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POINT ESTIMATION AND CONIIDENCE INTERVAL ESTIMATION 
FOR BINOMIAL AND MULTINOMIAL PARAMETERS 

I.  INTRODUCTION 

After the completion of experimentation (for testing k 

hypotheses concerning binomial parameter p (R. Chandra, I'i75-A) , 

selection of the most probable category of a multinomial popu- 

lation (R. Chandra, 1975-B), and ranking of k binomial popula- 

tions (R. Chandra, 1975-C)) , the experimenter might wish to 

obtain some estimates of the value(s) of the unknown parameter(s) 

occurring in the probability distribution of the population(s). 

In this paper our basic theme is the estimation of parameter(s) 

of binomial and multinomial distributions from an "effectively 

small" sample. We suppose that a sample is already available 

to be used by itself for the estimation.  By "effectively small1' 

we mean that a sample is small for the purposes of estimating 

the probabilities, since the experiment was primarily designed 

for the separation/selection/ranking rather than for the esti- 

mation.  The estimation, we assume, is the afterthought rather 

than the main objective of the experimenter. 

If the primary objective of the experimenter is to obtain, 

with as few observations as possible, a confidence interval for 

an unknown parameter, having preassigned confidence coefficient 

. . . . ^. 
im  i   -■■. — — -^. ^.. 
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and preassigned width, or to satisfy some other conditions, 

he would need altogether a different stopping rule for the 

sequential experimentation.  DeGroot (1959) has shown that a 

single sampling plan and inverse binomial plan are the only 

ones that admit an estimator that is efficient at all values 

of p of a binomial distribution.  Bhat and Kulkarni (1966) 

have generalized the above results for multinomial distribu- 

tion with the similar conclusion.  Thus ic is clear that if 

estimation of parameter(s) is the primary aim of the experi- 

menter, he would choose one of the above two procedures.  For 

further reference on sequential estimation one can refer to 

Johnson (1961), Wetherill (1966), and Goss (1974), among others. 

Our concern here is the development of an exact method of point 

and interval estimation for the parameter(s) once we have ter- 

minated our experiment for hypothesis testing/selection/ranking. 

We base our estimation solely upon the sample available on the 

completion of our experimentation. 

Anscombe (1953, 1954) has made a number of studies of the 

use of the data obtained with sequential sampling procedures in 

the calculation of estimates of the parameter values.  He has 

concluded that provided the sample size is not too small fixed 

sample size methods of estimation (which is generally maximum 

likelihood procedure) can be used even though the samples were 

obtained sequentially.  Johnson (1961. p. 361) rightly notes 

"...these estimates would be no more accurate than would estimates 

based on genuine fixed size sample of the same size.  In fact, 

owing to the essentially approximative ("large size") nature of 

■ -   -■ ■ ■  - ~-^--*J»«^. 
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Anscombe's results, there would usually be rather more uncer- 

tainty as to the true accuracy of estimates based on sequen- 

tially obtained sample."  Armitage has said "...it appears to 

be true that sequential estimation is no more efficient than 

fixed size sample estimation" (see discussion of Anscombe 

(1953)).  Bearing the above facts in mind the experimenter must, 

therefore, accept that the efficiency of the estimates obtained 

from a sample collected for sequential experiments designed for 

purposes other than estimation would be limited. 

Maximum likelihood procedure is the most often used metnod 

for obtaining estimates from one stage (or fixed size) sample. 

It is well known that maximum likelihood estimates based on 

a sequential sample are biased.  Girshick et al. (1946) give an 

unbiased estimator for the binomial parameter.  Their procedure 

has been extended for estimating the trinomial parameters by 

Muhamedhanova et al. (1966).  The procedure can be generalized 

for k>3 (see Johnson et al. (1969)).  Before introducing our 

method of estimation, we note the following reasons why we do 

not use either maximum likelihood procedure or methods based on 

Girshick et al.  In the discussion that follows we consider the 

binomial distribution.  The remarks that we make hold true for 

multinomial distribution also. 

