures fabricated in an n-type substrate. 

4.2 A Comparison of Measurement Techniques.  Until the 

present time, the most common methods of obtaining high frequency 

C-V information for use in profiling has been through the use of 

reverse biased Schottky barrier diodes.  In some cases, reverse 

biased Schottky barrier diodes and MOS capacitors are also utili- 

zed.  However, factors such as the accuracy when profiling near 

the surface, the ease with which measurements can be performed, 

and the maximum depth at which a profile can be obtained have 

made the use of the Schottky barrier diode advantageous. 

When it is desirable to measure the impurity profile near 

the surface of the substrate, the use of a p-n junction is obviously 

not acceptable.  The surface is greatly modified by the p-type 

diffusion required to form the junction.  Both the MOS capacitor 

and the Schottky barrier diode avoid this problem and allow pro- 

filing near the surface.  In the case of the MOS capacitor, there 
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may be a loss of accuracy near the surface due to fast surface 

states at the oxide-silicon interface.  This problem occurs if the 

interface states are able to follow the ac voltage used to measure 

the MOS capacitance.  In this case, the C--V characteristics are 

modified for small values of applied bias, resulting in an incor- 

rect profile for small depths.  It is possible to minimize these 

effects by measuring the capacitance with a signal having a 

period which is small compared to the time constant of the inter- 

face states.  In addition, some interface state errors can be 

corrected by combining the high frequency C-V information with a 

measurement of the low frequency C-V characteristics [13]. 

For all of the measurement methods, the maximum depth at 

which the doping profile iuay be obtained is the maximum depletion 

depth which can be reached before the surface undergoes avalanche 

breakdown.  The p-n junction diode allows the achievement of the 

deepest depletion since the depletion starts at the junction, 

which is already located at some depth within the substrate.  How- 

ever, several factors make the use of the junction diode undesir- 

able.  The formation of the junction by diffusion causes compen- 

sation of the substrate at depths greater than that of the junc- 

tion and leads to errors in the profile near the junction.  The 

depletion of the diffused region and the capacitance of the junc- 

tion side wall also introduce errors.  Some of these errors can 

be corrected if the doping profile in the diffused region is 

known [14].  This information is not always easily acquired.  The 

final objectionable aspect of the use of junction diodes is the 

necessity of using a destructive technique to measure the junc- 

tion depth.  The junction depth is needed because the analysis of 

the C-V information yields the doping profile as a function of the 

distance from the junction. 

[13]   7. R. Brews, J.   Appl.   Phys.,  £4, July 1973, pp. 3228-3231. 

[14]   M. G. Buehler, IEEE   Trans,   on   Electron   Devices,   ED-19, 
November 1972, pp. 1171-1178. 
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By using the MOS capacitor or the Schottky barrier diode, the 

maximum depletion depth can be attained without encountering the 

problems associated with the use of the junction diode.  The 

standard MOS capacitor presents an additional difficulty.  In 

order to achieve a deeply depleted condition, some method must be 

used to prevent the inversion of the semiconductor surface while 

the capacitance rueasurement is made.  This generally requires the 

use of specialized equipment to measure the capacitance during 

the application of a bias pulse which depletes the substrate for 

a short time.  The length of time before inversion occurs depends 

on the minority carrier generation rate.  The use of the DDMOS 

capacitor simplifies matters a great deal because the capacitance 

is measured under static conditions.  The only apparent disadvan- 

tage of this structure is the necessity of placing a p-type dif- 

fused region around the MOS capacitor.  However, the extra proces- 

sing involved is also required in the case of the Schottky barrier 

diode, since a guard ring is necessary to prevent reverse break- 

down at the edge of the diode. 

It is apparent that in order to achieve a simple and accurate 

measurement technique, either the DDMOS capacitor or the Schottky 

barrier diode should be used.  Due to the concentration of this 

laboratory's efforts on MOS device technology and our ability to 

obtain interface state densities reliably as low as 10lc/cm2, ft 

was felt that the use of the DDMOS capacitor should be investi- 

gated further. 

