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ZNTRODUCTION

There are fev asromechanicel systems that operate in a more hostile
ssrodynamic enviromment than the huiicopter rotor. In hover, the vakes
shed by the rotor blades can tend to pile up dbeneath the rotor and lead
to unfavorable blade aeroelastic response. In forvard flight the rotors
are required to provide lift and propulsive force vhile the blades are
being subjected to rapidly varying serodynamic forces. The advancing
blades can operate at high tip Mach numbers and might experience adverse
compressibility effects, vhile the retreating blades experience both
reversed flos and stall effects. Since the rotor blades are relatively
flexidble, these aserodynamic phenomena can, under certain conditions, lead
to asroelastic instadbility. Typical of these are advancing blade static
pitch divergence and classical flutter, vhile the retreating blades can
encounter stall flutter and drag divergence. Other phenomena that lead
to oscillations of the tip path plane are also possible. In hover, the
shed vakes can induce blade flutter and the tip vortices shed by the
blades can cause subharmonic blade oscillation and can also result in
the blades going out of track.

In eddition to the above, other instabilities can be encountered that
are & direct result of blade kinematic coupling. Among these are classical
pitch=flap and pitch-lag instabilities, caused by adverse coupling between
the pitching and out-of-plane and inplane motions of the blades. Also,
the fact that the blades are relatively flexible can give rise to fre-
quency relationships that result in a class of instability generally
referred to as flap-lag instability.

Many of the phenomena encountered by helicopter rotors are little
affected by motions of the rotor hub. These can generally be classed as
rotor instabilities. However, a number of unstable phenomena that have
been experienced are a direct result of coupling between rotor motions
and hudb motions. The most classical of these is ground resonance, or
more aptly, mechanical instability. This can occur when the frequencies
and damping of the modes of the helicopter on the ground bear o certain
relationship to the rotor blade inplane frequency and damping, when this
inplane frequency is less than the rotor speed. This instability is
purely mechanical, that is, it requires no aerodynamic influence. A
similar phenorenon that does require aerodynamics occurs when the heli~-
copter is airborne. This is generally referred to as air re.onsnace and
normally involves the airframe rigid-body modes, bending modes, or local
transmission modes. When a rotor is in high-speed axial flight, for
example, & propeller rotor, an instability that causes vhirling of the
rotor hub can occur. The precise form of this instability and the nature
of the vhirling, advancing or regressing, depend on the degree of flexi-
bility of the blades, or more exactly, the blade out-of-plane and inplane
frequencies. Another type of whirling instebility that involves rotor
coning and blade flapping has recently been encountered during an NASA-
sponsored test program at Sikorsky Aircraft.
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Rotor blade pitch control systems have a vide variety of designs and
&namic characterics. They invariably include servo actuators and can
significantly affect the rotor system aeroelastic response. The blade pitch
frequancy can be substaniially reduced by coupling with the control system
vhich can lead to an othervise stable system's becoming unstable if the
reiuction in frequency results in adverse blade modal intersctions. Air-
fame motion feedback through the servo supports or input valve can also
affect the rotor response.

Based on the foregoing, it seems clear that if predictions relating
to rotor stability are to be believed, thon the mathematical models of the
system being analyzed should include adequate descriptions of not only the
rotor blades and aerodynamics, but also of control systems and hub impe-
dances vhen there is any possibility that these may influence the results.
The analysis described in this report provides this capability by incor-
porating realistic descriptions of the dynamics of fully coupled rotor/
airframs/control systems. It also provides a refined description of the
serodynamics that includes stall, compressibility, and unsteady effects.

The analysis can be used to study the stability of main or tail rotors
or propellers in hover, forward flight, or pure axial flov. 8ince a major
objective of the contract under vhich this work was completed was to
provide the Army vith the analysis and an operational computer program,
the method of developing the analysis, its important features, and the
equations of motion are given in detail in Appendixes A and B. A program
user's manual has been provided as a separate document.

Also included in the report are the results of perametric and sensitivity
studies of semiarticulated and hingeless, composite dearingless type tail
rotors using the present analysis. It should be uoted that not all of the
options available in the analysis vere exercised during these studies.
Specifically, blade motions were described by only three modes, no control
system dynamics vere included, hudb motions were described by oniy two modes,
certain forvard flight dynamic effects were not incorporated, and unsteady
aerodynamics were not used. These facts should be taken into consideration
vhen conclusions are drawn from the results of the studies.

13
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Two baselins tail rotors that are representative of current Sikorsky
Adlrcraft designs were selected. The physical and structural characteris-
tics of the rotor dlades and rotor hubs are presented respectively in
Tables 1 and 2. Both rotors wers nonarticulated in the inplane direction.
The tail rotor that is articulated in the out-of-plane direction will de
referred to as tail rotor no. 1, vhile the tail rotor having a rigid root
boundary condition for out-of-plane motion will be referred to as tail
rotor no. 2. It should be noted that the hinge offset for out-of-plane
motion listed for tail rotor no. 2 in Table 1 represents an equivalent
hinge offset, or the radial location at wvhich the rotor blade flexidbility
can be assumed to become finite in the flatwise direction.

Additional rotor blade characteristics are presented for both rotors
in Fgures 1 through 6. These show respectively the radial distributions
of chord, twist, wveight, flatwise and edgevwise area moments of inertia,
and torsional inertia. The blade flatwise mass moment of inertia was
assumed to be zero, vhile the edgevise mass moment of inertia was assumed
to equal the torsional mass moment of inertia. The blades were assumed
to be torsionally inelastic, the torsional frequency depending only on
the control system stiffnesses and the blade torsional inertia.

All conditions investigated assumed sea level, standard dey operating
conditions (air mass density was .002378 slug/ft3 and speed of sound vas
1116 ft/sec).

Two coupled flatwise/edgevise blade modes were used for each rotor.
The first mode, vhich vas primarily flatwise for both rotors, represents
rigid-body flapping for tail rotor no. 1 and flatwise bending for taill
rotor no. 2. The second mode was mostly edgevise and described a bending
mode for both rotors.
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TABIE 1. TAIL ROTOR BLADE CHARACTERISTICS

Tail Rotor
Paremeter Descriptiop .l
Radius 10.0
Hinge offset for out-of- 1160
plane motion
Nusber of blades b
Rotor speed T00.0
Tip loss factor 97
Prelag angle 3.33
Precone angle 0.00
Alrfoil section NACA 0012
Young's modulus 107
Pitch horn radial loce~
tion 9.5
Chordwise distance from
elastic axis to pushrod -
positive toward leading
edge 4.5
Pitch beam arm length 10.64
Critical pitch damping 6.
Critical blade bending
mode damping 8]
Blade root flapping
boundary condition artic.
Blade root inplane
boundary condition riged
Radial location of inner
snubber
Radial location of outer
snubber
Weight at blade pushrod 2.1
Stiffness of pitch bean
arm 15,200
Damping associested with
pitch beanm arm 0.00
Stiffness of actuator
shaft for putre moment
applied at pitch bean
end 54,000
Number of blade modes
(flatwise/edgevise) 2
Sequivalent hinge offset
15

Tell Rotor
_No,2

55

2917%

b

1214
.97
0.00
0.00

NACA 0012
106

7.375

5.0
8-91
2.
1.5
rigid
rigid
13.5

w.o
.15

32,600
0.00

935,000

deg
deg

psi
in

hat 33

in

in
1b

1b/in
1b sec/in

in-1b/rad
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TABLE 2, TAIL ROTOR HUB CHARACTERISTICS

Parameter Description

Number of modes

GCeneralized mass of mode 1

Generalized mass of mode 2

Frequency of mode 1

Frequency of mode 2

Damping of mode 1

Danping of mode 2

Lateral displacement of
mode 1

Lateral displacement of
mode 2

Longitudinal displacement
of mode 1

Longitudinal displacement
of mode 2

Vertical displacement of
mode 1

Vertical displacement of
mode 2

Yaw displacement of mode 1

Yaw displacement of mode 2

Pitch displacement of mode 1

Pitch displacement of mode 2

Tail Rotor
No, 1

2
6439
11739
1750
502

3.k

4,1

0.00
0.00

-37 06
0.00

16

Tail Rotor
No, 2

2
L4.6
75.1
2530
2160

k.0

.0

0.00
0.00

-12 . 77
0.00
0.00

12.77
1.00
0.00
0.00
1.00

LT, VRN T

Units

in-1b-sec?
in-1b-sec?
cpm
cpm
4
4

in
in
in
in
in
in
rad
rad

rad
rad
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TIC STABILI STICS8 IN HOVER AND FORWARD FLIGHT

The aeroelastic stability characteristics of the two baseline tail
rotors vere developed for advance rutios of 0, 0.25, and 0.50. The blade
collective pitch at the 75 percent radial location was varied from -30 to
30 degrees for the hover condition, while the forward flight range was from
=20 to 20 degrees. The modal damping and rroquonc{ are presented in Figures
7 through 13 for tail rotor No. 1 and in Figures 1li through 20 for tail
rotor ¥o. 2. For each rotor, the stability characteristics of the follovwing
modes are shown as & function of blade collective pitch:

1. blade flatvise symmetric mode

2. blade flatvise forward vhirl mode
3. Dblade flatwise backward vhirl mode
4, blade edgevise symmetric mode

5. blade edgewise forwvard vhirl mode
6. blade edgewise backvard whirl mode
7. blade torsional symmetric mode

8. blade torsional forwvard whirl mode
9. blade torsional backward whirl mode
10. rotor hud pitch mnde
11l. rotor hud yaw mode

It should be noted that the modal damping given for the blade vwhirl
modes in this report use a blade frequency referred to a rotating-axis
system. Thus, the fixed-axis forward vhirl blade frequency is decreased by
the rotor spend, while the backward whirl frequency is increased by the
rotor speed. In most cases, when the blade flatwise and edgewise whirl
frequencies are transferred to a rotating-axis system, they agree quite
well vith the values for the symmetric modes.

The hover stability response of the blade flatwise symmetric and whirl
modes is similar for both rotors, as seen in Figures 7 (a) and 1L (a).
These shov that the rotor system stability characteristics are essentially
symmetrical about the zero blade collective pitch line. This result is
substantiated further by an inspection of Figures 7 (b) and 1k (b) for the
blade edgevise modal damping. It is also noted that the edgewise response
of baseline tail rotor No. 2 is much more sensitive to changes in collective
pitch than tail rotor No. 1. Both rotors show reductions in stability at
zero collective pitch and at high values of blade pitch. Figures 7 (c) and
14 (c) 1llustrate that the stability of the blade torsional modes is not
significantly affected by a large change in blade collective pitch.

The stability characteristics of the rotor hub pitch and yaw modes in
hover appear in Figures T (d) and 14 (d) for tail rotors No. 1 and No. 2
respectively. As seen from Table 2, the first hub mode represents a rigid-
body rotation about the airframe yaw axis which results in a longitudinal
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displacement at the rotor head. Similarly, the second hub mode is rigid-
body rotation about the pitch axis which yields a vertical displacement at
the rotor head. The damping of the hub modes increases with collective
pitch up to 10 degrees. As dlade pitch is increased further, a reduction
in stability is evident.

The modal frequency response with rotor blade collective pitch in hover
is presented in Figure 8 for tail rotor No. 1 and in Figure 15 for tail
rotor No. 2. The two rotors exhibit similar behavior, although rotor No, 1
shows larger variations in modal frequency with blade pitch. It is seen
that increasing or decreasing blade pitch from zero results in reduction in
the flatwise and edgewise modal frequencies. The torsional whirl mode of
tail rotor No. 1 at first increases with blades pitcn up to =20 degrees and
then decreases. The blade torsional symmetric frequenay for both rotors is
not plotted in Figures 8 and 15, being much higher thar. all others: 5.48
cycles/rev for rotor No. 1 and 13.85 cycles/rev for rotor No, 2. It is
unaffected by pitch changes since it is mostly a function of physical param-
eters not associated with blade pitch or thrust. The frequencies of the
rotor hub pitech and yaw modes do not vary with blade pitch. It is noted
that the edgewise frequency for both rotors is above one cycle/rev; such
rotors are classified as stiff-inplane rotors,

The aeroelastic stability characteristics of the two baseline tail
rotors in forward flight are illustrated in Figures 9 through 12 for rotor
No. 1 and in Figures 16 through 19 for rotor No. 2. Advance ratios of .25
and .50 were investigated. These advance ratios correspond to forward
velccities of 109 and 217 knots for rotor No. 1 and 104 and 20T knots for
rotor No. 2. Only the modal demping of the blade flatwise and edgewise
modes is presented since the blade torsional and rotor hud modal response
is rot affected significantly by advance ratio. To facilitete comparisc:s
of stability trends with advance ratio, the modal damping of the blade
flatwise symmetric mode and of the edgewise forward whirl mode is plotted
in Figures 13 and 20 for rotor No. 1l and 2 respectively. These plots
indicate generally a reduction in system stability of both modes with
advance ratio. This effect is greatest near blade pitches of -10 degrees.
The region of highest stability of the blade flatwise symmetric mode is
near a pitch angle of zero degrees. The damping decreases as advance ratio
increases for both tail rotors. A similar behavior is exhibited by the
flatwise backward and forward whirl modes.

A comparison of the modal frequency response illustrated in Figures 8,
10, and 12 for rotor No. 1 and in ¥igures 15, 17 and 19 for rotor No. 2
reveals that the effect of advance ratio on frequency is small for all
modes except the blade torsional whirl mode, which shows a slight decrease
in frequency with advance ratio.
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PARANETRIC INVESTIGATION OF STABILITY CHARACTERISTICS

The effects of independent variations of several design parameters on
the stability characteristics of the two baseline tail rotors were investi-
gated in hover and at an advance ratio of .50. The dlade collective pitch
vas 8 degrees throughout the study. The following parameters vere examined:

l. control system asymmetric stiffness, Ka

2. control system symmetric stiffness, l(1

3. blade torsional natural frequency, w,n’ W,
4. pitch-flap coupling, § i

5. blade edgevise naturhl frequency, |

6. rotor hub frequencies (pitch and yaw), wp Wy
7. blade precone angle, 8

8. pitch-lag coupling, a,

o

The results of the parametric study are presented in a nondimensional
form to enhance their general applicability. All system frequencies are
nondimensionalized by the rotor speed.

The variations in control system asymmetric stiffness are illustrated
in terms of an equivalent blade torsional frequency defined by

2 .2
wpy = LKy/Ig (1)

vhere

L2 = chordvise distance from elastic axis to the pushrod, positive
tovard leading edge, in.

Ie = blade torsional mass moment of inertia, in—lh-sec2
K3 = control system asymmetric stiffness, 1lb/in.

The control system asymmetric stiffness is defined by
K, = 21(21(1/(21(2 + “11‘1) (2)

where

K, = stiffness of actuator shaft for pure moment applied at pitch
beam end, in-1b/rad
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K, = control system symmetric stiffness (or pitch bean arm
stiffness), 1b/in.

N = number of rotor blades
L‘ = pitch beam arm length, in.

The variadble in Equation 2 is the actuator shaft moment stiffness Kz. The
baseline values for ”’1‘1/0 are 2.32 cycles/rev for tail rotor No. 1 and 5.42
cycles/rev for tail rotor No. 2.

The parametric trends obtained for the control system symmetric stiff-

ness are also expressed in terms of an equivalent blade torsional frequency,
vhich is defined by

2 2
wp, = LK /Iq (3)

Here the variable is the pitch beam arm stiffness Kl' The baseline values
of uTzln are 5.48 cycles/rev for tail rotor No, 1 and 13.85 cycles/rev for
tail rotor No. 2,

The blade torsional natural frequency is derived from Equation 3 when
s,mmetric mode stability characteristics are presented and from Equation 1
when unsymmetric mode stability characteristics are presented. Thus, a
comparison can be made of the parametric trends developed as a function of

the blade torsional frequency due to independent variations in stiffness
or inertia.

The rotor blade pitch-flap coupling is defined below for tail rotor
No. 1, vhich is articulated in the flatwise direction.

TAN 63 = (Iaa-e)/Lz (4)
vhere

I.3 = pitch horn radial location, in,
e = blade flapping hinge offset, in.

For the hingeless tail rotor No. 2 an effective pitch-flap coupling can be
evaluated from

AN &y = P/ [0 + (bgtp)(r oL ) /(x,or )] (5)
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vhere

blade radius, in,
r; = redial location of inner snubber, in,

r2 = radial location of outer snubber, in,

flatvise mode shape at r,
m " flatvise mode shape at r,

Variations in the blade edgewise natural frequency vere made by
changing the radial distribution of the blade edgevise area moment of
inertia wvhich appears in Figure 5.

The values of the rotor hub pitch and yaw frequencies that are referred
to as reference hub frequencies are defined in terms of the generalized
stiffness K and mass MG g of the i'B fixea system mode as follows:

»

6,1
wy = VG MM (6) ‘

Variations in the fixed system reference frequencies were made by
changing the generalized stiffness. The reference values were varied I
simultaneously by similar amounts. |

In sumary, the variables associated with each of the eight parameters

investigated are:

1. actuator shaft moment stiffness, K,

2. pitch beam stiffness, K;

3. blade torsional mass moment of inertia, IQ

4, chorawise distance from elastic axis to pushrod, L,

5. blade edgewise area moment of inertia, IYY

6. rotor hub frequencies, wp and wy

7. blade precone angle, Bo

8. pitch-lag coupling, a;

The baseline values of all parameters investigated are listed in
Table 3 for both tail rotors. All baseline values apply at advance ratios
of zero and 0.50.
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TABLE 3., TAIL ROTOR BASELINE PARAMETERS FOR PARANETRIC STUDY

Parameter Value

Parameter Tail Rotor Tail Rotor
Number Symbol No. 1 ¥o. 2 Units

1 Ky 2725 4990 1b/in.
2 Ky 15200 32600 1b/1in.
3 Wy 1/3 2.32 5.42 cycles/rev
3b Wy 2/ Q 5.48 13.85 cycles/rev

83 Ls. ko.5 deg
5 ‘"EN/ fa 2.06 1.74 cycles/rev
6a uP/ a 0.72 1.78 cycles/rev
6b uY/ 2 2.50 2.08 cycles/rev
T 8, 0.0 0.0 deg
8 ay 0.0 0.0 deg

Effect of Control System Asymmetric Stiffness

The effect of control system asymmetric stiffness on the aeroelastic
stability characteristics of the baseline tail rotors is shown in Figures
21 through 26 at advance ratios of zero and 0.50.

Only the blade vhirl or unsymmetric modes are presented in these
figures, since the symmetric blade mode equations are not affected by
changes in the actuator shaft moment stiffness. Control system asymmetric
stiffness increases with actuator shaft moment stiffness, This is evident
from Equation 2, when expressed in the following form:

K3 = Kp/(1+NK; L3 /2K5) (2a)

The blade torsional frequency wT
system asymmetric stiffness, as can be seen from Equation 1.

. is proportional to the control

Variations in actuator shaft moment stiffness resulted in a range of
blade torsional frequencies of 1.25 to 4.37 cycles/rev for tail rotor No.
1 and from 2.88 to 10.65 cycles/rev for tail rotor No. 2. Four values of
stiffness were used togenerate the curves. The baseline velue of the
parameter being investigated is indicated by an arrow alorng the abscissa
of all plots.
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From an inspection of Figures 21 and 22, it is observed that as the
moment stiffness of the actuator shaft increases, the hover stability of
the blade flatwise vhirl mode increases, vhile the modal damping associated
vith the blade torsional and edgewise whirl modes and the rotor hub pitch
and yaw modes decreases for both baseline tail rotors. However, it appears
that the effect of variations in actuator shaft moment stiffness on rotor
stability is more pronounced for tail rotor No. 1, especially for the blade
flatvise vhirl mode., This mode bicomes unstable as the blade torsional
frequency approaches 1.25 cycles/rev.

The trends at an advance ratio of 0.50, shown in Figures 23 and 2k,
are basically the same as in hover except that for tail rotor No. 1 at the
lower blade torsional frequencies a strong interaction seems to exist
between the oplade edgevise and torsional backward whirl modes. The edge-
wise mode exhibits a large increase in modal damping, while the torsional
response becomes less stable, Also, the hub yaw mode for rotor No, 1
shows & slight increase in stability with stiffness at an advance ratio
of 0.50, while it remained largely unaffected in the hover condition.

The effect of control system asymmetric stiffness on hover modal
frequency is illustrated in Figures 25 and 26 for tail rotors No. 1 and !
2 respectively. It is observed that the modal frequencies of the blade
flatwise and edgevise wvhirl modes, as well as the hub modes, are not
affected by large variations in control system asymmetric stiffness. As
might be expected, the blade torsional whirl frequency for both rotors
has nearly the same value as the equivalent torsional frequency W, o
defined by Equation 1.

The parametric trends of modal frequency predicted for all parameters {
investigated in this study for both baseline rotors were not affected by
a change in advance ratio from zero to 0.50. Thus, only the frequency
results in hover are shown.
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Effect of Control System Symmetric Stiffness

Variations in the control system symmetric stiffness, otherwvise
rveferred to as the pitch beam arm stiffness, yielded the stability charac-
teristics presented in Figures 27 through 32. The blade torsional frequency
Wpys defined by Equation 3, ranged from 2.Th to 15.50 cycles/rev for tail

rotor No. 1 and from 6.90 to 39.20 cycles/rev for tail rotor No. 2. Four
values of stiffness were used to generate the curves. From Equation 2, it
can be seen that a change in control system symmetric stiffness K; results
in a nev value of control system asymmetric stiffness K3 unless the
actuator shaft momert stiffness K; is varied accordingly. This was done
in order to separate the effect of the control system asymmetric stiffness
discussed in the previous section from that of the control system symmetric
stiffness. Thus, the modal dsmping and ‘requency for the blade vhirl modes
and the rotor hudb modes remain unchanged,

The modal damping and frequency of the blade symmetric modes are shown
as a function of pitch beam stiffness or equivalent blade torsional fre-
quency, Wy, in Figures 27 through 32, An inspection of Figures 27

through 30 reveals that the damping of the blade torsional mode decreases
vhile the damping of the flatwise mode increases with torsional frequency.
The effect on the edgewise mode is very slight. These results apply to
both daseline rotors at advance ratios of zero and 0.50. Figures 31 and
32 shov that the flatwise and edgewise blade symmetric frequencies remain
constant. The blade symmetric torsional frequency is almost the same as
that defined by Equation 3. The effect of variations of pitch beam stiff-
ness on the blade symmetric modes is generally similar to the effect of
actuator shaft moment stiffness variations on the blade whirl or unsym-
metric modes.
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Jffect of Blade Torsional Natural Frequency

The effect of changes in dlade torsional moment of inertia on the
modal damping and frequency of the two baseline tail rotors is illustrated
in Pigures 33 through 38. All blade modes are shown in these figures
since the blade torsional mcaent of inertia, Ie. appears in both Equations

1 and 3, vhich affect respectively the blade unsymmetric and symmetric
degrees of freedom.

