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of Thaodoraan and Loawy typ« lift daflclancy functions. Tha forward-flight 
aarodynaaic darlvatlvaa ara obtalnad froa any approprlata llnaar or nonllnaar 
tine hlatory analyala. Tha approximations nada In tha forward-flight analyala 
Unit auch applications to an advanca ratio of about 0,5. 

Tha raaulca of paranatric and aanaitivity studies conductnd using tha analyala 
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rotors wara used aa baselines. Studies wara conducted at advanca ratloa of 0.0, 
0.25, and 0.3. Aa night be expected, tha studies showed that tha cyclic ayatan 
■odea ara nost affactad by advanca ratio. Tha cyclic flapping «odes, for 
exaaple, ara significantly destabilised aa advanca ratio ia incraaaad. 
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Thar« nxm  few MroMohanloal ■ystow that operate in a more hostile 
aercdyneaie environment than the toiileopter rotor. In hover, the vekes 
•hed by the rotor blades can tend to pile up beneath the rotor and lead 
to unfavorable blade aeroelaatic responae. In forward flight the rotors 
are required to provide lift and propulsive force while the blades are 
being subjected to rapidly varying aerodynamic forces. The advancing 
blades can operate at high tip Nach numbers and might experience adverse 
compressibility effects, while the retreating blades experience both 
reversed flow and stall effects. Since the rotor blades are relatively 
flexible, these aerodynamic phenomena can, under certain conditions, lead 
to aeroelaatic instability. Typical of these are advancing blade static 
pitch divergence and classical flutter, while the retreating bladea can 
encounter stall flutter and drag divergence. Other phenomena that lead 
to oscillations of the tip path plane are also possible. In hover, the 
shed wakes can induce blade flutter and the tip vortices shed by the 
bladea can cause subhamonic blade oscillation and can also result in 
the blades going out of track. 

In addition to the above, other instabilities can be encountered that 
are a direct result of blade kinematic coupling. Among these are classical 
pitch-flap and pitch-lag instabilltlea, caused by adverse coupling between 
the pitching and out-of-plane and inplane motions of the blades. Also, 
the fact that the blades are relatively flexible can give rise to fre- 
quency relationships that result in a class of instability generally 
referred to as flap-lag instability. 

Many of the phenomena encountered by helicopter rotors are little 
affected by notions of the rotor hub. These can generally be claaaed as 
rotor instabilities. However, a number of unstable phenomena that have 
been experienced are a direct result of coupling between rotor motions 
and hub notions. The moat classical of these is ground resonance, or 
more aptly, mechanical instability. This can occur when the frequencies 
and damping of the modes of the helicopter on the ground bear a certain 
relationship to the rotor blade inplane frequency and damping, when this 
Inplane frequency is less than the rotor speed. This instability la 
purely mechanical, that la, it requires no aerodynamic influence. A 
similar phenomenon that does require aerodynamics occurs when the heli- 
copter is airborne. This is generally referred to aa air re.onsnace and 
normally involves the airframe rigid-body modes, bending modes, or local 
transmission modes. When a rotor is in high-speed axial flight, for 
example, a propeller rotor, an instability that causes whirling of the 
rotor hub can occur. The precise form of this instability and the nature 
of the whirling, advancing or regressing, depend on the degree of flexi- 
bility of the blades, or more exactly, the blade out-of-plane and Inplane 
frequencies. Another type of whirling instability that Involves rotor 
coning and blade flapping has recently been encountered during an NASA- 
sponsored test program at Sikorsky Aircraft. 

12 
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Rotor blade pitch control ■yttcM have a vide variety of designa and 
d^oaaic eharaeteriee. They invariably include servo actuatora and can 
significantly affect the rotor system aeroelaatic response. The blade pitch 
frequency can be substaücially reduced by coupling with the control system 
«hirn can lead to an othervise stable system's becoming unstable if the 
reduction in frequency reaults in adverae blade modal interactions. Air- 
f erne motion feedback through the servo supports or input valve can also 
affect the rotor response. 

• 

Baaed on the foregoing, it seeaa clear that if predictions relating 
to rotor stability are to be believed, then the mathematical models of the 
system being analysed should include adequate descriptions of not only the 
rotor blades and aerodynamic a, but also of control systems and hub impe- 
dances when there is any possibility that these may influence the results. 
The analysis described in this report provides this capability by incor- 
porating realistic descriptions of the dynamics of fully coupled rotor/ 
airframs/control systems. It also provides a refined description of the 
aerodynamics that includes stall, compressibility, and unsteady effects. 

The analysis can be used to study the stability of main or tail rotors 
or propellers in hover, forward flight, or pure axial flow. Since a major 
objective of the contract under which this work was completed was to 
provide the Anay with the analysis and an operational computer program, 
the method of developing the analysis, its important features, and the 
equations of motion are given in detail in Appendixes A and B. A program 
user's manual baa been provided aa a separate document. 

Also included in the report are the results of parametric and sensitivity 
studies of aemiartieulated and hingeleaa, composite bearingless type tall 
rotors using the present analysis. It should be uoted that not all of the 
options available in the analyaia were exercised during these studies. 
Specifically, blade motions were described by only three modes, no control 
system dynamics were Included, hub motions were described by only two modes, 
certain forward flight dynamic effecta were not Incorporated, and unsteady 
aerodynamics were not used. These facts should be taken into consideration 
when conclusions are drawn from the reaults of the studies. 

13 
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Two bM«lln* tall rotor» that ar« raprasantatlv« of ourrant Sikorsky 
Aircraft daslgns war« salaetad. The physical and structural characteris- 
tics of tha rotor blades and rotor hubs arc presented respectively in 
Tables 1 and 2. Both rotors wars nonarticulated in the ioplane direction. 
The tail rotor that is articulated in the out-of-plane direction will be 
referred to as tail rotor no. 1, vhlle the tail rotor having a rigid root 
boundary condition for out-of-plane notion will be referred to as tail 
rotor no. 2. It should be noted that the hinge offset for out-of-plane 
notion listed for tail rotor no. 2 in Table 1 represents an equivalent 
hinge offset, or the radial location at which the rotor blade flexibility 
can be assumed to become finite in the flatwise direction. 

Additional rotor blade characteristics are presented for both rotors 
in Figures 1 through 6. These show respectively the radial distributions 
of chord, twist, weight, flatwise and edgewise ares moments of inertia, 
and torsional inertia. The blade flatwise mass moment of inertia was 
assumed to be tero, while the edgewise mass moment of inertia was assumed 
to equal the torsional nass moment of inertia. The blades were assumed 
to be torsionally inelastic, the torsional frequency depending only on 
the control system stiffnesses and the blade torsional inertia. 

All conditions investigated assumed sea level, standard day operating 
conditions (air mass density was .002378 slug/ft3 and speed of sound was 
1116 ft/sec). 

Two coupled flatwise/edgewise blade modes were used for each rotor. 
The first mode, which was primarily flatwise for both rotors, represents 
rigid-body flapping for tail rotor no. 1 and flatwise bending for tall 
rotor no. 2. The second mode was mostly edgewise and described a bending 
mode for both rotors. 

14 
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TABIX 1. TAIL ROTOR BLAU CHARACTBHI8TICB 

Par—ttw D—crlption 

Rftdlw 
Hingt off» et for out-of- 

plane notion 
Iur4)er of blmde« 
Rotor speed 
Tip loaf factor 
Prelag angle 
Preeone angle 
AlrfOil section 
Young's modulus 
Pitch horn radial loca- 

tion 
Chordvise distance from 

elastic axis to pushrod 
positive toward leading 
edge 

Pitch bean arm length 
Critical pitch duping 
Critical blade bending 
■ode daaplng 

Blade root flapping 
boundaxy condition 

Blade root inplane 
boundary condition 

Radial location of inner 
snübber 

Radial location of outer 
snübber 

Weight at blade pushrod 
Stiffness of pitch b« 

Danplng associated with 
pitch beam arm 

Stiffness of actuator 
shaft for puts moment 
applied at pitch beam 
end 

Hunber of blade modes 
(flatvise/edgevise) 

Tail Rotor Tail Rotor 
Uhlts 

10.0 
.1»160 

5.5 
.2917» 

ft 
ft 

1» 
700.0 

.97 
3.33 
0.00 

NACA 0012 
10T 

1» 
iai» 

.97 
0.00 
0.00 

HACA 0012 . 
106 

rpm 

deg 
deg 

psi 

9.5 7.375 in 

U.5 
10.61» 
6. 

5.0 
8.91 
2. 

in 
in 
% 

.5 1.5 % 

artlc. rigid 

riged rigid 

13.5 in 

2.1 
30.0 

.75 
In 
lb 

15.200 32,600 lb/in 

0.00 0.00 lb sec/in 

75l»,000 935,000 ln-lb/rad 

2 2 

•equivalent hinge offset 
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TABU 2.    TAIL ROTOR HUB CHARACTERISTICS 

Tall Rotor Tall Rotor 
Ho. 1 Ho. 2 Units 

Huaber of nodes 2 2 
Generalized BUS of node 1 6U39 Uk.6 ln-lb-sec2 

Generell»ed msss of node 2 11739 75.1 in-lb-sec2 

Frequency of node 1 1750 2530 cpm 
Frequency of mode 2 502 2160 cpm 
Dsqping of node 1 3.»» U.O % 
Dancing of node 2 k.l k.O % 
Lateral displacement of 
mode 1 0.00 0.00 In 

Lateral displacement of 
mode 2 0.00 0.00 in 

Longitudinal displacement 
of mode 1 -37.6 -12.77 in 

Longitudinal displacement 
of mode 2 0.00 0.00 In 

Vertical displacement of 
mode 1 0.00 0.00 in 

Vertical displacement of 
mode 2 37.k 12.77 In 

Yaw displacement of mode 1 1.00 1.00 rad 
Yaw displacement of mode 2 0.00 0.00 rad 
Pitch displacement of mode 1 0.00 0.00 rad 
Pitch displacement of mode 2 1.00 1.00 rad 

16 
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A1R0KLASTIC STABILITY CHARACTKRI8TIC8 IW HOVER AHD FORWARD WJOHT 

The Mroalutic «tabillty chapacteriatlca of the two baseline teil 
rotors were dereloped for advance ratios of 0, 0.25, and 0.50.   The blade 
collectire pitch at the 75 percent radial location was varied from -30 to 
30 degrees for the hover condition, while the forward flight range was from 
-20 to 20 degrees.    The modal damping and frequency are presented in Figures 
7 through 13 for tail rotor Ho. 1 and in Figures Ik through 20 for tail 
rotor Ho. 2.    For each rotor, the stability characteristics of the following 
modes are shown as a function of blade collective pitch: 

1. blade flatwise symmetric mode 
2. blade flatwise forward whirl mode 
3. blade flatwise backward whirl mode 
k, blade edgewise syaswtric mode 
5. blade edgewise forward whirl node 
6. blade edgewise backward whirl mode 
7. blade torslonal synmetric mode 
8. blade torslonal forward whirl mode 
9. blade torslonal backward whirl mode 

10. rotor hub pitch mode 
11. rotor hub yaw mode 

It should be noted that the modal damping given for the blade whirl 
modes in this report use a blade frequency referred to a rotating-axis 
system.    Thus, the fixed-axis forward whirl blade frequency is decreased by 
the rotor speod, while the backward whirl frequency is increased by the 
rotor speed.    In most cases, when the blade flatwise and edgewise whirl 
frequencies are transferred to a rotating-axis system, they agree quite 
well with cne values for the symmetric modes. 

The hover stability response of the blade flatwise symmetric and whirl 
modes is similar for both rotors, as seen in Figures 7 (a) and lU (a). 
These show that the rotor system stability characteristics are essentially 
symmetrical about the zero blade collective pitch line.    This result is 
substantiated further by an inspection of Figures 7 (b) and Ik (b) for the 
blade edgewise modal damping.    It is also noted that the edgewise response 
of baseline tail rotor Ho. 2 is much more sensitive to changes in collective 
pitch than tail rotor Ho. 1.    Both rotors show reductions in stability at 
zero collective pitch and at high values of blade pitch.    Figures 7 (c) and 
lU (c) illustrate that the stability of the blade torslonal modes is not 
significantly affected by a large change in blade collective pitch. 

The stability characteristics of the rotor hub pitch and yaw modes in 
hover appear in Figures 7 (d) and lU (d) for tail rotors Ho. 1 and Ho. 2 
respectively.    As seen from Table 2, the first hub mode represents a rigid- 
body rotation about the airframe yaw axis which results in a longitudinal 
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displacement at the rotor head.    Similarly, the second hub mode is rigid- 
body rotation about the pitch axis which yields a rertical displacement at 
the rotor head.   The damping of the hub modes increases with collective 
pitch up to 10 degree*.    Aa blade pitch is increased further, a reduction 
in stability is evident. 

The modal frequency response with rotor blade collective pitch in hover 
is presented in Figure 8 for tail rotor No. 1 and in Figure 13 for tail 
rotor No. 2.    The two rotors exhibit similar behavior, although rotor No. 1 
shows larger variations in modal frequency with blade pitch.    It is seen 
that increasing or decreasing blade pitch from zero results in reduction in 
the flatwise and edgewise modal frequencies.    The torsional whirl mode of 
tail rotor No. 1 at first increases with blade pitch uj. to -20 degrees and 
then decreases.    The blade torsional symmetric frequency for both rotors is 
not plotted in Figures 8 and 15, being much higher thar. all others:    5.^3 
cycles/rev for rotor No. 1 and 13.85 cycles/rev for rotor No, 2.    It is 
unaffected by pitch changes since it is mostly a function of physical param- 
eters not associated with blade pitch or thrust.    The frequencies of the 
rotor hub pitch and yaw modes do not vary with blade pitch.    It is noted 
that the edgewise frequency for both rotors is above one cycle/rev; such 
rotors are classified as stiff-inplane rotors. 

The aeroelastlc stability characteristics of the two baseline tail 
rotors in forward flight are Illustrated in Figures 9 through 12 for rotor 
No. 1 and in Figures 16 through 19 for rotor No. 2.    Advance ratios of .23 
and .30 were investigated.    These advance ratios correspond to forward 
velocities of 109 and 217 knots for rotor No. 1 and 10h and 207 knots for 
rotor No. 2.    Only the modal damping of the blade flatwise cud edgewise 
nodes is presented since the blade torsional and rotor hub modal response 
is rot affected significantly by advance ratio.    To facilit»»'.e comparisn.s 
of stability trends with advance ratio, the modal damping of the blade 
flatwise symmetric mode and of the edgewise forward whirl mode lb plotted 
in Figures 13 and 20 for rotor No. 1 and 2 respectively.    These plots 
indicate generally a reduction in system stability of both modes with 
advance ratio.    This effect is greatest near blade pitches of -10 degrees. 
The region of highest stability of the blade flatwise symmetric mode is 
near a pitch angle of zero degrees.    The damping decreases as advance ratio 
increases for both tall rotors.    A similar behavior is exhibited by the 
flatwise backward and forward whirl modes. 

A comparison of the modal frequency response Illustrated in Figures 8, 
10, and 12 for rotor No. 1 and in figures 15, 17 and 19 for rotor No. 2 
reveals that the effect of advance ratio on frequency is small for all 
modes except the blade torsional whirl mode, which shows a slight decrease 
in frequency with advance ratio. 
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PARAMETOIC IWVESTIOATIOH OF STABILITIf CHARACTERISTICS 

The effects of Independent variations of several design parameters on 
the stability characteristics of the two baseline tall rotors were investi- 
gated in hover and at an advance ratio of .$0.   nie blade collective pitch 
was 8 degrees throughout the study.    The following parameters were examined: 

1. control system asymmetric stiffness, K 
3 

2. control system symmetric stiffness, K 

3. blade torslonal natural frequency, u_     u- 

k.    pitch-flap coupling, 6 

5. blade edgewise natural frequency, u^ 

6. rotor hub frequencies (pitch and yaw), atp   uiy 

T.   blade precone angle, B 

8.    pitch-lag coupling, Oj 

The results of the parametric study are presented in a nondlmenslonal 
form to enhance their general applicability.    All system frequencies are 
nondimensionallzed by the rotor speed. 