We take the maximum likelihood estimator (m.l.e.) first. 

Suppose we wish to estimate the probability p after we hrive 

ended the sequential experiment with i success (es) out of n trials. 

The m.l.e. is simply i/n.  This is a perfectly good estimate 

I 
*^^^MM     ' ' ' m^l^^mmm^^m^mi 
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(ignoring the fact that it is biased) if i and j=n-i are both 

large and in this case there is no objection to m.l.c.  Howover, 

since we are concerned with probability estimation from effec- 

tively small samples, let us consider the case where i=0.  Then 

m.l.e. of p is 0.  It is not easy to see how this value can be 

used for decision making.  Unless n were fabulously large no one 

should make use of m.l.e when i=0.  Confidence interval estima- 

tion suffers from a similar disadvantage when is0 or it is 

very small;  it has to include the point p=0.  To assert that 

0 is the lower bound for p is to assert nothing at all about the 

lower bound 'for further discussion on this point, see Good 

(1965)). 

Estimates based upon Girshick's method suffer the same 

shortcomings which we have pointed out above for m.l.e. 

Girshick's unbiased estimate p for p is 

p = w*(i,n)/w(i,n) 

where w(i,n) is the number of admissible paths from (0,0) to 

(i,n) and w*(i,n) is the number of admissible paths from (1,1). 

Clearly when i=0, w*(i,n)=0 and w(i,n)=l and p=0.  Thus the ob- 

jection noted above for m.l.e. for i-0 is applicable here also. 

Noting the above difficulties with classical estimates, 

in what follows in this chapter we give a modern Bayesian pro- 

cedure for estimation.  We do not claim any optimality property 

for our procedure;  we have attempted to provide a general and 

uractical method of estimation after the termination of a 

L_ 
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sequential experiment.  In Section 2 we give the estimation pro- 

cedure for binomial parameter p and in Section 3 we generalize 

our results of Section 2 for multinomial parameters.  We derive 

the formulas with very general prior distribution of parameter(s) 

but we have restricted ourselves to the uniform prior distribu- 

tion of the parameter(s) in our applications.  Perk (1947), 

Johnson (1932), Good (1965), and Good et al. (1974), among others 

have discussed the pros and cons of using other priors vis-a-vis 

uniform prior.  We, however, stick with uniform prior in our 

uses because this clearly represents best our state of ignor- 

ance about parameter(s) that we assume completely unknown at the 

start of experimentation.  Important references on Bayesian 

estimation procedures include Wetherill (1966), DeGroot (1970), 

and Box and Tiao (1973) among others. 

2.  ESTIMATION OF BINOMIAL PARAMETER p 

In this section we consider the estimation of the binomial 

parameter p.  The Bayesian method that we describe and use for 

estimating p from the sample obtained at the termination of a 

sequential experiment is due to Goss (1974) and Schmee (1974) . 

The method they have used is based on the assumption of a uniform 

prior distribution of parameter p between 0 and 1 (i.e. G(p)=p 

and dG(p)=g(p)=l for 0£p<l).  In what follows, we first derive 

the formulas wi th a very general prior distribution of p and 

then give the formulas with a uniform prior.  In Section 2.1 we 

derive a formula for point estimation.  In Section 2.2 we derive 

.^A^^MMiMk.M^. ..^.^^      —'^ <"■-—  ---ii  m MiBi Ml ■!!■    • ^—^—»^——    



formulas for interval estimation. In Section 2.3 we give the 

results for a uniform prior. In Section 2.4 we give a numer- 

ical illustrative example. 

2.1  Point Estimation 

Let a sequential experiment terminate at the m  stage 

with score i;  i is the total number of successes associated 

with probability p.  It is well known that i is a sufficient 

and transitive statistic. 

Let g (p) be the prior density of p that is believed to be 

true, and Mi,m) the likelihood function for the outcome.  Then, 

according to Bayes' rule, the posterior density function, f(p), 

of distribution is given by: 

*/„i _   g(p)Mi,m)dp Mv 

where integration is over the whole range of p. 