The blade torsional frequency, Wno s defined by Equation 3, is used

to 1llustrate the results for the blade symmetric modes, This frequency

ranged from 2,11 to 7.60 cycles/rev for tail rotor No. 1 and from 4.94 to
17.60 cycles/rev for tail rotor No. 2. BSix values of frequency were used
to generate the curves.

The modal damping and frequencies for the blade whirl modes and the
rotor hub modes are presented as a function of the blade torsional frequency,
Wy, s 88 calculated from Equation 1. This frequency ranged from 0.89 to

3.22 cycles/rev for tail rotor No. 1 and from 2.98 to 6.90 cycles/rev for
tail rotor No. 2. 8Six values of frequency were used to generate the curves.

A comparison of the stability characteristics presented in this
section for the blade symmetric modes can be made with the results given in
Figures 27 through 32, which show the effect of the pitch beam arm stiffness.
S8imilarly, the behavior of the blade vhirl and hub modes can be compared
with those in Figures 21 through 26, which show the effect of actuator
shaft moment stiffness.

The modal damping of the hlade symmetric modes in hover appears in
Figures 33(a) and 34(a) for tail rotors Nos. 1 and 2 respectively. It is
noted that in the common frequency range, 2.T4 to 7.60 cycles/rev for tail
rotor No. 1 and 6.90 to 17.60 cycles/rev for tail rotor No. 2, the para-
metric trends for both rotors are similar for the blade torsional and
edgevise mdodes, The flatwise mode of tail rotor No. 1 shows a slight
decrease in stability with decreasing torsional inertia, Figure 33(a),
vhile the same mode becomes more stable (Figure 27) as pitch beam stiff-
ness increases. Rapid changes in stability are predicted at low torsional
frequencies, between 2 and 3 cycles/rev, for tail rotor No. 1 in Figure
33(a). The blade torsional mode shows an abrupt reduction in stability,
vhile the edgewise and flatwise modes exhibit large increases in damping.
This result may be explained by the modal interaction indicated in Figure
37(a) for the edgewise and torsional modes as they both approach a value
of 2 cycles/rev. For tail rotor No. 2, the torsional frequency is well
rg?oyed from the edgewise and flatwise frequencies, as shown in Figure
38(a).
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The stability characteristics of the bdlade symmetric modes at an
sdvance ratio of 0,50 are illustrated in Pigures 35(a) and 36(a) for tail
rotors Nos. 1 and 2 respectively. The parametric trends showvn in these
figures are similar to those already discussed for the hover ccndition,

The modal frequencies of the blade symmetric flatwise and edgevise
modes are not affected by changes in blade torsional inertia, as shown in
Figures 37(a) and 38(a) for both rotors. The blade symmetric torsional
frequency is practically the same as the equivalent torsional frequency,
U, * These results are similar to those presented in Figures 31 and 32

for pitch beam arm stiffness variations.

The variations in modal damping with blade torsional inertia for the
blade unsymmetric modes and the rotor hub modes are presented in Figure
33(b) for tail rotor No. 1 and in Figure 34(b) for tail rotor No. 2 for
the hover cordition, These results can be compared with those from
Figures 21 and 22 in the comnmon frequency range of 1.25 to 3,22 cycles/rev
for tall rotor No. 1 and 2,98 to 6.90 cycles/rev for tail rotor No. 2.

Good agreement exists in the trends shown by all blade and hub modes for
tuil rotor No. 1 and by the blade edgewise and torsional modes for tail
rotor No. 2., However, tail rotor No, 2 i-dicates a slight decrease in

the stability of the blade flatwise whirl oode as the blade torsional

moment of inertia decreases (Figure 34(b)), while in Figure 22, the damping
of this mode increases with actuator shaft moment stiffness, For this
rotor, it is also noted that the behavior of the rotor hub modes, especially
the yavw mode, is quite different for the two parameter variations as the
blade torsional frequency is reduced below 5 cycles/rev.

As advance ratio is increased to 0.50, the stability trends predicted
for the blade whirl and rotor hudb modes as a function of blade torsional
inertia are generally the same as in the hover condition for both tail
rotors. These results are illustrated in Figures 35(b) and 36(b) for tail
rotor No. 1 and 2 respectively. However, some differences in behavior
exist in the blade edgewise mode for tail rotor No. 1 and the blade flat-
wise forward whirl mode for tail rotor No. 2. These differences probably
result from the coupling of the symmetric and unsymmetric blade modes which
exists in forward flight.

The variations in modal frequency with blade torsional frequency for
the blade whirl and rotor hub modes are shown in Figure 37(b) for tail
rotor No. 1 and in Figure 38(b) for tail rotor N, 2 in hover. The results
for tail rotor No. 1 indicate a strong interaction between the torsional
and edgewise wvhirl modes as the blade torsional frequency, u,m/ﬂ » approaches

2 cycles/rev. A further increase in blade torsional moment of inertia,
vhich lowers mTl/n, results in another interaction between the torsional

and flatwise whirl modes near a value of u,n/n of 1.70 cycles/rev. It is

noted that for tail rotor No. 2, no such interactions in blade whirl
frequencies occur since the blade torsional whirl frequeucy is well
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removed from all other system frequencies in the range of wn/n investigated,

Both rotors exhibit negligible changes in the hud pitch and yav modal
frequencies. A comparison of the frequency response as a function of blade
torsional moment of inertia, Figures 37(b) and 38(b), or actuator shaft
moment stiffness, Pigures 25 and 26, shows similar trends for both tail
rotors. However., the interactions between the blade vhirl modes for tail
rotor No. 1 are muwre pronounced in Figure 37(b) than in Figure 25.
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Effect of Pitch-Flap Coupling

The effect of blade pitch-flap coupling on the stability characteristics
of the two baseline tail rotors is illustrated in Figures 39 through Lk for
advance ratios of zero and 0,50. The range in pitch-flap coupling investi-
gated vas from =30 to 60 degrees for both tail rotors. Five values were
used. Equation U4 ves used to calculate the coupling for tail rotor No. 1,
vhich is articulated in the flatwise direction, wvhile an effective value
of pitch-flap coupling was computed from Equation 5 for tail rotor No. 2,
which is nonarticulated. The stability characteristics in hover are
discussed first,

From Figures 39 and 40, it is noted that pitch-flap coupling stobilizes
the blade torsional symmetric and unsymmetric modes and the blade edgewise
whirl modes; this effect becomes more pronounced as coupling is increased
above 30 degrees for both rotors. A strong destabilization of the blade
flatwise modes is evident throughout the entire range of pitch-flap
coupling investigated. An instability of the blade flatwise whirl mode
of tail rotor No. 1 is predicted at a pitch-flap coupling of 60 degrees
(Pigure 39). The blade edgewise symmetric mode for tail rotor No. 1
becomes marginally stable as pitch-flap coupling approaches 60 degrees,
vhile no change in stability is shown by the same mode for tail rotor No, 2,
From the results presented in Figure 39 and 40, it can be concluded that
the stability of the blade torsional and flatwise modes is considerably
more sensitive to variations in blade pitch-flap coupling for tail rotor
No. 1 than for tail rotor No. 2.

The modal damping of the rotor hub modes for tail rotor No. 1 is
generally unaffected by pitch-flap coupling variations. On the other hand,
tail rotor No. 2 exhibits a slight reduction in the damping of the rotor
pitch mode, while the yaw mode shows a large increase in stability at the
higher values of pitch-flap coupling.

The parametric trend of modal damping with pitch-flap coupling at an
advance ratio of 0.50 is illustrated in Pigures L1 and 42 for tail rotors
No. 1 and 2 respectively. A comparison of these results with the results
presented in Figures 39 and 40 for the hover condition shows similar
effects of pitch-flap coupling on the stability of the rotor blade and hub
modes. The only difference in modal damping at an advance ratio of 0.50
is shown by the blade edgewise mode for tail No. 1. The stability of this
mode remains unchanged throughout the range uof coupling examined.

The modal frequency response with blade pitch-flap coupling is
illustrated in Figures 43 and LU. From these figures, it can be seen
that the blade flatwise frequency for the symmetric and unsymmetric modes
increases with pitch-flap coupling for both tail rotors. On the other
hand, the presence of pitch-flap coupling, positive or negative, results
in lower blade torsional frequencies, as indicated in Figures 43 and Lk,
The frequencies of the blade edgewise and rotor hub modes are little
affected by pitch-flap coupling variations.
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Effect of Blade ewise Natural Frequen

The blade edgevise natural frequency vas varied by changing the radial
distribution of the edgewise area moment of inertia. These variations
gave a frequency range of 0.66 to 2.63 cycles/rev for tail rotor No. 1 and
0.68 to 2.66 cycles/rev for tail rotor No. 2. Four values were used.

The modal damping and frequencies obtained for the two rotors in
hover and at advance ratio of 0.50 are presented in Figures 45 through 50,

From Pigures 45(a) end 46(a), it is observed that the hover stability
of the blade symmetric flatwise and torsional modes is little affected by
changes in the edgewise natural frequency. The blade symmetric edgewise
mode exhibits a slight reduction in modal damping for edgevise frequencies
belov 1.8 cycles/rev for both rotors. However, as the edgewise frequency
is increased further, this mode becomes considerably more stable.

The frequency response of the blade symmetric modes for variations in
edgevise aatural frequency appears in Figures L9 and 50. The frequencies
of the torsional and flatwise modes of both rotors remain constant through-
out the range of edgewise frequency investigated. The frequency of the
symetric edgevise modc is almost equal to the edgewise blade natural
frequency for both rotor systems. A coalescenceof the blade symmetric
flatwise and edgevise modal frequencies occurs at an edgewise natural
frequency of 1.3 cycles/rev,

The hover stability characteristics of the blade whirl and rotor hub
modes are illustrated in Figures 45(b) and 46(b) for tail rotors No. 1
and 2 respectively. From these figures, it is observed that the trend of
modal damoing with blade edgewise natural frequency is quite different
for the two baseline rotors. Tall rotor No. 1 exhibits large changes in
system stability as the edgewise natural frequency is increased above 1.6
cycles/rev, vhile the stability behavior of tail rotor No. 2 shows signif-
icant variations for edgewise natural frequencies below 1.6 cycles/rev.
The backward vhirl mode of the taill rotor No. 1 is marginally stable in
the range of wm/ﬂ from 0.66 to 1.80 cycles/rev. Both the forward and

backvard whirl edgewise modes become quite staple at higher edgevise
natural frequencies, while the torsional response shows a large decrease
in stability. This behavior may be caused by the interaction between the
torsional and edgevise modes shown in Figure 49(b). The blade flatwise
vhirl mode and the rotor hub pitch and yaw modes for tail rotor No. 1 are
not significantly affected by variations in blade edgewise natural
frequency. The stability characteristics presented in Figure L6(b) for
tail rotor No. 2 indicate that a strong coupling is present betweer the
blade flatwise and edgewise forward whirl modes and the rotor hub pitch
mode for edgevise natural frequencies below 1.6 cycles/rev. The stability
of the blade flatwise forward whirl and the hub pitch modes decreases,
while that of the blade edgewise forward whirl mode increases in this
frequency range. From Figure 50(b), it is noted that the frequencies of
these modes are all near each other. The response of the blade torsional
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mode is not affected by changes in the blade edgevise natural frequency.
This result is not surprising, since the blade torsional whirl frequeacy
is vell removed from all other system frequencies, as shown in Figure 50(b),

The stability trends with blade edgevise natural frequency presented
in Pigures 47 and L8 at an advance ratio of 0.50 shov behavior similar to
that discussed for the hover condition. The only exception is the blade
edgevise forvard vhirl mode for tail rotor No. 1, vhich is unstable for
wu/ﬂ less than one cycle/rev. It may be added that the variations in

stability with blade edgevise natural frequency are not as pronounced for
the forwvard flight condition as for hover,
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The effect of variations in reference rotor hudb frequency on the

stability characteristics of the two baseline tail rotors is illustrated

in Figure 51 through 56 in hover and at an advance ratio of 0.50. The

generalized stiffness of the fixed system yaw and pitch modes wvas varied

to give a range in reference yaw frequency of 0.625 to 20.0 cycles/rev

for rotor No. 1 and 0.52 to 16.64 cycles/rev for rotor No. 2. Four values ;
of stiffness vere used. In Figures 51 through 56, the reference rotor hud -
pitch frequency is also shovn; it ranges from 0.18 to 5.76 cycles/rev for i
rotor No. 1 and from O.k45 to 1k.24 cycles/rev for rotor No. 2. The modal ‘
damping and frequency for the blade wvhirl and rotor hub modes only are

shown in these figures since, for the modes used here, the fixed system

motions do not affect the blade symmetric modes,

The stability characteristics in hover are presented in Figures 51
and 52 for tail rotors No. 1 and No. 2 respectively. From these figures,
it can be seen that there is no appreciable change in the modal damping
of the blade vhirl modes at reference rotor hub frequencies above 4 cycles/
rev. Belcw this frequency, however, the interaction between the fixed
system motions and the blade flatwise and edgewise modes becomes more
pronounced, especially for tail rotor No. 2. This effect may be expected
from an inspection of the modal frequency characteristics presented in
Figures 55 and 56. At low reference hub frequencies, the blade flatwise
backwvard whirl mode for tail rotor No. 2 has a sharp reduction in modal
damping, while the blade edgewise backward vhirl becomes more stable. For
both rotors, the stability of the rotor hub pitch and yaw modes increases
significantly at low reference hub frequencies,

The stability characteristics at an advance ratio of 0.50 are shown in
Figure 53 for tail rotor No. 1 and in Pigure 5L for tail rotor No. 2. A
comparison of these forward flight results with the hover results shows
no major Adifferences in the parametric effect of reference hudb frequency
on modal damping.

The frequency characteristics of both baseline rotors as a function
of reference hub pitch and yaw frequencies appear in Figures 55 and 56.
It can be seen that reference hub frequency has generally a negligible
erffect on the blade whirl frequencies. However, as previously discussed,
an interaction between the hub and blade modes is present for tail rotor
No. 2 at reference hub frequencies below U cycles/rev. Linear variations
in modal frequency for the rotor hub pitch and yaw modes with reference
hud frequency are shown in these figures for both baseline tail rotors.
The calculated frequencies are slightly lover than the reference values
due to the mass and inertia effects of the rotors.
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The effect of blade precone angle on the stability characteristics
of tail rotor No. 2 is presented in Figures 57 through 59. Only tail rotor
No. 2 wvas considered for this portion of the study since it is nonarticu-
lated in the flatvise direction and can thus be preconed, A range in blade
precone from -6 to 6 degrees wvas examined. Five values were used. The
results from Figure 57(a) in hover show that blade precone has little effect
on the modal damping of the blade symmetric flatvise and edgewise modes,
vhile the torsional mode exhibits an increase in stability as the blade is
preconed. Howvever, from Figure 58(a) at an advance ratio of 0.50, the
blade symmetric flatwise mode indicates an increase in modal damping with
blade precone, while the torsional mode becomes more stable than the hover

case,

The variations in modal damping with precone for the blade whirl and
rotor hub modes appear in Figures 57(b) and 58(b) for advance ratios of
zero and 0.50 respectively. From these figures, it is observed that the
blade torsional whirl mode is least stable for zero precone, a behavior
similar to that of the symmetric torsional mode. An increase in precone
reduces the stability of the blade edgewise whirl mode, while the flat-
vise wvhirl mode becomes more stable; these effects are generally greater
for the forward flight condition. The rotor hub modes show generally small
variations in mode dumping response with blade precone except for the
pitch mode in hover. The damping of the pitch mode decreases from 6 to L
percent as precone is increased from -6 to 6 degrees.

A negligible effect of blade precone on modal frequency is exhidbited

by the results shown in Figure 59(a) for the blade symmetric modes and in
Figure 59(b) for the blade unsymmetric and rotor hub modes.
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Effect of Pitch-Lag Coupling

Variatione in pitch-lag coupling over the range -0.2 to 0.2 for both
basellne rotors in hover and at an advance ratio of 0,5 produced no dis-
cernible change in stability. The fact that both rotors are relatively
stiff inpiane s the cause of this effect. However, it is known that
pitch-lag coupling can appreciably affect the stability of soft inplane
rotors. Therefore, in such cases the parameter shouid be accurately
defined and incorporated in any analysis,.
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CONCLUDING REMARKS

The major objectives of this study were, first, to develop a computer-
ized eigenvalue analysis that had a sufficiently complete dynamic and
aerodynamic description of coupled rotor/airframe/control systems to allow
accurate stability estimations and, second, to demonstrate some of its
capabilities through parametric and sensitivity studies of representative
semiarticulated and hingeless tail rotor systems. Both of these objectives
were achieved.

The studies described in the foregoing were necessarily restricted to
simplified systems, tut they do serve to illustrate the potential of the
analysis. The inclusion of forward flight effects in the analysis is a
big step forward and considerably extends the envelope within which the
analysis can be applied. Although not exercised in these studies, the
unsteady aerodynamics serve to further refine the modelling of aerodynamic
effects, thus permitting flutter and wake interaction studies. The models
used for the control systems can accurately represent the dynamics of most
existing systems, thereby reducing the number of effects not properly
accounted for in the overall system. The overall usefulness of th* analysis
was further extended by inclusion of the gimbaled rotor capability.

Since a number of unstable phenomena involve coupling between rotor
system and fixed syntem motions, it is important that the analysis have
the facility to predict these. This is adequately accounted for by inclu-
sion of an airframe (or fixed system) model that can represent rigid tody
and elastic modes, including local transmission, etc., modes,

The methods employed in the development of the analysis are given iz
the appendixes, together with the final equations of motion.

A final comment on the computer program of the analysis: although
this in its entirety gives a refined description of coupled rotor/airframe/
control systems, it was realized that there are many instances when studies
employing simple systems are desired. To this end, the program is so
designed that the user, by use of simple control cards, can specify the
precise degree of freedom, type of control system, mode of flight, and
type of aerodynamics that he wishes to use. From this point, the program
assumes executive control and automatically performs the desired functions.
This feature allows systems with as little as one degree of freedom tc be
analyzed and makes it possible for inexperienced users to run the program
with little difficulty.
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RECOMMENDATIONS

The analysis described in this report represents a fairly complete
description of a coupled rotor/airframe/control system. Its capacity to
treat rotor systems in hover and forward flight has been demonstrated.
However, the effects of unsteady aerodynamics and cyclic inputs to the
dynamic system equations have not been explored. In addition, the represen-
tation of the blade pitch control system in the parametric and sensitivity
studies did not account for multi~degree-of-freedom effects or the effects
of the control cervos and servo feedback parameters. The representution
of hub motions was also idealized.

Clearly, in practice such exclusions and simplifications may be neither
wvarranted nor desired. If we wish to define the overall system stability
characteristics to the best of our ability, and within the constraints of
the accuracy of the analysis we are employing, it behooves us to model that
system as accurately as possible. Therefore, we must include in our studies
all of the elements that we feel could play an important part in our predic-
tions,

It is, therefore, recommended that the effects of inclusion of unsteady
aerodynamics and cyclic inputs to the dynamic system equations be established.
Recent studies using a simplified Floquet analysis have, for example, shown
that the inclusion of cyeclic pitch had a pronounced effect on the pitch lag
stability of a rotor. In this case, the classical hover expressions were

nonconservative.

It is also recommended that the analysis be subjected to extensive use,
It is only by using the analysis and possibly even questioning certain
aspects of the modelling that the user can become familiar enough with its
general characteristics to effectively incorporate improvements. Also, it
is only through use that a complete understanding of the real meaning of
the output can be gained.

In its present ‘orm, ‘he computer program of the analysis relies on
some unlinked transi:nt aeroelastic analysis for production of the deriva-
tive terms required for forward flight studies. The analysis currently
used for this purpose is the Y-200 Normal Modes Analysis provided to the
Army under Contract DAAJO2-T1-C-0024. Unfortunately, this analysis has
some inconsistencies with the E-927 Aeroelastic Rotor Stability Analysis.
Not the least of these are the facts that Y-200 can accept only one blade
angle distribution and that it does not permit representation of control
system dynamics. It is, therefore, recommended that these and any other
inconsistencies be eliminated and that Y-200 be linked to E-927 to facilitate

use of the program,
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Finally, any analysis is only as gcod as the confidence we place in
its predictions. Obviously, such confidence can only dbe obtained, or
increased, by correlating the analysis vith test data. Unfortunately, only
limited correlation of the present analysis has been completed. Much
remins to be done. To close this gap, it 1is suggested that consideration
be given to the initiation of a model test program to provide the needed
data. Such a program could be designed to accurately model not only the
rotor bledes but also the control system and the test rig characteristics.
By making parametric variations of the system dynamic characteristics
and conducting hovering and forvard flight tests, very valuable data could
be acquired. S8ince the analysis is capable of accurately modelling the
systems, very meaningful correlation could be obtained.
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APPENDIX A

HOVER ANALYSIS

This appendix gives details of the development of an analysis designed

to study the stability of helicopter main or tail rotors in hover, or under
conditions of pure axial flow. It can also be used to study the stability
of propellers.

Important assumptions are noted belov and the coordinate system

employed is shown in Figure Al. The coordinates used for the control
systems are defined later in the text,

ASSUMPTIONS

l. Dynamic and aerodynamic effects assume small perturbations about steady
initial values of the system generalized coordinates,

2. Aerodynamic forces are developed using strip theory.

3. Radial flow effects are neglected.

4. Products involving up to the squares of steady Aisplacements and a
perturbation displacement, velocity, or acceleration are retained.