The variations In control system asymmetric stiffness are Illustrated 
In terms of an equivalent blade torslonal frequency defined by 

WT1 ■ ^A (1) 

where 

L   = cbordwlse distance from elastic axis to the pushrod, positive 
toward leading edge, in. 

2 I- = blade torslonal mass moment of inertia,  in-lb-sec 

K   = control system asymmetric stiffness, lb/In. 
3 

The control system asymmetric stiffness is defined by 

Kg = aiiKl/i2K2 + NKJLJ) (2) 

where 

K = stiffness of actuator shaft for pure moment applied at pitch 
beam end, in-lb/rad 
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K. ■ control iyttea aji—trte •tiffiMis Cor pitch, boas ant 
■tlffneM), lb/in. 

I ■ nvniber of rotor blades 
L. ■ pitch beam arm length, In. 

The rarlable In Equation 2 la the actuator shaft moment stlffnees K . The 

baseline ralues for «T,/fl «re 2.32 cycles/rev for tall rotor Ho. 1 and 5.U2 
cycles/rev for tall rotor Ho. 2. 

The parametric trends obtained for the control system symmetric stiff- 
ness are also expressed in tens of an equivalent blade torslonal frequency, 
which is defined by 

WT2 " W1« (3) 

Here the variable is the pitch beam arm stiffness K . The baseline values 

of «j./fl «re 5.H8 cycles/rev for tall rotor Ho. 1 and 13.85 cycles/rev for 

tail rotor Ho. 2. 

The blade torslonal natural frequency is derived from Equation 3 when 
s/metric mode stability characteristics are presented and from Equation 1 
Wien unsymmetric node stability characteristics are presented. Thus, a 
comparison can be made of the parametric trends developed as a function of 
the blade torslonal frequency due to independent variations in stiffness 
or inertia. 

The rotor blade pitch-flap coupling is defined below for tail rotor 
Ho. 1, which is articulated in the flatwise direction. 

TAH «3 - (L -e)/L2 (M 
where 

L, « pitch horn radial location, in. 
e   ■ blade flapping hinge offeet, in. 

For the hingeleas tail rotor Ho. 2 an effective pitch-flap coupling can be 
evaluated from 

TAH «3 - 
R/L2[*pi ♦ (♦Pl-*P2^r1-L3)/(r2-r1)] (5) 
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vher« 

R ■ blade radius, in. 
rj ■ radial location of inner anubber, in. 

r2 ■ radial location of outer snubber, in. 

♦p. ■ flatwise node shape at ^ 
♦p, ■ flatwise node shape at r2 

Variations In the blade edgewise natural frequency were made by 
changing the radial distribution of the blade edgewise area moment of 
inertia which appears in Figure 5. 

The values of the rotor hub pitch and yaw frequencies that are referred 
to as reference hub frequencies are defined in terms of the generalized 
stiffness Kg . and mass M . of the ith fixed system mode as follows: 

wi ■ /KoyVi (6) 

Variations in the fixed system reference frequencies were made by 
changing the generalized stiffness. The reference values were varied 
simultaneously by similar amounts. 

In Bummary, the variables associated with each of the eight parameters 
Investigated are: 

1. actuator shaft moment stiffness, K2 

2. pitch beam stiffness, Kj 

3. blade torslonal mass moment of inertia, I 

k, chordwlse distance from elastic axis to pushrod,!^ 

5. blade edgewise area moment of Inertia, IYY 
6. rotor hub frequencies, Up and ü)Y 

7. blade precone angle, S 

8. pitch-lag coupling, aj 

The baseline values of all parameters Investigated are listed in 
Table 3 for both tall rotors. All baseline values apply at advance ratios 
of zero and 0.50. 
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TABLE 3.    TAIL ROTOR BABEUHE PARAMETERS FOR PARAMETRIC STUDY 

Parsaeter 

Parameter Value 

Tall Rotor Tall Rotor 
KuBber fcymbol No. 1 >o. 2 Units 

1 2725 »♦990 lb/In. 

2 Kl 15200 32600 lb/In. 

3* Vfl 2.32 5.U2 cycles/rev 

3b «T2/fl 5.U8 13.85 cycles/rev 

k «3 »♦5. U0.5 deg 

5 "m* 2.06 1.1k cycles/rev 

6a Wp/Q 0.72 1.78 cycles/rev 

6b Wy/Q 2.50 2.08 cycles/rev 

7 ^o 0.0 0.0 deg 

8 01 0.0 0.0 deg 

Effect of Control System Asymmetrie Stiffness 

The effect of control system asymmetric stiffness on the aeroelastlc 
stability characteristics of the baseline tall rotors Is shown In Figures 
21 through 26 at advance ratios of zero and 0.50. 

Only the blade whirl or  unsymmetrlc  modes are presented In these 
figures, since the symmetric blade mode equations are not affected by 
changes ID the actuator shaft moment stiffness.    Control system asymetrlc 
stiffness Increases with actuator shaft moment stiffness.    This Is evident 
from Equation 2, when expressed In the following form: 

K3 - Kj/d-HKiLj/EKa) (2a) 

The blade torslonal frequency w  Is proportional to the control 

system asymmetric stiffness, as can be seen from Equation 1. 

Variations in actuator shaft moment stiffness resulted in a range of 
blade torslonal frequencies of 1.25 to 1*.37 cycles/rev for tall rotor No. 
1 and from 2.88 to 10.65 cycles/rev for tall rotor No. 2. Four values of 
stiffness were used to generate the curves. The baseline vr.lue of the 
parameter being investigated is indicated by em arrow along the abscissa 
of all plots. 
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Prom an Inspection of Figures 21 and 22, it is observed that as the 
moment stiffness of the actuator shaft increases, the hover stability of 
the blade flatwise whirl mode increases, while the modal damping associated 
with the blade torsional end edgewise whirl modes and the rotor hub pitch 
and yaw nodes decreases for both baseline tail rotors. However, it appears 
that the effect of variations in actuator shaft moment stiffness on rotor 
stability is more pronounced for lail rotor No. 1, especially for the blade 
flatwise whirl mode. This mode bt comes unstable as the blade torsional 
frequency approaches 1.23 cycles/rev. 

The trends at an advance ratio of 0.50, shown in Figures 23 and 2U, 
are basically the same as in hover except that for tail rotor Ho. 1 at the 
lower blade torsional frequencies a strong interaction seems to exist 
between the olade edgewise and torsional backward whirl modec. The edge- 
wise mode exhibits a large increase in modal damping, while the torsional 
response becomes less stable. Also, the hub yaw mode for rotor No. 1 
shows a slight increase in stability with stiffness at an advance ratio 
of 0.50, while it remained largely unaffected in the hover condition. 

The effect of control system asymmetric stiffness on hover modal 
frequency is illustrated in Figures 25 and 26 for tail rotors Ho. 1 and 
2 respectively. It is observed that the modal frequencies of the blade 
flatwise and edgewise whirl modes, as well as the hub modes, are not 
affected by large variations in control system asymmetric stiffness. As 
might be expected, the blade torsional whirl frequency for both rotors 
has nearly the same value as the equivalent torsional frequency u- , 
defined by Equation 1. 

The parametric trends of modal frequency predicted for all parameters 
investigated in this study for both baseline rotors were not affected by 
a change in advance ratio from zero to 0.50. Thus, only the frequency 
results in hover are shown. 
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Iff«ct of Control ggtg By—trie Stiffiw 

Varifttlona in the control •ystoi tyaMtrie stiffneas, othervise 
referred to as the pitcn bean era ttiffnesa, yielded the atahility eharae- 
teriatiea presented in Figures 27 through 32. The blade torsional frequency 
iit-M, defined by Equation 3, ranged from 2.7k to 15.50 cycles/rev for tail 
rotor Ho. 1 and fro« 6.90 to 39«20 cycles/rev for tail rotor Ho. 2. Four 
values of stiffness were used to generate the curves. From Equation 2, it 
can be seen that a change in control system synmetric stiffness Kj results 
in a nev value of control system asymaetrlc stiffness K3 unless the 
actuator shaft momett stiffness E2 is varied accordingly. This was done 
in order to separate the effect of the control system asymmetric stiffness 
discussed in the previous section from that of the control system symmetric 
stiffness. Thus, the modal damping and frequency for the blade whirl modes 
and the .rotor hub modes remain unchanged. 

The modal duping and frequency of the blade symmetric modes are shown 
as a function of pitch beam stiffness or equivalent blade torsional fre- 
quency, u_ , in Figures 27 through 32. An inspection of Figures 27 

through 30 reveals that the dasqping of the blade torsional mode decreases 
while the clamping of the flatwise mode Increases with torsional frequency. 
The effect on the edgewise mode Is very slight. These results apply to 
both baseline rotors at advance ratios of zero and 0.50. Figures 31 and 
32 show that the flatwise and edgewise blade symmetric frequencies remain 
constant. The blade symmetric torsional frequency Is almost the same as 
that defined by Equation 3. The effect of variations of pitch beam stiff- 
ness on the blade symmetric modes Is generally similar to the effect of 
actuator shaft moment stiffness variations on the blade whirl or unsym- 
metric modes. 
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Iff ct of Blad« Tortional latural Frtamwacy 

The effect of changes in blade torslonal moment of inertia on the 
modal during and frequency of the two baseline tail rotor* is illuetrated 
in Figures 33 through 38. All blade modes are shown in these figures 
since the blade torslonal accent of inertia,!«, appears in both Equations 

1 and 3, vhich affect respectively the blade unsymmetrlc and symmetric 
degrees of freedom. 

The blade torslonal frequency, «t-,, defined by Equation 3, is used 

to illustrate the results for the blade symmetric modes. This frequency 
ranged from 2.11 to 7.60 cycles/rev for tail rotor No. 1 and from U.9^ to 
17.60 cycles/rev for tail rotor No. 2. Six values of frequency were used 
to generate the curves. 

The modal damping and frequencies for the blade whirl modes and the 
rotor hub modes are presented as a function of the blade torslonal frequency, 
uu, , as calculated from Equation 1. This frequency ranged from 0.89 to 

3.22 cycles/rev for tall rotor No. 1 and from 2.98 to 6.90 cycles/rev for 
tail rotor No. 2. Six values of frequency were used to generate the curves. 

A comparison of the stability characteristics presented in this 
section for the blade symmetric modes can be made with the results given in 
Figures 27 through 32, which show the effect of the pitch beam arm stiffness. 
Similarly, the behavior of the blade whirl and hub modes can be compared 
with those in Figures 21 through 26, which show the effect of actuator 
shaft moment stiffness. 

The nodal damping of the blade symmetric modes in hover appears in 
Figures 33(a) and 3Ma) for tail rotors Nos. 1 and 2 respectively. It is 
noted that in the comnon frequency range, 2.7b to 7.60 cycles/rev for tall 
rotor No. 1 and 6.90 to 17.60 cycles/rev for tall rotor No. 2, the para- 
metric trends for both rotors are similar for the blade torslonal and 
edgewise modes. The flatwise mode of tall rotor No. 1 shows a slight 
decrease in stability with decreasing torslonal Inertia, Figure 33(a), 
while the same mode becomes more stable (Figure 27) as pitch beam stiff- 
ness increases. Rapid changes in stability are predicted at low torslonal 
frequencies, between 2 and 3 cycles/rev, for tail rotor No. 1 in Figure 
33(a). The blade torslonal mode shows an abrupt reduction in stability, 
while the edgewise and flatwise modes exhibit large increases in damping. 
This result may be explained by the modal interaction indicated in Figure 
37(a) for the edgewise and torslonal modes as they both approach a value 
of 2 cycles/rev. For tall rotor No. 2, the torslonal frequency is well 
removed from the edgewise and flatwise frequencies, as shown in Figure 
38(a). 
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The »tablllty chAracterlttlca of the blade tysanetrlc aodee at an 
adTanee ratio of 0.50 are llluetrated In Figures 35(a) and 36(a) for tail 
rotors los. 1 and 2 respectively.   Ihe parsastrie trends shown in these 
figures are siailar to those already discussed for the hover condition. 

The modal frequencies of the blade symnetric flatwise and edgewise 
■ode» are not affected ty changes in blade torsional inertia, as shown in 
Figures 37(a) and 38(a) for both rotors.    The blade syasstric torsional 
frequency is practically the ssae as the equivalent torsional frequency, 
u- .   These results are similar to those presented in Figures 31 and 32 

for pitch besa arm stiffness variations. 

Ihe variations In modal damping with blade torsional Inertia for the 
blade unsyssMtric modes and the rotor hub modes are presented in Figure 
33(b) for tail rotor Ho. 1 and In Figure 3Mb) for tail rotor No. 2 for 
the hover condition.    These results can be compared with those from 
Flfjures 21 and 22 In the common frequency range of 1.25 to 3.22 cycles/rev 
for tail rotor Ho. 1 and 2.98 to 6.90 cycles/rev for tall rotor Ho. 2. 
Good agreement exists in the trends shown by all blade   and hub modes for 
tall rotor Ho. 1 and by the blade edgewise and torsional modes for tall 
rotor Ho. 2.    However, tall rotor Ho. 2 i .dicates a slight decrease    in 
the stability of the blade flatwise whirl aode as the blade torsional 
moment of inertia decreases (Figure 3Mb)), while in Figure 22, the damping 
of this mode increases with actuator shaft moment stiffness.    For this 
rotor, it is also noted that the behavior of the rotor hub modes, especially 
the yaw mode, is quite different for the two parameter variations as the 
blade torsional frequency is reduced below 5 cycles/rev. 

As advance ratio is increased to 0.50, the stability trends predicted 
for the blade whirl and rotor hub modes as a function of blade torsional 
Inertia are generally the same as in the hover condition for both tail 
rotors.    These results are illustrated in Figures 35(b) and 36(b) for tall 
rotor Ho. 1 and 2 respectively.    However, some differences in behavior 
exist in the blade edgewise mode for tail rotor Ho. 1 and the blade flat- 
wise forward whirl mode for tail rotor Ho. 2.    These differences probably 
result from the coupling of the symmetric and unsymmetric blade modes which 
exists in forward flight. 

The variations in modal frequency with blade torsional freqvency for 
the blade whirl and rotor hub modes are shown in Figure 37(b) for tail 
rotor Ho. 1 and in Figure 38(b) for tail rotor No. 2 in hover.    The results 
for tall rotor Ho. 1 indicate a strong interaction between the torsional 
and edgewise whirl modes as the blade torsional frequency, <»»T1/fl , approaches 

2 cycles/rev.    A further increase in blade torsional moment of inertia, 
which lowers w    /fl, results in another interaction between the torsional 

Tl 
and flatwise whirl modes near a value of u-, /n of 1.70 cycles/rev.    It is 

noted that for tail rotor Ho. 2, no such interactions in blade whirl 
frequencies occur since the blade torsional whirl frequency is well 
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jved from all other eystem frequencies in the range of «» /n investigated. 
Both rotor« exhibit negligible changes in the hub pitch and yav nodal 
frequencies.    A cooparlson of the frequency response as a function of blade 
torsional moment of inertia, Figures 37(b) and 38(b), or actuator shaft 
moment stiffness, Figures 25 and 26, shows similar trends for both tall 
rotors.   However, the interactions between the blade whirl modes for tall 
rotor Ho. 1 are mure pronounced in Figure 37(b) than in Figure 25. 
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Figure 33.    Effect of Blade Torsional Frequency (as a Function of 
Blade Torsional Inertia) on Modal Damping for Tail 
Rotor No.  1 in Hover. 
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Kff»ct of Pitch-Flap CoMDling 

The effect of blade pitch-flap coupling on the stability characteristic! 
of the two baeeline tall rotors is Illustrated in Figures 39 through kh  for 
advance ratioa of zero and 0.50. The range in pitch-flap coupling investi- 
gated was fron -30 to 60 degrees for both tail rotors. Five values were 
used. Equation k was used to calculate the coupling for tail rotor No. 1, 
which is articulated in the flatwise direction, while an effective value 
of pitch-flap coupling was computed from Equation 5 for tail rotor Ho. 2, 
which is nonartlculated. The stability characteristics in hover are 
discussed first. 

