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In this work the properties of such structures are exasi ned
theoretically using a modal matching type of ccm-puter solution.
Extensive experimental confination of the calculated results are
ircliided. Various types of resonant windows Rr- n~lyod, including
1) those f'. ;-utcd fr- n finitely thick netal screens, 2) those with
various slot shapes, i ncludi n re(.,df1Ul ar arid var GUt transmi 10ssion
line loaded slots and 3) biplanar resonant windows. The above
solutions include the effects of planar dielectric layers on one or
both sides of the slot array. in conjunction with the investigation .4
of thicK arrays, the problem of a thick, rectangtlar resonant
(pressre) windo,; in a rectannular wavequide is solved, with extensive
experimental verification of the results.

As a result of these numerical and experimental investigations

various parameters of resonant window desiqn are now more fully
understood. Same of these parameters are: l) Effects of panel
thickness on resonance frequency, bandwidth, and incidence angle
properties; 2) reduction of bandwidth chanqes with incidence angle I
through dielectric matching layers; 3) the effect of dielectric
layers o lt:t Wuud's ano:lal' null frequencies, i.e., "blind angles"
in resonant surfaces; 4) the interactions between dielectric loadingi
and panel thickness; 5) cross polarization losses in certain loaded
slot elements; 6) higher order resonances, and 7) dielectric filling

of biplanar slot arrays. In conjunction with these parameter investi- 4-!I
gations several improved resonant window designs have been developed, with
special emphasis on tiick panel designs.

i

A

UNCLASSIFIED' --
7:, ASS, Fl- " A_ P. I IC TI , ,1 +5 PA E f"ho,, t)@1& E,19,ed:

ii

Fi + LpI



d-----i' -

FOREWORD

This report, Ohio State University Research Foundation Report
No. 36?2-4, was prepared by the ElectroScience Laboratory, Department
of Electrical Engineering, The Ohio State University at Columbus, Ohio.
Research was conducted under Contract F33615-73-C-1173 of the Air
Force Avionics Laboratory, Air Force 1Wright Aeroanutical Laboratories
at Wright-Patterson Air Force Base, Ohio. Mr. L. E. Carter, AFAL/WRP 
was the AFAL Program Monitor for this research conducted under Project
7633. This report was submitted to the sponsor on 15 May 1975.

The author's advisor, Professor L. Peters, Jr., deserves special
thanks for his guidance during the initial phases of this research,
for his help in the development and orqanization of the material, and
for his critical review during the preparation of this report.

This roport could nnt have reached its present form without the I
helpful discussions, comments and suggestions of Professor B. A. Munk,
which have been incorporated throughout. His insight into the various *:
phenomena encountered was a great aid in the course of the work, and
most especially so during his final review of the manuscript.

Finally, two other persons should be mentioned as having been
influential on this work: Professor E. M. Kennaugh, for his thought-
provoking questions during the very early stages, and Professor Jack H.

1. Richmond for his critical review of the final manuscript.

The material contained in this report is also used as a disser-
tation submitted to the Department of Electrical Engineering, The Ohio
State University as partial fulfillment for the degree Doctor of
Philosophy.

3."

Iz

I ., ,



(:1:

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION .......................................... 1

A. Resonant Reflectors and Resonant Windows 2 .
B. Woods Anomaly and Grating Lobes 4
C. Bandwidth vs. Incidence Angle 6
D. Bandwidth vs. Array Spacing 6
E. Resonant Frequtncy vs. Incidence Angle 9
F. Comparison of the Various Types of

Tuned Elements 9
G. Biplanar Resonant Surfaces 22
H. Discussion of Various Tuned Radome Configurations 22
I. Methods of Analysis 29

II RECTAN.GULAR WAVEGUIE WINDOWS ........................ 31

A. Modal Analysis Solution 31 i
B. Finite Conductivity 48
C. The Effect of Plate Thickness on

Babinet's Principle 63
D. Conclusions 64

III MODAL EXPANSIONS................................... 67 ' :

A. Floquet Modes 67 1
B. Internal Slot Modes 88

IV THICKNESS AND DIELECTRIC EFFECTS ..................... 97 A1II

A. Thick Panel Solution 98
B. Convergence Properties of the Modal Solution 106 ,
C. Thin Arrays Covered with Dielectric S'abs 113
D. Dielectric Layers and Wood's Anomaly 123 I
E. The Brick Array and Wood's Anomaly 131

F. Thick Slots Filled With Dielectric 135G. Thickness - Dielectric Interactions 141

THIN LOADED SLOT ARRAYS ............................... 146

A. Derivation of Moment Method Solution 146
B. Single Loaded Slots 153

C. 4-legged Symmetric Slots 161
0. 3-legged Symmetric Slots 173

v



Chap ter Page

VI !3IPLANAR SLOT ARRAYS................................ 185

A. Derivation of Solution 185
R. Biplanar Arrays Without Dielectric Layers 195
C. Dielectric Covered Binlanar Arrays 200

VII SUr1r'ARY............................................ 217

Appendix

A WAVEGLIDE MEASUREMENT OF EQUIVALENT fMPEDANCE ......... 218

B EVALUATION OF MODAL INTEGRATIONS ..................... 220

BIBLIOGRAPHY................................................. 238

vii
AMI



LIST OF ILLUSTRATIONS

F i U Lu te Page

1-I ,hvsical omi-tr, and plane wave reflection
coefficient curve f or a resonant dipole array. ...... 2

1-2 Pvsial qeorwtt , and plane wave transmission
coefficient curie for a resonant slot array ......... .. 3

1-3 Wood's anorlaly in a resonant slot array:
a) Geomnetry of slot array.
bI Plane wave incident at angle e.
c/ Resonance curve showing Wood's anomaly. ........... 5

1-4 Measured transmission coefficient curves for an
array of transmission line loaded slots for
various F-plane incidence angles. The slots
are 4-legged symmetric slots (Fig. l-7e) spaced
1 ol apart .......................................... 7

1-5 rleasured transmissirn coefficient curves for dn
array of transmissi on line loaded slots for
various H-plane incidence anoles. The slots
are 4-legged symmetric slots (Fig. l-7e) spaced
I cm apart .......................................... 8

1-6 Calculated transmission for an array of rectangular
slots illustrating the shift of the resonance fre-
quency with incidence angle (H-plane incidence) .... 1. 0

1-7 Various types of tuned elements used in resonant
surfaces:
a) Flat dipole (rectangular slot).
b) Circular disk (circular slot, circular hole).
c) Loop (annular slot).
d) Singly loaded dipole (slot).
e) 4-legoed syi;ietrically loaded dipole (slot).
f) 3-1egged loaded dipole (slot) ................... 11

1-8 Transmission coefficient curves for an array of
annular slots for various incidence angles in
the i-plane ......................................... 12

1-9 Transmission coefficient curves for an array of
annular slots For various incidence angles in
the [-plane .... .................................... 13

vii



Fiaure Page

I-10 Computed transmission coefficients for an
array of single-loaded slots for variousE-plane incidence angles ............ . ........... 14

1-11 t,'easured transmission curves showinfg the ,
transuission loss at resonance for an array
of loaded slots with H-plane incidence angles ........ 15

1-12 Arrangement of single-loaded slots which

eliminates cross polarized radiation torH-plane incidence angles ............................. 16

1-13 Measured transmission for an array of symmetric
4-ldged slots sitts for various angles of
inciAence in the H-plane (b, c, and d are
defined in Fig. 3-11) ................................ 17

1-14 Effect of element design on bandwidth:
a) A loaded element with a relatively

wide badwid.h
b) The bandwidth is decreased by decreasing

the width of the conductor.
c) The bandwidth is further decreased by

changing the shape of the element as shown ........ 18

1-15 Measured H-plane transmission curves fcr an
interlaced array of 4-legged loaded slots ............ 19

1-16 Measured -plane transmission curves for an
array of 3-leged symmetric loaded slots ............. 20

1-17 Measured E-Oane transmission curves for an
array of 3-legged symmetric loaded slots ............. 21

1-18 'easured transmission curves for a biplanar
slot array E-plane incidence. The two arrays
are spaced 1.1 cm (0.33x) apart ...................... 23

1-19 Measured transmission curves for a biplanar

.lot array H-plane incidence. The two arrays
are spaced 1.1 cm (0.33x) apart ...................... 24

1-20 Measured reflection curves for a single dipole
array mounted on 1/32" thick dielectric
material (cr= 2 .5 ) fer various incidence angles
in the H-nlane. The inset shows a full sizespction of the array ................................. 25

viii



Figure Page

1-21 Measured reflection curves for two dipole
arrays of the type shown in Fig. 1-20
separated hy 0.27 , where X0=3.2 cm ................ 26

1-22 Some possible configurations for tuned
radomes
a) Thin film resonant window behind

conventional radome.
b) Thick metal radsne.
c) Multi-layer.
d) Dielectric-resonant window sandwich .............. 27

2-1 Geonetry and coordinate system for a thick
rectangular slot in a rectangular waveguide .......... 32

2-2 Equivalent impedances for a thin slot ................ 33

2-3 Equivalent impedances for a thick slot ............... 36

2-4 Calculated and measured values of the
equivalent impedance Zeg for a 0.063"
thick rectangular slot in a ../aveguide
vs. frequency. Also shown are circles
of Zeq corresponding to transmission
losses of 0.1, 0.5, 1.0, and 4.0 dB ................. . 42

2-5 Calculated and measured values of the
transmission coefficient for a 0.063"
thick rectangular slot in a waveguide
vs. frequency ........................................ 43

2-6 Calculated and measured values of the
equivalent impedance Zeq for a 0.125"
thick rectangular slot in a waveguide
vs. frequency ........................................ 44

2-7 Calculated and measured values of the
transmission coefficient for a 0.125"
thick rectangular slot in a waveguide
vs. frequency ........................................ 45

-8 Calculated and measured values of the
equivalent imoedance Zeq for a 0.187"
thick rectangular slot in a waveguide
vs. frequency ........................................ 46

ix



-"

[ iqure P agqe

2-9 Calclated and ,reasured values of trne
transmission coefficient for a 0.i87"
thick rectangul-ar slot in a waveguide
v , . freqtienc ...................................... 47

2-C Calculated and measumed valuis (,f thfe
equivalent impedance Ze9 for a 4.1"

U i k rect,)iqula-.r slot in a va,'~Jd

s. frequency . 1 Calculated valiue. 1 d -

both a lossless slot and a slut %-Jith
finite conductivity are shovn ........................ .

2-11 Calculated and r;easured values of the-
equl valeuIt iipedance Z,, for a 4.1"
thiJ rectaugular 1ri in a wiv.vide I
vs. frequency. Tis is a continuation *1
of Fia. 2--I0 and shows the second -

I nnqi tii id n ) resoraic.:e ..............................

2-12 Calculated values of the Lransr;ussioii
coefficient for lossy alumi num slots of
various thicknesset- vs, frequenc .................... 53

2-13 CalculaLe6 loss at resonance (3.5 Ghz) vs.
conductivity for a 0.5" thick rectanqular
slot in a wavoguide .................................. 57

2-14 Calculated loss at resonance vs. resonance :
frequency for a 0.2Y" thick slot in a
wavequi de ............................................ 58

2-15 Calculated values of tie trarsmission
coefficient vs. frequency for 0.125" °
wide rectangular slots of various
thicknesses in a waveguide ........................... 59 A

2-16 Calculated values of the transmission
coefficient vs. frequency for 0.87"
wide rectangular slots of various
thicknesses in a wavequ ide ..................... ...... 60 do

2-17 Calculated values of trie transmission
coefficient vs. frequency for 0.2" WE
wide rectangular slots of various '1
thicknesses in a wavequide .................... ....... 61



now_~ --M

Ii

f igu re page

2-18 Calculated valnes of the transmissiun
cuefficient vs. frequency for 0.675"
wide rectanqular slots of various
thicknesses ir a ;..ovequide ........................... 62

2-19 'alculated values of the trars,,s_ in
coefficient vs. frequency for very thin
ructag, lar slots in a .;avguide ..................... 63

2-20 Calculated values of the 3 d bandwidtih
vs. slot. thickne-s for a rectanqular
slot in a wavecide ............. .................... 65

2-21 Calculated value-, of the 3 dBf bandidth
in vs. tjicicnos ,  ir, .avelnnths w .  a

rertangular slot in a waveguide ...................... 66

Gemietry and coordinate system for a plane

wave incident on a 1,eriodic slot array ............... 68 I
3-2 Details of array geonietrv showing skewed

coordinate system and periodic cell .................. 69

3-3 Relationship between skeved coordinate
sys tein (SI S2) and orthogonl (x,y)

coordi nate systet .................................... 70

3-4 Grating lobe diagram for the array ol
Fig. 3-2 with dx=&,. T x=sinocosy,
Ty=si n0,sin .n .............. 74Ty5f O5~ .......... °...............°o,......7

3-5 The unit periodic cell ABCD of Fig. 3-2

can be deformed to the shap GHIJ with-
out affecting the orthogonality of the
Floquet modes ...................................... 75I I

3-6 Deformation of original periodic cell ABCD
to the periodic cell GHIJ which includes only
one slot ............................................. 77

3-7 Slotted metal panel covered by dielectric with
a plane wave incident. The different iiodes
which may exist on the panel are illustrated
schematically ........................................ 79

3-, Incident, reflected, and transmitted vaves in
the free space and dielectric reqgions ................ 81

Xi



Figure Page

3-9 Coordinates and dimensions used to express
the single loaded slot modes ........................ 91

3-10 Coordinate system for expressing the
approximate mode set for a narrow
coaxial waveguide ................................... 93

3-11 Coordinates and dimensions for expressing
the approximate mode set for the 4-legged
-ymmetric loaded slot ............................... 95

3-12 Coordinates and dimensions for expressing
the approximate mode set for the 3-legged
loaded slot ........................................ 96

4-1 Coordinates and dimensions for an array of
slots in a thick metal panel covered with
dielectric layers ................................... 97

4-2 A slot mode i excited when the incoming
plane wave hits the panel at z=O will
excite other slot modes j, k, ... , as
well as mode i itself when it is reflected
by the end of th~e slot at z=-j. ...................... 1O00

4-3 Syrmetric and anti-symmetric excitation of
a slot in the array ................................. 101

4-4 Calculated curves (mutual impedance method)

and measured points (from Munk, [3 ]) for the
bistatic reflection coeffiient for an array
of dipoles; t is the thickness of the copper
plates .............................................. 107

4-5 Transmission curves for the slot array which
is the complement of the dipole array of
Ti 9 . 4-5 calculated using the modal analysis
solution ............................................ 10 8

4-6 Convergence data consisting of calculated
transmission curves for an array of slots
in a 0.0175 cm thick panel for near normal
(W E-plane) incidence vs. frequency. The
slot mode index f has riaximuIM values of 1,
3, 5, and 7 for the various curves. The
imber of Floquet modes is kept constant
at 242 ............................................. 109

xli



---

Figure Page

4-7 Convergence data consisting of the trans-
mission coefficient at 5 GHz for the array
shown for various numbers of slot modes
(fmax) vs. the number of Floquet modes;
80' H-plane incidence ................................ Ill

4-8 Convergence data consisting of the trans-
mission coefficient at 5 GHz for the array
shown for various numbers of slot modes
(only the odd modes are excited) vs. the
number of Floquet modes; 800 E-plane
incidence ............................................ 112

4-9 Transmission coefficient vs. frequency for
a slot array covered with varying thicknesses
of dielectric material. Near normal
(e=lO, ;=90") incidence .............................. 114

4-10 Calculated transmission coefficient curves
for the slotted panel of Fig. 4-5
(dx=dyl.78 cmr, a=1.32 cm, b=0.128 cm, I?
a=90) covered on both sides by a dielectric
layer 0.7 cm thick with Erzl. 5 in the
dielectric layer and in the slot ..................... 116

4-11 Calculated transmission coefficient curves
for the slotted panel of Fig. 4-5
(dx=dy-l.78 cm, a=l.32 cm, b=0.128 cm,
c:900')covered on both sides by a dielectric
layer 0.7 cm thick with r=2. 6 in the
dielectric layer and in the slot ..................... 117

4-12 Calculated transmission coefficient curves
for the slotted panel of Fig. 4-5
(dxdy-l.78 cm, a=l.32 cm, b=0.128 cm,
a=90 ° ) covered on both sides by a dielectric
layer 0.7 cm thick with er=4 .0 in the
dielectric layer and in the slot ..................... 119

4-13 Measured transmission curves for the
dielectric coated array of Fig. 4-12 ................. 120

4-14 Calculated transmission coefficient curves
for the slotted panel of Fig. 4-5
(dx=dvl.78 cm, '=I.32 cm, b=0.128 cm,
u=90°D covered on both sides by a dielectric
layer 0.35 cm thick with Er= 4 .0 in the
dielectric layer and in the slot ..................... 121

xiii



t j

L?

Figure Page

4-15 Measured transmission curves for the
dielectric coated array of Fig. 4-14 ................ 122

4-16 Section of a dielectric covered slot
array with a propagating grating lobe ............... 124

4-17 The normalized surface wave null propagation
constant vs. the dielectric thickness as
calculated using 2 different methods; 1) full
modal solution, 2) one Floquet mode. The
dielectric thickness is measured in wave-
lengths (in the dielectric) ......................... 126 [

4-18 Calculated transmission curves for the slot
array shown using only the TElO slot mode ........... 132 P

4-19 Calculated transmission curves for the slot-
array of Fig. 4-18 but with 3 slot modes

(TE10 , TE20, TE30 ) .................................. 134

4-20 Calculated transmission curves for an array
of rectangular slots in a 0.1' thick metal
panel (k=.254 cm). The slots are filled
with dielectric of cr=5.0 (63=5Eo) .................. 136

4-21 Measured transmission curves for a slot array 7

chemically etched to approximate the design
* of Fig. 4-20. The slots were etched in a

0.1" thick aluminum panel and filled with
Emerson and Cunvning Stycast 35DA (Er=5) ............. 138

4-22 Measured transmission curves for a slut array
of the design used in Figs. 4-20 and 4-21 made
using electrical discharge machining on a 0.1"
thick aluminum panel. The slots are again filled
with Emerson and Cumming Stycast 35DA (Fr) ......... 139 I-

4-23 Calculated transmission curves for the array
of Figs. 4-20 and 4-21 coated on both sides

with a 0.6 9) cm thick dielectric layer with

Fr=l.5 (t=0.635 cm, FIz1. 5o). The metal panel
is 0.1" thick (Z=.254 cm) and the slots are IA
filled with dielectric of cr= 5  (F3 =5c,) ............. 140

4-24 Calculated transmission curves for an array
of rectangular slots in metallic panels of
various thicknesses with no dielectric present ...... 142

Xiv

..........



Ii

Figure Page

4-25 Calculated transmission curves for the same
slot arrays of Fig. 4-25 but with the slots
filled with dielectric (L3Z o) ...................... 143

4-26 Calculated transmission curves for the same
slot arrays of Figs. 4-24 and 4-25 but with
a .159 an thick dielectric layer or both
sides of the array in addition to the
dielectric material in the slots ..................... 145

5-1 Front and ednie views of a periodic array of
loaded slots covered by dielectric layers ............ 147

5-2 Computed transi dssion coefficient curves using
the rutual impedance Method (Munk [ 3 ]) for an
array of single loaded slots for various
incidence angles in the E-plane (€=90')

Zi=0.38 cm ....................................... 154

5-3 Computed transmission curves using the modal
riatching solution for the loaded slot array
of Fig. 5-2 for various E-plane incidence
angles ............................................... 155

5-4 ?,easured transmission curves showing the
transmission loss at resonance for an
array of loaded slots with l-plane
( =O) incidence .................................... 156 I

I

5-5 Calculated transmission curves for various
incidence angles e( =O° ) for the single i
loaded slot array of Fig. 5-4 ........................ 158

5-6 Measured transmission of the cross
polarized radiation for the same
loaded slot array of Figs. 5-4 and
5-5 for various incidence angles
in the li-plane ( 0 °) ........................ .......... 159

5-7 Calculated transwinssion of the cross
polarized radiation which corresponds
to the measured curves of Fig. 5-6 ................... 160

5-8 Electric field polarities for the n=l sine
'nd -os ine modes; for the 4-1egged symnmetric
loaded slot .......................................... 16 1

xv



Figure Page

5-9 Electric field polarities for the n=2
sine and cosine modes for the 4-legged
symmetric loaded slot ................................ 162

5-10 Calculated transmission curves for an
array of 4-legged symmetric slots on
a thin dielectric substrate (t 2 =0.072
cm, E2=2.38Eo; tl=O), H-plane incidence ............... 164

5-11 Measured transmission curves corresponding
to tne calculated curves of Fig. 5-10 ................. 165 1

5-12 Calculated transmission curves for an
array of 4-legged symmetric slots on a
thin dielectric substrate (t2=0.072 cm,
E2=2.38Fo; tl=O), E-plane incidence .................. 166

5-13 Measured transmission curves corresponding
to the calculated curves of Fig. 5-12 ................. 167

5-14 Calculated transmission curves for an array
of 4-legged symmetric slots on a thin
dielectric substrate (t2=0.072 cm,
F2 2.38Fco; tl=O), H-plane incidence. The
frequency range includes the second resonance ......... 169

5-15 Mleasured transmission curves corresponding
to the calculated curves of Fig. 5-14 ................. 170

5-16 Calculated transmission curves for an array
of 4-legged symmetric slots on a thin
dielectric substrate (t2=0.072 cm, E2=2.38Eo;
tl:O), E-plane incidence. The frequency
range includes the second resonance .................. 171

5-17 Measured transmission curves corresponding
to the calculated curves of Fig. 5-16 ................. 172

5-18 Calculated transmission curves for the
array of Fig. 5-16 but with the even
ordered cosine modes omitted .......................... 174

5-19 Calculated transmission curves for an
array of 4-legged symmetric slots on
a thin dielectric substrate, H-plane
incidence ............................................. 175

xvi



Figure Page

S-20 'Masured transission curves corresponding
to tV.e calculated curves of Fig. 5-19 ............... 176

i
5-21 Electric field polarities for the n=l sine

and cosine modes for the 3-legged syrrmetric
loaded si t ......................................... 177

5-22 Calculated transmission curves for an array
of 3-1ecced sv-retric slots on a thin
die.ctric substrate (t2-0.08 cm, E2= 2 .50Eo;

, H:lane incidence (,=90) ................... 178

5-23 l.Measured transmission curves corresponding
to the calculated curves of Fig. 5-22 ............... 179

5-24 Calculated transmission curves for an array
of 3-legged symmetric slots on a thin
die'ectric substrate (t2=0.08 cm, E2=2.5.o;
t, =.l, E-clane incidence (..=0)................. 180

5-25 M-easured transmission curves corresponding
to te calculated curves of Fig. 5-24 ............... 181

5-26 Ca,Ilated transmissicn curves for an array
of 3-lejced sy.iretric slots on a thin
dielectric substrate (t2=0.08 cm, c2=2.5co;
tl=,0), H-plane incidence ( =O ) ..................... 182 1

I-27 leasured transmission curves corresponding
to the calculated curves of Fig. 5-26 ............... 183

6-, Gemcretry and coordinates for a biplanar
slot array: a) Typical geometry of one
of t he t.,o tnin slot arrays; b) arrange-
m nrt of the tw'o slot arrays to form a
biplanar slot array ................................ 18

6-2 "Transmission line model of the dielectric 4
layers between the two slotted ranels used

to deter-cine the modal impedance Zr,2 ) at
the z=O- surface of the front pane................ 189

6-3 Calculated transmission curves for a biplanar .
array of 4-leoqed symmetric loaded slots.
The tvo Fmanels are separated G.13>, at
rescrance (ti=.fC79 cm, E-I=2 .56Eo; t2=0;! t3=0.43 c:-, 3-196

t~zO.43 CS' E ................................ 19

xvii A



Lii

Figure

6-4 MIeasured transnission curves corresrFondin;
to the calculated curves cr Fig. 6 ................. . 1'7

6-5 Calculated transrission curves for a
biplanar array of 4-!ecoed s,-etK c loaded
slots. The two Panels are seoarated
0.25\ at resonance (ti0.279 cm, - S2 .56.;
t2=0; t3=).83 cm, E3 o) .............. ............... 1...-."l

6-6 Mleasured curves ccrreszordi nq to tie calcu- -
lated curves of Fiq. C-..............................I9

6-7 Calculated trarsmissio cLurves f-.r a bio..anar
array of 4-legoed s,,rietric loaded slots

(t1=.5 c',1=4Cco;,=' toj=3.7 cm, £~ 'c(tl =b . c," , c: = -i o ^-. ) - "" -I-"-
Tirese curves illustrate t ne bad eerfcr:vanlce
which can result froi a poorly desioned
dielectric covered blilanar arra .....................

6-S Geonetrv of the biDlanar array analvzed ir.
the following series of calculated and J
measured curves:

a) Grid arrance; ient for the 4-leaced s'v etric
slots with dir'ensions b=O.051 cr, c=0.32 c m,
d=0.153 cm. I -

b) Arranoement of the dielectric layers
showinq tiK3 . 8 5 c:11, 'EI=.5 o; t 2 ='?.072 or,
, o ? ; and t 3 0 .556 o, c3

1 .9.............. 203

6-9 Calculated transmission curves fcr a bi()!alar
array of 4-legqed syliretric loaded slots
arranoed as shovwn in Fiq. 6-8. E-plane
incidence .......................................... -'.

6-10 Calculated transmission curves fcr thie s , i -
biplanar array of Fi. 6-9 but wi tn the
relative dielectric constart of the t?
substrate laver set equal to that of he
t 3  center laver. E-plane incidence .................. 25

6-11 'e0sured transmi ssion curves corres-eCndino.
to the calculated curves v' Fin. -9 ................. ,

6-12 Calculated transmission curves for a L~in1iar
array of 4-leoged sv!'mietric loaded slots
arranced as shov.n in Fin. 6-S. 1-pl a,0 .
i nci do nee ............................................

x\i iii



Figure Page

6-13 Measured transmission curves corresponding
to the calculated curves of Fig. 6-12 ................ 209

6-14 Calculated transmission curves showing the
second resonance for a biplanar array of
4-legged symmetric loaded slots arranged
as shown in Fig. 6-8. E-plane incidence ............. 210

6-15 easured transmission curves corresponding
to the calculated curves of Fig. 6-14 ................ 211

6-16 Calculated transmission curves showing the
second resonance for a biplanar array of
4-legged symmetric loaded slots arranged as

shown in Fig. 6-8. H-plane incidence ................ 212

6-17 easured transmission curves correspondir.g 2
to the calculated curves of Fig. 6-16 ................ 213

6-18 Calculated transmission curves for a biplanar
array of 4-legged syrvietric loaded slots with
dx and dy reduced to 1.2 cm to eliminate the
passband null. tl=0.85 cm, El=l.5co;
t2=0, t3=0.7 cm, c3=1.9o . ... .. . . .... . . .. ... . . ... . .. 215 V

6-19 Phase of transmission coefficient for a
biplanar array. The curves marked "square"
are for the biplanar array of Fig. 6-18.
The curves marked "interlaced" are for the
biplanar array of Fig. 6-18 but with the
slots arranged in an interlaced grid, i.e.,
every other row of slots shifted right by
dx/2 ................................................. 216

A-i Waveguide equipment used to measure the

reflection coefficient and equivalent
shunt impedance of a slot ............................ 219

B-1 Single loaded slot divided into linear
regions by points Pi through P6 .. . ... . . ... .. .. . ... ... 22

xi=

xix



LIST OF TABLES

Table Page

I Calculated Losses at Resonance

1.68 x 0.0625 x Z Slot in S-Band W.G ............... 56

B-1 COMMON Inputs for Single Loaded Slot ................ 227

B-2 COMMON Inputs for 4-legged Slots .................... 228

B-3 COMMON Inputs for 3-legged Slots .................... 229

XX



-, - _- - ,.'.---.--- -

J

CHAPTER I
I NTRODUCTI ON r

The existence of a surface that, despite being composed primarily
of metal, can transmit rearly all of the energy incident upon it
suggests some very interesting applications. Among these is the radome
application, where it appears possible to achieve improved operation
over the present dielectric structures from both an electrical and
mechanical point of view. The goal of this dissertation is to extend
the analytic tools used in the study of such surfaces and to examine
several new types of surfaces. The metallic radome developed by
Pelton and described in [1,2] represents the state-of-the-art in
metallic radomes as of 1973. Theoretical analyses, notably, Munk's
mutual impedance analysis [3], had previously been used to guide the
experimental studies, but the intuition that had been developed
through this analysis had suggested some novel designs (such as the
radoe indicated above) that at the time defied mathematical analysis.
One of the goals of this dissertation is to extend the analytic
techniques to "catch up" with the new designs. The need for such
analytic tools lies in the requirement for a general design procedure
for such surfaces, and an understanding of how and why they work.

Previous analytic studies of resonant windows have for the most
part restricted their attention to thin surfaces where Babinet's
principle could be applied. Another goal of this work was the develop-
ment of analytic tools that would be applicable to thicker metallic
resonant surfaces. Such structures composed of slots or holes of one
form or another in a metallic surface also required the use of
dielectric materials in the holes. Treatment of such dielectric filled
slots is also incorporated in this analysis.

As a means of further improving metallic radomes lunk noted that
dielectric layers placed on this resonant surface could lead to im-
proved results [4]. An investigation into this phenomenon from two
different viewpoints was initiated. The one reported in this work
extends the modal analysis technique to obtain a solution. An
alternate solution using a mutual impedance procedure has been pursued
by Munk [5]. The two solutions complement one another in that the
modal solution's strength is an analysis while the mutual impedance
solution is more useful for design.

Primarily, then, this work is concerned with investigating
several distinct new methods for designing better metallic radomes.
However, before becoming involved in the specifics of individual
cases and geometries, we shall devote some pages to a tutorial dis-
cussion of resonant periodic arrays in general.



A. Resonant Reflectors and Resonant Windows

Tnere are two basic types of resonant surfaces; the resonant
reflector and the resonant window. The resonant reflector is an array
of resonant conducting elements which, with proper design, acts like
a ground plane at its resonant frequency, but transmit's varying arn, ints
of power at other frequencies. A typical resonant reflector is shown
in Fig. 1-1, along with a typical reflection coefficient curve for a

CONDUCTING WIRE JR1

fo f

DIELECTRIC SUBSTRATE
FOR MECHANICAL SUPPORT

Figure l-I.--Physical geometry and plane wave reflection coefficient
curve for a resonant dipole array.

plane wave incident on the reflector. The dipoles are arranged in a
periodic lattice. The field reflected b the resonant reflector is

normalized to the field reflected by a flat plate of the same size.
Thus the reflection coefficient curve actually represents the

difference in the reflected field caused by replacing a ground plane
with a resonant reflector of the same size, with the incident field
unchanged. Although many ap[,lications require curved surfaces,
it has been shown that the results obtained for flat panels are
directly applicable to curved resonant rrays [2].

The resonant window is the complement of the resonant reflector.
It is thus a resonant array of slots cut i n a ground plane. With
proper design, thi resonant slot array will be transparent at its
resonant frequency but will transmit varying aounts of power at

other frequencies. A typical resonant slot array is shown in Fig. 1-2,

2
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METALLIC GROUND PLANE

Figure l-2.--Physical geometry and plane wave transmission

coefficient curve for a resonant slot array.

along with a transmission coefficient curve. As with the resonant
reflector, for a finite size window the transmission curve is ob-
tained through a normalization process. For the resonant window the

transmitted fields are nonalized to the fields transnitted through
an aperture of Le same size as the resonant window, said aperture
being in an infinite ground plane. Thus for a finite resonant slot
array the transmission coefficient of Fig. 1-2 actdally represents
the difference between the fields transmitted through an aperture
in a ground plane and Lhe fields transmitted through the same aperture
covered by the resonant slot array. In this work we are concerned
primarily with resonant windows.