4.3  The DDMOS Capacitor.  The DDMOS capacitor structure is 

shown in Fig. X-8.  It is identical to a standard MOS capacitor 

except for the inclusion of a p-type diffused region which sur- 

rounds the capacitor.  When the annular p-n junction is reverse 

biased, the quasi-fermi level for holes under the MOS capacitor 

gate oxide is set by the potential of the p-type region.  Figure 

X-9 illustrates the positions of the energy bands in the region 

under the gate oxide when the p-n junction is reverse biased. 

As long as the condition | IJJ HIv I is satisfied, the valence 
S     K 

band is far enough from the quasi-fermi level for holes to prevent 
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Figure X-8.  The DDMOS capacitor structure, 
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any significant accumulation of holes at the surface.  Of course, 

in order to prevent surface inversion under static conditions, 

the reverse biased junction must be continually removing the 

thermally generated holes.  This requires a lateral charge trans- 

fer under the gate oxide.  One question which merits further 

investigation is whether the thermally generated charge is com- 

pletely removed in the large area devices being used.  The present 

study has concentrated on the limitations of the data analysis 
techniques. 

The factor which limits the maximum depletion depth in thu 

DDMOS capacitor is the onset of avalanche breakdov..i in the semi- 

conductor.  When breakdown occurs, a large number of minority 

carriers are generated.  This inhibits the effective removal of 

the inversion layer charge by the reverse biased p-n junction. 

Avalanche breakdown may occur in two regions.  As mentioned pre- 

viously, the electric field at the oxide-silicon interface may 

reach the breakdown level.  Another point where breakdown may 

occur is at the p-n junction.  In order to prevent inversion, the 

reverse bias applied to th« o-n junction must be greater than the 

maximum potential drop across the semiconductor (not including the 

potential drop across the oxide).  Thus, the maximum depletion 

depth which can be obtained may be limited by the maximum reverse 

bias which the p-n junction can withstand.  Factors such as junc- 

tion curvature and the impurity gradient across the junction 

influence this maximum bias. 

By applying the C-V analysis techniques to the theoretical 

C-V curves for various imparity distributions, we investigated the 

errors introduced by the depletion approximation und the use of 

the Ziegler [15] theory for the surface region.  We also simulated 

the errors which result from inaccurate measurement of the C-V 

curve and the capacitor area.  Results were obtained illustrating 

[15]   K. Ziegler, E. Klausmann, and S. Kar (i Solid  state  Elec- 
tronics,   1£, February 1975, pp. 189-198. 
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the effects of these measurement errors on the impurity distribu- 

tion produced by the C-V analysis techniques.  The measurement 

errors were found to cause particularly large errors near the 

surface where the Ziegler theory is employed to obtain the impurity 

profile. 

The results of this investigation indicate that the use of 

the Deep Depletion MOS capacitor can yield useful information 

about the impurity distribution in a nonuniformly doped substrate. 

However, the limitations described in the report must be kept in 

mind when evaluating the results obtained by using the C-V analysis 

techniques. 

5.0 Autodoping 

The subject of autodoping has been given substantial theoreti- 

cal consideration during the current time period.  It will be 

studied experimentally during the next period.  One of the limiting 

and most important considerations in epitaxial deposition is the 

movement of substrate impurities into epitaxial layers.  Two com- 

ponents of this movement are considered:  outdiffusion, movement 

due to solid-state thermal diffusion in silicon, and autodoping, 

extra movement of substrate doping into an epitaxial layer which 

cannot be explained by diffusion effects.  It has recently been 

shown [12] that there are three dopant fluxes from a wafer into 

an epitaxial layer that must be considered: 

(1) dopant "evaporated" from the back of the wafer 

which mixes into the turbulent layer. 

(2) dopant which "evaporates" from the front of the 

wafer into the stagnant layer, and 

(3) dopant which outdiffuses from the substrate due 

to thermal diffusion alone. 