From Figures 39 end Uo, it is noted that pitch-flap coupling stabilizes 
the blade torsional symmetric and unsymmetric modes and the blade edgewise 
whirl modes; this effect becomes more pronounced as coupling is increased 
above 30 degrees for both rotors. A strong destabill»ation of the blade 
flatwise modes is evident throughout the entire range of pitch-flap 
coupling investigated. An instability of the blade flatwise whirl mode 
of tall rotor No. 1 is predicted at a pitch-flap coupling of 60 degrees 
(Figure 39). The blade edgewise symmetric mode for tall rotor No. 1 
becomes marginally stable as pitch-flap coupling approaches 60 degrees, 
while no change in stability is shown by the same mode for tail rotor No. 2. 
From the results presented in Figure 39 and 1+0, it can be concluded that 
the stability of the blade torsional and flatwise modes is considerably 
more sensitive to variations in blade pitch-flap coupling for tail rotor 
No. 1 than for tail rotor No. 2. 

The modal daqping of the rotor hüb modes for tall rotor No. 1 is 
generally unaffected by pitch-flap coupling variations. On the other hand, 
tail rotor No. 2 exhibits a slight reduction in the damping of the rotor 
pitch mode, while the yaw mode shows a large increase in stability at the 
higher values of pitch-flap coupling. 

The parametric trend of modal damping with pitch-flap coupling at an 
advance ratio of 0.50 is illustrated in Figures hi  and k2  for tail rotors 
No. 1 and 2 respectively. A comparison of these results with the results 
presented in Figures 39 and kO  for the hover condition shows similar 
effects of pitch-flap coupling on the stability of the rotor blade and hub 
modes. The only difference in modal damping at an advance ratio of 0.50 
is shown by the blade edgewise mode for tail No. 1. The stability of this 
mode remains unchanged throughout the range of coupling examined. 

The modal frequency response with blade pitch-flap coupling is 
illustrated in Figures h3  and kk.    From these figures, it can be seen 
that the blade flatwise frequency for the symmetric and unsymmetric modes 
increases with pitch-flap coupling for both tail rotors. On the other 
hand, the presence of pitch-flap coupling, positive or negative, results 
in lower blade torsional frequencies, as indicated in Figures U3 and Uk. 
The  frequencies of the blade edgewise and rotor hub modes are little 
affected by pitch-flap coupling variations. 
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Kffect of Bl>da Bdgeiflge Hatur»! Frequency 

nie blade edgewise natural frequency vai varied by changing the radial 
distribution of the edgewise area moment of inertia. These variations 
gave a frequency range of 0.66 to 2.63 cycles/rev for tail rotor Ho. 1 and 
0.68 to 2.66 i:ycles/rev for tall rotor Ho. 2. Four values were used. 

The modal damping and frequencies obtained for the two rotors in 
hover and at advance ratio of 0.50 are presented in Figures 1*5 through $0. 

From Figures l»5(a) and U6(a), it is observed that the hover stability 
of the blade symmetric flatwise and torsional modes is little affected by 
changes in the edgewise natural frequency, nie blade symmetric edgewise 
mode exhibits a slight reduction in modal damping for edgewise frequencies 
below 1.8 cycles/rev for both rotors. However, as the edgewise frequency 
is increased further, this mode becomes considerably more stable. 

The frequency response of the blade symmetric modes for variations in 
edgewise natural frequency appears in Figures U9 and 50. The frequencies 
of the torsional and flatwise modes of both rotors remain constant through- 
out the range of edgewise frequency investigated. The frequency of the 
symnetric edgewise mode la almost equal to the edgewise blade natural 
frequency for both rotor systems. A coalescence of the blade symmetric 
flatwise and edgewise modal frequencies occurs at an edgewise natural 
frequency of 1.3 cycles/rev. 

The hover stability characteristics of the blade whirl and rotor hub 
modes are illustrated in Figures l*5(b} and U6(b) for tail rotors Ho. 1 
and 2 respectively. From these figures, it is observed that the trend of 
modal damoing with blade edgewise natural frequency is quite different 
for the two baseline rotors. Tail rotor Ho. 1 exhibits large changes in 
system stability as the edgewise natural frequency is increased above 1.6 
cycles/rev, while the stability behavior of tail rotor Ho. 2 shows signif- 
icant variations for edgewise natural frequencies below 1.6 cycles/rev. 
The backward whirl mode of the tail rotor Ho. 1 is marginally stable in 
the range of «-—/fi from 0.66 to 1.80 cycles/rev. Both the forward and 

backward whirl edgewise modes become quite staole at higher edgewise 
natural frequencies, while the torsional response shows a large decrease 
in stability. This behavior may be caused by the interaction between the 
torsional and edgewise modes shown in Figure it9(b). The blade flatwise 
whirl mode and the rotor hub pitch and yaw modes for tail rotor No. 1 are 
not significantly affected by variations in blade edgewise natural 
frequency. The stability characteristics presented in Figure lt6(b) for 
tail rotor Ho. 2 indicate that a strong coupling is present betweer the 
blade flatwise and edgewise forward whirl modes and the rotor hub pitch 
mode for edgewise natural frequencies below 1.6 cycles/rev. The stability 
of the blade flatwise forward whirl and the hub pitch modes decreases, 
whil'.* that of the blade edgewise forward whirl mode increases in this 
frequency range. From Figure 50(b), it is noted that the frequencies of 
these modes eure all near each other. The response of the blade torsional 
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■ode Is not affected by changes in the blade edgevlse natural frequency. 
This result Is not surprising, since the blade torsional whirl frequency 
is veil reaoved from all other system frequencies, as shown in Figure 50(b) 

The stability trends with blade edgewise natural frequency presented 
in Figures U7 and U6 at an advance ratio of 0.50 show behavior similar to 
that discussed for the hover condition. The only exception is the blade 
edgewise forward whirl mode for tall rotor Ho. 1, which is unstable for 
u—/Q leas than one cycle/rev. It may be added that the variations in 

stability with blade edgewise natural frequency are not as pronounced for 
the forward flight condition as for hover. 
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Ifftct of Rotor Hüb Freauanclei 

The effect of varlationfl In reference rotor hub frequency on the 
stability cherecterietici of the two baseline tail rotors is illustrated 
in Figure 51 through $6 in hover and at an advance ratio of 0.50. The 
generalised stiffness of the fixed syatem yav and pitch modes vas varied 
to give a range in reference yaw frequency of 0.625 to 20.0 cycles/rev 
for rotor Ho. 1 and 0.52 to 16.6U cycles/rev for rotor No. 2. Four values 
of stiffness vere used. In Figures 51 through 56« the reference rotor hub 
pitch frequency is also shown; it ranges from 0.16 to 5.76 cycles/rev for 
rotor lo. 1 and from 0.M»5 to Ik.2k  cycles/rev for rotor Ho. 2. The modal 
damping and frequency for the blade whirl and rotor hub modes only are 
shown in these figures since, for the modes used here, the fixed system 
motions do not affect the blade symmetric modes. 

Die stability characteristics in hover are presented in Figures 51 
and 52 for tail rotors Ho. 1 and Ho. 2 respectively. From these figures, 
it can be aeen that there is no appreciable change in the modal damping 
of the blade whirl modes at reference rotor hub frequencies above k  cycles/ 
rev. Below this frequency, however, the interaction between the fixed 
system motions and the blade flatwise and edgewise modes becomes more 
pronounced, especially for tail rotor Ho. 2. This effect may be expected 
from an inspection of the modal frequency characteristics presented in 
Figures 55 and 56. At low reference hub frequencies, the blade flatwiae 
backward whirl mode for tail rotor Ho. 2 has a sharp reduction in modal 
damping, while the blade edgewise backward whirl becomes more stable. For 
both rotors, the stability of the rotor hub pitch and yaw modes increases 
significantly at low reference hub frequencies. 

The stability characteristics at an advance ratio of 0.50 are shown in 
Figure 53 for tail rotor No. 1 and in Figure 5k  for tail rotor Ho. 2. A 
comparison of these forward flight results with the hover results shows 
no major differences in the parametric effect of reference hub frequency 
on modal damping. 

The frequency characteristics of both baseline rotors as a function 
of reference hub pitch and yaw frequencies appear in Figures 55 and 56. 
It can be aeen that reference hüb frequency has generally a negligible 
effect on the blade whirl frequencies. However, as previously discussed, 
an interaction between the hub and blade modes is present for tail rotor 
Ho. 2 at reference hub frequencies below k  cycles/rev. Linear variations 
in modal frequency for the rotor hub pitch and yaw modes with reference 
hub frequency are shown in these figures for both baseline tail rotors. 
The  calculated frequencies are slightly lower than the reference values 
due to the mass and inertia effects of the rotors. 
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Effect of Blade Precone Angle 

The effect of blade precone angle on the stability cbaracterlatlcs 
of tall rotor So. 2 is presented In Figures 37 through 59. Only tall rotor 
Ho. 2 was considered for tfils portion of the study since it is nonarticu- 
lated in the flatwise direction and can thus be preconed. A range in blade 
precone from -6 to 6 degrees was examined. Five values were used. Th* 
results from Figure 37(a) in hover show that blade precone has little effect 
on the nodal damping of the blade symmetric flatwise and edgewise modes, 
while the torsional node exhibits an Increase in stability as the blade is 
preconed. However, from Figure 38(a) at an advance ratio of 0.30, the 
blade synmetric flatwise mode indicates an increase in modal damping with 
blade precone, whils the torsional node becomes more stable than the hover 
case. 

The variations in modal damping with precone for the blade whirl and 
rotor hüb modes appear in Figures 37(b) and 38(b) for advance ratios of 
zero and 0.30 respectively. From these figures, it is observed that the 
blade torsional whirl mode is least stable for zero precone, a behavior 
similar to that of the aymmetric torsional node. An increase in precone 
reduces the stability of the blade edgewise whirl mode, while the flat- 
wise whirl mode becomes more stable; these effects are generally greater 
for the forward flight condition. The rotor hub nodes show generally small 
variations in mode dumping response with blade precone except for the 
pitch mode in hover. The danping of the pitch mode decreases from 6 to U 
percent as precone is increased from -6 to 6 degrees. 

A negligible effect of blade precone on modal frequency is exhibited 
by the results shown in Figure 39(a) for the blade symmetric modes and in 
Figure 39(b) for the blade unsymmetric and rotor hub modes. 
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Effect of Pltch-La<c OoujPling 

VarlatioDF la pitch-lag coupling over the range -0.2 to 0.2 for both 
baseline rotors in hover and at an advance ratio of 0.5 produced no dis- 
cernible change in stability.    The fact that both rotors are relatively 
sMff inplane 5.8 the cause of this effect.    However, it is known that 
pitch-lag coupling can appreciably affect the stability of soft inplane 
rotors.    Therefore,  in such cases   the parameter should be accurately 
defined and Incorporated in any analysis. 
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CONCLUDING RPiARKS 

The major objectives of this study were,  first, to develop a computer- 
ized eigenvalue analysis that had a sufficiently complete dynamic and 
aerodynamic description of coupled rotor/airframe/control systems to allow 
accurate stability estimations and, second, to demonstrate some of its 
capabilities through parametric and sensitivity studies of representative 
semi articulated and hingeless tall rotor systems.    Both of these objectives 
were achieved. 

The studies described in the foregoing were necessarily restricted to 
slnqplified systems, tut they do serve to illustrate the potential of the 
analysis.    The inclusion of forward flight effects in the analysis is a 
big step forward and considerably extends the envelope within which the 
analysis can be applied.    Although not exercised in these studies, the 
unsteady aerodynamics serve to further refine the modelling of aerodynamic 
effects, thus permitting flutter and wake interaction studies.    The models 
used for the control systems can accurately represent the dynamics of most 
existing systems, thereby reducing the number of effects not properly 
accounted for in the overall system.    The overall usefulness of the analysis 
was further extended by inclusion of the gimbaled rotor capability. 

Since a number of unstable phenomena involve coupling between rotor 
system and fixed syotem motions, it is important that the analysis have 
the facility to predict these.    This is adequately accounted for by inclu- 
sion of an airframe (or fixed system) model that can represent rigid body 
and elastic modes, including local transmission, etc., modes. 

The methods employed in the development of the analysis are given in 
the appendixes, together with the final equations of motion. 

A final comment on the computer program of the analysis:    although 
this in its entirety gives a refined description of coupled rotor/air frame/ 
control systems, it was realized that there are many instances when studies 
employing simple systems are desired.    To this end, the program is so 
designed that the user, by use of simple control cards, can specify the 
precise degree of freedom, type of control system, mode of flight, and 
type of aerodynamics that he wishes to use.    From this point, the program 
assumes executive control and automatically performs the desired functions. 
ThiB feature allows systems with as little as one degree of freedom to be 
analyzed and makes it possible for inexperienced users to run the program 
with little difficulty. 
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RECOMMENDATIONS 

The analysis described In this report represents a fairly complete 
description of a coupled rotor/alrfraae/control system. Its capacity to 
treat rotor systems In hover and forward flight has been demonstrated. 
However, the effects of unsteady aerodynamics and cyclic Inputs to the 
dynamic system equations have not been explored. In addition, the represen- 
tation of the blade pitch control system in the parametric and sensitivity 
studies did not account for multi-degree-of-freedom effects or the effects 
of the control cervos and servo feedback parameters. The representation 
of hub motions was also idealized. 

Clearly, in practice such exclusions and simplifications may be neither 
warranted nor desired. If we wish to define the overall system stability 
characteristics to the best of our ability, and within the constraints of 
the accuracy of the analysis we are employing, it behooves us to model that 
system as accurately as possible. Therefore, we must include in our studies 
all of the elements that we feel could play am important part in our predic- 
tions . 

It is, therefore, recommended that the effects of Inclusion of unsteady 
aerodynamics and cyclic inputs to the dynamic system equations be established. 
Recent studies vising a simplified Floquet analysis have, for exasqple, shown 
that the inclusion of cyclic pitch had a pronounced effect on the pitch lag 
stability of a rotor. In this case, the classical hover expressions were 
nonconservatlve. 

It is also recommended that the analysis be subjected to extensive use. 
It is only by using the analysis ana possibly even questioning certain 
aspects of the modelling that the user can become familiar enough with its 
general characteristics to effectively Incorporate improvements. Also, it 
is only through use that a complete understanding of the real meaning of 
the output can be gained. 

