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Perhaps the simplest way to discover the prime factorization of 

an integer   n   is to try dividing it by   2 , 3 , U , 5 , ...    and to 

'•cast out" each factor that is discovered; we stop when the trial 

divisor exceeds the square root of the remaining unfactored part. 

The speed of this method obviously depends on the size of the 

prime factors of   n .    For example, if   n   is prime, the number of 

1/2 trial divisions is approximately   n '     ; but if   n   is a power of   2 , 

the number is only about    log n .    In this paper we shall analyze the 

algorithm when   n    is a "random" integer, determining the approximate 

x 
probability that the number of trial divisions is    < n     when   x   is ; 

a given number between   0    and    1/2 .   One of the results we shall 

35 prove is that the number of trial divisions will be   < n       ,  about 

half of the time. 

In order to carry out the analysis, we shall study the distribution 

of the k-th largest prime factor of a random integer.    This problem 

is of independent interest in number theory, and for   k > 1   it does 

not appear to have been studied before.    (Wunderlich and Selfridge [Ih] 

gave a heuristic argument that the second-largest prime factor will 

tend to be roughly    (n "*    )'     « n'       because the median value of 

the largest prime factor is   aa n'      ; besides their remark, which 

stimulated the present investigation, the authors are not aware of any 

published study of the second-largest prime factor.   John M. Pollard 

[private communication] has independently investigated the distribution 

of second-largest prime factors, and his computed values agree with 

those presented below.) rw 
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Section 1 of this paper presents the factorization algorithm 

in detail and proves its correctness.   Quantitative analysis begins 

in Section 2, where the two frequency counts involved in the running 

time are interpreted in terms of the size of the largest two prime 

factors. 

The distribution of k-th largest prime factors is investigated 

heuristically in Section 3*  somewhat as a physicist might do the 

analysis.   A rigorous derivation of this distribution, somewhat as 

a mathematician might do the analysis,  is presented in Section k. 

Sections 5 and 6 continue the mathematical play by deriving interesting 

identities and asymptotic formulas satisfied by these distributions. 

Section 7 comes back to the factorization procedure and applies the 

ideas to the results of Sections 1 and 2, somewhat as a computer 

scientist might do the analysis. 

Section 8 discusses the particular theoretical model used in these 

analyses, and explains why the traditional "mean and variance" approach 

is inappropriate for algorithms such as this.    Numerical tables and 

onpirical confirmation of the theory appear in Section 9-    Finally, 

Section 10 discusses a rather surprising connection between prime factors 

of random m-digit integers and the cycle lengths of random permutations 

on   m    objects. 

Although we shall deal with a very simple approach to factoring, 

the results and methods of this paper apply to many other algorithms as 

well.    The paper is self-contained, and includes several examples 

suitable for classroom exposition of asymptotic methods. 



1.  The Algorithm. 

Here is the standard "divide and factor" algorithm which we 

shall analyze in detail. A proof of its validity follows immediately 

from the following invariant assertions governing the variables used: 

n > 2 ; (1.1) 

n = p, ... p. m  ; (1«2) 

p.,...,p.    are prime numbers; (1«3) 

m  > d    ; (l.lf) 

all prime factors of   ra   are   > d    . (1»5) 

Since our goal is to analyze a simple algorithm rather than to present 

it in optimized form ready for extensive use, we shall simply consider 

the following informal Algol-like description: 

t  := 0; m := n; d := 2; 1 

while d2 < m do IH1 

begin increase d or decrease m: 

if d divides m then D 

begin 

t  := t+1; p.   := d; m := m/d T-l 

end 

else d := d+1 D-T+l 

end; 

t  := t+1; p.   := m; m := 1; d := 1; 1 

The invariant assertions hold after each line of this program.    The 

expressions in the right-hand column specify the number of times the 

operations in a particular line will be performed, where 

D    is the number of trial divisions perfomed, (1-6) 

T    is the number of prime factors of   n    (counting 

multiplicity). (1.7) 
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The usual refinements of this algorithm, which avoid a lot of nonprime 

trial divisors by making d run through only values of the form 

6k + 1 , say, when d > 5 , have the effect of dividing D by a 

constant; so our analysis of this simple case will apply also with 

minor variations to the more complicated cases. 



2.      Preliminary Analysis. 

Let    n,    be the k-th largest prime factor of   n ; thus 

n,   = IW■, k   after the above algorithm terminates, for   1 < k < T  . 

If   n   has less than   k   prime factors (counting multiplicities), 

let    n,   = 1 .   We also let   n« = »   for convenience in what follows. 

The while loop in the algorithm can terminate in three different 

ways,  depending on how we last encounter it: 

Case 1,    n < U .      Then   D = 0  . 

Case 2,    n > U   and the D-th trial division succeeds.   Then the 

2 
final trial division was by   d = n^ , where   d   > n,   .    Since    d   is 

initially   2   and the statement    d := d+1   is performed   D-T+l   times, 

we have 

D   = n2 + T -5   ,    n2  > ^    . (2.1) 

Case 3, n > lv and the D-th trial division fails. Then the 

2 
final trial division was by d , where n« < d and d < n, and 

p 
(d+l) > n, . (Note that if we set p := 1 we have d > Pt_1 

throughout the while loop.) Thus we have 

D = ryn^l+T-3 , TI^  < n1    . (2.2) 

In all three cases we have the formula 

D = max(n2 , r/n^l) + T - 5  • (2.5) 

Clearly   D    is the dominant factor in the running time,  so most 

of our analysis will be devoted to it.    However,  it turns out that the 

analysis of   T    is also very interesting; for large random   n , the 

number   T   of prime factors can be regarded as a normally-distributed 

random variable with mean   In In n+ 1.03   and standard deviation 

-v/in in n     fsee Appendix A). 



3.  The k-th largest prime factor. 

In order to analyze D , we shall first analyze the distributions 

of n1 and n  (and n,  in general). Let P. (x,N) be the number 

of integers n in the range 1 < n < N such that 

nk < n" , (5.1) 

where   x    is any number   >0  .    Thus    P (x,N)/N   is the probability 

that a random integer between   1   and   N   will have k-th largest 

prime factor    < N    .    We will prove that this probability tends to a 

limiting distribution 

Pk(x,N) 
11* N =    Fk(x)      , (5.2) 

N -•<» 

where Fk(x) has interesting properties discussed below. 

Before we establish (5.2) rigorously, it will be helpful to give 

a heuristic derivation analogous to that given by Karl Dickman [ 5 ]J 

who was the first to study this question in the case k = 1 . Let us 

consider Pk(t+dt, N) - Pk(t,N) , the number of n < N such that n, 

lies between N  and N * , when dt is very small. To count the 

number of such n , we take all primes p lying between N  and 

N   , and multiply by all numbers m < N ''  such that m. < p and 

üL, > p . Now if n = mp we have n < IT"   and n, = p ; conversely 

every n < N with n. between N  and N    will have the form 

n = rap where p and m have the stated form. Note that the number 

of m < N "  such that "ii. < P is approximately Pk(t/(l-t) , N " ) , 

and the unwanted subset consisting of those m with m. 1 < p has 

approximately P .^/(l-t) , N " ) members. Hence the number of m 

with mp < N and m. < p and m. _1 > p is 



Pk(t/(l-t) , N1"*) - P. ^(t/Cl-t) , N1"*) ,  ignoring second-order terms, 

and we have 

Pk(t+dt , N) - Pk(t,N)   «   (n(Nt+dt) - «(Nt))(Pk(t/(l-t) , N1"*) - P^Ct/Cl-t) , N1-*). 