For the typical case of standard buried collector bipolar 

processing, a moderately doped (1015 - 1016 cm"3) epitaxial layer 

is grown over localized N+ buried layers.  Usually, the backsiae 

of the wafer is masked duri g the buried layer diffusion to elimi- 

nate this autodoping source.  The wafer is then subjected to very 

112]  P, H. Langer and Joseph I. Goldstein, J. Electrochem.   Soc. 
121, 4, April 1974, pp. 563-571. 

-235- 

.  —.-r-——"T*"1". 



—- ,. —  .. __— -, 

high temperature-time cycles to provide junction isolation.  In 

this case, the scaled wafor backside does not provide an auto- 

doping source, and front side autodoping is dominated by outdiffu- 

sion from the high temperature isolation step.  Consequently, for 

standard buried-collector processing, outdiffusion alone can 

explain dopant migration from the buried layer into the epitaxial 
layer. 

For low temperature silane epitaxial growth, especially when 

high temperature processing steps do not follow, there is a defi- 

nite movement of dopant into the growing layer from the substrate 

which cannot be explained by outdiffusion. 

Given the general description of the three components of 

dopant movement into an epitaxial layer-outdiffusion, front side 

autodoping, and backside autodoping-a conceptual picture of auto- 

doping can be drawn.  Figure X-10 shows that outdiffusion dominates 

nearest the interface, front side evaporation effects become 

apparent as soon as the outdiffusion tail dies out, and backside 

evaporation dominates the autodoping profile farthest from the 

interface because the backside autodoping source remains relatively 

constant while the front side source is continuously buried under 

growing silicon.  Figure X-10 should be considered as being highly 

idealized.  For example, the analysis does not consider lateral 

autodoping variations which include systematic worse autodoping at 

wafer edges due to the backside source.  Any of the three regions 

in Fig. X-10 may not be present under certain conditions, e.g., a 

large outdiffusion tail may go completely to the surface of a 
thin epitaxial layer. 

Aside from rather elaborate computer calculation of auto- 

doping profiles [12], only empirical results can be used with 

[12]  P. H. Langer and Joseph I. Goldstein, J. Electrochem.   Soc, 
121, 4, April 1974, pp. 563-571. 
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Figure  X-10.     Conceptual diagram of autodoping and 
outdiffusion profiles. 
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confidence, and even empirical autodoping data varies with reactor 

geometry and growth conditions.  During the next few months, we 

will study more closely the problem of autodoping.  Experiments 

will be done to obtain an analytical model to explain autodoping. 

The two-step epitaxial growth technique [11] to minimize auto- 

doping will be investigated.  In our preliminary studies, arsenic- 

doped silane epitaxial layers will be grown on arsenic doped sub- 
strates. 

[11]  T. Ishii et al., J. Electrochem.   Soc.,   122, 1975, p. 1523. 
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Chapter XI 

Mathematical Model of Impurity Diffusion* 

1.0  Introduction 
To obtain lower cost and improved reliability of integrated 

circuits, the ability to simulate fabrication processes is manda- 

tory.  Process simulation will also allow the optimization of 

some aspects of device performance in terms of process variables. 

Simulation, however, cannot be accomplished unless adequate models 

of the integrated circuit fabrication process are developed. 

The term diffusion, when applied in semiconductor device 

fabrication, is used loosely to describe the motion of impurity 

atoms in semiconductors at elevated temperatures.  The diffusion 

of impurities has been the subject of considerable work.  However, 

it has been known for many years that diffusion in silicon at 

high concentrations produce impurity profiles that differ signifi- 

cantly from those predicted by simple theory.  Thus, there is still 

a need to be able to accurately determine impurity profiles in 

modern semiconductor devices and integrated circuits. 
The object of this research is to develop a mathematical 

model for the diffusion of impurities into silicon.  The model 

will consider the influence of the internal electric field on the 

motion of impurity ions at elevated temperatures.  The electric 

field is due to the charge density produced by the ionization of 

impurities present in the material. 