S. Rotor speed is constant.

6. No small-angle assumptions are applied to the blade collective pitch
or twist.

7. Because of the rotating system generalized coordinaces transformations
employed, only rotors with three or more tlades can be treated.

8. Stall, compressibility, and unsteady =ffects are included.

9. Inflov is constant over the rotor disc.

10. Blades have an elastic axis,

11. Blade flap and lag hinges are coincident.

12, The blade feathering bearing can either remain in the plane of the hub
or follow the blade root out-of-plane slope. A similar statement can
be made regarding inplane motion.

13, The rotor shaft experiences no torsional deformations.
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14, Only those aerodynunic forces associated with the rotor system are
considered. Rotor/airframe interference effects and airframe lift/drag

are not included.

DEVELOPMENT OF HOVER ANALYSIS

Dynamic System Equations

The development of the equations of motion of the total dynamic system
follcws the classical path of first defining the kinetic and potential
energies and dissipation potentials of the rystem, then establishing
Lagranges equations in the form

4 3T 3T 3V + 3D _
32(3;5) - an + an adJ 0 (Al)

In wvhat follow:, to preserve clarity, the total dynamic system 1is
broken down into four major subsystems, These are:
The rotor blades,
The fixed, or airframe, system.

The control systems.

& oW n

. The servo systems,

Each of these 1s treated separately, but it will be apparant that
their dynamic responses are all close coupled through the motions of the
respective coupling generalized coordinates,

Equation Al is indeed a simple statement of fact, but the development
of the terms on the left-hand side does, for a multi-degree-of-freedom
system, present a very formidable task that requires extencive expansion
and manipulation of large arrays of matrices. In the interests of documen-
ting the analysis in a not too cumbersome fashion, obvious intermediate
steps are omitted, but sufficient detail is retained to show how the final
forms of the equations of motion were established.

In the development of the equations, a number of transformation
matrices and vectors are employed. These are defined below for easy refer-

ence,
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B, " ( tﬁ:‘ﬁ *'E,i,t%,n,t) - 9'50,n,i (A16)
c! =
9F,n,1 ( :421 0'1“,:1.,1’.qT,n,'c) * q'l"O,n,:L (ALT)
= A18
8,1 % .n,1 ¥ %,1%,n (A18)
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B,o=lo e 0 (A19)
g ={3 .,3 .3 } (A20)
T "%y oY1 0% ) (A21)
tn.i - {4 Xon,i° é!,n,i’ éz.n,i } (A22)
Tor - Z} tor,s%s) (A23)
%Yy " ( %ox,5%s ) (A2k)
i = (SZ; ¥, (R25)
a3y = % OY,BE,) (A26)
3 = g;l’z e%) (A27)

Relations A2 through A9 are the coordinate transformation matrixes,
Al0 is the matrix of the blade flatwise, torsional, and edgewvise mass
moments of inertia about the local center of gravity. All defines the
uncoupled blade bending coordinates including the radial shortening caused
by bending. Al2 is a velocity vector that includes the effects of bending
and pitching velocities, steady bending displacements and pitch angles,
and center of gravity offset. Al3 defines the local radial velocity.
Relations Als through A27 are self-explanatory definitions of various
coordinates and vectors.

The coordinates were transformed as follows:
(1) Translate through CG.

(2) Rotate through uncoupled blade flatwise and edgewise slopes and inte-
grate to define the vector All.

(3) Rotate through blade pitch and define the coupled coordinates given
by Alk and AlS.

(4) Rotate through blade rigid-body lag.
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(5) Rotate through blade rigid-body flap.

(6) Translate through offset.

(7) Rotate through azimuth anglz.

(8) Rotate through hub pitch.

(9) Rotate through hub roll,

(10) Translate through hub vertical, lateral, and longitudinal displacements.

Derivation of Subsystem Dynamic Characteristics

Rotor Blades

Consider first the kinetic energy. This can be broken down into two
parts: that assoclated with translational motion and that associated with {

pure rotational motion.

Translantional Kinetic Eaergy

Using the coordinate system shown in Figure Al and performing the
required coordinate rotations and translations, it can be shown that the
absolute translational motion of a blade element i at blade station rp i
on any blade n is given by

Xo1 = Aoyhgexty,nl®,nfy 0,1 * En) * Q (A28)
vhere
— w A (o]
,,1 8,n,i%n,1
T (A28a)

- —
= { = 9% .n,i* "n,i’ qF,n,i}

Taking the first time derivative of Xn i the total kinetic energy
arising from translational motion of all elements of all blades can be

wvritten

TBTS;inszl(E:l(x’ (X, 4)m, j6r, 4) (A29)
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Rotational Kinetic Energy

S8ince angular velocity follows the rule 6A_-6A + 6, vhere 6, p
denotes the angular velocity of the coordincte lyltem A relative to' that
of the coordinate system B, the angular velocity components of the blade
can be expressed as the sum of the relative angular velocities between each
of the coardinate systems given in Figure Al., Thus, the absolute angular
velocity of any blade element i at blade station rn.i on any blade n is

given by

NE
h,di = i(;1°ritq'r,nt)*k( Z g1 ,497,0,¢)

ol

- J5’6,16T.n + ksYn + i7én + kswn
NA o a

+1( 3 ‘ex,aqs) i % Yoy, sdg)
8s=] g=l

(A30)

The various components of this velocity vector are readily developed
if ve recognize that the ix, J,, k, are the unit vectors associated with
their cqrresponding rotational transformation matrices. Therefore, to
obtain %n i we must express the i,, J., k, in terms of 1,, Jo» k, . Using
the transformation matrices defined earlier, we can write

I ;= o = chos?{ex - kgsin'd'ex

ilo = 1.9 = i7coa|pn - J7sinwn
Jg = i.,sinwn + J.’coswn

ky, = k = Jssinsn + k_cosg (A31)
J, = 6cosan - kssinen

17 = 16 = iscosyn - JssinYn
J . = i 58 inyn + 3 scos Y,
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1, = iac:Olqg:n'1 - Jalinqg:n.i (A31)
k“ = k1 < leinq;:n’i + kzcoaq;: "

J3 . J2¢°3q;:n'1 - kzainq;:n’i

13 - i'2

Substitution of the above in Equation A30 ~xpresses the absolute
rotational velocity in terms of the generalized coordinates and their
derivatives,

. These relationships allow us to write the absolute velocity vector
Eh { in terms of the appropriate unit vectors at a blade element { .

Thus, the total kinetic energy arising from pure rotational motion
of all elements of all blades can be written

N NB , .
L T
Tpr = % n};l ( 1:21 (8,,1)7 (1, 11(8, 4)6r, ;) (A32)

Total Kinetic Energy

The total kinetic energy arising from translational and pure rotational
motion of all elements of all blades is given by the sum of Equations A29
and A32, namely,

Toror = Ter * Tpr (A33)

Potential Energy

The blades have two direct sources of potential energy: that associ-
ated with blade bending and that associated with twisting deformations.

The bending potential energy of a blade can be written in the classical
form wvhich expresses this energy “n terms of the fourth spanwise derivative
of the flatwise and edgewise deformations. However, since in this analysis
a modal approach is employed and it is assumed that all modal informaiion
relating to the blades is available for inclusion in the eigenanalysi ., the
total potential energy associated with bending of all blades is simply
written as
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Ve, = 2 M 2PN) (A3b)
BB x n-zl ( tg. wqinot qtnntq‘r.n’t

The potential energy derived from torsional deformations of all blades
is given by

N NB
Ver * e 2 ( Z (Kn,i‘g,ie'%,n) (A35)
ns] i=]

In this expression K,,i is the torsional stiffness of the blade n at
the blade station rp,4 . It is obtained from the blade polar second moment
of area distribution and the blade torsional modulus of elasticity using
the relationship

Uk, o= 2 (8ry /6 I ) (A36)

Further sources of potential energy are contained in the root springs
that may be used wvhenthe blades are considered inflexible, These root
springs restrain both flapping and inplane motion and appear explicitly
only in the rigid-body flap and lag equations. The total potential energy
associated with the springs is given by

N
\/

= 2 2
B = 4 §1(Kv.n7n + Ky 83) (A37)

It should be noted that, when the blade elastic modes are used, the
potential energy from these springs is implied in Equation A3l since the
springs determine the blade root boundary conditions,

Total Potential Energy
The total potential energy arising fiom bending, twisting, and rigid-

body motions of all blades is givenby the sum of Equations A3k, A35, and
A37, namely,
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Veror ® Vs * Vor * Vms (A38)

Dissipation Potentials

We can immediately recognize two sources of energy dissipation associ-
ated with the blades: that resulting from bending deformations and that
resulting from torsional deformations. Unfortunately, no realistic analy-
tical definition of structional damping of any kind has ever been established.
Nevertheless, it is known that structural damping does exist, no matter how
small. Therefore, this may be included as a percentage of critical damping.
We must, howvever, remember that in specifying a percentage of critical
damping, we must also specify the frequency upon which it is based. In the
case of blade bending, this presents no problem since the modal frequencies
are obvious choices. However, in the case of blade torsion, the choice is
not so obvious since coupling with the control system can cause radical
changes in the torsional natural frequency. To circumvent this problem,
the torsional damping is based on the rotor rotational speed, which is always
known. It is then the privilege of the user of the analysis to choose the
damping level that he feels most closely satisfies the condition being

analyzed.

Based on the above, we can then write the total dissipation potential {
arising from blade bending as

S

N NE
= 22 A3
ot v L (2 2cq‘n,thn.twq'n,thn,t) =

n=]l t=1

and that arising from blade torsion as

N
DBT = % gl(ace,nIT,nné%‘,n) (Ako)

Energy is also dissipated by the lag dampers that act on the rigid-
body inplane degree cof freedom. This dissipation potential is given by

N
D, = % X (2 I e ¥2) (AL1)

n=1 Ysn Y,
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Total Dissipation Potential

The total energy dissipation arising from bending, twisting, and rigid-
body inplane motion of all blal2s is given by the sum of Equations A39, AkO,
and All, namely,

Dgror * Dsp * Dpr * Dmp (Ak2)

Fixed, or Airframe,Systen

Neglecting aerodynamic interference effects between the rotor system
and any part of the airframe and also, for the present, neglecting mechanical
control coupling, the only coupling that can exist betw: en rotor motions
and airframe motions is that transmitted through the rocor hub. There-
fore, knoving the dynamic characteristics of the airframe as seen at the
rotor hub allows us to define a dynamically coupled rotor/airframe system.
Such an approach is used in this analysis,

It is assumed that the airframe, or fixed system, dynamic characteristics
are available either from shake test data or from a separate analysis. The
data required for each of the NA airframe modes q are:

1. The generalized mass, MA'

2. The modal frequency, W,.

3. The percentage of critical damping, Gy

L. The modal components of motion at the rotor hub, Qx, ‘y’ ¢Z’
Pox> oy

Wita this information, we are able to define the total kinetic and
potential energies and the dissipation potential associated with the air-

frame system as follows:

Total Kinetic Energy

NA
Taror = % BZ:I("A,;!?) (A43)
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Total Potential Energy

NA
Varor = % 21(“52\,3MA,IE§) (AlL)
s=

Total Dissipation Potential
NA -
Dpror * % sz_l(ch.aMA,suA,gqg) (Aks)

The modal components at the rotor hub provide the motion interface
betveen the rotor and airframe systems.

Control Systems

This analysis corsiders both main and tail rotor systems., Normally,
the contral systems associated with these have little in common. For
example, the conventional tail rotor has only collective pitch inputs. An
assortment of cables, quadrants, control rods, and bell cranks may also
feature in the design. The control servos can be close to, or some
considerable distance avay from, the rotor. On the other hand, the conven-
tional main rotor has both collective and cyclic pitch inputs, necessitating
the use of a swash plate arrangement. The primary control servos normally
anrt directly on the stationary swash plate,

To acconmodate the peculiar characteristics of both types of control
system, each is modelled and analyzed separately.

The equations for the main and tail rotor servos are identical.
Therefore, they are excluded from this section and developed later,

Tail Rotor Control Systenm

Figure A2 shows the model used to describe this type of control
system. The model similates the collective pitch spider beam and actuator
shaft backed yp by three spring, mass, damper systems that can be used to
describe the dynamics of control rod/quadrant,/cable arrangements. The
subsidiary spring, mass, damper systems can ;e used to describe the
dynamics of appendages such as control surfaces and rudders.

In Figure A2, X i is the motion at the pushrod of blade n. It is
defined by L

x = L v + -
1,0 = b2 nte085 8, + 1, tana, vy - Ly %epROr p
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Figure A2. Tail Rotor Control System Model.
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for pure collective type motion.

It is assumed that the actuator and collective pitch spider beam move
vith an amplitude X, + Q; 1in the Z direction; the effects of all other
components of hub mution are ignored., It is also assumed that airframe
motions can be neglected in the remainder of the control system.

The energies associated with the collective motion of the tail rotor
control system are then readily written as follows:

Total Kinetic Energy
N NA 5
T'I'IOT = ng (Ml,nii,n) + sg (M2.Z,Ba‘-s)
+ Mzizzz + Ma)'(i + M“)'(ﬁ + Msig

s+ M X M X M X))

31 31 b1l 4] 51 51 (ALT)

Total Potential Energy

N NA
v'I"IX)T = n; [Kl,n(xl,n X% - E “Z,sqs))zl

NA o=
* KX, ¢ sZ; (05,6%) = X;)% + Ky(xy = X,)°
)2

2
- + - X
+ x“(x“ xs) xs(xs 6

2 2
+ Kqy (X5, = X5)7 + KXy, - X,)

+ Kgy (X, - X))
(ALS)
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Total Dissiyation Potential
NA

Dpmor = z;l (c, (x1 ateo Tlay, N7
+c (% + ); (47.03,) - ) + Cy(X, - %,)?
+ c“(x“ - xs) + cs(xs - 10)2

s .2 o s 2
+C (xax'xa) +C (x -X)

\7 csx(isx - xs)z}
(AL9)

For pure cyclic motion of the rotating system generalized coordinates,
it is cssumed that the actuator shaft is subjected to a pure moment at its
poivi of connection to the collective pitci spider beam. Under these
circumstances, the control system stiffness to be associated with the
motion xl & is

’

xc’n = X ’nch‘,‘/(m(hn 2+ 2Ka) (As0)

Therefore, the total potential energy associated with cyclic motion
of the control aystem is given by

Voocor * ¥ nZ;l(xc n ’n (AS1)

Main Rotor Control System

The model used to deseribe the main rotor control system is shown in
Figure A3, This is depicted as a rigid swash plate supported on three
spring/servo systems. The servos are situated at a radtus Rg from the
center of the swash plate with the forward servo being set at an angle
§Fs relative to the Y axis as shown. The blade pushrods are situated
at a radius Rp from the center of the swash plate. The point P locates
the position of the pushrod of blade n, and the angle 6 that positions
this point relative to the Y axis is given by

GB,n = GFS + at + 21[(!1 = l)/“ + GPI\,n (Asz)
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Figure A3. Main Rotor Control System Model.
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vhere

8 = t,.n-l[x.z.n/(..-n + Lz'ntamsa’n)] (A53)

PR,n

This definition neglects steady and dynamic deforma*ions. The servos
at X; and X, are positioned 90 degrees and 180 degrees respectively in
the yau rightA direction from the servo at xF

The displacement of the pushrod of blade p, n» 18 defined in
exactly the same manner as in the tail rotor controjl. system, Equation AL6,
The displacement of the point P on the swash plate is derived assuming that,
in addition to its ¢wvm dynamic displacements XF - XL , and XA , the swash
plate also follows the motions of the hub.

With these displacements defined, the energies associated with the
main rotor control system can be shown to be as follows:

Total Kinetic Energy
N [ ]
Tvror = e ngi (Ml,nxi, )
+ Im[l/ans(i X,) + E (¢ex g7
+ 1,0 (ZX'L-X XF) E z;“ey ed
& MS[ /2(xA i x'F) 4 Z (OZ,sqs ]2}

- (ASL)

Total Potential Energy
N NA
Vuror = 2;1 K a0 - :‘;1( ¢Z’B¢s) - (X, + Xp)
- RB/Rs(l/ ()(A = )(.I‘,)(cossq,nc:OBGn = sinwnsincn))
RB ( / (ZX.L - X, XI)(sinw cos§ + cosy, 8ing ))]2
* KF(xF - Xop)? + K (X, -X,)?
+ K (X - %)% (A55)
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vhere

v, = 0t + on(n - 1)/N (A56)

and

§ = bt GPR,n (AST)

Total Dissipation Potential

N NA .
Dyror = }r;lcl,n[xl’n - B; (4, 59,) - (X, + Xp)
.y
R
Ry

- /Rs(l/z(ZiL - iA - ip)(sinwncOBGn + coswnsinﬁn))]2

. 3 2 . ) -o 2
*+ ColXp = Xop)® + Cp(X) = X))

(1/2()'[A - iF)(coswncoan - sinwnsinén))

+ cp (X - kop)?)
(A58)

Servo Systems

Only servos with first-order transfer functions were considered.
Main and tail rotor servo3 were assumed to be governed Ly the same equation
of motion; however, they nay all have different dynamic properties. The
model used to describe the servo system is shcwn in Figure AL, In this
model the displacement X, in the case of the tail rotor control system,
corresponds to Xs, and K corresponds to Ks; see Figure A2, Similar
analogies can be made for the forward, lateral, and aft main rotor serves;
see Figure A3.

From Figure Al, we can see that the displacement of the valve spool

relative to the servo housing is €_= X_ - X . This can be written in
v v c
the general form
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Control System Servo Model.
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&y " Rlel" + szo + naxc (A59)

wvhere the servo linkage ratios, Rl ’ R2 and R_, depend on the kinematics
of the servo linkage arrangements. L

Flow through the valve is given by

Q = Gty - GF
= A(Xy = X)) + C o8P + (v /uNg)EP (A60)

and since

Ko(Xo = X,p) = A6P e
giving

Ky = AP/ - Xy (A€2)
and

k, = ade/k, + %, 63)

it can be verified tlLat

CquXVF + cqnzx0 + CngxAF = APRAF + A%
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= A

- [(Cg *+ Op)/Ap - CR,/Ko]ApSP

S W i SRAVY. WS TR

If ve express €y in the form

R R
- 1 3
ey = R /nzxvr *Xy ¢ /szc)

and let R2 = “S such that
Rl Ra
&y =%l YaXyp t Xt /o X)

then using this form for €y and the identities

o= [(cg + cp)/chP - R3/Kc]

= ! 2
M, [*/Kg + Vo /uRgAS]
together with the equalities

ASP = - K(Xg - X)

Apsp = - K(Xg - X)

in Equations A60 and A6L4, it can be shown, after some algebrair manipulation,

that the servos are governed by the equation

(QS/ul)(AP/aSCq)(l + ‘fuz)xo + (a,s/u1 + K)Xo
= (ag/u, ) (Ap/agCo)Ku X - KX + (eo/u )(R /ag)Xyp

+ (ag/u )R Jag)Xyp = (ag/u ) (Ap/agC)kyp = 0
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Here, (ag/u,) is the "Servo Power-On Stiffness With Locked Input,"
(Ap/uscq) is the "Servo Time Constant or Inverse of Velocity Gain," and
(uz) is the "Reciprocal of Combined Actuator Hydraulic and Structural Series

Stiffness."

In this analysis Xyp and X,p vere not considered to be independent
degrees of freedom. Rather, they are assumed to be the result of airframe
vibration. XH could, for example, be construed to be the result of vibra-
tion at the pilot station being transmitted through the control system,
vhereas X,p gives a measure of the effect of the servo support vibrations.
8ince accurate measures of these quantities are not alwvays available, it
vas considered that they could best be represented by expressing them as
functions of the airframe motions at the hub using feedback factors for
the support and valve to define reletive participations as follows:

= aq + aq q
“vr a: (BFy x*x,s%s * 5Fy,yty,q%5 * 5%y ,2%2 4%

+ BFy ox%ox,s%s

NA
Xop = ;;i (SF, x¥x,8%s * SFp vy 8% * SFy 2%;,4%s

+ SF (AT2)

v,ov%ey,ads’

* 5F),extex,sls * SFA,er’ax,sls) (AT3)

NA .

2 Fs
XAF = EI(SFA,x’x,uqs * SFA,Y’Y,sqs + E"F:\,Z’Z,s(l
8=

b

+ 8F, ox%ex,sds * SFa evtoy,sds)
(ATY)

E, _ These expressions are substituted directly in Equation ATl to give
1 the final form of the servo equation.
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Final Form of Dynamic System Equations

Final forms of the 4ynamic system equations of motions are obtained
by formally expanding all of the total kinetic and potential energy and
dissipation potential expressions derived in the preceding sections, and
then performing first-order perturbations of all of the generalized
coordinates about specified steady initial values. This procedure, as
mentioned earlier, requires an extensive amount of matrix manipulation.
However, the methods employed are well known and, provided accuracy is
maintained, there is no problem in principle in arriving at the final
equations, PFor this reason, none of the expansions are repeated here,

The equations that follov are very lengthy. Therefore, to improve
readability, they are all written in exactly the same format. Also, since
tvo types of control system are treated, their contributions to the
equations are written separately. Finally, the servo equations, as applied
to each type of control system, are written.

The first block of equations contains all of the terms that arise from
the coupled rotor/airframe system. It also includes all of the terms
contributed by the motion at the pushrod as defined in Equation AL6. Each
equation first defines acceleration coefficients, then velocity coefficients,
and then displacement coefficients.

In every equation, all generalized coordinates and physical properties
associated with the rotor system have a subscript n, the blade number,
This subscript is omitted from the equations without ambiguity. Also, to
glve added clarity, the equations are presented in integral form.
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Airframe Mode Equations

N NA. o o
LEA § marley y(0gs * doy,q0, + 78,00 + #y 4(9y s - 0oy s, + 78D
+ .Z.J(’Z.i + ’Ox.i[('z = rYo)linW + (e +r+ QZYO - bZBO)COIWJ

*dgy,qlle + r+ ey, - b8 )aink - (8, - rv )cosv]) + #gy (((b, 4 x8)ey ,
+ 4y g[le +r + 8y, - b8 )ik - (a, - 1y )cosi]) + ¢y ((~(b, + 18 )y ,
+ 02’1[(0 trt+ay, - bzﬂo)coaw + (52 - ryo)uinw])

*+ dgy 4(0gy s[(-a {0y, - D8 ) - (r+e)(a, - rv,))sin2y + ((r + e)?