(5.5) 

Here the    n   function is defined as usual, 

jt(x)   =  the number of primes not exceeding   x . (5.1*-) 

According to the prime number theorem we have    jt(x) « x/ In x , hence 

rtiNt+dt) -«(N*)   « N^t/t     • (5-5) 

Plugging this into the above formula and dividing by   N   yields 

Pk(t+dt,N)  - Pk(t,N) ^f^it/il-t),*1'1)      P^t/Cl-t),^^) 

N T^ ^t ^t 

(5.6) 

when   N -• oo   we have the differential equation 

F^t)« . f^^y^^)) .       (5.7) 

Since Fk(0) = 0 , we may integrate (5.?) to deduce the formula 

V*) '((\(£rK-i(rt))f    •      c-8' 

According to our convention   nf= 00 , we define 

F0(x)   =  0     for all   x . (5.9) 

We also must have 

Fk(x)    =1     for   x > 1 , k > 1    . (5.10) 

8 



Now it is easy to see that (5.8),  (5.9),  (5.10) define   Fk(x) 

uniquely for   0 < x < 1 , since we have 

\W  ■ T-t  f[\{&)-\.ilk))   -    0S-<1        (5.11) 

and this relation defines   Fk(x)    in terms of its values at points 

> x . 



k.      Proof without handwavlng. 

Our discus«H on in the previous section has been only quasi-rigorous, 

but it shows that if the limiting relationship 0-2) holds then 

Fk(x)    had better be the function defined by (3.8),   (5.9), and (5.10). 

Now that we have a formula for   P.  , let us try to prove the limiting 

formula (5.2). 

It is more convenient to work with the functions    p.    defined by 

pk(a)   =   Fk(l/a)    ; (h.l) 

the above equations transform into the somewhat simpler recurrence 

formulas 

a ,. 
pk(a)   =  1-J    (p^t-^-p^t-l)) ^   ,    for   a>l,k>l;      {k.2) 

Pk(a)   =1       for   0 < a < 1 ,    k>l    ; (U.5) 

pk(a)   =0       for   a < 0   or   k = 0    . (U.U) 

Furthermore we let    S, (x,y)    be the set of positive integers   n < x 

such that   rL< y , and let   Yk(x,y)   =   ||Sk(x,y)|i   be its cardinality, 

so that 

Pk(x,N)    =   ¥k(N,NX)       . (U.5) 

We will show that 

¥k(Na,N)    =   Pk(a)NQ!+ 0(Na/log Na)       , (k.6) 

and it follows that a stronger form of (5.2)   is true: 

pk(x,N) r   1  \ 

10 



Indeed, we will prove a result even stronger than (^.6), namely 

yx^x)   =  pJcOx01* ak{a)xa/Ui xa + 0(X
a/(loB x)2) (U.8) 

as   x -• » ,  for all fixed   a > 1 , where    aAoi)    will be defined 

appropriately below.    In principle, the approach we shall use could 

be extended to obtain an asymptotic formula for    Y, (x ,x)   which is 

Ct. ¥ 
good to   0(x /(log x)  )    for any fixed   r ; the method is based on 

ideas of N. G. de Bruijn [ 1 ], who went on to find extremely precise 

asymptotic expansions of   ¥.. (N ,N)    in an elegant way using Stieltjes 

integration by parts.      (Note:   When   k = 1 , the limiting foimula 

(5.2) was first established by V. Ramaswami [11]; K. K. Norton [ 9] 

has given a comprehensive survey of the literature relating to this 

important special case.) 

We shall use a strong form of the prime number theorem due to 

de la Vallee Poussin [ 2 ]: 

xt(x)   =   L(x) + 0(xe-C^e^)    , ik.9) 

where   C    is a positive constant and 

L(X) - ;* ^ • (*•*)) 

Now to the proof, which will be "elementary" except for our use 

of (^.9). Letting p range over primes and n over positive integers, 

we have 

11 



LX
aj-Vxa,x)    = £       lKn<xalnk = p}l| 

a x<p<x 

L        ll{m < x /p | m^, < p and m^ > pjjj 
a x<p<x 

£     (Vxa/p>p)-Wxa/p>p-e)) a x<p<x 

where    e    is a small positive number and   Y0(x,y) = 0 .    The key idea 

in our derivation will be to replace £        \i^ /p * p)      by 
x<p<x 

J     Y (x /y,y)dy/(ln y)    , using the "density" function for primes 
x 

suggested by (1<-.10).    To justify this, we have 

(T'OVNT-) 
x<p<x 

Q! 
X 

x<p<xa   n€Sk(xa/p,p)    J       x    Vn€Sk(x%y)       ' 

l<n<x^xl   I   nk<p<x/n      I     max(nk,x) 

r^Sx^n   VV      x<p J 

L f  jr(x /n) - ir(max(nk,x)) + 0(1) - L(x /n) + L(inax(n. ,x)) J 
l<n<x 

12 



n 

a 

l<n <x 

log x   j 

=   0(x (log x )e &    )      . (^.ll) 

A similar estimate applies to     Z/ a Y,   , (x /p , p-e) ,  so we have 
x<p<x 

•v- * ' 
\(x ,x)   =  x 

X 

\.(108x)rj 

as x -• » , for all fixed r > 0 . This is the formula we shall use 

for a > 1 ; for 0 < a < 1 we have ^(x^x) = Lxaj . (The 

brackets l_ J in the latter formula turn out to be important, since 

the integral (i+.lS) is sensitive to 0(1) terms in the vicinity of 

y = x .) 

Our proof of (it-.8) is by induction on k , and for fixed k by 

induction on Fcül . Actually the first case k = 1 ,  fal = 2 seems 

to be the hardest; when 1 < a < 2 we have 

15 



v^^-A^'O^H a 
X 

(log x) 

■-•■r (*•(«] MA) 
a-l , 

a     a ,    _ L   a (.x     r ,         du „/      xa 

=  x-x   lna+xj       {u} -^ j— + O1 

1 u^ In x^/u        I (log x) 

x 

Q; =  x 

;a pi^+ r^ /' f^+ ^tor?l+ of—3 
In x"   "l        ^   uc        uc ^(x^/u) /        I (log x) 

where    (x}    denotes   x-Lxj   .   The remaining integral is 

r" fuldu v    r?*1 (u-n)du v    ff1    nf 1 ^        1   > 

=    lim   ((In n)-(Hn-l))    =   1-7     , (^.1^) 
n -co 

where   7    is Euler's constant. 