In Bayesian analysis the general form for g(p) is 

g{p) ■ pa"1(l-p)b"1; a,biO, Oipil (2) 

(see Good (1965)).  For experimental outcome (i,m) the likeli- 

hood function is given by: 

Mi,m) - w(i,m)pi(l-p)ra'1 (3) 

where w(i,m) is the total number of admissible paths from 

(0,0) to (i#m).  (Note:  w(i,m)V ( "j , since for sequential 

procedures all the outcomes are not permutable. Fortunately, 

- ■    ■  ■          _^ ^^  MMMJ^IM  . , . 



however, w(i,m) does not present any problem, since it drops 

out as may be seen later.) 

Substituting values of g(p) and J,(i,m) in (1) the pos- 

terior density becomes: 

f (p) 
a-1,,  vb-1 #• _. i,,  \m~ij =  P   (1-P)   w(i>m)p (1-p)  dp 

Jn a-l,,  «b-1 ,.  . X.m     »m-l, Lxp   (l-p)   w(i,in)p (1-p)  dp 

i+a-1,.  xm-i+b-l,  (1-p) dp 

^0 P    (1-P)      dp 

i+a-1..  .m-i+b-1, 
E (1-p) d£ 
B(i+a, m-i+b) (4) 

where B(x,y) is the complete beta function with paramters x 

and y;  B(x,y)= (x-1)!(y-1)1/(x+y-1)!. 

Let p be the point estimate of p, then 

(P) » P =J0 P f (P) 

B(i+a,m-i+b) ••'0 p p ̂ ^(i-pr-^^dr 

or 

P = 

B(i+a-Hym-i+b) 
B(i+a,m-i*b) 

(i+a)1(m-i+b-1)1 
(i+a+l+m-i+b-1)! 

i+a 
m+a+b 

(i+a+m-i+b-1)! 
(i+a-1)! (m-i+b-1)! 

(5) 

2.2  Interval estimation 

Let g^ be the lower bound on p at confidence level 1-ot, 

ui<l (i.e., Pr (p<£)ia).  It follows that 

• --• - ■  ■ ■ 



/ 
f (p)dp = a 

or 

or 

 1   fE i+a-1.,  .m-i+b-l, 
B(i+a,in-i+b)  4 p    (1'p)      dp = a 

Bg (i+a,m-i+b) 

B(i+a,m-i+b) ■ a (6) 

where B (i+a,m-i+b) is incomplete beta function.  Equation (6) 

may be solved for £ by using any standard computer program. 

Also it is well known that B (x,y)=B(x,y)-E{x+y-l,x,p), where 
n    x n-x        P 

E(n,r»p)   *    ^   p   (1-p) and Oipil.     Thus   (6)   reduces  to: 
x=r 

E{m+a+b-l,   i+a,  £)   = a (7) 

The above equation may be solved for £ using any standard table 

for cumulative binomial function (e.g. Harvard Table (1955)) 

with interpolation (if necessary). 

Similarly, an upper bound p on p at confidence level ß 

(i.e., Pr(p2p)<0 or Pr(psp)il-ß) may be computed by solving 

B-(i+a,m-i+b) 
= 1-0, (8) 

or 

B(i+a,m-i+b) 

E(m+a+b-l,i+a,p) = 1-ß (9) 

The two-sided confidence interval at confidence level 

l-u-ß (a from the lower side, and ß from the upper side) may be ob- 

tained by solving (6) and (8) or (7) and (9) simultaneously. 

2.3  Results with uniform prior 

For uniform prior distribution of parameter p between 

u |  ■ ■ •-■■■--■■  i     'i II>IJI,1M«III|-     .. i.fc    Ml   .   ».r 



0 and 1 (inclusive) g(p)=l, i.e., a=b=l in (2).  Substi- 

tuting the above values for a and b in (5) 

p = (i + l)/(m+2). (10) 

For fixed sample size test, the above result was first obtained 

by Laplace and is known as Laplace's law of succession (see 

Good (1965, p. 16). 

The lower bound £ on p at confidence level 1-a may be 

obtained by solving one of the following two equations. 