+2(r + e)(a)y, - b8 ))ein%y + a (a, - 2ry )eos?y + b (b, + 2r )]

o b28°))ain2w

+ 0oy 1[5(-a (8, = 2rv ) + (r+ e)? + 20r + e)(ay
+(=(r+e)(a, -rv) -aley -DbB )cos2y]) + oex’d(%y’i[&(-az(a2 -2ry )
+(r+e)?+2(r+ e)a,y - b8 ))sin2y + (=(r + e)(a, - ry )

- a,(ay, -8 ))cos2y] + Qex’i[(az(azyo -b8) + (r+ e)(a, - ry ))sin2y
+ ((r+e)2+2r+ e)(azy° - bzeo))coszw + a.z(a.2 - 2ry°)sin2¢

+ bz(b2 + 2r8°)])}+ I dr { °e¥,3q'Eo(' ¢6Y’icoseosin2w - ¢ex’icoseocos2W)

* fox Jq'Eo(- oy 1coseocos2w + ¢3x,i°°89081n2w) + ¢9Y,J(¢9Y,i(c°szeosi"2*

+ (yocoszeo - %Bosin20°)sin2w) + oex’i(kcoszeosinzw

+ (yocoszeo - 88081n29°)cos2v)) + ¢ex’J(¢eY’i(kcoszeosin2w + (Yocoszeo

- 48 8in20 )cos2y) + box 1(coszeocoszw = (yocoszeo - %8 8in20 )sin2y))}

+ Idr { ¢OY,J(¢9Y,1(q'E0c°Beo - q'Fosineo)sin2w + °ex,1(q'Eo°°°°o

- q'rosineo)coszw) + oex’J(oey’i(q'Eocoseo - q}Fosineo)cosaw
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+ Oex.i'-Q'EocOIOO + q',olineo)linew) + .OY.J(’OY,1(°°°2* - Y°l1n20)
* bgx, 18- Yoc0s2% = dsin2y)) + dgy ,(#gy 4(- Y coB2¥ - d.in2y)

+ ’ex.i('inz* + v,81n2y))} 4 L.ar { %oy,31 ol by 48100 8102¢ ‘
* $9x,18108,c082¥) + 0yy ,Q'po(dgy 18100 cOB2Y - ¢y (81n sin2y)

+ ‘GY,J(’OY,i('inzeo°in2W + (yosinZQO + ﬁBosin26°)sin2w)

. .
nemtetn g et -

+ Oex’i(ﬁninzeosinaw + (yosin2e° + 53051n29°)c032w))
+ ’ex,,j(‘ey,i(;’“nz%“”?" + (yosinzeo + kpoain20°)cos20)

2 2y o 2 . u
+ Oex.i(sin Oocoe \ (Yosin eo + gaouin260)51n2W))}] qit

HA Y 2
> lgg;[’ex,i’ex,JIFA * %oy 1%y ,4TL * 97,1, 4M5] qif WL
+ 2[£R'°mdr{¢x 4((b,v, + a8 Jsiny - b cosy) + ¢y ,(=(b)y,
=] 3 )
+ 8,8 )coay - bzsinw) + ’Z,Jaz + ¢9Y’J[((a§ + bi)yo + az(r + e))siny

(a(a, - ry)) +b (b, + 8 ))cosy] + ¢ex’J[(a2(a2 - ry,)

+

b, (b, + r ))siny + ((ag + bg)vo +al(r+ e))cosy]}

+

' Y
der{ ¢eY’Jq'Eocoseosinw + °6X,Jq Eocoseocosw} + I.dr{ OGY,J( Q' gocos0,

+

q'Fosineo)sinw + oex,d(-q'mcoseo + q'Fosineo)cosw + ¢0Y’J(Yosinv

cosy) + oex’d(vocosw + siny)} + Lar { - $gy, 42 poPind siny

' P R-e -
- ’ex,;q FosineocOBWJ] oeﬁTf +32§J?0 mdr{¢x’J(b2 + rso)sinw ¢Y’J(b2

+

rBo)coaw + ¢Z.J(r + &Y, - bZBo) + ¢9Y.J[(e(azyo = bzso) +r(r+et 2;270)

+

b2)siny - (a,(ay, =D,B8) +r(a -ry )lcosy] + box,y[(a,(a v - b 8 )

20

+

r(a, - ry ))siny + (e(ay, b8 ) + r(r+e+ 2a,v,) + b2)cosy]}

+

- 2
Idr{ QeY’Jq'Eocoseocosw + ¢ex’3q'Eocoseosiuw + QOY’J(cos 8,8in¥
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+ (Yoconzeo - 8 8in20 )cosy) + ¢ex.J(coszeocoaw = (Yoc0l26°
- HB 81n26 )sing)} + T drueY J( oS08, - q'Foaineo)cosw
+ ‘ex,,j(' q'Eo°°’°o + q'msineo)uinw + ‘ex,JYo’i“ - ¢6Y.Jy°coaw}

+ Izdr{%Y'Jq'FosinBocow = oex’Jq'msinaosinw + %oy,3 (ainzeosin\l'

+ (v sin?e_ + 38 8in20 )cosy) + oex’J(sinzeocosw - (y 8in?e

+ %aostnzeo)sinw)}] Ef +i;§i[gR'°mdr{¢x'J(-(a2 - ry leiny - (a v,

+ r)cosy) + ¢Y’J(-(azvo + r)siny + (a8, = v )cosy) + ¢, a8,

+ %){’J[(-bz(a2 - ry,) + a,eB )sind + (-(ag +r2)8, - b (ay, + r))cosy]
+ ¢ex’J[((a§ + r2)g, + bz(azy° + r))siny + (-bz(a2 -ry,)+ azeso)costl}

+ Lar(- ¢qy ! ‘poBine cosy + dgy Jq sin6 siny + ¢y J[!gsinee siny

2
+ (%v 8in20 - Bosinzeo)cosw] + ¢ex’J[¥sin26°cosw - (%v,8in26, - B sir eo)sinw]}

+ IYdr{’OY,J(q'EOBineo + q'Focoseo)cosw + %X’J(- q'Eosineo

- q'Focoseo)sinw} + Izdr{- ¢9Y,Jq'mcoseocosw + ¢ex,3q'F0°°seoBiw

+ ¢eY J[- %inzeosinw - (;QYOSin29 + B coszeo)COBWJ + ¢ex’J[- ;$1n2e°c°sw
]

+ (lsyosin26° + Bocoszeo)sinw]}];fo 2Z[gR-emdrwx.J(th,i(yosinw - cosy)

n=1

+ Vl,isiw + ¢F’isosinw) + ¢Y.J(¢E,1(' sinw - YOCOBW = Vl’icos'b

- 95,18,008%) *+ &y ydp y * gy j[(0p (o), + 1+ €) + 05 D)y )siny

* - dp gy = xv) - 4 (b, + 18 ))cosv] + ¢g, [(ep ;(a) -1y ) + ¢g,1(b,

+ 18 ))siny + (¢E,ib270 + °F.1(°zYo + r + e))cosy] + Poy,3v,,10,5100
+ ¢9X,J"1,ib2°°s“ + der{%Y’J[coseosinw + (Yocoseo - B,sind,

- Q'py)cosy ]&'F’i + ¢6x’J[coseocosw - (y,co86 - B 8in - q'Eo)sinw]wF’i}
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+ Iy"{(’ex,aq'ro°°'* - ’ox.;q'ro'in*)"n,i}

+ Izdru". J[- sin0_siny -(y sind + 8 cosé + q-m)couJ.'E. $

+ dox, J[- 8100 cosy + (v 8in6 + B coss + q_'m)linWJQ'E.i}];,r.iz

*3"[ %a“ex.fu - Yoy,3TL) * ¢2,4M) i;\& * g”[ %3(' Yox,sTra = oy, 571
- 1 - L

* g, 0] ’y‘ *,is’ey.aln fo ’;glg[fn “nar(200, \[9y 4 (s, - rrg)cosy

-(e+r+ .Y, - bzeo)sinw) + ‘ey,i((’ +r+ay, - bzso)cosw

+ (s, = rrgdeiny)] + Aegy [#gy (([(r + €)2 + 2(r + e)(a,v, = b8))

-e,(a, - v )Jein2y + [-(r + e)(a - rv ) - & (a v, - b_8,)Jecos2y)

+ ¢ex,i([az(azvo - bzeo) +(r+e) s, - ry,)Jesiny + [(r + e)?

-a (s, -2ry) +2Ar+ °)(‘270 - b,8,)]cos2y - & (a - 2ry)) - (r+ e)?

2(r + e)(a,y, - b,8,))] + Rgy J[0gy ;([8,(a,y, = b,8.) + (r+e)la

rYo)]281n2v + [- az(az - 2ryo) +(r+e)+2(r+ e)(azyo - bzao)]cosew

+als - 2ry,) + (r+ e)2 + 2(r + e)(a,y, = b,B,)) + ’ex,i([' (r +e)2

2(r + e)(ay - bB.) + s (s, - rv,)Jsin2y + [(r + e)(a2 - rv,)

+

az(azyo - bzso)lacoszw)J} + der{anq'EO(’eY,J[' $gy 1086,C082¥

+

¢ex’icosoosin2v] + Qex’d[¢ey’1coseosin2w + ¢ex’icoseocosav])

+

ﬂ(QeY'J[OOY.i(coszeosin2w + (2y°c0326° - Bosinzeo)cosaw)

+ ¢ex.1(coszoocos2w - (27°c0826° - Bosinzeo)sinzw) - ’ex,1’1°2°o]
+ oex,J[QeY’i(coszeocoa2w - (2Y°c09260 - Bosinzeo)sinzw)

+ ’ax,i(' c0529°sin20 - (2Y°c03200 = 3°ainae°)cosz¢) + ¢e¥,1’in2°o])}
+ IYdr{an(¢OY’J[¢GY’1(q'Eocose° - q'Foaineo)cosav + ’ex,i(' Q' goto88,
+ q'rosinao)ainew] + ‘OX,J[’GY,i(' q'Eocose°
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+ q'rolineo)linaw + dox 1(- Q' goco8f, + q'FolinOO)coszw])
»
+ “(’OY,J[’ey,i(' 2v,co82y - 81n2y) + ¢4y , (= cos2y + 2y 1n2y)]

+ ’ex,a[’ey.i(' cos2y + 2y°ein2w)+¢ex’i(2yocoszw + 8in2y)])}

+

Izdr{29q'Fo(OeY’J[06Y'isineocoazw - Qex.isineocosaw] + ’6x,J[

06Y,181n9°51n2¢ - ¢ex’isineocos2w]) + ﬂ(¢e¥.J[QOY'i(sinzeoeinzw + (2Y°sin260

+

Bosineeo)cos2w) + Qex'i(sin290c052w - (2Y°sin26° + Boain29°)ain20)

cos28 ] [%Y’i(sinze ,Co82V -(2Y°sin26° + B_81n20_)sin2y)

ox,1 * %ox,

+

0gx,1(-81n%6 sin2y - (2y sin?p  + B 8in26 )cos2y)

boy, j.cosze ])}]E i + 3 2%, 1M, 54,3 EJ

+

+ ;Ei[gn ¢ mar{2n (o 4 ((v 2o * 2,8, Jeosy + b ,51nv)
+ °Y,J((bz”o + azﬂo)sinw = bzcosw) + QQY’J(bZ(bz

+

r8 )siny + bz(azso + bz”o)°°°*) + QBX'J(-bz(bzyo + azBo)sinw

+ bz(b2 + rBo)cosw))} + der{ﬂ(¢ey’d[c0826°sinw + (y,cos26

Bosinzeo)cosw] + bex’J[cos26°cosw - (y,cos28 - Bosinzeo)sinw N

+

IYdr{Q(oeY’J(Yocosw + siny) + ¢ex’J(cosw = yosinw))}

+

I ar{n “ex J[-cozaeeosinw - (v cos20 - Bosinzeo)cosw]
z »

+

OOX,J[ - cos26 cosy + (yocos20° - Bcsin29°)sin¢])} ’6 Ti

+

N -e
2:[ £7° mar(20(ey (b, + r8 Jcosy + ¢y (b, + rBo)siny

n=1

+

b (b + 2r8 )cosy - b (b + 2rB )siny)}

Yor,s°, Yox,9%2

+

der{ﬂ(¢eY’Jcos20°cosw - ¢ex’Jcos2eosinW)} + IYdrin(¢eY'Jccsw
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- bgx J'in*)} + Izdr{n( - QOY.Jcmzeocow + Qex'Jcnseeoainw)}] 8 *

N
+ gng[gn-ew{mﬂx.a[ - (az - ry )cosy + (a.zyo + r)siny]
+ ’!,J[ - (azvo + r)cosy - (a.2 - ryo)ainw] + ¢9Y'J[(r250 + bz(azYO

+ r))siny - (b (a, - rv,) + azrﬂo)coswl + ’ex.J[(rZBo + bz(azvo + r)jcosy

+ (bz(a2 - rvo) + azrﬂo)sin*])} + der{20q'Eo(06Y’Jsineosinw

+ Qex’Jsineocan) + 9(06Y’J[81n29°c°w - (v sin20 - Bo)'in“’J
+ ’OX,J[ - 81026 siny - (v 8in2 - 8,)cosy]))
+

Iydr{QO(QOY’J( - q'Eosineo - q'Foc0|6°)sinw + ¢BX,J( - q'gy8ind

q'mcoseo)cow) + n(-oeY’JBOainw - ¢ex’JB°cow)}

+

Izdr{2ﬂq'Fo(09Y.Jcoaeosinw + oex coseocosw) + n(oeY'J( - 8in26 cosy

»J

+

(yosin28° + Bo)sinw) + ¢ex.3(31n2eosinw + (yosinzeo + Bo)cosw)}] Y $

N NE R
L§ §[£ mdr{2ﬂ(0x’J[0E’1(Yocos¢ + sin#) + \)l’ico.‘,

+

+ OF’iBOcoaﬂ + ’Y,J[- ’E,i(““" - yosinw) + vl’isinw

+ 95 18,5100 + gy s[og ; (b, + v8 )sind + b (4 8,
+ OE’iYo)cosW] + ’ex.J[ - bz(op,ieo RLIL 03,1(1:2 + r8 )cosy]

+ v .ibzcoav - oox,dvl’ibzsinw)} + der{n(oeY,J[(sineocosw

%0v,1,
+ (q'EOFinaeo - yosineo + Bocoseo)ainw)o'E’i
+ (coseocosw + (q'Eo - y,cos6  + Bosineo)BiM)O'F'il

+ ’OX.J[( - +1n siny + (q'mgmaeo-yosineo + Bocoseo)czosi.v)ol's’:l

+ ( - cosd siny + (Q'gg = v,c088, + Bosineo)coew)ﬁ','i])}
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1 - 4 < —d oo, — — BT oo oD A - Al - .

' - C ' 2 -t
+ IYdr{ﬂ(oey.J [’E,i( sin_cosy + (-2q Fot0828, = q'p,8in26,
- B,cosd + yoaineo)sinw) + ¢'F.1(coaeocow + (- q'msinaeo + q'pyc0820

B,8in8 - v cose )siny)] + ’ex.g["z,i("i“"o“““ + (- 2(1'l=,0c01526o

1 - - "
q main26° B, cosd  + Yoaineo)cowa) + O'P’i( cosd_siny + (q'Eo\.os29°

Q' po8in20 - 8 sing - yocoseo)cosw)])} + IZdr{Q(oeY’J[(- 8in6 cory

+ (2q‘mcoszeo+ yosineo + Bocoaso)sian' + ( - coseocosw

E,i

)
+ (q mginaeo+y°coseo + Bosineo)sinw)wF’i] + QOX’J[(sineosinw
+ (29" ycos20 +Y,81n8, + B cosd )cos¥)¢' , + (cos6 siny + (q'  sin20

ro

Q'mcos2e°+ Y,cos6  + B,8ind ) cosy) 015’1])}}‘11.’4

+

NVA[ Ree .,

’ ZJ;Z £ mdr{Q ¢Z,J[¢6x,i( - (a.2 - ryo)sinw -(e+r+ azyo
nzl .=

szo)cosw) + ’eY,i( - (e+r+ 8% " bzeo)sinw

+

(e, - "o)°°’m}]31$ "3 MA,szA.Jadf

+

N
R-e
n§1[‘ mdr {2 uX,J[ - (bzyo + azeo)sinw + bzcoaw]
+ OY’J[(bzvo + azso)cosw + bzsinw] + ¢6Y’J[(a2(a27° +r+e- 2b280)

- bivo)sinv + (- ale - rv,) + bz(bz + r8_))cosy]

* dgy y[la (e, - v ) b (b + 8 ))sink + (s (ay, +r+e-28)

- ngo)COW])} + der{ﬂzq'Eé%Y’Jcoseosinw + ¢ex’JcosB°cos¢)

+ 92[¢9Y’J(cos26°cosw - (Yocoszeo - Bosinaeo)sinw) + ’ex,,j( - cos26 siny

- (Yocosze° - sosineeo)cosw)]} + IYdr{92[¢eY’J(- q'pyc088  + q'p sing )siny

R v 7

+ ‘ex,g(' Q'g,co80, + ' pPpind Jcosy]} + Izdr{QZq-Fo(- ¢9Y’Jsin9°sinw

LTI THE i
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+

Qex'JuineocOIw) + Q[ ‘OY,J( - cos20_coey + (yoc0l26° - 8,81n26 )siny)
ox J(cosee siny + (y cos26 - Boainzeo)coaw)]}] 099T%

35&; R = mar{a?[ - oy J(b + rBo)Binw + ’Y.J(bz + rBo)cosw
by, ([(r + &) (a v, +r -b,8.) +rlay -bs)-b(ers +b )lsiny
[-a(ay,+r-v8)-b (b, +2r8) +r? Jeosy)
box,yl[e(e,y, + 1 = b,8) + b (erg + b)) - r¥y Jiiny

[(r + e)(azYo +r- bzso) + r(azyo S bzeo) - bz(bz + 2rB°)]cosw)]}

derfﬂzq'Eo(- ¢9Y’J¢°89°c°8¢ + ¢ex.Jcoseosinw) + Qz[¢eY’J(sin26°sinw

Yocoszeocosw) + box J(ainzﬁo cosy  + yocoszeosinw)]}
I dr{Q [¢6Y J cose -q Fosine Jeosy + ox J(- q'poco88,
Q'po8ind )siny +dgy 4( - Yocosy - sink) + ¢y (v #iny - cosv)])

Izdr{ﬂzq'Fo(¢6Y’Jsin9°cosw = ¢ex’Jsin9°sinW) + 2 ¢9Y’J(cosze°ainw
e sinzeocosw) + ¢ex’d(coszeocosw - yosinzeosinw)]}] 8 f
gggi[gR'e mar{ 02[ QX’J((a2 - ry )siny + (azvo + r)cosy)
¢y 4 ((ayy + r)siny - (a, - ry )cosy) + %Y’J[(r(azeo - b,7,)
b(a,y, +r)+ 32([ r+elg + b,) - rZBO)sinw + (bz(az - rv,)
bz(azvo +r) - a(aB - 18) + r?8 )cosy] + ¢6x,3[('bz(“z - ry,)
blay +r)+a(ap -rB) - r28 )siny + (r(aB8,- b,Y,) - bz(azYo +r)

az([r +elg + LURAE r28 )cosy]]}
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+ de.r{nzq'zd%x. Jaineocow - ’ex, Juneounw) + n2[ 9“' J(BocOlzeocow
- }pin26 siny) + box J( = socoszoosinw - %81n26 cosy) )]
+ IYdr{ﬂz[oeY’J(- q'mlineo - q'mcowo)cow + Qex'J(q'mlineo

+q' poc088 )8iny - dgy JBaccmto + dox JB siny]}

+

Izdr{nzq°m(¢“.dcowocow - ’ex,,j“'eo“nw + nz[oeY’J(’ﬂinzeosinv

+

Bosinze cosy) + box J(lssin26 cosy - Bosinzeosin\b)]}] Y t

+

n’zliz £R- xmi.r{ﬂ2[0xJ OE’i(Yosinw - cosy) - vl'isinw

OF'iBosinv) + OY’J(OE’i(sinw + y cosy) + vy ,q008¥ + op, 48,c08¥)

+

’OY,J((¢F,1(52YO +r+e - ZbZBO) - i 2Y )Binw + (- ¢F 1( rYO)

+

’E,i(bz + rBo))cosw) + °ex,J((’F,i(°’z = ryo) °E j.(b + 18 ))siny
+ (¢ F,i(agvo +r+e- QbZBo) - ¢E’ibzy°)cosw) oy 1V 1, 4P, 8ind

- ¢ex’Jvl’ib2cosw]} + dermz[’ey,J( - 8in6 siny - (v sin@

Bocoseo)COBWN'E,i +¢ex'3( - sinf_cosy + (v sind, - Bocoseo)sinW)WE’i]}

+

1] = -
IYdr{Oz[QeY’JwE’]{sineosinw+ (- q Eosinze Bocoseo q'FocosZGO

-q' -
+ yosineo)cosw) + "F,i(- cosf_siny + (- q posin26, - B siné
' )
+ Q' cos20, - Y,c088,)cosd)) + box,)@'s,s(e1n0 cos¥ + (a'; sin2e

+ B, cosf +q'cos20 - Yosineo)sinw) + ¢'F i(- cos8 cosy + (- qQ'ppe0820

FO .