Both types have practical applications. Resonant reflectors
have been used as components of dual frequency antenna feeds [6] and
as lightweight parabolic antennas [7]. The resonant windows have
their main application as radomes. The properties of these two
devices are such that they no doubt are capable of much wider appli-
cati on. .-

As might be expected Trom examiiation of Fig. 1-1, the two

types of resonant surfaces have many common properties. In fact, if
we know the transmission coefficient of a slot array cut in an

3



infinitessimally thin, perfectly conducting ground plane, we can deter-
mine the reflection coefficient for complementary dipole array and vice
versa, by applying Babinet's principle [8]. As applied here, Babinet's
principle asserts that the transmission coefficient for a resonant slot
array will be equal to the reflection coefficient for the complementary
reflecting array provided that the T field of the incident plane wave
is rotated in space by 900. While this applies exactly only for
infinitessimally thin panels, it can be used to obtain good results for
panels on the order of 0.001"> in thickness ), being the free space
wavelength (see Chapter II).

Now that we ha,-. established this basic relationship between slot
and dipole arrays, lit us investigate some of the properties which
they have in common.

B. Woods Anomaly and Grating Lobes

Anyone concerned with designing these resonant surfaces of
* periodically placed dipoles or slots must Le aware of a phenomenon

known as Wood's anomaly. Wood's anomaly occurs when the phase delay
between the currents or voltages on neighboring elements is 2nr. An I
example is shown in Fig. 1-3 for a resonant surtace with a rectangular
lattice. In Fig. 1-3b it is evident that for a phase delay of 2n ,
radians between slot "a" and slot "b" we must have

(1-1) d (l±sine) z -nX; n:1,2,3,--"x '

When the above condition is satisfied the transmission curve for a
resonant window will have a null, i.e,, total reflection will take

place, as shown in Fig. l-3c. Converseley, a resonant reflector will
have a null in the reflection curve, i.e., total transmission will
take place.

When the lattice is not rectangular, or when the incident angle
is not in one of the cardinal planes, Eq. (1-1) does not apply and
the determination of the Wood's anomaly frequency is somewhat more
complicated (see Chapter 11). However, a simple rule which always
holds is that one can avoid Wood's anomaly for all incidence angles
by keeping the spacing between elements less than X/2. The rule must
be modified in the presence of dielectric materials, since they can
lower th. null frequency as discussed in Chapter IV. For this
situation the null is called a surface wave null, since it is caused
by a propagating surface wave.

Another phenomenon connected with Wood's anomaly is the grating
lobe onset. For frequencies below the frequency of the 1st Wood's
anomaly null all of the energy scattered by the resonant surface

4 1
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Figure 1-3.--Wood's anomalv in a resonant slot array:
a) Geometry r f slot array.
b) Plane w,,:ave incident at angle o.
c) Resonance curve showinn Wood's anomaly
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travels either straight through the resonant surface or else is
reFlected in the specular direction. However, at frequencies higher
than the 1st Wood's anomaly null frequency the phasing between the
currents or voltages on the elements is such that energy may propagate
in other directions as well. These directions are called the grating
lobe directions. Note in Fig. 1-3c that the transmission curve
above the Wood's anomaly frequency shows a resonance, but does not
atta-I u value of unity. This is because some of the energy is being
radiated in the grating lobe directions.

C. Bandwidth vs. Incidence Angle

Suppose we have a resonant window whose transmission coefficient
curve is as shown in Fig. 1-2 for a plane wave normally incident.
This transmission curve will have a given bandidth. Now further

suppose that the incidencP angle is changed so as to be at an angle
0 in the E-plane, where E-plone incidence is defined so that the
plane determined by the T vector and the incident plane wave Poynting
vector is perpendicular to the plane containinq the resonant surface.
As the angle 6 is increased the bandwidth of the transmission curve is
increased by approximately a factor of I/cosO, with 0=0 ° corresponding
to normal incidence. For H-plane incidence, where the plane defined
by the H-field vector and the incident plane wave Poynting vector is
perpendicular to the plane containing the resonant surface, the band-
width is decreased by a factor of cosine 8. This behavior is illus-
trated by the curves in Figs. 1-4 and 1-5, which show the variation
of bandwidth with incidence angle for an array of 4-legged loaded
slots.

A resonant reflector has similar behavior. However, the band-
width is increased by a factor of I/cose for H-plane incidence and
decreased by a factor of coso for E-plane incidence.

D. Bandwidth vs. Array Spacing

The relationship between the interelenient spacing (i.e., dx and
dy of Fig. l-3a) and the bandwidth of the resonant surface can be
stated quite simply. The more closely packed the elements are the
greater will be the bandwidth of the resonance curve. This relation-
ship is true for both resonant reflectors and resonant windows;
however, it is limited to cases where no grating lobes can propagateand where the elements are not touching one another.

If the interelement spacing dx or dy is reduced by 1/2 the
bandwidth of the resonant surface wilT approximately double. Thus,
if both dx and dy are reduced by 1/2 the resulting resonant surface
wilTYTve a bandwidth approximately four times as large as the
original.

6]
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E. Resonant Frequency vs. Incidence Angle

In Figs. 1-4 and 1-5 a set of reflection curves vs. incidence
angle are shown for an array of transmission line loaded dipoles.
While the bandwidth of these curves varies greatly with incidence
angle, the resonant frequency changes very little. In general,
however, the resonant frequency of a resonant surface will change
with incidence angle. An example of this is shown in Fig. 1-6 for
an array of unloaded, rectangular slots. Thus the shape of the
individual elements is very important in designing resonant surfaces.
In the following section of this chapter we shall discuss the various
shapes of elements which have been used in resonant surfaces.

F. Comparison of the Various Types
of uned em*ents

Figure 1-7 illustrates some of the different shapes of elements
which have been used in periodic surfaces. Since the behavior of
the different shapes will be the same whether they are used in a
resonant reflector or resonant window (Babinet's Principle), the
discussion of the relative merits of each element applies to both
applications.

Historically, the first slot shapes investigated for use in
resonant surfaces were the flat dipole and the circular hole. The
shift of resonant frequency with incidence angle for resonant surfaces
composed of straight flat dipoles has already been illustrated in
Fig. 1-6, Resonant surfaces composed of circular slots also exhibit I
a similar shift of resonant frequency with incidence angle [9].
While radome models have been made and tcsted using these slot shapes
[10,11], their usefulness is limited to designs where only a narrow I
range of incidence angles will be encountered.

Resonant surfaces composed of loops (Fig. 1-7c) have a resonant
frequency which is much less dependent on incidence angle than was
the case for the flat dipole and circular disk resonant surfaces.
Transmission curves for a resonant window composed of annular slots
are shown in Figs. 1-8 and 1-9 for various incidence angles. The im-
provernent -n angles of in( idence stability is quite dramatic when
compared with the flat dimoles of Fig. 1-6. Perhaps the major short-
coming of resonant surfaces composed of loops is that they have a
fairly wide bandwidth when compared with the loaded elements to be
discussed next. Nevertheless, resonant windows made from annular
slots have been used in the fabrication of radomes [12],

The singly loaded element of Fig. l-7d can be considered a
variation of the flac dipole of Fig. l-7a. This element has beer
analyzed by treetinj it as a diipole terminated with a short-circuited
transmission line load [3], thus the teri., singly loaded dipole. This
picture of the single loaded element enables the designer to predict
quite simply how changes in the shape of a loaded element will affect

9



00

- 0

(00

0

0 hi0-

o (9 C Lu

m a) C

IL

0 -w 0

a. c
0. ~ U = 4J

La AC M i

E 0 t

0L 0j 0 II

10P

10I



T14

(() (b) (c)

(d) (e) (1)

Figure 1-7.--Various types of tuned elements used in resonant surfaces:
a) Flat dipole (rectangular slot).
b) Circular di'sk (circular slot, circular hole).
c) Loop (annular slot).
d) Singly loaded dipole (slot).
e) 4-legged symmetrically loaded dipole (slot).
f) 3-legged loaded dipole (slot).
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5- 5

bandwidth, resonant frequency, and angle of incidence properties [13].
A rule of thumb is that they will resonate when approximately 1/2

wavelength long. Also, of all the elements shown in Fig. 1-7, this
one will result in the most narrow banded resonant surface. An
example of a typical resonance curve for a resonant window, E-plane
scan, is shown in Fig. 1-10. If the array of slots shown in Fig. 1-10

0

S4A / 4W2 //}./ / \
I/I

/Z 0.35 1
,.J 8 / \

-,/ \[ OO

--12
U)

L 11

0 11

FREQUENCY ( GHz2 ) -

Figure l-lO.--Computed transmission coefficients for an array
of single-loaded slots for various E-plane 11
incidence angles.

is illuminated by a plane wave with H-plane incidence, there will be
transmission losses at high incidence angles due to cross polarized

radiation from the transmission line load (see Chapter V). This
loss is illustrated in the curves of Fig. 1-11, which are taken from
Chapter V. If, however, the slots are arranged as shown in Fig. 1-12

the cross polarized radiation from adjacent elements cancels out

and lossless transmission can be obtained for both E- and H-plane
incidence [14].
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Figure 1-12.--Arrangement of single-loaded slots which
eliminates cross polarized radiation for
H-plane incidence angles.

An array of the type shown in Fig. 1-12 is linearly polarized.

If a resonant surface capable of reflecting or transmitting arbi-
trarily polarized waves is desired then one can use elements of the
type shown in Figs. l-7e and l-7f. These elements can be considered
either as combinations of loaded dipoles or as variations of the
circular loop. These elements will resonate when they are approxi-
mately 1 wavelength in circumference. Due to the symmetry of the
4-legged loaded element cross-polarized radiation is neglibible,
and thus it can have nearly lossless transmission for high incidence
angles, as is illustrated in Fig. 1-13.

It is interesting to note that while the 4-legged loaded elcment
is perhaps the most useful and sophisticated of all the element
designs shown in Fig. 1-7, it is also one of the oldest. This
element was conceived by Munk as a circularly polarized version of
the single-loaded dipole of Fig. l-7d, and its properties had been
analyzed both experimentally and mathematically by early 1967 [15].
This predates by several years much of the work referenced previously
which was concerned with arrays of circular holes, loops, and
rectangular slots which do not perform nearly as well as the 4-legged
symmetric slot arrays.

The bandwidth of the loaded elements can be adjusted over fairly
wide limits by the means illustrated in Fig. 1-14. In addition, since
the loaded elements are more compact than the circular loop, the
resonant surface designer has more freedom in choosing the interele-
ment spacing and lattice structure. As stated previously, this will
give the designer even more control of the bandwidth of the resonant
surface.

16
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(a) (b) (c) -t
Figure 1-14.--Effect of element desion on bandwidth:

a) A loaded element with a rel3tively
wide bandwidth.

b) The bandwidth is decreased by decreasing
the width ot the conductor.

c) The bandwidth is further decreased by
changing the shape of the element as
shown.

While Figs. 1-4, 1-5 and 1-13 illustrate the stability of

resonance frequenry wit.h incidence angle which can be obtained with
4-legged loaded elements, it should be noted that this c4ability also

depends on the interelment spacing and the orientation of the
elements. If very close spacing is desired and the slots are inter-
laced the resonancc frequency may shift, as illustrated in Fig. 1-15.
To overcome this problem the 3-legged loaded element was developed.
Because of its hiqh degree of symmetry it can be packed very tightly.
The 3-legged element shape can also be modified to better fit different

array geometries. For example, the symmetrical 3-legged element fits

quite naturally into an equilateral triangle grid. The symmetry of iJ
the element can be modified so that it can fit other array grids.
This is discussed in some detail by Pelton who dealt with 3-legged
unloaded (Y) elements [16]. In Figs. 1-16 and 1-17 transmission

curves for various incidence 3ngles are shown for an array of 3-legged
elements. The resonance frequency is unchanged for incidence angles

to 80', and despite the close packing of elements the bandwidth is

more narrow than for the loop array of Figs. 1-P and 1-9. A resonant

window of the type shown in Fig. 1-17 was used to fabricate a high a

performance metallic radome model with a 3-1 fineness ratio [1,2].

The pover handling capability of these various element shapes has
been investigated. All of them can be used to fabricate radomes or
resonant reflectors capable of withstanding the power generated by

most airborne radars. Actual, measured power transmission and
reflection capabilities for various element types are contained in
References [12,17]. When designing and fabricating resonant surfaces
all corners should be rounded, array spacinq should be small, and the

elements should be embedded in a dielectric material if possible.

18 1*
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G. _Biplanar Resonant Surfaces

Some applications for resonant surfaces may require a relatively
wide reflection/transmission bind coupled with sharp skirt select-
ivity. These properties can be obtained from biplanar resonant
surfaces [18,19,20].

An example of this for a resonant window is shown in Figs. 1-18
and 1-19. These curves are for a biplanar slot array made by taking

-two arrays of the type shown in Figs. 1-4 and 1-5, placing them
parallel to one another, and separating them 1.1 cm (0.33x). Thus,
the improvement obtained in the usable transmission bandwidth and
skirt selectivity by adding a second layer can be seen by comparing
Figs. 1-18, 1-19 and Figs. 1-4. 1-5. When making the comparison note
the change in the vertical scale. The improvement is quite marked.
One problem with bi-planar resonant windows is the dip in the resonance
curve for high H-plane incidence angles. This dip is caused by the
near field coupling between the two panels and becomes deeper as tlc
panels are moved close together [19]. ctually, the optimum spacing j

between the panels disregarding this dip would be '-.25X. However, the
spacing shown, .33X, is the result of a tradeoff between optimum
selectivity and the depth of the dip at resonance for 80' H-plane
incidence. Means for overcoming this and other problems of biplanar
resonant windows are discussed in Chapter VI.

The usable reflection band and skirt selectivity for resonant i
reflectors can also be improved by using a two layer dipole array.
This improvement is shown by comparing Figs. 1-20 and 1-21. By using
the Butterworth filter design even more marked improvement can be
obtained using 3 or more layers [21]. %

H. Discussion of Various Tuned Radome Configurations

We will now assume that the reader knows how to construct a
metallic resonant window that has the required resonance, bandwidth,
and incidence angle properties. The next problem is how to incorpor-
ate the resonant window into the overall radome design.

Several possible physical configurations for tuned radomes are
illustrated in Fig. 1-22. The various configurations have relative
trade-offs in relation to power handling capability, ease of fabri-
cation, skirt selectivity, boresiqht error, multi-frequency capa-
bilities, and lightning protection. In this section we shall
discuss the various configurations and the relative strengths and
weaknesses of each.

The most easily fabricated tuned radome is the thin film radomne
shown in Fig. 1-22a. This radome is protected from the environment I
by a conventional dielectric radome, and thus need only be strong
enough to support its ovn weight. Normal construction would consist _-A
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Figure 1-22.--Some possible configurations for tuned radomes:

a) Thin film resonant window behind

conventional radome.

b) Thick metal radome.

c) Multi-layer.
d) Dielectric-resonant window sandwich.

of a thin film of conducting metal deposited on a thin dielectric
substrate. The metal film is then chemically etched to produce the
slotted resonant window. Successful prototypes of this type of tuned
radome have been constructed [1,2,22]. Since fabrication is simple,
holding the required tolerances is not a problem. This configuration,
with proper design, yields a very low boresight error. Since the
metal is not in contact with the external environment, this config-
uration does not give good lightning protection.
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The next configuration to be considered is the thick metal
radome, shown in Fig. 1-22b. Physically, the metal would be approxi-
mately 0.1" thick. In Chapters II and IV we show that the major effect
of making the resonant window thicker is a narrowing of the bandwidth
of the transmission curve. This is not a serious problem, as the
narrowing bandwidth can be compensated by using a wide band element
shape. The relative advantages of the thick metallic radome are in-
creased strength and good liqhtning protection. However, it can be
quite difficult to mill an array of resonant slots in a thick piece
of metal with the tolerance and uniformity required for lossless
transmission at resonance. One possible solution to this problem is
to use simple shapes, i.e., rectangular or circular slots. The
loading necessary to stabilize the resonance frequency when varying
the incidence angle would be obtained from the dielectric material
used to fill the slot. Theoretical investigations of this technique
appear promising, as shown in Chapter IV.

The performance of the multi-layer radome is directly related
to the performance of bipl3nar slot arrays, which were discussed in 6'

Section G and are lurther investigated in Chapter VI. The basic
advantage of the multi-layer tuned radome over other configuration is
the relatively wide passband coupled with sharp skirt selectivity.
The configuration shown in Fig. 1-22c will also have good lightning
protection. A variation of this design would have dielectric layers
on the inner and outer surfaces as well as in the center. The
advantage of this would be increased power handling capacity and
relatively constant bandwidth with changing incidence angles, as
discussed in Chapter VI.

The dielectric sandwich configuration is shown in Fig. 1-22d.

For lossless transmission the two dielectric layers should have the P
same electrical thickness. This configuration would have a greater
power handling capability than any of the other configurations shown.
As with the multi-layer radcxne, there should be no gaps between the
dielectric layers and the metal layer. As shown, lightning protection
wotld be poor. However, this protection would be improved consider-
abiy by running wires from the metal layer, through the outer
dielectric layer terminating at the outer surface of the radome.
These wires would then drain accumulating static charges from the
outer surface of the radome.

The four configurations presented are not the only ones possible.
They are merely intended as an illustration of the options availaul e
to the tuned radome designer.
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I. Methods of Analysis

There are basically four different methods which have been used
to analyze periodic scattering arrays. They are: 1) variational;
2) point matching; 3) mutual impedance; and 4) modal matching. In
this work we are concerned with the fourth type of solution, Lbt we
will also discuss the other three types briefly.

Early investigations of resonant slot arrays dealt with thin
arrays of square or rectangular slots. In 1961 Kieburtz and
Ishimaru [23] used variational methods to obtain the transmission
coefficients for normal incidence. By 1965 a point matching solution
using an entire domain basis was developed by Ott et.al. [24] to
obtain the reflection coefficient for the complementary dipole array
for normal incidence. For these thin arrays Babinet's principle
applies, so that a solution to the dipole problem is also a solution
for the complementary slot problem, and vice versa.

The solutions mentioned thus far could deal only with arrays of
rectangular slots or dipoles. However, a definite breakthrough in
both the performance and analysis of periodic arrays was made by
Munk in 1967. He developed the transmission line loaded element of
Fig. l-7d [25], and also developed a method for calculating the re-
flection coefficient for an array of loaded dipoles [15]. This method
of analysis involved the summation of mutual impedances to obtain the
input impedance of an element in the array, and is thus known as the
mutual impedance solution. With some approximations, the solution of
Munk could also deal with arrays of 4-legged loaded slots, as shown
in Fig. l-7e. Pelton has since extended the mutual impedance solution
so that it can deal with Y-shaped and cross shaped (+) dipoles as
well [16]. lhe mutual impedance solution can include thickness effects
when dealing with dipole (reflecting) arrays. However, only thin slot
arrays can be analyzed with this method (Babinet).

Still another method for analyzing thin arrays was developed in
1970 by Chen, who used a modal matching technique to obtain the trans-
mission coefficient for a periodic array of rectangular slots [26].
The array could be covered on one side by a dielectric layer. He also
published, in a separate paper [271, a modal matching solution for the
scattering from a periodic array of thin conducting plates. These
modal solutions used the Floquet mode set developed by Galindo and
Amitay for the analysis of phased array antennas [28]. This Floquet
mode set is discussed in Chapter III. The thin plate solution did not
allow for the presence of a dielectric layer. More recently,
Montgomery [29] has also obtained a modal matching solution for the
thin conducting plate problem which does allow a dielectric layer on
one side of the array, while Chen has extended this solution to
circular holes [30]. The performance of these arrays of rectangular
or circular elements was, however, inferior to that of the arrays
of loaded elements already analyzed by 1Hunk.
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The section of this work dealing with thin slot arrays (Chapter
V) contains calculations of transmission coefficients for various
slot array geometries. A modal analysis solution is employed. The
solution is similar to that obtained by Chen. However, the
solution has been extended to include dielectric layers on one or
both sides. Also, in addition to rectangular apertures, arrays of
single loaded, 4-legged loaded, and 3-legqed loaded slots (Fig. 1-7)
can be analyzed with the modal solution derived in Chapter V. A
portion of the work presented in Chapter V has been previously i
published [31].

As mentioned previously in this chapter, biplanar slot and
dipole arrays are of interest for many applications, To our knowl-
edge these arrlys have not been analyzed using variational or point
matching solutions. Using the mutual impedance method, Munk [32]
and more recently Munk ana Luebbers have analyzed biplan-r dipole
arrays [18]. Also, Luebbers and Munk have extended the analysis to
an N-layer array of dipoles [21]. The biplanar slot array has also
been analyzed using mutual impedances [19,20].

In Chapter VI we present the first modal matching solution for
a biplanar slot array. One limitation, which does not apply for the
mutual impedance solution, is that the two slot arrays must be
identical. Advantages of the modal solution of Chapter VI are that
dielectric layers can be present, and that the analysis can handle
all of the various loaded slot shapes. Munk, however, will soon
publish a mutual impedance analysis of the biplanar slot array which
includes dielectric layers [5].

Perhaps the greatest advantage of the modal matching type of
solution is that it can be used to analyze thick slot arrays. Chen
[33] formulated a modal matching solution for the transmission through
a finitely thick conducting plate, and gave some results for rectangu-
lar and circular apertures. In Chapter IV a similar solution to this
problem is presented. However, this solution can also handle the
various loaded slot shapes, can accommodate dielectric layers on both
sides of the thick slot array, and also allows the slots themselves
to be filled with dielectric.

One final method of analyzing periodic slot arrays which hi4s not
yet been mentioned involves modeling the periodic slot array with one
(or more) slots in a waveguide. This waveguide simulation can yield
valuable information about resonant array parameters which do not
strongly depend on incidence angle. Also, the waveguide simulator
may bc' much easier to fabricate than an entire resonant slot array,
especially when the slot array is thick. In Chapter II we will
show how the transmission through a thick rectangular waveguide iris
can be calculated using modal analysis [34,35], and how significant
inforination concerning tne effects of thickness on resonant slot
arrays can be obtained from these calculations.
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CHAPTER II
RECTANGULAR WAVEGUIDE WINDOWF

The major portion of this work is concerned with transmission
through periodic slot arrays. Tnese arrays are analyzed using a
modal matching solution. One of the main advantages of this type of
solution is that it can be formulated to include the finite thickness
of the slotted conducting panel.

Our earlier work on slots with walls of finite thickness was
based on waveguide simulation of thick slot arrays. It is well know n
that the dominant mode field in a rectangular waveguide can be con-
sidered as composed of two plane waves. This fact, coupled with image
theory, implies that a slot in a wavegtiide simulates an infinite array
of slots with two incident plane waves. Thus if we are concerned with
investigating properties of periodic slot arrays which do not strongly
depend on incidence angle, a waveguide simulation can yield the desired
information. The main advantages of the waveguide simulation were that
1) it was easier to fabricate one slot for a waveguide simulation than
an entire array of slots, and 2) the transmission through the slot in
the waveguide could be more accurately measured.

The modal solution presented in this chapter for the thick
waveguide window is almost identical to that given in Chapter IV for -
the thick slot array. The only difference is that in Chapter IV the
fields in the regions outside the slot are expanded in Floquet modes
rather than in rectangular waveguide modes aF is done here. Thus the
solution given here will serve to introduce the reader to the bdsic
method of solution which will be used thruughout this work.

In conjunction with this work a modal analysis solution for the
transmission through a rectangular waveguide window was developed.
Using this solution the effects of thickness and finite conductivity
were investigated and some interesting results were obtained. Since
these results are applicable to periodic slot arrays and will not be
repeated in later chapters, they are included herein for completeness.

A. Modal Analysis Solution

The geonietry and coordinates of a thick, rectangular slot in a
rectangular waveguide are shown in Fig. 2-1. It is assumed that only
the dominant TE10 mode will propagate in the larger waveguide. The I
problem is to calculate the transmission and reflection coefficients
of the slot. If the slot is infinitesimally thin, i.e., £- O, vari-
ational techniques can be used to obtain an expression for the
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Figure 2-1.--Geonetry and coordinate system for a thick
rectangular slot in a rectangular waveguide.

equivalent shunt impedance Zs (see Fig. 2-2), from which R and T can
be calculated [10,36]. For finite values of L, however, this method
appears to be difficult if not impossible to apply, except for the
degenerate cases where the slot width equals the waveguide width
(capacitive obstacle) or the slot height equals the waveguide height
(inductive obstacle). Results for these cases are given by Marcuvitz
[37]. However these results are not applicable to resonant slot arrays
since these deqenerate cases are not resonant structures.

The modal analysis method for calculating the reflection and
transmission coefficients of waveguide obstacles was developed by
Wexler [38]. The method can be applied to almost any type of waveguide
discontinuity providing the waveguide modes of each discontinuity
region are known. For a rectangular slot the modes in the discontin-
uity region (i.e., the slot) are merely the usual modes for a
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Figure 2-2.--Equivalent impedances for a thin slot.

rectangular waveguide. The large waveguide is denoted as region "a"
in Fig. 2-1. The slot will be considcred to be a small waveguide, and
be denoted as region "b". The geometry is now treated as a waveguide
junction. The transverse components of the modes in region a are [39]

(2-1) i:sin(k y) cos. v ") x

(2-2) h-ai -- ai sin" w) cos( v ) y

2

SV wvI cos(P') sin(gT xZ! 2l+i, (q,,_- ? W V
w V
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where x and y are unit vectcrs, p and q the conventional mode numbers,
(integers), and Yai is the wave admittance of the i-th mode given by

2 2 2vx (._1 _(wR_.)
(2-3) Yai "

I 2+ 2 2

w v Q-)~

The factor eJ: t is suppressed, and *j = ,-. Similarly in region bw- t Cy<w.tan v-h < X <Vi
(i .e., - y < T and v- x the transverse components of

the modes are N

( 2 w+t 2

(2-4) e = sin(rr ) cos(sr • v x.

(2-5) h = s in(rT• 2I:wt) cos(sT 2x-v+h

2

-CI
2 2 2

* cos(r r si n(s. - x

where r and s are the mode numbers and Ybj is given by

(T ) 22 2

(2-61)-. y72.. .2_ Js2 2 / 2 2

These modes are neither TE nor TM to the 2 axis, but are characterized
by the absence of a y-directed E field. This mode set is more
efficient for this problem than the usual TEz and TMz modes since we
can match the tangential fields across the aperture with only one
vector component. Modes are numbered consecutively, i.e., i=1,2,3,*.,
and j=l,2,3,..., with each value of i corresponding to a particular
pair of values for p and q. Due to symmetry, not all modes are
excited; p and r are always odd, q and s even (or 0) for this geometry
and excitation.
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Cons ider the mode il,1 i e, th e TEI 0 mode, vith s trength a 1
emanating from a matched source in waveguide a and impinging on wave-
guide b (the slot) at junction 1. Taking E to be the total transverse
electric field at the discontinuity, the field expanded in terms of
modes just below junction 1 is

(2-7) a el~ ~ +/a 1  i
=2

where P is the reflection coefficient for mode i-l , and the dl are
the coefficients of the backscattered modes. The total transverse
magnetic field R is expressed by =

(2-8) T (1-p) a I Fal - i ai*T.

1=2

ThE fields in waveguide b just above junction 1 are fu be exprcsscod
in terms of modes in b. However, one must account for the reflection
of these modes from junction 2, since each transmitted mode j reaching
junction 2 will scatter power into other modes k, some of -,hich return
to junction 1. It is therefore necessary to account for these returned
waves as well as the positively directed ones when summing fields. In
order to do this a scattering cfficin . Sfro is, defind as equal to
the mode coefficient bk of the k-th backscatered mode present just
above junctic n 1 due to mode j scattering rom J,.iction 2. Clearly,
to find the fields due to one wave incident on the ',, t the reflected
fields fori Junction 2 must be fount; for earh j mode. Those tedious
computations can be avoided for this problem O nce the obstacle is
symmetric about the X-Y plane. By usin symmetric and antisyeretric
ex-itations we can find the T-equivalent circuit parameters (see Fig.
2-3) without evaluating a complete s t of scattering coefficients.
Symmetric excitation of the slot is obtained by having tobo incident
modes in the waveguide, one traveling in thr +Z direction and the other
in the -Z direction, such that the F fields ar in phase in the X-Y
plane; antisymmetric excitation is obtained if jilese modes are 180'
out of phase in the X-Y plane. For sypmetrm excitation an open
circuit appears at the X-Y plane; ansvnsetrical excitation produces
a short circuit. Under these condition- Sik=O for jsk, and

(2-9) S . ± e co

where is the propagation constant for mode j in guide b. For a
rectangular slot with modes as defined previously (Eqs. 2-4,2-5,2-6),
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(c) T CIRCUIT COMBINED WITH ZWG TO
FORM Zeq

Figure 2-3.--Equivalent impedances for a thick slot.

2 2 2

(2-10) r = r + - (2--)

The plus and minus signs in Eq. (2-9) correspond to symmetrical and
antisynmetrical excitation respectively. With antisymmetrical
excitation the computed input impedance of the slot is equal to the
upper arm impedance of the equivalent T circuit so that once p is
calculated for antisymmetric excitation (Ca) we can obtain Zin from
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Zm  1 +P a(2-11) - a

where Pa is the dominant mode reflection coefficient (see Eq. (2-7))
with antisymmetric excitation and Zwg is -he waveguide impedance.
Once the p is obtained for symmetric excitation (ps) the common branch
impedance Z12 can be found from the above equation and the fact that
for symmetrical excitation we have

Z + 2Z12  l+Ps
(2-12) m

wg s A

with p5 the reflection coefficient for symmetric excitation.

With either symmetric or antisynmmetric excitation the fields in
region b just above junction 1 are given by

0'I
(2-13) r = [ bj ebi (0 + Sjj)

(2-14) = T bj Ebj (I )jl '%-( Sjj )i

where bj is the coefficient of the j-th mode.

To solve for the unknown coefficient p the boundary conditions
at the discontinuity must be satisfied; continuity of transverse
electric an. magnetic fields across the aperture, and zero tangential
E at the surface of the conducting panel which contains the slot.

In waveguidc region a it can be easily shown that

(2-15) ai x -am z ds = 0
'a

where m is a mode number in waveguide a, i#m, and fa ds denotes an
integration over the cross-section of waveguide a. Folloing Wexler's
procedure, we enforce continuity of transverse electric field across
the aperture bv equating Eq. (2-7) with Eq. (2-13), take the cross
product with ram and integrate, keeping in mind the orthoqonality
relation of Eq. (2-15). The results are
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(2-16) (1+ )a1  z X 1 * ds=

I )a al

Sb. e x1 z ds (1 + S..

j'l ~J eb alJ

for m=l and

(2-17) a ea x a z ds =
M aam

b x • zds (I+S

j =l )b bj am

when ml, where J h ds denotes an integration over the cros-section
of waveguide b. This in tegration also enforces the boundary condition
of zero tangential Er at the surface of the panel.

To provide continuity of the transverse magnetic field through
the aperture we equate Eq. (2-8) and Eq. (2-14), take a cross product
with Tbn, and integrate. By using the orthogonality relationj

(2-18) a . xff x z ds =

the result is

(2-19) -P)a e x l z ds a aI e xS jFj

n a--al bn ai 

p ove y t e x h fz

b(-Snn .1b bn x bnzd

If we now substitute Eq. (2-17) into Eq. (2-19) and change index m to
i the a n coefficient,; are eliminated, and we obtain the equation
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N b. M ebj x hai.Z ds (i+Sjj)
-(2-20) p x Fa z ds + b 3.

b j= 1  i=2 z ds

(I e a x haiz ds
a

b bn x ai-Z ds alb bn x hnZ ds =

. ebn x l' -z ds :
b bb

Since the computer can solve only a limited number of equations the
infinite series were truncated at M and N, where M and N are the
number of modes used to approximate the fields in waveguide regions a
and b respectively. Equation (2-20) is really N linear equations
corresponding to n=l,2,3,.-.,N. There are N+l unknowns, namely

and the N modal coefficients in waveguide b 1 - 1 but
all , aI

by dividing Eq. (2-16) by al and rearranging we have

N b. r
(2-21) p al x -z ds - Y - (l+Sjj) x z ds

a j~l 1 b al

e  x Zds
Jaal al

a%

which in combination with Eq. (2-20) forms a system of N+l linear
equations with N+l unknowns.