In its present 4.'orm, the computer program of the analysis relies on 
some unlinked transient aeroelastic analysis for production of the deriva- 
tive terms required for forward flight studies. The analysis currently 
used for this purpose is the Y-200 Normal Modes Analysis provided to the 
Arm/ under Contract DAAJ02-71-C-002U. Unfortunately, this analysis has 
some inconsistencies with the E-927 Aeroelastic Rotor Stability Analysis. 
Not the least of these are the facts that Y-200 can accept only one blade 
angle distribution and that it does not permit representation of control 
system dynamics. It is, therefore, recommended that these and any other 
inconsistencies be eliminated and that Y-200 be linked to E-927 to facilitate 
use of the program. 
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Finally, any analysis Is only as good as the confidence ve place in 
Its predictions. Obviously, such confidence can only be obtained, or 
Increased, by correlating the analysis with test data. Unfortunately, only 
Halted correlation of the present analysis has been completed. Much 
remains to be done. To close this gap, It Is suggested that consideration 
be given to the Initiation of a model test program to provide the needed 
data. Such a program could be designed to accurately model not only the 
rotor blades but also the control system and the test rig characteristics. 
By making parametric variations of the system dynamic characteristics 
and conducting hovering and foxvard flight tests, very valuable data could 
be acquired. Since the analysis is capable of accurately modelling the 
systems, very meaningful correlation could be obtained. 
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APPENDIX A 

HOVER AMALYSIS 

This appendix give* details of the development of an analysis designed 
to study the stability of helicopter main or tail rotors in hover, or under 
conditions of pure axial flow.    It can also be vised to study the stability 
of propellers. 

Important assumptions are noted below and the coordinate system 
employed is shown in Figure Al.    The coordinates used for the control 
systems are defined later in the text. 

AS8UKPTI0M8 

1. Dynamic and aerodynamic effects assume small perturbations about steady 
initial values of the system generalized coordinates. 

2. Aerodynamic forces are developed using strip theory. 

3. Radial flow effects are neglected. 

U.    Products Involving up to the squares of steady displacements and a 
perturbation displacement, velocity, or acceleration are retained. 

5. Rotor speed is constant. 

6. No small-angle assumptions are applied to the blade collective pitch 
or twist. 

7. Because of the rotating system generalized coordina.* transformations 
employed., only rotors with three or more blades can be treated. 

8. Stall, compressibility, and unsteady effects are Included. 

9. Inflow is constant over the rotor disc. 

10. Blades have an elastic axis. 

11. Blade flap and lag hinges are coincident. 

12. The blade feathering bearing can either remain in the plane of the hub 
or follow the blade root out-of-plane slope.    A similar statement can 
be made regarding inplane motion. 

13. The rotor shaft experiences no torslonal deformations. 
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Ik. Only those aerodynamic forces associated with the rotor system are 
considered.    Rotor/airframe Interference effects and airframe lift/drag 
are not included. 

DEVELOPMENT OF HOVER ANALYSIS 

Dynamic System Equations 

Die development of the equations of notion of the total dynamic system 
follows the classical path of first defining the kinetic and potential 
energies and dissipation potentialn of the lystem, then establishing 
Lagrangeb equations in the form 

d 
dt 

3T  ,       3T    +  3V    +  3D 

V " 3<1J   3qj   % 
(Al) 

In what follovb , to preserve clarity, the total dynamic system ib 
broken down into four major subsystems.    These eure: 

1. The rotor blades. 

2. The fixed, or airframe, system. 

3. The control systems. 

k. The servo systems. 

Each of these is treated separately, but it will be apparent that 
their dynamic responses are all close coupled tnrough the notions 
respective coupling generalized coordinates. 

the 

Equation Al is indeed a simple statement of fact, but the development 
of the terns on the left-hand side does, for a multi-degree-of-freedom 
system, present a very formidable task that requires extensive expansion 
and manipulation of large arrays of matrices.    In the interests of documen- 
ting the analysis in a not too cumbersome fashion, obvious intermediate 
steps are omitted, but sufficient detail is retained to show how the fined 
forms of the equations of motion were established. 

In the development of the equations, a number of transformation 
matrices emd vectors are employed.    These are defined below for easy refer- 
ence. 
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V ■ cosq^      . 0 •in5eY 

0       » 1 o 

:sinireY    , 0 cosqeY 

\x 
■ 1       , 0 0 

0 C08qex -8inqex 

0         t 8inTiX co8qex 

K m COB*              , -8irn>' 0 
♦ ,n n n 

8in*n        , C08*n 0 

0         , 0 1 
- 

A« s 1 0 0 
ß,n 

o C08ßn -8inß 
n 

o 8inBn CO30 
n 

~ 
A 

Y.n 
= co8Yn         . -8inYn .       o 

8inYn        . C08Yn o 

0 0 ,       1 

Ae.n.i - 'cose        , 
n,i 

0 • -8inen.i   : 

0        , 1 .       o 

sirrt    .     , 
L         n,l 

.      o n»i     . 

Ac' 
0.-*, 

■ 
^'.n.!' • -Bia4[nti' •       o 

HE,n,i 

^^E'.D.I • co8<n .i 
.       o 

0 0 i 

A c» s 1 o o 
*P,n.i 

0 

.     c' 
,i • -8in<1F,,n.i 

c' 
0 • 8in<1F.n ,i •C08qF.n,i. 

(A2) 

(A3) 

(AU) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 
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Ln.i 'X.n.l' 
0    ,      0 

0     , Iv     ..     o 

0     . I Z.n.i 

(A10) 

)dr 

n.i ({ -^.inq'p^dr) qF.n.l 

(All) 

( E ♦F.i.t^.n.t)  + (<1EO.n.i " CGn.ic08eo.n.i)Sn.i 
NE 

E 
t»i 

NE NE    r 

n»X t«l  8-1 
+ ^'E.t*'-.. + ♦,F.t*,F.8^.n.t^.n.8)dr) 

NE 
^.n.l " ( L  ♦E.i.t*r.n.t) " »BO.n.i + CGn.ic08en.i 

^F.n.i = (|L*F.i.t^.n.t)+qFO.n.i-CGn.i8in8n.i 

^'.n.i = (  £ ♦'E.i.t^.n.t5  " ^EO.n.i 

Ci ' (f ♦•F.i.tqT.n.t)+<l,R).n.i 

Vi        =    eo.n.l + ♦e.ieT.n 

:AI2) 

(A13) 

(AlU) 

(A15) 

(A16) 

(A17) 

(A18) 
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En       - { 0 . en        .0 } (A19) 

T    .    - ( X,,  .     , Yn  .     .  Z    .       } (A21) n,l 0)1 n,i     '    n,i 

*Q.l   " { 6X.n.i» *3f,n,i' ÖZfn.l } ^ 
NA 

^ex    ■(i§*ei.Ä) (A2U) 

^x     ■ (
8| ♦x.s^s) (A25) 

^Y     " ( f*Yt& ^ 8«1      * 
NA 

^    - ( E/z.sV ^T) 

Relations A2 throu^i A9 are the coordinate transformation matrixes. 
A10 Is the matrix of the blade flatwise, torsional, and edgewise   mass 
moments of inertia about the local center of gravity.    All defines the 
uncoupled blade bending coordinates including the radial shortening caused 
by bending.    A12 is a velocity vector that includes the effects of bending 
and pitching velocities, steady bending displacements    and pitch angles, 
and center of gravity offset.    A13 defines the local radial velocity. 
Relations AlU through A27 are self-explanatory definitions of various 
coordinates and vectors. 

The coordinates were transformed as follows: 

(1) Translate through CG. 

(2) Rotate through uncoupled blade flatwise and edgewise slopes and inte- 
grate to define the vector All. 

(3) Rotate through blade pitch and define the coupled coordinates given 
by AlU and A15. 

(U) Rotate through blade rigid-bod/ lag. 
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(5) Rotate through blade rigid-body flap. 

(6) Translate through offset. 

(7) Rotate through azimuth ongl'j. 

(8) Rotate through hub pitch. 

(9) Rotate through hub roll. 

(10) Translate through hub vertical, lateral, and longitudinal displacements. 

Derivation of Subsystem Dynamic Characteristics 

Rotor Blades 

Consider first the kinetic energy.    This can be broken down into tvo 
parts:    that associated with translational motion and that associated with 
pure rotational motion. 

Translantional Kinetic Energy- 

Using the coordinate system shown in Figure Al and performing the 
required coordinate rotations and translations, it can be shown that the 
absolute translational motion of a blade element i at blade station rn ^ 
on any blade n is given by 

Xn,i    "   VVxVn(Aß,nA
Y,n*n,i + V + Q (A28) 

where 

Vi    -   Vn.id 
'   t-^E,n,i'Fn,i« Vn,i> (A28^ 

Taking the first time derivative of X^i the total kinetic energy 
arising from translational motion of all elements of all blades can be 
written 

N   NB x 

TBT '   * £ ( E (Xn.i'T(Xn.i)ffln,i6rn,i) (**» 
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Rotational Kinetic Energy 

Since angular velocity follows the rule ^A B ^A B * ^B vhere ÖA B 
denotes the angular velocity of the coordinate system A relative to that 
of the coordinate system B, the angular velocity components ol the blade 
can be expressed as the BUD of the relative angular velocities between each 
of the coordinate systems given in Figure Al. Thus, the absolute angular 
velocity of any blade element 1 at blade station r   on any blade n is 
given by nk 

NE NE 

Vi ' i3( 5i ♦,F.lAn.t> + V E ♦'l.iAn.t^ 

NA    •       M    • 
+ iio( £ ♦ex.8<i8) + Ju( £ VsV 

8«1 S"l 

(A30) 

The various components of this velocity vector sure readily developed 
if we recognize that the i^, Jjj, kk are the unit vectors ascociated with 
their corresponding rotational transformation matrices. Therefore, to 
obtain 9^,1 ve must express the ik, Jk, k^ in terms of l2> J2» 

k2 ' Using 
the transformation matrices defined earlier, we can write 

Jll     "     J10     '     J9C08q9X "     Vin<18X 

So    "    S     "    l7CO,*n "    J78in*n 

Jg     =    i7
Bin*n *    J7cos*n 

(A31) 9 - k7 
= Vin*n + k6C08en 

^7 
■ 

J6CO80n - k6sinßn 

7 
= i 

6 ■ l5COSYn - 
•Jj8111^ 

J6 
■ i53inYn + J5cosYn 

no 



k6    -  k5    -  Vinentl     ♦   ^co.enfl 

S     "   V0ieM       '   Vinen.l 

K " iS00,«l|B,i " •J38in<C.l                                        (A31) 

\      "    ki " J2iin,lJ|n.l + k2C08<l?!n.i 
J3 * J2C0,,<lp!n.i " k

2
8in<n.l 

3 2 

Substitution of the above in Equation A30 c-xpresses the absolute 
rotational velocity In terms of the generalized coordinates and their 
derivatives. 

These relationships allow us to vrlte the absolute velocity vector 
51 .    in terms of the appropriate unit vectors at a blade element i  . n(i 

Thufa, the total kinetic energy arising from pure rotational motion 
of all elements of all blades can be written 

N NB    . 
TBR    -    ^   L   (   L   (V/Cl^^Xr      ) (A32) 

n»l      i«l 

Total Kinetic Energy 

The total kinetic energy arising from translatlonal and pure rotational 
motion of all elements of all blades is given by the sum of Equations A2Q 
and A32, namely, 

TBTOT    "    TBT    +    TBR (A33) 

Potential Energy 

The blades have tvo direct sources of potential energy: that associ- 
ated vith blade bending and that associated with twisting deformations. 

The bending potential energy of a blade can be written in the classical 
form which expresses this energy 'n terms of the fourth spanwise derivative 
of the flatwise and edgewise deformations. However, since in this analysis 
a modal approach is employed and it is assumed that all modal in forma- ion 
relating to the blades is available for inclusion in the elgenanalysi ., the 
total potential energy associated with bending of all blades io simply 
written as 
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Hie potential energy- derived from torsional deformations of all blades 
is given by 

N NB 
VBT    ■    «.   E  (    E {^.^i.i'1.,,) (A35) 

n»!        i"l 

In this expression Knti is the torsional stiffness of the blade n at 
the blade station rn,i .    It is obtained from the blade polar second moment 
of area distribution and the blade torsional modulus of elasticity using 
the relationship 

1/K    .    -       5^   (6r     /G     J n.i *-i n,s'   n.s n,s * s»l * 
) (A36) 

Further sources of potential energy are contained in the root springs 
that may be used when the blades are considered inflexible.    These root 
springs restrain both flapping and inplane motion and appear explicitly 
only in the rigid-body flap and lag equations.    The total potential energy 
associated with the springs is given by 

VBS   "   "  JE/'Wl * "WJ' "«^ j 

It should be noted that, when the blade elastic modes axe used, the 
potential energy from these springs is implied in Equation A3b since the 
springs determine the blade root boundary conditions. 

Total Potential Energy 

The total potential energy arising from bending, twisting, and rigid- 
body motions of all blades is given by the sum of Equations A31*, A35, and 
A37» namely. 
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?BTOT 'BB *    VBT    *    VB8 (A38) 

Dissipation Potentials 

We can immediately recognize two sources of energy dissipation associ- 
ated with the blades:    that resulting from bending deformations and that 
resulting from torslonal deformations.    Unfortunately, no realistic analy- 
tical definition of structional damping of any kind has ever been established, 
Nevertheless, it Is known that structural damping does exist, no matter how 
small.    Therefore, this may be Included as a percentage of critical damping. 
We must, however, remember that in specifying a percentage of critical 
damping, we must also specify the frequency upon which it is based.    In the 
case of blade bending, this presents no problem since the modal frequencies 
are obvious choices.    However, in the case of blade torsion, the choice is 
not so obvious since coupling with the control system can cause radical 
changes in the torslonal natural frequency.    To circumvent this problem, 
the torslonal damping is based on the rotor rotational speed, which is always 
known.    It is then the privilege of the user of the analysis to choose the 
damping level that he feels most closely satisfies the condition being 
analyzed. 

Based on the above, we can then write the total dissipation potential 
arising from blade bending as 

N NE 

n-1     t-1    ^n.t Vt Vt    n.t 
(A39) 

and that arising from blade torsion as 

DBT  "  ^ g^eAn^J (Al*0) 

Energy is also dissipated by the lag dampers that act on the rigid- 
body inplane degree of freedom.    This dissipation potential is given by 

\ I> 

N 

E 
n»l 

(2r       I      u       Y2) (Alii) 
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Total Diitipation Potential 

The total energy dltalpatlon arising fron bending, twisting, and rigid- 
body inplane notion of all bladis is given by the sun of Equations A39, AbO, 
and Al*l, namely. 

^TOT   "    ^^^T^^D WV 

Fixed, or Airframe,System 

Neglecting aerodynamic interference effects between ehe rotor system 
and any part of the airframe and also, for the present, neglecting mechanical 
control coupling, the only coupling that can exist betv en rotor motions 
and airframe motions is that transmitted through the rocor hub.    There- 
fore, knowing the dynamic characteristics of the airframe as seen at the 
rotor hüb allows us to define a dynamically coupled rot or/air frame system. 
Such an approach is used in this analysis. 

It is assumed that the airframe, or fixed system, dynamic characteristics 
are available either from shake test data or from a separate analysis.    The 
data required for each of the NA airframe modes    q are: 

1. The generalized mass, M^. 

2. The modal frequency, m^. 

3. The percentage of critical damping,  cA. 

k.    The modal components of motion at the rotor hub, 4„, ty« ^71 
♦ex» ♦ey 

With this information, we are able to define the total kinetic and 
potential energies and the dissipation potential associated with the air- 
frame system as follows: 

Total Kinetic Energy 

HA 
TATOT " ^ E (Vs^) (AU3) 

8«1 
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Total Potential Energy 

HA 
VATOT    "    ^   2:   (»iyV.Öj) (AWO 

s-1 

Total DlBBlpation Potential 

NA 
#2 DATOT    "    ^   ^^«A.A.^A.A ) (M5) 

The modal components at the rotor hub provide the motion interface 
between the rotor and airframe systems. 

Control Systems 

This analysis cor aiders both main and tail rotor systems. Normally, 
the control Systeme associated with these have little in common. For 
example, the conventional tail rotor has only collective pitch inputs. An 
assortment of cables, quadrants, control rods, and bell cranks may also 
feature in the design. The control servos can be close to, or some 
considerable distance away from, the rotor. On the other hand, the conven- 
tional main rotor has both collective and cyclic pitch inputs, necessitating 
the use of a swash plate arrangement. The primary control servos normally 
act directly on the stationary swash plate. 