+ 8,8in0 + q'p8in26 + Yocoseo)sinw))]} + Izdr{nz[%Y’J((coaeosinw
+ (- q cos29 +Y, cose + 8, siné )cosw)¢' il + ¢'E’iq'mcoszeocosw)

+ ((cos® cosy + (Q'Eccoszeo - v cos8 - Boxsinﬁo)sinw)¢'F.':L

%0x, J
- ¢vE’iquocos2eosinw)]ﬂqT’if = 0 (AT75)
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in A Blade Pitch Equations

Zi[gn-em{‘x.i((bzvo + 8,8, lsiny - bycosy) + .Y’i( - (b,

+ 8,8 )cosy - b,siny) + '2’2,1 + Qu’i[((cg + b%)yo + a,(r + e))siny

* ( = .2(.2 = no) - bz(bz + rﬁo))COG"] + ’ex'i[(az(.z = rYo)

+

bz(b2 + rBo))linw + ((ag + bg)yo +a,(r+ e))cosy]}

+

L] ]
der{q m(oey.icoaeolinw + Qex’icoseocow)} + IYdrfoeY’i(--q poCO80,

+

' - a! ' -5
q maineo)ainw + ‘ex,i( Q' pco88, + q maineo)cocw + oeY,i(yoainw

cosy) + ‘ex,i('{ocow + sinv)) + Izdr{q'm( - ¢9Y’131n9°ainw

¢ex’1s1ne°cow)}] ¢921'1 %

+ [én'emdr{ (a2 + b2} + IYd.r{I}] o2 °'r% *; My L399 5R07 s
* [gR"mdr{(ag + B3y, + a,r} + Lar{q'pcosd } + Iydr{ - q'p cosd

+
[+ ]
| ond
=]
D
o

+
-
A

o .

+

-e
+ 3 [éﬁ mdr{b,r} + ]‘xdrIq‘msineo} + IYdr{-q'Eosineo - q'mcosﬂo}

+

Izdr{q;ocoseo}] ¢91} ‘ + 3- M;L3tana;d oy s

NE
R-e
oy [é mar{a,op 4 + byoy }+ Tyarla'poet b+ Tarl - q'p os )

1=1 =
+ Idriq' ey 4} ] ) %,1% + ;12(‘"1L2(‘m,1

+ [thanal/(R-e}J¢m,1))‘ePR Ei.m ‘

‘g1

NA
R-e
§l[£ mdr{29[¢ey’i(&2(&2 = rYo)sinw + az(azyo +r+e- hzﬂo )cosy)

+ %X,i( - "2("'270 +r+e- bzso)sinw + a,(a, -ryo)cosw)]}
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de.r{.?ﬂq'm[Q“’icowocow - Qex.icowolinw] + ﬂ[qey.i(- cos20 _sinv

(yocmzeo - Balinzoo)cou) +¢°x’i(- cos20 cosy + (yocon’zeo

aouinaeo)-inw)]} + IYdr{ﬂ[oeY.i(- qQ'gyc080, + q'FosinOO)Zcosw

+

OOX’i(q'EocOIGO - q'mlineo)ainw + QeY'i(yocow + siny) + ’Ox.i(- v, 8iny

+

cosy) ]} + I ar{2mq’ ["ey (81n6 cosy + ¢y 48106 siny]

e

“[’er i(cos26 siny + (y cos28 - B 8in28 )cosy) + oe‘( 1(cos26 cosy

- (v, cos20, - B 8in26, )sinw)]} Gq‘i & ) (258 + C L QQPR)é 2

+§ [g““’m{an[- bz(bz + rBo)]} + Idr{- Qcos20 } + I ar{- 1)

+ Izdr{ﬂcosaeol] oeé‘ + 3- ¢, L2tans ;¢qpph z + z[gR-emdr{2R[a2(b2 + 18 )1}
+ I,ar{- Qsin26 } + Izdr{ﬂsin2e°}] oY z + 3 - cngt.nal¢ePR§ i

NE
R-e
Y [g mar{20(- ¢p 10,8, + ¢g 18,6, ) - 2av, 4b)}+ Iar{f[- ¢'p 481n6,

cose J}+I dr{n[o'E 48in6 - ¢! F, 46088, 1} + 1 dr{n[¢'E 48in8
NE

+ Q'F’icoseo]}] %q,r’ig *;i= (- ¢, 2(’FPR,1

+ [th°°“1/(n'°)]’ET,1))°epniw,1 + ; [én'emdr{ﬂz[e(azYo -b.8)

b (b + rBo) + a§]} + der{- 02c0826°} + Izdr{nzcoszeo}]oge,r ;

3 (5 Keg? )0y i "% K, L3¢ opa’r %

% [gn-emdr{nz[a (a,y, + v+ 2) = b,(by, - 288, )1} + I,ar(a?[q'gyco86,

+

+

2 21_ s
Yocosaeo]} + I dr{Q (- q'goeos® ) + q'FOsineo)} + Izdr{n [- q' FoSin0,

+

Yocoszeo]}] N z + ; - Klezta.nG 3¢9PR5 % + ;[gR-emdrmz[_ (ag + bg)so

+

ebzl} + der{- nzsocoazeo} + Izdr{928000529°}] ¢eY
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g
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NE
+ % = "1"%““’1’093”i +;El[£n"ld.r{02[¢r.1(sz +ey) - .lm(b2
+(r+ C)Bo)]}ﬂxdr{- 02800".1c0l¢°} + IYd.z'sza(Q'l o080 + Q'r’ilineo))
+ Izdrmz[- Q'E.iq'mcowﬁo + (q'mcmaeo - Bolineo)o'p.il}] % "'r.if
NE
+ 3521: (- KxLz(’FPR,i + [Lzml/(k'd]’rr,i))’OPRQT,:I. 2

Tail rotor control system contribution:

+CL X +KL
1 1

2*6PR%> ,Y6PRY;

Main rotor control system contribution:

+ [kclLZRB/RB

+ ;’cle]’ePRiA + [?xCxLZRB/RS((sinG - cosé)siny

(=(8ins + cosé)siny + (cosé - siné)cosy)

- (cosé + sinéd)cosy) + ;’Cle]’ePRiF + [CILZRB/RS(coshinw + linccosw)]oePR)'tL

+ The coefficients of XA, XF, and XL, which are identical to those of ﬁA,
)'(,,, and )°(L respectively, with C1 replaced by Kl.

=0 (AT6)
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Blade Rigid-Body Flapping Equations

ﬁz:[ga"’mdr{ox'i(bz + 1B )sind - ¢y (b, + xB Jcosy + ¢, ,(r + &y,
- bzﬁo) + ¢9Y’i[(e(azy° = bzﬂo) +r(r+e+ 2&270) + bg)sinw + (= az(azyo
- bB,) - r(a - ry )lcosy] + ‘ex,i[(‘z(‘z”o - b,8,) + r(a, - rv ))siny
+ (e(azyo - bZBO) +r(ir+te+ 2a270) + bg)cosw]} + der{q'Eo(

e QOY’icoseocosw + Qex’icosoosinw) + ¢0Y’i(coszeosinw + (Yocosze°

- %8 81n20_)cosy) + oex’i(coszeocosw - (Yocoszeo - %8 81n20 )sin¥)}

+ IYdr{%Y’i(q'Eocoseo - q'Fosineo - yo)cosw

+ %x,i(' qQ'gocosf, + q'rosineo + yo)sint} + Izdr{q'Fo(%Y’isineocoaw
= ¢ex’isineosinw) + ¢6Y’1(ain29°sinw + (v,s1n28_ + %8 81n20 )cosy)

+ ¢ex’i(sin29°cosw - (yosinZeo + kBosin2e°)sinw)}]%i£

+ §[£R-emdr{((a§ + bg)Yo + azr)} + der{q'Eocoseo} + IYdr{(- Eocose
+ q'FosinBO + Yo)} + Izdr{— q'Fosineo}]¢e.érf+ 3- Ml'l‘i““‘a%przafrf

+ ; [£R-emdr{r2 + b; + 2a.2r'yo} + der{coszeo} + Izdr{sinzeo}]g

+ 2 MlLitmzsaﬁ ‘ + ; [éR"’mdr{- bz(az - ry )} + I,dr{}sin26 }

+ Lyar{- %sin.?eo}];s + iMngtancatanal; f Ll “ndr {4, ; (8,7,
+r)+ ¢E,ib2Yo + vy ibz} + der{¢'F,icoseo} + Izdr{- ¢'E’isineo}]aT’i‘
’}:(M L,tand (¢ppp 4 + [L,tena |/ (R=e)bgn, 1))q,r N t

i=1

: J; mdr{2ﬂ[¢e¥’i((r(r + e+ 2a270) + e(azyo - bzso) + bg)cosw
+ (az(azyo - bzeo) - rzyo)sinw) + ¢ex,1((' rir + e+ 23270) - e(azy°
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- b,8,) - b2)siny + (a (s, - 1,8 ) - rZy )cosy)]}

+ de.r{mq'mo(‘eY ’1co-0°|1nw + Qex'icoseocow)

+ 9[‘“,1(‘3‘"" - 2(7°c0320° = &Boliweo)linw) + .Ox,i(- siny - 2(Y°coazeo
= kpounaeo)cow)]} + Iydr{n[oeY.i(- Q' poto8d, + q'msineo)asinw

+ ’Ox,i(' Q' o086 + q'mlineo)'zcow

2 QGY’i(QYoﬂint - cosy) + 09x’1(2vocosw + 8iny)]} + Izdr{gnqvm[

- $gy,181n0 8iny - ¢y ;81n6 cosy] + alegy (cosy - (2v sin’e

+ Bosinzeo)s:lnw) + ‘ex,i(' siny - (2Y051n290 + Boainzeo)coau;)]}]éii

+ 3 [gR'emdr{mbz(bz + rBo)}+der{0cos2oo}+IYdr{n}+Izdr{- Qcoageo}]%é
b g' C,L2tans ¢opp éT‘ + g c,L2tan?s §$ + “gn"mdr{zn(bz(azyo +r)

+ p2 ' - =
r Bo)} + der{0(2q sin8 + B8 yosinaeo)} + IYdr{Q( 2q'py81in6

EO

2q'

- ' v
Focoseo Bo)} + Izdr{n(2q Focoseo + v, 8in26  + Bo)}]Ys

+

NE
2 e R-e
’CIthanGSta.nclyz +;§1[£ mdr{2£2[¢E‘i(b2 + rBo)]} |
{
der{ﬂ[¢'E'i(q'Eosin29° + B cosb - yosineo) + ¢'F,i(q'EO + 8,81n6

+

' - a!l - 2 -
yocoseo)]} + IYdr{n[¢ E,i( Q'go8in20 - 29'p,cos®8  + v 8ind Bocoseo)

' ' - g’ - -
+¢F.i(q Eocoszeo qmsin29° Y, co86 Bosineo)]}

+

' ' 2 ' ' =
Izdr{0[¢ E’1(2q FOCO8 8, + v 8ind  + Bocoseo) + ¢ F,i(q Fosinzeo + rocoseo

NE
Bosineo)]}]d,r’i$+;j§l(clL2tan63(¢FPR.i + [thanal/(R—o)]oET’i))qT'iz '
+3%[£R°emdr{02[¢w i(- b2(b2 + 2r8°))cosw + dox i(bz(b,, + 2rs°))sinw]}]iis
151 . a "

. .; [£R-emdr{ﬂz[a.2(a.zy° +r+e)- bz(bzyo - 25280)]} + de.r{ﬂz[q'Eocoseo

+

- 2T - 2T At
Y,c08260  + Bosin29°]}+IYdr{n [ Q' poco88 q'FosinGO]}+Izdr{9 [q rosine,
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+ 0 - - .
Y,c0828 Bosin’éeol}]oae‘f* , Klet‘““a’ePaeT$

R-e 2
+ ; [ mdr{Q [e(azyo - bzao) +r(r+e)- hreobz +2ary, - b:]}
+ der{nzninzeo} + Iydr{- N2} + Izdrmzcoszeo}]8§ + gxlnitmzcaaf

+z K,B‘ + i [gk"’nulr{ﬂz[bz(-»2 -ry,) + azao(er +e)]} + Idrl

%0281n20 )} + I dr{d02sin26 }]7 + { K L2tané tana y
(<] 2 o 12 3 1

+

NE
R-e {02l
12':[£ mar{R2[- ¢p By, + #p (ay, 4T e+ 28) -V b}
=]
- 02 2
Iydr{- @ ¢'E’iain6°} + Iyar{Q [¢'E’isineo + ¢'F’icoseo]}

NE
Izdr{- 02[¢|F.1c059°]}]q'r.1§+ %izl(Kletanﬁa("FPR’i

[1,tena /(R-e) Jogy 4 )ay 4 f

+

+

+

Tail rotor control system contribution:

- Cleta.nGaXz - K]thanﬁsxz

Main Rotor Control system contribution:

+ [- kCletanéanB/Rs(-(sinG + cosb)siny + (cosé - siné)cosy)
= kCletanéa]xA + [- %cletanéanB/RS((sinc - cosé)siny - (cosé :
+ 8iné)cosy) - %Cletanéa]x.F +[- CletandanB/Rs(cosdsinw + sinﬁcosw)]xL

+ The coefficients of X,, XF, and xL, which are identical to those of
XA, XF, and XL respectively, with Cl replaced by Kl'

=0 (A77)
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RL tio
%‘ g ndr{ox 1(-(32 = 1y Juiny - (ay, + rlcosy) + 01.1(-(0.270 + r)siny
+ (8, = xv )cosy) + ¢, .88 + b5 ;(([eB, - b, J(a, - rv,))siny
+ (- v,(a,y, +r) - (a2 + rz)Bo) cosy) + 4oy 4((b,(ay, + 1)+ (aF
+r2)8,)siny + ([eB, - b,)(a, - ry ))cosy)} + I dr{q'p,(- 4y ;8109 cosy
+ $gy 48in0 siny) + 0“’1(4,1:129031“ + (v sin26, - B 8in?6 )cosy)
+ ¢ex’1(ipin26°cosw - (gv 81020 - sosinzeo)sinw)} + IYdr{%Y’i(q'anineo
+ q'mcoseo)cou + ¢ex'1(- qQ'gosing, - q'mcoseo)sinw} + Izdr{q'Fo(
- ’ex,1"°'°o°°°“ + Qex’icoseosinw) + ’eY,i(' ksinaeosinw - (kyosin2e°
+ locoaze Jeosy) + ’Ox,i(' 31n20 _cosy + (lfyosinzeo + Bocoszeo)sinw)}]f;i s

siné coseo}

-t
quO

+ 3 [gﬂ emdr{b r} +1 dr{q' s‘neol + IYdr{- q'Eo

- M 12 8 R-e ar{-
Mngtml%PReT + [£ mdr({ bz(a.2

+ Izdr{q'Focoseo}] ¢96T$+
- ryo)} + der{lssinzeo} + IZd.r{- ksin2eo}] 8 + % Mngtancatanal Bi

+ 3 [gﬂ-emdr{a2 + r?} + de.r{sinze } + Izdr{coazeo}] Y

i 3 M,Ljtan’a Y ; 31 1£ Tmir{eg ;v - 8,V 4} + Lydr{4'y ;sine )

+1 dr{¢ E icoseo}] q T,if ,;l(l tm]“F’PR,i

+ [thmal/(n-e)bm’i))a,r’i% +31§:1 { Ree mdr{29[¢eY,i(a§Bosinw

+ (r + e)azsocosw) + %x,i(-(r + e)azsosinw + agﬁocoaw)]}

+ der{n[- ¢9Y'iaocosae°sinw - ¢ex’igocosee°cos¢,]} + IYdr{QBO(%Y’isinw

+ ¢ex'icosw)} + Izdr{ﬂeo(%Y’icoszeosinw + éex’icoszeocosw)}] Ei i

R-
+ ; [£ °nar{- 20a,(b + rg )} + I dr{gsin2e } + I,dr{- A8in20 } ¢q 'rf
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+ } - cngtanlQeéT
+ ; [ R-epar(- 2Q(r2B° +o,(ay, + r))} + I ar{(~ 2q'p,8in6  + v 81020,
- B,)} + I ar{n8 } +I dr{a(- 2q'p cos8 - y 81n20 - Bo)}] 8 i

+ LCILgt;ncstumlé % + ’ (2(YIwa + cngthal){ E

gi);i[gn‘emdr{- 2“(‘2’3.1 + "“o’y,i) - 2ﬂrv1‘1} + de.r{Q[Q'E,i(Eq'aninzeo
+8,8in0 ) - O'F’isocoaeol} + IYdr{QB'E’i(- 2q'Eosin20° - q'po8in28

- B,8ind ) + ¢'F’i(q'anin29° + 2q_'l.‘,0cot;26o + Bocoseo)]}

+ Izdr{Q[O'E’i(q'Fosin%o + B,5ind ) + ¢'F,1(' 2q'mc0526°

- ,B,‘ACOB%)J}] aT’ii + 3§(Cletmu1(¢FPR'i + [tha.nal/(R-e)JQ’ET’i))é.T’i
g E[g“*marmzu“,i((- b (a,y, + 1) - r28 )siny +(b,(a, - rv,)

i=1
+ aerO)cosw) + ¢0x’i((- bz(a.2 - rYO) - aerO)sin\P + (- bz("zYo +r)

= rZBO)COSW)J}] ai s + [gR-emdr{Qz[_ (bg + ag)ﬁo + eb2]} + der{

2 2 - 2

-9 Bocoszeo} + Izdr{n Bocos26°}] L + 3 K1L2tm1¢6PReT$
R-e 2 2

+ ; [g mdr{Q [}:Z(a2 - r‘yo) + a28°(2r +e)]} + I ar{- X sin26°}

R-e

2
+ Izdr{%ﬂzsineeo}] 8 $ + 3 Kleta.ndatanal B! + % [{ mdr{R2[e(r - aZYO)

= berO]} + Izdr{- QZBOBinzeo}]Y 24, , Kngtmz‘!lY ; + ’ KYY $
2L2 R-e

";2_:16 nar{a?[~ g (0,8, - &) - azao¢F,i]}qT.i%

+3 §:(K1thaml(oFPR’i + [L,tana /(R-e)Jopn 4))ayp 4 s

i=1
Tail rotor control system contribution:

- Cletan(t.lX2 - Kletanalxz

143



— e . A~y ‘.h. J".r . - rf; .'.‘:‘ l' re - ———

e v o=z sty

Main rotor control system contribution:
+ [- %C_L_tana_ "B/
12 1 RB

- 4C L tana %, + [- scletanaIRB/

(-(siné + cosé)siny + (cosé - sind)cosy)

((siné = cos8)siny - (cosé

Rg

+ siné)cosy) - BcletanaIJiF + [- CletanGIRB/ (cosésiny + sinccosw)]iL

fs

+ The coefficients of xA. XF, and XL. vhich are identical to those of
iA' iF’ and iL' respectively, with C1 replaced by Kl'

= 0 (ATS)
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Blade Bending Equations
;;%J;R mdr{.x 1[‘E J(y siny - cosy) + v1 ,linw + ‘F JB siny]
+ by 1[0p 4(= vocomw - siny) ~ v, ,cosy - ¢ ,B cosv] + 4, (o
+ ’OY,i[(.E,Jszo + ’F.J('zyo +r+e))sinyg + (- e J(a - ryo)

- ’E,J(bz + rBO))coswl + ’ex,i[(°r,4(‘z -ry)) ¢+ ’E,J(bz + 8 ))siny

+ (OE,Jbz\r0 + g (uzvo +r+ e))cosy] + b0 1P,Y,, 500 + ’Ox,ibzvhdc““’}

+

der{o'F’J[oeY’1(coaeosinw + (v, cos8 - B sind - q'Eo)cosw)
* 9ox i(coseocosw = (Yocoaeo - 8,8ind - q'Eo)ainw)]}

+ IYdr{Q'E,J[OeY’iq'FOcoaw - ¢ex.1q'mlin¢]} + Izdr{o'E‘J[oeY’i(- sin6_siny

(Yosineo + Bocose° + q'Fo)cOBW) + oex.i(- sineocoaw + (yosineo + Bocose°

+

q'm)sinw)]}] 3.'1 i + % [g“‘emdr{bzoE’J + 32¢F’J} + der{q'EOWF’J}

* ; = ML ¢pp(tpR

[ R-e
+ [thanal/(R-e)]oET’J) eT %+ ; [é mdr{¢F’J(azy° +r) + ¢E,Jb270

+

I dr{- q'FOO'E’J} + Izdr{Q'FOO'E’J}] ¢80

+bv [} + der{¢' . cosBo} + Izdr{- ’E,Jsineo}] B+ 3 Mletan63(¢FpR’J

271, F,J

+ [thanal/(R-e)]OET’J) B% +

[g“"mdrﬂg,f -8y b4 der{vF’Jsineo}

+ Iar{¢'y jcosd, }]%}2 # g ML tana (4gpe o + [L tana /(R=e)ogq o) ;f

*3%[61‘- ndr{¢?p , + 0% 4} + Lar{e’ F RLE LRI L ALY WAL W ]q’l‘ ii
§(’m>n 4 * [L,tana /(R-¢)Jog J) E (M (0gpg 4

+ [L,tena /(R-¢) Jop ,)) qT { ;Z £R'°mdr{2rz[¢eY 1(# 4(a, - ry )siny

* 0p,y(8Y, *r v e - b8 Jeosy) + 4gy (- bp,y(8,7 + T+ e -D 8 )siny

°F,J(a2 - ryo)cosw)]} + der{n[¢'F’J(06Y,i(coseocosw - (yocoseo - Qg
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- Bolinoo)lint) + ’ox.i(‘ cos8 siny - (yocoaeo - Uy - Bolineo)couw))

+ "l,J(.OY.i(' linoocOl& + (yonineo - BOCOIOO - q'zoninaoo)linv)

+ Qox'i(lineolinw + (yolineo - B,cos6 - q'aninzeo)cOIw))]}

+ Iydr{n[o'z’d(Qer’i(lineoconw + (quosinzeo = 2q'F0'i°2°o

+ B,cosd - v sind )siny) + ’ex,i(' 8106 siny + (q'p 84n26 - 2q'Fcain26°
+ B,cos6 - Yosineo)c(‘“)) + ¢'F,J(’er,i(' cosd cosy + (- Q' gyc0826