The integrations are fairly straightforward for this problem,
and the results will be given here:

(2-22) Ja &ai x . ds

: sin Cos 2L-) dx dyaJo o (P)

.25 wv Yai if q O

.50 wv y ai if q=O
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(2-23) eb eb x Fbj-z ds__

w+t V+h

s sn 2(r~r 2y-wt:)0 2 2x-v+h)dxdy
= bj I t )cos' 2hl

w-t )v-h
2 2

= 1.25 th Ybj if S$0
.50 th bj if S=0

(2-24) zb b aizds

W+t v+h

ya 7~ ~~ sin (rir .?x2 .I) sin wPY

Cos (snr 2x-v+h) cos PgTx) dx dy

2cs-r s in ~j(r -Pt

-cos[' (r4-p)l i -(

si~ n :-(r+]

[.n_____ si [-]

COS['_(s-q)]

-sin s 2
Vv
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The calculations presented in this chapter were made by solving
the system of equations (i.e., Eq. (2-20) and Eq. (2-21)) for p using
both symmetric and antisymmetric excitation and the appropriate
equation (i.e., Eq. (2-11) or Eq. (2-12)) to determine the equivalent-T
circuit parameters. The reflection coefficient can be calculated by
reducing the equivalent-T circuit to Zeq, with complex T (transmission
coefficient) given by transmission line techniques as

(2-25) T - Z12 Zwg (l+R)
2 Zm Z12 + Z12 Zwg + (L m 2 + z zwg

The number of modes used to approximate the fields did not appear to
be critical. Values for the equivalent circuit parameters agreed
to within a few per cent when the number of modes in waveguide b were
varied from 6 to 9. A rule of thumb to follow when choosing the
number of modes is that the ratio of the number of modes in waveguide -
a to the number of modes in waveguide b should be the same as the
ratio of the area of waveguide a to the area of waveguide b [40).

The calculations were made using an IBM 360/75 (and later an

IBM 370/165) computer. The simultaneous equations were solved using
IBM software modified to handle complex arithmetic.

Using the waveguide measurement system described in Appendix A
the value of the equivalent impedance was measured for 4 different
slots as a function of frequency. All the measurements were made with
S-band waveguide with dimensions v=1.34". The calculated values of

Zeq were made with the maxinum values of the mode numbers p, q, r,
and s being 19, 22, 11, and 0 respectively. This corresponds to 120

and 6 modes in the slot being

used to approximate the fields, since p and r are always odd while q

and s are always even.

Figures 2-4 through 2-9 are plots of calculated and measured
values of Zeq and ITI for slots of dimensions t=1.68 inches, h .0625
inches and thicknesses .0625, .125, and .1875 inches. At resonance,
these thicknesses correspond to .019X, .037x, and .056X respectively.
Circular loci of Zeq corresponding to transmission losses of .1, .5,

1.0, and 4.0 dB are marked on Fig. 2-4 to illustrate how accurate the
Smith Chart plots of Zeq are for determining values of T near
resonance. These figures show that the modal analysis method yields
values of Ze which show good agreement with values obtained
experimental y.

41



05 ca

C
S- roj

o _

ODa C

a) C

CD )
60

1- LFL
V I cr4 2



1

Sm

oI

0
o 0 MEASURED

* * CALCULATED

-2

44

--6 i

ITI~dB) 0.063 THICK . Tl'rl(dB)

-8 1I.063 1.34

10 k 2.84--

-10

2.8 3.0 3.2 3.4 3.6 3.8 4.0

FREQUENCY (GHz)

Figure 2-5.--Calculated and measured values of the transmission
coefficient for a 0.063" thick rectangular slot in

a waveguide vs. frequency.
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B Finite Conductivity

For thin slots (i.e., i < .1875" at S-band) the agreement
between measured and calculated values of the equivalent impedance
of the slot was excellent. However, the thickest measured slot

> X) did not show such good agreement between measurements and
calculations using the modal analysis method as described previously.
The calculations predicted perfect transmission at resonance, whereas
the measurements showed an appreciable transmission loss. Using a
simple perturbational method, Harrington [41] gives the attenuation
constant due to imperfectingly conducting guide walls as

(2-26) a = R [I + 2h (f /f) 2

hncl (fc/f)
2

where R = surface resistance, n = fc = the cutoff frequencythe waveguide, and t and h are shown in Fig. 2- . The waveguide of

region a is operated well above cutoff, so that very little attenu-
ation occurs. However, for a narrow (i.e., h << X) slot at resonance,
t t X/2. ) that resonance occurs at approximately the cutoff frequency
of waveg;.,de b (i.e., the slot), and f f c. Note that for f = fc,
Eq. (2-26) predicts a--. Obviously this simple perturbational approach
to finite conductivity of the waveguide is not valid near cutoff.
However, it serves to indicate that the finite conductivity of the
clot will have a definite effect on the transmission properties of a
thick slot.

In oider to account for the effects of finite conductivity of
the slot walls ,ear cutoff one must consider the mode coupling due to
the surface currents. Collin [42] gives equations which contain the
propagation constant y as a function of the TE and TM mode coupling
due to finite conductivity. For TEro modes the equations can be
solved for y. Substituting the correct values for the mode numbers

we obtain

m

r.2  2 2
~r'

2 2 . ......

(2-
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Solving for yj2

(2-28) Y2 -2Z m  [r 2 2 2 + 4 2
t hA

where X = free space wavelength and Zm is the wave impedance of the
metal panel containing the slot and is given by

U11(2-29) Z ( ) (1+)

where o is the conductivity of the metal. Note that for infinite
conductivity Eq. (2-28) reduces to yj =r2 as expected. Using
Eq. (2-28) to obtain y , the scattering coifficient becomes

.-y

(2-30) S. e= + e

The modes for waveguide b as given in Eqs. (2-4)-(2-6) are no longer
correct, since they were derived for perfectly conducting walls. One
can approximate the modes in the lossy waveguide by assuming that the
shape of the waveguide modes, i.e., their sine-cosine dependence,
remains unchanged but the wave admittance or ratio of Hy to Ex is
changed. Using this approximation we have

,? x 2-2 2

(2-31) Ybj =  _P 2i P ' . ) { _) ]/yj

The calculations of reflection and transmission coefficients
for lossy slots were made using the previously described modal
analysis method except that Eqs. (2-30) and (2-31) were substituted
for Eqs. (2-9) and (2-6) respectively. In order to evaluate the
modal analysis method as modified to include losses a 4.1 inch long
slot with t=1.687 inch, h=.0625 inch was machined from brass and
measured. Some of the measured and calculated values of Zeq for this
slot are plotted in Fig. 2-10. The improvement gained by modifying

the modal analysis method to account for the finite conductivity
losses are shown by plotting calculated values for both the lossless
and lossy cases. For these calculations the D.C. conductivity of
brass (o = 1.43 x 107 mho/meter) was used. Although the agreement
between the measured and calculated values of Zeq is not as good as
for the thinner slots, it is still quite good -A

49



U0

(U 0-

- 0

~-) 0

L0

@0 ' i

E S

'a:: V
r_ n

-JC ON



As a further check on the finite conductivity calculations the
transmission loss of the 4.1 inch long slot was measured at resonance
and found to be 2.94 dB. Using the above value of conductivity the
calculated loss was 1.49 dB. One possible source for this error is
the surface roughness inside the slot caused by the machining process
used in its manufacture. Marcuvitz [43] gives a value of effective
conductivity for a machined brass surface as l.J7 x 107 mho/meter.
Using this value the transmission loss at resonance was calculated as
1.67 d6. (This value of a provided very little change in the positions
of the calculated points in Figs. 2-11 and 2-12.) This slic'ht im-
provement indicates that the surface roughness is not the major source
of error.

A Another possible source of heat loss is the slot end walls (the I
hatched area in Fig. 2-1). We believe that this loss could be calcu-
lated using perturbation techniques, since the fields at the wall
surface can be calculated with modal analysis. However, we have not
attempted these calculations.

The 4.1" long slot also illustrates another phenomenon of thick
arrays, namely a second resonance which is a phenomenon of the
thickness . rather than transverse (i.e., t and h) dimensions. Figure
2-11 shows the Smith Chart plot of ZeQ for the second, or longitudinal
resonance. The heat losses are somewhat lower than for the first
resonance since the slot is not so near cutoff. The second resonance
is also shown, perhaps more clearly, in Fig. 2-12.

Now that we can calculate the attenuation at resonance for a
slot composed of some particular metal with a given conductivity,
the natural question arrises: How does this loss depend on the
conductivity and frequency? To answer the first question let us
assume that a wave is entering one end of a slot with attenuation il
nepers/meter and consequently the amplitude at the output is given by

(2-32) E E e

where

k is the thickness of the slot and
Eo = amplitude at the beginning of slot.

IA
If the conductivity is now changed from al to 02, we obtain a new
attenuation a2, i.e.,

2£

(2-33) E2 = e
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where we have assumed the field at beginning of the slot is unchanged,
which is a fairly good approximation. We further know from the per-
turbational method that

( 2 -3 4 ) a I  : C 2 0 1 i

is a good approximation, with C a constant for constant frequency.

Application of Eqs. (2-34) above readily yields

a 2  C 2 2

a 1 -

a 2

or

(2-35) a2i c lLF

Most of the calculations and measurements of loss in the present

Chapter have been performed in the S-band frequency range for practical
reasons. However, periodic arrays of slots find important appli-
cations at higher as well as lower frequencies and it is therefore
pertinent to establish a law which yields the transmission loss when
a slot array is scaled to operate at a different frequency. Let us
again assume that the attenuation through the slots at frequency fl
is given by

(2-32) E : E e

where

2, = thickness of slot (plate thickness)

and from Eqs. (2-26) and (2-29)
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If we further assume that all dimensions of the slot array
except the thickness Z are scaled with a certain factor N defined

by

(2-37) N - i _fl

we know that all frequency ratios are unchanged such that thefc

new attenuation constant a2 is by application of Eq. (2-36) given by

(2-38) a2  2 + -

2 T th | (fc) N/n l-f /  _

or

N3/2

In words, Eq. (2-39) says that if a slot array at frequency fl is
scaled to a new frequency f2 such that all dimensions except thethicnes ar divdedby --f2 :
thickness are divided by N = TTthe new loss in dB is equal to the

old loss multiplied by N3/2. If, however, the thickness k is also
reduced with the factor N, we see from Eq. (2-39) that the loss is
now only proportional to N1/2 .

We will now present some calculated data concerning transmi3sion
prpcrt4c3 of rectagul . slots of various sizes and thicknesses with
finite conductivity. Figure 2-12 shows the transmission coefficients
for smooth, aluminum slots of varying thicknesses and dimensions of
t=1.68", h-.0625'. It is evident that the bandwidth decreases as the
slot becomes thicker. Also evident is the longitudinal resonance for
the 4" thick slot which was discussed earlier. For the thin slots
the losses are too small to be seen in Fig. 2-12, so they are tabu-
lated in Table 1 for both aluminum and brass. Note that the loss at
resonance is approximately proportional to the thickness Z of the
slot, which agrees with Eq. (2-35) and Eq. (2-39).
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TABLE 1

CALCULATED LOSSES AT RESONANCE
1.68 x 0.0625 x Z SLOT IN S-BAND W.G.

k inches 1 TI dB

.0625 -.017

Aluminum .125 -.041

LOSSES .1875 -.0651

.5 -.128

a 3.54 x 10 1 -.2526

mho/meter 2.0-.497

F4.0-.6

BRASS .0625 - .026

LOSSES .125 - 06

.1875 -.094

= = 1.43 x 107  2.0 -.77

mho/meter 4.0 -1.49 dB

It is evident from Table 1 that the loss at resonance is dependent
on the conductivity of the metal composing the slot. The dependence
is illustrated in the curve of Fig. 2-13 which shows an actual com-
puted example (mode theory) of the transmission loss. Also shown in
Fig. 2-13 is a curve derived from Eq. (2-35) (inf.• ,ely long guide
solution). As a reference point we have chos;, ai = 0.2 dB and
aI  1.43 x 107 mho/meter (corresponding I' L'ass) As can be seen
the approximate formula as given by Eq. (2-0,5) agrees very well with
the modal solution loss for values of conductivity a within practical
limits. A computed example (usinq modal analysis) of the dependence
of loss on frequency is shown in Fig. 2-14 for a .25" thick aluminum
slot. Also shown is a curve calculated using Lq. (2-39) normalized at
N=4 with alk = 0.18 dB. As can be seen the agreement between the two
approaches is very good over the entire range.

As shown in Eq. (2-38) the loss is inversely proportional to the
width h of the slot, so that the loss at resonance may be decreased
by widening the slot. Resonance curves for- somewhat wider slots are
shown in Figs. 2-15 and 2-16. Note that widening the slots does
not greatly affect the resonant frequency but does result in a
wider bandwidth, If the slots are made even wider the resonant
properties of the slots may change drastically, as shown in Figs.
2-17 and 2-18. The data in these figures was calculated using
the modal analysis n*thod, but with fewer modes in the waveguide since
the discontinuity is not as abrupt.
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Figure 2-13.--Calculated loss at resonance (3.5 GHz) vs.
conductivity for a 0.5" thick rectangular
slot in a waveguide.
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Figure 2-14.--Calculated toss at resonance vs. resonance
frequency for a 0.25' thick slot in a
wavegui de. -
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Figure 2-15.--Calculated values of the transmission coefficient vs.
frequency for 0.125" wide rectangular slots of various
thicknesses in a waveguide.
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Figure 2-16.--Calculated values of the transmission coefficient vs.
frequency for 0.87" wide rectangular slots of various
thicknesses in a waveguide.
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The previously noted lonqitudinal resonances are shown clearly
in Fig. 2-17. Also shown are approximate results for the 4.0" thick
slot, obtained by usinci transmission line theorv without including the
effects of the hiqher order modes excited a the waveguide-slot inter-
faces. Since this approximation agrees qualitatively with the modal
analysis result we may conclude that the second and third resonances
shown here are indeed dependent on longitudinal rather than transverse
dimensions.

In Fig. 2-18 the resonant nature of the slot is almost completely
gone. The slot in Fig. 2-18, if loaded with dielectric to lower its
cutoff frequency, would correspond to a waveguide pressure window. It
is evident from Figs. 2-17 and 2-18 that when widening the resonant
slots in order to reduce losses one must not widen them so much that
the resonant properties of the slot are destroyed.

C. The Fffect of Plate Thickness
o n sabi i7 Principle

As the panel is made thinner and thinner omie expects to approac,
more and more closely the limiting case of an infinitesimally thin
pinel, where Babinet's principle applies exactly. That this is the
case is illustrated in Fig. 2-19, where we have again plotted the 1

-2

; ~-4i\

CALCULI "ED

0. 000 24"THICK
063 0 4"

. 003ooo96'.5"[Io ',. "

----- .03125"-I - --0. 065" . 2--z.84"---

2.6 3.0 3.2 3,4 3 6 3.8 4.0 42

"REQUENCY (GHfI

F-iju"m ?- g. -- CdI,-ul,.;.' \..uVe:, of thc Lr-dl,,is Sion coefficient vs. fre-

quebicy " th in rcLdiyulur sluts in a waveguide.
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transmission coefficient for a narrow rectangular slot in a waveguide
as a function of thickness. It is evident that as the slot panel is
made thinner a limiting case is being approached. This is further
illustrated by combining the data of Figs. 2-12 and 2-19 in order to
plot the curve of bandwidth vs thickness shown in Fig. 2-20. To
generalize even further, the curve in Fig. 2-20 is replotted in terms
of per cent bandwidth, with the panel thickness normalized to wave- 4'
lengths (at resonance). From Fig. 2-21 it is clear that for a resonant
slot the greatest effects of thickness are in the range from .001X to
2.0X. For greater thicknesses one is approaching the infinitely thick
case, while for lesser thicknesses one is approaching the infinitesi-
maily thin case. Thus, in order to apply Babinet's principle to
obtain bandwidth figures accurate to within a few per cent the panel
thickness should be less than .001. A

D. Conclusions

By generalizing the preceding data on arrays of narrow, resonant
rectangular slots to the periodic array geometry one can draw the
following conclusions:

(1) As the array is made thicker, the bandwidth will decrease.

(2) If the array is made very thick, longitudinal resonances
will appear, and will be closer to the first (lowest
frequency) resonance.

(3) No matter how thick the array is made, there can be complete
transmission at resonance for a perfectly conducting panel.

(4) Th Joule heating losses due to the finite conductivity of
the slot wall for an array of resonant, rectangular slots
as described herein will be approximately 1 dB for a 4"
thick aluminum slot at S-band, and will decrease to less
than .02 dB for a 1/16" thick aluminum slot. At X-hand
a .25" thick slot will have approximately .3 dB loss. Loss
is proportional to thickness, to the square root of the
conductivity, and to the 3/2 power of the frequency scale
ratio for constant panel thickoess.

(5) Attempting to decrease the losses by widening the slobs
will deqrade and finally destroy the resonant properties -

of the slot array if the slots are too wide.

(6) In order to use Babinet's principle to calculate the band-
width to within a fey per cent, the slot array must be
thinner Lhan .001.
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Fi gure 2-21 .-- dalculated val ues of the 3 dB bandwi dth
n ~.vs. thickness in wavellengths for a

rectangular slot in a wavaguide.

Other thickness effects which invo)lve changi ng incidencP angles and
dielectric layers will be considered in Chapter IV. However, these
basic co!nclus-*ons reached here for a slot in a waveguide are appli-
cable to slots in a periodic array, and are impulltant in the
under~tanding of the effects of finite thickness on rEsonaant periodic
slIot a rrays.
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CHAPTER III
MODAL EXPANSIONS

I!I

In this chap'ter we will present tihe orthoqnnai mode sets used
to describe the -;ield.s resulting frowm a 0113ane 1wa; ve inci dent on a
periodic slot arraiy, One mnod:? set, the Floqiue-t, is UsEi itu desc;(ribe

•the fields exterior to the Slal array. This mcle set wil be modified -
to include the etfer-ts of planiar dielectric layers adjacent to the
array. The fi elds wi toin the slots will] also be expnded i;i orth'oconal
modes. Rectangular, single loaded, 4-legged symmetric, and 3-legged
symmetric slots will be considered. For th. rectangular slot
recta hsular avequide modes will be used. h is same mode set was also

dsedc for the rectangular waveguide problem of Chapter Ii. For the
other slot shapes approxiate mode set s wi l be derived from either

!.!r rectangijlar or coaxial waveguide modes.

*A. Floquet Modes

In the exterior region we will use the Floquet mode set developed
for the analysis of phased array antennas [28]. The geometry and
coordinate system is shown in Fig. 3-1. Tile direction of the incident
plane wave is indicated by the conventional spherical coordinates
e and f, where 9 is the angle from the z-axis to the propagation axis
o hee inci dent plane wave, and e is the angle from the x-axis to the
projection of the propagation axis on the x-y plane.

1. With no dielectric layer

A more general arrangement of the slots is shown in Fig. 3-2.
Here the slots are arranged in a eraodic rid along the Si and S2
skewed coordinates. Thus we ain not limi ted to a rectanu ar grid.L The spacing between the slots is dx and e measured along the Sl aild
S2 axes respectively. Tie central periodic cell is cShown in Fig.
3-2, Other identical periodic cells are certered oil each slot in
the array. If the array is large enough so that Floquet's theorem

applies, then the -lectric and magnetic fields at any point in one;of the periodic cells will differ from that at the corresponding

point in another of the periodic cells only by a difference of phase.
Furtherliore, this, difiteience of phase will depend only on the
propagation vector direction of the incident p1lone wave. If we
denote tie vector propagation constant of the incident plane wave as
Her then a complete set of solutions to the scalar wave equation
which satisfies the Floqu t conditions is [28]
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z INCIDENT
Y PLANE

Ficjure 3-1 .-- Geometry and coordinate system for a plane
wave incident on a periodic sloL array.
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I- e2 a I0, S+ I

e- -dy T 0->

LZ~J

Figure 3-2.--Details of array geometry showing skewed
coordinate system and periodic cell.

(3-1) Sp: exp[-A*F i S + 27)S l e x p [ - i ( ' S 2.; + M)S 2

x

exp[+j -y z pYpq

where p and q = - =,. .,-IOI,.,+-, and j--l.

The projection of -o on the S1 axis is K-Sl; similarly for the S2
axis. Note that if in Eq. (3-1) Ko.Sl=O, and S1 is chanjedby tmd x

(m an integer), then the value of S q is unchanged. If Ko.S 1 is not
equal to zero and S! is changed by md then the phase of Spq is
changed in accordance with the Floquet conditions.

Since measuring distances along the skewed axis S2 is incon-
venient, we now proceed to obtain Spq as a function of x and y.
From Fig. 3-3, the transformation between the skewed coordinates
(SI,S 2 ) and the orthogonal coordinates (x,y) of any given point p is

69i
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A

A
S 2

YI

aA A ';

SXI

.icure 3-3.--Relationship between skewed coordinate system (SIS 2 )
and orthogonal (x,y) coordinate system.

(3-2) S1  x-y cota (3-3) S2  y/sint

(3-4) S: x (3-5) S x Cos + y sina_

Substituting Eqs. (3-2) through '3-5) into Eq. (3-1) we obtain,

after minor simplification,

(3-6) S : exp[-j(C ' x+ ?M)x]'exp[-j(K *Y+ e - dtn
pq 0 d o e sina d xtana,

exp(_j ypq z).

If we now define

(3-7) up K sinO cos -
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+2 ,q 2 t

(3-8) V K sine sin +-
pq 0an

where KO = WVU)0 0 , and where dy = e sina, c

!

Eq. (3-6) may be written in the form

(3-9) S exp[-j(U + Vpqy _ + pq z)]

where U and Vpq are the propagation constants in the x and y
directions respectively. Since Spq must satisfy the scalar wave
equation,

2 2 2 2
(3-10) (pq ) +(UD) +(V pq) =(K)

so that

(Ko )2 2 _ 20 Up (Dq) :
(3-11) -Y___ (Ko)2_____

pq(Vp
+IVUp , _(

where the positive radical is chosen.

It is nov, a simple matter to construct a complete Floquet mode
set as a coiibination of TEz and TMz modes. The electric and magnetic

fields expressed in terms of these modes are

(3-12) -(1) 1 L w T
e ai T dT pq U) pq

pq x y

(3-13) e-(2) - - ( X + V pqy) ' TM -A
Tpq,"dd p pq2

(3-14) -1'1 (U x + Vpq Y) TE
pq pq x y q_
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7 :

(3-i5 (-(2 _ + Upy) pq

(a5 - Tq (-Vp x TM

T W2~d pg 'p
pq pg x y

where the modal impedance n is given by
0pq

(3-16) n ( I ) - K° TEp q YPq E o

pq) '(pg 0
(3-17) n(2) = TM

pq K e

wi th p KI

(3-18) Jpq = exp(-J(U x + Vpqy ypq z))
pqp pq pq

(3-19) T2  U2 + V
pq p pg

The superscript (1) or (2) denotes a TE or TM mode, the subscript "a"
denotes that this mode expansion is for the region external to the
slots, and the subscript i denotes the mode number. The mode i=!
corresponds to p=q=O, with other i values designed to other combin-
ations of p and q values.

The i=l modes are plane waves. In combination they can represent
an incident, reflected, or transmitted plane wave from an arbitrary
direction and with arbitrary polarization. The modal impedance nr and
the Z direction propagation constant Y ) are positive real numbrs

since these modes are always propagating modes. The modes fcr i>l
represent either evanescent modes or propagating grating lobes,
depending upon whether Ypq is imaginary or real, respectively.

For most applications the presence of propagating grating lobes
is undesirable. By utilizing the above property of y a grating lobe
diagram can be constructed which quickly shows whethe -or not propa-
gating grating lobes can exist, and if so, for what scan angles [28].
Referring to Eq. (3-11) it is evident that when 'pq changes from an
imaginary to a real number it posses through zero. Setting 'pq=O in
Eq. (3-11) and substituting for Up and Vpq from Eqs. (3-7) and (3-8) I
we obtain A

()2 2

(3-20) 0 = 2 (2- x- 21p

x X
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I 1 --

where Tx and T, are the direction cosines defined as Tx = sinbcos ,
Ty = sinbsino. Simple manipulation of Eq. (3-20) results in the
equation

(3-21) 1 = ( Tx+ Pd- ) + (T + p- - xt 2n-)

x Y y x

Equation (3-21) is a family of circles with unit radius whose centers
depend on p, q, and the array geometry.

For an example of the usefulness of Eq. (3-21) let us determine
whether any propagating grating lobes can exist for the array of
Fig. 3-2 when dx=X. For the array of Fig. 3-2 we then have d,.)/3 ,
tanc.=2/3, and dxtana:2x/3. Substituting these values into Eq. (3-21)
we obtain the grating lobe diagram of Fig. 3-4. For real space
incidence angles Tx and Ty will be less than I ,1,us any circle which
intersects the central circle indicates a possible propag-ting grating
lobe. Four such possibilities are indicated in Fig. 3-4. For values
of Tx and Tv which lie in one of the shaded areas the indicated Floquet
mode will have a real value of Ynq. Additionally, the p=2, q=l and
p=-2, q:-l circles are just touching the center circle. Thus for
these modes ypq=O, and these modes are just on the verge of becoming
propagating grating lobes.

Let us now investigate the orthogonality properties of the above
modes. Figure 3-5 shows a detailed drawing of the unit periodic cell
of Fig. 3-2, here labeled ABCD. Also shown is a deformed cell, GHIJ,
with the same height as the original cell but with acute angle s. We
shall now proceed to show that

(3-22 I e-. * r i#j -

(3-22) a xF. z ds =0 and/oral ajrsGHIJ

We shall first investigate the case where i j. Referring to
Eqs. (3-12) to (3-15) we have: A

(3-23) r . z ds=
a ajGHIJ

d d

x + y
2 2 tans

A exp(-j UDx-" 'pqY exp(j UmX+jVmnY)dxdy --d .1-Vpyd
If y x + Y

tans-
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Figure 3-4.--Grating lobe diagram for the array of Fig. 3-2
wi tr dx=%,. IrsilecosP, Ty ns i nes n-'.
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H c ¢I

aa

A / dx/ D

Figure 3-5.--The unit periodic cell ABCD of Fig. 3-2 can be
deformed to the shape GHIJ without affecting
the orthogonality of the Floquet modes.

where A denotes constant terms. Substituting from Eqs. (3-7) and
(3-8) into Eq. (3-23) and simplifying we obtain

(3-24) x z ds
S a-t aj

GHIJ

d dYx __ y.
r fI7-- tans

exp[- -2,y (,- -m exp[-'2)x( ) ]dxdy.

Jx + -y_
2 tan

Performing the x integratinn in Eq. (3-24), we have
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d

-tan6
(3- 5) e _p - 2 x 

L~~ --- - - -i

x-T +  ta Y
tatan

(dx
dx

-26)p-m z d

+ X-'l e 2#sin(i,(p-m)) i

= d

F I- d y

Thus if ppm, Eq. (3-22) is true. Now, if i=j, then p-m and q=n.
iowever, i~j does not necessarily mean pjnm; but if p=m with i~j then

qen. We therefore substitute the results for p m from Eq. (3-25)
nto Eq. (3-23) to obtain

ei x hai 6 zds

d

21 exp(-j2' y S~2)dy 
_

A dx

, "qn .

Thus E. (3-22) is shown to be true for i~j. We now proceed to

examine the case where i=j, but r~s. From Eqs. (3-12) through (3-15)

and (3-22) we have 
.1
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(3-27) 1ir x hS z ds =

GHIJ

d d s _ 4 T ds , rVs. q;
GHIJ x y pq .. p T pq

Thus Eq. (3-22) is shown to be true. Note that this proof of Eq .
(3-22) did not depend on the value of $ in Fig. 3-5. This is im-
portant for two reasons. First, for large slots in a non-rectangular
lattice (ac90 °) it is possible that the slots may not be contained
within the original periudic cells. This is illustrated in Fig. 3-6.

Y S2  :t

i

] ' 
x

.JJ

Figure 3-6.--Deformation of original periodic cell ABCD to the
periodic cell GHIJ which includes only one slot.

It would be easier to evaluate the integrals required in the mode
matching procedure if we could use the deformed periodic cell GHIJ,
an d w e can do th is bec a u s e w e h a ve jus t s; ,,vio th a t th e r)rthn c .' :al i .y
relationships of the Floquet modes will still be valid. Secondly,
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even if tie slots are contained within the original periodic cells,
the evaluation of the mode matching integrals is simplified if the
matching cells are rectangular.

We thus have a cnomplete, orthononal set of Floquet modes valid
in the region exterior to the slot array. We now proceed to modify
these modes so as to include the effect of a dielectric layer.

2. [ffects of a Lielectric Layer
on the Floquet Modes

In the previous section we obtained the Floquet mode set valid
for the region external to the slotted panel. In this section we
shall see how these codes may easily be modified so as to include
the effects of dielectric layers situated next to the metal panel as
shorwn in Fig. 3-7. The most general case of two different layers will
be considered, even thouqh for some of the solutions derived in laterchapters the ti -.o layers iust be identical. A plane wave is incident

n the ,anej, and t r u h interacti n with ithe sl;t.td 'urface areflected plane wave, a transmitted plane wave, evanescent waves, andU

possibly grating lobes are excited, as indicated in the figure. Of ii
course, fields will be excited in the slots as well. These will be
dealt with in the next sec-ions . We now merely wish to obtain a
Floquet mode set valid in tie dielectric layer.

Consider the incident and reflected plane 'waves. These plane
vwaves are a c(cYlbination of the TE and Tl.I modes of Eqs. (3-12)
throijh (3-15) where izl(p=q=O). While these modes differ in polari-

zation and moda; impedance they have the same spatial dependence.
Thus we cani express each tangential component of the incident arid
reflected plane wave in the free space region in the following form(e+J '  unders toeod):

3-2B) E r  Ar 1 f r(U V T )exp(- 1u X)exp(- V Y)
0 00, 00 0 00 E

xy

exp(±jY oz)
e p 00Z

(3-29) nr  Ar 1 r V T )exp(-_U x)exp(-jV v)in - -- (U O'oo'Uo -0 0-

exp(4j y jZ
- 700
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(3-30) Er Rr 1 fr(U ,V ,T )exp(-jUox)exp(-iVoy)
re dd 0 00 00

exp(-jyooZ)

rr
(3-31) H r -. Rr 1 gr(U]v IV )exp (-jU x)exp(-jV00 Y)

re r 0Dxd
00 X y

exp (-jYooZ)

where the modes are as defined in Eqs. (3-7) through (3-19). The

functions fr and gr depend on the polarization and on the value of r

(r=l for TE and 2 for TM) but not on the spatial coordinates and will

cancel in the final result. The known modal coefficients of the

incident wave are denoted by Ar, and Lhe unknown coefficients for the

reflected modes are the Rr. Since the TE and TM modes are orthogonal

the Ar and Rr , r=l,2, can be considered separately.

Now referring to Fig. 3-8, we can express the incident and

reflected plane waves in the dielectric region as:

d o  d d d',
(3-32) E rd ar l fr(Ud, Vd Td )exp(-jU x~exp(-jVd Y)

in 1 o oo' oo 0 004dxdy 0 0 0

exp(+jyo0 )z)

r
( rd a1 .l gr(udd d oepjdDexp(_Vdy )

(3-33 gi n "r"V T ' oox u )

p(00 e p) ( )

(3-34) Erd = p  fr(1Ud Vd Td )exp(-jU dx)exp(-jUdY)
re 0 00 00 0 0

xy
exp(-jy, l z)
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re - d o ooSTo)exp(-jU x)exp( -f oy

exp -j-*( )z)~'dd 0000

where the superscript "d" denotes that these quantities describe

conditions in the dielectric region. The parameters rr() and 1y(l )

are evaluated in the same manner as the free space parameters rr and00

Yoo except that cl and ol are substituted for co and ;o in Eqs. (3-11),

(3-16), and (3-17) with Kl=w,-iEl replacinq K0.