B (i+l,m-i+l)/B(i+l,m-i+l) = a 

E(m+l,i+l,£) ■ a 

(11) 

(12) 

Similarly, the upper bound p on p at confidence level 6 may 

be obtained by solving one of the following two equations: 

B-(i+l,m-i+l), Mi+l,m-i+l) ■ 1-ß 
P 

E(m+l,i+l,p) = 1-6 

(13) 

(14) 

The two-sided bound (£,p) on p at confidence level 

1-a-ß (ot, ß<l) may be obtained by solving (11) and (13) or (12) 

and (14) simultaneously. 

2.4 Illustrative example 

As an illustration of the explicit point and interval 

estimation, suppose our sequential experiment for ranking three 

 - ■   I Ml»  
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independent binomial populations A, B and C terminates at 

stage 3 with scores (successes) 3,2,0 for population A,B, and C 

respectively.  It is desired to obtain: 

a) Point estimates of population parameters p., p 

and p- respectively; 

b) One-sided bound on p , pB, and p at confidence 

level 0.9; 

c) Two-sided bound on p., pB and p_ at confidence level 

0.9 (equal tail). 

Solution 

a) From   (10) 

V   Ml = 0-8' PB 
= fri = 0'6' Pc = 3T2 = 0-2 

b) (i) Using (11) with a= 0.1 (lower bounds) 

g^ ■ 0.562, £B = 0.320, E^ = 0.025 

(ii)  Using (13) with 6=0.1 (upper bounds) 

PA = 0.974, pB = 0.857, pc = 0.437 

c) Using (11) and (13) with a=0.05 and ß=0.05, a 90% bounds 

on p.(i=A,B,C) are as follows: 

0.472 < pÄ < 0.987 
A 

0.248 ^ PB < 0.902 

0.012 < Pc < 0.527 

(Note:  solutions for parts (b) and (c) were obtained 

using a computer program for evaluating inverse- 

incomplete beta function.) 

■*■  — —   ■ -      1 -i. . 



11 

3.  ESTIMATION OF MULTINOMIAL PARAMETER (p   ,p   , . . . ,p   ) 

In this section we consider the estimation of multinomial 

parameter p. associated vith event E.; j=l,2,...,k.  It is 

assumed that E.'s are exhaustive and mutually exclusive events 

such that 0<p.<l and Zp.=l.  The method that we describe below 

is the generalization of the one that we developed in Section 2. 

for the estimation of binomial parameter p.  In what follows, 

we first derive the formulas with a very general prior for 

multinomial distribution and then give the results with uniform 

prior.  In Section 3.1 we derive a formula for point estimation. 

In Section 3.2 we derive formulas for interval estimation.  In 

Section 3.3 we give the results for uniform prior.  In Section 

3.4 we give a numerical illustrative example. 

3.1  Point estimation 

Let a sequential experiment terminate at the m  stage 
k 

with cumulative score n. for event E.; Osn.<m» I   n.=m, 

j=l,2,...,k.  It is well known that any k-1 of the above n.'s 

constitute minimal sufficient statistics.  It is also well 

known that a multinoirial distribution of order k can Le com- 

pletely specified by any k-1 of the k p.'s.  For convenience, 

we will consider the first k-1 of the k p.'s unless the 

contrary is mentioned. 

Let g(p....p. .) be the prior density function of the 

distribution, and J, (n. .. .n.) be the likelihood function for 

the outcome.  Then, according to Bayes' rule, the posterior 

'"••*——■•'-- '—"-■ Hi l II^MMMMMMI«! ■    ■. 11   HIM."  '—' •-       III 
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density, f(p . ..p. .), is given by 

g(P1.--Pk_1)-^(n1...nk) n dp. 
f(pr--p)c-l) =   £±—-       (1 

/g(p1...pk_1)-£(n1...nk) n dp^ 

where integration is (k-1) fold over the whole range of p. 
k :, 

such that  j: p =1. 