+ q'Fosin20° + Bosineo + Yocoseo)sinw) + Qex'i(coseosinv + (- q'Eocos2e°
+ q'Fosinzeo + 8 sint + vocoseo)coaw))]} + Izdr{n[o'F’J(09!’1(coaeocosw
-(q'FosinZOO - q'Eocoa2eo + yocoaeo + Bosineo)sinW) + ’ex,i(' conOosinw
- (q'.8in20 - q'EocOl26° + ycosf  + Bosineo)coaw)) + "E,J((' 8in6 cosy
+ (2q'Foain26° + v, 8ing  + Bocoseo)sinw)oey,i + QBX’i(sineosinv

+ (2q'Fosin26° + yosinﬁo + ﬁocoseo)coaw))]}] a; 2+ 3 [gn'emdr{20(¢F’Jb280
- 45 8.8 ) + 20v1’Jb2} + der{“("p,3°°“°o + Q'E’Jsineo)}

»J 270

+ IYdr{ﬂ(- ¢' sine°-+¢' coseo)} + Izdr{n(

E,J F,

- ¥ Jaineo - ,-F’Jcoseo)}] °eér& + ; - Cle’ePR(’FPR.J
» R-e g
+ [thanall(R-e)]oET’J) aTz + ; [g mdr{- 2noE'J(b2 + 18 )}
+ der{a[o'r J(Yocoaeo - 8,8in6_ - q'Eo) + ¢'E’J(y°ain9° - B,cos@_
- q'anin28°)]} + IYdr{Q[Q'E’J(q'Eosin26° + 2q'F0c0326° - v,8in8

- ! ]
+ Bocoseo) + "F,J( q Eocos2e° +q Fosinzeo + Yocoseo+ aosineo)]}

' - ' 2 < o -
+ Izdr{n[¢ E'J( 2q'p,co86 Yosineo Bocoseo) + ¢-F’J( q'Fosin29°
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qQ'g,co826, ~ Y cos8 - Boaineo)]}] 8 % + 3 C‘L/tan63(0FPR 3
[ -
[ tana /(R-¢)Jogy ,) Bt + ’[£R nar{of(e ¢y , + rBdp , + v, 1)}

I ar{nfe'y yBoco88, - ¢'E.J(8°sin0° + 2q'Eol1n26°)]}

' 2 ; . - a!
IYdr{9[0 sin%6  + q'p,8in26 ¢ B,81in6o) + ¢-F.J( q'go8in28

g,3(2'go

2q'Foc0l20° - Bocoseo)]} + Izdr{n[¢'E J(- qQ'po81n20 - B siné )

QF’J\Qq FoCO8 9 +q Eooin26 + 5 cos® \]} % ; c L tana (°FPR,J
) gx' ‘mar{enlv

i=1
BO\QW’J¢E,1 - ¢F,1¢E’J)]} + der{g(Bo

38,1 " V1,1%

[c,tana /(B -¢) Bpp J)Y % % g

Vo8t (87 0'p ¢ = ¢'g 4¢'p 1))

I dar{f(q'psing, + 2q'pocos8y + B )(4'p (0'p 4 - ¢'p 4é'p 4 )

I, dr{R(q',5in8 - 2q'p cosd - Bo)(;Eo'F’J¢'E,1 + ¢'E,J¢'F,i)}]éT,i%

3 C (4ppg 4 + [L,tana /(R-e)lopy ) 1Z=1 (9ppR, 1

[thanal/(R-e)]¢ET’i)aT'i & + e Mo &T’J %

g [gR-emdr{92[¢F,J(a2 +ey,) - ¢E’J(B°(r +e) + bz)J}

Idr{- QZQ'E’J(q'EOsinQOO + B cosd )} + IYdr{92[¢'E’J(q'Eosin29°

Q' 0828 + B, cosd ) + ¢'F’J(— Q'poc0820 + q'sinZ6  + Bosineo)]}

Izdr{ﬂz[- ¢'E’Jq'F0cos260 + ¢'F’J(- Q'po81n28  + q'p c08c8

Bosineo)]}]¢eeT$ + 3 - K1L2¢6PR(°FPR,J + [th&nﬁl/(P-e)]¢ET’J)9
[‘R-emdr{ﬂz[- ¢E,Jb270 + ¢F’J(a2y° +r+e+ 2b230) - vl’Jbzl}

der{- Q24! sineo} + IYdr{92(¢', sing - ¢' coseo)}

E,J E,J F,J
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+ Izdr{m’;,.dcoseo} 8 ‘ + 3 Kletméa(Qm.J + [theml/(R-E)]Qm'J) 8

R-e
3 [{ mdr{0*[- ‘e J(b B -e) - ’F,J‘ 8 ]}] % +% Kletmal(’FPR,.‘l
[L tana /(R e)]om.d)vi 31-1 “®mdr(- “2"»80"2 i,J}

+ Idria einzﬁ o' Jo'E 1} + Lar{a 2[¢ E,) (- ¢'E 1ein 0+ lwp 481026 )

+

+ F’J(so g,481028; - ¢'p jcos 20 )1} + Iar{a?[- 3 'g g, 121020,
* o', (= 5"3 48in26  + "F,1°°’2°o)]}]qT.1z +g 1(¢FPR’J
[L,tana /(R-e)]og, , EE; (oppg, g * [thanul/(R-e)]¢ET.1)qT‘i‘
*; “q,4 q.JqT.Jf

Tail rotor control system contribution:

+

- C (#ppp 4 * [Lzm“l/“‘*)]‘m,ﬂxz

Main rotor control system contribution:

+ [- lgcl(on,a’J + [thanal/(R-e)]¢ET’J)(l + RB/RS(~(sin6 + cosé)siny
+ (cosé - sin&)cosw))])'(A + [- %ClePR,J + [tha.ml/(R-e)hET’J)(l

+ q'.‘3/RS

+ [thanal/(R-e)]oET,J)(cosdsinw + sindcosw)]iL

((siné - cosé)siny - (coss + s:lnéS)cosq;))])’f.F + [- C1(¢FPR,J

+ The coefficlents of x xF and X.L which are identical to those of xA
XF, and XL respectively, with Cl replaced by Kl'

=0 (AT9)
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Tail Rotor Control System Equations

NE
+£ [Cle’ePROT -~ C;Lotané3B - CyLotana)y - &(CI(OFPRA

n=1
+ [L,tana)/(R-)loy )4y ) + C1 Ko} + CoXp - Cafg

——‘—.’,———. ve

N
+Z {KleoePReT - K)Lotané38 - KjLotana)y
n

- i_l(xx(’ﬂ?a,i

+

[thm““/m'e)]’m,i)%,i) + K)X2}+ K2Xp = KaX3 = 0
(A80)

M3Xj + (C; + C3 + C31)X3 = CoXp - C3;Xa; - CakXy + (Kz + K3 + K3;)X3

- K2X; = K31X3; - K3Xy= 0

(A81)

MyXy + (C3 + Cy + Cyy)Xy - C3k3 = CyrXuy- CuXs + (K3 + Ky + Kyy) Xy

- K3X3 - K31X31 = KyX5 = 0 i

(A82)
MsXs + (Cy + Cs + Cs1)Xs - CuXy - Cs1Xs) I
i
+ (Ky + Kg + K -KX-K -KX=0 '
(Ky + K5 + K51)Xs- K X, s~ % %" :
(A83)
When the servo is included, the damper Cs5 is not used.
3 M31X3) + C31X31- C31X3 + K31X31~ K31X3 = 0 (ABl)
?' - . .
; My1Xyy + CypXyp= CyrXy + KyyXy)= KyiXy = 0 (A85)
Ms1Xs) + Cs1Xs) - Cs51Xs + Kg1Xs3~ Ks)Xs = 0 (A86)

The computer program of the analysis allows the user to
include or omit any of the above tall rotor control system
degrees of freedom as desired.
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Main Rotor Control System Equetions
[k(llng(xn + 1) + )X, + wl/,%ub - Lp,) + MK + [1/2,%(- 1))
M P | Ry

+ cos8]siuy + [siné - coaG]cosw))ernéT - %Cleta.nG:‘(l - RB/RS([ainG
+ cosé]siny + [siné - cosé]cosy))8- kcleta.nal(l - RB/RS([si.m'S + cosé]Jsiny

NE
+ [siné - cosélcosy))y - Y (;icquPB g * [thanal/(R-e)hET 1)(1
i=1 : ’

= RB/RS([:;imS + cosé]siny + [siné - cosd]cosw))d,r’i) + (ECI(RB/RS)Z[-(sinG

+ cosl8)sing - \s1ind - cos)cosy ~ Xcos28s8in2y - dsin26cos2y + k]HnCl))'(A}

+C.X, + i{(‘w (RB/ )2[- 2cosésiny - 2sinbcosy + 81n268in2y - cos26cos2y]
A"A = 1 Rs

+ kCl))'(F} + ﬁ {HCI(RB/RS)Z[cosssinw + sinbcosy + X(cos28 - sin26)sin2y
n=1l

- (8iné + cosé)cosésin?y - (siné - cosG)sinGcoszw]).(L}

+ Displacement coefficients which are identical to the velocity coeffici-

ents, with C1 and CA replaced by K1 and KA respectively.

" woa 7 ° (A8T)
[;‘(l/ng(IL = Ipa) * ”s)]iA * [;“(l/ag(lm +1)+ MS)]'{CF + [l/enr%(' IL)J;(L
NA .
l —
+ [ El( /QRS(' ¢9x,1IFA = OGY,iIL) + ;wz’iMs)qi] + nz=l{;§clL2(l

- RB/ ([coss - siné]siny + [sins + cosé]cosw))%PRé,I - kCleta.nsa(l

R

= R13/Rs(|:coeus - singJsiny + [sing + cosé]cosy))d - lgcletanal(l

NE
- RB/Rs([cos<S - siné]siny + [sind + cosé]cosw))'y - El(%clhm,mi
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[thlnul/(R-G)JOET.i)(‘ - RB/RB([couS - 8iné]siny + [siné +

coaG]cont))&T  t (kcl(RB/ )2[- 2cosésiny - 2sinécosy + sin28sin2y

Rs
N
cos28cos2y] + kC )X} + Y {(MC (®B/_ )2[(81ns - cos8)siny - (coss
1A n=1 i RB

sind)cosy + Xcos28sin2y + sin28cos2y + %] + kcl)ip} + cFiF

)2[cosésiny + sindcosy - %(cos26 + 81in26)sin2y - (cosé

N
nz.:l {scl(“n/,‘s

8iné)cosbsin?y - (cosb + sinG)sinGcoszw]iL}

Displacement coefficients which are identical to the velocity coeffici-
ents, with Cl and CF replaced by Kl and KF respectively.,

KeXop = O (AB8)

1 .

re(
[1/2R§(- IL)]iF

NA o
[f‘;i (g gy 41100,

N
3 {clLZRB/

u=1l

(cosésiny + BinGcosw)¢ePRéT = Cletan63RB/ (cosésiny

2 Rs
. NE
singcosy)B - CletanalaB/RS(cosésinw + sinécosyly + ;;l(- C1(¢FPR,1

[thann1/(R-e)]¢ET'i)(cosésinw + sinGcosw))éT’i + (%CI(RB/ )2(cosésiny

R

singcosy + ¥(cos2s - sin2g)sin2y - (siné + cos§)cnsésiny + (cosé

sinc)sindcoszw))iA + (gcl(RB/RS)z(cosssinw + sinfcosy - %(cos28
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+ 8in28)sin2y + (siné - cosd)cosdsin?y - (cosé + sinG)sinccoszw))iF

i (‘scl(RB/RB)z(lin%ainaw + 2cos28sin?y + 28inZ6cos?y) )X } + C X,

+ Displacement coefficients wvhich are identical to the velocity coeffici-

ents, with Cl and C

- KXo, = O

L replaced by l'.l and KI.. respectively.

(AB9)

When the servos are included, the dampers CA' CF’ and C. are not used,
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Tail Rotor Servo Egquation

(°s/"1)(*p/°s°q)(1 + xuz)io

= (ag/u,)(Ap/agC )Ku X

A
- (ag/u ) (Ap/agC ) 125 (8Fy x¥x,1 * BF) y¥y 4 *6F) 505 4
+ 8Fy oxbox,1 * SFa evfey,1)31) * (dg/u, + K)X, - KX

= (ag/u (R /ag)( ;g? (8Fy x¥x,1 * SFp yby 1 * SFy 247 4

+ 8F) oxtox,1 * ST ertey,1'%’

NA
+ (ag/u MR /ag)( }E& (SFy xtx,1 * SFy yby 4 * SFy 20, 4

+8 0 (A90)

Fy,oxtox,1 * SFypy®ey,1)9)

In this ecuation K represents KS or K“, etc., in the tail rotor control

system shown in Figure A2, depending on which elements are included in the
model employed by the user. The computer program of the analysis auto-
matically incorporates the appropriate value and also allows inclusion or
omission of the servo, as desired.
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Main Rotor Servo Equations
TVO

(ag p/vy J(Ap p/ag 4 Cq A)(1 + "A“z.)’.‘o.A

= (ag o/vy 2)(Ap p/ag \Co AVKpM, A%y

NA
- lag \/u) 2N (Ap /ag ,Cop)( Erl(srA.x.A’x.i * BF) ya',1

+ 8F

+ BP A0r,a%y,10%)

+8 A,0x,A%X,1

Faz.a%2,1

+ (ag \/uy  *+ K%

- KX,

NA

= c“s.A/"x.A’(Ra,A/"s.A)(iE (8Fy y.atx,1 * SFa yaty,s * 8

Fa,2.A,%2,1

+ SF

A,0x,A%x,1 * 8

Fp,0v,a%y,1)%)

NA
*+ lag o /up 2Ry p/ag )N 12:1 (SFy x.a%%,1 * SFy y aby,s * SFy 2 2% .4

+5 (A91)

Fy,ox,a%ox,1 * SFyor,atey,1)9y) = O

The equations for the forward and lateral servos are identical to the
above, with the subscript A replaced by F and L respectively.

The computer program of the analysis allows the user to omit or include
any or all of the servos, as desired.
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Aeroq[pnmic Forces

At this juncture, wve have developed the differential equations that
govern the free vibration of the dynamic system. These were developed
using Lagrangian procedures and Lagrange's equations in the form of Equation
Al. Ve now wish to add the influence of aerodynamic forces on the system
such that Langrange's nquations become

d,9T T v 9
a3y, “aq, taq, * 32 Y (hs2)
J J J J
vhere the QJ are the generalized aerodynamic forces,

Since we are interested in the stability of the system and not partic-
ularly in forced response phenomena, the Q4 will be those forces that arise
from motions of the dynamic system. That is, Equation A92 will define a
set of homogeneous differential equations in the generalized coordinates,
qy . This being a linear analysis, the QJ can be obtained by the method
04 small perturbations.

Although the analysis is linear, it is worth pointing out that the
coordinate perturbations are performed about certain steady initial values
of the generalized coordinates that do not necessarily correspond to regions
of linear lift coefficient, drag coefficient, etc. Rather, it is assumed
that the perturbations are small enough for the behavior of the system to
be considered linear at that instunt. This allows us to include stall and
compressibility effects even though the generalized aerodynamic forces
developed represent quasi-steady effects., In a later section, we shall
further refine the aerodynamics by adding circulatory ?ng noncircula%osy
unsteady effects of the types postulated by Theodorsen 1) and Loewy. 2

(1) Theodorsen, T., General Theory of Aerodynamic Instability and the
Mechanism of Flutter, NACA Report 496, National Advisory Committee
for Aeronautics, Langley Aeronautical Laboratory, Langley Field,
Virginie.

(2) Loewy, R. G., "A Two-Dimensional Approximation to the Unsteady Aero-
dynamics of Rotary Wings," Journal of the Aeronautical Sciences, Vol,
24, February, 1957.
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Blade Elemental Aerodynamic Forces

The elemental aerodynamic lift, drag, ani pitching moment on any
element 1 of any blade n are given by

2
dl'n.i ;”cn 1Un.icL,n i‘rn i (A93)
L ;’wn 1”:21 1°D,n.1°rn,1 (A9L)
2 2
e P L AL VL YL (A95)

Here, dM, ; is the aserodynamic pitching moment at the airfoil aero-
dynemic center, and dL, ; and dD, i act in the directions shown in Figure
A5. The 1if: and drag Porces can be resolved into the X Z axis
system to give elemental T and H forces defined by

dTn,i = dLn,icos’n,i - d.Dn’iainon’i (A96)

dnn,i - dLn,iun’n,i + an,icown,i (A97)

vhere the local inflow angle is defined

/Up o q) (A98)

P,n,i ,n,1

Thus, to evaluate dT 1. {» and dM, 4, ve must knov the values
U E and ¢
°f Un,iv UPni’ T,n,i* “L,n, i' Jn,i’ CM,n,i°

CL L,n,i» £,iv and Cy p 4 depend on the local angle of attack, and
this is'seen frbm Figure A5 $o'be given by

unii v apongi - en,i - ’n,i (A99)
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Forces and Velocities at a Local Blade Element.

Figure AS.
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Also from Figure A5, it is apparent that

Up,g ® (Ulz’.n.i * U'i‘,n,i)k (A100)

Up,n,1 and Up n.isbeing the local relative velocities in the Xo Yoo 2

axis system, are obtained as follows: S

Neglecting, for the moment, the forward velocity component, it is
readily established by inspection of Figure Al and using Equation A28 to
define i that the absolute velocity of any blade element i on any blade
n is gived by

vV = T-% (A101)

n,i n,i

vhere ¥ = {0, O, - vA}

The local relative velocities at any blade element are obtained by
appropriate transformation of Vn 4+ Thus
1]

=T = ' ' T
00,10 Oyn,ee =T ,n,a? = DA A Ay ol oy e’ A’ 1T, o)

(A102)

Therefore, in the Xs 3 Ys s Z5 exis system, the local relative velocities
are

{u U

R.n.i"UP.n.i} =[Aec' Ac' T

U -U
qE,n,:l qF,n,i T,n,i’ "R,n,i P,n,i}
(A103)

T,n,i’

Inserting the steady initial displacements of the generalized coordi-~
nates and assuming zcro initial velocities of the generalized coordinates in
this expression, it can be shown that, initially,
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n,i ¥ ®n,1Yo,n ~ bn.i.so.n n,i

x'n.!.Yo,n)(Yo,n - q'm.n,i)] = V}\B¢;;,nI:Yo,xx - q'!:O.n.i]
(A104)

Upnt ® - 8l(e, + r, 41UP0,0,40,n = Veo,n,1) * (&g

- ru,:I.Yo,u)(Bo,n + q'F'O,n,:l.)] A/

(A105)

Since the angle of attack is measured at the 3/k chord, the appropriate
definitions of & , and b , in Equations Al04 and A105 are
9 ]

8,1 = 9po,n,1 ¥ (Cy,q/b - EA, 4leos (A106)

n,i = qEO,n,:I. M (cn.i/h - E:An,i.)":meon,:l. (A207)

These quantities define the position of the 3/4 chord on the deformed
blade relative to the blade feathering, or elastic,axis.

n,i 18 the local relative radial velocity and is ignored since the
effecﬁe of radial flov are not taken into account in this analysis,.

We are now in a position to calculate the blade elemental eserodynamic
forces and, therefore, the generalized aerodynamic forces.

Generalized Aerodynamic Forces

If ve apply the principle of virtual work, it can readily be established
that the system generalized aerodynamic forces are given by

NB
= Har, M1 2 (X )+ Syl
%1 El n,1 ﬁn’J{ n,g} * (W ) 5, J{Un'i})

(A108)
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(A109)

for 9, 3 in the fixed aystem.
L]

{arn’i} is obtained by rotating the blade elemental T and H forces such
that they act in the iirections of the absolute displacements. Thus,

{drn.i} * [AEOY Aa.eﬂ*:nABvnAY|n]{dHnoi'O'dTnoi}
(A110)

{dM, +) 18 obtained by transforming the local blade elemental pitching
moment véctor to the absolute axis system. Thus,

{d“n,i} - [Aa'BYA'd‘BXAw.nAB.nAY .n]{o'mn-im (A111)

{'e'n,i} is the rotational displaceat vector in the absolute axis system

on vhich {dMn i} acts, It is given by
]

©5} = [& Mgyl A ohy 2300 - 0 4500 (A112)

If ve nov perturb the generalized forces given by Equations Al06 and
Al07 such that, in general,

q, = (q), + 4 (A1)

J J

where the (Qj)o are the values of the generalized forces at the steady
initial values of the generalized coordinates, and the §Q, are increments
of the generalized forces resulting from small perturbations of the gener-
a8'ized coordinates, it can be shown that if we make a first-order Taylor
expansion Of the §Q, about the steady values (QJ)O, then the perturbation
forces are given by the following general expression:

160



T TR S Py TR

sl - s o e

Q = (T (tq_t)ocq't

394 aT Q4 aH 3Qy aM auT
* (?'FLWT" H 3y, Silau ) ((9%0 + ('I;') 64,)

Q4 ar 4y K 3QJ M UP
* G 3, "W 3, WM 9y )o((aqt ot * 5T qt)osqt)
Q 9Q) 3 , 39 aM
* (ﬁi'é'»? ?ﬁl 3 3—)4‘15—) (( q_t)o  * ( )an‘t)) ;

(A11k)

where the summation is performed over the number of generalized coordinates,. ;

The subscript o in this expression implies that the quantities are to
be evaluated at the steady initial values of the generalized coordinates,
It will be remembered that a summation over all blades is implicit when
the generalized coordinates are in the fixed system.

Equations A108 and A109 give the values of the generalized_aerodynamic
forces, and they both contain the absolute displacement vector Xn j. When

as defined by Equation A28 was developed, we were at that time
coficerned with the displacement of the center of gravity of the blade
element 1. Hovever, we are now concerned with aerodynamic forces; and if
we consider these forces to act at the element aerodynamic center, then it
is the displacement of this point that must be defined, This is easily
accomplished by substituting Acn,i for CGn,i in the expression for xn,i'

It now only remains to define the derivatives given in Equation Alll
to establish the values of the generalized aerodynamic forces QJ required
in AT2,.