We wish to express our incident and reflected plane waves in
terms of the free space modes of Eqs. (3-28) through (3-31). However,
the mode matching integrations will be evaluated at z=O, and thus
these calculations will be performed on the dielectric modes of Eqs.
(3-32) through (3-35). By enforcing boundary conditicns at the
dielectric interface z=+t I , we will establish relationships which will
enable us to evaluate Rr and a in terms of Ar and 0r

Continuity of tangential E and H at the dielectric interface
requires that for z=t]

(3-36) Er + r = Erd + Erdi n E re I n re

r + Hr = rd rd

I n re I n re

The first consequence of Eqs. (3-36) and (3-37) is that the
phases of Eqs. (3-28) to (3-35) match at z=t1 for all values of x or
y, which requires that

(3-38) Ud  U
0 0

(3-39) Vd
0 0M

and from Eq. (3-19),

(3-40) Td

0 0 0
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Use is nade of Eqs. (3-38) to (3-40) in the evaluation ofl it
Eq. (3-l1) Wh ilIe K 0is now replaced by K w.I~ U 0and V 00are

not changed from their free space values (Snell's Law) when

detemii ni nq

We nw-. substi tute from Eqs . (3-28)-(3-35) into Eris. (3-36),
(3-37), apply Els . (3-38), (3-V ) and cancel common factors, oh-
Lai ni rig:

(341) r epj 0 t. )+prexp(_~ rr=~x( Y 4

00 00

+ r e p - --

00

'00 000

- l) r )
ri r- 00

00

Solving Eqs. (3-41) and (3-42) for a r and pr we obtain

(3-43) a~ r 2A r 00 exp(-jy 1 - t)

r.r

0W r00

00 00

~r ~r' 00 r~ep2j 1
(3-4'l) r o ! ex . i

"00 000
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Equation (3-43) allows us to express the incident mode amplitude aT

in the dielectric region in terms of the free space incident mode
amplitude Ar. Equation (3-44) allows us to find the free space

reflected mode amplitude Rr once the reflected mode amplitude in the

dielectric region pr is computed. Thus the solutions presented in
later chapters for pr can proceed directly to a field match at the

panel surface, since the dielectric layer effects in the incident
wave are included in the above expressions.

We now consider the problem of determining the effect of the
z-O dielectric layer on the Floquet mode with i>1 , i e. , those which
represent either evanescent fields or propagating grating lobes. This

problem is considerably simplified as compared to that for the i=l
plane wave modes since there are no incident modes in the free space
region for i=l. In addition, we are primarily interested in evalu-

ating the i=l modes at the surface of the panel so that we can perform
our field matching operations.

For the region within the dielectric layer in front of the metal
surface (z>O) the Floquet modes are given by Eqs. (3-7) through (3-19)

with co and vo replaced by el and i. Referring to Fig. 3-8, it is a

s4imple matter to use transmission line theory to obtain Z the

modal impedance of the i-th Floquet mode evaluated at the front (z=O + )

surface of the panel:

r .r(l) n l
(3-45) Z l )  r") . Jpqnpq an(y )

pq pq "r( . r .an(y.(1)t)
pq pq Pq

:,en evaluatinq the Floquet modes in the dielectric regions one
must keep in mind that the incidence angle in the dielectric region

will not be the same as that in the free space region (Snell's Law).

One can easily account for this by using the relationships

(3-46) Ud =U

P P

(347) Vd  
- V

pq

(3-48) Td - T
pq pq

,'hen evaluating the Floquet modes in the dielectric region. These
relationships correspond to Eqs. (3-38) throuqh (3-4(0) which were
shown Lrue for the -plane wave (i=l1) Floquet Modes.
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We can thus express the transverse components of the Flquet i

modes at the front surface of the panel (z=O +) with a dielectric layer
present as:

ai a z=O

'.rl) (Z x -l)) :al 7oo 'o o o

(3-50) ri) 000

a,
*Zl  (z x 7r(1)) =1 r ilal Z r--(T pq'

pq pq

The vector fui,tion D has been defined here, and will be used in

later sections to simp ify certain integral equations.

The Floquet modes for the dielectric reqion behind the metal
panel (z<0), are obtained in a similar manner. For the back side,
however, there is no incident plane wave to be considered, and this

simplifies the problem somewhat. Tne modal impedance 7 r(2) of the
i-th Floquet mode at the back surface of the panel is g~en by Eq.
(3-45) with the superscript (1) replaced by (2) and evaluated for the
dielectric thickness t2, and parameters E2 and w2. As indicated by
Eq. (3-49) the transverse components of the electric field mode
function at the surface of the panel are not affected by the
dielectric layer; thus

(3-51)2) -)
al al ai jzL0

Since there is no incident wave for z<0,

(3-52) Fhr(2) _ 1r
ai 7r(2T pq

pq

for all values of i. Using Eqs. (3-51) and (3-5?) we can express the
electric and magnetic fields at z=0-. However, the free space
transmission coefficients Tr are desired. Referring to Fig. 3-8 we
have for the transverse (to z) components of the dominant mode (i~l)
plane wave:
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3-53) Hrd r I r ( U V T )exp(- Uox)exp(- _.V v)tr d d ,' o o oo 0

exp (+j " (2)z )

00

r
(d -- 1 f r(U ,VTo)exp(-jUx)exp(-VoY)4 tr ,:7(2 d0 0'00

00 x Y

(3-56) Erd r r- fr( Vg T( )eVooTo o )e xp( . o ~ x { i o y_  -V -y)• ,,.( 2)exp( -' Y Z

J 
=c

(3-55) E r : = fr 0r 00 frTo'o oo )exp (-jLo0x)exp (-.iVo0o.0
V/d xd

x Y

exp(-jf oo z )

0 0

(3-6) ,rd r __ rU

(3-56r r I(U ,V ,T )exp(- -0X)exp( VY )vdd r() d 0 00, 00 U0x~x(~ 00

noo "ddy X

exp(-jy z)

(3-57) Er Tr 1fr(U V I1 )exp(-ju x)exp(-_iV Y)
•d d 00 00 00 0 00

exp(j-y )
-00

especially that the superscript (2) of -yo is not an exponent, but

g I.

rather iHdicates that y is to be evaluated for the :2 and 2
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dielectric reqion. Doundary condi tions requi re that the transverse
components of E and H be conti nuous. Thus, followi no the procedure
used previously to obtain Rr and ar, we have at z=-t2 :

(3 9) r r 1 *(2) r* 2
-59) T exp\-Jx0o t = r exp(-.-, 2 + r exp( ' 2)t22

(3-60) Tr r r(2)
r - --T7F7 exp(-- " 0 t2  - 2ex( t2 )

1e could now go ahead ant solve for Tr in terms of Tr and .r
However, we realize that the modal matching solution will not yield
the values of .r and r but instead gives the value of total dominant
mode field at z=O-, cxpressed as

(3-61) Endi + Erd b 1 f r( U0,V 0 , T )exp(-JUnX)(3-6 ) t !z=O_ 'dr z=O -  v l 'd d

exp(-jV0 0y)

(3-62 Hrd. rd r 1 1 r(UoVoo,T

(36) H i + H =b (U-q V(U
tr Iz=0 -  drlzO 1 Zr( ,'d d 00

pq x y

exp(-jU0 0y)exp(-f 0 0y).

where it is evident that

(3-63) b . r + ,r

.sing Eq. (3-63) we can proceed to solve Eqs. (3-59) and (3-60)
for Tr in terms of b as follows. SubstituLing b- ,r for -r in

Eq. (3-59) and rearranging terms we obtain

(3-64) Tr . br exp[-I(<'(2)_ -o)t2]+2r sin('*(2) t2)exp[ 'oot2]

Making the same substitution in Eq. (3-60) we obtain
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r r -(2)t o

(3-65) r [ blexp(--to2) r - Texp(-jy 0 0t2)

00

[2cos(-y'(2) t2

0o "2

Final,' ye substitute for r from Eq. (3-65) into Eq. (3-64) to
obtai:i

l+jtan(y' (2)t

(3-66) Tr br bexp[_ 2(y'(2)_ Y)tt 00 2)I joo 00o 2- r'2

I+- -0- tan(y 0  t2)

Thus we can solve for the fields at the hack surfaclp nf the panel
(z=O-) with a dielectric layer present by expressing the fields as
indicated by Eqs. (3-51) and (3-52), and then by using Eq. (3-66)
obtain the free space plane wave transmission coefficients Tr .

B. Internal Slot Modes

The preceding section of this chapter dealt with the Floquet
mode set used to express the fields in the region external to the j
slots. In this section of the chapter the modes used to describe
the fields inside the slot will be developed. Mode sets for the
rectangular, single loaded, 4-legged symmetric and 3-legged symmetric
slots will be presented. The mode sets for all of these slot shapes u -

will be adequ',te for describing the fields in the slot regardless of
the slot (panel) thickness. However, we will in later chapters pre-
sent actual calculated data for thick slot arrays only for the
rectangular slot case. This is due to the difficulty of fabricating
thick metallic panels perforated with the more complicated loaded
slot shapes which would be required for experimental confirmation of i-
the theory.

1. Rectangular Slot Modes I
The electric and magnetic fields for a rectangular slot with

cooidinate system ;) shown for the center slot of Fig. 3-2 can be
expressed as a combination of rectangular waveguide modes. This
mode set is similar to that used in Chapter II to describe the fields
in the rectangular waveguide problem. A more thorough discussion will
be given here.
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The slots are assumed to be narrow, i.e., b-< , and b<a, so that
to a good approximation the fields in the slot will be TEX. This
assumption is not necessary, buL it enables us to use a more efficient
mode set.

The mode set which is TEx is obtained from the wave function [44]

TE
(3-67) X sin(f.X - f7 cos ('y - e exp)a 2 bo 2 J' epjfq)

where

2 f 2  2

(3-68) rfg = 2 2

I L. )~ + " -K3
In Eq. (3-68) the expression which has a positive radical is chosen.
The integers f and g denote the mode number, and K3 -w,'v3c 3 , where
E3 and P3 are the parameters of the slot medium. The relative permit-
tivity and permeability of the material in the slot may thus differ
from that surrounding the panel. The transverse (to z) components of
the modes in the slot are obtained from

2Ex 0 Hz 1 + K 2
E x  1" 0x 3 ax 3

E - H 1 a
y az Y JWP 3 axay

with some slight simplification as:

9 e sin( fx -f' )cos(csy *)e-+j'f z

(3-70) x - x Ybj si --- -gq
bjI a

+ y g b cos (- -C 2Z )sin( Y
-- -)e g Z

(K83) 9

89



p

The subscript b denotes that these modes are valid within the slot.
The subscript j is a mode number running from 0 to infinity; for each
j there is a corresponding value for f and g, with j=O corresponding
to f=1, g-O, etc. Also 4

2 2

(3-71) Y (K- ) -fg

b 1'3 '3 rfg

These modes are linear combinations of the more usual TEz and TMz
modes, except that the TExf ° modes are identical to the TEzf ° modes.

If the slots are wide enough so that Ex in the slot is not negligible,
one could form a complete mode set by adding to the above set the TMX
modes. In this case, however, it would be just as efficient to use
the TEz and T11z mode set. For the narrow slots which are being con-
sidered here, Ex-O, and thus the fields in the slots can be described
most efficiently with just the TEx mode set. II

It is easy to show that the above modes satisfy the orthogonality
relationship

'i

(3-72) ebn x . z ds 0, n~j

where fb ds denotes integration over the slot cross section.

2. Single Loaded Slot Modes

The mode matching method has heretofore been applied only to
arrays of slots which were circular or rectangular, so that the
usual waveguide modes could be used as a basis for the tangential
fields in the slots. Transmission line loaded slot arrays (see A
Fig. 1-7), however, hdve better performance for many applications
than arrays of circular or rectangular slots, and it is therefore A
desirable to extend the modal method to arrays of loaded slots. In
this section we will deal with the single loaded slot, a.Ji the
next section with 3-legged and 4-legged loaded slots.

One possible approach would be to solve for the modes of a A
cylindrical waveguide with a cross section identical to the shape of A
th. desired loaded slot. This procedure would involve considerable
difficulty in terms of the effort involved and the numerical problems
encountered. Actually, it is not necessary or perhaps even .iesirable
to expand in terms of waveguide modes.
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In order to provide ,n efficient basis for the transverse (to Z)"
fields of the sinigle loaded slot of Fig. 3-9 we will again make theA

ioure 3-9.--Coordinates and dimensions used to express

tile single loaded slot modes.

alproximation that the slots are narrow enough so that the component
of the E-field which is parallel with the long edge of the slot may be
negiected. For example, in region la of Fig. 3-9 only the Ey com-
pone it is significant, while in region lb only the Ex component.
This approximation will be very good for most narrow band loaded
slots, where b is usually <- k. To further simplify the representation
we will make the approximation that the w, riation of the fields across
the narrow dimension of the slot is neglit; ible. This would correspond
in a narrow rectangular slot to approxima~ing the fields using only
the TEnjo modes. If we now visualize "bending" these TEno rectangular
guide modes into the single loaded slot shape we obtain the approximate
mode set which will be used to describe the transverse fields in the
single loaded slot. Making use of the coordinate L, which is the

w4

distance measured from the point x=-a- ,y:O along the center of the
slot in Fi . 3 j, we can express this approximatdetran set as

fields3) the- ingl eoddso fFg - w il anmk h

yz

+-k noz
(3-74) -n- Y sin (ainzx iu(e))xepre

th n oI

a~"roimtin ha te sot ae arowenughsotht hecopoen



=1

where T is the total length of the slot, and

where i() js equal to -x in region lb, +x in region lc
and +y elsewhere, as indicated by the arrows which
represent the tangential E-field across the slot.

The value of rn° is given by Eq. (3-68), with Ybn given by Eq. (3-71)
with f=n and g=8 . The orthogonality reldtion of Eq. (3-72) can
easily be shown true for this mode set.

The given mode set is a reasonable approximation to the transverse
fields in the single loaded slot except where the vector function F(')
changes direction (i.e., at x=O, y=-w; y=O, yzw; x=h, y=w; x=h, y=-w).
In these areas the mode fields change abruptly and do not approximate
the actual fields very well. However, for b - a these corner regions
form a very small percentage of the total slot aperture. Also, in
practical slots the corners are actually rounded slightly. We are
content to let the validity of this approximation be judged by the
accuracy of the results-which can be obtained with this mode set.

3. Symmetrical Loaded Slot Modes

In this section approximate mode sets will be derived for the I
4-legged and 3-legged symmetric slots. The mode sets for these two
loaded slot types will be nearly identical, and thus they will both be
considered in this section.

The modes are derived from an approximate mode set for the fields
in a coaxial waveguide with a-b<<l/2(a+b)ErQ, where r0 is the average
radius of the coaxial waveguide. The coordinate system for the coaxial
waveguide is shown in Fig 3-10. With the above restriction on a and b
the dominant modes are the TEno modes. Johnson [45] gives the following
approximate expressions for the TEno coaxial waveguide modes:

(3-73) e = 1 e 1' e rnzn .r ++

,C -jrnz

(3-74 ) n n 1 e in e e n -i

with I
I .~ :,+

2 20 +

_(3-/5') Tn ) (choose positive radical)

) 23)
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bI

Figure 3-10.--Coordinate system for expressing the approximate
mode set for a narrow coaxial waveguide.

and 3 and V3 the constitutive parameters for the region inside the
coaxial waveguide. If we now make the additional restriction that
a-b<<X we can simplify the above modes even more by noting that I/r
will be nearly con,-tant over the small region b<r<a. If in Eqs.
(3-73) through (3-7-) we assume 1/r is constant. efine the average
circumference S=2rro, and separate the angular exponential term into
sign and cosine modes, we arrive at the following approximate mode
set for the narrow coaxial waveguide:

_jrnz

,in(2n"- )  e G ) j=1, 3,5; n j+1' 2

(3-76) ebj

cos "G(-) j=2,4,6,8; n
2

PV3 Irn 2n1z eir n z +1
- - sin e z -#) j=1,3,5; h :j l;

(3-77) hbj :

FP n 2 nri JnZ n =((L

cos (zxG-( ,e jz2,4,6; n = ;
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whie re

2 2 n-r

(K )2

(3-78) rn = __n ___2 (choose positive radical)

I - - 2 2

. - (K3 )

and where £ is measured as shown in Fig. 3-10, from e=O along the
center of~the coaxial opening. The vector function G(Z) is merely
equal to r for the coaxial waveguide. The subscript j uniquely
determines the mode, i.e., j=l is the n=l sine mode, j--2 is the n=l
cosine mode, etc. The subscript b again denotes that the mode is
valid in tile slot reqion rather than in the free space (Floquet mode)
regi on.

We can now quite simply adapt this mrde set to the 4-legged and
3-legged loaded slots by "bending" the approximate coaxial modes into
the proper shape, just as the rectangular slot modes were "bent" into
the loaded slot shape.

The 4-legged slot geometry is shown in Fig. 3-11. In order to
apply the approximate mode set of Eqs. (3-76), (3-77), and 3-78), the
4-1egged slot must have b<<>, and b<<S, where the average perimeter|
S is now given by S-4d+8c. The coordinate Z of Fig. 3-11 is measured

from thc point x=-c-d/2, y=O along the center of the slot. Finally,
we define T(,) as a unit vector whose direction in each straight
segment of the slot is indicated by the arrows drawn in the slot, as
was done for the function r(t) defined for the single loaded slot
modes. With these quantities thus defined, Eqs. (3-76), (3-77),'and
(3-78) express the approximate mode set used to describe the modes in
the 4-legged symmetric slot.

The approximate mode set for the 3-legged loaded slot of Fig.
3-12 can be expressed similarly. The average circumference S is now
given by S=3d+6c. By redefining the unit vector -(£) in Eqs. (3-76)
and (3-77) to agree with the directions indicated by the arrows of
Fig. 3-12, the equations w11 now serve to describe the modes for the
3-legged slot as well.

_Although the FIbj modes have been given fur completeness, only
the ebj modes will be needed in later chapters for these two types of
slots. This is because calculated data for thick panels perforated
with s.ots of these shapes will not be given in this work. The reason
is that the unconnected, central piece of conductor makes this type of
slot difficult to fabricate in a thick panel. (Normally, these slot
types are etched in thin copper laminated to a dielectric, with the
dielectric substrate serving to support the central metal piece.)
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Figure 3-11.--Coordinates and dimensions for expressing
the approximate mode set for the 4-legged i
symmetric loaded slot.
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Figure 3-12.--Coordinates and dimensions for expressing the approxi- .
mate mode set for the 3-legged loaded slot.

It is interesting to note that if a moment method solution for
the current on the complementary 4-legged loaded loop were formulated,
one choice of basis functions for the currents on the wire would be I
an entire domain Fourier Series basis. This basis would be mathe-
matically equivalent to the ebj modes given in Eq. (3-76) with z=O.

A

96



CHAPTER IV

THICKNESS AND DIELECTRIC EFFECTS

In the previous chapter the mode sets used to describe the fields
resulting from plane wave scattering by a periodic slot array were
derived. In this chapter moment methods will be used to solve for the
unknown modal coefficients and thus obtain the scattered fields. The
geometry of the problem is illustrated in Fig. 4-1. Although an

INCIDENT z

PLANE WAVE 3 3

x

YI

THIKMETAL PANEL
WIHRECTANGULAR

Figure 4-l-..Coordinates and dimensions for an array of slcts in
thick metal panel covered with dielectric layers.

interlaced grid is shown, the Floquet mode set can accommodate other
s grids (see Chapter III). The dielectric layers may be of arbitrary

thickness and permittivity but must be identical. (The basic method
of solution can be dpplied when the dielectric layers are different,
but the procedure will be more involved.) This is not a major
shortcoming for practical geometries since Munk [4] has shown that
general lossless transmission will be obtained with identical
dielectric layers. The slots themselves may be filled with a
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dielectric of different permittivity and permeability than that of
the external dielectric layers, and are cut in a perfectly conductive
panel of finite thickness .

Mathematically, the problem is quite similar to the thick wave-
guide window problem treated in Chapter I. The main differences
are that the Floquet mode set rather than the waveguide mode set is
used to describe the fields external to the slot, and that the presence
of dielectric layers is included in the theory. This mathematical
similarity is due to the fact that, because of the periodicity of the
Floquet modes, the boundary conditions for tangential E and H need
to be enforced only over one periodic cell of the infinite array.
Thus the modal analysis method of Wexler [38] can be used for the
thick Slot array just as it was used in the waveguide window problem
of Chapter !I.

Chen outlined an equivalent method of solution for thick slot
arrays [33], and, although he did not actually give the solution, he
did present some calculated results for rectangular and circular slots
in thick panel;. His results all showed large shifts of resonance

frequency with incidence angle. The final sentence of his paper
states that "Shifts of resonance frequency and changes in bandwidth
in the opposite sense for the perpendicular and parallel polarizations
as functions of incident angle limit many useful applications of this
perforated plate". We shall show that with proper use of dielectric
loading, arrays of rectangular slots can be designed with negligible
frequency shift and greatly reduced changes in bandwidth with
changing incidence angles. This result is of practical importance
since rectangular slots are somewhat easier to fabricate than the
more complicated loaded slot shaipes, especially for thicker panels.

A. Thick Panel Solution

Referring to Fig. 4-1, we have a plane wave incident on the
panel from the +z direction. For z>t, i.e., in the free space region,
this plane wave can be expressed as

2
(4-1) A = A

in 1 alr=l

2
(4-2) T i Arhrin r=l al

Similarly, the specularly reflected plane wave can be expressed as

2
(4-3) E R r Rr

re ar=l
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(4-4) r arl

re a I
r=

I.I

The modal coefficients Ar are known, i.e., are determined by the

polarization of the incident wave. We wish to determine the Rr.
From the results of the previous chapter (Eqs. (3-32) through (3-35) .

and Eq. (3-43)) wj can express the tangential fields at the surface
of the pariel (z=O) as:

2 2 -l)I
= , [ard + r(lDFr) r(l) + r 2 r (

(4-5) = 2 r d -r 1 iDFr)] +

+ r~l ~l r=l i=2 1a

2 rd r ,rali)

(4-6) TzO+ r:l[ I - ( r)] ,,r~ r-M=2 a

where the P and a'- are unknown modal coefficients and we define

r(1) :
2 Ar  -- eX [_(y 0 (1)oo tI] I

rd r 00
(4-7) a 2 A )l r expt

to0 "00

r(l)-r [

(4-8) DFr- 00 '0 exp[-2jf0t

IT+0 rt 1

In order to express the fields in the slots we must first con-
sider the effects of the finite thickness on the slot fields. This
problem was also considered in Chapter II. We will use the same
approach here, but will explain the technique from a somewhat
different point of view.

Since we are treating the metal panel as perfectly conducting,

the tangential electric field will be zero except in the slots. In

the slots at z=O the tanqential fields will have to include the
reflections from the other end of the slot. As illustrated in I
Fig. 4-2, a mode i is 2xcited in the slot and propagates in the -z

direction. When it strikes the end of the slot at z=- not only is
mode i reflecLed, out also modes j, k, etc. Thus in order to
evaluate the mode-, at z=9 one would need t~o evaluate the scattering

matrix Sij for the discontinuity at z=-Z, where Sij represented the
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i k0Z= -A

Figure4-2.--A slot mode i eAcited when the incoming plane wave hits
the panel at z=O will excite other modes, j, k, ... , as
well as mode i itself when it is reflected by the end
of the slot at z=-k.

reflected amplitude of mode j due to mode i . This scattering matrix
would be difficult and time-consuming to evaluate. We can skirt this
problem, however, by considering the situation in Fig. 4-3. In
Fig. 4-3a is illustrated symmetric excitation. Identical plane waves
are incident on the array and phased so that at z=-t/2 the E fields
add and the H fields cancel producing an open circuit. Similarly,
Fig. 4-3b illustrates antisymmetric excitation which effectively
produces a short circuit at z=-Z/2. Thus, if the panels are covered
with dielectric, the dielectric layers on each side must be identical.
If we should solve for the fields in the half-space z>-X/2 with both
symmetric and antisymmetric excitation and add them, the reflection
coefficient obtained would be that for a single incident plane wave,
as illustrated in Fig. 4-3c. 1r on the other hand we subtract the
fields, then the reflection ceefficient obtained for the half space
z>-Z/2 would actually be equal to the transwission coefficient for the
panel, as illustrated in Fia. 4-3d.
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(a) SYMMETRIC (b) ANTI-SYMMETRIC

zOO Z - , Z CO Z:- ,
(c) (o)+(b) (d) (a)-(b)

Figure 4-3.--Synimetric and anti-symmetric excitation

of a slot in the array.

The symmetric and antisymnstric excitations also diagonalize the

scattering matrix Sij, enabling us to expand the tangential fields in

the central slot at z-O- as

(4-9) z=O- j eb
-,1 j b j(l-Sjj

f (4-10) b :- '' jj

: where i

I01

Fi



(4-11) S ± - ! -

Withi the positive and neqative siqns corresponding to symmetric and
antisymetric excitation respectively. The ebj and -bj modes are
given n the previous chapter for various slot shapes.

Ile can now proceed to satisfy the boundary condi tions . Tangential
F and il rust be continuous at the slot aperture, while tangential E
rmst vanish elsewhere. If we equate Eq. (4-5) with Eq. (4-9), take

a cross product with m i , and integrate over a periodic cell, we
obtain

rd + r -l) Irl).* F

(4-12) [a1 I C1DF al x l z ds

'a*

b"(l+S. . . x 1  z ds rzl,2

j=l - b aI

for m=l, r=l or 2, and

I(4-13) a r  rl x h- r l ) *  ds

• z d =  ds
m j an am Xa

a i

L bb+jj am d.j~l lb e j xh r  zd

for m=2, • ,.* , - and r=l1,2. The notation ds denotes an integration
over the central periodic cell (see Fig. 3- ). Equations (4-12) and
(4-13) enforce continuity of tangential E across the slot PDerture
and, since the integrations containing ebj are zero exceut over the '-

slot aperture (f;)ds), also enforce tungential E=O at the metallic
surface. The orthogonality relation of Eq. (3-22) was used in
obtaining Eqs. (4-12) and (4-13). To enforce continuity of tangential
H across the aperture we equate Eq. (4-6) with Eq. (4-10), take a
cross product with ebn, integraie over the slot aperture, and apply
the orthogonality relationship of Eq. (3-72), obtaining

(4-14) [dr eb al ds
r = l J b Z fl

2 v ) e- ' x . ds = b (l S e x}T. "z dss

r=l i=2 a bn ai n nn on bn -
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for r=l,2,., =
. Equations (4-12) through (4-14) actually represent

a doubly infinite set of equations. We must therefore truncate the
mode sets, retaining enough modes to obtain a good approximation to
the true solution. We will leave the discussion of how many modes are
required to a later section. For now we will include 2M Floquet
modes and N waveguide modes in our solution.

It should be noted that Eqs. (4-12) through (4-14) are neariy
idontical to Eqs. (2-16), (2-17), arid (2-19) obtained for the wave-
guide iris problem of Chapter II. The differences are that in this
chapter the Floquet mode set rather than the waveguide modes are
used to describe the fields outside the slot and that dielectric
layers are no-,w included in the analysis. This similarity is due to
the fact that we are matching the tangential fields over only one
periodic cell in the array.

Equations (4-13) and (4-14) form a coupled systei of equations.
If we solve Eq. (4-13) for the ar, change index m to i, and substI-
tute into Eq. (4-14), we obtain,

2f

2 _r(, rr
(4-15) r r(l+DFr) e xhr )zds+bn(l-S )I e xh .zds

r= bn al tin 1bbn bnIr=l b )

e -. !)* zdsN 2 M, 3 bebj ai
+ ,ibj(+S . "2 er r * xe- zds
j r= i bn ai

)a ai 

2 rd -- V d J - F ( )  " d : , ' ,

r a ebn x al ds, n 2, N
r-l 1 b bn a

which is actually N equations but with N+2 unknowns, namely the bj
and the pr. However, if we rearrange Eq. (4-12) we obtain

NI

(4-16) r~~lDF r) -r(1 ) ,r1* N- ~)
a ~ j iil b jjjbjal zds(416 " l a lJ I.bi(+ ijb a] -id

'a ~ j=l

S ( a --r( I )al

ad e x e a l  x ) z ds, r=1,2

which together with Eq. (4-15) forms a system of N+2 equations with
N+2 unknowns.
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In order to sim lify Eqs. (4-15) and (4-16) we shall evaluate

the integral ' eai x ). z ds. From Eqs. (3-12) to (3-15)9

(3-18), (3-19), and (3-49), (4-50), we obtain

i1 /U2+V 2  p)

(4-17) j 6r(l)xr(l)*zds = ---- - )exp(j(Upx+V A

a noo x d pq ) T pq

exp(+j(U X+V y))ds
p' pq T)1(

O00

for i=, and similarly

(4-18) ~ rl) 1d q_ ex('(U x+V y))(a-8 ai z r()* _ d)p pq
z p Oxdy' a Tpq

exp(+j(Upx+Vp y))ds = ! -

Pq -y p

for i$1. By applying Eqs. (4-17) and (4-18), and usin.j the pq - I
function defined in Eq. (3-50), we can rewrite Eq. (4-15) and
Eq. (4.16) as A

2(4-19) r Pr(l+DFr) efl- b eiXo'Zds+bn(l-Snn) ebxbnzds
r=l b bn 0oo bn

N 2 M _ - '
+ b(S ) x;bzds

jl j j r=l i=2)b bj pq zr-lTb b pq
pq

2 rd 1 X T- zds n=1,2,-N
1 Tr-mI, bbn oo

(4-20) pr(l-DFr b ; 4(I+S) e 0Zds r=1,2.
j=1 bbj
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The system of equations given by Eq. (4-19), and (4-20) must
actually be solved twice, once for symmetric excitation and once for
antisyimmetric excitation. If we denote the reflection coefficients
in the dielectric region as pr and pa for symmetric and anti-
symmetric excitation respectively, we can find the corresponding
free space reflection coefficients RE and R, from Eq. (3-44) Re-
calling the properties of symmetric and antisymmetric excitation it
is evident that the free space reflection coefficients Rr and the
free space transmission coefficients Tr are given by

(4-21) Rr = 1/2 (Rr + R

(4-22) Tr = 1/2 (Rr - R) .
s a

Due to the difficulty of machining complex slot shapes in thick
panels, we will be primarily concerned with rectangular slot arrays.
For rectangular slots we have, from Eqs. (3-69) and (3-70),

(4-23) z xW *ds=
'bbj bj

1.b/2 a/2 2 fTrx fy
b sin (- ' Cos (97X 912 dxdy

Y -b/2 1-a/2 a

f.25 ab Ybj for g O

.50 ab Ybj for g=O

where the integral is evaluated at the front surface of the panel

(z=O). The f ejX qzds intugrals are evaluated in closed form,'bbj pq
with the results given in Appendix B.

The solution was then programmed in Fortran IV for cumputer
solution. The convergence and accuracy of this solution will be
investigated in Section B. Then in following sections of this chapter
various results obtained from the above solution will be presented.
In Section C we will illustrate how the undesired shift of resonance
with incidence angle which limits the applications of rectangular
slot arrays can be eliminated by sandwiching the array between
dielectric layers of the proper thickness and dielectric constant.
These dielectric layers also have the effect of; greatly reducing
the change of bandwidth with incidence angle. In Section D we will
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discuss how the presence of these dielectric layers will cause the
Wood's anomaly transmission null to move downwards in frequency.
Section E shows how a similar downward shift of the Wood's anomaly
null frequency can be caused by certain slot arrangements. In
section F we will show how the undesired resonance shift can be
eliminated for thicker panels (0.1") by filling the rectangular slots
with dielectric. Finally, in Section G some general comments un the
interaction of thickness and dielecti ic effects will ne made and
supported by calculations.

b. Convergjence Properties of the M.odl Solution

In this section we shall first show a comparison between calcu-
lated and measured data, and then investigate the convergence
properties of the modal solution.

In Fiq. 4-4 are shown measured points and calculated curves given
by Munk [3] for the reflection from a periodic array of rectangular
strip dipoles. The Wood's anomalies are shown quite clearly in these
curves, and the shift of resonance frequency with incidence angle is
quite severe. Note that the reflection curves do not redCh 0 dG for
frequencies above the Wood's anomaly. This is because some of the
incident energy is being radiated in the grating lobe directions.

Transmission curves for the complementary slot array calculated
using the modal analysis solution of the previous section are shown
in Fig. 4-5. The panel thickness is 0.0175 cm. The number of Floquet I
modes used was 242, with the maximum abselute values of p and q
equal to 5. Four modes were used to describe the fields in the slots,
with f=1,3,5, and 7, and g O. For these incidence angles the even
ordered modes are not excited. The agreement between the two
solutions is quite good. Notc that for the frequencies above the
Wood's anomalies the modal solution agrees better with the measured
points than thc mutual impedance solution curves of Fig. 4-4. The
main discrepancy between the two solutions is that the resonance
curves given by the modal solution are more narrow banded. This is as
it should be, however, since finite thickness causes the bandwidth
of a slot array to become more narrow, while a thick dipole array
will have a wider bandwidth than a thin one.