Now suppose we have proved that 

h(xa.*)  = x" Pl(a) + (1-r) -^ p^a-l) + 0(3^) + oJ^-^J (k.15) 

for 1 < a < m , where the bounding constants implied by the 0 ' s depend 

on m but not on x or a . The discussion in the previous paragraph 

Ik 



establishes (^.15) for m = 2 . We can extend it to the next case by- 

analyzing its value for m < a < nH-1 : 

a 
x 

= X *« - J^x^-1^ x
a/Va/t f + of 

(log x) 

= x^ftx^^Ajx^f 

cx/t by substituting   x '       for   y   and inserting (4.15).   Continuing, we 

get 

^(x^x)   =  xa.xa f p^t-1) f + J2 (x^-^A) X«A « 

^ffpl^a-^f. 2a/t dt ] + 0f .J^ 
(logx)21 

a     , .      a, 1, [uldu (l-7}x      f /.  ,N dt 
= x   Pl^) + x   I 2        a,, " —ÖT   1       Pi^*-1) T 1        u   ln(x /u)        In x        1 

=    xa p (a) + ^Lii^I     («_!) + of —^LLJ      , (lul7) 



since 

a/2 

1       u   1JI(X /U) In X    
V V

    
b A / ' 

as in (^.13) and (^.1^), and 

L^f-iL--"]-^] (U.19) 

with bounding constants depending only on m . This establishes (^.15) 

for all m , by induction. 

We have proved (h.Q)    for k = 1 , with 

^(a) = (l-7)p1(a-l)  . 

For larger   k , a similar but simpler derivation applies:    Assuming that 

Vxa,x)   =  xa p,«.) + -^ ^(C) + 0^) + 0 f—^-sj (I..20) 

for   1 < a < m    (cf.  (U.15)), we extend this to   m < a < m+l   by 

a   r0! w CK(t-l)/t    a/tv    „     , a(t-l)/t     a/tv a/t j dt 

.a 
+ 0'     x 

Jlog x) 

^(i-fp^t-D-^t-i^f 

^  J>-)-Vx(-))&)-(^) ^-) 

16 



the desired relation follows for k > 2 provided that we define 

ak(a) =: "I K^-Vl^-1^ S: t0*   a>2    5      (^-22) 

ak(a) =0  for a < 2 . (U.25) 

It follows that 

ak(a) = (l-7)(pk(a-l)-p^Ca-l)) {k.2h) 

for all k > 1 . 

17 



5-      Identities satisfied by    p.    . 

The functions    pA®)    defined by {h.2),   (U.5),   C^.^) possess many 

rather surprising properties, and we shall examine some of them in 

this section. 

Our first goal is to express the   p.    in terms of the polylogarithm 

functions    L.   ,  defined by 

L0(a)   =0       for   a < 0 ,    L0(a) =1     for   a > 0    ; (5.1) 

y«)   = f ^(t-D f    • (5-2) 

a 
Thus    L^a) = In a   for   a > 1 , and   LJa) = (* ln(t-l)dt/t     for 

a. > 2 , etc.; it is not difficult to verify that   LjJa)    is    l/kl 

times the integral of   (dx, .. .dx, )/(x1...x^)    over all points   x^ ...,x 

where    1 < x^ .. .,x^ < a   and    |x4~x41 > 1   for a11    i / J   •    In 

particular,    hriv)  = 0    for   a < k . 

By iterating the recurrence for    p.    we find 

1-p^a)   = ^(a) -L2(a) + L^a) - L^a) + L5(a) - ...    , (5.3) 

l - p2(a)   = L2(a) - 2L3(a) + 3Lu(a) - hh^a) + ...    , (5.U) 

for   a > 0 , and in general 

1"Pk(a)   ""n>o(;k)Wa)      - <5•5, 

These infinite sums are actually finite for any particular value of   a . 

Now let us examine several auxiliary functions: 

18 



a   p (t-l)dt 
Sk(a,ß) =J     —r  for   ß>a   or   ß<0    ; (5.6) 

0        ß"* 

SAa)   = S (a,QH-l)    ; (5.7) 

a p (t-1) 
Ik(a)   = I -^  lai(t+l)dt   ; (5.8) 

a pk(t-l) 
ak(a)   = J -^t  dt    ; (5.9) 

00 

k(x)   = / pk(t)e"txdt    ,      x>0    . (5.10) 

(This is a different function    cr (a)    from that in Section h.)    It follows 

immediately from the definition    pk(QO = 1 - aA&) + a   -(a)    that 

ak(a)   = k-p1(a)-...-Pk(a)      . (5.11) 

Integration by parts enables us to evaluate   Ik(oO    as follows: 

a      a   pk(t)dt 
Ik(a) -l^ioc)   =  - pk(t) ln(t+l)|o + J    ^r- 

=  - pk(a) In(oH-l) + ak(afl)    . (5.12) 

Thus in particular we have 

l-j^a)   =  - p^a) In(aH) +1 - P^QH-1)    , (5.15) 

lp(a)   =  - P^a) In(OH-l) - p2(a) In(QH-l) + 5 - Sp^aH) - p2(cW"l) ,    (5.1^) 

etc.    A somewhat surprising consequence of this relation is that 

I^00)  = k(k4-l)/2 , while    CTk(oo) = k ; in particular,    1^») = a1(co)   . 

19 



Integration by parts applied to   Slr(a,ß)    yields 

a   p,(t)dt tPk(t) 
V^ß)-sk.i^  = --pit + ßl 'o     (p-t)2 

apk(a) an   pk(t-l)dt 

ß^ l (ß+1-t)2 

Differentiating the integral which defines   S, (a) = S. (a,OH-l)    with 

respect to   a   leads to a formula which can be combined with this one: 

a   pk(t-l)dt 
s;(a)   =  p (a-l) - J     ^  
k k ''l      (afl-t)2 

= Pk(a-1)  -^ ((a-l)pk(a-l) + Sk(a-l)-sk_1(a-l)) 

= i (p^a-V + S^ia-l) -Sk(a-1))      . (5.16) 

Now we are ready to prove an important relation which expresses    p,   1 

in terms of    p,     and    p,   1   : 

Lemma• 

plcfl(a)   =   Pk(a) + i (Sk(a!)~Sk-l(Q:))    >    for    k>l    . (5.17) 

Proof. Since p^+nC«) = P-jri01) = 1 and Sk(a) = S, ,(«) = 0 for 

0 < a < 1 , the result holds for ral = 1 j we will show that the 

derivatives agree, by induction on fal • Since 

20 



(cH-l^^QH-l)   =   Pk(a) - Pj^!(«)    =   (Sk_1(a)-sk(a))/k   , 

(cw-1) p^(cw-l)   =  p^oc) - pk(a)     , 

(QH-l)s^(afl)   =  pk(a) + s^a) - sk(a)     , 

(oH-^s^afl)   = p^^ + ^Ca)-sk-;L(a)     , 

the desired result is equivalent to 

For   k = 1   this is obvious, otherwise it holds by induction.     Q 

By iterating the recurrence in the lemma, it follows that 

Pk+1(a)   = P!«*) + ^ S^a) + ... + ^ S^ia) + i Sk(a)    .      (5.18) 

Finally let us consider the functions   ek(x)    defined in (5.10). 

Somewhat surprisingly, these can actually be expressed in closed form: 

E(x)  =E1(x)    is the exponential integral function 

Theorem.      ek(x)   = ^— |   1 + ^l +   ... + X,^.    I   * where 

E(x)    ^/e^dt/t   =   Je^dt/t      . (5.19) 
x 1 

21 
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Proof.      Once again we integrate by parts; 

»    p   (t-1) - pk ,(t-1) ./t.lN^ 
ek(x) - e^x)   = /     -^ F^   te^-^dt 

ex /  te" Xdp (t) kx 

=   e^^p  (t)(e-tx-txe-tx)dt 
0   K 

=   eX(ek(x) + x e^(x))     . 