The following list of aerodynamic forces and derivatives is presented
without subscripts to preserve clarity. This also applies to the generalized
force expressions, which are presented .n integral form. Nevertheless, it
should be remembered that in these force expressions, all generalized
~cy-dinates and physical properties associated with the 1otor system have
a subscript n, the blade number.
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igl\ {9gy 4 (Upcosy - Uply, = a'gyleine)

%ox,1(Uplv, - a'goleosv + Upsink) g

{a(a8, + bq'p,)}egly

(a(b + r8,) + Uply, - a'5))8

{Rely, - a'gy) + UgB }y

1g§ (afe'y (- a - ey, + (r+ela'py) - ¢ 1a'p = 95 416
ryd - Uple'p (8, + a'po) *+ ¢'p 4 (vg — 'go)Ilag

igi {9y 1[0y, - a'gylsiny - (b + rB Jcosy] + ¢gx,1[P(vg - a'ggleosy
(b + r8 )siny] + ¢y ([(v, - a'py)eind - cosv] + ¢y ,[-(v,
Q' g )cosy - siny]}q,

{b}égb,

by, - q'Eo)}é

{r+ aq'Eo}§
NE . L]
3__:1 {rj2'go * 9g,1797,1
(A127)
aup 5 olp
2 o
§A

i§l{¢;’y’i(- U‘./f + q'Fo)sinW) - ¢9X,1(UP(BO + q'Fo)COSW)}qi
{m(8, + q'pyleglen

{a(a - rYo) + UP(Bo + q'FO)}B
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da an

= 3q *ag = (118 (A129)

Equations Al15 through Al129 and used in the computation of the

generalized aerodynamic forces. These forces comprise the right-hand
side of Equation A92 and have the following forms:

Q-
)

N NA
’;éa-e [ 21 { 121 {0gy,1[%y,y((- DB, + 8 a'g + 1 + e)aH
n= =

+8 (8 +a'po)an)] + oy L5y dT] - ¢y ,[egy ;aT]}y

+ {9gy J[(- 8 sioy - aI(Yo - qQ'py)eosy)dl - (b sink - (a,q'p,

- b v, )eosy)ar] + 4o, ,[(a cosy - a (v, - a'gylsinv)dil + (b cosy
+ (a.lq'Fo - blyo)ainw)dT]}¢eeT

+ {Qex’J[((bIBO -r - alq'Eo)sinw + e(y° - q'Eo)COSO)dH
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Upo)'p g * 8,8y + U'pg)d'p ; + D2’y (Jaind + (op 47,
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Q'go) *+ A'pd'g, 1 c0sv)aT] - oy J[(- ¢'p jcosv + ¢ 4 (v,
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47,30 = B#'p g + ¢'p 4(B, + a'gg)dThlay 4 + [legy s(av, +r e

. 165

—uhad |

O st}



B i i o D T  * IPRIT VL TR R L] L = | VR <t O -M

*D2') = bgy 48, - 7))
- by 48 * a'pollcoet + (9gy (8, = rv ) + 4oy j(a)y +r+e
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‘x. J)sinw][hlw,r + h,6U, + hada]}]dr ‘

(A130)
*g’” -adn-bd'r)oe,r
1?:(('%1 Einox)d“'(’Ei*’Einox

+ al(tlcu,r + 1-.2<5uP + "36")’9

bl(hlﬁuT + h26UP + haca)oe

-
(m 8U, + m 8U, + m36a)¢eJdr$ (M31)

Q ,%gR-e[(_ ‘1(70 = cl'Eo)‘m - (blyo - '1q'F0)dT)¢90T

(_b aH - (a - Ty, )aT)y

+ 1§1 ((- ¢, (v, = 2'g) - ¢ g1, 8 - (85 1Y, = 9 4a'pg

T 9'F.1(b1 - rq'FO))dT)q'T.i

+ + + U U,+t U, + ¢t
(alyo r+baq Fo)(tl“T ,50p 360)

= (b (v, = a'gg)) (b 8Up + b SU, + ha“‘)]drf (A132)
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Unsteady Aerodynamics
Circulatory Components

The importance of the effect of unsteady aerodynamics on rotor atal(i}ity
has been demonstrated by a number of investigators. Anderson and Watts!3
glve a good account of some of the work that has been done, Their discussions
generally relate to flutter phenomena experienced by unstelled blades in
hover conditions. Under such conditions, the unsteady aerodynamic theories
postulated by Theodorsen and Loewy can be used, These theories differ only
in that, ifr Theodorsen functions are employed, the effects of wakes from
previous blades either are ignored ur are negligible, whereas the use of
Loewy functions permits the effects of preceding blades to be taken into
account. Theodorsen analysis, therefore, necessarily constitutes a single
blade analysis, while Loewy analysis ylields a multiblade solution.

Both approaches define circulatory unsteady effects and are readily
accommodated by employing the unsteady aerodynamic lift deficiency function
C'=F' + 1G' defined by

51(2)(1;) + 27 (k)W
(A135)

c' =
HITZ)(:;) + :I.Ho(z)(k) + 2[J1(k) + 47 (1) W

This expression defines the Loewy 1lift deficiency function., When
W= 0, Theodorsen 1ift deficiency functions are defined.

In Equation Al135, the modifier W, which is used only when multiblade
or preceding vlade wake effects are considered, is given by

N-1 Nen
e zl [ekhNei2m] RUR
L e o (A136)
e e -1

we
where k= 2U is a reduced frequency parameter, w is the flutter frequency,
¢ is the chord, and U is the total inflow velocity.m=%/qis the ratio of
the flutter frequency and the rotor speed. h=hnUp/cf  1s the nondimensional
vertical wake spacing. ¢n is the interblade phase which depends on the
type of mode being analyzed,

(3) Anderson, W. D., and Watts, G. A., Rotor Blade Wake Flutter, Lockheed
Report LR 26213, December, 1973.
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For collective modes, ‘n =0
For reactionless modes, ’n = wn
For advancing modes, (A (=n/2)n
For regressing modes, ¢ = (v/2)n

Here, n= 1,2, ... (N = 1)

Using all of the foregoing,C' can be defined at every blade radial
station.

In this analysis, it is assured that the rotor is in some steady-state
condition when the perturbations of the generalized coordinates are made.
Therefore, circulatory unsteady aerodynamic effects are incorporated as
follows:

We have previously derived 2xpressions for all of the generalized
aerodynamic forces resulting from the perturbations of the generalized
coordinates, Equations A130 through Al34. Clearly, these will exist whether
or not unsteady effects are present. Therefore, any unsteady effects must
be added to these,

Hence, the unsteady aerodynamics are assumed to affect only the
derivatives of the lift curve slope with respect to angle of attack and
Mach number, and those aerodynamic derivatives associated with the T and
H forces, Equations Al118 through Al123. They are assumed to have no effect
on steady lift, drag, or pitching moment, or pitching moment derivatives,
Equations Al115 through AllT and Al24 through Al126. Therefore, the circula-
tory unsteady components of the generalized aerodynamic forces are obtained
by first setting Equations All5 through AllT and Al2k through Al126 to zero,
setting Cr, Cp,» Cp,a» 2nd Cp M to zero, and multiplying Equations Al11l8
through A123 by C'. The quantities given by Equations Al15 through Al126
are then substituted for their equivalents in the generalized aerodynamic
force expressions, Equations A130 through Al3lk.

Noncirculatory Components

In addition to the circulatory effects just discussed, noncirculatory
forces and moments exist that do not depend on wake effects. These are
produced by air mass accelerations and can be shown to be given by expres-
sions of the form

Lye = PU2bn[AE B+ (a k2 + 1k)a ] (A137)
Mo = pUzbiﬂ[i% ah;'o + ((a.f1 + -381-)1(2 - (% - e.h)ik)aoJ (A138)
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vhere h, corresponds to & blade plunging cuvordinate, defined positive down,
and oo is a blade pitching coordinate, defined positive nose up. Lyc and
Mycare defined positive up and nose up and act at the quarter chord and
elastic axis respectively. The quantity apdby, = ‘h°/2 = FA, hy is measured
at the semi-chord,

These equations have the form

9 oL
an--%ogﬁo'b—é:i-:;—oao (Al39)

. M . | M 3a

Mo aﬁohO 30 26, % (AL40)

We can now make analogies between the coordinates bo and ap and the
equivalent quantities in the present analysis. h, 1s the equivalent of a
change in inflow velocity and a, is a blade pitch coordinate. Therefore,
we can write

dLnc 3Lyc

'a-ﬂo—ho = - 3—U; 6UP (A1k41)
Ja a

3a,% " "% ° Yk

In addition, from equations A96 and A9T we can write

8T = §Lcos¢ (A1LL)

8H = SLsing (ALk4S)

vhere ¢ is given by Equation A98.
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Substituting Equations Al39 in Equations AlLk and Al1L5, and using the
equivalencies A1kl through AlL3, the following noncirculatory unsteady T
and H force derivatives can be defined.

oTN
3Tnc C 2
t; i e A pUUp E-n(ahk + ik) (A1bLT)
B = NG, _ou o (ALLS)
2 aUp Up 2
h' = 3_1{& = oUU c n( k2 + ik) (A1L49)
3 2a PU 7 M8y

Using Equations Al1L42 and Al143, the noncirculatory unsteady moment
derivatives can be shown to be given by

oM 2

mj = iﬁgg = -ipU %- ahnk (A150)
9 2

m} = :gc = puﬁ‘f- [(eZ + %-)k2 C 1(% - & )k]r (A151)

The noncirculatory components of the generalized aerodynamic forces
are obtained by setting Equations All5 through Al126 to zero and substituting
the quantities defined by Equations AlL6 through Al51 for their equivalents
in the generalized aerodynamic force expressions, Equations Al130 through
A134,

Total Aerodynamic Effect

The total generalized aerodynamic forces are obtained by adding the
quasi-steady, the circulatory unsteady, and the noncirculatory unsteady
components,
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All of the above derivations have been discussed in general terms.
However, it should be remembered that the aerodynamic derivatives and 1ift
deficiency functions depend on the local environment and geometry of the
particular blade elemeit under consideration., Therefore, these quantities
and the parameters on which they depend are functions of the blade radius,

Flutter Solutions

Clearly, the values of the unsteady quantities depend, among other
things, on the value of w, the flutter frequency. This is normally an
assumed quantity. If, for example, we are employing Theodorsen functions,
wve would assume a flutter frequency w and solve the set of equations, If
one of the roots in our solution corresponds identically with w, we have
a valid solution. If not, ve would try more values of w and iterate on a
solution. When Loewy functions are employed, only one additional complica-
tion is added; that is, in addition to specifying the flutter frequency, we
must also specify the mode of flutter, namely, reactionless, collective,
ete,

Having specified the mode of flutter, we proceed as described for
cases employing Theodorsen functions. This should be repeated for all modes
of flutter.

Coordinate Transformation

Hingeless or Articulated Rotors

The dynamic system equations and generalized aerodynamic force expres-
sions that we have derived are expressed in terms of the syalem generalized
coordinates. The coefficients are seen to contain time-depend:znt quantities.
These could be solved directly and the transient response of the system
determined. However, transient responses, although useful from the view-
point of forced response phenomena, are less satisfactory for ietervmining
vwhether or not a system is stable., This ambiguity derives fror the fact
that transient responses contain contributions from all of the sys:em modes,
and spectral analysis may be required to separate individual modai convri-
butions, This is a costly and time-consuming vrocedure, Experience has
shown that there are, in the majority of cases, only a few modes that are
cause for concern, that is, in regard to stability. Generally, these are
the fundamental modes. The higher order modes are normally important more
in relation to forced response. Consequently, in order to obtain eigen-
solutions of the system of equations we have developed, other than using
Floquet type theory, it is necessary that ve remove the time dependence of
the coefficients. This is achieved by assuming a form of response of the
rotating system coordinates and making the required coordinate transforma-
tions,

In this analysis, it was assumed that each rotating system generalized
coordinate q could be expressed in the form
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qs= l/,,qo + l/NqD(-l)“ + ‘?/uq.-inwn + 2/chcoswn (A152)

Thus, each individual blade mode is replaced by four rotor modes.

defines collective motion, qp defines differential collective or reac-
tionless motion, and q; and q, combine to define cyclic motion. The reac-
tionless motion as defined here can only occur in rotors with an even
number of blades. The rotor warping motions involving terms in 2y, 3y,
etc., vere neglected.

To express the differential equations of the rotating system degrees
of freedom in terms of the rotor modes, the transformation, Equation Al52,
and its first and second time derivatives, Equations A150 and Al51, are
substituted directly in Equations AT6 through AT9 and in the generalized
aerodynamic force expressions, Equations Al31 through Al3Lk. The required
time derivatives are

= Mgy * Ygap(-1) + Z/y(q, - fa sty + 2/ (a, + g )cosy
(A153)

o 1 1 n,_ 2, (. . 2 2, (= -
Q="/4 + /4p(-1)" + °/p(dy - 2Aq, - A% )einy  + “/ (g, + 20,
2
-0 ~:1c)coawn (A154)
In making these substitutions, it is found that the equations still
contain time dependent coefficients. This time dependence involves terms
in siny, cosy, sin2y, cos2y, sin?y, and cos?y, which can be removed for

rotors that have polar symmetry, i.e.,rotors with any number of equally
spaced blades greater than two, by employing the following identities:

N N N
Ya=q, 2i=d4, ZXZi=g

X n ° n * Nu n .
zal-1)" = qp, gq(-l) = qp,  2d(-1)" = g

N N
%qsinwn =q,, QJacosy =q,

istar, = § - o,
N
zqcoswn = qc + Qqs
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{&piwn = §, - 20q, - A%q,

N
2 deosy, = 4, + 20q, - f%q,
N N
Zlin&n = Z cosy =0

N

N

Zlinﬂon = Zc0l2wn =0

N N N
Zlinzwn = ) coe:zwn =y, W2

The method of obtaining these will be illustrated by example, If
equation A152 is summed from n=1 to N, and it is recognized that because

of the polar symmetry ) (-1)" = 3 siny = ) cosy = 0, it can be
seen that ) q = 1/N S 9y q,. Similarly, if Equation Al52 is
multiplied by sin#n followved Ly summation from n=1 to N, then again recog-
nizing that because of the polar symmetry z sinvpn = z (-l)nainwn =

z ainvncoswn = 0, it can be seen that z qs:l.nwn = 2/Nq3 z sinzwn.
It can be shovn that Y sinZy =/, for N>2, vhich leads to the result

Z qsian =q,. Continuing in this manner using Equations A1k49, Al150,
and Al51, the remaining terms are readily established,

It is clear from the ahove that, provided the polar symmetry require-
ment is satisfied, the time dependence of the coefficients can be removed.
This is accomplished in the following manner. Suppose we are dealing with
the blade rigid-body flapping equations given by Equations ATT7 and Al32.

By making appropriate substitutions from Equations Al152, Al153, and AlS54 in
Equations ATT and A132, the flapping equations will be expressed in terms

of the rotor modes described earlier. However, the coefficients will
contain time-dependent terms. This is removed in exactly the same manner

as described above. By summing the equations that are expressed in terms

of rotor modes fromn=1 to N,the equation of motion of the collective flapping
(ecol) is defined. By multiplying the equations by (-1)R, then summing
from n=1 to N, the reactionless flapping (Bp) equation is defined., Multi-
Plying the equations by sinyp, then summing from n=1 to N defines the cyclic
flapping (85) equation;while multiplying by cosyp, then summing from n=1

to N defines the cyclic flapping (8c) equation. This procedure is repeated
for all rotating system equations of motion.

The fixed system and control system equations are expressed in terms
of the rotor modes by substituting from Equations A152, A153, end AlSL in
Equations A75, A80, A8T, A88, and A89, and in the generalized uerodynamic
force expression A130., In this case, the coefficient time dependence is
removed by simply summing each equation from n=l to N and applying the above
identities as appropriate,.
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Because of the length of the equations involved, no attempt was made
to rewrite them in their transformed form. Instead, the transformations
vere performed in the computer program of the analysis.

Gimbaled Rotors

All of the foregoing can be applied only to rotors that are not gimbaled.
However, the gimbaled rotor is readily accommodated since the equations are
expressed in terms of rotor modes. The method employed is best illustrated
by example,

Consider a four-bladed gimbaled rotor system whose blades can move
only in an out-of-plane direction. For zero spring restraint on the gimbal
the first mode of the blades will be rigid-body flapping, and since blade
motions are transmitted across the hub, the mode will be purely cyclic.
Therefore, for this mode, the coordinate transformation will be as given
by Equation A152 with q, and ¢p set to zero. The next blade mode will be
a bending mode that is the equivalent of the first bending mode of & rotating,
cantilevered beam, This mode will be purely collective, or reactionless,
and its coordinate transformation will, therefore, be as given by Equation
Al52 with 95 and Q, set to zero. The next mode will be the equivalent of
the first bending mode of a hinged, rotating beam. The mode will be purely
cyclic, and its coordinate transformation will, therefore, be as given by
Equation A152 with q, and qp set to zero. Continuing in this manner, all
of the rotor modes and their respective coordinate transformations can be
defined.

An approach similar to the above is employed in this analysis co
describe the gimbaled rotor dynamics. Since the blade modes used are fully
coupled flatwise/edgewise, mode selection is slightly different but ‘he logic
is the same, Mode selection and coordinate transformations are carried out
automatically in the computer program of the analysis whenever gimbaled
rotors are being studied. This is done in the following manner.

The blade root boundary condition in the plane of the rotor is always
assumed to be cantilevered. The gimbal is restrained with the spring kB,
which may of course be zero., Excluding torsion, five blade modes are auto-
matically used which are, by virtue of the coordinate transformations,
described in terms of rotor modes. These, together with the coordinate
transformations used, are shown below,

Out-of-Plane
Mode Root Pdry. Cond. Type Coord. Trans.
1 kg Rigid Body Flap dgs Q¢
2 Cantilevered 1lst Flatwise %, qp
3 kg let Flatwise %s 9p> 9gs e
L kg 2nd Flatwise Qg 9¢
5 Cantilevered 2nd Flatwise 9%s
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Thus, we have two modes that are purely cyclic, two modes that are
purely collective, or reactionless, and one mode that has collective, reac-
tionless, and cyclic components. It should be remembered that the reaction-
less components occur only in rotors with an even number of blades,

Solution of Equations

To compute the eigenvalues of the second-degree matrix system, it is
first necessary to reduce the problem to the standard eigenvalue form.
This is accomplished by multiplying through by the inverse of the stiffness
matrix, and forming the companion matrix. This companion matrix is then
balanced to improve the accuracy in the case vhere corresponding rows
and columns have very different norms. The balanced matrix is then reduced
to upper Hessenberg form by stabilized elementary similarity transformations,
and finally the eigenvalues are extracted using the modiffed LR method.

For a given eigenvalue, the corresponding eigenvector is found by using
the eigenvalue to combine the matrices into one NxN mat+ix, thus yielding
a redundant system of N simultaneous equations in N unknowns. This system
is solved by setting the ith component of the eigenvector to 1.0 and
solving the reduced system obtained by placing the ith column in the solution
vector position and deleting the ith row by the Gauss-Jordon method with

interchanging.
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APPENDIX B

FORWARD-FLIGHT ANALYSIS

This appendix gives details of a forward-flight analysis that approxi-

mates forward-flight effects by neglecting certain periodic terms in the
equations of motion. It will be seen in what follows that the analysis is
essentially the hover analysis developed in Appendix A, appropriately modi-
fied to account for both dynamic and aerodynamic forward-flight effects.

Important assumptions are noted below,
\

ASSUMPTIONS

l.

Aerodynamic trim loads and derivatives with respect to perturbations

in blade section total velocities and angle of attack are obtained from
any desired aerodynamic analysis (linear or nonlinear). Steady, first
and second harmonics of these quantities are retained,

The trim inflow velocity distribution is determined from any appropriate
analysis. Steady and first harmonics are retained,

The trim values of the tlade rigid-tody and elastic deflections and
slopes are determined from any appropriate analysis, Steady and first
harmonics are retained.

Trim values of steady and first harmonic pitch at each station are
retained.

Trim values of blade velocity as they affect the trim dynamic
forces acting on the blades are neglected as higher order.

Products of trim quantities are generally neglected in the aerodynamic
force terms, but they are retained in the dynamic system equations
where deemed appropriate. Products of trim quantities involving aero-
dynamic offset (which is assumed to be of the same order as the trim
deflections) are generally neglected.

All products of perturbation quantities have been dropped.

Terms involving products of a perturbational quantity and a first-order
trim quantity are retained.

The approach used implies implicit retention of some "higher order"
terms because terms involving products of aerodynamic derivatives,
first-order trim, and first-order perturbation are retained. To the
extent that the aerodynamic derivative is a function of trim quantities,
higher order terms will be present.
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DEVELOPMENT OF FORWARD-FLIGHT ANALYSIS

In Appendix A, ve developed a stability analysis for rotors in hover
or conditions of pure axial flow, The equations vere written with all peri-
odicity retained, and it was shown that by making appropriate rotating
system generalized coordinate transformations, the periodicity could be
removed, leading to a set of constant ecefficient equations in a fixed-axis
system, Making this coordinate transformation necessitated that each rotat-
ing system degree of freedom be assumed to respond in a preascribed number
and type of modes. This was done to allow computation of system eigenvalues
and eigenvectors for stability analysis.

Such an approach is not essential; we could have solved the equations
directly, obtained the system transient response characteristics, and
assessed stability from these, However, this approach is not entirely
satisfactory since the transients contain components of response from all
modes and it is not always apparent, without making runs that involve
excessive computer time, wvhether a system is stable or unstable., We could
also have employed analytical techniques that determine eigenvalues of
systems with time-dependent coefficients. Floquet theory is one such
technique., Here, again, the time to obtain solutions has to be considered,
In multi-degree-of-freedom systems Floquet solutions can be costly, and
their physical implications require a degree of expertise not required in
solutions for constant coefficient systems.