In the next three figures we shall illustrate some of the con-
vergence properties of the modal solution. In Fiq. 4-6 are resonance
curves for the same panel geometry as Fig. 4-5 for (near) normal
incidence. Since p and (I will have negative values the total number
of Floquet modes is given by 2. (2.pmax+l)(2.qrmax+I), where pmax and
qmax represent the absolute maximum values of p and q respectively.
For this case pmax=qmax 5, thus the number of Floquet modes is at 242.
The number of slot modes is varied from 1 to 4 (only the odd modes
(f=1,3,5,...) are excited). It is evident that for this geometry and
incidence angle the solution converges quite rapidly in terms of the
slot nodes, with good results obtained even with just 1 mode in the
slot.
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In Figs. 4-7 and 4-8 we show' more genera I convergence data for
the modal solution. The panel geometry is again the same as in
Fig. 4-4, except that now the panel is sandwiched between two
dielectric layers .3175 cm thick with F r=4.0. The frequency is held
constant at 5 GHz, while both the number of Floquet modes and slot
modes are varied. Figure 4-7 is for 80' H-plane incidence
(-=80-, =0=) while Fig. 4-8 is for 80' F--plane (;=80, ¢=90).
There are several points which should be made concerning the two
figures. The first is that the convergence rate is dependent on the
incidence angle. The E-plane solution is converging faster than the
H-plane, even when considered on a percent error basis. This is
also true for the mutual impedance solution, i.e., more terms in
the impedance summation are required for H-plane (slot panels) con-
vergence than for E-plane.

The second point is that a very high ratio of Floquet modes to
slot modes is needed for convergence. This agrees quolitatively with
results for other modal type solutions, where it was found tnat for
ootinurn results the ratio of modes in the two regions should be in
proportion to the relative size of the two regions [40]. However,
these results were for much simpler, two dimensional problems and do
not apply precisely to the geometry being considered here. Note that
the size of the matrix required to solve for the modal coefficients

does not depend on the number of Floquet modes, but depends only on
the number of slot modes. Thus the integral equation formulation

of the previous sectinn is quite efficient in terms of computer
storage space required for this geometry.

The third point is that for a given number of slot modes there

is a minimal number of Floquet modes, below which nunber the
solution will not have converged, and above which number very little
change occurs in the result. One method for detecting that the re-
quired minimal number of Floquet modes has been included in the
solution is to observe the calculated modal coefficients. Normally, 
the modal coefficients will decrease in magnitude roughly as the
attenuation constant increases. If instead they increase exponen-
tially one can conclude that more Floquet modes should be included in
the solution [46]. This minimum required number of Floquet modes is
evident in Fig. 4-8, where for fmax=5 the solution has converged at
pmax=qmax-4, while for fmax=7 the solution does not converge until
pmax-qmax=5. Note that this minimal number of Floquet modes increased
with the increase in the number of slot modes, which agrees with the
statement of point two that for a given geometry there is an optimum
ratio of Floquet modes to slot modes.

In general, for three dimensional mod3, matching problems of
the type being considered here there seems to be no simple way to "

arrive at the optimum number of modes required for convergence, and
one is forced to run convergence tests of the type shown. These
convergence tests are complicated by 'he fact that there are two mode .
sets to be considered.
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igure 4-8. -- Convergence data consisting of the transmission
coefficient at 5 GHz for the array shown for
various numbers of slot modes (only the cdd
modes are excited) vs. the number of Floquet
Modes; 80' E-plane incidence. I

Now that our discussion of the convergence properties of this
solution has been completed, let us proceed to show some of the re-
sults obtained using this solution.
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C. Thin r overed with Cielectric Slabs

In this section we are concerned with investigatin- the effects

of cladding resonaat slot arrays in dielectric slabs. While the
calculated curves are for thin (R<.Olx) arrays of rectangular slots,
many of the results obtained will apply to arrays of loaded slots
as well. This is true of the results obtained concerning the effects
of the dielectric slabs on the Wood's anomaly, which will be discussed
more fully in the next section. Also, the effect which the dielectric
slabs have of stabilizing the bandwidth of slot arrays as a function
of incidence angle has application to loaded slot arrays as well.

It will be shown here that arrays of rectangular slots covered
with dielectric slabs can be designed to overcome the undesirable
shift of resonance frequency with incidence angle normally found in
such arrays. This development is of practical interest since
rectangular slots may be more easily fabricated than loaded slots,
especially in thick panels where chemical milling does not give
good results.

In Fig. 4-9 we show an interesting series of calculated curves
which illustrates the effects of dielectric layers of various thick-
nesses on the resonance frequency of a slot array. The panel geometry
is the same as that of Fig. 4-5, and the curves shown are all for
near normal incidence (erl ° , ¢:90). The dielectric material is loss-
less with Cr=4.0. The number of modes used is the same as in Fig.
4-5. The curve marked NO DIELECTRIC is the same as the corresponding
8=10 curve of Fig. 4-5, and is calculated with the perforated metal

panel in Free space. If the slots themselves are filled with a loss-
less dielectric material with Erz4 (referring to Fig. 4-1, we have
E3=4.0, vi=1.0) the resonance frequency is reduced slightly. For a
thicker panel the reduction will be greater, as will be illustrated
in a later section of this chapter.

If we leave the dielectric in the slot (E3=4.0) and also coat
the array on both sides with dielectric layers of various thicknesses
(Cl-4.0) we obtain the remaining curves. Note that even for the
0.079 cm thick coating, with a thickness of only .017X at 6.5 GHz, the
reduction in resonance frequency is quite marked. Note also that
the shift in resonance frequency with dielectric thickness is not
monotonically downward, but that the panel with the thickest
dielectric layer (t=O.7 cm) actually resonates at a higher frequency
than several of the panels with thinner dielectric layers. flunk et.al.
[4] have shown that thi. resonance frequency vs thickness oscillation
is a transmission line effect which is superimposed on the usual
monotonic decrease in resonant frequency vs dielectric thickness,
and which tends to cause relative minima in resonance frequency for
dielectric thicknesses 8t= /4+n-, and relative maxima for Bt=3-/4+ni,
where = "Ili, i.e., is the propagation constant in the dielectric.
The shoulders on the curves for t=0.317 cm arid t=0.5 cm are due to the
same transmission line effects.
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The next three fi gures show the effec ts of coating a resonant4 slot array with dielectric layers of the Same thickness (0.7 cmn, but
varying dielectric constant,, (1 .5, 2.6, 4.0). Again the actual
parnel geometry is the saiii as in Fig. 4-5. Various incidence angles
are shown for both E- and H-plane incidenc- (i..e. , 90' anid ).

Comparing Fig. 4-10 with Fig. 4-5 it is evident that the shift
of the resonance frequency with -Incidence ,-tnqle has been reduced
somewhat over the free space case even thcugh the dielectric constant
is only 1.5. The frequency of the Wood's anomali null, i.e., the null
in the transmission coefficient which, for the non-dielectric case, i
associated with the onset of a propagating grating lobe, has been
shifted downward slightly in frequency due to the presence of the
dielectric layer. This downward shift is a function of the dielectric
tnickness and permittivity and will be discussed more fully in the
next section, where the null wil11 be referred to as a "surface wave
null Th P ne frequency at which the free snace grating lobe begins to
propaga e is not. changed by the presence of the dielectric layer.
This is evident from inspection of the 60 and 30" H-plane curves and
the 3 s E s-pliane curves whic have an abrupt change in sione at the
onset of the free space grating lobes. The frequencies at which these
changes in slope occur are anproximately 9.04, 111.24, and 11.24 Hz
respectively, which agree with the free space values evident in Figs.
4-4 and 4-5. The 30' E-plane resonance Curve nas a secod resonance
at 11.1 Ghz which is "forced" by the effect of the dielectric layer :-

on the Floquet modal impedance. This forced resonance does not result
in lossless transmission due to the propagating free space gratirg
lobe.

Moving on now to Fig. 4-11, we can see th t increasing the
dielectric constant froei h 1.5 to 2.6 has caused both the resonance

S-frequencies and the Wood's anonaly (surface wave) null freuencies to
move do.nward for the various incidence angles. The resonance
frequencies are almost aligned now.., wi th better alignment prevented
by the shoulder on tne 600 E-plane resonance curve. Both the 30' and
60i E-plane resonance curves have a nearly lossless forced resonance.

Note the abrupt change in slope of the 60' [-plane curve at 9.04 GHz
(the onset of the propaqating grati ng lobe). The increase in the
dielectric constant has allowed the formation of an incipient forced
resonance in the 6W -plane curve at 9.05 GHz. This forced resonance
right at the grating lobe onset can exist for this incidence plane

because the element pattern prevents the grating lobe from being
strongl excited at its onset. The 12.1 GHz resonance for 60' H-plane
incidence is again due to the effect of the dielectric layer on a
Floquet ,odal impedance, and not to a higher order slot mode resonance.

: No It is instructive to examipne the bandwidths of the various
resonance curves. Compared with Fig. 4-10, it is evident that the
banidwidth of the 60' H-plane curve has been increased considerably
with the increae in the dielectric constant. This increase is quite
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significant, for it tends to confirm previous predictions [4] that
the E- and H-plane bandwidths of a resonant plot array could be made
nearly independent of incidence angle by coating the array on both
sides with dielectric slabs of the proper thickness and dielectric
constant. The ratio between the 60' E-plane and 60' H-plane resonance
curve bandwidths would normally be approximately 4:1, while in Fig.
4-11 this ratio is reduced to 2:1. This example is not conclusive,
however, since the Wood's anomaly (surface wave) null just above
resonance for the 60' E-plane curve tends to narrow the bandwidth of
this curve. If this null were removed, the 60' E-plane bandwidth P
would increase. But note that this increase would tend to decrease
the ratio between the E- and H-plane bandwidths even more, provided
it wos limited to approximately a factor of tvwo. Much further work
has been performea on this subject, and the interested reader is re-
ferred to the work by Munk et.al., reported in reference [5].

The resonance curves obtained by increasing the dielectric
constant to 4.0 are shown in Fig. 4-12. The lower, primary resonance
frequencies are now aligned quite well at 5.5 GHz, although the dip
in the resonance curve for 60' H-plane incidence shows a calculated
loss of 0.6 dB. The 600 H-plane curve now shows a dielectric forced
resonance at 8.3 GHz, as does the 30' H-plane curve at 11.4 GHz. The
maximum ratio of the 4 d13 bandwidths is again approximately 2:1. I
Measured transmission curves for the geometry corresponding to Fig.

4-12 are shown in Fig. 4-13. The agreement is good. Tne stable
resonance frequency is confirmed, as is the reduction in the variation
of bandwidth with incidence angle. The measured dielectric forced
resonances are lossy due to the finite size of the measured panel
(approximately 8" x 10"). An important point is that the lowering of
the frequency of the Vood's anomaly (surface wave) null, which was
predicted by the theory to take place when the panel was coated with
dielectric, has been confirmed by the measurements. This phenomenon
will be discussed in more detail in the next section.

Figure 4-14 shows calculated transmission curves for the same
slot geometry with er still 4.0 but with the dielectric only half as
thick. Note that the 60' H-plane bandwidth has narrowed considerably
compared with the results of Fig. 4-12. The thinner dielectric is
not able to cause the increase of the H-plane bandwidth, which seems
to indicate that the thicker layer is required in order to obtain
the bandwidths nearly independent of incidence angle whici were
evident in Fig. 4-12. Measured curves corresponding to the calculated
curves of Fig. 4-14 are shown in Fig. 4-15. Again the agreement is
good. The stable fundamental resonance frequencies are confirmed,
as are the frequencies and general shapes of the dielectric forced
resonances. The measured loss at the funamental resonance is
orimarily due to imperfections in the array and to experimental error.

118



4--
00Q

0) L
r_- 4r

-~1 -- -- -

001

0 -o0 a

- -) -, 0 4) (A L)

-

4- 0 0

co -

La)

L 4. 4
o *-

L U

S- -

(ep -a VU

119



_____ ____ ____ ___ - -

t000 0

4-M

o S-

ill4=, LL

MJ 4)
a)

120)



-00 00

N ea

on a)

W ~ wz I- (

0 '

0 r,
04.

S.-

-. ( Ca .4

- 4- ca

M -O

S- 0

- - r U4-

-) .

X CU

LA.

121-



I -I

-0000 C_ _
%0

> 4.-

S- C 41N

(A j

m u

(0

U-

(aP) i~l

122



D. Dielectric Layers and Wood's Anomaly

In the previous section of this chapter calculated and measured
transmission coefficient curves were presented which showed that the
frequency of the Wood's anomaly transmission null was decreased with
the increase in the thickness of the dielectric layers surrounding the
resonant slot array. In this section we will show how this frequency
reduction can be quite simply determined without recourse to the
-computer. Also an explanation of how the dielectric layer affects the
Worl's anomaly nulls, the grating lobe onset, and the forced
resonances will be presented.

The tern Wood's anomaly has been used here to denote a null in

the transmission coefficient of a slot array which, for the free
space case, is associated with the onset of one or more propagating
grating lobes. Several of these nulls are indicated in Fig. 4-4. For
an array of small slots in free space the Wood's anomaly will occur
just below the frequency at which the grating lobe starts to propagate
in real space, which for normal incidence on a rectangular grid array
will first occur when the separation between adjacent slots is one
wavelength. The phenomenon was investigated by R.W. Wood [47] who was
concerned with explaining certain anomalous dark bands in spectra pro-
duced by optical gratings. He found that these transmission nulls
were due to destructive interference along the plane of the grating
which occurred when the spacing between adjacent lines was an integral
multiple of one wavelength (normal incidence). We are concerned here
with the same phenomenon.

Much research into this phenomenon has been done in the analysis
of phased arrays. In the phased array literature the phenomenon is
known by the name of blind angle, although the same term is also used
to denote transmission nulls due to other causes. We will hereafter
denote the Wood's anomaly phenomenon by the term "surface wave null",
since, as we shall show, the null is caused by the presence of a
surface wave field on the surface of the panel.

While the presence of a dielectric layer will lower the frequency
of this surface wave null it will not affect the frequency at which
the grating lobes come into real space, i.e., become propagating.
This can be seen quite easily by examining the Floquet modes of
Chapter III. However, a more physical explanation of this fact can
be made. In Fig. 4-16 the geometry for a plane wave incident on an
array of thin slots covered with dielectric is shown. The plane wave
is incident at an angle ei . Due to refraction the incidence angle
inside the dielectric becomes er, and from Snell's law we have

sine.
(4-24) sine /

23r
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INCIDENT
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GRATING' '
LOBE Ko E0

Figure 4-16.--Section of a dielectric covered slot array
with a propagating grdting lobe.

In free space the grating would start to propagate as soon as the
electrical spacing between adjacent elements became 2r radians. How-
ever, with the dielectric layer present the aratiwi lobe will not be
able to propagate until e the angle of the grating lobe direction
in the dielectric media, Vs less than ec, the critical angle for the
dielectric material. The critical angle ec is given by

(4-25) sin9 : I

Thus at the onset of the propagating grating lobe e. 6g, and

(4-26) K dx sin9 r + K1 dx sine c = 2T

Now if we apply Eqs. (4-24) and (4-25) and note that K1 =KoV/Cl/E

Eq. (4-26) readily reduces to

(4-27) K d (l+sine i) 2-

o x

which is the same equation which is obtained for the free space case.

124



I

Thus the presence of the dielectric layer does not alter the fre-

quency at which the grating lobes begin to propagate.

By use of Snell's law it is quite easy to show that the relative

phase of the incident wave at adjacent slots is not affected by the
presence of the dielectric, i.e., that i = The presence of the

dielectric will, however, affect the propagation between the slots.

We denote the propagation constant between the slots as K .. It is

evident that the surface wave null will occur when the electrical

spacing between adjacent slots is 2r. radians, so that for the Wood's

anomaly condition we have

(4-28) K1 dx sine r +Kw dx 2T

or, again applying Eq. (4-24)

(4-29) K° d x(sine i + K W/K ) = 2ar

For Kw=K we have the free space Wood's anomaly null condition.

As the dielectric layer increases in thickness, Kv, will increase

towards its limiting factor of K1 . This is illustrated by the curve

shown in Fig. 4-17. The points were calculated using the modal

analysis method. The panel geometry is the same as for Fig. 4-5, and

again 242 Floquet modes and 4 slot modes (f=1,3,5,7; g=O) were used.

The Kw/K0 values were obtained by calculating the e=6
0 ' transmission

curve for the various dielectric thicknesses, and determining the

Wood's anomaly frequency for that thickness. Once this frequency is

known the value of Kw/Ko is easily determined from Eq. (4-29).

These same Kw/K 0 values, and thus the surface wave null frequency,

can also be obtained by using only one Floquet mode. The method is

based on the fact that, for the free space case, the Wood's anomaly

null occurs when the Floquet modal impedance Tr of the mode

describing the incipient grating lobe is equal toozero. The grating

lobe will become propagating when the modal impedance changes from

an imaginary to a real number. For the nr modal impedance (free

space) these two phenomena happen at almo[ the same frequency since

Ir passes through zero as it changes from an imaginary to a real

qljlnti ty.

Now with a dielectric layer present, the modal impedance Zr(l) of

any Floquet mode evaluated at the panel surface is given by trahs-

mission line theory as

r~ rM
pq r r n + f.r) tan(y(l)t )

(3-45 ) Zr( 1 ) = 
qr(l) np _ _._pq_ _

S-r() pq tan(y.()t 1 )
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If we evjluate this Zr( 1) modal impedance for the Floquet mode
pq

describing the incipient grating lobe (for the case illustrated in

Fig. 4-17 this is the p=O, q=-l, r=2 mode) we find that the frequency

at which Zr(l) is equal to zero corresponds to the frequency of the
pq

surface wave null as calculated using the modal solution. The curve
of Kw/K vs. dielectric thickness shown in Fiq. 4-17 can be obtained

0 ..r(l)
by setting the left side of Eq. (3-45), i.e., P equal to zero

and solving the resulting transcendental equation to obtain the -t
surface wave null frequency. Thus a very simple calculation car, de-

termine the surface wave null frequency in the presence of a dielectric

layer. If several dielectric layers of different thicknesses and

permi ttivi ties were present the expression for Zr(l of Eq. (3-45)

could be extended quite easily to include their effects.

Now a frequency where some particular Zr( 1 ) is equal to zero
pq

will not necessarfly be a frequency where a surface wave null occurs.
For example, the element pattern may be such that the Floquet mode

with the zero value of Zr(l) is not excited. Referring back to Eq.
pq -

(4-19), consider the factors

e - xr*. zds - 1. eb x r zds.eb pg q"b pg :

pq

Now at a particular frequency where Zr(l ) is zero, this will be the
pq

dominating term in the system of equations unless one of the integrals

is also equal to zero for all eb j modes. This would occur, if the

element pattern of the slot is such that the pqr Floquet mode is not

excited, i.e., there is a null in the element pattern in the direction

of propagation of that Floquet mode.

Since this Zr(1) modal impedance is so important, let us briefly

discuss its behavior as a function of frequency and dielectric

thickness. We will here be speaking of the r=2 Floquet modes in I
particular, but the behavior we describe will apply to all of the

zr(1)
pZ impedances with suitable changes in sign.
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First, if there is no dielectric layer present Zr() T q the -9
free space modal impedance. For frequencies well below tne onset of

the propagating free space grating lobe r r will be a large negative
pq r

imaginary quantity. As the frequency is increased the value of npq

(and thus Z ) for no dielectric) moves monotonically upward along
pq

the imaginary axis toward zero. When it reaches zero the free space 4

Wood's anomaly null occurs, and for higher frequencips r moves
pq

slowly outward along the positive real axis and the pqr Floquet mode

now describes a propagating grating lobe. -

Let us now examine the behavior of Zr( 1) (Eq. (3-45)) with apq
thin dielectric layer present. For frequencies well below the fre-

quencies where n r and T r(l) become real Zr(l) is negative imaginary.
Auis herenypq pq r(l) pq
As the frequency is increased Z moves slowly up along thePq
imaginary axis toward zero, but without reaching zero, until the

frequency where nr( (the Floquet mode impedance in the dielectricfrequncy were pq

layer) becomes real is reached. Zr(l) then moves more rapidly up
pq

along the imaginary axis, passes through zero, and keeps increasing

along the positive imaginary axis until chanues to a real quantity,
rM pq

at which point Zr(l) becomes complex with a positive rea. .art andPq
the grating lobe now propagates in real space. As the frequency is

further increased the real part of Zr increases while the imaginary
pq

part slowly decreases to an insignificant value.

Now for a thick dielectric layer the behavior of Zr( 1) in the
r~i) r pq

range of frequencies where T1pq is real while npq is still imaginary

deevsfurther discussiol. Z r(l) moe oerpdl Ipthdeservespq mvs orerpdyuthimaginary axis, and continues upward until n becomes real. However,

if the dielectric layer is thick enough Zr(l may, as the frequencyPq
is increased, move upward along the imaginary axis, pass through zero,

continue to move upward along the imaginary axis high enough to

cause a forced dielectric resonance (i.e., a max in the transmission

coefficient), continue upward through +j'-, start upward again from

-y-, pass through zero acain causing another surface wave null etc.,
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unti 1 nr finally becomes real. Thus between two closily spacedPq r(l) r
frequencies, i.e., between where rpq and rq become real, respec-
tively, the transmission coefficient may rapidly change from null
to peak to null again due to the rapid charges in the Zr(l) modal

impedance for that particular Floquet mode. 
pq

The nature of the fields which exist on the panel urface at the
surface wave null frequency will now be investigated. Previous

investigations of nulls which occurred in the transmission coef-

ficieot for waveguide simulations of resonant slot arrays had been

shown to be surface waves by Munk and Luebbers [4]. Also, research
into phased array blind 3ngles have led to the conclusion that there

are driven surface wave fields at the frequency where the blind angle

occurs. Munk has suggested [48] that at the surface wave null
frequency (where Zr(l of Eq. (3-45) is zero) Eq. (3-45) ;s equivalent

pq
to the characteristic equation for a surface guided wave [49]. We

shall now show that this is indeed the case, and thus justify our
nomenclature of "surface wave" null.

Let us reconsider the specific case just investigated, the p=O,

q=-l, r=2 Floquet mode with E-plane incidence ( =90 ° ) Referring
to Eqs. (3-7), (3-11), (3-13), and (3-15) we see that this mode is TM
to the y axis, and that at the onset of the grating lobe the propa-
gation is in the y .irection. We now suggest that at the surface wave
null frequency this free space mode together with its counterpart

inside the dielectric describe a TM surface guided wave propagating
y

in the y direction.

Referring to Harrington [49] we find that if w; adjust his
- coordinate system and dimensions so that they agree with our own,

his characteristic equation for the K propagation constant for the
yodd TM surface guided wave mode traveling in the y direction [Eq.

(4-56) of Harrington] can be written as
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(.30) tI , (Ky)2 tan( K-(K tK) =1y

Nlow we note that this surface .qave cannot exist on our structure
unless it s3tisfies the Fio, et conritions. However, this can be

quite simply enforced for this case (p=O, q=-l, =90-) bj, letting

Ky V where V has beer defined in Eq. (3-8). Eq. (4-30) now
Y pq' pq a

becomes 'C

2_V _Vpq2~V 1  1 IV 2 -K 2
A(4-31) iKI tan( K P )pq o A

where the common fz-ctor tI has been eliiilneted. Referring tc

Eq. (3-11), we reco.:nize that Eq. (4-31) can be written a,.
0,,

(4•32) y (I) tan(y'(1)t = Y;pq pq o pq

\1)
If we now substitute for ypq and Ypq using Eq. (3-17), we readily

obtain

(4-33) r(1) K, tan(-y lt,) = ! r1 KoTpq K pq 1 E 1 0 p IJ

which, with slight simplification, can be written as
(4-34) rr + Jr(I) tan (y,(l)t)

pq pq pq

Comparing Eq. (4-34) with Eq. (3-45) we see that if the characteristic

equation for the surface wave is satisfied then Zr(l) for the Floquet
pq

mode corresponding to that surface wave will be zero. Thus a propa-

gating surfdce wave which satisfies the Floquet condition coincides

in frequency with a null in the transmission coefficient, justifying

our term "surface wave null". In addition, the curve of Fig. 4-17

can be obtained by imoosing the Floquet conditions oi, the character-
istic equation for a sLrface wave and then solving for the frequency
which satisfies the equation.
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E. The Brick Array and Wood's Anomal

As mentioned previously, the behavior and field structure of
resonant slot arrays and phased array antennas are quite similar
in many respects. Thus the discoveries made in one area may be
applicable to the other. Some unusual properties of the 'brick
array" phased array antenna are here shown to carry over to the A
corresponding resonant slot array. While this type of slot array
does not have the narrow band prcperties desirable from many appli-
cations, a knowledge of the phenomenon that it illustrates would be .;

important to the design of wide bandwidth resonant slot arrays.

The term brick array denotes an interlaced array of large

rectangular slots spaced closely together. The appearance of s,,ch
an array brings to mind a brick wall, as is evident from the insert
in Fig. 4-18. Farrel and Kuhn [50] reported some interesting results
for a phased array antenna of this type. Their antenna was not
covered with a dielectric layer, so that the grating lobe diagram
of Chapter III should have quite accurately predicted the Wood's
anomaly null frequency (i.e., the blind angle) for the array. Yet they
presented both calculated and measured data which clearly showed
the blind angle occurring at a scan angle well inside that predicted
by the grating lobe diagram. This would correspond in a resonant
slot array to a reduction in the frequency of the Wood's anomaly
null. In the previous sections of this chapter we have shown that
such a reduction could be caused by the presence of a dielectric layer.
However, a reduction of the Wood's anomaly (i.e., transmission null)
frequency for i periodic slot array due to the slot shape or
lattice arranqenient had not to our knowledge been reported.

In order to investigate this phenomenon several sets of plane
wave transmission curves were calculated for a slot array corres-
pond;ng to the phased array geometry of Farrel and Kuhn. In order
to eliminate possible thickness effects the modal solution for an
infinitesimally thin panel, which is given in the following chapter,
was used to calculate the curves in this section. All of the curves
were calculated using 50 Floquet modes (p and q range from -2 to +2,
r=l,2). The curves shown in Fig. 4-18 were calculated using only 1
slot mode (f=l, g=O). The curves are for various incidence angles
in the H-plane, and show the usual reduction with incidence angle
for the resonance frequency and the frequency of the Wood's anomaly
transmission null. Tho grating lobe diagram yields the following

Lfrequenc.ies at which grating lobes become propagating: e=l °, 13.86
and 14.21 GHz; 6=301, 10.88 GHz; e=60 ° , 10.01 GHz. It is evident
from the curves of Fig. 4-18 that the Wood's anomaly transmission nulls

hoccur at the frequencies of grating lobe onsets for the various
incidence angles. This is what is expected for a periodic array with
no dielectric present.
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Now let us observe the curves of Fig. 4-19. These transinission
curves were calculated under the same conditions as those in Fig.
4-18 except that 3 modes (f=1,2,3; g=O) instead of one were used to
describe the fields in the slots. Note that for all three inci jpnce
angles the transmission null has been moved downward in frequency.
This shift is similar to that observed for the dielectric coated slot
arrays in the previous sections of this chapter. There is rio die-
lectric present in this case, so that this shift is due to some other
phenomenon, which requires higher order modes in the slot.

Stark, in a paper [51] which is partly concerned with explaining
the previously noted results of Farrel and Kahn, concludes that two
slot modes are required to calculate the correct blind angle value
for the "brick array". This agrees with our results and strongly
suggests that the phased array and the resonant slot array nulls
are due to the same phenomenon. Stark investigated several
oeometries and found that the shift of the null was strongly deperd-
ent on the lattice spacing. He also found that the shift was not
observed for arrays of ;lots arranged in a rectangular grid rather
than an interlaced grid and scanned in the H-plane. We performed
calculations for an array identical to that of Figs. 4.18 and 4-19
except that the slot .;idth b vas reduced from 1.2 cm to 0.3 cm. N'o
change in the null frequency was observed.

The physical explanation of why the transmission null shifts

downward in frequency may be as follows [48]: It is known that if
the slots in an array are such that two different slot modes are
present which resonate at separate but closely spaced frequencies the
result will be a null in the array transmission coefficient. This
null will be at a frequency between the two frequencies where the in-
dividual modes resonate [16]. Examining the calculated data for the
600 H-plane curves of Fig. 4-19 we find that indeed two slut ,od:: are
strongly excited, the f=l g=O node (TE10 ) at apiro.iiwtely b ,.Iz,
and the f=2 g=O mode (TE20 ) at anproxi iiately 10 GlIz Thus thrJ 7 (l1z

null in the 60" H-plane curve of Figj. 4-19 .ar-n he exii,, n'!,rI d , to
the destructive iniertereicp ol the I reso,o flt i dL-s, t i-it

the absence of the Wood's anomaly null at 10 (,Hz it; then du,- t,, a[zero in the 2-m-de e!ement pattern In a direA.ion s uc (s ;.o lr!: Vi.
ihe sudden exci tation of the gee ti r ) l[,e. Th,_ '. ratii, 1 L.
beqi n t o p ro)aqa te at th is req uenc.' , howeve , ca sin 1 ti m. s !n
discuntiut ty evident at lu 61iz.

Befor' l,:ariInu tlis yli : there i ai,,j',..) interesting phenomenoii
evident ir ti,. !,:, i J w !- .. . i.j. 4-19 which deserves explan-

ation. Inis , i , ,,l , ,:' il(: dh urupt changes in slope which
occur dt approiii.el, i t. i rz I( ' ::3 0 , and at 10.6 GIIz for -:60".
These disrontin'lities are due to the onset of a different qrating
lohe than is responsible for the Wood's anowal. nulls. Pie grating
1oh resporis H e for th.e disfol.itoilities Ihlj i ,n to proplinate ii ti e
Q':,9~ , .. .. d rttii . Iii- o nn i i tr' r~r l ne

1 3.3UI' - ' =0 f J e ]i~ l , hl'- J;' - ,:li, I-'It F ir ..O~ l .1133lru ,
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of this grating lobe from causing a Wood's anomaly null. Its sudden
emergencc into real space does, however, cause these discontinuities
in the transmission coefficient which are evident in Fig. 4-19.

The discontinuity in the e=l curve at 13.3 GHz is caused by the
same process but the grating lobe in this case is not one which
propagates in the 9=90', =0 ° direction. In this case the grating
lobe in question is associated with one of the nulls evident in the
e=] ° curve of Fia. 4-18.

F. Thick Slots Filled With Dielectric -A

Most of the work done on resonant slut arrays has been performed
on thin arrays where the panel thickness t is ap[-roximately 0.01 :,

inches or less. This is due to several redsons. One reason is that, 2
as discussed in Chapter ii, Babinet's principle does not give good
results for arrays much thicker than .001:'. (You will recall that in
order to use the mutual impedance method to calcu!ate transmission
through a slot array one must apply Babi net's Principle.) Another
reason is that thick arrays of slots are difficult to make, and this
difficulty is increased .;hen loaded lots rather than rectangular
slots are used. Thick slot arrays are desirable, however, for appli-
cations where mechanical strength is required. Thus it seemed
desirable, in order to simplify the construction problems as much
as possible, to design a thick array of rectangular slots which would
have both mechanical strength and good electrical properties.

As mentioned several times previously, the usual shortcoming
of arrays of rectangular slots is that their resonance frequency
shifts with incidence angle. This shortcoming can be eliminated by
using slots loaded with tho Babinet complement of a short circuited
transmission line. As ar, alternative to this, it was felt that
perhaps the same good qualities of the transmission line loaded slot
could be obtained from a thick rectangular slot if it were 1illed with
a high permittivity dielectric. This should load the slot much as a
transmission line does, in that the resonance frequency of the slot
would be reduced and its bandwidth would narrow.