If we let    fk(x)  = xe v  ' ei,(x)   > we have therefore 

f^(x)   =  eE(x)(ek(x) +xe^(x).e-xek(x)) 

-x e Ffk-lW    =    E'C^f^x) 

and it follows by induction on k that 

f (X) - c + Eix}. +     E/x)^
1 

ik(x; - c + 1, + ... + -^yr 

In order to evaluate C , we integrate by parts in the opposite direction: 

xe  (x)   =   -fpk(t)d(e-tx)    =   -  p(t)e-txf+ /Vtxdp (t) 
K 0 0      0 

= i -jV^p^t-^-p^ct-i)) f 

---(^(pkU-O-U^-1))" • 

Hence   C  = lira        x e. (x)  = llm f. (x)  = 1 .       D 
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6.      Asymptotic formulas. 

In this section we shall study the asymptotic behavior of   pk(Q0 

for large   a .    Our starting point is a simple proof that    p-jCa)    is 

exponentially small:    Let us write    p(a)    for    pAa)  •   Then since 

a a 
1+J    p(t-l)dt   = J   p(t-l)dt 

a       a 
=  - tp(t) |    + J   p(t)dt 

1      Jl 

an 
= l-o£p(a)+r       p(t-l)dt (6.1) 

2 

we have 

a+l 
J       p(t-l)dt   = ap(a)        . (6.2) 
a 

It follows immediately that    ap(a) < p(Q!-l)    for all   a > 1 , hence 

by induction 

p(n)   < 1/nl (6.3) 

for all integers   n > 1 .   Considerably more precise fomulas have been 

obtained by de Bruijn [ 1 ] and others,  and numerical results have been 

tabulated by Mitchell [8] and by van de Lime and Wattel [15]; but 

(6.3)  suffices for our purposes in this section. 

The rapid decrease of p-L(Q!) simplifies the numerical evaluation 

of integrals and it also leads to a simple treatment of the asymptotic 

behavior of   pp(ct)   : 
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Theorem.      For all fixed   r > 1   we have 

p (a)   = A(i+ ^+ ... + ^i ) + oCof1-1) (6.10 
V. a     a of   / 

as   a — co , where 

A   =   e7 «  I.78IO7 2IH79 90197 9852U    , (6.5) 

and the coefficients    c,     are defined by 

£    zV/kl   =   expf f    (e*-^ dt/t I   =  expf   £    zk/k.kl |   . (6.6) 
k>0        ^ VO 7 \.k>l J 

Thus    ^c   c    c s -  /1   1   I     37.     12     81     8551     I8U555 

10V" '      QIIC     ^   * * * /   *    Before proving the theorem, we note that 

(6.6) implies the recurrence formula 

Therefore      c„   > ^= c    _   for   n > 2 , and   c_-  > nl  ; the infinite n 2      n-2 —     ' an-1 ' 

series     S ^ /or     diverges for all   a .    In other words, (6.U) is 

strictly an asymptotic formula. 

Proof.      From the lemma in the previous section we have 

p2(a)   =  pjW + Sj/a)   =  pCaj + j"  J^ST^ 

=   p(a) + |a
p{t.x)Ji+^+...t^-r

+^ÜLl 
1 la      cr cf^-1-      cTx(afl-t) ^ 

S       J       p(t)tk dt/a1^1 + 0(a"r"1) (6.8) 
0<k<r    0 



a * 
since  J p(t-l)(t-l)lS'1 dt/(aH-l-t) < J  p(t-l) (t-l)14"1 dt < » . 

1 1 

Furthermore we have 

f   P(t)tkdt =  0\ J     e^^dt I = ol e 5 j (6.9) 
a-1 ^ a-1     J v   ^ 

as a -• " , by making very crude estimates not even as powerful as 

(6.3), so we can integrate to <*   in (6.8): 

p (a) = !2+ !|+ ... + !^+o(a-r-1) , (6.10) 
a  a       a 

where 

as 
k 

\  = / p(t)tKdt . (6.11) 
K   0 

It remains to evaluate the   a,   .   We have 

.k <» 
L = / 

k>0    "     "' 0 

S    ^^   =   fp^e-^dt    =    e^x)   =   e-E(x)-^x (6.12) 

by the theorem of Section 5; and it is well known that 

- E(x) -In x  =  7 +    S    (-x)k/k*kl      . (6.15) 
k>l 

(See, for example, [7, exercise 5.2.2-10].) This combines with (6.12) 

and (6.6) to prove that a, = e ck . Ü 
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The coefficients c  have the curious property that 

c     2c        r c 
p (a) = Al -2- +  ^+ ... + —^ j + 0(a"x-x)        (6.1U) ij.o^-1) 

is also an asymptotic expansion of pp , but not as accurate when truncated. 

Another series, 

^a)  -J^L*  -^ + !£!i^ ....]. oca-
1) 

^     ^a-1  2(0-1)^  5(a-ir    y 

is,  in turn, more accurate than (6.1+).   These series are obtainable from one 

another using the relation    pp(Q!)   =  -(cin-l)p'(QH-I) + p1(a)   . 

For   k > 5 , we shall content ourselves with establishing the leading 

term in the asymptotic expansion of   p,   , namely 

PxW-^^<{^]       -^->'   • (*■«) 
[Appendix B contains an asymptotic expansion of   p*  . ]    Consider first 

s0(e        r.    .«,.,.. .      dt ... ■ f (s. °m 2K   '         Jn I   t         "J\  ,.2 |  |   CW-l-t 

and note that 

r
a    dt J^ i   ra dt     ra _^_"\ 

^ t(cw-l-t) =   c«-l I   ^   T      ^   afi-t  1 
2 In a 

0S+-1 ' 

I* at JL      f»     at 1      p at 
Jl   t2(a.l.t)    =   Qffl   Jl   t2      ofrl   Jl    ^^ 

Q*1  ^ " ä J + iixLa     =    Q^-IJ    i (6#17) 

(afl)2 

Hence   S2(a)   =  2Aa"   In a+o(a' ) , and   p,(a)   = Aa"   In a+0(a' ) 

by (5.18).    In order to use this approach for larger   k , we note that, 

when   k > 1 , 



ra (m t)k dt   =   _1_    p01 (In t)k dt + J^.   pa (In t)k dt 
J,      t(QH-l-t)        "    OH    J     """'"    t QK-1    J CH-l-t 

1       (In a)1^1       k     j" (In t)^1 Iji(afl-t)dt 
~   Xä+lT       (fcfl) cü+1   ^ t 

1       (In a)k+1 .    In(aH-l)    /n      .k 
=  15^7      (kf 1)    +   -£i      (1I1Q!) 

afl   1 t 

dt 

Now   In(l-x) = - x f (x) , where    f   is a function satisfying 

when   1 < t < a , hence 

a ,,    .xk-l       , „x -,       a 

{^-^-^y - si J;^)*-1^ a)dt 

=   0(ln a)k    . (6.19) 

We have proved -chat 

for all   k >0 .   Using (5.18), formula (6.15) now follows by induction, 

together with 
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7.      Application to factoring. 