When forwvard-flight effects are added to the equations of motion of
the system, it is not possible, by a simple coordinate transformation, to
remove the resultant periodicity in the coefficients. For exact solutions,
we have to revert to either of the alternatives mentioned above., However,
approximate solutions can be obtained without recourse to these alternatives
if certain higher harmonic periodic terms are neglected,

If the same coordinate transformation that was used in the hover analysis
is also used in the forwvard-flight equations, it is found that in the fixed
system equations, a substantial amount of the periodicity disappears by
virtue of the summation over the number of blades, rotor system polar sym-
metry being implied, However, in the rotating system equations, terms in
4ll rotor harmonics higher than the first can appear. We do not, therefore,
have a system of constant coefficient equations. If it is assumed that these
higher harmonic terms can be neglected, constant coefficiert
equations result that are identical in form to the hover equations except
that they now contain terms that are functions of advance ratio, These can
then be solved using standard eigenvalue approaches,.
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Hohenemser(4) suggests that the ap?r?nch gives valid results up to
advance ratios as high as 0,5, Biggers\5) reached this same conclusion but
suggests that the approximation te used with caution wvhen higher frequency
modes are important.

Considering the conclusions reached by these researchers, and remembering
Biggers' caution, it wvas decided to apply this approximate technique to the
stability equations derived in Appendix A, The approach used is described
in wvhat follows,

By way of exampls, let us examine a single aerodynamic force component
on a fixed system coordinate q, arising from an inplane bending perturbation
Qg of the blades of a rotor in forward flight, The condition is illustrated
in ¥igure Bl. Considering only that part of the force caused by changes
in the tlade tangential velocity, it can be seen that for small perturbations,
the moment in the direction 6y is given by

N
M= 3 (T ¢ estnlar) (51)

From Figure Bl,

Uy = [a(r + e) - VFsinwcos(q'E + Yo)]- [a(r +e) - VFsinw:l = VFq'EYoainw

(B2)
NE
With q'E = Z o'E iq‘T g0 the moment becomes
i=l 1] 1]
] R-e 3§dT2 2 12
M= T (L C(Vplr + el (SrHstn®y ) (4% jap ))dr)
n=1 T i=1 (B3)

(4) Hohenemser, K. H.,"Some Applications of the Method of Multiblade
Coordinates," Journal of the American Helicopter Society, Vol. 17,

No. 3, July, 1972.

(5) Biggers, J. B., "Some Approximations to the Flapping Stability of
Helicopter Rotors," AHS/NASA-Ames Specialists Meeting on Rotorcraft

Dynamics, Feb, 13-15, 197k,
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Figure Bl. Source of Force Component Resulting From an
Inplane Blade Bending Perturbation.
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The force on the coordinate E& is then given by

GFJ = ’BY,J'SM

" N
- (g zfl(vr(’ * g%y, & (Y°(2%%§l)°1"2*qT.i)))dr)
(BL)

N An examination of Equation Bl reveals that only the terms under the

}E are time dependent. If we know the time histories of these terms for

each blade, we could compute the force component §F,. However, this is not
our immediate objective, We are, rather, more concerned with expressing
Equation BlW in an analytical form suitable for inclusion in an eigenanalysis.

If the transients of Yo and (2%%51- vere avallable, ve could represent these

as Fourier series in harmonics of y. In addition, itr the response of the
generalized coordinate qr j has known analytical form, it is apparent that
§Fy can be expressed analytically.

In Appendix A, we made a coordinate transformation that expressed
U 4 in the form

U,y = Vytgo,i * -2 agp g ¢ */yig g8in + N
(B5)

Suppose we now assume that the Fourier series expressions for y and
(3%%%1) can be truncated such that

Yo = Yo, * Yg,Bin¥ + v, cosy (B6)
and
a(ar) .
( 2, ) = by =ty +t siny +t cosy + t g28102v + t  cos2y (BT)

At this Juncture, let us also assume that Bo’ Upg» 9gg» q'FO’ q'EO’
90, and UP are all expressible in the form of Equation B6 and that tz,
of Equation BT.

hl' hz' ha, m,, m,, B, dT, dH, and dM are all expressible in the form
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Substituting Equations B5, B6, and BT in Equation Bk gives

8P, (gR"°( %E (Volr + e)o' . ¢
J " {=1 F E,i"6Y,)

2;1[(701 + ¥y,8i00 + v cosy)

]

x (t°1 + tlssinw + tlccoaw + tlszuinzw + tlczcoszw)

(l/NqTo,i + l/u('l)nq'm,i + 2/Nq'rs.1°1“" + 2/N"'rc.i"“"")

sin2y]))dr)

]

]

(B8)

After expansion of the harmonic terms in this equation and appropriate
sumnation over the number of blades N, it can be shown that

NE
R-e ’ '
SF, = (£ Zl (Vplr + e)o'p 10y s[C a0 4 * Coimg s * Codpe g

+ terms involving products of qTo,i’ qTD,i’ qu,i’ and ch,i and
harmonics of y equal to or greater than 2]))dr) (B9)

vhere Co, Cs, and Cc are constants that are functions of Yo1? YB Y

tls’ tlc’ tlsz’ and tlc

1* Terr Yor
2

If we assume that the harmonic terms in Equation B9 can be neglected,
then performing the required integration we can write

NE
GF*’ i ;=1 (A°qT°si * ABqTS.i * Acq'Tc,i) (B10)

vhere Ao’ Ag, and A are quantities that are independent of time. This
equation expresses $he element of force GFJ in an identical form to the
force elements in the hover analysis.

It will be noticed that the removal of the harmonic terms in Equation
B9 results in the elimination of the reactionless coordinate Qpp j from
the Ty, or fixed system, equations. This was mathematically correct in
the hover analysis since, as the name implies, the mode is indeed reaction-
less. It is therefore apparent that coupling of the reactionless mode with
the fixed system modes can occur only if harmonics of y greater than the
first are retained in the analysis,.
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The total force on the coordinate q, resulting from the blade inplane
bending perturbation qp is the sum of ail of the GFJ resulting from this
perturbation. We derived above a single component caused by changes in
tangential velocity. Clearly, other components arise from changes in inflow
velocity, changes in thrust, changes in drag, etc. Also, additional
components of force result from blade out-of-plane bending perturbations,
and yet others arise from blade inplane and out-of-plane bending velocity
perturbations, In any event, by following the procedure outlined above,

all of the elements of force resulting from the blade bending displacement
perturbations can be expressed in the form of Equation Bl0, while those
resulting from blade bending velocity perturbations will have exactly

fhe same form except that they will be in terms of QTo {» qgf i» and

gr j.Sumning all of the force elements resulting from ’the splacemeut
per%urbations gives the complete aerodynamic coefficients of 970 ,i» 9Ts,i»
and.ch i{in the ¢, equation, Likewise, summing all of the force elemenfa
result;ng from thg v;locity perturbation gives the _complete aerodynamic
coefficients of qTo 1 qu i and ch,i in the qJ equation,

Any coefficient of any displacement, velocity, or acceleration of any
of the system generalized coordinates in the Q; equation can be obtained
in the same way. This is so whether the coeffgcients arise from purely
dynamic considerations or aerodynamic considerations, or both,

All of the dynamic and aerodynamic force elements in each coefficient
in the q, equation for a purely axial flow condition were derived in
AppendixJA To include the forward-flight aerodynamic effects, it is only
necessary to modify the expressions for GUT and 6Up given in Appendix A
by adding the quantities given below,

GUT(de. rfit,) = [ EQI(VF(- ¢'E,1[Yo = q'Eo]sinw + ¢'E’icosw)qT’i)]

+

[VF(" BO[YO - Q'EO]COSW)B]

+

[ve(-[y, - a'golsiny + cosy)v]

+

=] 4
(B11)
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U (fwd, f1t.) =

E
[;EQ(VF((- ¢'g 1350 - #'p 10, - @'gollsiny + ¢'g jcosvley ()]

+ [Vgeosus]

+ [VF;; U posind - a'poly, - a'poleosv)y]

+ [ T (995 4Vp)3] (B12)
1=1

Although we have discussed only the construction of the fixed system
equations, the procedure outlined is equally applicable to the construction
of the rotating system equations. The only difference is that, whereas a
summation over the number of blades appears in the fixed system equations,
as seen in Equation B8, no such summation appears in the rotating system
equations, Therefore, the force components in the rotating system equa-
tions will have a form similar to that of Equation B8 with the § omitted,

Again by way of example, a typical serodynamic force element in the
rigid-body flapping, B , equation resulting from a blade out-of-plane
bending perturbation is

NE
g = (T (- op sUp(8, + ') Eag )
i=1 ’ ’

(B13)

Using the assumed forms for the time-dependent quantities as defined
earlier, this can be rewritten

NE
6Fg = (§°¢ ;;1 (- r¢'p  [(Upg + Upgstint +

+ UPCcosw)(Bol * q'Fol 4 [Bos wi q'FOBJSinw

+ [Boc * Q'pocJeos¥) (b, + ¢ siny + t, cosy

1 1 n
+ tzszsinzw + t2c2c052w)( /NqTo,i + /N(-l) Up 3

2 2
+ /Nqu’isinw + /Nch.iCOBW)]))dr) p—
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It is clear that if the harmonic terms in this are expanded, the result
can be expressed in the general form

a + bsiny + ccosy + dsin2y + ecos2y + ... (B15)

vhere the a, b, ¢, etc., are functions of the UP’ B, q'F. t, and Q. £

If in Bl15 we ignore harmonics higher than the first, then after substi- 1
tuting back into Equation Blk and performing the required integration, the
result can be written

NE
n
6FB * 1-21:. [(Aolq'ro,i * Aol('l) q‘I‘D,i * Aslq‘rs,i * Ac1q'rc,i)
n
d (Aslq'ro,i as Asl('l) q"I'D,i & A32q’1‘s,i * Acquc,i)siw

* (Agap, g * Acl(-l)nq‘I‘D,i * Agang 4 * AL, 4)cosV] (B16)

vhere the A'Ss are quantities that are independent of time. This equation
expresses the element of force 6F,; in an identical form to the force
elements in the hover analysis, e total force on the rigid-body flapping
resulting from the blade out-of-plane bending perturbation is the sum of
all of the 6Fg resulting from this perturbation. Similarly, the forces
from all other perturbations of any generalized coordinates, whether they
be displacement, velocity, or acceleration or arise from purely dynamic or
serodynamic considerations, or both, are obtained in the same manner and
can be expressed in the same form as Equation Bl6.

If each of the rotating system equations, expressed in the form of
Equation B16, is multiplied bty (-1)B and summed over the number of blades
N, the reactionless mode equations are obtajned. Summing euch equation
over the number of blades gives the collective mode equations. Multiplying
each equation by siny and cosy,respectively, and summing over the number
of blades gives the cyclic mode equations. On completing these manipu-
lations, it 1s again found that the reactionless mode is completely decoupled
due to the harmonics of ¢ above the first being discarded.

In some of the system equations, products inwvolving sinf; and cos®
are encountered. In this analysis, the blade angle 6, is not considered
to be small., Therefore, when substitutions of the form given in Equation
B6 are made for 8,, ve get
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sinb = sj.n(eo1 + e'llinw + 0c1cow)

b (B17)
cosg = coa(e01 + Ollsinw + °c1°°‘*)

These were expressed in terms of Bessel functions such that
= +

aineo Blsineol Bzcos 001
=[50 ) (0, ) + (205, (85 DI (0, )

o''81'% 0" cl

- JZ(GCI)JO(GSJ)))COBQW

2Jl(881)J1(ecl)sin2¢

2
th( 0g l)Jz( 8, l)cozs 2¢]sine°l

+

[2J1(681)Jo(6cl)sinw

LJ 1( 8y I)JZ( 8, l)s:l.nu:coa2¢.

+

2Jl(6cl)J°(eul)cosw

+ b ( 8 FuL.( Ggl)cos%oswj cos®

(B18)

coseo = Blc\:'s;ﬁol - stineo1

The Bessel series was trucated at J, due to the rapid decrease in
the magnitudes of the tunctions beyond tﬁis point at typical values of
the arguments.

It should be clear from what has preceded that literal expression
of the forward-flight equations would indeed be a monumental task. There-
fore, this task was left io the ccmputer. Special routines were developed
that perform all of the manipulations described here, the end product
alvays being the stability matrices from which the system eigenvalues and

eigenvectors are extracted.
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LIST OF SYMBOLS

" Qo * (c/h - EA)coseo

qu - ACcoee°

qu - CGcoseo
- EA/bh

Servo piston area

Distance from blade elastic axis to aerodynamic center--
positive toward leading edge

Non-time dependent coefficients arising from expansions of
products of harmonic series in forward flight analysis

Hub roll transformation matrix

Hub pitch transformation matrix

Blade azimuth trancsformation matrix

Blade flapping transformation matrix

Blade lagging transformation matrix

Blade pitch transformation matrix

Blade inplane bending slope transformation matrix
Blade out-of-plane bending slope transformation matrix
=

(o]
QFO + ( /h - EA)SirBo
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bl ® Qpg - ACsind

bh Chord /2

c Chord

c Lirt deficiency function

Cl Damping constant at pushrod

C2 AT Tail rotor control system damping constants
259

c Tail rotor control system damping constants

31,41,51

CL Lift coefficient

CD Drag coefficient

CM Pitching moment coefficient

CF Damping constant at forvard main rotor servo

CA Damping constant at aft main rotor servo

CLL Damping constant at lateral main rotor servo

Cq Servo valve flov gain

cp Servo valve pressure gain

%

C. Non-time dependent coefficients arising from expansions of

products of harmonic series in forward flight analysis

¢

CIS Servo leakage coefficient

c Slope of 1lift curve

L’u

C Slope of drag curve

Do(l

CM Slope of pitching moment curve
11 ]

CL M Partial derivative of 1lift coefficient with respect to Mach
’ number

CD Partial derivative of drag coefficient with respect to Mach
M number
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M,M

CG

daT

{E}

Partial derivative of pitching moment coefficient with respect
to Mach number

Distance from blade elusiic axis to center of gravity--positive
tovard leading edge

Elemental 1ift

Elemental drag

Elemental pitching moment
Elemental thrust
Elemental inplane force

Blade elemental 1ift and drag force vector in absolute
coordinate system

Blade elemental pitching moment vector in absolute coordinate
system

Dissipation potential
Blade offset
Blade offset vector

Distance from blade semi-chord to elastic axis--positive toward
trailing edge

Real part of lift deficiency function
Blade torsional modulus of elasticity
Imaginary part of lirt deficiency function
Hankel function of second type of order
Wake snacing parameter

Blade plunging coordinate used in definition of unsteady
aerodynamics

Partial derivative of drag with respect to local blade taugen-
tial velocity

Partial derivative of drag with respect to local blade vertical
velocity
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h Partisl derivative of drag with respect to local blade angle
3 of attack

(1] Blade flatvise, edgewise, torsional mass moment of inertia
matrix

Ia Blade torsional mass moment of inertia
Blade edgevise second moment of area

Ix Elemental blade flatwise mass moment of inertia

Elemental blade torsional mass moment of inertia

S

IZ Elemental blade chordwis: mass moment of inertia
IT Total blade torsional mass moment of inertia
I Blade mass moment of inertia about lag hinge
Y
IFA Main rotor swash plate fore/aft mass moment of inertia
IL Main rotor swash plate lateral mass moment of inertia
J Local blade polar second moment of area
J Bessel function of first kind uf order
r
K Blade torsional stiffness
KG Airframe mode generalized stiffness
KY Blade lag hinge spring rate
KB Blude flapping hinge spring rate
K Pitch beam stiffness or stiffness at main or tail rotor blade
1 pushrod
K Tail rotor control system spring rates
2535445
K Tail rotor control system spring rates
31,41,51
K'M.A Stiffnmess of tail rotor pitch actuator for pure moment applied
at pitch beam end
|QF Spring rate at forwvard main rotor servo
KA Spring rate at aft main rotor servo
KL Spring rate at lateral main rotor servo
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xc Spring rate at servo support

k Reduced frequency parameter

L Distance from blade elastic axis to pushrod--positive toward
2 leading edge

I-3 Radial location of blade pitch horn

I-'l Length of one arm of tail rotor blade pitch spider beam

L"c Noncirculatory lift

L' Length of tail rotor pitch beam arm

m Blade elemental mass and flutter frequency ratio

MG Alrframe mode generalized mass

MNC Noncirculatory pitching moment

Mq Generalized mass of blade bending modes

MA Genieralized mass of fixed system modes

M1 Mass at pushrod

M Tail rotor control system masses

2,3,‘0,5

M Tail rotor control system masses
31,41,51

Mq Main rotor swash plate mass

M Mach number

m Partial derivative of pitching moment with respect to local
1 blade tangential velocity

m Partial derivative of pitching moment with respect to local
2 blade vertical velocity

m Partial derivative of pitching moment with respect to locel
3 blade angle of attack

n Blade number

N Number of blades

NE Number of blade bending modes

NA Number of fixed system modes
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Bulk modulus of servo fluid
Fixed system mode generalized coordinate

Blade bending mode generalized coordinate--bending up and
leading positive

Steady blade flatwise deflection--up positive
Steady blade inplane deflection--lag positive
Hud pitch coordinate

Hud roll coordinate

Hudb lateral coordinate

Hub longitudinal coordinate

Hub vertical coordinate

Collective mode coordinate

Reactionless mode coordinate

Sine cyclic coordinate

Cosine cyclic coordinate

Blade bending collective, reactionless, sine cyclic, and
cosine cyclic coordinates

Blade flatwise bending slope steady, and sine and cosine
coefficient components

Generalized forces

Generalized force on J'th fixed system mode
Generalized force on blade pitch
Generalized force on blade flapping

Generalized force on blade lagging
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ey WP mm

TR srovarenstm—a caree
QqT Generalized force on j'th Llade bending mode
»J
Qv Flov through servo valve
QJ Generalized aerodynamic force
r Radius of local blade element from offse.
rl Radial location of inner snubber of crossbeam rotor
r, Radial location of outer snubber of crossbeam rotor
R Rotor radius
RS Radius to servo connections on main rotor swash plate
RB Radius to pushrod connections on main rotor swash plate
R Servo linkage ratios
1,2,3
SF Servo valve feedback factors
v,x,x,z,ex,eY
SF Servo support feedback factors
t,x,Y,z,ex,eY
T Kinetic energy
t Partial derivative of thrust with respect to local blade
1 tangential velocity
t Purtial derivative of thrust with respect to local blade
2 vertical velocity
t Partial derivative of thrust with respect to local blade angle
3 of attack
<t"ol
tls
t Steady, first, and second harmonic coefficients of the partial
lc of thrust with respect to tangentiel velocity
t152
tlc2
t.'02
[ tm
t Steady, first, and second harmonic coefficients of the partial
2¢ of thrust with respect to inflow velocity
t292
t
2¢2
U Total local blade inflow velocity
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Local blade vertical velocity

Steady and first harmonic coefficients of inflow velocity

Local blade tangential velocity

Speed of sound

Potential energy

Total volume of servo fluid under compression
Rotor axial velocity

Forvard-flight speed

Airspeed vector

Loewy unsteady aerodynamics factor--Equation Al36
Absolute displacement vector

Displacement at blade pushrod

Tail rotor control system motions

Tail rotor control system motions

Motion of main rotor swash plate =t forward servo
Motion of main rotor swash plate at aft servo
Motion of main rotor swash plate at lateral servo
Motion of output of forward main rotor servo
Motion of output of aft main rotor sgervo

Motion of output of lateral main roto. servo
Feedback motion at servo valve

Feedback motion at servo support

Motion at output of tail rotor servo

Motion at servo support
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local blade angle of attack

Blade pitch coordinate used in definition of unsteady aercdy-
nanmics

Pitch-lag coupling--lead, pitch-up positive
Servo lirkage ratio
Blade rigid-body flapping generalized coordinate--up positive

Steady blade coning--up positive

Blade flapping collective, reactionless, sine cyclic, and
cosine cyclic coordinates

Steady and first harmonic coefficients of blade flapping

Blade rigid-body leg generalized coordinate--lead positive

Steady blade lag-~lead positive

Steady and first harmonic coefficients of blade lagging

Pitch~flap coupling--flap up, pitch-down positive
Servo differential pressure

Angle between airframe longitudinal axis and main rotor fore/
aft servo axis--yaw right positive

Angle measured at center of rotation from blade feathering
axis to pushrod--positive in direction of rotation

Element of blade radius
Perturbation force
Perturbation moment

Perturbation force on flapping coordinate
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Change in inflov velocity resulting from displacement and
velocity perturbations

Change in tangential velocity resulting from displacement
and velocity perturbations

Motion of servo valve relative to housing

Fraction of critical structural damping of tlade bending
modes-~based on modal frequency

Fraction of critical structural damping of blade pitch mode--
besed on rotor speed

Fraction of critical rigid-body lag damping--based on uncoupled
lag frequency

Fraction of critical structural damping of fixed system modes--
based on modal frequency

Blade pitch generalized coordinate--leading edge down positive
Steady blade pitch angle--leading edge down positive
Blade pitch normal coordinate

Geometric blade pitch angle--leading edge up positive

Steady and first harmonic coefficients of blade pitching

Blade flatwise, torsional, and edgewise angular velocities

Absolute blade angular velocity vector

Servo parameter--Equation AGT

Servo parameter--Equation A68

= ({7 (= 9'g 42'50 * ¢"p 1" pp)r) = -1

= (§T (80 g0y * #'p g g O = -] =y
Alr mass density
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f
! Subscripts

| A

Local blade inflow angle

-
LS Ple e T

Fixed system translational mode shapes at hub

Fixed system rotational mode shapes at hud

Blade flatwise bending mode shape
Blade inplane bending mode shape

Blade torsional mode shape

Blade torsional mode shape at pushrod radial station

Blade flatwise bending mode shape at pushrod radial station

Blade inplane bending mode shape at tip radius

Weke phase angle parameter

Blade azimuthal angle

Blade asymmetric torsional frequency
Blade symmetric torsional frequency
Hudb pitch frequency

Hub yaw frequency

Blade edgewise natural frequency
Frequency of blade bending modes
Uncoupled rigid-body lag frequency
Frequency of fixed system modes
Flutter frequency

Rotor speed

Refears to aft servo
Refers to forward servo
Refers to lateral servo

Refers tc blade element or mode number
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Oy }
Oy
Superscripts

c

u

Differential

Refers to mode or force number

Refers to mode number

Refers to blade number

Refers to pushrod

Refers to hub lateral, longitudinal, and vertical directions

Refers to hub pitch and roll directions

Means coupled

Means uncoupled

Notation

Differentiation with respect to radius
Differentiation with respect to time

Second differential with respect to time

671-76
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