After investigating many different geometries and dielectric
constants using the modal solution computer program, the geometry
shown in the insert of Fig. 4-20 was found to have a stable resonance
frequency with incidence angle, as shown by the transmission curves.
Note that the incidence angles range to 80" in both the F- and H-
planes, which represents a very severe stability test. In a previous
section of this chapter another technique for stabilizing the
resonant frequency of an array of rectangular slots was shown. This
method required the array to be covered on both sides with a layer of
dielectric, which eliminates it from applications which require the
metallic panel surface to be exposed. The present technique does
not require these oxternal dielectric layers in order to achieve fre-
quency stability with incidence angle.
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Several attempts were made to fabricate a panel with the dimen-
sions of Fig. 4-20 by means of chemical etching. The slots were then
filled with Emerson and Cumming Stycest 35DA, a casting resin with
Er=5 .0. These pnels showed good angle of incidence stability but
considerable loss at resonance. A typical set of measured trans-
mission curves for such a panel is shown in Fig. 4-21. Examination
of these thick, chemically milled panels showed considerably
nonunifornity in the size and shape of slots. Another panel was
made using the electrical discharge machining process. This panel
appeared to be much more uniform than the ones made using chemical
milling. The slots in this panel were also filled with the Emerson
and Cumming Stycast 35DA, and the resulting measured transmission
curves are shown in Fig. 4-22. Note that the transmission loss at
resonance has been drastically reduced, but that the resonance
frequencies still shift slightly with incidence angle in the E-plane.
This shift is related to the fact that the measured panel resonates
at 10.2 GHz whereas the calculations show the resonance at 9.2 GHz.
Since the E-plane Wood's anomaly occurs at 10.7 GHz and 10.1 GHz for I I
60' E- and 800 E-plane incidence, respectively, it is evident that
the E-plane shift is caused by the nearness of Wood's anomaly to the
resonant frequency. Thus if the measured panel had resonated at the
design frequency of 9.1 GHz the i-esonance frequencies would have been j
stable with incidence angle for E-plane as well as H-plane incidence. d

The most likely explanation for measured resonance being at 10.2
GHz rather than at 9.2 GHz is that the relative dielectric constant
of the casting resin was less than 5.0. This would not be too
surprising, since 10 GHz is the upper limit of the applicability
of this material.

Thus, the measured curves obtained, although not in perfect
agreement with the calculations, indicate that the concept of ob-
taining a stable resonance frequency by filling thick rectangular
slots with a dielectric material is sound. The resonance frecuencies
were perfectly aligned for H-plane scan angles, and the shift for
the E-plane scan angles was due to the nearness of the Wood's
anomaly null to the resonance frequency.

If the metallic surface was not required to be exposed, this
design could be further improved by coating the array on both sides
with a dielectric layer to reduce the change of bandwidth with inci-
dence angle, as discussed in Section C of this chapter. An example
of this is shown in Fig. 4-23, where the thick array of Figs. 4-20 to
4-22 has been coated on both sides with a dielectric of er=1 .5,
.635 cm thick. The change of bandwidth with incidence angle is con-
siderably less than for the uncoated array of Fig. 4-20.
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G. Thickness - Dielectric Interactions

In the previous section measured and calculated results for a
particular thick panel design were presented. In this section we
shall present calculated transriission curves which illustrate the
effects of panel thickness on various panel and dielectric geometries.
We are concerned primarily with the bandwidth and resonance frequency
of the transmission curve, so that only the normal incidence results
will be shown.

The basic geometry of the panels considered will be the same as
for the panel of Fig. 4-5. However, the thickness Z of the panel will
now be varied from .015 cm to .254 cm. For these various thicknesses
three different dielectric configurations will be studied for their
effects: 1) no dielectric, 2) dielectric in slot only, and
3) dielectric in slot and in a .159 cm (1/16") layer on each side of
the panel. The dielectric is lossless with Er=4 .0. In all of the
following calculated curves 242 Floquet modes (pmax=q =5) and fourma
rectangular slot modes (the modes f=1,3,5,7; =0 a were sed. Whle
only rectangular slots are considered, resonant windows with other

slot shapes should behave similarly.

In Fig. 4-24 we show calculated transmission coefficient curves

for a resonant window with no dielectric present and with the
thickness Z varying from .015 cm to .254 cm. Despite the wide range
of thickness, the resonance frequency has increased by less than 4%.
This agrees with the observation made in Chapter II that the resonance
frequency of a waveguide window is relatively uneffected by changes in
thickness. The more prominent effect of the changing thickness is
the chanye in thp transmission curve bandwidth. Increasing the thick-
ness Z will in general decrease the bandwidth of the resonant surface.
This also agrees with the observations made in Chapter II con-

cerning waveguide windows.

Let us now consider Fig. 4-25. For these calculations the slot
is filled with a lossless dielectric of relati w permeability 4.0.
For this configuration the resonance frequency as well as the band-
width changes with thickness, as shown by the various transmission A
curves in the figure. This decrease in resonance frequency with
thickness can be explained by considering the case of an infinitesi-
mally thin panel. For the infinitesimally thin panel the resonance
frequency will not be effected at all by filling the slots with
dielectric. One way of seeing this is to realize that this dielectric
layer will itself be infinitesimally thin and thus can not affect the
electric fields of the Panel. Mathematically, this statement can
be justified by noting that the integral equation expressions for the
fields of the thin panel formulated in the following chapter do not
depend on the parameters of the maLerial filling the slot (except,
of course, for the special case where this material is a perfect
conductor). As the panel is made thicker the material in the slot
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becomes finitely thick, and thus can affect the fields of the thicker
panels. Further, the interior of thp slots is a region of relatively
high field strengths, and thus the dielectric material of the slot
will have a considerable effect on the resonant frequency even for
quite thin panels. Comparing Figs. 4-24 and 4-25 wie see that tvon
for the thinnest panel considered the resonance frequency is reduced
by about 10O:- when the slot is filled with dielectric of cr=4 . As
the panel is made thicker a greater portion of the panel fields are
within the slot, and thus the resonance frequency will continue to
decrease. A towier bound for this decrease is the original resonance
frequency divided by the square root of the relative dielectric
constant of tie material filling the slot. This lower bound can never
be reached, however, since this would require that all the space
around the panel have Err= 4. This lower bound can, however, be
approached quite closely by a thick panel. The thickest panel con-
sidered in Fig. 4-25 is only 0.1" thick and yet is only 1 GHz away
from the lower bound, which for the panel and dielectric considered
here is about 5.6 GHz.

The decrease in bandwidth with increasing thickness is greater
than that for the previous, non-dielectric case due to the loading
effects of the dielectric. The relatively greater decrease in band- V
width is partially compensated by the decrease in the electrical
spacing between the slots, which is a consequence of the decrease
in the resonance frequency. (You will recall from Chapter I that
decreasing the slot spacing increases the transmission bandwidth.)

Finally, the transmission curves of Fig. 4-26 are for slotted
panels coated on both sides with a 1/16' thick dielectric layer, with
the slots being filled with the same dielectric material. As shown
in Reference [4] and in Fig. 4-9 a thin layer of dielectric will 1
lower the resonance frequency to nearly the lowier bound of l/V'Er
times the free space resonance. Thus we see from the rcsults of
Fig. 4-26 that for this configuration the increasing thickness does
not affect the resonance frequency, since this has already been
lowered by the dielectric layer. The bandwidth, however, continues
to decrease with increasing thickness.
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CHAPTER V
THIN LOADED SLOT ARRAYS

In this chapter a moment method solution for the reflection and
transmission coefficients for an infinite, periodic slot array will
be derived. The result is similar to that obtained by Chen, who
applied it to arrays of rectangular [26] and circular slots [30]. The P
solution will be extended here to arrays of loaded slots, using the
approximate mode sets presented in a previous chapter to describe the
electric fields in the loaded slots.

One might question the need for a thin panel solution, thinking
that the same results could be obtained by using the thick panel
solution presented previously and making the panel very thin. How-
ever, the thin panel solution has two advantages over the thick panel
solution. The first is that only one system of equations needs to be
solved for the thin panel solution, whereas with the thick panel'
solution two systems (syninetric and antisynimetric) must be solved to
obtain a transmission coefficient. The other advantage is that the
dielectric layers on either side of the panel need not be identical,
as was the case for the thick panel solution given in Chapter IV.

A. Derivation of Moment Method Solution

The geometry for the periodic slot array is again shown in
Fig. 5-1. The array may be covered on one or both sides by a
dielectric sheet of arbitrary thickness, perinittivity, and permea-
bility. The direction of the incident plane wave is determined by
e and (see Fig. 3-1), and the complex amplitudes of the reflected
and transmitted plane waves are desired.

Using the Floquet modes of Eqs. (3-12) to (3-15) the incident
fields in the free space region (i.e., external to the dielectric)
can be expressed as:

2
(5-I) . -I Ar a l

r= 1

. (5-2) R'= Ar
al

where the Ar are known coefficients which determine the magnitude
and polarization of the incident plane wave. If 'e now define the
quantities
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Figjure 5-l.--Front and edge views of a periodic array of
loaded slots covered by dielectric layers.

T)r (1 ). 0
(5-3) a1 r= 2 Ar 00~y---z exp[-jf,(y 0  -y0 )t1
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we can, by use of Eqs. (3-32) through (3-35), and (3-43), express the
tangential fields at the front surface of the panel as:

rd [adr( -DFr)]e a r ,r(a + " a. lr£1 r=l i=2

2 rdr r)Fr(l) 2 a-Il)(5-6) HzO [ai _pr(l+DF ]nai 1 rl rl i=? i a

r an r
rri

where the p and ai are unknown modal coefficients. The Fl.oquet
mode functions eai and hal are given in Eqs. (3-49) and (3-50), and -
were obtained by modifying the free space Floquet mode functions so
as to include some of the effects of the dielectric layer. Note that
the above equations are identical to those given in Chapter IV, since
the geometries are identical for the space external to the panel
itself.

The tangential fields at the back surface of the panel can be
expressed as:

2 - ' 2 )',

2

where the bm are unknown n odl coefficients, and the Floquet mode
functions are given in Lqs. (3-51) and (3-52).

In urder tc determine the unknown quantities we will enforce the
tangential field boundary conditions over the central periodic cell
(Fig. 3-2). bue to the periodic rature of the Floquet modes, this
will actually enfor -e the boundary conditions over the entire surface
of the array. The required boundary conditions are that the tan-
gential E and H fields must be (ontinuous across the aperture, and
that the tangenti-l L field must vanish at the conducting surface.

Enforcing the electric ,ield boundary condition, we equate
Eqs. (5--) and (5--7), obt.ininrl
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2 22(5-9) a rad +JD r(I-DF r)j al )+ 1' e

r=l r=l i=2 =l m=l

in slot aperture- Ni

LO on groundplane

where Eb is the unknown tangential electric field in the slot

aperture. If we now take a cross product with faa 2 )* , take a dot

product of this result with z, and apply the orthogonality relation
of Eq. (3-22), we obtain

'1' rd r(lDr)]f -(l) r E(2j-r2*
I [aa a a)x2 )*ds b1 a a l

C0 a d rr(
2 )*.Zd]

a al

where Iads denotes an integration over the entire central periodic
cell and Sb ds denotes an integration over the central slot aperture
only. The tangential E field boundary condition of zero on the con-
ducting surface is applied by making the rightmost integration in
Eq. (5-10) equal to zero except over the slot aperture. Since
jr(l) = -r(2) (3-51) Eq. (5-10) can be reduced to

al al (-1

(5-11) ard + °r(lDFr) b = b ar()*. fr(2)jT-(2)*
(51 1 +P1D 1 Jbb a! z J /faeal X1al zds

If the dielectric layers were absent Eq. (5-11) would simply state
that I+R=T for an infinitesimally thin planar scatterer.

Multiplying Eq. (5-9) by ,r(2 )* and taking the dot product with z
we similarly obtain ai

(5-12) arf l xh-r(')*.zds b rj J-r2)x4r 2)* ds
1' ai 1 J al ai b b ai

'a
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which can easily be reduced to

(5-13) a' = b. r E . Ar(2 'zds er2 r().,
I 1 Jbb ai S4a a i xai

The continuity of tangential H across the slot aperture is
nowi enforced by equating Eqs. (5-6) and (5-8) over the slot aperture,
resulting in

(5-14) %'[ard-r( +DF r) i]r(l) 2 2 a7r V 7b h

Substituting for a.ran b zfrom Eq. (5-13) and combining terms
we obtai n: 1 in

2 2 2
(5-15) y r(, +D r) F l)+ V br --(2 V rd F-rO

a~hrl) r!:1 1 a 1 rHl I al

2
V V~ ~ (Jr( I)+Fr( 21)) r.x. r () r( 2)* Jea

rli=2 J ba

Substituting for ~r and b r from Eq. (5-11), Eq. (5-15) readily
becomes

2 1DFr rdf-(1 2 ( rDr l b-ba
(5-16) - ' r l-D ) rd arl L+ ~ l r) al1 fbbXa

r~1 (l DFr a1  l r=1 (1-OF r) ale -r(2) xF-r( 2 )* .zds

-. xvh''* zds
2 Jb bal 2

+ y ______ rd F-r (1
r- a] I 2 xi~)Ks r al

2~ j F~l4-r(2)r)*-d rbb l
- ~ a a] -(

aa

al aa
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In order to simplify Eq. (5-16) we shall first evaluate the

integral ai2)x a2)*zds. From Eqs. (3-12) to (3-15), (3-18),

(3-19), (3-51), and (3-52) we can write

U 2+V2

( er(2)x1r( 2 )*.zds= 1 .P pq__ exp(-j(UX+V ))5-7 a ai a /d y a T2 PY'

Pq xy p

exp(+j(Up x+V pqy))ds - r"
Pq pq r-2)
pq

since the area of the central periodic cell is equal to dxdy (sec Fig.
3-2). In addition, we can combine terms by introducing the -r

pq
function defined in Eq. (3-50). With these changes Eq. (5-16) becomes

2 +DFr 1 1 7 .x 
'ds

(5-8DFr 0 00?1 00 bb

2 _-_ + Tr zdsIpq "
r=l i=2 Pq bqr) P f x"Pq pq -=

2r
2 rd ( +1rFr) I Tr

r-l _1-DFr 0'00 :

The unknown quantity in Eq. (5-18) is the slot aperture electric ii
field lFb. We can expand this aperture field usinq the mode sets
presented in Chapter III as A

(5-19) Eh b C. e
N bj

where we are using N modes to approximate the aperture field distri-
bution. The proper set of ebj modes will be chosen from those in
Chapter III depending on the shape of the slot aperture, but this will
not affect the present derivation. Expanding the unknown aperture
field thusly will allow us to use a moment method solution to obtain
the unknown aperture fields. Since the fields are expanded in modes,
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this type solution is often referred to as modal matching. Applying
Galerkin's method, we substitute from Eq. (5-19) for Eb, simultane-
ously cross multiply Eq. (5-19) by ebn, and take a dot product with
z, obtaining

r I N
2E +Dr 1_ 1 - - Cr ! -'~o

(5-20) 1+DF 1 . Nr.~ l + -M.ie_ "wozds. ds,
r1l _LDFr & 7 r Tlbbn0 j l Jb bjr00 O0 b

2 N( ti--
+ I e Cj; e.x zds

Zr-  )J Pqz j=l 'b bj pqZr + pq

2 -W

ard 2

- a " 2 r " ebn x %r zds .

r=l 1-DF r  o b n

Equation (5-20) is really N equations with the N unknowns being the
Cj. Note that Eq. (5-20) requires the equality of integrations only
over the slot aperture. This agrees with the condition that Langen-
tial H need be continuous only in the slot. The Floquet mode set
has been truncated at 2M terms so as to allow a computer solution
for the unknowns. Normally N will be quite small, i.e., usually
less than 10 modes are required to approximate the fields in the
slot aperture in order to obtain a valid result for the transmission
coefficient. However, since the slot makes up only a small part of a
periodic cell, many more Floquet modes will be required in order for
the solution to converge [40]. But even though 2M is quite large
compared with N, only an NxN system of equations (vis. Eq. (5-20))
will need to be solved.

Once the C are determined the value of pr can be obtained by
combining Eqs. 5-II), (5-17), and (5-19) as

rd~~ 1 1 I
(5-21) -r r ) . zdsI-DFr  .~ 1 ;b e b  o IDF r i

The free space modal reflection coefficient Rr is then nbtained from I
Pt by using Eq. (3-44). Similarly, the Floquet mode coefficients

for the back side of the panel are given by

N
(5-22) brj eb zds

j=l 1 b Pb pq
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The free space modal transmission coefficient Tr is then readily 1
obtained by using Eq. (5-22) to evaluate h and then applying Eq.
(3-66). The specularly reflected and transmitted plane waves in free
space are then given by Eqs. (5-i) and (5-2) with Rr (-Rr for the
reflected H field) or Tr substituted for Ar.

This solution was programmed in Fortran IV for computer
evaluation. The programming was quite straightforward. The

fbebjx p*-Zds integrals were evaluated in closed form, with the
results liven in Appendix B for the various slots considered in Chapter
III. Note that the coefficient matrix obtained from Eq. (5-20) is
Hermitian. Thus only the upper triangular portion of the matrix needs
to be evaluated. This symmetry results in a siqnificant time savings
for this method, since much more computer time is required to evaluate
the coefficient matrix than is required to solve the resulting system
of equations due to the high 1-1 to N ratio.

The computed curves presented herein were checked for con-
vergence. Calculated results were obtained for resonant panels with
single loaded, 4-legged loaded, and 3-legqed loaded slots, and will be
presented in the remainder of this chapter.

B. Single Loaded Slots

The single loaded slot array was developed by Munk [15,25] in
order to eliminate an undesired shift of resonant frequency with
changing incidence angle which limited the usefulness of previous
periodic surfaces. These previous surfaces had either rectangular
or circular slots, and as discussed in Chapter I their poor perform-
ance limited their possible applications severely. Using an imped-
ance method Munk calculated the transmission coefficient curves .hown -
in Fig. 5-2, v, hich are taken from the above mentioned reference.
Note that the resonant frequency is quite stable with incidence angle.

Trans~vlssion coefficient curves for the same loaded slot array
were calcu ated by the modal matching method. The ebn modes used to
describe the electric field in the loaded slot are given by Eq. (3-73)
with z=O. For this plane of incidence the even ordered modes will
not be excited, and thus are not included in the calculations. The
risults are shown in Fig. 5-3. The agreement between the two methods
is quite good, with both methods predicting lossless transmission for
arbitrary incidence angles in the =90 ° plane (providing that no
propagating grating lobes exist).

The mutual impedance method as presented by Munk in Reference
[3] was used only to calculate transmission curves for incidence
directions with =90. However, measurements made at both the Ohio
State University (see Fig. 5-4) and elsewhere [14,52] showed con-
siderable loss at resonance for high incidence angles with =0° ,

This loss is due to cross polarized radiation from the transmission
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154



. . . . . . * * . '* *I r

0

-2-
-4 .7 i --

- \ dx: dy : 1.778 cm8~~~ ,goo°.90 '  °0

S o0.28ocm \
h a 0.432cm

4 w z 0.203cm

-102

-14
9 10 II 12 13

FREQUENCY (GHz)
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line load, and can be explained qualitatively as follows: The arrows
contained in the slot of Fig. 3-9 illustrate the direction of the
electric field vector in the slot for the dominant sinusoidal mode.
It is evident that with the incident E field polarized as shown any
cross polarized radiation from one side of the transmission line load
(i.e., region 1b) would be exactly canceled by radiation from the other
side of the transmission line load (i.e., region 1c), providing that
is equal Lo 90 ' . However, for angles of incidence with 4 909 the

cross polarized radiation from the opposite sides of the transmission 9.
line would not cancel due to the phase difference introduced by the
finite width of the transmission lire.

Using the modal matchina method this loss can be calculated.
The transmission curves presented in Fig. 5-5 are calculated for the
array measured for Fig. 5-4, and show good agreement with the measured
data. The curves were calculated using 374 Floquet modes and 7 modes
in the slot, with the even ordered slot modes now included. Con-
vergence tests were made in arriving at these figures, with the
required high ratio of Floquet modes to slot modes evidently due
to the complex, non-symmetric shape of the slot. Acutally, even
with 374 modes the solution had not quite yet converged, and this may
be partially responsible for the 2.0% error in the calculated
resonance frequency. The magnitude of the transmitted cross polar-
ized radition was also measured and is shown in Fig. 5-6, with the
corresponding calculated curves in Fig. 5-7. These curves show that
the magnitude of the cross polarized radiation at resonance in-
creases with increasing angle of incidence. This is due to the in-
creasing phase difference between the two arms of the transmission
line load. !

Note that while the calculations accurately predict the level of
the cross polarized radiation, the mcasured transiniss ion loss is -

somewhat greater than is calculated (Figs. 5-4 and 5-5). This is
probably due to copper losses and to imperfections in the array
el em1ents.

The difference in impedance levels between the T1 and T2  trans-
00 g

mission coefficients must be taken into account when calculating the
cross polarized transmission coefficients and also when checking for
conservation of energy, viz.

12 2 ' 2 IT1  '2 2

(5-23) -A1  + + _ 00 001 oo + ooJ2
2 T + -- ' 2 2

00 r 00 00 00 00 '00

providing no gratinq lobes can propaqate. While conservation of
energy is not a sufficient condition tc assure accuracy, it is a
necessary one.

157



LL z

I--
U>

2~ a)

10C 0

U U -

c. a)

0 a) 4

L n

LA

I 5,R



2h

ccJ

cmc

0~ (0w

2~CU

0 C) >0

0~0

UC) zN'

ozJ to Z n
0 o 0 0 (-

00
. u L -13 4-

CQ~

0S) II

~~73



F--

hU Q)LA
zN

0I

F--
U. W

00

wo

0-)
0 -0 4-

0 0+

CY

. 00

U~ L)

0+ 0

v 0)

Eo

1LIY
()D.

S8P) I I



This cross polarized radiation is undesirable for most appli-
cations. It can be reduced by arranging singly loaded slots so
that the load extends in opposite directions on alternating slots,
thus canceling cut the cross polarized radiation [14]. Alternatively, -,

loaded slot elements can be designed so that they do not radiate a
significant cross polarized component. This method is better for many
applications since the resulting surface will transmit waves of arbi-
trary polarization without the need to interlace two orthogonal arrays
of single loaded slots. Two examples of this type of slot element arc
the 4-legged and 3-legged symmetric loaded slots which will be con-
sidered in the remaining sections of this chapter.

C. 4-1eged Symmetric Slots

The 4-legged symmetric loaded slot geometry is shown in Fig.

5-8. Due to its symmetry, resonant windows made with this type of

Yy

si ( 2 nw n os= (2n rl

Figure 5-8.--Electric field polarities for the n-l siiie and coine
modes for the 4-legged symmetric loaded slot.

slot do not have the large cross polarized transmission 1esses
exhibited by arrays of singly loaded slots. Also, this type slat
has the advantage, at least for most applicdtions, of transmitt ng
arbitrarily polarized waves. For a given slot width and shape, Vie
4-legged element would tend tc be ayere wide banded thar. t-ie cor-
responoinq sinqle loaded element.

Thu ebj modes used to deschie Lhe electric field in the 4-1egged
loaded slot are qiven by EQ. (3-76) with z:-). The olrt. distri-
butions of th. electric fif.ld fur tl,,.: r- s nu ad co..ine niudes are
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sketched in Fig. 5-8. With the incident E field polarized as shown
the n--l sine mode will be the dominant mode in the slot. At the
first resonance the calculations show that the fields in the slot
will be almost exactly described by this mode, since its modal
coefficient will be several orders of magnitude greater than for any
other mode. Contrarily, the n=l cosine mode will not be excited at
all 'or incidence directions in the cardinal planes (i.e., =O° or
4¢=90°), This can be explained by referring to Fig. 5-8. For inci-

dence angles in the =0° plane the coupling of the incident E field
with the n=l cosine mode in region 1 of the slot will be exactly
canceled by that from region 2. Similarly, the coupl.ng over regions
3 and 4 will cancel. For incidence angles in the €=90 ° plane, regions
1 and 3 will cancel one another, as will regions 2 and 4, Similar
results are obtained for all of the other odd ordered cosine modes.
Thus these odd ordered cosine modes need not be included in the com-
puter program for cardinal plane incidence angles, resulting in a
considerable time savings. (Naturally, including them will ,lot rpsult
in incorrect results; the calculated modal coefficients will equal zero
within the limits of round-off error.)

ihe E field polarities for the n=2 sine and cosine modes are
illustrated in Fig. 5-9. Using similar arguments as before, it is

y Y

K K

sin n , 2 Cos (2n7r
Fi.ure 5-9.-..Llcctri(, field polarities for tlhe nz2 sine and cosine

modes for the -legged symmetric leaded slut.

eviJent that the sine mode will nnt be excited for incidence angles
with 4.90', while the cosine mode will not L2 excited for incidencr
,;ngles with 0-0". These nz:2 modes descrilbe the field5. in the :il't
at the second resonance. Thus while the same mode (the r=1 sin.' ,node)
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is strongly excited for the first resonance for both cardinal inci-
Oence planes, this is not the case for the second resonance. There,
i.hich mode is excited depends on the direction of the incoming plane
wav,. Some applications for resonant windows require that the second
resonance be as far above the first as possible. This knowledge
about the electric field distribution in the slots may prove quite f
helpful in designing new slot snapes which have the required second
resonance properties.

Now that the method for eliminating the unexcited slot modes
for the various incidence directions has been discussed, we are ready
to present some computed curves along with experimental verification
of those curves. hlie f rst series of curves is for the array of
slots with the geometry shown in the inset of Fig. 5-10. The slots
are in a square grid arrangement with 1.355 cm spacing. The paraneters
b, c, and d describe the slots thenvselves and are defined in Fig.
3-11. The actual panel was made by chemically etchirg the slots in
a 0.002" thick layer of copper on a 0.072 cm thick dielectric sub-
strate with Er= 2 . 38. The effects of the dielectric layer are included
in the mode matching solution. The effects of the finite thickness
of the copper are negligible for this thickness and frequency. The
number of Floouet modes used to calculate this series of curves was
242, with p and q each ranging from -5 to +5, and r equal to 1 or 2.
The number and type of modes used to describe the fields in the slots :-

varies depending on the plane of incidence, and will be given for
each case.

In Figs. 5-10 and 5-11 are calculated and measurod curves for the
4-legged slot array for various incidence angles 6 in the -,0 ° plane
(see Fig. 3-1). The frequency range includes the first resonance
region. The curves were calculated using the first 7 sine modes in
the slot. The agreement between the calculated and nasured curves
is quite good. Note especially that the calculations predict very
accurately toe shift of the resonance frequency with incidence angle.
This is often the most important parameter of a ,esonant window.

Figures 5-12 and b-13 show calculated and measured curves for
the same frequ,.ncy ran.e but for incidence angles with ¢=90. The
odd sine modes and even cosine modes were used to describe the fields
in the slots, with n ranging from 1 to 7. The agreement is again
quite good. The discontinuities in the calculated curves are surface
wave nulls associated with the or.set of propagating grating lobes.
The frequencies at which the grating lobes start to pro.oagate are
indicated on the abscissa for the various incidence angles. For a
square grid array, ( dx=dy) for a given incidence angle, the
grating lobes will start to propagate at the same frequency for both
the 0=0 and (;=90 ' incidence planes . Yet the surface wave nulls were
not evident in FigIs. 5-10 anr 5-i, since the element patLern pre-
vented the grating lobes from being suddenly excited in that plane.
The measured nulls are not so deep and pronounced as the calculated
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ones due to the finite size of the panels measured (approximately
1 ft. square). The oscillation in the 80' curve near 8.5 GHz is
assumed to be due to a measurement error.

These first resonance curves could also have been calculated
using the impedance method of Munk [3]. However, the second resonance
curves which are about to bc presented have not been calculated using
the mutual impedance method. This is because higher order modes are
needed to describe the slot fields in the second resonance region, and
the presence of these modes makes the application of the mutual in-

pedance method somewhat more complex.

Calculated and measured transmission curves showing the second
resonance for incidence angles in the A=0 ° plane are presented in
Figs. 5-14 and 5-15. The first 7 sine modes are used to describe
the slot fields. The general shapes of the calculated and measured
curves agree quite wel1. However, the frequency of the second
resonance di ffers by approximately 1 GHz. There are at least two
possible explanations for the disagreement. The most likely
explanation is experimental error. The measurements were taken
using a sweep generator coupled with a computerized data taking
system. Thus a small calibration error would well explain the

discrepancy, since 1 GHz is only about a 6% error at the second
resonance frequency. The other explanation is that thc nd ,
solution is in error in this plane. Desoite thp ecror in frn:.
the calculations predict the levels of tile socond re.-ance ; quite I
accurately. The transmission pe 'es are los , ,v si[;c,: Cle,-e are propa-
natinc nratinc! . Th. 1 ack -)f a c i r /llnce peak for normal
incidence i predicied u;.te accuratell y the calculations. Referring
to t hcE ,od-,' 1,,:1l-iti diawas F F. -9, it is evident that neither
the secorI ,:r_.;" sin iv,, nde nor the second order cosine mode will be

.-t~cd I I , i;,cident plane wave. This observation tends to
, r: ' " i,,_US statement that these 2nd order modes describe

. .. ,;cjrately the slot fields at second resonance.

Second resonance transmission curves for incidence directions I
with =90' are shown in Figs. 5-16 and 5-17. Again, the odd sine
modes and even cosine modes with n running from 1 to 7 were used to
describe the fields in the slots. For this incidence plane the calcu-
lations predict the frequency of the second resonance quite
accurately. However, the overall agreement as regards the general
shapes of the curves and the peak values at the second resonance is
not quite so good as for the 4=0

° curves. The transmission curve
behavior in this plane seems to be more complicated. The general
trends, i.e., the shoulders on the resonance curves, the relative
heights of the resonance peaks for various incidence angles, and
the null preceding the resonance peak, are predicted quite accurately.
lhe e=30 ° transmission null just below 15 GIz is evident in both the
calculated and measured data. The depth of the measured null is
limited by the finite size of the pdnel . This finite panel size also
is ani important factor in the discrepancies between the calculdted
and mt-aJsured data.
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Throughout these calculations, slot modes which are not excitedL for a particular incidence direction are not included in the solution.
However, one must be sure to include all of the excited modes. This
is illustrated in Fig. 5-18. These curves were calculated for the
same conditions as those in Fig. 5-16 but without the even ordered
cosine modes. The e=l ° curves are nearly i'lentical, since the cosine
modes are not excited for normal incidence. But the second resonance
peak is missing from the 60' and 800 curves. This comparison also
confirms the previous statement that the 2nd order cosine mode is
responsible for the second resonance in the €=90 ° incidence plane.

One final point needs to be made regarding 4-legged slot arrays.
Referring back to Fig. 5-10, there is a noticeable shift of resonance
frequency with incidence angle. This shift can be eliminated by
decreasing the interelement spacings dx and dy. Calculated trans-
mission curves for such an array are shov;n in Fig. 5-19, with the
confirming measured curves in Fig. 5-20. Again, 7 sine modes were
used for the slot fields. This panel has the same frequency
stability as the single loaded slot panel of Fig. 5-4 but without the
undesired tran5ission loss.

D. 3-legged Symmetric Slot

The 3-legged symmetric slot element shown in Fig. 3-12 was
developed by Pelton [1,2] for application in a high aspect ratio radome
design. The 3-legged slots have the desirable properties of the '4.
4-legged slots. They can transmit arbitrarily polarized waves with-
out significant cross polarization losses when arranged in a triangu-
lar grid. Pelton has shown that the triangular grid arrangement tends
to yield a more stable resonance frequency (with varying incidence
angle) than the rectangular grid, especially for incidence angles not

in the principal planes (i.e., 0=450 rather than 0' or 90'). To our
knowledge calculated transmission curves for arrays of this type have I
not yet appeared in the literature, although Pelton is presently
engaged in the analysis of these slots using the mutual impedance
method [53]. .