In Bayesian analysis the general form for g(p ...p  ) 

for multinomial distribution is given as: 

5) 

(k-1   s.-l* /  k-1 \s.-l 

ill   pi     / V" iii'i) (16) 

(see Good (1965).  For experimental outcome (n.»n....,n. ) the 

likelihood function is given by: 

Mn.-.-n.) = 
(k-1 n.\ / k-1  \ n 

3=1P3 / \1_j=lP3 ) 
(17) 

where w(n1»n«,...»n.) is the total number of admissible pat hs 

from (0,0,. ..,0) to (n. ,n2#... ,n. ) .  (Note:  w(n-,n2,. .. ,n, ) 

ml 
, since for sequential procedures the outcomes are 

not permutable.  Fortunately, however, w{n.,n2,... ,n. ) does 

not present any problem since it drops out, as may be seen later.) 

Substituting values of 9 (Pi • •'Pi,.!) and Mn.^.n. ) in (15) 

the posterior density becomes: 

la. ■*.!   miiMiimm*mi jrMMM^^ai^Mfc^h^^.liilr Mill  i   imlitiMM 
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f (Pi •••P|r-l)=S 

(k-1    r.\ /    k-1    \rk   /k-1       \ 

(18) 
i-'-^k-r k-1 

(k-1     r \/  k-1      \rk/k-l       \ 

8(^+1, r2+l,...,rkViy~ 

where 

and 

rrn.+s..l;    yj 

B( 
(1 v) 
(ZCr.+D-D! 

(see Appendix 1 ) 

Let p.   be  the point estimate of p.;   p =  E(p) 

k-1 

It follows that 

r rpi r-i pj / k-i ^w k-i \rkA-i \ 

Jo Jo-    Jo pi(^   JhiW   to) 
B(r1+1,   r2+l,...rk+lT 

B(r1+1#...,ri_1+l,   ri+2,   ri+1+l,...,rk+l) 

B(r1+1,   r2+l,...rk+l) 

r.+l 
i  

TTTFT+kT 

n.+s. 
i     i 

k 
m+ E   s . 

j = l   ] 

(2o; 

-   - MI --   - - —   
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3.2  Interval estimation 

Let £. be the lower bound on p. at confidence level 1-a 

(i.e., Pr(p.i£.)la).  Without loss of generality we may inter- 

change p. with p. and relabel these two.  It follows that 

k-1 
,p1  -l-P,  I- > re-^wüH 
B(r1+l/ r2+l,..., rk+l) 

or 
= a 

= a 

(21) 

or"  E( >: r.+k-l, r.+l, £.) = a 
j=l J      i    i 

(22) 

Thus, in general,£. may be obtained by solving one of the follow- 

ing two equations. 

k 
B ̂ (n.+s., m-n^ZSj) 

2HL 

B (ni+Si' ""V^^j) 
k 
I 
»: 

■ a (23) 

or E (m+ Z   8.-1,  n.+s.,p. 1  = a 
j.l j    I l'«i ; 

(24) 

Similarly, an upper bound p. on p. at confidence level 

ly. (Pil); (i-e. Pr(p.ip.)i3 or Pr (p. ip.) il-ß) may be computed by 

. _ - ■-»■  . .m ^ MM > ■ 
.... >... ..^ ^Jj.^ma^m^m.^ 
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solving either (23) or (24) by changing their r.h.s. to 1-p. 

The two-sided confidence interval at. confidence level 

l-u-ß(a,ß<l; a from »he lower side and ß from the upper side) 

may be obtained by solving (21) or (22) twice—first with a and 

next with 1-ß in r.h.s. 