2.0  Technical Approach 
Diffusion in semiconductor material is an ambipolar process 

involving mobile holes, electrons, and ionized impurity atoms, 

in the fabrication of modern devices and integrated circuits, plane 

This work is exclusively the work of the Louisiana State 
University, Department of Electrical Engineering, Baton 
Rouge, Louisiana  70803. 
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parallel structures are of primary importance. We thus restrict 
the analysis to diffusion flow in one dimension. Furthermore, in 

the interest of simplicity, we assume all impurities to be ronrzed. 

The impurities can be described by a flux equation of the form 

fC.t)  -Dc IS+ ZVccE (xi-l) 

„here c(x,t, represents the concentration of an arbitrary rmpurrty 

species, De and «    denote the diffusion constant and mobility, 

respectively, and Z = 1 if c represents a donor impurity and 

z = -1 if c represents an acceptor impurity. The particles must 

also satisfy a continuity equation of the form 

»S + äf = o 3t  3x 
(XI-2) 

substitution of (XI-1) into (XI-2) yields the transport equation 

which determines the ionized impurity distribution in the wafer, 

thus, 

ic = _3. [ D |£ - Zy cE 
9t  3x 1 c 3x    c 

(XI-3) 

Holes and electrons also satisfy similar equations, and it follows 

that 

9£__lb lE-ypEl-R (XI-4) 

Gaus s' law is used to re 

(XI-5) 

late the field to the charge density 

ät " 3x Pn 3x  ^n  ' 

The net 

11 = © (p - n + Zc) 
3x  e v^ 

recombination term is represented by 

pn - ni 
R = :n(P ? 5? + V^ 
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where T and x are the electron and hole lifetimes. These equa- 

tions, ?ogethe? with appropriate boundary conditions, constitutes 

the complete general problem. Although the transport of earners 

is well defined, no analytic solution appears possible. 
The body of this work is concerned with the solution of the 

general problem under one assumption.  The time derivative of 

holes and electrons is sufficiently small compared to other asso- 

ciated terms that they can be neglected.  This is a valid assump- 

tion because holes and electrons have a much larger mobility than 

impurity ions.  Thus, as the impurity ions change during a diffu- 

sion, the holes and electrons readjust almost instantaneously, 

staying in a steady-state determined by the impurity ion distri- 

bution.  Under this approximation, the problem can be simplified 

to a form where numerical analysis is both accurate and efficient, 

It is easy to show that under the above assumption pn - n. 

and thus R = 0.  It is convenient to make the substitution 

3^ 
E " ~ 3x 

(XI-8) 

where * is the electrostatic potential. A given value of E will 

determine * apart from an integration constant, which, without 

loss of generality, will be chosen zero for intrinsic material, 

integrating (XI-4) under these conditions yields 

P = nie 
(XI-9) 

where V,, = D/u = KT/e.  In a similar manner, (XI-5) yields 

(t)/vn 
n = n^ (XI-10) 

The hole and electron density can now be eliminated from the 

problem statement by substituting (XI-9) and (XI-10) into (XI-6) 

Thus, the quasi-static problem can be specified by 

-243- 

  



pppppl —   — •■  

9 

9c _ 9 f^ 9c  „   94) , 
Tt - ^ Pc 9^+ zwcc H ^1-11) 

•f = | (2n. sinh i^/V - Zc) (XT-12) 9^ 

The first part of this research considered a vapor phase 

deposition where an inert carrier gas containing a single impurity 

species flows over an intrinsic semiconductor wafer.  Since the 

wafer is very thick compared to the depth of diffusion, we treat 

the wafer as being semi-infinite with x > 0.  The boundary and 

initial conditions for a gaseous diffusion process are given by 

c(0,t) = Co (XI-13a) 

^il - 0 (XI-13b) 

c(",t) = 0 (XI-13c) 

♦(»/t) = 0 (XI-13d) 

c(xr0) = 0, x > 0 (XI-13e) 

The quasi-static problem is specified by two nonlinear 

partial differential equations in terms of impurity density and 

electrostatic potential. A solution is computed employing numeri- 

cal techniques.  Discretization of the time coordinate yields sets 

of ordinary differential equations.  These are solved using a 

quasi-linearization technique.  This process is iterated until 

sufficient accuracy is obtained. 