To accommodate the peculiar characteristics of both types of control 
system, each is modelled and analyzed separately. 

The equations for the main and tail rotor servos are identical. 
Therefore, they are excluded from this section and developed later. 

Tail Rotor Control System 

Figure A2 shows the model used to describe this type of control 
system. The model simulates the collective pitch spider beam and actuator 
shaft backed up by three spring, mass, damper systems that can be used to 
describe the dynamics of control rod/quadrant/'cable arrangements. The 
subsidiary spring, mass, damper systems can he  used to describe the 
dynamics of appendages such as control surfaces and rudders. 

defined by 1»n 
In Figure A2,  X       is the motion at the pushrod of blade    n.    It is 

1 by 1 ,n 

1 „ " I*-}    tanfi,    3    + Lo    tana,    Y    - L„    * ^^6 i.n       2,n        S.n^n       2,n       l,nTn        a.n'ePITT.n 
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Figure A2. Tail Rotor Control System Model. 
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for pure collectire type motion. 
(AU6) 

It la usuned that the actuator and collective pitch spider beam move 
with an amplitude X2 ♦ qz in the Z direction; the effects of all other 
componentB of hüb motion are ignored. It is also assumed that airframe 
motions can be neglected in the remainder of the control system. 

The energies associated vith the collective motion of the tail rotor 
control system are then readily written as follows: 

TTOT 

Total Kinetic Energy 

I "* .2 

♦ M X2 + M X2 + M X2 ♦ M X2 

22 3: <*<* 55 

+ M X2 ♦M if -t-M,)^.} 31 31    >tl kl 51 51 (Al»7) 

Total Potential Energy 

U NA 

'^T " W L   [Kl.n(Xl.n " X2 " £ «LAW 
NA 

*  K2(X2 ♦ ^ (♦^.q;) - X3)2 + K3(X3 - X,)2 

+ K^ - X5)
2 + K5(X5 - Xo)

2 

+ K3i^3i-X3)2 + Kui^m-V2 

+ K51(X51 - X5)
2} 

(AU8) 
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Total Dissipation Potential 

■ HA 

»TOT • "»< & lCl*<*l* - ^ - E «Z.X»*1 
UA S»l 

* c2(i2 * £l(♦z..^., - h)2 * c3^3 - V2 

^(xH-i5)
2*c5(i5-x0)

2 

(AU9) 

For pure cyclic notion of the rotating system generalized coordinates. 
It Is ussuaed that the actuator shaft Is subjected to a pure moment at its 
point of connection to the collective pitci. spider beam.    Under these 
circuastances f the control system stiffness to be associated with the 
motion X.       is Jtn 

K ■    2K      IC.-./dlK      L2 + 21L.J o ,n j »n MA        I ,n S MA 
(A50) 

Therefore, the toted potential energy associated vith cyclic motion 
of the control Rystem is given by 

Wr   *   ^   g^cXn1 (A51) 

Main Rotor Control System 

The model used to describe the main rotor control system is shown in 
Figure A3. This is depicted as a rigid swash plate supported on three 
spring/servo systens. The servos are si tuated at a radius Kg from the 
center of the swash plate with the forward servo being set at an angle 
ops  relative to the Y axis as shown. The blade pushrods eure situated 
at a radius Rg from the center of the swash plate. The point p locates 
the position of the pushrod of blade n, and the angle 6   that positions 
this point relative to the Y axis is given by ,n 

6B.n ' 6FS + "* + ^ " 1)/N + 6PR.n (A52) 
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Figure A3. Main Rotor Control System Model> 
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wheri 

-1 
6PR.n   "   tan    fL2.n/(en + L2fntan63.n^ (A53) 

This definition neglects steady and dynamic deforma-Mons.    The servos 
at  XL   and X* are positioned 90 degrees and 180 degrees )*espectlvely In v the yaw right direction from the servo at 

The displacement of the pushrod of blade n,    xi  n»    i8 defined in 
exactly the same manner as in the tall rotor control system. Equation kU6. 
The displacement of the point P on the svash plate is derived assuming that, 
in addition to its cvn dynamic displacements X_, , XT   , and X.   , the svash 
plate also follows the motions of the hub. 

With these displacements defined, the energies associated with the 
main rotor control system can be shown to be as foZiovs: 

Total Kinetic Energy 

N 

W   ■   ^   I^Vn^ 

B B'1    NA 

Ö MA S=l 

+ ^C^^A + ^+     Z   (♦z..*.)]'1 
NA 

E 
8=1 

(A5l») 

Total Potentieü. Energy 

N NA 
W ■ ^ £ *uni*un -   E^T ) - ^(xA + v 

«B j, (1/2(XA - XF)(cos<)nco86n - sin^sinöj) 

-      /p(1/2(2XL - XA - XIiX8in^nco86n + co8l(,n8in6n)) ]2 

+ KL(XL " W2* (A55) 
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where 

♦n    -    fit ♦ 2w(n - 1)/N (A56) 

and 

6P8 + öPR,n (A57) 

MTOT 

Total Dissipation Potential 

N NA ^ 

^11  i,n    l,n       ^      Z.s s A       ^ 

- /» (VgC^ - XF)(co8ij;nco86n - sin*niin«n)) 

- /RJ
1
/^

2
*!, " *A " XF)(»io*nco8en + COB'<'n

8in6n))^' 
s 

+ C
?^ - V2 + CA^A - ^OA^ 

(A58) 

Servo SyateaB 

Only servos vith first-order transfer functions were considered. 
Main and tail rotor servcn were assumed to be governed by the same equation 
of motion; however, they may all have different dynamic properties. The 
model used to describe the servo system is shewn in Figure AU. In this 
model the displacement X, in the rase of the tail rotor control system, 
corresponds to X5, and K corresponds to K5; see Figure A2. Similar 
analogies can be made for the forward, lateral, and aft main rotor servos; 
see Figure A3. 

From Figure Alt, we can see that the displacement of the valve spool 
relative to the servo housing is e »X - X . This can be written in 
the general form 
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VALVE  SPOOL 

Xvr                    SERVO VALVE      / 
I «T   ___^  LINKAGES       /  w 

^<HM—- WVV^« 1 

*F 

rigure AU.  Control System Servo Model. 
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t.    - R 3L,,. ♦ R X    ♦ R X_ 
» 1^' 2 0 3 C (A59) 

where the servo linkage ratios,   R   , R    and  R   , depend on the kinematics 
of the servo linkage arrangements. 

Plow through, the valve is given hy 

■    V*C - i0)  + Clß6? + (VTANS)iP 

and since 

giving 

T 

and 

it can be verified tLat 

Vi*™ + Wo + cqR3XAF - MAP + Vo 
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(A60) 

KC(XC " V  " VP (A61) 

ApöP/J^ •• X^ (A62) 

Xc    -    ApiP/^ ♦ X^ (A63) 

»■I uttiiini 
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- ApC1/^ ♦ Vj/ilHgAjjApiP - 0 (A6U) 

If ve express e  In the form 

R F 
eV " R

2
( \  ^ * X0 +  % XC) (^5) 

and let R    ■ a0    such that 
2       S 

R R 
EV   ■0S(  l/a*vr**o*    3/axc) tA66) s 

then using this form for ev and the Identities 

y. •    [VKJ, + V.j./UNgA^] (A68) 

together with the equalities 

ApSP - - K(Xo - X) {A69) 

Ap^P - - K(Xo - X) (A70) 

in Equations A60 and A61*, it can be shewn, after some algebraic manipulation, 
that the servos are governed by the equation 

VH^VW*1 + ^2^0 + ^V"! + K)X0 

" ^S/V^^/OQC^KV^ - KX ♦ (^/P1)(R1/as)XVF 

+ ^S^i^V^^AF " Vn^V^V^AP " 0 (ATI) 
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Here, (og/Mj) Is the "Servo Power-On StiffneBs With Locked Input," 
(Ap/ogCq) is the "Servo Time Constant or Inverse of Velocity Gain," and 

(V2) iB the "Reciprocal of Confined Actuator Hydraulic and Structural Series 
Stiffness." 

In this analysis Xyp and X^p were not considered to be Independent 
degrees of freedom. Rather, they are assumed to be the result of alrfrsne 
vibration. X», could, for example, be construed to be the result of vibra- 
tion at the pilot station being transmitted through the control system, 
whereas X^p gives a measure of the effect of the servo support vibrations. 
Since accurate measures of these quantities are not always available, it 
was considered that they could best be represented by expressing them as 
functions of the airfrsme motions at the hüb using feedback factors for 
the support and valve to define relative participations as follows: 

XVF "  j£ (8FVyx.s*s + SFV,Y*Y,8% + SFV,Z*Z,sS 

+ SFv,ex*ex,sSi * 
8FvteY*«.Ä

) (A72) 

HA 
XAF "  £ (SFA,X*X,B*s + 8FA,T*Y.Ä + SFA,Z*Z.8^ 

+ SFA,ex*ex,B^ + SFA,0Y*eY.sis) (A™ 
HA 

**    '        E (SFA,X*X,s^s + SFA,Y*Y,sS + SFA,Z*Z,sS 
s»l 

+ ^A.ex^ex.st, + "A.eY^Y..^ 
(A7U) 
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These expressions are substituted directly in Equation ATI to give 
the final form of the servo equation. 
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Final Fom of Dyn—ic By ■ten Eq,vi»tioM 

Final forna of the dynaalc system equations of notions are obtained 
by fomally expanding all of the total kinetic and potential energy and 
dissipation potential expressions derived in the preceding sections, and 
then performing first-order perturbations of all of the generalized 
coordinates about specified steady initial values. This procedure, as 
mentioned earlier, requires an extensive amount of matrix manipulation. 
However, the methods enployed are veil known and, provided accuracy is 
maintained, there is no problem in principle in arriving at the final 
equations. For this reason, none of the expansions are repeated here. 

The  equations that follow are very lengthy. Therefore, to inqprove 
readability, they are all written in exactly the same format. Also, since 
two types of control system are treated, their contributions to the 
equations are written separately. Finally, the servo equations, as applied 
to each type of control system, are written. 

The first block of equations contains all of the terms that arise from 
the coupled rot or/air frame system. It also includes all of the terms 
contributed by the motion at the pushrod as defined in Equation AU6. Each 
equation first defines acceleration coefficients, then velocity coefficients, 
and then displacement coefficients. 

In every equation, all generalized coordinates and physical properties 
associated with the rotor system have a subscript n, the blade number. 
This subscript is omitted from the equations without ambiguity. Also, to 
give added clarity, the equations are presented in integral form. 
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N     N^   R_e 

Alrframe Mode Eaxxatlon« 

&ir#-to^,j^x.i * ♦ey.A + rßo^ + ♦Y.J^Y.I - ♦.x.i^a - *W 

♦ ♦z.J^Z.i + ♦M[fl
£(a2 ■ PYo)Bin* * (« + r* a2Y0 - b2B0)coB«] 

+ ♦«,lt<» + r + Vo " ^^o)^* - (a2 - nr0)co8«]) ♦ ♦„^((bj ♦ re0)*Xii 

♦ ♦Z,1C(« + ' + *2Y0 - b2«e)iiii# - (a2 - nrjcos«]) ♦ ^^(-(^ * rßo)*yti 

♦ ♦z.l^6 * r "•■ ft2Yo " b2*o)o08* + (a2 " rV811^ 

+ ♦eY.J(*0Y,lfC-a2(Vo " Vo* " (r + e)(a2 * rY0))8ln2* 4 ((r ♦ .)* 

♦ 2(r ■»• e)(a2Y0 - b20o))8in2* + a2(a2 - 2rY0)eo82* + b2(b2 + 2rßo)] 

+ ♦eXfl[
1s(-82(a2 - 2rr0) + (r + e)2 + 2(r + e)(a2Y0 - b20o))8lna|» 

+ (-(r + e)(a2 " ^o) - a2(Vo " Vo^0082*^ * ♦ax.j^eY.i^-^^a -z^o) 

+ (r + e)2 + 2(r + e)(a,Y0 - b ßn))Bina|» ♦ (-(r + e)(ao - rY0) 
2  0 2  0 2 0 

" a2(Vo ' Vo))c082^ + ^^^^(Vo " b28o) + (r + *K*2 - rY0))8in2« 

♦ ((r ♦ e)2 + 2(r + e)(a2Y0 - b2ßo))co82* + a2(a2 - 2rYo)8in2i|» 

♦ b2(b2 + 2r0o)])}+ Ixdr { ♦eY.jl'EO^ ♦eYfi
C08eo8in2," " ♦ex.l008^0082^ 

+ ♦exj(l,ÄO(- ♦eY,!0088«0082* + f,x,1co8eo8in2*) + ♦eYlj
(*eY.i(co,2eosin2* 

+ (Y0co82eo - 15ß08ln28o)8in2*) + ^ 1(J5C082eo8in2)|/ 

+ (Yoco82eo - i5ß08in2eo)co82i|0) + ♦ex.j^eY.i^082^81112* + (Yoc082eo 

- ^08in2eo)co82*)  + ♦^ 1(co82eoco82i|/ - (Y0co82eo - \b 8in29  )8in2*))} 

+ hta { ♦eYj(*eY.i(<i,Eoc08eo - <iVlneo)8in2* + ♦ex.i^'Eo008^ 

- iV^V0082*) + ♦ex.jc*eY.iC<1,E0CO89o - 1,
ro8ineo)co82« 
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, 

* ♦ex/-<i,EOCÜ,eo * «iVlnflo,Bin2*) ♦ ♦eYtj
(*eY.i(co82* " Yo8in2*) 

♦ ♦ex.l<- Y0coa2* - hßin2*)) + ♦ex.J(*eYfi
(' Y0coB2t(. - V.ina«) 

♦ ♦ex.i('ln2* * VlB2*))>  + ^^ { ♦ey.j<i,ro
(*eY,i8ineoBln2* 

+ ♦exfi
Blneoco82^ + ♦ex^'iro^eY.!81^0082* - ♦exti

8ineo8in2*) 

+ ♦eY.J^eY.l^^V1112* + (Vin2öo + ^0Bin2eo)8ln2*) 

+ ♦ex i(
,S»in2e08ln2« + (Y0Bln2eo ♦ l5ßoBin290)co82i|;)) 

+ ♦exj^eY.i^1112^81112* + (Vln2eo + ,tf0-in2eo)co82*) 

+ in 1(8ln2eoco82; - (Y08in2eo + l«o8in2eo)8in2*))}    ^ 

+     ^^ex.i^ex.^PA + ♦eY.i^eY.j1! + ♦z.i^z.jV ^ij +  MA.J?J 

+     Ef^'^X.J^Vo + a20o)8in* - b2C08*) + ♦Y.^^VO 

+ 82ßo)co8* - b28ln*) + *Ztiei2 ♦ *eY.jt((a2 + b2) Yo + a2(r + e))8in* 

'  (a2(a2 - V  + b2(b2 + rßo^C08^ +  ♦9X.Ji:(a2(a2 _ ^ 

+ b2(b2 ■♦■ rßo))8ln« + ((a2 + b2}Y0 + a^r + e))co8*]} 

+ Ix{ir{ ♦eY.j<1,E0CO8eo8in* + ♦ex.j^'EO008^008^ + IYdr{ ♦eY.j(-<i,E0CO89o 

+ <iVineo)8in* + ♦ex.j^^EO008^ + a'po-mejco.* ♦ ♦eYfj
(vo"in* 

- C08*) + ♦0Xfj(Yoco8* + sinij))} + Izdr { - ♦eY^q'F08ineo8lrnj< 

•■   ) Nr 

" ♦8X.^,P08ineoCO8*}J VT[ +   S^o"6 »^.A  + rB0)Bin* "  ^.J(b2 

+ rßo)co8* + *zJr * a2Y0 - b^^ + ♦eY.jf(e(Vo " b2ßo) + r(r + e f 2a2Y0) 

