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;lrcplotted on a graph ot”the log burning rate (r) vs log l}rcssurc(1)). t:rom
the’scgraphs it can be observed from the slope and spacing of the 1incs whether
a IJllrllillgrate l:iwof the form

r = co exp((lTJPn

c’:1)1bc (Isedto systematize the model solutions; i.e., .[ tne Iincs :Ircstraight
aIILi the vertical distance between lines is proportional to the difference in
i]litialtemperature, then n and o can be given constant v:llues. In this
t’q(]:ltion, n is the burning rate exponentand is equal to the slope of the 1il](s.
[f-all t}lcinitial temperature dependence is concentrated in the exponential
term, then u can be defined as the initial temperature sensitivity of the
h~lrllingrate. Co then depends only on propellant composition.

Ccnsidcring the pressure dependence of the burning rate, the solutions
oht:lincdfor first and second order reactions in the fizz zone do fit this
equation from ().01atmosphere to 100 atmospheres. The only parameter
affecting the slope of the lines on the graphs of the logarithm of burning
rate vs logarithm of pressure is the order of the reaction in the fizz zone.
The value of the slope (n) is equal to one half of the order of reaction
in the fizz zone. The dependence of o on propellant parameters needs to he
examined in more detail. All that can be said on the basis of the limited
solwtions obtained of the modified Parr-Crawford model is that the tempcr~\-
ture coefficient varies inversely with the total reaction energy and varies
directly with the gas phase activation energy. The d~pendence of o on these
parameters follows the equation given by R. L. Coates from laminar flame
theory, within a few percent, in the range compared.

The burning rate, surface temperature and maximum fizz zone tempera-
ture are measured in a combustion chamber that has been constructed to
optimize photography of the burning surface and the adjustment of initial
temperature of the propellant sample over a wide range. The chamber is

constructed to provide inert atmospheres from 0.01 atmosphere to 10 atmos-
pheres. Data is given for X-14, !!2,F!7,and !113double-base propellants.

*
R, L. Coates, lfAnAnalg~~g of a simplified La.minar~i’.ame?hew for.
Solid PropellantCombustion“ COMBUSTIONSCIENCEAND TECHNO1)OGY(4)
1 (1971).
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I. INTRODUCTION

Much can be learned about the sensitivity of propellant burning
rate to ambient or initial temperature by relating the experimental
work of the rocket engineer on initial temperature sensitivity to that
of the interior ballistician. Figure 1 shows a series of pressure time
curves for rocket motor firings. The initial temperature (To) and the
burning area to throat ratio (K) are vari~. 1,.these firings, while the
equilibrium pressure (P) and burning rate (r) are measured.

For suitably small steps of initial temperature certain difference
ratios can be formed while one or another parameter was held constant
in these firings. For instance if the burning area to throat ratio (K)
is held constant then

[ *] or [*]

‘K ‘K

can be computed and in the limit of small ATO these ratios are defined
as n

K
and IT in the literature.

r

When the interior ballistic properties of gun propellants are
determined, the closed, constant pressure bomb is used, and another
family of curves is generated which appears in Figure 2.

This family of curves appears as straight lines on a log
plot o~er limited pressure ranges and the familiar burning rate law,
r = bP , can be used. In this equation r is the linear burning rate
and P is the pressure. The slope of the lines in Figure 2 gives n.

Going one step further the level curves of Figure 2 suggest a
burning rate law of the following form

r= Co exp[uTo)Pn

where To is the initial temperature and Co and u are constants that
depend on propellant composition.

If all the burning rate sensitivity to initial temperature is
assumed to be concentrated in the exponential then u can be defined as
the sensitivity of burning rate to initial temperature at constant
pressure by the following-

a = ~a(:;r)l .

0
P

expression



The symbol u is also referred to as the burning rate temperature co-
efficient. The temperature coefficient (u) is related to the tempera-
ture sensitivities used by the rocket engineer by the following equation

a=n - nm
r K“

In this work an attempt is made to relate the log burning rate vs
log pressure curves obtained from solution~ of the overlapping zone
Parr-Crawfordl model to the above burning rate l:lw, lt may then be
possible to specify the important parameters controlling C and (J.

In this report o will always be given in percent chungc in”burning
rate per degree Kelvin.

II. THE MODEL

The Parr-Crawford model of double base propellant burning divides
the steady combustion process into three zones called the foam, fizz
and flame zones. At pressures below ten atmospheres in inert atmos-
pheres, the flame does not develop and this steady burning state is
called fizz burning. It is the fizz burning problem which is solved
and discussed here.