3.0 Numerical Analysis 

The problem can be further simplified by normalization of the 

variables.  If St,   t,  c, and (J) represent the normalized variables, 

then an appropriate normalization scheme is given by 
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Ö (XI-14a) 

<{,   =  VT(()/Z (XI-14b) 

i 
i 

x  -V—^ 5 (XI-14C) V en. 

t = -fr-^-    t (XI-14d) eD n. 
c  i 

in order to simplify notation for this section, the normalized 
variables will be represented by c, <j), x, and t. Substituting 

the normalized variables   (XI-11)   and   (XI-12)   yieldb 

l£ = _9. f 3£ +  c ^ (XI-15) 
9t       9x  18x 8x 

i-t =   2   sinh  *  -  C (XI-16) 
3x2 

To  facilitate numerical  techniques,   the  independent variables 

were discretized,   thereby giving  sets of difference equations. 

These variables will be denoted now as  ^  and x.,   defined by 

t.   =   (i -  1)   At + to, i =  1,   ...,   n     (XI-17) 

x.   =   (j   -  1)   Ax, j  =  1,   ...,  m     (XI~18) 

where At and Ax were chosen to be fixed for simplicity. 

A nonzero starting time t was chosen due to the inability 

to numerically handle the abruptness of the initial condition at 

the surface.  The particular choice of diffusion profile used at 

t varied and will be discussed later, 
o ... 

The time derivative was approximated by a two-point implicit 

scheme 
8f(t.)   f(t.) - f(t. ,) 

J J-  =  i iZ^ (XI-19 
5t At 
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Evaluating (XI-15) and (XI-16) at t = ti yields 

^-i- - 2 sinh ()) + c = 0 (XI-20a) 
dx2 

^[i-i c " N = 0 {XI-20b) 
At 

where the notation 
c - c(x,t.) (XI-21a) 

i 

N = ciXit^) (XI-21b) 

has been used.  Notice that this constitutes a set of ordinary 

differential equations with a driving function N and boundary 

conditions 
c{0) = ß = C /ni (XI-22a) 

älüll = o (XI-22b) 
dx 

c{<») = 0 (XI-22c) 

())(oo) =o (XI-22d) 

The procedure is straightforward.  Once the distribution at 

some time t,, is known, (XI-20) and (XI-22) can be solved to find 

the distribution at t^  By beginning with i = 1, the step is per- 

formed for each time increment until the desired final time is 

reached.  This procedure is shown pictorially in Fig. XI-1. 

Notice that the only parameter other than the dependent and 

independent variables is the normalized surface concentration ß. 

Thus, a series of solutions over a range of 0 will give a general 

solution to the quasi-static problem. 

4.0 Results 
The input data used corresponded to the case for arsenic 

diffusion in silicon for a gaseous process: 
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START 

SELECT STARTING DISTRIBUTIONS^ 
c(x,to) 

G±B I 
|   1 =  i + T 

t «= ti     -     iAt + tt 

N(x)   = c(x) 

Solve (20) and (22) 
for new c(x) and $ {x) 

Has the final time been reached? 
no 

2L 
yes 

| STOP 

Figure XI-1.  Flow diagram of the numerical method. 
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T = 1050oC 

Co - 1.6 x 10
21 cm-3 

Dc = 6.44 x 10~
15 cm2/sec 

ni = 1.17 x 10
19 cm-3 

The surface concentration used represents solid solubility, and 

thus the effect of the internal electric field on the diffusion 

process should be maximum.  The diffusion constant is the average 

value of data given by Masters and Fairfield with Chiu and Chosh. 

The intrinsic electron density was calculated from Morin and Malta. 