The modal analysis method can be used to calculate transmission
through an array of 3-legged slots. The ebj modes used to describe
the fields in the 3-legged loaded slot are given by Eq. (3-76) with
z=O and the proper definition for -(Z). The electric field
polarities for the n=l sine and cosine modes are shown in Fig. 5-21.
The 3-legged slot does not have symmetry in the cardinal (€=00, 90')
planes as does the 4-legged slot. Thus both x polarized and y I
polarized E fields must be considered. For y polarized E fields
the sine mode will be strongly excited by the incident wave, while for
x polarized E fields the cosine mode will be. These two modes are
the dominant modes in the first resonance reqion. The calculated
transmission curves for 3-legqed slot panels presented in this section
were made using 98 Floquet modes (p and q running frow, -3 to +3,
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Figure 5-2l.--Electric field polarities for the n=l sine and co,.ine
modes for the 3-legged symmetric luaded slut.

r=l,2) and 6 slot modes, the sine and cosine modes up to n=3.
Relatively fewer Floquet modes are needed for convergence than for
the previously considered 4-legged slot panels. The 3-legged slots
are packed more tightly and thus the array has a smaller ratio of
periodic cell size to slot size.

In Figs. 5-22 and 5-23 are calculated and measured transmission
curves for a 3-legged slot array with polarization and incidence
angle as shown in the inserts. (The dimensions b, c, and d are
defined in Fig. 3-12.) The measured panel was chemically etched in
.002" thick copper bonded to a 1/32" dielectric substrate with E r=2.5.
The measurements are taken from Pelton [2]. The electric field is
x directed and the incidence angles are in the 0=90' plane. The
agreement between the calculated and measured curves is quite good.
Figures 5-24 and 5-25 shuw calculated and measured curves for the
same polarization but with the incidence angles in the =0° plane.
Again, the agreement is quite good.

For this polarization the n~l cosine mode is the dominant slot
mode (viz. Fig. 5-21). If we change to a y polarized incident plane
wave the n=l sine mode will be the dominant mode. Calculated trans-
mission curves for this polarization with =O° incidence angles are
shown in Fig. 5-26, with the corresponding measured curves given in
Fig. 5-27. The two sets of data agree quite well in general shape,
but the calculated curves show a resonzrce frequency shift of approxi-
mately 0.4 Gflz (when compared with Figs. 5-22 and 5-23) which is not
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onfi riled hy Lhe mieasured data. This discrepancy nay be due to
numnerical problems asyorioted with changin the polarization of the
L field. htis i-ane. of polarity completely chanqes "he field
structure in the slot and in the periodic cell. Thus the equations to
be solved and tle resultinq set of modal coefficients are entirely
different for the two cases. Theoretically this should not matter,
but practical ly speakivnn one oT T.e slot fieid distributions nay be
more difficult to match with th e truncitel i I Quut uode set. tuan the
other. One would not expect that th2 oiscrepancy is due to a
fundamental shnrtcominq in the theory since such (jood agreement is
obltained for tie other pci.,rizatio,.

by miiakinq allowances for this resonant shift ouch additiconal
useful infonnation on transmiission throuqih 3-legged loaded slot
arrays can be obtained usinl the modal solution. This would be
especially true for tne hinher resonances, where the mutual impedance
type soluLions have not yet been applied successfully.

t
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CHAPTER VI
BIPL"NAR SLOT ARRAYS

For many applications a two layer slot array may be more
desirable th.,n a single layer slot array since a wider passLand and
sharper skirts can be obtained. The geometry of the biplanar slot
array is illustrated in Fig. 6-1. The structure is composed of two
thin slot arrays of the type considered in the previous chaptrr which
are parallel to one another and separated a perpendicular distance
2t2+t3. The space betwieen the two arrays is filled with dielectric
layers with parameters 02, E2 and P3, E3 as sho, n. The two outer
surfaces of the array are covered with a dielectric layer of thickness
tl with parameters Fl and 0I . The possibility of improving the per-
.ormance of biplanar slot arrays by coating them with dielectric was
suggested by Munk [4]. The method of solution which we will employ
requires that the structure be synretric about the plane z:-t2-.5t 3 .
Thus the two slotted panels and the outer dielectric layers must be
identical.

We desire to obtain the plane wave transmission coefficient r
for this structure. To our knowledge this problem has not previously
been solved using the modal analysis method. Munk et. al. have
previously solved the biplanar problem illustrated using the mutual
impedance method with the condition that E£zl2=£3c=o, and ul=P2=-31Go,
i.e., the two arrays are in free space [19,201. The modal analysis
solution presented here was the first to include the effects of the
various dielectric layers. However, iunk has since modified the mutual
impedance solution to include dielectric layers [51.

A. Derivation of Solution

The modal solution which we are about to derive for the biplanar
array is a combination of the techniques used to obtain the solutions
of the two previous chapters. Since the structure is thick, the
technique of using symmetric and antisymmefric excitations, whici
simplified the solutions reached in Chapters II and IV for the thick
structures, will again be used. Since the slotted panels Ph :,,- ves
are thin, the field matching method and the expansion of the filds
in the slots will be quite similar to those used in Chapter V for thin
slot arrays.

The modal expansion For the region z>0 is the same is for the
two previous configurations. Again, the Flnqut modes of Chapter III =
are used. The direction of the incident plane wave is determined by
o and ¢ (see rig. 3-!). Using the free space Floquet modes of
Eqs. (3-12) to (3-15) the x and y components of the incident fields
in the free space region (z>t'l can be expressed as

lR5
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rigure 6-1.--Geometry and coordinates for a biplanar slot array:
a) Typical gcometry of one of the two

thin slot arrays.

b) Arrangement of the two slot arrdyS

to form a biplanar slot array.
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A

2
(6-1) E Ar -r•: L . a l

r=I

-i 2

(6-2) H Y Ar '
r= alr=l

where the Ar are known coefficients which are determined by the
direction and polarization of the incident plane wave. To express
the fields at the front surface of tie first panel (at z=O +) we first
define the quantities

nr( 1 )
(6-3) ard -2 Ar ro exp[-j y41 -y00 )t]oo r)+nro

00 00

r(l) r

(6-4) DFr - n OO r exp(-2jy 0 1
n +r

00 00

which are needed to account for the dielectric discontinuity at
z=t I. The superscript (1) denotes quantities which are evaluated in
the dielectric region with parameters -1 and Ul. By applying the
results of Chapter III expressed in Eqs. (3-32) through (3-35) and
(3-43), the tangential fields at the front surface of the first
slotted panel can be expressed as

2 2rd~ rr r)] l )l)

(6-5) [a, +(D ]- )+
r=l r=l i=2 a

(6-6) IT 2[adpr(l+DFr)]faal 2 ar=l r=l i=2 1

r r

The p and a i are unknown modal coefficients. The Floquet mode
functions e-'(1) and r(1)

i l n ai are defined in Eqs. (3-49), (3-50), and are
simply the free space Floquet imode functions modified so as to in-
clude the effects of the dielectric layer on their modal impedance.
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We now desire to expand the tangential fields on the back side
of the first panel, i.e., at z=O-, in some orthogonal mode set. We
can use the Floquet electric field mode functions er-. to expand the
electric fields, since for z=O they are not affected by the presence

of the dielectric, (by Eq. (3-51),eai =e )e 3 )=e )"  The' i al ai al

Floquet magnetic field mode functions at z=O- are then given by

(6-7) F-r2) 1 --r( 2 ) - -r

ai r (2T ai ' Zr( 2 ) pq
pq pq

Zr( 2)
where we now have to determine the modal impedance Zpg Equation
(6-7) can be written only because we are using symmetric and anti-
symmetric excitations in solving this problem. Otherwise, the mode
coupling at the surface of the second panel would have to be taken
into account, and Eq. (6-7) would be a matrix equation involving a
scattering matrix. This scattering matrix Sij would give the ampli-
tude of a mode j reflected from the second panel due to a unit
amplitude mode i striking the panel. As explained in Chapter IV,
this scattering matiix can be diagonalized by using symmetric and
antisymmetric excitation (see the discussion preceeding Eq. (4-9)).
Rather than repeat this discussion, let us merely state that symmetric
excitation produces an open circuit at the center of the structure
(i.e., at z=-t 2-O.5t 3), while antisymmetric excitation produces a
short circuit. Thus Eq. (6-7) can be written for symmetric and
antisymmetric excitations since there will be no mode coupling at a
short or open circuit.

The determination of the modal impedance 7Or( 2 ) at =- is now
quite straightforward. Consider the transmissi line model shown
in Fig. 6-2. The modal impedance Z, (,t the center of the structure
will be - or 0 for symmetric or antisymmetric excitation, respect-

ively. The modal impedance Zr(3) at z=-t 2 will be given by
pq

n r(3) coth(jyp( 3 ) t312), Zc =

_,-(3) pI P1(6-8) ,r3 P
pq -) r(3) tanh(jy* 3 ) t3/2), Zc = 0

pq pg

where y3) and n r(3) are the propagation constant and modal impedance

of the pqth mode evaluated with paramters E3 ,13 (see Chapter III).

The desired modal impedance at z=O Zr(2) is now given by
pq
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SYMMETRY
PLANE

II

II

(I 3
" 

( rPq 
pq

(6-9) ~~~~r(2 .y(2) +r2 ahj()

Zpq pq 2pq zr3p 3 Z c 2 , 0

I 'E3 1/43

z~ o- -t-t 3/2)

~Figure 6-2.--Transmission line model of the dielectric layers
between the two slotted panels used to determine

the modal impedance Zr (2 ) at the z=O- surface of

pq pq

Wathe front panel. a

Lzr(3) + r (2) tanh " ,(2)

(6-91) Z2) r(2) pq Dq (Yq)t 2 )
nqpq ") r(2) + Zr(3"T) tanh l . ,(2)

Upq Zp ]pq )t2)

r(2) =r(3)

_Note that if t2r Zpq pq

We now expand the fields at z=O- as follows:

2

(6-11) TTzO' rr i -l 1 a

I - L I air~l i=l

The r are unknown modal coefficients.
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We can now proceed to solve for the unknown modal coefficients
by applying the boundary conditions. Tangential E must be continuous
in the slot aperture and zero on the ground plane. Thus we can -|
equate Eqs. 16-5) and (6-10) and obtain

22 ar e.r(1(rdr( r(l)+ 2 rr(l)

'612 l Dr)] al L i ai
r~1 a r1l i-2

7 r )E t in s lo t

r=l i=l 1 al 0 elsewhere1~.1
where Et is the unknown tangential electric field in the slot aper-

ture. To simplify Eq. (6-12) we take the cross product with Fr*a
dot the result with z, integrate over a unit cell, and apply the
orthogonality relation of Eq. (3-22), obtaining

(6-13) [a d+pr(l-DFr) al ax
a

= Bl r "(2 )xzr( 2 )d -ds = "zds
I a al al b

where fa ds denotes an integration over one unit cell and fb ds
denotes an integration over one slot aperture. Since i'):r(2) Eq.
(6-13) can be reduced to ai ai

rd rlr X-r (2)*zs --r(2) 2*.d
(6-14) a d+ pr lDFr ) =B1 =d xfir"'zs

If we now multiply Eq. (6-12) by FIr2) dot the result with z,

b al z

and integrate over a unit cell, we obtain

(6-15) ar < r el()xr(2)*'-ds = Br ez2)d
ljaal ai I ai x aiI I

x=r2).zds,
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or, simplifying,

(6-16 a B r  tX~aa}2)*.zds/1 T 2)X~aal2)*.zds i~l.
_:.(6-16) ab = b a ai ai

The other boundary condition which we must enforce is continuity
of the tangential magnetic field across the slot aperture. We thus
equate Eq. (6-6) and (6-11), so that in the slot aperture

( 6d1r( r al 2 r ara i ) 2(6-17) % [a P (+DFr)l I) a i  Br Irarlr=l i=2
ri r

If we now substitute for ai and B. from Eq. (6-16), Eq. (6-17)
is reduced to 1 1

2 d
2 - r(,D )] ~(1 ) *r'd

(6-18) 7 [ar r( al)

L L ai t xzsDi a
r=l 2 b a

2 2
= ~Br~ -r (2 )+ 7 r(2).fd -. r(2)*? 5 ,, -r(2)* x r2)*zds.
L- 1 a] L L ai I aZ aai air =l i=2 i

From Eq. (6-14) we readily obtain

rd

(6-19) r - r + al zds/ ds
I-DF r  -DFr b t aea al

Substituting for BI from Eq. (6-14) and for pr from Eq. (6-19),
Eq. (6-18) can be written, with some minor simplification, as
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r .l + i+ D- r 2. . - -.2,),

(6-20) a rd(1 [ 1+ h+Dr

L ra ra al[1 Dr
l-DFr r~l l-DFr l a

Fr(2)x~(2)*. 2 (2)

ea a

attesraefl h front pan l -D.Fro Eq.(-2"t 31)

(-).(-9, (35) n (-),w cnwrt

(6- -2x )ar( 2 ) *ids/ - a1 ' d s + , r
-al al2 ai a !

a a .y p=

bx (-s(Upa+Vpd)ex (+i(Upax1V y))d

In order to further simplify Eq. (6-20) vie shall evaluate the
i ntegral :;

r 2) x &-r(2)* _ d;
i a ail zd

'aq

I - -

at the surface of the front panel (z=O). From Eqs. (3-12) to (3-15),
(3-18), (3-19), (3-51) and (6-7), we can writete a

p aP

exp (- j(Up x+V pq y)exp (+j (U p X+Vjpq y ))ds

since the area of the central periodic cell is equal to dxdy (see
Fig. -3-2). By using the results of Eq. (6-21), and by intro~ducing
the Opq function of Eqs. (3-50) and (6-7), Eq. (6-20) can be written as

2 2 2 1Dr 11
(6-22) a rd 2 1 Tr 2 +DFr 1 rI~ ID r  oro) oo r(2. r oo

rl lOFr r-l I-D 0 0
00 0 0

--r* 2 7 f 7rdb~X o.Zds +  + F o 1 -r. x-*zds.

-b-E 00 r l i4=2 Z + Z "F7T  pq 'b t pqZ
pq pq
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All of the quantities in Eq. (6-22) are known quantities with
-the exception of rt, the transverse field in the slot aperture.

Using the modes presented in Chapter III to describe the aperture
fields in the various slots, we can express Et approximately as

N
(6-23) Tt j Cl b

where our modal summation is truncated at N terms. We now proceed
to apply the method of moments to obtair the unknown aperture field
Ft. Using Galerkin's method, we substitute the expression of Eq.
(6-23) for the aperture field Et in Eq. (6-22), and simultanecusly
multiply by ebn , obtaining

(6-24) ard 2 1Zds
r=l 1 1-DFr r-i f , bx 00 s

2 r 1-L 1 NLx .de +., e b x¢  "zds
r=l 1-DF r r,-T n oo oo 1o Ibj 00

00 00

2 M + e.-Nr zds" C-NC L.-d , xe r zds.erFT bnx pq  j l bi xPpq
r=l i=2 Z -bpq Pq jt ~b jp

Since n can range from 1 to N, Ea. (6-24) is actually N equations,
with the N4 unknowns being the C modal coefficients. The Floquet
mode set has been truncated at . terms to allow a computer solution.
Normally N will be quite small, i.e., less than 10, while M will be
quite large, 121 being a typical number. But note that even with M
being quite large, only an NxN system of equations reeds to be
solved.

The system of equations given by Eq. (6-24) must be solved twice,
once for symmetric excitation and once for antisymmetric excitation.
If we denote the resulting modal coefficients as C) for symmetric
excitation and C4 for antisymmetric excitation, then from Eqs. (6-7),
(6-19), (6-21), nd (6-23), and the properties of symmetric ond

antisyminetric excitations, we have

LI~rd
Ni 05 +0 a rr = -I-SV+CaI ' - cr •Ids a

(6-25) 2 - I s ( )  e r
1-DFr j-l b I-DFr
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r
The free space modal reflection coefficients R are then determineJ
by Eq. (3-44).

We can find the free space modal transmission coefficients Tr

by a similar process. Let br be given by
J

N c-c ,
(6-26) J= ) e x zds.

j=l b

Equdtioil (3-66) cannot be applied directly since the biplanar
structure has a finite thickness. However, if we multiply Eq. (3-66)

by the factor -exp(yoo'(2t2+t3)) which corrects for the phase delay
caused by the finite thickness of the biplanar slot array and for the
changE in propagation direction which takes place when the symmetric

and antisymmetric excitations are subtracted, we obtain for the modal
transmission coefficients T r

r rI

(6-27) Tr=-bIexp(+jy00 (2t2+t3))
I l+jtan(y; l )tl

00

eP['j(yO00 }-Yoo~t n r~l')

+J--00--an (yootl)

S00

The reflected and transmitted fields are now given by Eqs. (6-1) and

(6-2) with Rr (-Rr for reflected H field) or Tr substituted for Ar.

The calculated results presented in the remaining sp~tons of
this chapter were obtained from a Fortran IV computer c,ding of t Ie
above solution. The fbejxo 'zds integrals can be evaluate_ , closed

form for the slot shapes cohidered in this chapter. The results are

given in Appendix B. The coefficient matrix-is not Hermitian.
However, the factor fbebnx--*a'zds'fbe -b.pzds, because of its

symmetry in j and n, need o ny be eval atea over the upper triangular

oortion of the matrix, with its conjugate value being used in the

lower triangular portion. This symmctry results in a considerable
time saving, since for this solution much more time is required to
evaluate the coefficient matrix than to solve the resulting system
of equations. This is because the ratio of M to N required for con-

vergence is usually quite high for the geometries we are considering.

The computed curves were checked for convergence. Re-sults for
various biplanar geometries, both with and without dielectric layers,
will be presented in the remaining sections of this chapter.
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B. Biplanar Arrays Without Dielectric Layers

Before becoming involved in the complex behavior obtained from
biplanar slot arrays filled and/or covered with dielectric layers,
we shall present some calculated curves for two biplanar arrays which
have only a thin dielectric substrate. The results obtained are
confirmed by measured data obtained from Reference [19]. Convergence
.as obtained for tl; calculations presented in this section with
98 Floquet modes (Pmax=qmax =3) and the first 5 sine modes for the
4-legged slot. X

In Fig. 6-3 calculated transmission coefficient curves for a
biplanar array with a panel separation of 0.43 cm ( .13X at resonance)
are shown. The thin dielectric substrate is required for mechanical
support. Electrically it is quite thin, with its main effect being
a slight lowering of the resonance frequency of the slot array. For
this spacing the near field coupling is quite strong, with the most
prominent effect of this coupling being the deep dip in the resonance
region for 60 and 800 H-plane scan (6=00; e=60 ° , 800). The corre-
sponding measured curves are shown in Fig. 6-4. The agreement is

. qui te good.

If we increase the spacing between the two arrays to .83 cm

(%.25A at resonance) the near field coupling will decrease, which
should produce a corresponding decrease in the depth of the resonance
region transrwission coefficient dip for H-plane incidence angles.
That this is indeed the case is confirmed by the calculated trans-
mission coefficient curves of Fig. 6-5. The corresponding measured
curves are given in Fig. 6-6. Again the agreement is quite good. I

While these two biplanar configurations might be quite useful
for certain applications, they have some shortcomings. One is the j
resonance region dip for high H-plane incidence angles. Now this
dip could be lessened by moving the panels further apart, but there I
are reasons for not separating the panels much more than about 0.5).. :
One reason is the appearance of unwarited resonances which can cause
transmission losses in the passband. Another is the desirability off

keepiig Lihe electrical spacing between screens (2y' 2) t 2 +Y°
3 it 3)

approximately -/2. This electrical spacing is proportional to the
cosine of the incidence angle, and for wide spacings changes very
rapidly with incidence angle. For further discussion of these points
see Reference [19].

Another shortcomng is the change of the bandpass bandwidth with
incidence angle. For many applications this is a very undesirable
feature, but one which seems to be unavoidable in biplanar resonant
surfaces which are not cove'ed with dielectric.
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As pointed out in a previous chapter, the variation of bandwidth
with incidence angle can be reduced considerably by covering the
periodic surface with a properly designed dielectric layer. In the
next section we will illustrate that, as suggested by Munk [4] this
technique can be successfully applied to biplanar resonant surfaces
with good results, Further, the resonance region dip for H-plane
incidence angles can be reduced considerably by properly picking the
thicknesses L2 and t3 and dielectric constants i2, £3 of the material
,etween the screens.

C. Dielectric Covered Biplanar Arrays

As mentioned previously, the modal solution presented in the
first section of this chapter was the first solution to the biplanar
array problem which included dielectric layer effects. With this
solution several new phenomena related to dielectric covered
hiplanar arrays were discovered, and these will be presented in the
following pages. However, shortly after this solution was developed
Munk developed a solution usinq a mutual impedance method [5]. One
advantage of his methori is that it can more readily be used to de' ign
dielectric covered biplanar arrays with desirable properties than can
the modal solution, which is primarily a means ot analysis. One
cannot merely cover the biplanar array with just any dielectric cr.,
figuration and expect good performance. An exnmple of this i ich,:;rn
in the calculated transmission curvrs of liy. 0-7, where a hipl l,[r'
slot array has been covered on the m'tiide wiT. (.5 cm thick layers
of er=4 .0 dielectric, and flled in the cente ;..ith a 0.7 cm
die,:I c tri wit r-- . o .e the si it t. irn re r(iance frequency for
the IL! .; d It ;diC;, an gles. Also, the i incidence angle curve
hdS a loss aL .",nac of 3.1 d'e. f is panel is clearly unsuitable
1or ainy ..r<cti dl , cfti rs.

Pri et de iin is required to obtain a biplanar panel with stable
r,-:h id:cL irequenicy and minimal change in bandwqidth and phase delay
witi' changing incidence angle. Later in this section transmission
curves for a biplanar array designed by means of Munk's solution and
calculated using the modal maLching solution will be presented. These
curves show a quite stable passband, minimal change in bandwidth with
incidence angle, and a phase delay variation comparable to that for a
conventional dielectric radome. A complete discussion of the design
procedure is beyond the scope of the present work, and the interested
reader is referred to Munk [5].

However, we shall first show a series of calculated and nmeasured
curves for a dielectric covered biplanar panel which does not have
such good performance since the results will illustrate certain
phenomena which must be taken into account when designing biplanar
arrays. The calculated curves in this section required 242 Floquet
modes (Piax~q[1jx=5) for corivergence. In general the first 7 sine
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and cosine modes were used to expand the fields in the slot. How-
ever, for lower frequencies (i.e., below 12 GHz) the cosine modes
were not included since they are only weakly excited.

The biplanar geometry of Fig. 6-8 represents an early attempt to
design a dielectric covered biplanar array. As is evident from the
calculated transmission curves of Fig. 6-9 this design attempt was a
failure. The reason is that the 600, 70', and 80' E-plane transmission
nulls fell in the passband of the panel. The existence of the passband
nulls for biplanar arrays was not anticipated by previous theories, and
was first demonstrated by the modal solution results of Fig. 6-9.
Only later were these results confirmed by the measured curves of
Fig. 6-11.

These passband nulls are related to the surface wave nulls

discussed extensively in Chapter IV. It was shown there that the
frequency of the nul! would be reduced b) coating the array with a
dielectric layer. The amount of reduction would depend, in a somewhat
complicated fashion, on the thickness of the dielectric layer. The
lowest possible frequency could be quite easily determined, however,
and would be given by Eq. (4-29) with Kw-Kl. For a square array
(dxdy, a=90") this means that the surface wave null frequency cannot
be lower than re, where

(6-28) fe = c/[dx (,/r + sine)]

and where c is the speed of light and Er is the reldtive dielectric
constant of the dielectric layer. For the outer layer, with ; -l. 5
and taking e70', Eq. (6-28) predicts a null no lower than 10.3 Glz
for d l.355 cm. Thus, according to previous theory, the null should
have been above the desired passband fr.quencies and the biplanar
design of Fig. 6-8 should have been a viable one.

The source of the null was evidently not in the exterior region
of the biplanar array (i.e., the t1 layers) but in the area between
the arrays. Note that if the spacing between the slots (dx and dy)
is increased the frequency of the null is moved upwards in frequency
(i.e., see Fig. 6-18). This behavior is similar to that of the surface
wave null discussed in Chapter IV. If we proceed to apply Eq. (6-28)
to the region between the panels, we find that for a 700 incidence
angle and a relative dielectric constant of 1.9 the Wood's anomaly
null would normally occur at a frequency above 9.55 GHz. Our cal-
culated frequency from Fig. 6-9 is 8.9 GHz, well below the frequency
predicted by Eq. (6-28). Equation (6-28) corresponds to a phase
difference of 2. radians between adjacent slots. Thus, assuming that
the null occurs when adjacent slots differ in phase by a multiple of
2n,, the presence of he 2nd array must affect the phasing between the
slots on the first array, and vice versa. This is not really that
unexpected. What was not known previously, however, was that this
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shift in the frequency of the null would 1) be so pronounced, and
2) be downward (in frequency) rather than upward.

One might argue that it is the t2 substrate layers with £r= 2 .3 8

which lower the null frequency. However, a layer ot dielectric this

thin will have little effect on the surface wave null frequency,
as is evident from the results of Fig. 4-17. To confirm this con-
clusion calculations for the array of Fig. 6-8 were made with the
relative dielectric constant of the t2 substrate layers changed to
1.9. The results are shown in Fig. 6-10. For 700 incidence the null r

0---

-5

-20 I PANELS

-25 - BON 1. 1. 1.5,
-25 60 6

..... .... 7e EII

-30E II O70cm\
'I 0.85cm 0.85cm

8 9 10
FREQUENCY WGHO)

Figure 6-lO.--Calculated transmission curves for the same biplanar
array of Fig. 6-9 but with the relative dielectric
constant of the t 2 substrate layer set equal to that
of the t3 center layer. E-plane incidence.

------ L 0 5 0

L:OBcmOBc



frequency increased slightly (from 8.9) to 9.02 GHz. This frequency
is still well below the 9.55 GHz frequency predicted by Eq. (6-28),
and supports our conclusion that the frequency of the null is lowered
by the coupling between the panels.

As previously mentioned, the experimental confirmation of the
calculated curves of Fig. 6-9 is shown by the curves of Fig. 6-11.
The overall agreement is quite good. The forced resonances above .\

10 GHz due to the rapid changes in Z r(2) (see Chapter IV) are lossy i
in the measured curves because of thg finite size of the measured
panels. Note that their frequencies are, for the most part, quite
accurately redicted by the calculations. The measured loss is actually
good in terms of possible applications, since for most applications
one would like to depress the out of passband transmission as much as
possible.

Calculated and measured transmission curves for the other
incidence plane (H-plane) are shown in Figs. 6-12 and 6-13. Again the
agreement is quite good. The amount of the o=800 resonance band
dip is predicted quite accurately. The passband nulls and forced
resonances evident in the E-plane transmission curves are suppressed
by the element pattern for H-plane incidence angles. The exception
to this is the narrow null produced at the onset of #he external,
free space grating lobe (11.4 GHz for 0=70', 11.15 for 0=800). This
null is not completely suppressed by the element pattern. Because of
the presence of the dielectric layer, the grating lobe (which leaves
the structure at a grazing angle (e-.90°)) is not grazing at the
surface of the panel, but is tilted up and out of the element pattern
null [48]. As a final comment, note that the dip in the 800 curve at
10.3 GHz is a measurement error; in fact, no null exists at this
frequency.

Calculated and measured transmission curves for the same bi-
planar geometry over the second resonance region (13 to 18 GHz)
are shown in Figs. 6-14 and 6-15 for E-plane incidence and in Figs.
6-16 and 6-17 for H-plane incidence. The agreement between the
calculated and measured curves is not as good as it was for the first
resonance region. The calculated higher order resonance peaks are
often not confirmed by the measurements. Again, this is to be
expected for a finite size panel.

As mentioned previously, the passband nulls for E-plane
incidence can be raised ir frequency by decreasing dx and dv. The
results which can be obtained by this means are illustrated in Fig.
6-18. The arrangement of the dielectric layers is the same as in
Fig. 6-10. However, decreasing the interelement spacing has moved the

unwanted null upward in frequency and out of the passband. Thus
this panel design has a 0.6 GHz wide passband where the transmission
loss is evidently less than one dB for incidence angles up to 80'
in both cardinal planes. In addition, the ratio of the 80 ° E-plane
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3 dB bandwidth to the 800 H-plane 3 dB bandwidth is approximately 2:1.
This is a substantial improvement over the situation shown in the
preceding section for biplanar arrays without dielectric layers.

For such a thick structure the variation of the insertion phase
delay with incidence angle can be a problem. In Fig. 6-19 we show
curves of the phase p of the transmission coefficient, where TZIT!/p.
These phase curves are plotted vs. frequency for 1' E-plane and 60-1
and H-plane incidence. The curves marked square correspond to the
biplanar panel of Fig. 6-18. The "interlaced" curves are for the
same biplanar panel with the one chdnge that the slots are arranged in
an interlaced grid (i.e., a=4 5' instead of 90c, see Fig. 6-1). The
transmission curves for the interlaced panel are virtually the same as
those in Fig. 6-18.

If we examine the square grid (o--90o) curves in the resonance
region (at f=9.4 GHz, for instance) we find that when the incidence

angle changes from 10 E-plane to 600 H-plane the insertion phase delay
decreases by about 46° . When the incidence angle is changed from 1°

E-plane to 60' E-plane the phase delay is decreased by 74'. A few
degrees improvement in each case can be obtained by going to an inter-
laced grid (a=45°). This change in phase delay is undesirable. It can

be reduced somewhat by more sophisticated panel designs. Yet it
should be pointed out that this change in phase delay is no greater

than that introduced by a typical dielectric radome [5].
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Figure 6-19.--Phase of transmission coefficient for a biplanar array.
The curves marked "square" are for the biplanar array
of Fig. 6-18. The curves marked "interlaced" are for
the biplanar array of Fig. 6-18 but with the slots
arranged in an interlaced grid, i.e., every other row
of slots shifted right by dx/2.
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CHAPTER VII
SUMMARY

Moment method solutions have been developed which enable the
designer of metallic radomes to calculate the transmission coefficients
for metallic slot arrays. The geometries considered were 1) thick
slot arrays covered with dielectric, 2) thin slot arrays covered with
dielectric, and 3) biplanar slot arrays covered with dielectric. The
slot shapes considered were 1) rectangular slots, 2) single loaded
slots, 3) 4-legged ;ymmetric slots, and 4) 3-legged symmetric slots.
The wide range of geometries and slot shapes considered makes this
set of solutions a powerful tool for resonant slot array analysis and
design, and thus will aid considerably in designing new metallic
radomes for a wide variety of applications.

In conjunction with investigations of the effects of thickness

on resonant slot arrays a solution for the transmission through a
thick rectangular waveguide iris was obtained, and from this solution
considerable insight into the effects of thickness on metallic radomes
was obtained.

In order to obtain a proper understanding of this work certain
basic information on resonant slot arrays and their application as
metallic radomes is required. Thus a concise review of the basic
properties of resonant surfaces is contained in the introduction.

I
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APPENDIX A
WAVEGUIDE MEASUREMENT OF EQUIVALENT IMPEDANCE

The waveguide hardware used to determine the reflection coef-
ficient for a slot in a waveguide is shown in Fig. A-I. The wave-
guide frequency range is 2.6 to 3.95 GHz. The Polorad source is
modulated externally by a 1,000 Hz fork. Frequency is measured with
a resonant cavity frequency meter since a precise determination of
the frequency is necessary for this measurement technique. The SWR
and voltage minimum are measured with the slotted line and SWR meter.

In order to verify the Modal Anelysis calculations of Chapter II
we need to determine the equivalent impedance. The concept of the
equivalent impedance is discussed in Chapter II. To determine the
equivalent impedance of a slot the following data must be measured: K I
1) Frequency; 2) SWR; and 3) distance between slot in flange and the
first voltage minimum. With this information the calculation of the 1 1
equivalent impedance is straightforward.

If one desires to measure transmission loss for a thick slot, the

apparatus sketched in Fig. A-1 may be also used to determine the
magnitude of T. With the apparatus connected as shown in Fig. A-i
the maximum voltage Vmax and the minimum voltage Vmi. of the

standing wave on the input side of the slot are measured with the
slotted line and SWR meter. Then the slot is removed from between
the flanges connecting the slotted line and the load and placed
between the flanges connecting the slotted line and the waveuide to
coax adapter. All flanges are tightened, and the value of V (see
Fig. 2-2) is now measured on the slotted line. With this information
one can readily evaluate ITI using transmission line theory. 41
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APPENDIX B
EVALUATION OF MODAL INTEGRATIONS

In order to solve the integral equations of Chapters IV, V,
aid VI, integrals of the form fbebjX"n qzds must be evaluated. The
T 1, functions come from the transverso magnetic field Floquet mode
functions, and from Eqs. (3-14), (3-15), and (3-50) are given by

_ V
pq Tp
Pq 'dd Tpq p qxy

(B- ) f2 _ 1 V U

(-) Pq TEqdx y Pq' TM

with UP, Vq, Tpq, and ipq jiven by Eqs. (3-7), (3-8), (3-19), and
(3-18), re pectively. The ebi modes are defined in Eq. (3-69) for
rectangular slots, Eq. (3-73) for single loaded slots, and Eq. (3-76)
for the 3-legged and 4-legged symmetrical loaded slots.