In the original work of Parr and Crawford, they worked out some
approximate solutions to their set of equations, and predicted a family
of burning rate vs pressure curves similar to those obtained experi-
mentally. These approximate solutions, at two different ambient pro-
pellant temperatures, along with the burning surface temperature vs
pressure curve are given in Figure 3. It is interesting to note the
large variation of surface temperature with pressure and the “low
pressure hump” in the burning rate curves. Parr and Crawford suggested
that the solving of the exact overlapping zone problem should be one of
the first improvements undertaken on their approximate solution. To
this end, the following equations for fizz burning have been programmed
and solutions have been obtained.

The steady heat flow equation with source and convective terms can be
written as:

d~ dcb
where MQ ‘+ MQ — =

a dy b dy
q (distributedreactive heat source).

(1)

1 R. G. Parr, and B. L. Crawford, Jr., “A Phgsical Theory of Burning
of Double Base Rocket Propellants,“ Journul of Physics and ColZo-id
Chemistry (54) 929 (1950).
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The zero order solid phase reaction can be written as:

dza

“~= @aO(l - Ca) exp (-As/T],

and the first order gas phase reaction can be written :]s:

dcb
—= F3b(Ea- Cb)pf exp (-Ah/T)‘f dy

where

1
1-E

a
(Ea - Ch)RT chRT

—=- +
Pf P -“Pwa- ‘~

and

T=

y.

As =

M=

c.
Qa .

Qb .

P=

B=a

‘b =
Aa =

Ab =

R=

P=

pf =

Wa =

Wb =

[2)

(3)

Kelvin Temperature,

the space coordinate perpendicular to burning surface,

fraction of the foam reaction completed,

fraction of the fizz-flame reaction completed,

As(l - .833 ca)= thermal conductivity,

thermal conductivity of the solid propellant,

mass burning rate (linear burning rate times density),

specific heat at constant pressure ,

overall heat of reaction in foam zone ,

overall heat of reaction in fizz-flame zone ,

density of solid propellant ,

frequency factor for foam reaction ,

frequency factor for fizz flame reaction ,

activation energy (foam reactiorldivided by gas constant ,

activation energy (fizz reaction) divided by gas constanh

universal gas constant ,

pressure of reaction products ,

the density of the mixture of solid and reaction products ,

molecular weight of foam reaction products ,

molecular weight of fizz flame reaction products.

3



Since M, Qa and Qb are constants the heat flow equation (1) can
be integrated and the constant of integration evaluated by assuming the
heat flux is zero when E = O and E

?

= O at the ambient temperature (T = ‘i’())
far from the burning sur ace. The ~ivision of one equation by another
eliminates A and puts the equations in the following form for programming
and computer solution.

dU
F[U - Ea - (Qb/Qa)Eb]exp(l/p’J+~{l,

—=
dca (1 - .833 Ea)(l-Q

dcb ~ (Ea - Eb)exp[(-Ab/Aa-l)/GU+H]
—=.
dc J
a

(l-Ea)[l-Ea +(+) *(U + :)]

(4)

(5)

where ~ is regarded as the independent variable up to Ca = .99999 for
the comfiutation of [1and Eb, and

C(T-TO)
U (reduced temperature) =

Qa ‘

M*C
F= A/aP ,

Qa
“CAa’

H = To/As,

M*C
J=~,

Pwbc
K=

~’

where it has been assumed that Wa = 2b in equation (5).

To get the computation started U is given the initial value of
one half of one percent of the maximum value of U and the initial value
of & is approximately 10-14. This starting assumption has been
show: to have negligible effect on the solutions. At the point

= .99999 in the temperature reaction profile the following equation,
‘%o tained by dividing the integrated form of equation (1) by equation
(3), is used to compute the remainder of the temperature reaction pro-
file with Eb now the independent variable.



Qb
J(U-Ea (’a+Eb) #(u+#]

dU
- “b)[l-ca +Qa

~= (1-.833Ea)(ca-cb)exp[(-Ab~Aa(GU+H)]

when E is given its final value of 1 for this computation.
a

(6)

The values of U and cb obtained from equations (4) and (5) at
ca=.99999 are used as initial values in eq~’ ‘~m (6) and U is computed
as a function of E out to Eb=.999. The boundary condition at cb=.!l!l~
is obtained by spe~ifying zero heat flux at the c =.999 reaction
fraction point. Under these conditions all the h~at release within the
boundaries neglecting the small starting flux goes into heating up the
propellant and the final value of U = U1 must be given by

.
~b

o= U1-l - ~ (.999).
a

(7)

It must be admitted that the actual situation in the steady burning
propellant must have some losses on the downstream side so that
all the reaction energy does not heat the propellant, however, measured
temperature profiles indicate that this assumption incurs small error.
Then y can be computed through the region of O<c <.99999 by numerically
integrating equation (2) along with equations (4? and (5). Equation
(2) is expressed in the following form for this computation

F exp(l/GU+H) dca
~dy= (l-Ea) (8)

The integration is carried out with respect to the expression on
the right hand side so that all of the integrations will depend only
on the dimensionless ratios given above. Then y is obtained by dividing
the right side by the coefficient of dy.