Several starting conditions were used, the most prominent of 

which was the complementary error function, given by 

c{x,to)   = Co erfc x/(4Dcto)
1/2 

(XI-23) 

Although a starting condition for $  was not needed, it was neces- 

sary to pick an initial guess for the first time step.  This was 

chosen by assuming charge neutrality, giving 

(t)(x,to) = VT sinh"
1[c(x/t0)/2ni]        (XI-24) 

Typically, t was chosen as 2 minutes with Ax = 0.001 y and At = 

0.5 sec. 

Figure XI-2 shows the results for arsenic in silicon for a 

gaseous diffusion process.  Also shown is the complementary error 

function which is the exact solution for negligible electric field. 

Inspection of the curve indicates significant deviation in the 

impurity profiles from those predicted by simple theory.  These 

results are typical for diffusion with high surface concentration. 

5 - 0 Conclusions and Recoi.i/nendations 

The computer program was run with different starting conditions 

and with different values of Ax and At.  Several derivative formu- 

las were used and the behavior of the program studied.  The program 

is stable and offers good convergence. 
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erfc x/(ADtK 

numerical solution 
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Figure XI-2.  Diffusion profiles of arsenic in silicon at 
1050oC with C = 1.6 x 1021. o 
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for relatively short diff.usion times, the starting condition 

makes a significant difference in the calculated impurity density. 

Comparing erfc starting conditions at different times, a oetter 

solution is obtained with smaller initial times.  For longer diffu- 

sion times, the effects of starting conditions becomes less and 

less important. 

The two critical control parameters of the program are Ax and 

At.  The convergence of the program was studied for various Ax and 

At.  Changing At by a factor of 10 had practically no effect on the 

density near the surface and orly a little effect deep in the 

material.  The Ax values were changed from 0.0005 to O.OOSy.  The 

error deep in the material xs more than that near the surface but 

decreases for longer diff ision time.  CPU time, of course, increases 

for smaller Ax.  The values chosen were Ax = 0.0001 y and At = 0.005 s 

until 10 seconds and Ax = 0.001 y and At = 0.5 s from then on. 

This corresponds to normalized values of Ax =  0.4 and At  = 0.05; 

thus, Ax/At  - 8. 

Since numerical differentiation is inherently less accurate 

than integration, several derivative formulas were studied with a 

view of noting the effect on the calculated values of impurity den- 

sity, electric field, and charge density.  To make the differentia- 

tion more accurate, you must decrease Ax or increase the order of 

the formula used.  Small values of Ax tend to magnify the round off 

errors; on the other hand, a higher order formula results in a 

larger CPU time.  A 4 to 6 order formula seems to be adequate; a 

five point formula was used because of its symmetry about the 

central point. 

The computer program developed for calculating impurity pro- 

files for a gaseous diffusion process will be extended to include 

a drive-in process where diffusion occurs from an initial distribu- 

tion.  Thus, the redistribution of impurities from an ion implan- 

tation can be studied.  These computer programs will allow a rigo- 

rous analysis of field-aided diffusion using a quasi-static 

approach.  Since these programs require extensive CPU time, they 

are too costly to be used as engineering aids in process design. 
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The purpose here is to use these programs to gain basic under- 

standing of the diffusion process in semiconductor material and 

to check the accuracy of models that are suitable for process 

design and control. 
The calculated impurity profiles for arsenic disagree with 

experimental results, which indicates an exponential profile near 

the surface for high concentration.  This discrepancy between 

theory and experiment must be due to using a diffusion model whxch 

includes only the field-aided effect.  Thus, the numerical technique 

must be generalized to include a variable diffusion coefficxent 

so that excess vacancy generation and plastic deformation effects 

can be incorporated into the diffusion model. 
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Appendix A 