The integral can be evaluated in closed form for all of the e-
modes in a quite straightforward, although somewhat tedious, manner.
We shall illustrate this for the single loaded slot, and then give a
Fortran computer code which can be used to evaluate the integral for

any of the e modes given in Chapter III. The integral Tbebjxlr*.zds

can then be quite easily obtained, since

(B-3) )e bjxTpqzds =4 ebjxTpq *zds

This follows from noting that all of the ebj mode functions are real
functions.

In Fig. B-1 we have divided the single loaded slot into 5 straight
regions with the 6 points P1 through P6 . Referring to Eq. (3-73) we
can, with suitable coordinate substitutions, express the ebj modes in
each of the 5 regions at z=O as:
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3,.- -. . . . ..

Yi

P3  P4

REGION 2-3

REGION 1-2
P1  (x, Yl)

Figure B-l.--Single loaded slot divided into linear
regions by points Pl through P6 .

(8-4) Region 1-2: ebj yin (x-Y 4 ) y : y e

y y

(B-5) Region 2-3: e - x sin(-(Y-x-Y) - -) = x ebji T 44 bj

(B-6) Region 3-4: ebj y sin( - ) y ebj

(B-7) Region 4-5: e x sin(1(x4+Y y-y - ) x e

(B-8) Fegion 5-6: ebj = y sin(IL(x+y4) ) : y ebj

where T is the total length of the slot (T=2x 6+2Y4 ). Due to symeLry,
once the quantities x4, Y4, x6 , and b are specified the dimensionsof the slot are completely determined.

We now have the eb modes, the scalar ebj modes, and the
function expressed in te same coordinate system, and can proceed to
evaluate the integral. We note that the q function is constant

pq
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7--4

except for the ,pq term. Therefore we shall first evaluate the
integral fb ebi ?nds over the 5 straight segments of the loaded slot.
After these resul are obtained, it will be quite simple to take the
required dot and cross products, include the constant terms in Eqs.
(B-l), (B-2), and obtain the final results.

Let us begin with the region of the slot between points P3 and

P4. We thus define

x4  Y4+b/2

(B-9) TEM3 J sin( 1yr- - jyr) ~Pqdydx
-x4  Y4 -b/2

Substituting for ppq, and noting again that z=O, we obtain

(8-10) TEM3 J sin(2x - 2!-)[cos(U x) - j sin(Upx)]dx iJ
-X 4  p

Y4 +b/2 - Vy .

e dy dy

Y4-b/2

In order to make our bookkeeping a little easier, we shall at this
point define the following computer subroutine calls in terms of the
tabulated integrals [54] which they evaluate: Hi

I.

x2 U
(B-11) SS(A,u,B,Sx,,X2 ) = J sin(Ax+a) sin(Bx+$)dx h

Xl

xl

(B-12) SC(A,a,B,O,xl,x 2) J sin(Ax+a) cos(Bx+o)dx
x
2

(B-13) CC(A,,BOxXX2 ) : cos(Ax+a) cos (Bx+)dx
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If we now define and evaluate the integral

2_-  sin(Vp b) e j pqY4 ,

(y4+b/2 -jV py q pq _

(B-14) 17 =Y 4-b/2 b; Vpq 0.

then

(B 1 ) TE 3 = 7S ( -  P-,p,,-x 4x4)-jSS(T- , -  !2L ,Up,O,x4,x4) ].17

where all of the quantities to the right of the equal sign can be
readily evaluated via the computer.

One might now anticipate that we can similarly deal with each of
the remaining straight regions of the loaded slots separately, com-
bine the results, and obtain the desired answer. This would be the
case were it not for round off error. For an example of the diffi-
culties which may arise, consider a certain --q mode which, becauseof the s ymme ry of the loaded slot, couples with a given ebj mode such '

that fbebj. . zds is a real quantity. When evaluating this integral
one might find in evaluating the contributions of the various straight
segments that the integrations over region 2-3 and region 4-5 had
non-zero imaginary parts. These two imaginary contributions would
then cancel when added together. Due to round off error these two
imaginary contributions would not cancel exactly when added on the
computer, but instead the result would have a small imaginary part. It
was found that this incorrect result could lead to incorrect answers
when the resulting system of equations was solved.

In order to eliminate this source of error the contributions
of segments of the slot which might cancel one another must be added
in closed form rather than by the computer. Thus we now combine
the portions of the lb ebj iPpqds integral taken over regions 1-2 and
5-6 as follows:

-x4 b/2 sin[ -Y4 _ p dydx
(B-16) TEM15 :_ d-x6

x -b/2

+ 1 6  1 b2sin[- +J'TY 4 -~] dydx

x -b/2 7

223



1

After some simplification this integral can be written as

(B-17) TEM5 b/2 COS(Vpy)dy sin[ +
-b/2 pq x sn.~ -r-14

{-cos (j f)[cos (U pX) jsi n(Up X)]+cos (U pX-jSi n(U px)) dx.

We now define and evaluate

2 sin( V 0
/2pV-q - pq

I
(B-18) Il b2 cos(V y)dy V

-b/2 pq b, V =01
pq =

(B-19) 12 S A, -JIY , U4p. 0, x4 , x6)

JS JrY4 ",

SS(I T - -, Up, o, x44, x6 )

(B-20) 13

0' Up = 0.

Now combining B-17 through B-20 we obtain

2 12 ; j:I,3, 5,7,...

(B-21) TEM15 = Il11 2 =2,,,
(B-2 ) T M15 I1 - -2j 13; j=2,4,6,8 .

In a similar manner we proceed to evaluate the portions of the
fbebj~pqds integral taken over regions 2-3 and 4-5:
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,- b 2 y 
TX 4  

j fL
J pq

(B-22) TEM42 = - n - I - 2J3 dydx

x4+b/2 y4  JIlx

+ sin[- 4 + - + - 2Jf 4 pq dydx
x4-b/2

where the negative sign in front of the first integral is due to the
- x vector direction of the mode in region 2-3 as expressed in
Eq. (B-5). After some simplification we can obtain

y4  31?) -fy
(B-23) TEM42 = - sin(Jj -T-- - )[cos(Vpqy) -j sin

0

Fx4+b/2

(Vpqy)Idy- cos(j " (cos(Upx)-jsin(Upx))dx +4- xb/2 P p

iX4+b/2 ;i

x4 b2(cos(U x)+ysin(Upx))dx}

We now decompose Eq. (B-23) into the following expressions:

(B-24) 14 = SC(4, - -* , 0, 0, Y4) =

~jSS(-7- V 44 q~ 0 )Jrx4 JpY4
"y S( , m-- - -T- - V pq OP' 0 Y4)

U- cos (U X4 sn(Ub/'
(B-25) 15 IN cos(U x)dx P ( 4

x -b/2
4" L, Up=O.
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x4+b/2 2 sin(Upx4 )sin(Upb/2), Up O

(B-26) 16 = sin(Upx)dx { P =
x4"b/ 0 Up=O.

Combining Eqs. (B-23) to (B-26) we have

(B-27) TEM42 14 2j 16, j=1,3,5,7

2 15, j=2,4,6.8

Finally, if we now combine the results of Eqs. (B-11) through I
(B-27) and take the required dot and cross products we obtain

(B-28) i eb zds T I [-U (TEMl5 + TEM3)
pq pq Vd d

B-29 i ebj X p d

xyI
+V TEM42) i

(B-29) e 2 zds [V (TEMl5 + TEM3)
bj pq q T /d pq

+Up TEM421
pq

for the single loaded slot modes. In a similar fashion the integral
has been evaluated for the 3-legged and 4-legged symmetric loaded
slots, and the results for all three slot types were programmed in
Fortran. The resulting program is listed at the end of this appendix.
Note that the rectangular slot mode integration for g=O (see Eq.
(3-69) can be obtained from the single loaded slot results if we let
Y4=O and set X4=X6.

We will now give a brief description of the input and output

variables of the computer program. Referring to line 1, the output
is the complex variable EBPHI. The value of the computer function
EBPHI and the calling parameters are most easily defined for the
single loaded slot ebj modes as follows:

(B-30) EBPHI(IP,IQ,IR,IF) = bdbI)x P(Q

S(IP(IQ)
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The remaining input variables, located in the COMMON blocks of lines
12 aod 15-17, are defined as fullows for the single loaded slot
C.bj modes:

TABLE B-I

COMMON INPUTS FOR SINGLE LOADED SLOT

Variable Name Value or Description

IANTP 1
ICALC 1
DX, DY, ALPHA dx, dy, i of Fig. 3-2

ADIM T; total length of slot

BDIM b; slot v.idth

XX4, YY4, X6 x4, Y4, x6 of Fig. B-I

UPOD. ' i, PQD Up, Vpq, Tpq

Note that consistent length units must be used, e.g., if the
slot dimensions, etc., are expressed in meters then Up, Vnq, Tpa ,on
will have units (meters) "I . The COMMON block variables oT Function
EBPHJ which are not listed in Table B-1 are not used for the single
loaaed slot calculations.

Using the subroutines to evaluate fbebjX-i *zds for the
3-legged or 4-legged symmetric slots requires bNly a few changes in
the input variables. The ebj modes for these two slots are given by
Eq. (3-76) as:

2 nr )e + 'n j=1,3,5; n j+l
S2•

(3-76) bj 2n.. ", n

cos(-2nt)e j=2,4,6,8; n 2

Thus for these symmetric slots there are two modes, the sine and the
cosine mode, for each value of n.

For the 4-legged symmetric slots not all of the mrdus will be
excited when the incidence angles are in the cardinal planes. For
the calculations of Chapter V only the sine modes were used for
H-olane (o=00) incidence anglepc. K- 1L-plane (€=90 ° ) the sine modes
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were used for n odd and the cosine modes for n even. The EBPHI

function is thus programmed as follows for the 4-legged slot modes:

1) The input variable IF corresponds to n in Eq. (3-76).

2) For H-plane incidence angles the integral will bp evaluated
for the n-IF sine mode.

3) For E-plane incidence angles the integral will be evaluated
for the n-IF sine mode if IF is odd; for the n=IF cosine
mode if IF is even.

The remaining input variables are explained in the following table:

TABLE B-2

COMMON INPUTS FOR 4-LEGGED SLOTS

Variable Name Value or Description

IANFP 4

IEH 1 for E-plane Incidence; .
2 for H-plane Incidence

ICALC 1
DX, DY, ALPHA dx dy, , of Fig. 3-2

ADIM 4 •c 4 2 -d

BDIM b, slot width

XX4 d/2

Y4 0.

X6 d/2 + c

UPQD, VPOD, TPQD U V pqT

The b, c, and d dimensions are defined in Fig. 3-11. Again, those
COMMON block variables not specified in Table B-2 are not used for
the 4-legged modes

The input variable descriptions for the 3-legged slot integration
are quite similar to those for the 4-legged case. The major dif-
ference is that for the 3-legged slots both the sine and cosine mode
integration values may be required for a given value of n (Eq. (3-76)).
Therefore the EBPHI subroutine is programmed to evaluate the desired
integral with the 3-legged ebj modes as follows:
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1) The input variable IF corresponds to n in Eq. (3-76). 4
2) The sine mode integration will be evaluated if the input 1

variable ISC (line 12) is set = 1 .

3) The cosine mode integration will be evaluated if ISC = 2.

The input variables for the 3-legqed slot modes are given
below:

TABLE B-3 I
COMMON INPUTS FOR 3-LEGGED SLOTS

Variable Name Value or Description

IANTP 3

ICALC 1

ISC 1 for sine mode
2 for cosine mode

DX, DY, ALPHA dx, dy, a; Fig. 3-2

ADIM 3 * c + 1.5 • d

BDIM b

XX4 c

YY4 d

UPQD, VPQD, TPQD Up$ V T

The b, c, and d dimensions are defined in Fig. 3-12 for the

3-legged slot modes.

The Fortran listing of the computer program follows.

-I
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Computer Listings

I rOMPLEv FUNCTIONU E6PH1(IPiI0vIO.1F)
2 r FOR Sir-ILE. LCOrnFD SLOTS TAt.TP~l
3 r FOR 3-L E14F. U S1 015 I APTP:3
'4 r C0, 4-L.EE)GE, st 01 ! AfTPu
5 (rOPIPLEY FL4,IF'SFL,F)2,FL3,1i ,lFL1
6 CUMPLt.X LT(,L*I2,TIII4.L5,(5.t6YT6
7 2TLb9X*TL89Y1I1791T17i1T20

8 'AL ITI , jTITA3.IT'i. Iis.Irr,I rG,1IT91Tj 1, Ili 5,1715t IT16i
9 2T118,1T19,IT2] *1,2!-T23JT?4,IT25,T6.T27TT2IT-9,t

10 3TT30,l73l,lT32.J,ITT4,IT~,;iT~k,,1T!7,7 T38.IT.39,IT40
11 PE AL IF 1,1FieIF3, IfI4, 1F6,1F7, !Fc,,I&-9,1i Il
12 r ()M ,0 /FG U P I 1A I.TIP iI E H C AL r sIS C
15 RkLAL LA IGDA,11.jkI' II~T6vE. L12) ,THKUI. )
14 rOMPLEX J
15 -U~iL. TIPFTf PHI L-if8)A RCL..rX rywALPHA, THirL AD IM ,

SIr rof-MON It r.RET/ uP!-,, vP~nq TPr)0
I rOPLL TEM15. 'rM"42,TF M3* 14, 17,v SUP

I R'EAL I1C29ICbvICO
4440 i~oCOMPLEX IC5,IC19IC4*1C5*TC7vIC9

21 REAL 19
22 CUMPLEx 1S,!rJTj49VjT5
235 r~a~1.
24 CGN=19
25 P1=3*1'4159265
26.) 0.II.)
28 TF(IANTP.EQ.4) GC TO 22
20 YF(IAN.TP.EQ.3) GO 70 22
29 7F-(ICA1.C*NL.1I) Go TO 221
30 X4=XX4
31 Y2T
32 IG=D
33 Tl=BDIP
34 Y1r(ABS(VP' )LT..0!-5) Go Toi
35 7j=2.*SIN(VVW0*BU1m/2.)/VPGfl
36 rPA:IF*PI/AL)IM
37 FP2=IF*PI/2*

36T?=SC IlPA.FPA.yI4-FP.U-PQOf,. ,X4.X6)
39 60 1-

~40 TFfARS(UPOU).LT.10.E-5) (;O TO 2
41 TS=SS(FPA,FPA*Y4-FP2tiPOrr,co ,X'xe)

43 14SL~i:PFP*X6+Y-FPLJVFOU9o..r.,tY ij*n.
44 T1F(A4S(VP0O).LT.1.',E-b) COf Tr 6

45 y4 I -ojj S F i A 4 Y F 2vf;.U , Y4~
46 3 1 1=2 I A

48 7 F( AtH1S (U P r UL. .I. CE -5 (; 0T
49 7b:2*rOSJUPfl)*siMl(upjO*PflIM/2.)/of~on
150 16=2. *9 1 (U4Ofn*Y)*(I t( ijpL0.nr1 I./I~r
51 4;d,.'*14* (CnfJ*IbFLA( out IF 4?) )+1*FLn TiT(I.Df(ITF 711

52 17=00104*0.
53 T' ( ASS( VPO) .t T* Ia Fl-5) nU TO 10
54 ~77=2.*% I41VLD*Wi Iv )*LXP LWI*J*VQf*y4 /VPrj
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56 TF(A9S(UF Q)).LT.1.OE-5) GO Tn 6

57 SSTEt~l'SFP4-CP2- L'PQ()t. -X4fX4f
58 TEM3=17*(SC(FPAi-FP2,UPOD.O.-X4x)-j*rnij*SSTF 1)

TEM42=-TEM4?
60 P21 ruMNTIJI'F
61 TF(1R., Q.?) GC) TO. 7 I

62 ~SUML=-L 0*PQD*(Tt-.15+Tr-m3)+E2OSVPGO*T.4:>
6Z noTO F
64 7 sufOE2f*VPL'D* ( TEtN14.TEM3) ,E20*UPQO*TLI'42
65 6 coNTIJLt:

66 FSPHI=SU~m/(TPOl*S(' RT(D)Y*DY))
67 (-0 10 ;;1
68 22 rutjTlr.1,E

69 lF(ICAl.C,NEi.1i 60 TO 51

7U X4=XX'+
72 FPA=IF#PI/ALIM
73 x6u
74fl=2.*x4
75 Y1:X4

76 2X
77 PP2=IF*PI/2.
78 TF(ICH.EU,2) po TO 40

79 TF(M)J(IFtei.F0,0) (V() TO 412
80 4+0 cCNT1,4'JL
81 7Fl=SC(FFPA9-F F GD9O*0..X49Y4)

02 IF)O.
Vb IF6=ROU.)

87 TF2=S(FPA-FP,Lr',. ,-X1+,y4)

8,9 1F 6=2. *C uS ILP04bs I,(, c * % M/ 2. IP rj
9u it0 lNT IN IIE
91. 7F3=2.*80IM
92 TF4=2.*RUIM
93 7F7=SS(-FPA,FPA*(y64X4),VPD,.f.,X4,y61)
94 1 F 9SC ( Vt'u , -F Pt F PA* I Y6,X *C

96 Tr ( AD(S'( vF'f*' 1) I/p.)I)-LT. I.6F-5 Go0 'I6 31
97 7F3=4e *C(JS( kPGrM*y ) *S1P (V90f*PL)Tfm/, )/Vr'(,
98 T:4.4*CUS(VPQf*Xu*$IPIVF-'P*I~/2.J/VPFO
99 A r ~uNTXN' E

100 TF('lOU(IFv2)sE0.0) Go TO 32

101. r 7F is 1~

104 2 *S1N(IIP9C*Djm/''.)/UVQD
115 TFi2=lFnO1F9*Trl(FP2),J0.
;60b cu TO 63 i
107 32 ruJTlNJC
108 c IF IS FVLN
109 1F5=-2.*.J*SS(FPA,FPASCup00,(p. XL.,XA)*Crc(FPP)
110 I~12.UMJO
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ill. IF(ABS(SIN(UPOl*BOT'/2. ) ).GT.t.nE-5) 1FI1i=4.*COSfLPQL)*X6)

113 7ihl2z-J*1F6JIF7*COS(FP2)
114 3 r CN T I N,1
11b FL1:?.v*J*TF1O*TF1I
116~ rL2=IF'4*IF5

117 Fk3=4.*1IF12

119 Go TO 31
1201 41 ruNTINJE
121 7C2=0&
122 TC5J*P.+.*CC(LP-Oi.FPA-FPA*(X6'4) ,X4iXr,*LAT(
12351 mc)T 9 )
124 TC7=2. *1*F OAT (MOO ( IF.?ld

126 TF4AF3S(U(CL1).L-T.1.IE-5) r,u Tn 44

127 IC2:SC(LUlo. ,FfA,?..FPA*X6,-X4Y'ti

128 7C5.*FLCA1~i-C1Flr2.)CCU0Pr. -FPa*(X(,X4).

130 3Cx6+,4),'4*y6)

132 2*RflIM/P.)/UP00{ -4..FLOAT(r*1Oit)IF2))*CSwtPOCx4i
133 ~ St(frL*U~2
134 ?c=4*v(pn,, 1U'/e.)(FLO'AT WON IF t' flhOS LPQD*X6)
135 ?,FL0AT(I-M0C(IF,2) )4Slt.I"P(o*X6)*J)LJPQn :
136 u4 ro.rITINIJE
137 1C3=jto,

139 7F(Ar~(VPG).-LTs1.0E-5) GO Tn 45I
140 7 =4.** (%P;l 6)*T ip~DM2 V~
141 T C4=-4. **S I N (PL*X) STN (*VOP(4)* 12. /VPQ
142 u~5 rOCNT IJ' V j
143 TCI=CC(FPA,2.*FPt *X6,UPGnC. .-X4,X4) I

144 2-J*IC2
145 TC6=2.*CC(VPOl,l. FPA,FPA*C,)X4,XE)
146 T C:CC I FA 10. ,WP(U, 0 .,-X4 ,X4)
147 FL4=1CI*1C3
148 IPL2=C' *lC5
249 FL31C ,*lC
150 rPL1:IC;'d*lC9
15 1 1~ rofITINI'E
152e TFCIR*rO*2) 6o TO 34

15%4 Ia) T3 A5
155 't4 ri[)l'HII 'Id.(FLI +FL!)+Vp'Gr).(FL ?+FLi4)
1 5E, 35 r oMTI 141JE
157 pb rPH I =rBPIl/rr1I9t *SUR T (D.L,Yf
1513 21 r uNTT I IJE
159 RETURN4

L61 YFIICALC*NEel) GO TO 8(

163 S, iB=SQiT (3. CIi
I~~ rIYY4
165 zXI
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A 167 2O.]166 X3=C/4--U*S(j3/4.j169 N=cx
170 3C2DSQ/.Y
171 Yb=C*S')S/?.
172 Ys+=C*SO3/2.+oIP.
173 X4=X3+t./2.

-175 P='v4-Sfl3*'
176 G=X4S153*Y4
177 qrPA'Y,+2.*CC.2.*Y

4 )
176 S=FPA*(Yir+L-2.*X!)

180 FP 2e. * P.
181 U,)UPQ).SQ.,
182 r TSC~i i-OK SINF TERrASI 2 FOR COSINE TER4MS
I a 3 F(ISC.Eu.2) Gn TO 70

jjk4 TT1=SC(FPA,o.,VP(0,o. ,-Yy2Y)
185 'rT2=0).

1~6 IT5=29*F4LIM
*87 1T6=0.
186 YT9:'4.*8LIM

190 TT12=SC(FPA2,V.',vPQ0*P+S,uPQl, o*.4x3, x'.
191 2 +S(P2Vs-PDPSuo~.Y',4
192 rT13=o.
195 TTJ!;=0.
194 T716=0.
195 T124=2..00oI
196 T2=C-P2VPvI3-*PUYi4
197 P +SC(F'A2VPtPORqU~.QUpOuySy4
198 T726=0.
199 iT27=0.
20o TT28=0.
201 T73S(P +VtIP2V *guoq~,.X 5 )202 2 *SC(FP'A -V39.EFI'2V3*Y,UPC, .,XC..,
203 YT34=0.
20'. 1755=u.
205
206 TF(,0t3S(VPG0).LT.1.()Er,) SL Tn 61
2073

209 1=. r(Pre1yv)vo
210 T2~J1

212 P -C(PPV*+P~jPUOe~Xi4
213 1T27=Cr(-rif2-vpc;L .'t.L*- .SIIPflU.YbtY4)
214 e -CC (-FPA24VPornRU3,.C.UPCO. y5ey4)
215
216 C(;A V -FfV3*Lo)CrjX9X)
217 7F(ABrS(UIPOU).LT*1.L...) r,(.1 Tf' bl
al1 21 T16=S(UkQoon. .1 -'3tV~~v9~o4
219 2 -4;(rQ.0tr)P+~SVDPX4l4
220
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2p1 Z -SCCU3,-Q.UPQA,-FPA24VPoOR, Y5,Y4)
222 TT36tSC(UPQO,0.,FPA2-V31 (-FPP?4V3i*Y6,XA,.X5)
223 P -sc tupo0O,PA2+V3 I-(FPP2+v3 )o ,X6. X5)
224 Al roJT IN I I
225 TL I =BfiI "*( ITI -J* IT 2)
226 T F(A [IS (LV'ULdI.1. 7. I - E-5 ) GO Tr 62

228 YTTSS(F-AFPA,(Y2- e) ,UP(LUC.,X21 y3)
229 T 1=" -~?VmP.)PSUWtU ,X3L4)
230 2 *SS(FPA?-Vli-VPL)U*P+S.UPrPU,0.,X3,Xq)

2il T ?4= * SIN( (Irj~Pnn)IA ) /IuPc")
252 TT 6 Sz9 3*-A*''J *~ t
233 1 6o- * P''j !tY
234 TT34=SS'(FPA2+Vl,-( FPj2*V3)*XAeUPQu9 0. X6. X5)

06~ 62 roNTIN4!;E

237 Tj1(~ -JT1)2

239 IT1I+=(lT15-J*ITlE6)/2o
240 TL45X=-I*1Tj4*bQ~5/2,
241 TL45Y=IT9*ITII/2.
242 TL( 7X=- t1j*T27.IT2e )*IT2L4/2.
243 TL67Y=1T24*SQ3*(lT5.J*11'26)/2).
244 TLB9X=-0eb*CCS(IF:Pl)*S93*IT1O* y73r)-J*TT36)/2.
i?45 TL89Y=fl-b*COS(71:*P1)*0.5WIT9*(ITSS-J*JT3ji
246 GO' TO Co 0
247 70 roNTINuE
248 C
249 r. rOSINE mOCES1
25C C
251 lr3=cC(FPAO, ,VPQD,0. ,-Y2iY2l
252 !T'4=0.
253 1T7:0.*J
254 TT8=0.

260 TT1Ii(.*~J
257 TT?4=2.*BDIM
258 ITIBO.
259 IT19=0.
260 TT21=Cr(FPA2,V3SVWu*psprr.OX3,xi,)
261 2 +CC(FPA?-V.S-VPQDIPUiGr0. ,X3.)")
262 T?2:0.
263 T79C FA+~0oR9 3,-*JGY sY
264 2 +CC(-FPIA2-VPCjRU 't-4LIP..Joy'.,Y'.)
265 Wio:'3.
26b TKlU
267 YT~t2:O
26b 113720.
269 1 T38=0.
270 1T39:CC(FPA2,,'tIFPA2,V3) #X~.UPO7,O. .X6.X5)
271 +C

273 yT;:AUS(VP,).LT.I.OE-5~) GO T(n 71
274 TT9=4. mSINaVPaD~lMIM),VPQD
27b T711:-j*II9
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Arm

276 TT4=SC(VFQUv0. .FPr~0. ,.Y~'Y2)

277 TT74.*St~'PQU*Y2) *1J(flQo*pO1M/2.)/VP(n
278 TT18SS(V3.FPA~tVPO9)*PS,U flrnJ. X31 X4)

279 2 *SC (V3-FPA2 ,VPQD*P-S ,oH*f. ,X~, X4)

81 2 +Sf:( V( 4PA-P9L,39-0.*JOn0,tYr~sY4~:
2r,2 TT37zSC(V-2+VT,-(FPA+V,) *X~,,uU(,Ot. 'XS.X5)

284 TF(AlS(UPCO.tT.l.0E-5) C-0 TO 71 '
286 2 (3-P79P *,XU~tUo3.Y4)
2;3 7 7 13 2 =S V G)F A 1 93. -Q ,3 n. Y r.)Y t f

28C 2 )

289 1TT3 6 S , t V A i P A ?V 3 X A U P CL) i(f. t X X 5
290 P -S(tA-7(FA+3*tUUIOt(o5
291 71 r u N T I N J
292 TL1Z-U')1M*(IT3-J*lT4)
293 TF(ASS(Uf-UD).LT.1.lE-) tOTC 7-,

295 TT8=SC(UPCGDIO.,FPAFPA*(y2-XP) x2.X3)
296 TT2?=SC(UPflA. ,FPA2fV3,S+qVP0U,,*P,X3,X4)
2>97 2 +SC(UP~C'.Fr2-V.S-Pnc*P,y3.Y.)

290 2 r4 =..* S I N (b Fl D ) PQC0
299 TT 3 0=SC (U3. 6*IJPO)UiFPP2+VPQ @CY5, Y4)

302 2 4SCfLP~OO. ,FPA2-V3, (-l?, +3)*X6X..X5)
303 72 rfo P T II 1)E

E 304 T.23=IT7*(CC(FPIA,FPA*(Y2-x.) ,UP~o,(i. X2tx3)-,i*ITB)605 Tl7=05*(llA-J1119
306 TT20=0.5*UlT2J-J*1T22)
307? TL5=j~0j9S62
308~ T L 45 z0 *I 117 * J(1r9I o ~ 0
309 TL67Xz.lT**r1O+JlT0
310 TL67Y=.I124*S03*U *5*( J*1T31-TT62)
311 Tu89X~fl~b*CLOS(TF*PI)*S0?3*O.5*119*( IT3c'-,d IT4n)
312 'Ti 89y:-005*COS( IFOPI)*0.5*ITIC*( IT37-,*1 f38)
313 An (,o0N TI NI E
314 TF(IH.EQ&2) GO TO 6L4
31' rFHPHI=!PUJo(TLI+TL45XTL67X+TL89X)-PUU*TL2,TL.Wy+

b16 rL67Y*TL89Y)
317 tu TO ^15
61i A4 r ONT I iJIIE
319 ; P lP *(ILI+TL !X+ L 7.TI g
32C 2 4 \VPO)t (Ti 23.TI '4 TL67Y4-TL8Py)
321 P5 r (it -T1.IE

v4 HI= 3PI/(OO' O U *ij
323 PE TlJRiJ

3j 4 FNO
32b r
326 FuNCTIOIf SS(,PLPHAtH.PETAtY1,A2)
6527 ,F(ASS(MLTo1.nL-fl, 60 O 1

328 60~Sf)G.1O-0 , 10 1
329 !4 S5 i iJ A L P HA fi %E T A) X -Y I
330 PLTURN
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331 1 rONTINL'C
332 ALv=A6SfA)+AFS(8)
3-33 ,p(ABS(HA-b1/TV)GT..r-4) GO TO 2

3,A4 Ss=-S Ir. k.A +AkLPHt.BET A) /(4 **A)+. 5*XP *COS ALPHiA8FTA)

335 + SINt?.*A*X1+ALPHAIAETA )/(U.*A)-.b*YlwrflS(AL-PHA-UE-TA)
336 Ft:T UR iJ

6538 TF(AqS((A+E4)/MTV).GT..F-4) GU TO 3

339 S,=Sr(,Ay+L1APT)(4*)Sri.Ay+LH-EA
340 2/(4.tt)+.U*(X2-Xl) *C0S(ALPHA+BLIA)
341 SS=-SS
342 PETURN
34~3 3 r Wj TI N E

34b

346 .5 CCA-d)*Xl4fLPHtA-ETA)/(2.*(A-b))
547 R F TUR~
,346 rf
349 C:
350 FUNCTION SC(A*ALPHAi~sPETA9X1.X2)
351 TF(A8S(A).GT..,10) GO TC I
352 TF(ABS(81KG1.1.0F-1J) GO 10 1

356 RcSi4ApA*C.([A*X-I
354 P*v.TUflJ
35 1 roNTINL'E
656 nIV=ABS(A)+AHS(8)
357 TF(AfS((A-B)/nTV).GT.1.OE-4) GO 70 2

359 2 ,COSCP.*.%*X14ALPHA+LIETA)/(4.*A 1-.b*X1*Si 4(Ag.PHA-RETA)
36v RETURN
661 p CoNTINIIE
362 IF(Al3S((A+Hfl/fTV)9GTs1.OE-4) GO TO 3
363 PC-O~a**PAPAPTA/4* CSP**IAPHA-BFTA)
364 a/1.*).5 2X , N(LH+iTA

_ %ETURN
3A6 3 roNTINHE
3A7 SC=-CCS(f(A+2*y2+ALPHAPETA)/(2.*(A+))rS((A-S)*XALP4A
368 P -B T ) (, I -)+ U ( A B* l+L A b T ) (. (+ )+O

369 3 ( A6*IAPIAFET
370 ArTUfRN
;D71 DN

37 C
573 FuN~CTLIN tCC A iALPH4 Hi ETA Yi X2)
3574 i i(Ar4 ( A) C I . OF -111) GO T 0t
375 TF (A8S (S) .(T I CE-10 1 60 ToI
676 rc=COS (ALP.+A )trOS (RLTA)* (Xg-y1)
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