+ b2)8in* " Ca2(Vo - b2eo) + rCa2 " ^o^008^ + Vj[Ca2(Vo " b2ßo) 

+ r(a2 " rY0))8in* + (e(a2Yo - b^) + r(r + e + 28^) + b2)co8*]} 

+ h*1 - ♦eY.j,i,Eoco8eoC08* + ♦ex,tj
<i,Eoco8eo8i"* + ♦eY,/cos2eo8in* 
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♦ (Y0coB2eo - JsßoBin2eo)cosi(0 + ♦eXtJCcos2eocoB* - (Y0co82eo 

- ^oBln2eo)Bin1(>)} ♦ T
rto{#w^tq,

10öOie0 - (i«FOiineo)eo«* 

+ ♦ox.j^ «I'EO^^O + I'YO*™^ * ♦exj^810* - ♦eY.jYoCOB','} 

+ h^K^TO^o™** - ♦extj
,i,F08lneoBin* + ♦eY.jUin2eoiin* 

+ CY0flin2e0 + '5ß08in2eo)cOBi|») + ♦9XtJC8in29ocoflt)» - (Y0Bin2eo 

1 •• N f R 
J5ßo8ln2eo)8irn|<)}J 0      +   r^K"emdr{*x^C- Ca2 - rYo)8in* - (a^ 

+ r)co8*) + ♦Y^C-UJYO ♦ r)8in<|/ + Ca2 - rY0)oo8*) + ♦g^a^ 

+ *ntP'*z{*2 ' ^ * Veo)8in* + (-(a2 + r2)ßo " b2(Vo+ r))cOB^ 

+ UxJ{UZ2 + r2)ßo + b2(Vo + r))8in,,' + (-b2(a2 " ryo) + V0o)CO8*]} 

+ ixdr(- ♦ey,J^Eo8^eoc08* + ♦ex.ji'Ko81^810* + ♦eY.jP»8in2eo,in* 

+ (lSY08in2eo - ß08in2eo)co8*] + ♦exJDpin2eocoi# -  ('5Y0Bin2eo - f^sin^Mn*]} 

+ Ixäp{*eYfj
(<l,»),ineo + iV08^08* + ♦ex.j^ *'EOBinBo 

- 4'roco.eo).in#) ♦ Izdr{- *eY,i*'FOCOBfioCOB* + ♦eX.J^'FO^^o81'1* 

+ ♦oYjI- ,Pin2e0«in* " f^o81^ + 0oco829o)co8*] + ♦0XJ[- ^II^COBIK 

T.. N  NEr  R_e 
+ (J$Yo8in2eo + ßoco82eo)8in*J}jY*££  f   mdr{♦x.J(♦E.iCViI1,,' " C08*) 

n3li=l 
+ v^sinij» + ♦F)1ßo8irn|») + ♦y «Ug j^C- sinij; - Yoco8*)  - v1 ico8* 

" ♦F.i^o008^  + ♦z.J^F.i + ♦eY.jC^F.i^Vo + ^ e) + ♦Etib2Y0)8in* 

+ (- ♦F.I^Z " ^o) " ♦B.A + to»*00*! + *ex..,f(*F.i(a2 " nr0) ♦ iE^2 

*  rßo),8in* + (*E.ib2Y0 * ^^(a^ + r + e))co8*] + ^^^sin* 

+ *BXt^it^2COB^  + Ix^<*eY.J^08eo8in« + (YOCO80O - ßo8ineo 

- q'E0)oo8*>'F>i + ^^[coBe^OB* - (Y0co8eo - ß^ii^ - «l^)«!^]*^^) 
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* ♦exjt- ■ine^i* ♦ (Y0«ine0 ♦ B0coseo ♦ q'ro)«^]*^^}]^^ 

♦ | * VWFA " ♦ey..)V * ♦z.jV^j  ♦j«^- ♦ex.j^A " ♦OY.JV 

4  ♦z.AH   * ^♦•I,JIL£L   ^ ^]ifR'eBdr{2fl*z.jKx.i((ft2 " ^o^0" 
- Ce + r + a2Y0 - b^iln*) * ♦Wil(C« ♦ r ♦ a2Y0 - b2ao)co8t|. 

> (a2 - rY0)ilwP)] ♦ fl*eY,jr*eY.i(CCp * e)2 + 2(r + eKVo " ^ 
- a2Ca2 - rYo)>in2« + [-(r + e)(a2 - rY0) - a2(a2Y0 - b^^cos^) 

+ ♦ex.i^^^o " b2ßo) * ^ + e )  (  a2 * nf0)]28in2* ♦ E(r ♦ t)2 

- a2Ca2 - 2rYo) ♦ 2(r + e)(a2Y0 - b^jcosj* - a2(a2 - 2ryo) - (r ♦ e)2 

- 2Cr ♦ e)(a2Y0 - b^))] ♦ 0*^1*^*2^0 " b2ßo) + (r + e)(a2 

- rro)]28in2* + E- a2(a2 - 2ry0) + (r + e)2 + 2(r + e)(a2Y0 - b2ßo)]co82* 

* a2(a2 - 2rY0) ♦ (r + e)2 + 2(r + e)(a2Y0 - b^)) + ♦eXfi([- (r ♦ e)2 

- 2(r ♦ e)(a2Y0 - b^) + a^ - rY0)]8iii2« + [(r + e)(a2 - ryj 

* a2CVo " Vo)^c082*):J} + ^^^'EO^eY.^- ♦eY.ico8eoc082* 

* ♦ex.i008^81112*^ + ♦ex..jc*eY.ic08flo8in2* + ♦ex.ic08eoco82,l':,) 

+ n^eY,5C*eY,l(cO82e08in2* + ^oC082eo " 608in2eo)co82*) 

* ♦ex.l(cO82e0CO82* ' (2Yoco82eo " 808in2eo)8in2«) - ♦ex>1»in2eo3 

* ♦extj
C*eY.i(c082eoc082* " (2Yoc082eo " 0o

8in28
o)8ln2*) 

+ ♦ex.l^ co82Vln2f " C2Yoc082eo - 608ln2eo)co82<)) + ♦eYti»in2e0])} 

+ IY«ir{2fi(*eYfJ[*eYfi(q'EOco8eo - q.po8in0o)co82« ♦ ♦„^C- ^^0.6,, 

+ «l'P0»lneo)8in2*] ♦ ♦eXJC*eY.l(- ^»^«o 
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* a'fo«^)«^* + ♦ex.l^ (l,iooo,0o * <l,ro«ine0)co82*]) 

* 0^eY.j^eY.i(" ^o0082* " 8in2,,') * ♦ex,i(' C0B2,,' * ^o"102*^ 

♦ ♦eXtj[*eYtl(- C082« ♦ 2Y08in2*)^^eXfi(2Y0C082* ♦ 8lnP*)])} 

♦ Izdr{2nq'pC)C*eYJUeYtl»lneoc082* - ♦eXtl8lneoco82*] * ^J 

' ♦eY.ioineo8in2* " ♦ex.i8lneoc082,,';,) + n(♦eYfJ[♦eY.i(8in2eo8in2,,' + {*(oain\ 

+ ß ain28  )COB2I|() + ♦-- . (8in2ertco82* - (2Yrt8in29n + ßA8ln28n)8ln2*) 

- ♦ex.ico82eo 3 + ♦ex.j [♦eY.i(8ln2eoC082* -<2Vln2eo + h,,itiZBoUiia^) 

+ ♦gx i(-8in2eo8ln2* - (2Y08in28o + ßo8in2eo)co82*) 

+ Vi^o ^ >K |  + 2CA.JMA.JWA.J ^J 
Nr R . 

+      E r     radr{2tt (^      ((b^ + a2ßo)co8* + b28in<») 
n»l * 

+ ♦Y.J^VO 
+ V0>,ln* " ^^"^ + ♦eY.j(b2

Cb
2 

♦ rt^aln* ♦ ^2(a2
0o + Vo^08"0    + ♦eX.J("b2(Vo + a2eo)8in',' 

+ bJb    + re„)co8*))} + Ivdr{nU0V ,[co820n8ini|/ + CYnco82en 2*-Z 'ÖY.J' 

- ßoBin2eo)co8*] + >ex    [co82eoco8ij< - (Y0co82eo - ßo8in29o)8iin|» ])} 

+ IYdr{fiU6Y -(YQCOB* + sinij») + ^^(cos* - Y08irn|»))} 

+ I dr{n (♦gy    [-co82eo8in* - (Y0co82eo - BoBin2eo)co8\|(J 
z 

+ ♦QJ ,[ - co82eoco8« + (Yoco82eo - ßo8in?eo)8irn|/])}    ^ 

+      E    t'6 mdr{2n(tXjJ(b2 + rßo)co8lj» + ♦y^^j + ^o)8im|» 

+ *eY,Jb
2
(b

2 
+ 2r0o)co8* - ♦exjb2Cb2 ♦ 2rßo)8in*)} 

+ Ixdr{nUey    coB2eoco8* - ♦QX    co82eo8im(;)} + IydrinUe      ccs* 
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- ♦exjBln*)} ♦ Iz<lp{nC - ♦0YJco82eocoB* ♦ ♦exJco829o8lni|))}J g 

♦ £    ^R"eiBdr{2n(*x jC - (*   " n0)co8* ♦ Ca2Yo •»• r)8in<|.] 

* ♦Y.J0 " (Vo * r)c08,,'_ (a2 ' rYo),in*] + ♦eY,jf(r2eo * b
2
(Vo 

♦ r))8ln« - (b2(a2 - rY0) ♦ *2**0)e<**l * ♦ex.jt^o + b
2
(a

2
Yo + r))c08,,' 

+ Cb2Ca2 - rY0) ♦ a2rß0)8irnO)} ♦ I1dr{20q'I0C*WtJtlneoiin* 

■»■ ♦exj8ine0co8*) + «(♦QY J[8ln2eocoBij» - CY0flin2ec - ß^Bin«!»] 

♦ ♦exj[ - 8ln2e08ln* -  CY08in2eo - ß0)co8*])} 

♦ IYdr{2QU9YiJ{ - qi,I0«ineo - q'^cote^iin* ♦ ^^C - q'^B^ 

- I'yoCOie^COi*)   ♦  n(-*eYtJß08ln*  -  ♦exJß0CO8«)} 

♦ Izdr{2ßq'p0C*9YfJco8eo8in« + ^^^cose^os*) + 0C*eYj( - Bin2eocng* 

+ (Y08in2eo + 30)8iin|)) + ♦ex>j(8in2eoBin* + (Y08in2eo + ßo)coB*))J y 

N NEr   p ^ 

i Si^      n(*x»jC*E»itYoC08*+ 8in + Vl•iCO",' 
+ ♦F/O008*11 + ^.J1" ♦E.I^08* " Y0,in*)  + Vl.i,ln* 

+ ♦F.ieo8in^ + ♦eY.J^E.i^, + rßo)8in* + V*P.i3o 

+ ♦ItiYe)co^]   ♦ *nJ - b2Up>iß0 ♦ ♦E.i-.^sin* ♦ ♦E>iCb2 + rß^co.*] 

+ ^yiti\
COBV   " ♦ex.Jvi.iVia*)} + i/r<nC*eY.j^8ineoc08* 

* (co8eoco3« * (q'E0 - Y0co8eo + ß0»ine0)iij#)*'Ptl] 

+ ♦ex.j^ " iineo8in* * U'^Hnae^Y^^ + ß0coae0)co.t)*i(1 

♦ C - C08eo8in» + Cq,10-Y0co8eo + ß^lnS^cos*)^^])} 

132 



~-^- 

" ßoc086o + Y0Bineo)8ln*) H- ♦•F^co8eoco8i|(   ♦ ( - q,F08ln2eo + q«E0co82ec 

" ßoflineo ' V08eo)8in*^ * ♦eX.Jt♦'E,iC8ineo8in♦ + ^ ~ 2,l,FOc082eo 

- q,B08in2eo - 60coBeo   + Y0Bineo)coB*) + ♦•y 1(- co8eo8ini|» + (q,
EOoo82eo 

- q,
po8ln2eo - 808ineo - Y0coBeo)co8*)])} + Izdr{n(^9Y    [(- sine^op* 

+ C2q'     coB2ert + Yrt8ineA + 6^0086^)8111111)♦'        + ( - cose^coBtl» 
TO OOOO Ogi 0 

♦ C«l,f0iin2e0*Y0eote0 + B^^)^!^)*^^] + ^^[Csine^in* 

♦ ^2(l,»0co82e
0
+Yo8ineo + ßoco,eo^eo,*^,i i + tc08eo8in,'' + ^q,po8in2eo 

- ^'^00826^ V088o + eo8in9o^    C08*)  ♦p,i3)>]iT,| 

(a   - ry )8im(» - (e + r + a Y 
2 0 2 0 

I» "A r R A 

n«l j-=r 

- t>2ß0)co8«) + f^^C - (e + r + a2Y0 - b^^sin* 

+ U2-rYo)c08H^|*!MA.Jw2A.Ä| 

*    L[J5R'e,ndr{n2c*x.jt - ^Vo+ Vo^10*+ b
2
c0B*J 

+ ^v i^b Yn + a Bn)co3i|»   + b sin*] + ♦_„  .[(a (a Yn + r + e - 2b 8) 
I,J2020 2 Ö1»J220 2° 

- b^Y«)8!»!* + ( - a (a   - ryj + b (b   + rß/,))co8i((] 
2© 22° 22° 

+ ♦„.. ,[(a (a   - rYft) - b (b    + rß ))8iru|» + Ca (a Yn    + r + e - 2b 6n) 
WJ*-    22° 22° 22° 2° 

- b^Yo)co8*])}+ Ixdrt^'g^QY^cose^inil» + ♦ex^co8eoco8i|/) 

+ n2[*ÖV ,(00826^008* - (Y„co82e/, - ß 8in2eJain*) + $a~ ,( - 00826 sin* 
01 ,j 0 0000 "*tJ 0 

- CYoc082eo - ßo8in2eo)c08<,)]) + ^^^eY.J^" <l'E0CO880 + cl,F08ineo)8in,,' 

+ ♦er.j(- ^'EO008^* a'F(fineo)co8*]) + izdr{n2q«F0(- ^^^me^in* 
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-   .'■:-■ . 