Nonequilibrium Solution of Poisson's Equation 

in One Spatial Dimension 

A.   Solution for Q (V ) 
      i  s 

In the source-drain inversion layer of a MOSFET, the elec- 

tron distribution must satisfy a Poisson equation of the form 

92v i 92v   -1 

^  ^ = ^ P ' iA'l) 

where p represents the total density of electrostatic charges 

(ions, holes, and electrons) residing within this semiconductor 

material.  Near the source end of this structure, 32V/3x2 << 92V/ay2 

and, therefore, (A-l) has the approximate form 

d2V   -1 
.2   < e   M  * (A-2) j  2     r,  c dy    so 

Assuming a p-type semiconductor substrate, the electrostatic 
charge density can be written 

P = -q(NA - p+n) . (A_3) 

Because we have a source-drain current through this inversion 

layer, this semiconductor structure is in nonequilibrium.  There- 

fore, the densities of electrons and holes within this structure 

cannot be described by equilibrium distribution functions.  How- 

ever, assuming that we have a relatively small perturbation from 

equilibrium, we can approximate these densities by "quasi-equi- 
librium" distributions of the form 

n = n exp {q(V-* )/kT} 
-L n (A-4) 

P = ni exp {-q(V-(|) )/kT}  , 

where ^ and <pp  are quasi-Fermi potentials defined by 

(A-5) 

^V-UfloVn/V (A_6) 

^p " v + ^ loge(p/ni). (A_7) 
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A physically meaningful interpretation of these quasi-Fermi 

potentials can be mede by introducing the substitutions 

n = n. expC-q* /kT) (A-8) 

pq = n. exP(q4)pAT)  , (A_9) 

whereby (A-4) and (A-3) have the simplified form 

n = n exp(qVAT) (A-10) 
Hi 

P = Pq exp(*qVAT)   . (A-ll) 

From (A-10) and (A-ll), we see that n and p represent nonequi- 

librium densities of electrons and holes, respectively, in charge 

neutral regions of this semiconductor material.  Thus, from (A-8) 

and (A-9), these quasi-Fermi potentials account for modified 

carrier densities in charge-neutral semiconductor material under 

nonequilibrium conditions.  Substituting (A-10) and (A-ll) into 

(A-3) yields 
p - -,[„, - pqe-«V + „^ . 

Since d2V/dy2 = -dE /dy, (A-2) can be written 

dEy     1 (A-13) 
dy' v^ 

and, therefore, 

y  K e J so 

Further, since E = -dV/dy, we have 

dE„ = rr4— Pdy • (A"14) 

EydEy = iri~- p dV • (A-15) s o 

Substituting (A-12) into (A-15), we obtain 

E dE = __ä__ [N - p e"ßV + n e3V]dV .    (A-16) 
y y   Kseo    A    q q 

Equation (A-16) can be integrated from the oxide-semiconductor 

interface to a point within the substrate: 
E V 

J ndn = —2-  /  [N - p e"^ + n e^]d?. 
E K3Co     Jl.   A    q       q 

(A-17) 
[NA - Pq6 " + V"3^- 

Jys       = - 'v s 
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In (A-17)  E  and V represent the magnxtudes of the electric 
'    '■  ys     s 

field and electrostatic potential, respectively, at the oxide- 

semiconductor interface.  Thus, from {A-17), 

-ßv 
' = Ea_ + JSL  {NR(V-VJ + 1SI p (e-ßV _ e  8) 

so q q 

+ _ ng(e  - e  )} (A-18) 

In charge neutral regions of the substrate, E =0 and V=Ü; 

therefore, from (A-18) 

0 = E2  - -23- {N v + ^ p (e 
ys  K e   A s   q q so 

-ßv kT 3V. 