Then to compute y from E =.999 equation (3) is integrated along
with equation (6). Equation 13) can be written in the following form
to program and carry out this integration.

J(Ea+Cb)(U+$ exp[Ab/Aa(GU+H)]
;dy= 2K(&a-cb)

d~b . (9)

It is important and interesting to note that the pressure (P)
appears in just one parametric group (K) above, and (To) also appears
in one group (H). These groups (K,H) can be given a series of values
for a given value.of the solid phase reaction energy parametric group
(G), while adjusting the pre-exponential parameters (F and .J)to match
temperature conditions at the boundaries. A single steady burning
experiment at standard range conditions (1 atmosphere, 293 K) is per-

5



formed to measure the boundary temperatures by viewing the burning
surface with a high speed framing camera as the combustion zone burns
past a very responsive thermocouple. The camera record is synchronized
with the thermocouple output record. The emergence temperature (Ts)
given by this experiment is assumed to be the flill~rc:lctcxlfoom zone
temperature of the model. The equation for 11gi~’cnat the fully re-
acted foam zone point gives

us = C(T - To)/Qa .
s

Neglecting losses, the maximum value of (Jis given by

‘1
= C(TI - To)/Q3“

This equation for lJ1can be substituted in the maximum temperature
boundary condition given as equation 7 from which (?bcan be evaluated.

It is assumed here that !3 and 5 are not a function of pressure
or initial temperature and the?efore ?hat the values of I and .1,deter-
mined in the one atmosphere experiment, remains constant as other
points on the family of initial temperature curves on the burning rate
vs pressure chart are obtained.

This approach requires only that we assume values for the two
activation energies and the solid phase heat of reaction. From measure-
ments and the literature we can determine the best values for the para-
meters assumed constant in the model which are C, is, p, and I!b.

The specific heat of X-14 was measured from 0° to 70°C and is re-
ported in BRL Memo Report No, 2227.2 The specific heat increased from
1300 to 1450 joules/kg-K in this range. These values are within the
range of the specific heats of the product gases of a similar type
double base pro ellant described in the report of 0. K. Rice and
Robert Ginnell.3 On the basis of these observations a value of 1400
joules/kg-K will be used as the average constant value of the specific
heat in all states of the steady burning process. The other three
constants describe a single state of the propellant and are not as
difficult to justify since only the variation with temperature in the
given state must be considered. The solid state density is taken as
1620 kg/M3, Wb=23.4 and As=.209 joules/see NI-K.

2 J. Richard Ward, “DeterminationodfSpecific Heat of X-14 Propellant
by Differential Scanning Calorimetry”, BRL Memo Report No. 2227,
September 1972. AD# 906477L.

3 0. K. Rice and Robert Ginwll, “The Theory of Burning of Double
Base Rocket Poudaw”, Journal of Physics and ColZoid Chemistry,
(54) 885 (1950).

6



III. DISCUSSION

As the propellant parameters are varied to determine the effect
on burning rate and temperature coefficient, curves of constant
To are obtained. First Qa was varied with no constraints. l:igures
4, 5, and 6 show the marked effect of the solid phase heat
of reaction on burning rate and temperatur~ ~oefficicnt. I’heacti-
vation energies are 10,000 K for the solid phase and 40,000 K for the
fizz zone. Figures 4, 5, and 6 show the level curves of ‘1’{)for solid
phase heats of reaction of 60, 36 and 12 cal/gm.

As additional solutions are computed and graphs of level curves
of To are plotted for selected values of Qa and Qb it becomes apparent
that reducing Qb has the same effect on burning rate and temperature
coefficient as reducing Qa. Another way of stating this is that the
burning rate and temperature coefficient depend on the total energy
(Qa+Qb) rather than on the way these heats are distributed in the
solid and gas. This is illustrated in Figures 7, 8, and 9 in which
the total energy is 408, 384, 360 cal/gm respectively. These energies
are the same as in Figures 4, 5, and 6 respectively, however, the solid
phase and gas phase heats of reaction are distributed differently.
Compare Figures 4 and 7, and Figures 5 and 8 and Figures 6 and 9 and
note the same total energy and the same burning rates and temperature
coefficients.