- ♦ex^»*ineoco8*) ♦ Q2[ ♦gy ,( - coB2eocoB* + (Yoco»2eo    - 608in2eo)8in*) 

* ♦ex,J(-0828oBln,,'  + CYoco82eo " ß08in2eo)coBl|»)])] ♦eeTj 

+       £[{R"e »toW2£ - ♦xtjÖ»2 + r6o)8in* * ♦Y.J^i + r&0)c°** 

* ♦eY.JC[Cr + e)   (a2Y0 + r - b2ß0)  + rCVo - b2ßo)  " b^2rßo + b2)3,in* 

* ^ "  a2Ca2Y0  +  r " b2ß0)   " b2Cb2 + 2rß0)   + r2Y0Jcoa*J 

+   ♦eX.J
(ta

i(a2Y0  + r - b2ß0)   * b2C2rß0  + b2)   "  rViin* 

+ [Cr + e)Ca2Y0 + r - b^) + r(a2Y0 - b^) - b2(b2 + 2r0o)Jco81».)]} 

* IjArla2!'^- ♦0y>Jco8eoco8i|/ + ^^    co8eo8in^) + ft2[*eY   .(sin^sinil» 

* Y0C082eoC08)|»)   +   ^     (8ln2eo     roaiil      +  YoCO82e08ilH|»)]} 

* IYdrfn2[*0y>j(l'EOco80o - q«ro8iiie0)cO8* ♦ *eiJ- q'EOco88o 

+ q,po8lneo)8irn|»+*eYtl(  - Y0co8i(( - sin*) + ♦0x^(Yosinij» - cos*)]} 

+ l^il^'^U^yine^oBi,   - ♦ex^8lne0sin*) + ß2! ♦eY)J(co82eo8in* 

+ Y0 8in2eoco8^) + 4M    Cco82eoco8i(( - Yo8in2eosini|0]} 1 ß | 

+    j SP'6 mär{ ^ ♦x.J^^ " r^5)8in,,' + (a2Vo + r^c08*) 
+ ♦Y.J   aa2Yo + r)8in* "  (a2  - nro)co8*)  * ♦ey)J[Cr(a28o - b2Y0) 

" b2(Vo + r)   + a2^ r +  e]ßo   + b2)  " r2ßo)8in* +  (b2(a2   "  nr0) 

+ VVo + r) " a2(a2ßo " rßo)  + r2Bc)co8*] ♦ ♦ex.j[(-b2(a2 - ^o5 

"  b2(a2Yr   + ^   + a
2(a2

eo   -  rßO)   "  r2ßo)8in* +   (r(a
2
ßO- b2Y0)   " b2(a2Y0  + r) 

+ a ([r + e]ßrt    + b  ) - r2ßn)co8i(<]]} 
2 o 2 o 
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, - .   .    —, r ;*■- »"•    .:v, ■.     fr .  t.'•-::*-■ 

- Jfiin2e/%8in*) + ♦-_ .( - eÄco82eÄBln* - %Bin2e cos^) ]} 0 BA»J oo o 

♦ iY*Hn2C*eYfJ(- »•»■ine0 - q^ose^cos* ♦ ♦eX.J(i'I0.ineo 

♦ q'^coie^iiaf - ♦eY,jßoco8* * ♦ex.jßo8in^} 

♦ Iz<lr{n2<l*ro(*eYfjCO"e
0co8* - ♦ex^coieo8irn|») ■»• fl2[*QY    Ci«iln2eo8ln* 

+ ßoaln2e0co8*) + i91   {i»ia290coa1> - BoBln28oBiin|()]}J y  ( 
N    NEr R        * ' 

♦        EEU    ,,ldr{n2tyc.j( " ♦E,i(Yo8in'1'' C08''')" vl.i8in,,' 

- ♦p ißoBirn|») ♦ ^Y ^(^ 1(8in* + Y0COBI(») + v^^ icoB* + ^ ißoco8<i) 

♦ ♦eY.j((*F.i(Vo + r + e " *>Z*J ' ♦E.ib2Yo)8in,,' + (- ♦p,iU2 " ^o) 

+ ♦E.i^a + ^o))008*) + ♦eX.J(C*F.i(a2 - ^ " htiS\ + ^o))8in* 

+  (* F.i(Vo + r + e " 2b
2ß0)  " ♦E.iVo,C08*) - ♦9Y.JvifiV

iri* 

" ♦ex.jViV08^ + Ixdr{n2l:*eY.j( - 8ineo8in* - (Y08ineo 

- Boco8eo)coBi|;)*,
fi j^ +*ex    ( - Bineoc08)|. + (Y08in9c - ßoco8eo)8iin(»)*«E ^ 

♦ IYdr{ß2[*eYj(^E^8ineoBini|, + (- ^^in29Q - ß0coBeo - q'FOcoB2eo 

■♦• Y^8ineÄ)coB*) +♦',(- COBO sinij» + (- q'-^Binae^ - ß sine 
0 0 * »i ** •^ 0 0 0 

♦ <l,EOcoB2eo >Y0coBeo)coB*)) + ♦eX.J^E.i^^o008* + (<1,Eo8in2eo 

+ ßC)coB6ol+q,,FOco82eo - YoBin0o)8irn|») + ♦'      (- CO88OCOBI|) + (- q,
E0co82eo 

+ ßo8in6o+ q'p^in2eo + Y0coBeo)Biiu|»))]} + lzte{&U^    C(co8eo8ln* 

+  (- 1,EoC082eo + Y0co8eo + ßo8ineo)co8*)^Fti + ^E)iq«rocoB2eocoB«) 

+ ♦gj    ((coBeocoB4»+ (4'E0co82eo - Y0co8eo - ßoBineo)Bin*)(>,F ^ 

♦'E.i^'FO0082^8111^^.!!      " 0 CA75) 



i ■   i. «.■■»•<.■ «"■■» •<•»«•«• „.i.-•       ^rr^cr.'- ■■tr-. '•c-7«rTw r 

i BA Blade Pitch EQuationa 

[E^-^^^CCb^ ♦ a2aol.ln* - b2co.*) ♦ ^C - (b2Y0 

♦ a2ßo)coB« - l)2tln*) ♦ a2fZil ♦ ♦eYfi[(Uf ♦ ^)YO ♦ a2(r ♦ e))aln<' 

♦ ( - a2(a2 - ryo) - b2(*2 ♦ rßo))co8^ ♦ ♦eXfirU2(»2 - n^) 

♦ b2(b2 ♦ rßo))sln<» + ((a2 ♦ b2)Yo + a2(r + e))co8*]} 

+ Ixdr{,l,B0(♦eY,lco■9o■in♦ + ♦ex.i^-V^^ + V^Vi^V08^ 

+ (l,ro8ineo,8ln,,' * ♦8x.i( " <l,B0CO8eo * q'ro81"^^0^ * ♦eY,iCYo8in* 

- coa*) ♦ ♦eXfi(voco8* ♦ sin*)} ♦ Izdr{q'TO( - ♦^sine^ii* 

" ♦6X.i8lneoC0^))J Vi 

* [^«dH(a| ♦ bf)) + IydPU}] ♦* eT} + j M1L|*e2RgT 

♦ [^«drK»! ♦ b|)Ye ♦ a2r} + ^driq'^cose^ ♦ Iydr{ - <l^oosec 

+ «TO-^e + Yo} 

+ ^^ * <l,P08lnGo} ]v +       - Mil|tan630epR0 

1r 
^■dr{b2r) + Ixdr£q«BD8in0o} ♦ Iydr{-q'E08ineo - q'^cosO^ 

+ Izdr{<lroc08eo} ] V [   + | - M^i^^i^PfiY 

-i ..       )       (  NE 

iNA r F 
♦JE [^ "emdrl2flE*QY>1(a2(a2 - rYoJ.in* ♦ a2(a2Yo + r + e - b2ßo)co8*) 

+ ♦ex,i( - a2(a2Yo + ' + « - b2ßo)8ln^ + a2(a2 -rY^cos«]]} 
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"-;**&**■  JM* -   •_    ■*-* ■'.■ijr- 

* i^nq^C^^cote^oi* - ♦ex.ico,eo8ln*] * nC*eY,i(- cos2eo,ln* 

- (Y0coi2eo - e0iin2eo)coM)MeX(i(- cof2eoco.* ♦ (Y0coB2eo 

- I0.in2«0)tia#)]} ♦ ly^n^eY.i^ ^'EO008^ * ^'PO81^^008* 

+ ♦ex.i(<i,EOco8eo " ^ro81^^1^ * ♦ey.i(Yoc08* + tinif) + W" Yo8in* 

♦ cos«)]} ♦ Izdr{20*'|0C-*W|1«lneöoo«# ♦ ♦ex.i8ln8o8in*] 

< «[♦9Xti(co82eoBini(. ♦ (Yocos2eo - ^s^e^cosH») ♦ ♦eXti(
co82eoc08* 

- (Y0co82eo - e^ii^ejsin*)])]^  j ♦    (««eV * VHPR^T ( 

A   [^R-emdr{2n[- b2(b2 ♦ reo)]} + Ixdr{- «00826^ ♦ Iydr{- fl} 

+ Izdr(nco82eo}] ♦eS j  + |- ClL2tan63*epR§ [   ♦ ^R-e-dr(2n[a2(b2 + rßo)]} 

+ Ixdr{- Q8in2eo} + Izdr{n8in2eo}]  V [   +   j - ^^^«»^ePRY j 

- ?- icosej} ♦ IY<ir{fl[*'Eti8ineo - ♦•F>ico8eo]} ♦ Izdr{n[*'E>i8in8o 

* * NE 

+ [L2tanai/(R-e)]tETti))*epR4r.i |   +  j [^«^^Vo " W 

- b (b   ♦ rß0) ♦ a2]} + Ixdr{- n2co82eo} + Izdr{n2co82eo} J ^e^, 

+  j(^R-eK*e
2)9T}   +1   V^eP^T   , 

+     [f-rtr&i^iVo * r + e)  - b2(b2Y0 - 2a2ßo)]} + Ixdr{«2[q'EOco8Go 

- Yoco82eo]} ♦ IYclr{fl2(- q'EOco8eo * <lVineo)} + IZdr{n2C- ^'pO81^ 

+ Y0co82eo]}] M j + j - Kll?2t«i«3*epR0 | + j [f-rtrm- (^ + *K 

+ ebj } + Ixdr{- n20ocoB29o} + Izdr{n2ßoco82eo}J ♦gY 
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■ PIP 

t 

i  II 

♦ (r * a^nHijdrt- o2eo*'Kilco.Po} ♦ iYdp{Q2eo(*'E>1co.eo * ♦•Fil.ineo)} 

+ h**^' ♦,lfl*
,1000i26o + ^•10eo.26o - B0.ineo)rFfl]}] ♦e ^J 

i  IE ' 
+     },? (- KlL2(*FPR.i * fL2tMOi/(R-)>ET.l^*ePR0T.i [ 

Tail rotor control systen contribution: 

+ ClL2*»8*2 + KlL2*ePRX2 

Main rotor control system contribution: 

+ PSC,L,^/D (-(«in« ♦ C08«)sln^ + (cos« - Bln6)coB*) 

+ ^i^^epA + ['«CJL^/J, ((slnfi - co86)flln* 

- (cos« ♦ Bln6)co8*) ♦ ^j^J^epR^F * [Cj^V« (cosdsln* + slnficos*)]^^ 

♦ The coefficients of X., X-, and XT, which are identical to those of X., 

X-, and X.  respectively, with C    replaced by K . 

- 0 (A76) 
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Blade Rigid-Body Flapping Equationa 

NA 
^[^^^♦x.i^a + IV8in* " ♦Y.I^ + rßo)C08* + ♦z.i^ + Vo 

" b20O)   +  ♦flY.J(e(Vo  " b2ßO)   + r(r  + e +  2Vo)  * b2)Bin,,'  +  (-  a2(Vc 

" Yo) ' r(a2 " ^o^008*3 + ♦eX.l,:(a2(Vo " Vo* + r(a2 ' ^o^81^ 

+ (e(a2Yo - b230) + r(r + e + Sa^) ♦ b2)co8i|»]} + Ixdr{q,
E0( 

- *QY ico8eocos* + tQx ico8eo8iniJ() + ♦Qy i(co82eo8in* + (Yoco82eo 

- ^8in2e/N)co8i(») + ♦.„ .(co82ertco8i(» -  (ycoB26n - *5ß 8in2e J8in*)} 
O O t3A,l O OOOO 

+ IYdr{*eyflCq'EOco8e0|- 4V0iineo - Y0)co8ij, 

+ ♦ex.l^ ^'EO008^ + ^P08in8o + Y0)8in*} ♦ ^drfq^C^^sme^oi« 

- (Kv  .8lnertsini(») + ^ov  . (8in2e sin* + (Yrt8ln2ert + hiBin2e)coB\\i) 
wAfX 0 nl tl. O O O O O 

+ ♦QJ ^sin^cosil» - (Y08in2eo + i5ßoain2eo)8ini|<)}Jq11 

♦   j ^R"emdr{((a2
2 + b2)Y0 + a^)} + Ixdr{q'EOco8eo} + IYdr{(- q'EOco8eo 

+ j r^R"emdr{r2 + b2 + 2a rYo} + Ixdr{co82eo} + Iz(ir{8in2eo}l ß j 

+ j M L2tan2«3'ß j + j [^R"emdr{- b2(a2 - rY0)} + ^drCssi^e^ 

+ I 

+ r)  + 

NE 

dH- Jspin2eo}JY[   +      M^tan^tano^Y  |   +js[^R'effldr<*Ffi(
a2Yo 

♦E.IVO 
+ Vi^2} + ^^'P.I

008
^

1
 

+ V*- ♦,E.i8ineo}]ir>ij 
(WJfi -       i 

+ jZtM^tand^^ + [L^ana^CR-e)]^^))^^! 

+jX;^R-eiiidr{2n[«eyti((r(r + e + 2a2Y0) + eCa^ - b^) + b2)co8* 

+ (a2( Vo" b2ßo) " r2Y0)
8in^ + *ex.i((- r^ + e + *2y0) - e(Vo 
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- W  - b2),lin',' * (a2(Vo  " b2ß0,  " r2>o)COB*^> 

♦ Ixdr{2nq'BO(*eYflco8eo8in* ♦ ^^cose^oB*) 

♦ n[*eY(i(co«* - 2(Y0co82eo - JsßoBin2eo)sln«) + ♦eXti(- »in* - 2(Y0co82eo 

- Jrf08in2eo)co8<))]} ♦ IYdr{n[«eYtl(- q,EOco8eo * q'F08ineo)2Bln* 

+ ♦ey iC2Y08in* - co«*) ♦ ♦ex^^o008* * 8in*)J> + i^2**1'TO^ 

- ♦eY.i8in8o8in* - ♦exti
BineoCOfl',':i * nt*ey.i(c08* " (2Vin2eo 

+ 808in2eo)8ln*) ♦ ^ i(- sin* - (2Y08in2eo + ßo8ln2eo)coBij,)]} q^ I 

+     r^R"emdr{2ab (t    + r0o)}+Ixdr{nco82eo} + IY<ir{fi} + Izdr{- flco82eo} ♦eÜ 

+   - C^W^pp^    ♦   CjLWö^    ♦      ^R-emdr{2nCb2(a2Yo + r) 

+ r2ßo)} + Ixdr{n(2q'E08ineo + ßo - Y08in2eo)} + IYdr{fl(- 2q'E08ineo 

- 2q'F0co89o - ß0)} + Izdr{n(2q'FOco8eo ♦ Y08in2eo ♦ 0O)}]Y 

NEr 
♦ C L2tan6 tana^       * £ ^"enuir{2n[*Eti(b2 ♦ rßo)]} 

♦ ixto{o[^Bti(q'EOtin2eo * ß0co8eo - Y0.lneo) ♦ ♦•p.i^'EO ♦ ß08ineo 

- Y0CO8eo)]) + IYdr{fi[*'EfiC- I'M'102*** - 2<1,F0CO82e0 + Yo8ineo " ^o008^) 

+ ♦,p.i(<l,E0CO82eo - ^'FO81^ - Yoc088o - ßo8in9o,:,} 

♦ Izdr{n[*'Eti(2q'FOco82eo ♦ Y08ineo ♦ 6oco89o) ♦ ♦•F>i(q'F08in2eo ♦ Y0co8eo 

NE , 
+ tortrtoWjfai + E^jV^S^FPR.i + CVana

1
/(R-#):,*ET.l))ir>i 

+ j^^R-e
Mdr{n2[teYfiC-b2(b2 ♦ 2rßo))co8* ♦ ^yr^^., * 2rß0))8in*]}]qi | 

+ 
i]1riR"e«««är{n2[a2(a2Y0 + r + e) - b^b^ - 2a2ßo)]} ♦ Ixdr{n2[q'EOco8 90 

L 

- Y0co82eo+ ßo8in2eo]} + iYdr{n2[- <i,EOco8eo - <i'?0Bintio']}*izäT{ii2WFOsineo 
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■■• i~"-.-;frTj.-nc.     .jjt . :^r:±* 3B2t- —i_tJ 

+ Y0co.2e0 - B0.i.l260]>]^ ♦     j - KiL2tan«3*epReT j 

+    j [iR"C,Bdr^2f^a2Y0 - b260) ♦ r(r ♦ e) - Urßob2 ♦ 2a2rY0 - b*]} 

♦ Ix(lp{n28in2eo} ♦ IYdr{- n2} ♦ Iz(lr{n2coB2eo}]ß [   +   U L*tan26 e 

♦j V j    *       !  [^"^^^a^Z "  Ty0)   +  a2
ßO(2r +  e)^  + IXdr{ 

- lsfi28in2eo} ♦ IgdrCsfl^inaajjilYy +  j K L2tan6 tana y [ 
(BE r R '       ' ) 

+   E[re^^2C- ♦B.IVO + ♦F.^VO + r + e + 2b
2ßo) - vi.ib

23} 
'i-l 

+ Ixdr{- ß2*«E liine0) + IYdr{n2[*'Eji8ineo + ♦,Fficoß8o]} 

* Izdr{. fi2[*,Ffico8eo]}}Lrti|+ ji:CK1L2tan63(*ppRti 

+ [L2tanai/CR-e)]*Erfi))qTflj 

Tall rotor control system contribution: 

- C L tan« X    - K L tan6 X 12 3  2 12 3 2 

Main Rotor Control system contribution: 

+ [- '5C,L„tan«,RB/Il (-(sin« + cos6)sin<; + (COB6 - sin6)coBi|;) 
12 3      «g 

- »sC L tanö3]XA + [- JsC L tanö^/j, ((sind - co86)sini|; - (cosfi 

^  sin«)co8*)  - ^^„tanSlX-, +[- CLtaxi&*B/u (cosösin* + Bin6co8<))]XT 123' lZ3ng " 

+ The coefficients of XA, Xj,, and Xj^, which are identical to those of 
X., Xp, and ^ respectively, with C    replaced by Kj. 