The distributions    F. (x) = p (l/x)    can be used to estimate the 

running time of various algorithms for factorization.    For example, 

Pollard's important new Monte Carlo method [10] takes about   vnl   steps, 

where   n^   is the second-largest prime factor of   n ,  so we can use a 

table of   Fp    to state that Pollard's method will complete the 

factorization in   0(n*      )    steps at most, about half of the time. 

For the simple algorithm of Section 1, we need to analyze the 

distribution of   max(np,"^ir)   ,  and this does not appear to be 

expressible directly as an algebraic function of the    F.   .    However, 

we can readily carry out the analysis by using the techniques above. 

Let    G(x)   be the limiting probability that   raax(n2 , VnT)   < M    , 

when   n   is a random Integer between   1   and   N  .    Then 

G(x)   =  F^x) + G-^x)   =   F2(x) -G2(x) , where   G1(x)    Is the probability 

that   I^ < n, < irX   and   n2 < N3' , and   G2(x)    is the probability that 

2x jc 
n, > N  and n? < w . Arguing as above, we find 

'W^Cä) =f fp(¥) ' "-> 
2x    ^       /- \ 2x 

f 
x 

l/a a-l 

4h) - 4 Mi-™ f - C JäMr • 0-^ 

(Bote that    0x(^)*02(i)   =   S^a)   =   F2( ^ ) - Fx( i )   ,   In 

agreement with the lemma of Section 5«)    It is clear from our asymptotic 
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results that   G,(l/Q!)    decreases exponentially for large   a , hence 

it is numerically better to use the formula   G(x) = F, (x) + G-, (x) 

than to use    Fp(x) - Gp(x)   ; furthermore the integration is over a 

limited range.    On the other hand for   2 < a < 5    it is most 

convenient to use   G     since   GJ  ^J = ln(a/2)    in this range. 
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8.  Remarks about the model. 

The probability considerations above are for random n between 

1 and N ,  and for relations such as n, < N; but from an intuitive 

standpoint we might rather ask for the probability of a relation such 

x 
as    IL   < n   , without considering   N .    Actually it is easy to convert 

from one model to the other,  since most numbers between   1    and   N    are 

large. 

More precisely,  consider how many numbers   n   between   TJ N   and   N 

have    i^ < 1^ ; this is    Pk(x,N) " Pk( x , | N J   =  | N-Fk(x) + 0(N / log N) , 

since    P (x,N)   = N-F. (x) + 0(N/log N)  .    Furthermore, consider how 

many of these   n   have   n   < n.   < w:      The latter relation implies 

NX>nk>(|N)X=NX-log2/:Lo6N    , and   F^x - log 2/log N)  = 

F, (x) + 0(1/log N) ,  since   F.     is differentiable; so the number of such 

n    is at most    Pk(x,N) - Pk(x - log 2/log N , N)  = 0(N/ log N)   .    (The 

constant implied by the   0    in (U.7) will be independent of    x    in a 

bounded region about    x  .) 

We have shown that F. (x) + 0(1/log N) of all n between ■% N 

and N satisfy ^ < n • Therefore if Qk(x,N) denotes the total 

number of   n < N   such that    rx.   < n    , we have 

Qk(x,N)   = E lN(F(x) + o^ L.— ^ + 0(5-1^) 
k l<d<log2logN    2J     V Vl08(N/2W Vl0SN; 

=   NF
k(X)+0(l^N)     ' (8-1) 

by dividing the range   N/log N < n < N   into     log- log N     parts. 
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It is customary to define the "probability" of a statement    S(n) 

about the positive integer   n   by the formula 

Pr(S(n))   =    lim    | (number of  n < N  such that   S(n)   is true)  ,        (8.2) 
N -"*> 

when this limit exists.    Thus, we can state well-known facts such as the 

following:      Pr(n is even) = p    ;    Pr(n is prime) = 0  ; 

Pr(n is squarefree)   =   6/n    .    Equation (8.1) now yields another result 

of this type: 

Pr^ <nx)   =  Fk(x) , (8.5) 

for all fixed   x . 

Another important observation should also be made about the theoretical 

model we have used to study the factorization algorithm in this paper: 

We have stated our results in terms of the probability that the running 

time is   < w     (or, if we prefer,    n    ); this contrasts with the customary 

approach to the study of average running time, which derives mean values 

and the standard deviation.    The reason for abandoning the traditional 

approach is that the mean and standard deviation are particularly 

uninformative for this algorithm.    This phenomenon is apparent when we 

consider that the mean running tlme^over all   n < N   will be relatively 

0.5 near the worst case   n       , but in more than 70 per cent of all cases the 

actual running time will be less than    n 

In order to understand this rather anomalous situation more fully, let 

us calculate the asymptotic mean and standard deviation of the largest 

prime factor   n, , when all integers    1 < n < N   are considered equally 

likely.    Let    $(t)    be the probability that   n, < t , when   n   is In this 

range.    Then the derivation of Eq.  (^.15) allows us to conclude that 
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N/t 
*(t)   - l+taü,t-talnH+5^  ^      1^*0(3^)      , 

--(.^.^^f l^+0(^)2) 

(8.U) 

for   v/N < t < N . 

We shall now calculate the asymptotic behavior of the k-th moment 

of this distribution, namely the asymptotic expected value of   n.   . 

[Incidentally,  our derivation provides a good example of the use of 

StieltJes integration.]   The k-th moment is 

E(n£)   = J   tkcU(t)      , (8.5) 

and since the integral from   1 + /N   is    o( in2 J    d$(t) j   = 0(1^'2) 

it can safely be ignored.    We are left with 

= /><—>^4^H^^)' (8-6) 

by replacing   t   by   N/v   in the second integral.    [The   0    estimate here 

b 
is justified by the following general lemma:    Let   J f(t) dg(t)    and 

b a 

f f(t) dh(t) exist, where h(t) = 0(g(t)) , and where both f and g 
a 

are positive monotone functions on    [a,b]  .   Then it is easy to see that 

/ f(t) dO(g(t))   =  0(f(a)g(a)) + 0(f(b)g(b)) + o( J f(t)dg(t)J      , 
a \ a / 

if we integrate by parts twice.]   The first Integral in (8.6) is 

52 



N   +k-l,. ,    /if ,, .Jc   /   /N   ^ V/N 
r   z   dt     w^ r    ^c       N   / r    dv . p 
J^-   Int      ~ <      k+1/,    „   ,      x    ~   In N V J

n      k+1     J        k+1 
In v dv 

/N 1    v     (In N-lnv) \lv Iv     (InN-lnv) 

The second integral is    -N/In N   times     J    tT)dv/v , which is within 

0(N-^/2)    of 

p00 [v]dv s      ^+1 (v-j)dv 
J        k+2 J    ,    J. k+2 1   v J>1     j v 

k+1U+1 (^D1^1 

d 

i 
k(k+-l) 

Thus we have shown that 

- Ä (c(w)-i) = i - ^ ■ 

It follows that the mean value of   n,    is asymptotically 

(n2/l2)N/ln N   , and the standard deviation is    (C(5)/5)1/2N/Vln N   , to 

within a factor of   1+0(1/log N)  •    In particular, the ratio 

standard deviation 
——————^—       -»       00 

mean 

as   N -* a» ; this result demonstrates the unsuitahility of a traditional 

"mean and variance" approach to the analysis of such algorithms. 
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9-     Numerical results. 