In all of the results obtained no departure from the straight
line relationship between in r and in P has been found in the fizz
burning state of the modified Parr-Crawford model.

The dependence of o on propellant parameters needs to be examined
in more detail. All that can be said on the basis of the limited
solutions obtained of the modified Parr-Crawford model is that the
temperature coefficient (o) varies inversely with the total reactio
energy and varies directly with the gas phase activation energy (Ab7.

The dependence of u on these parameters and n agrees well with the
following equation,

(l+n +
‘b 1

a=
@ T1

given by R, L. Coates,4 where T1=To+Q/c.

This equation for u has been partially integrated to assist in obtaining
the following equation,

r = 1.36 x 10-4Pn(To+Q/c)l+nexp[-Ab/2(To+Q/c)] (lo)

where r is given “inm/see when Q is the total energy (Qa+Qb) expressed
in MJ/kg and P in MN/m2. The constant coefficient has been fitted to
an X-14 burning rate measurement at standard conditions (1 atm. 293 K).

4
R. L. Coates, “An Analysis of a Simplified Laminar Flame Theory for Solid
Propellant Combustion”, COMBUSTION SCIENCE AND TECHNOLOGY (4) 1 (1971).
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The computed temperature profiles have the form shown in Figure
10. The profiles are shown for two values of the initial temperature
and three values of pressure. The solid phase heat of reaction is
12 cal/gm and the fizz zone heat of the reaction is 348 cal/gm for
all profiles.

A schematic diagram of the combustion chamber designed and con-
structed and now in use for measuring burning rates and temperature
profiles is shown in Figure 11. The high speed motion picture camera
shown in the diagram is used to detect the emergence of a very respon-
sive foil thermocouple. The camera record is synchronized with the
thermocouple record by a fiducial mark and 1000 hertz square waves re-
corded on the film and the tape record. The “emergence temperature”
can then be obtained from the thermocouple record. A typical record
obtained on X-14, double base propellant, with emergence time and
temperature marked, is shown in Figure 12. This experiment was con-
ducted in one atmosphere of argon at 295 K. The burning rate is
.0015m/sec.

A few burning rate vs pressure data points that have been obtained,
on X-14 propellant, have been superimposed on the graph of Parr-Craw-
ford level curves of To which gave the best fit with the experimental
points. This is shown in Figure 13. The experimental points have a
slope of 0.6. If, in the Parr-Crawford model, the order of the fizz
reaction is raised to second order, the slope of the log burning rate
vs the log pressure curve is increased to one. It is, therefore, in-
dicated that the modeling of a given pressure exponent (n) in the
burning rate law is a matter of selecting the proper order of reaction
in the fizz zone. Additional data on X-14, M2, M7, and M13 are plotted
on Figures 14, 15, 16, and 17.

IV. CONCLUSIONS

The trends and relations exhibited by the Parr-Crawfordmodel
described in this report are summarized as follows:

1. Parr-Crawford fizz burning state can be described by this
burning rate law:

r = 1.36 x 10-4Pn(To+Q/c)l+nexp[-Ab/2(To+Q/c)]

2. Pressure exponent (n) in burning rate law is obtained by
dividing order of fizz reaction by two.

3. 0 decreases with increasing reaction energy (Qa+Qb).

4. u increases with increasing fizz zone activation energy (Ab).

5. No “low pressure hump” observed in burning rate vs pressure
curves as in Parr-Crawford approximate solutions.

8



6. Equation for u, derived from simplified laminar flame theory,
given above, by Coates correlates significant parameter effects deter-
mined in this study quite well (within a few percent).

There are two difficulties associated with looking for corre-
lation between the relationships given by the model and the real world
of propellant combustion. The first is that the model describes fizz
burning and not the flame burning encountered at gun and rocket
pressures where most of the closed bomb experimental work has been
done. The second has to do with the fact that changes in propellant
composition that change only one parameter at a time are very diffi-
cult to achieve in practice. When these facts are considered one can
understand why we cannot just compare the heat of combustion, as a
measure of Qa+Qb, in the model, and expect to see the same trends in
burning rate and temperature coefficient in the JANNAF propellant
manual as is predicted by the model described in this report. These
considerations probably are the major factors in explaining the apparent
discrepancy between the prediction of Parr-Crawford fizz burning theory
and the fact that in double base propellants at rocket and gun
pressures the temperature coefficient rises with increasing reaction
energy.
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