" ^ + ^nq(e    - 1)} 

(A-19) 

Further, from (A-12), space-charge neutrality requires that 

0 = p = -q(NA - Pq
+nq) (A-20) 

and, therefore 

p  = N, + It 
q    A   q 

(A-21) 

At the oxide-semiconducto:: interface, a one-diir3nsional appJ.ica- 

tion of Gauss' law yields 

K. . 
1 

ys 

VG-Vs 

ox 

Substituting (A-21) ^nd (A-22) into (A-19) arJ  thereafter 

solving for n , wr obtain 

-q^s) " 

K e 
s o 
2q ' 

it G s - N A 
kT  "^s V + —(e  s 

S    q -I 
kT 
q 

-3V        3Vc 
(e  s -1) + (e 5 -1 (A-23) 

In a similar fashion, substituting (A-21) and (A-22) into (A-18) 

and, thereafter, solving for E yields 
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E    (V,V   ) yv        s 
Ki   VG-VS 

K  e 
s o    L 

A(V-Vs)   +  ^   V^ 

-3V        -ßv ßv        BV 
(e - e       s)    + ILL n   (e       - e     s) 

q   q 

1/2 

(A-24) 

where n  is given by (A-23). 
^calculate the inversion charge, Q^VJ*  we integrate the 

electron densxty from the oxide-semiconductor interface (where 

y=0) to a depth y. (where n=ni) within this semiconductor 

material: 

!i " -q/ n (y)dy (A-25) 

Since E = -dV/dy, (A-25) can be rewritten 

V 

»itV - -i j 
n 

BytV^S5 
dV  , (A-26) 

where V.= V(yi) .  By definition, i.= n. when V^.; therefore, 

from (A-10), 
ni = n exp(qVi/kT) 

Solving (A-27) for Vi yields 

V. = ^ loge in./nq)     . 

Substituting (A-10) into (A-26), we obtain 

V 

(A-27) 

(A-28) 

QiOV - -q 
rs n (VJ exp(qV/kT) 

v. 
Ey(V,Vs) 

dV (A-29) 
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B.   Solution for dQ./dV   i  s 

Differentiating (A-29) with respect to V yields 
9 

v 
dQ, 

d 

Q. r 

s r. 
exp(qV/kT)  i n   (V  ) 

q    s I E* 'V,Vs) Ey<V'VS) 

"qW[w 
dn -i 

-q   lnqtVs)      exp   (qVs/kT) -1 
ys 

where 

-3V 
%      -2VVs)sinh(3V8)-(cox/q)E rNA(l-e      s) 
dVs 2(^|)[cosh(ßVs)   -  1] 

dVs 12/   Ey(V,Vs) 

-2K 
E ,K  t 1      ys s ox    ' 

+ -2|L 
K  e s o 

' -ßv. 
NA(e 

dn 

-  1)   - 2n sinh(ßV ) q s 1 
+   2 ra   dV^ tcosh(3v)   - cosh(ßVs)] 

dV 

(A-30) 

(A-31) 

(A-32) 

and where E  , n , and E are given by (A-22), {A-23), and 

(A-24), respectively. 

C.  Derivation of V sc 

From (A-10), the electron density at the oxide semiconductor 

(A-33) 

interface, n , is given by s 
ns = VV exP(qv

s/
kT) 
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and, therefore, 

V = — log s   q  ^e 

n 

n (V ) 
q  S 

(A-34) 

When V attains a critical magnitude, V  , we have a negligible 
S SC 

density of electrons within the  inversion  layer   (n =n.): 
S       1 

Vsc  =  -q  lo% [V*sc>j 
Substituting (A-23) into (A-35) yields 

W   If   "ßV "i^ l(e 

(A-35) 

(A-36) 

V  = — log ^ sc   q  ^e^ 

sa  - 1) + (e  sc -i,] 
K e 
s oh ivJtiiz\]2 
2q   \KI 

-  N, 
t    i A ox / 

V   + £±(e   sc - 1) 
sc   q 

Clearly, (A-36) has the approximate form 

3V 

(A-37) 

V    — log < sc   q   e 1 

sc 

K E 
L-f2-J s 0 
ni
vkT'l 2q 

<i f
VG-Vsc 

Ks   ^x 
- N, 

SC 

kT 
q 

Solving (A-37) for V  yields 
SC 

(A-38) 

Vsc = VG - 

< e gN7v s o A 

ox 

2C 
1 + 

ox 

s o A 
vn- 

kT 
n. 

(1 " KT) N, 
-1 
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