The differential-difference equations for    p     are conveniently 

suited to numerical, integration.    For example, given internal arrays 

containing   p1(ra + k/n) ,    p2(m + k/n) ,  and   p (m + k/n)    for 

0 < k < n<-t , where   m   is some fixed integer and   B = l/n   is the 

step size and   t    depends on the method of integration, one pass over 

these arrays serves to increase   m   by   1 .   When   m   reaches a 

suitably large value, the asymptotic formulas derived above provide 

an excellent check on the accuracy of the calculations.     Another 

excellent check comes from the formula 

CO 

e7   = J   p(t)dt   =  p(l) + 2p(2) + 5p(5)+...    ; (9.1) 
0 

cf.  (6.2),  (6.5), and (6.11).    (Incidentally, identity (9.1) appears to 

be new; it was discovered empirically, after noticing that the results 

of numerical integration seemed to resemble a "familiar" constant.    This 

particular constant came as a surprise,  since   e     usually occurs only 

in connection with infinite products.    After the proof of (9.1) was 

found,  the theorem in Section 5 above followed rather quickly.    Thus, 

numerical results indeed suggest theorems.) 

The following table gives representative values of   p^ ,  pp ,   p, 

and    G    to    120  : 

^ 



a P^ 2) P2(a) P5(a) G(I/QO 

1.0 1.000000 000000 1.000000 000000 1.000000 000000 1.000000 000000 

1.5 .591+55U 891892 1.000000 000000 1.000000 000000 1.000000 000000 

2.0 .506852 81910*0 1.000000 000000 1.000000 000000 1.000000 000000 

2.5 .150519 561852 .955589 706291+ 1.000000 000000 .75021+6 151+979 

5-0 .0U8608 588291 .852779 52501+1 1.000000 000000 .1+1+751^ 21I+952 

5.5 .016229 59521+5 .755^81 165219 .997526 27501+2 .225819 1*95955 

h.o .001+910 92561+8 .625681 059959 .985115 655272 .096599 005955 

h.3 .001570 1177^1 .555652 57205U .960975 011157 .056575 065077 

5-0 .00055^ 721+700 .1+65222 186987 .927859 655628 .0121+15 1+8271+8 

6.0 .000019 61+9696 .565217 75169^ .851107 195658 .001092 26671+2 

7.0 .000000 871+567 .501786 010508 .777229 5291+92 .000071 591675 

8.0 .000000 052521 .2571+55 710851 .71281+1+ 791+121 .000005 662651 

9.0 .000000 001016 .221+592 162720 .657959 58195^ .000000 155281+ 

10.0 .000000 000028 .19921+8 208991+ .611.115 99751*0 .000000 005585 

12.0 .000000 000000 .162658 856655 .555865 615616 .000000 000001+ 

lU.O .000000 000000 .157^57 56811+1+ .1+78221 71+91+1+2 .000000 000000 

16.0 .000000 000000 .119016 1+55055 .1+5261+2 865552 .000000 000000 

18.0 .000000 000000 .101+958 755569 .595655 755569 .000000 000000 

20.0 .000000 000000 .095875 81+5625 .561+9915^6696 .000000 000000 

25.0 .000000 000000 .071+277 80501+1+ .507069 057805 .000000 000000 

50.0 .000000 000000 .0611+55 756517 .266170 912880 .000000 000000 

1+0.0 .000000 000000 .01+5685 815582 .211858 770558 .000000 000000 

50.0 .000000 000000 .056556 095670 .177085 969207 .000000 000000 

60.0 .000000 000000 .050192 05?r52 .152778 1+25205 .000000 000000 
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Figure 1.      Distributions of the three largest prime factors of a random 

integer,  and the distribution of the simple factorization time, 
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Figure 2.    Empirical distribution functions corresponding to Figure 1, 

based on the factors of the largest   100  10-digit numbers. 

56 



(In 1950, Dictanan published   8D   values of    pAot)    for integer 

a < 8 ; his figures were correct except that    p-Al)   was given as 

"   .0000 0088 ".) 

Figure 1 shows these distributions graphically, and illustrates 

the fact that    F^(0)  = G' (O) = F^ | ) = F^ | ) = 0 ,    F^(0)  = A , 

G'f I ) = 2 ,    F^(l) = 1 ,    F'(0) = co .    Although the graphs of   F^^ , 

F2 , and   F,    are qualitatively different, the graphs of   F.     for 

k > 1+   will resemble that of   F,    (but they will rise ever more 

steeply). 

The following table shows percentage points of the distributions 

F, , F , F, ; for example, the probability is only 10 percent that 

.18616 
n, > n 
5 
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p F-^P) F-^P) F^CP) 

.01 .2697^ .00558 .00068 

.02 .295^1 .01110 .0011*9 

.03 .llDOk .01656 .00259 

.01+ .323hl .02196 .00351* 

•05 . 531*85 .02750 .001*55 

.10 .37851 .05508 .00995 

• 15 .111288 .077^1 .01629 

.20 .UU50I* .10055 .02527 

.25 .U7068 .12191 .03079 

.50 .U9656 .1U216 .03882 

.1*0 .5^881 .17892 .05636 

.50 .60655 .21172 .07581* 

.60 .67052 .21*267 .097^5 

.70 .7U082 .271+57 .12165 

.75 .77880 .29155 .13506 

.80 .81873 .51055 .11*972 

.85 .86071 .55201 .16627 

.90 .90h8h .35899 .18616 

•95 .95125 .59672 .21577 

.96 .96079 .1*0681 .221U1 

•97 .970U5 .1*1850 .2305^ 

.98 .98020 .10268 .21*221* 

•99 .99005 A5169 .2595^ 

1.00 1.00000 .50000 .53333 
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Empirical confirmation of the theory is illustrated in Figure 2, 

which shows exact empirical distribution functions corresponding to 

Figure 1 for the   100   numbers    n = 10    -m,    l<m< 100  .    As expected, 

the deviation from   F, (x)    is most pronounced for   k = 1   and   x > -  , 

but the deviations are not severe.   This set of numbers contains three 

primes    (10     - 55 i 10     - 57 , 10     -71) > and ten products of two 

primes.   The smallest values of   n.    occurred for 

1010-100  = 157-l01-75-ll-52-52-22 ,    1010-6^ =  U65-U51-29'55-26 ; 

the largest values of   n2   occurred for   10     - 69   =   ^56767'21895 , 

10     -22   =  85021-19605* 5»2  ; the largest values of    n,    occurred for 

10:L0-51  = 88501-l^l-269 ,    1010-75  = 15879-559-225-52 .   The 

smallest values of   max^n, , np)    occurred for 

in ?   ?    ? TO p 
10-100  = 157-101-75-11-5 -5 -2   ,    IO-25  =  2857-115•59-7-5 «5 

(so these would be the easiest numbers in the given range to factor by 

the simple algorithm); the smallest values of   n.    for which 

^fai > n2   occurred for   10     - 66  =  59^17 • 105* ^5-19-2 , 

1010-68  = 77201-55-^7-15«a2 . 

In Dickman's original paper he calculated the "average" value 

of   x   such that   n,  = n   , namely the expected value of   log n,/ log n . 