3.3 Results with uniform prior. 

For uniform prior distribution of (p.^.p. ),p. between 
1     K   ] 

0  and  1   (inclusive)   g (p^.. .p^, )=1;   i.e.   s.=l   (for all  j)   in 

(16). Substituting above values of  s.   in   (20) 

n. +1 /->>i \ p. =   i (24) 
1   m+k 

The lower bound £. on p. at confidence level a may be 

obtained by solving 

B£. (n.n, m-n.+k-l)/B (ni+1, m-n.+k-l) = a       (25) 

or  E(m+k-l, ni+l, £i) = a (26) 

Similarly, the upper bound p. on p. at confidence level ß 

may be obtained by solving one of the following two equations: 

B- (n.+l, m-n.+k-l)/B(n.+l, m-n.+k-l) = 1-ß      (27) 
pi      i        i      i 

E(m+k-l, n.+l, pi) = 1-ß (28) 

The two-sided bound   (£.p.)   on p.   at confidence   level 

(x+ß(a+ß<l)     may be obtained by solving   (25)   and   (27)   or   (26) 

and   (28)   simultaneously. 

*~*^~—~*m~t*amit*~*~.~*m****m~*~^...  IM——MMIM 
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3.4  Illustrative example 

As an illustration cf the explicit point and interval 

estimation, suppose our sequential experiment for selecting 

the most probable eve:it of a multinomial experiment (of order 

3; k»3) terminates at stacjo 7 with score [4,2,1].  It is 

desired to obtain 

(a) Point estimates of PwP, and P3 

(b) One-sided bound on p,, p«, and p. at confidence 

level 0.9 

(c) Two-sided bound on p,, p2, and p. at confidence 

level 0.9. 

Solution 

(a)  From (24) 

4+1 _ _  -  _ 2+l _ _ * i+l = 0<2 
pl = 7+3 = 0-5' P2 = 7+1 = 0-3' P3 " 7+3 

(b) (i)  Using (25) witha^G.l, the lower bound (at 90%) 

£. = 0.300, £2 = 0.129, £3 - 0.060 

(ii)  Using the same equation with 6=0.9 (in place of 

01 , the upper bound at 90% 

p, = 0.699, p2 = 0.49, p3 = 0.368 

(c) Using (25) first with 0.05 and then 0.95 in r.h.s. the 

90% two-sided bounds on Pj^'s are: 

0.251^ P1 < 0.748 

0.097^ p2 * 0.549 

0.041-^ p3 ^ 0.429 

I II !■  'J- ■-- - ■ 
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APPENDIX 1 

SOME DERIVATIONS RELATED WITH 
MULTINOMIAL ESTIMATION 

1.  Derivation of (19). 

In what follows we prove that 

k-1 
.1  .1-p,   -1- I p. 

Ik- /  /   •if "P/MI1" Z Pi ^ ndpi) 

- BU.+l, r2+r3+.. .+rk+k-l) B(r2+1, r3+.. .+rk+k-2 ) 

... B(r.+1, r2+lr ..., rk+l) 

» B(ri+1, r2+l, ..., rk+l) 

(i) For k=2 

j0 PI »-»i»   dPi 
i    '  i 

Bir^l, r2+l) 
(A-l) 

(ii)  For k=3 

13'      h      h        pl p2  'i-Pl-Pa' dP2dPl 

Let   ^2 ■ x, substituting in r.h.s. 

p2 ■ (l-p1)x, dp2 = {l-p1)dx and changing the limits of 

integration from 0-(l-p.) to 0-1 we have 
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y.1  /.I r r      r      r.    r 
/   l*%>ta*t> ^I-P,) 3(i-x) 3

(1.x) 

/     nl      r2+r3+1 f       r?     r^ j   p  1 (1-p  2  3  /  x 2{l-x) 3 

= B (k1+l r2+r3+2)  B(r2+1, r3+l) 

r2!     r3, ri!   (r2+r3+1,! 

Tr1+l+r2+r3+2-l)    (r2+l+r3+l-l) 

ri!  r2!  r3! 

(ri+r2+r3+3+1) 

(A-2) 

= B(r1+l, r2+r3+l) 

Thus following through we may generalize from (A-l) and (A-2) that 

Ik= B(ri+1' r2+...+rk+k-l) B(r2+1, R3+...+rk+k-2) 

B(rk-1+1' V11' 

From (A-l) and (A-2) it follows that 

Ik= B(ri+1' r2*l,..,,rk4-l) 

Q.E.D. 
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