This equals 

X 0° OB 

D     =  J   xdF (x)    =   - J    p'(t) db/t   =   r    p(t.l)  dt/t2 (9.2) 

and by Eq.  (5«1^) we silso have 

J    p(t-l) dt/t2   =   - S1(»,-l)   = J    p(t-l) dt/(t+l)     . (9.5) 
Jl ■L 1 
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In a similar way we can determine the expected value of log n, / log n , 

a number which can be expressed in several ways, namely 

Dk = J xdFk(x) = f  (pk(t-l) -p^t-l)) dt/t
2  = 1 - J pk(t) dt/t

2 

a» 

= J ^-1)^^-1)+Pk_2(t-1)) dt/(t+l) .  (9.1+) 

Numerical evaluation (using the asymptotic formulas for    p     and    p, ) 

gives 

D1  =   .62U52 99885 ; (9-5) 

D2   =   .20958 O87I+3 ; (9.6) 

D,   =   .08831 60989 . (9.7) 

(Dictanan's value for    D,    was    .62^529998 .    Note that    D      is not equal 

to   D1(l-D1) , although   n»    is the largest prime factor of   n/n,   .) 

The average value of a logarithm may seem at first to be of limited 

praotical interest, by comparison with the median and other percentiles; 

however, we can interpret it meanin fully by saying that   D, m    is the 

asymptotic average number of digits in the k-th largest prime factor of 

an m-dlgit number.   Dickman's constant   D,    arises also in an unexpected 

way in connection with our simple factoring algorithm:    The probability 

that   np «CvnT , namely the probability that the algorithm needs to 

divide by all numbers up to     vn,  , is 

(  f hiwtv) - {   T'i^) - { >(-« *V(-« (5.8) 
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I 
by substituting u = 2/t - 1 . So this probability equals D, '. In 

the empirical tests which led to Figure 2, exactly 6l of the 100 

numbers had   np < vnT   • 
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10.    Relation to permutations. 

The numerical value of   D,    in (9.5) leads again to a feeling of 

de ja vu; and sure enough Dickman's constant turns out to be the same as 

"Golomb's constant", which has been evaluated to   55   places in [6]. 

Golomb's constant    X    is defined to be     lim t   /n , where    i      is n-«»   n'      ' n 

the average length of the longest cycle in a random permutation.    In 

Golomb's original analysis  [5]   of this combinatorial problem (which is not 

obviously related to prime factors at all'.), he independently defined a 
00 

function essentially identical to    p(a) ,  and he computed    X = J p(t-l)dt/t 
1 

GO 

numerically.    Another expression    X= J   exp(-x - E(x)) dx     was found later 
0        ' 

by L. Shepp and S.  P. Lloyd [12]. 

In Table 1 of their paper,  Shepp and Lloyd list also the limiting 

values    ,rk7n  - J   ECt)11"1 exp(-t - E(t))dt/(k-l) I    for the average length 
0 

of the k-th longest cycle; and this agrees numerically with    D.     for 

1 < k < 5  .    In fact, the Shepp - Lloyd formula yields    D,     for all   k , 

since 

f   Ikiyr   exp(-t-E(t))dt   = J00te-t(ek(t)-ek_1(t))dt 

CO 00 

= I te"   S    (pv(u) -p1._1(u))e" Ududt 
0 0       K K ± 

= J   (pk(u-l) -p^Oi-l)) J te"t(u) dtdu 
1 K K 0 
00 

= /    (pk(u-l) -p^u-1))   du/u2    . (10.1) 
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Therefore,  if we are factoring a random m-digit number,  the distribution 

of the number of digits in its prime factors is approximately the same as 

the distribution of the cycle lengths in a random permutation on   m 

elements1.    (Note that there are approximately   In m   factors, and 

approximately   In m    cycles.) 

There is a fairly simple explanation for the fact that    p^ia)    turns 

up in the study of cycles in permutations.    Let   Q (n,r)    be the number 

of permutations on   n   objects having less than   k   cycles of length 

exceeding   r .   Then, by considering the permutations on   n+1   elements 

(0,1, ...,n]   and considering the   n,./(n-m)'.    possible cycles in which   0 

appears with   ra   different elements, we have 

Qk(r*l,r)   =       E        T^TQ(n.m,r)+      E        -^ Vl(n-m,r)   .        (10.2) 
0<m<r    v      ' r<m<n    v      ' 

Therefore if   q, (n,r)  = Q (n^/nl    is the probability that the k-th 

largest cycle has length    < r ,  we have 

(nfl)q (n+l,r)   =       L       qk(n-m,r)+      S      q^n-n^r)    ; (10.3) 
0<m<r r<m<n 

replacing   n   by   n-1   yields 

nqk(n,r)   =        E       qk(n-l-m,r) +      E      qk-1(n-l-m,r)     . (10.U) 
0<ra<r r<m<n 

Subtracting these two equations, we have 

(nH)(qk(nH,r) -qk(n,r))    =  q^n-^r)-qk(n-r,r)    , (10.5) 

and this is analogous to the differential equation 

a p£(a)   =  p^a-l) - pk(a-l)      . (10.6) 
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The connection between the two problems is completed by showing that 

qk(n,r) = pk(n/r) + 0(l/r) . 

A similar distribution is obtained for the degrees of the factors 

of a random polynomial of degree   n , over a finite field:    The average 

degree of the k-th "largest" irreducible factor will tend to be approximately 

D, n   . k 

Let us close by stating an open problem: Are the functions p, 

algebraically independent? They are linearly independent, because of 

Eq. (5.5). 
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Appendix A.     The number of prime factors. 

Following the notation of Hardy and Wright [ C> ],  let    u)(n)    be 

the number of distinct prime factors of   n , and let   n(n)    be the 

total number of prime factors including multiplicity.   Thus,    n(n) 

is the quantity   T    in the analysis of the algorithm above.    Clearly 

1 < ü(n) < log2 n , and both of these limits are obtained for infinitely 

many   n ; similarly   u)(n)    can get as large as    In n/ln In n .    On 

the other hand theee extreme values are relatively rare,  and the number 

of factors is usually near     In In n . 

P. Erdös and M. Kac [ h ] proved that the number of   n    in the range 

1 < n < N   such that    u)(n)  < In In N+ c vln In N      is 

[jT* i e"1 /2 dt J N + o(N)     ; (A.l) 

hence,  for example, the probability that    l(u(n) -In In NJ < c vln In N 

for fixed   c > 0    approaches the limiting value 

-±   f    e"*2/2 dt       . (A.2) 
V2jt     -c 

We might say that    u)(n)    behaves essentially like a normally distributed 

random variable with mean and variance     In In n   , where   n    is large. 

Erdös and Kac remarked that their methods, which were based on 

the idea that residues modulo distinct primes Eire independent,  could 

be extended to the case of prime factors with multiplicities included, 

but they did not state what the resulting theorem would be.    Fortunately 

it is easy to deduce the asymptotic behavior of   Q(n)    from that of 

u)(n)  , using a method like that in [ 5 ].    Let    k(N)    be the number of   n 

in    1 < n < N   such that 
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u)(n) < la In N + c Vln In N (A.5) 

and let K(N) be the number such that 

n(n) < In In N + c Vln In N + In In In N . (AA) 

Then    lk(N) - K(N) |    is at most the number of   n   which satisfy (A.3) 

but not (A.U), or (A.U) but not (A.5)» and both of these quantities 

are   o(N)   :    If   n   satisfies (A.5) but not (AA), we have 

n(n) - u)(n) > In In In N ; and the number of such   n   is 

0(N/ In In In N) , because 

2       (Q^-^n))   =  0(N) (A.5) 
l<n<N 

by [6,    Theorem 1+50].    If   n   satisfies {kX) but not (A.5)> then 

In In N + c -Jin In N   < u)(n)   <  In In N + ( c + "^ "^ "^ N ] Vln In N   , 
^ Vln In N   y 

and this is   o(N)   by the theorem of Erdös and Kac 

We have proved that the number of   n   in the range    1 < n < N 

such that   n(n) < In In N+ c vln In N     is asymptotically given by 

the normal distribution (A.l).    But this estimate is Insensitive to 

0(1)    terms, so the "average order"   [6,   Theorem 1+50] is also relevant: 

11m    i        I      (u)(n) - In In N) 
N-» l<n<N 

=   7 +       S     ( iogf ^^ " ^ ) + ^ ) w  •26lU9 72128 1+761+5 ;   (A.6) 
p prime v       ^        VJ      VJ 
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lim    i        Z      (n(n) - In In N) 
N-w   N    l<n<N 

=   7+      S       (logCl - l") + ^■"j  « 1.05^65 58818 97^58 .        (A.?) 
p prime ^       ^       p '      p"   ' 

(These sums may be evaluated to high precision using the formula 

Z       i   =     S    uiHl^cM (A.8) 
p prime   p n>l      u 

for    s > 1 .) 

Let    S = [10    -m I 1 < m < 100}   be the numbers used to construct 

Figure 2 above.    For   neS   we have   In In n « 5.1566 , and the 

following table shows the actual distribution of   «»(n)    and   n(n)   . 

k= 12       5       h       5      6789IO   11   12 

UlneS 1 u)(n)  = k}||       5     1^     56      29      1^      5     1     0      0     0     0      0 

l|[neS 1 n(n) = k}ll       5     10     27     25     15     11551101 

The respective mean values are   5«50    and   U.27 .   The number of 

square-free   n    (those with   u»(n) = Q(n)  ) was   6l , compared to the 

expected value   600/jt   = 60.795  . 
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Appendix B.      An asymptotic foiroula for    p,  . 

In this appendix we shall sketch the derivation of an asymptotic 

expression for    p,(ci£)    as   a -• » .    Our starting point is the formula 

a-1   p (t)dt 

.a-1             v            -i        a-1   pM t1"*1 dt 

?.     ill      ^t)tdt + 4ll        -^STt  '      ^ 0<k<r   oP2 0 a 0 

we replace the final term by its asymptotic value 

a-1   (c-tr+cnt
r"  +... + c    ,t)dt       f   ,        a-1 ,.    . A       p             0         1                      r-1 '          .(     1      (« dt   |                /T, -v 

^r J0     s^ +0l^; ^1    '   (B-2) 

-r-1 
so that the remainder is 0(a   log a) . The main integral in (B.2) 

is a linear combination of 

C   ^ ■ f12^ - ^-V- 2(J)(-X)^ ,  (B.5) 

a-1 
and it remains to evaluate   J       p_(t) t   dt   to   0(or'   log a)   . 

Since    pp = 8, + p, , we have 

I   P2(t) tkdt   = jVdtfj* ^- du+ p(t) 

fa a       k       A . 
= f Jo  p(u-l)du ^    ^ dt j + ak + o(a-r-:L) 
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a 
J   p(u-l)(u-ir ln(afl-u)du 

+   S  (j)jj   p^Cu-D^^Cofi-u)^!)^^^"1) 

= 1_<f<k(
aJ-('))v^+^-Hk^K 

-      £      a-j V /J + 0(crr-1)   , 
l<.i<r ^ 

(B.^) 

as 

where   a.   = J    p(t) t  dt = Ac   .    Putting all this together and summing 

leads to the formula 

2b        2h1 2b   1 1 
S (a)   =   (2 In a+l)p (a) - —2 - -J: - ... - —^ + Oia*^)    , (B.5) 

ot       a a 

where 

In particular,    (b^b^t^, ...>   =A^0,2,-j2>-^,^-, 130    ' 

^^ >   •••/ •   Since    P5   = | (p^a) + p2(a) + S2(a)) , we have 

(B.6) 

the final formula 

b0 Vl . ^ -r-lx p (a)   =  (lna+l)p (a) - -^ - ... - ^-± + o(a " ")    . (B.7) 
J a or 

U9 



References 

[1]     N. G. de Bmijn, "On the number of positive integers   < x   and 

free of prime factors    > y ," Proc. Kon. Nederl. Akad. Wetensch. 

A^jj; (= Indag. Math. 13)    (1951);  50-60. 

[2]     Charles de la Vallee Poussin,  "Sur la fonction   £(B)    de Riemann 

et le nombre des nombres premiers inferieurs a une limit e donn^e," 

Mem. Couronnes Acad. Roy. Belgique 5^ (I899),  1-7^« 

[5]      Karl Diclanan,  "On the frequency of numbers containing prime factors 

of a certain relative magnitude," Arkiv for Matematik, Astronomi 

och Fysik 22A,  10 (1950),  l-lk. 

[k]      P. Erdös and M. Kac, "The Gaussian law of errors in the theory of 

additive number theoretic functions," Amer. J. Math. 26 (I9I+0), 

758-7^2. 

[5]      S.W.  Golorab,  L. R. Welch,  and R. M. Goldstein,  "Cycles from 

nonlinear shift registers," Prog. Report No. 20-589, Jet Propulsion 

Laboratory, California Institute of Technology, Pasadena, Calif., 

1959. 

[6]      G. H. Hardy and E. M. Wright, An Introduction to the Theory of 

Numbers, hth ed.   Oxford: Clarendon Press,  i960. 

[7]     Donald E. Kmith, Sorting and Searching, The Art of Computer Programming, 

vol. 5, Addison-Wesley, Reading, Mass., 1973» 

[8]     William C Mitchell, "An evaluation of Golomb's constant," Math. 

Computation 22 (I968),  hH-kl^. 

[9]      K. K. Norton,  "Numbers with small prime factors, and the least k-th 

power non-residue," Memoirs Amer. Math. Soc. 106 (I97I), 9-27. 

[10]    J. M. Pollard,  "A Monte-Carlo method for factorization," BIT 15 

(1975),  331-53U. 

[11]    V. Ramaswami,  "The number of positive integers   <x   and free of 

prime divisors    > xc , and a problem of S. S. Pillai," Duke Math» J. 

16 (19^9); 99-109. 

[12]    L. Shepp and S. P. Lloyd,  "Ordered cycle lengths in a random 

permutation," Trans. Amer. Math. Soc. 121 (I966), 3^-557. 

50 



[15]    J. vein de Lime and E. Wattel, "On the numerical solution of a 

differential-difference equation arising in analytic number theory," 

Math. Computation 23 (I969),  hlf-k21. 

[lh]   M. L. Wunderlich and J. L. Selfridge,   "A design for a number theory 

package with an optimized trial division routine," Cam. ACM 17 

(May 197^),  272-276. 

51 