- 0 (A77) 
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Blade Rigid-Body Lagging Eaimtioni 

lj:[^R_e»dr{#XilC-Ca2 - rY0)Bin» - Ca2Y0 ♦ r)coB*) ♦ ^^(-U^ ♦ r)8irn(» 

♦ (*2 - rYo)co.*) + *Zti*2»0 * ♦eY.i^^o " b2](a2 " ^o^31^ 

♦ (- b2(a2Yo ♦ r) - (a* ♦ r*)^) co.*)    *    *6x^\^2y0 * r) ♦ (aj 

+ r2)80)8in* ♦ ([e8o - b2](a2 - rY()))co8*)} + ^drfq-^C- ^^s^cos« 

+ ♦gj 18lne08irn|/) + ♦gy 1CJa8in2e08irn|» + (JsY08in2eo - 608in2eo)co8i|)) 

+ ♦ex 1CiaBin2eoco8« - ('$Y08in2eo - ßo8in2eo)8in*)} + IY<ir{^eY 1(q
,
E08ineo 

+ ^po^V008* * ♦ex,ic- ,1,E0,ineo " «I'FO
008
^

8111
** 

+ IZdr{<1,FO( 

- ♦gy ico8eoco8* ♦ tex ico89o8ini(;) + ♦gy jC- is8in2eo8in* - (J5Y0sin2eo 

+ H0co82eo)co8*) + ♦gj i(- *SBln2eoco8* + ('syo8in2eo ♦ Boco82eo)8lin|))}|^   j 

♦ j [^mdr^r} ♦ ^drfq'^ne J + IYdr{- q'E08ineo - q'^cc^} 

+ IZdpt<l,rocc»e0)]#eeTj+   j - M^Ham^Qp^ [♦    j [f-em6r{- b2(a2 

- rYo)} + Ixdr{iaBin2eo} + Iz<ir{- l88in28o}J   ß( +  1 MjL^tanö tano    5! 

+     r^R'emdr{a2 ♦ r2} + Ixdr{8in2eo} + Izdr{co82eo}] Y 1 

+     M^aa««^'       ♦  E [({
R"0-4r{*B.1' " a2vlfi} + Ixdr{*.p>i8ineo} 

^"^   j        i NE 
+ IZto{*,l.lC0«e0}] » T.i(    + j^(M1L2taUai(*FPR.i 

J      (   NAr  p 

+ EL2tanai/(R-e)^ETfi))qTti j ♦JEJ^ " mdr^^U^in* 

+ (r + e)a ß cos*) + ^        (-(r + e)a ß 8iin(/ + a2ßco8i|()]} 
2  0 OAti 20 2 0 

+ Ixdr{fi[- ♦eY^1ßoco82eo8in^ - ^x^co«^^^]} + lYdr{fieo(*ey 18ln« 

+ ♦eXfico«#)) + Izdr{flß0(*eyjico82eo8ln* + ^^cc^^cos*)}] ^ 

+     j [^R"eindr{- 2na2(b2 + rßo)} + Ix(ir{n8ln2eo} + Izdr{- flsir^}] ^eST 
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+   j kR"eBdr{- M(rH0 * b2(a2Y0 + r))} + Ixdr{n(- 2q'B05lneo ♦ Y08ln2eo 

- Ö0)} •»• Iydr{flß0) ♦Izdr{n(- 2q'poco88o - Y0«ln2eo - ßo)}| ß 

+     C L^tan« tana S [  + ) (Sei u   + C-Lftan^, )Y [ 
[12 3 I     \        f 111 J* 1        ) 

[^«-«W- 2fl(VEti + re0#ptl) - 2flrvjtl) * Ix«lr(n[rEti(2q.E08ln2eo 

+ ß08lneo) - ♦•p.iß0^
eo3> + Iyto^*,l,lt- 2<l,E08in2eo " <! Vin2eo 

" V^o5  + ♦,F.i(<l,E08ln29o + ^'PO0082^ + ßoC086o^} 

♦ Izdr{n[^Eji(q'F08ln2eo ♦ ßoBineo) ♦ ♦yi(- 2q'roco826o 

-.     >   ( NE J 

- ßo«>«eo)J>J ir.i 
+ S/W^I^FPR,! + CL2tÄMi/(R-)>ET.i))M 

| E^R"emdr{n2[*eY>i((- b2(a2Y0 ♦ r) - rH^sln^ Hb2U2 - ^J 

+ a2rßo)co8i|)) + *$Xtiii' b2(a2 - rY0) - a2r0o)8in« + (- b2(a2Y0 ♦ r) 

- r2ßo)co8*)]}]  ii        +      ^R"endr{fi2[- (b2 + a2)ßo + eb^} +    Ixdr{ 

- fl2ß0co8290) * Izdr{fi2ßoco82eo}]   ^e^     +   j - K^tam^e,,, j 

+      [^R"eindr{n2[b2(a2 - rY0) + a2ßoC2r + e)]}    + Ixdr{- Jsn28in2eo} 

+ Izdr{isn28in2e0}    ß + j K L2tan6 tana   ß j  +   j [£R'emdr{n2[e(r - a YO) 

- b2rß0]}    + Izdr{- fi2ßo8in2eo}]Y j+   j K^^tan^^ j   +  j y   j 

♦j^WiQ^- ♦Efi(b2ß0 - e) - a^,])^! 

+ ) f (^V^l^FPR.! + CL2taaai/(R-e):i*Er.l))<lT,i 
' i=l 

Tail rotor control system contribution: 

- CjI^tanOjXj, - K1L2tana1X2 
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; _• ^'*--i C.    *■ y --■     -it* -r-r    ,>-r-- 

Main rotor control system contribution: 

+ [- HC L tana ^Z- (-(sind + cosfijsin^ ♦ (cos« - nin6)co84i) 
12        1      «g 

- l8C,L0tano,]X. + [- IjC L tana V,, CC»in« - coB6)Bln* - (cos« 

+ 8lnd)cos^) - »jC L tana JXy ♦ [- Cj^tana^^/ (cosfislnil» + sinÄcos*)]^ 

♦ The coefficients of X., X-, and X., which are identical to those of 

X., Xp, and XT. respectively, vith C replaced by K . 

. o (A78) 
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.    <»*••% MK-   JK^ .•■L-i 
<- 

Blade Bending Equation« 

ji:[^-e«»dP{fXtlUEtJ(Y0.ln« - eo.*) + v^j.ln* ♦ ♦pjß0.ln*] 

+ ♦Y.i^E.J^ V08* " ,1,*) " ^.J008* " ♦F.JB0CO8^ * ♦z.i^F.J 
+ ♦eY.l^S.J^^ * ♦PtJ(*2Y0 * r ♦ e)).^ ♦ (- ♦^jC^ - ryj 

' ♦l.A ^ r8o))cos«] ♦ ♦eXfirUFtJ(»2 - nro) ♦ ♦EJ(b2 ♦ rB0))Bln* 

+ C*E.Jb2Yo + ♦p.J(Vo + r + e))c08<':i + ♦c/.ib2Vl.J8in* + ♦ex,ib2Vl.JC0,,*} 

^ IXdr{*,F.JC*eY.i(cO8e08in* + (Yoco8eo " ßo8ineo ' ^V008"0 

+ ♦ex.i(e0,eoc0"* -  (V08eo - 6o8ineo " <l,E0)8ln*)]} 

+ IYdr{*,E.j^eY.i<1,FX)C08* - ♦ex.i<i,F08in^> + Izdr{*,E.j[*eY.i(- 8ineo8in* 

- ^08ineo ♦ ßoco8eo + q'ro)coi#) ♦ ♦gj^C- aine^os* + (Y08ineo + ßoco8eo 

+ iW-^W] ^1   {    + I [fR"*-to{b2*B.J  + a2*F.J}  + IXdr{^^,F.J} 

+ ^t" *VE.J} * ^^'FO*1!.^] VT|    +   I - MlVePRUFPR.J 
+ ^tana^CR-e)]^^) ^ [♦   j [^^♦F.JCVo + r)  + ^^2^ 

+ b2Vi.J} + IXdr{*,F.JC08eo} + h***' ♦E.J,ineo>] 5 i+   j MiL2tan63UFPR.J 

+ tL2tMB
1/<R-)>ET.J)  Sl +  | ^R"e,ndr{*E.Jr - VlJ}  + IXdr{*,F.J8ineo} 

+ IZdr{*,B.JCO"e0)]Yi  +    j  MiL2tanaiUFPR.J  +  tVM0l/(R-,)]*IT.J) Yt 
i       r i i 

* 1 E U    ""'♦'E.J * ♦'F.J' + V^'F.^'F.I' * ^'♦•E./'E.I1] ^.1 
rl NE 

+    C*FPR.J + CV800/^^♦ET.J)  1?1
(MiC*n»R.i 

I   < NA r ♦  p^tanWCR-e)]^)) '^ [   ♦g [^-e«ir{2ß[*eY>1UFtJCa2 - r^ain^ 

+ ♦PJ(VO + r + e " Vo)"**) + ♦ex.i^ ♦F.^VO + r + e " \*0)"** 

+    *F.J(a2 " ^o^08^^ + ^^♦'F.J^eY.l^^V08* " (V08eo " I'lO 
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DKHCUP2S .^»J?.*)^    JXC, '■'■ ' ;r • >..     •"""^      <•'■'"•' 

- 60«in80)«in#) ♦ ♦eXtl(- co«eoiin<» - (Y0coBeo - 4^ - $o«ineo)coii|»)) 

♦ ♦,lJ(*eY.l(- »^«o00»* ♦ <Vlneo - 6oc08eo " 'i,B0"in2e0)Bln,l') 

♦ ♦ex.l(iin9osin* * (Vineo " ßoco8eo ~ <l,E0«in2e0)eo«*))]} 

♦ IraHO^^C^titn^eoM ♦ C«i'B0ain2eo - 2<l'po.in2eo 

♦ eocoseo - Y0Blneo)8in*) + ♦eX|1(- BineoBln* ♦ (q'B08in2eo - j^oin2^ 

♦ ßoc08eo " Vln8o)cc  "^ + ♦,FtJ^6Y,i(" COfle
0

C08* ♦ (- <l,EOco82eo 

♦ 4,IO,1,l2eo * ßoBineo + Y0co8eo)8lnK») ♦ ♦eXti(co8eo8ln« + (- q'E0co82eo 

♦ <i,p08in2eo + Bo8ineo ♦ voco8eo)co8<.))]} ♦ Izdr{n[*'p    (♦gy 1(co8eooo8<|» 

-(q'p08in2eo - q'E0co82eo + YOCO80O + 6o8ineo)8in«) + *^- coae^in* 

- (q,
F08ln2eo - q,E0eo82eo + Yco8eo + ßo8ineo)co8*)) + ♦«g ^- Binö^os* 

♦ C2q'p08in2eo ♦ Y08ineo ♦ ß^e^ln*)^^ ♦ ♦eXji(8lneo8ln* 

^  C2q'po8ln29o ♦ Y08ineo * Boco8eo)co8*))]}] ^ j + | ^R-eBdr{2n(*FJb28o 

" ♦».J»26o) + 2flvi.Jb2} * IX^O(*'p.Jco8eo ♦ ♦•Ef(J8in60)} 

+ IYdr{n(- ♦•E^8in6o + *'FJco8eo)} •»• Izdr{n( 

" ♦,EtJ8ineo " ♦,F.Jco89o)}] ♦e§Tl   +   j- VzWW.I 

+ rL2t8nai/(R-e)]*ETJ) eT j +   j \^^T{. ^(^ * rßo)} 

♦ Ixdr{Q[*'PtJCY0co8eo - ß08ineo - q'^) ♦ ♦•EfJCY08lne0 - ßoco8eo 

- <l,E08in29o)^ + IYto«r*,J.j^,K)«in2eo + 2^Y^0^o - Vineo 

+ eoco89o) ♦ ♦•FJ(- q,
BOco82eo * q,ro»in20o ♦ Y0CO»V ßo8ineo):l} 

+ IZdr{0^,liJ(- ^•po0082^ " Vln9o - ßoco89o) + ♦,F,J(- ,l,pO,ln2flo 

146 



■" >"" -        >' ■'T : .1 ' 

+ ^'EO
00
"^ " V0,,eo - ßo8lneo^}] * } * j C'L,tand3(*FFR.J 

+ tV^/^^^ETj) SJ*   } [^•»toföOC^^ * rVFJ + vifjr)} 

♦ ixdr{nU'FtJßoco8eo - ♦•IiJ(Beiine0 ♦ 2q'E08in2eo)]} 

♦ IYdr{flU'EJ(2q'E08in2eo ♦ q'po8in2eo + B^inBo)  i ♦'j.^C- q'Eo8in2eo 

- 2q'poco82eo - 0oco8eo)]} ♦ izdr{nU'EJ(- q'roain2eo - eo8ineo) 

+ ♦F.J^<1,FOC082eo + ^'EO
81
^ 

+ 8oco8eo^}]-? |+   I ^V^V'FPR.J 
+ [Vanai/(R-e)>ETtJ);   j jiEi[^

,-«ir(2ß[vitJ*Efi - v^^ 

+ ^E08lneo)^,K.<,*
,E.i  " ♦'E.J* V} 

+ Ifdr{n(q'E08ineo + 2q'FOco80o ♦ ^U^^^, -  ♦,F,j*,
E,i.) > 

♦ IzdrOKqV^o " ^'FO008^ - ßo)(- ♦'p.J^E.i + ♦,E.J*,F.i)>]^.il 
< NE ' 

+ | C
I
U

FPR.J 
+ rv^v^-^W 5i UFPR'i 

+  CL2t,l00l/(R-):]*ET.i)4r.i 1     +   1 ^q.J^.A.J  ^.J   \ 
♦ j [^-emdr{ß2^Fj(a2 + eYo) - ^^(ß^r ♦ e)  + b^?) 

♦ ijdrC- ß2^E>J(q'E08in2eo + 0oco8eo)} + iY^{n2[rE>J(q'E0Ein2eo 

♦ Izdr{fi2[- ♦•EtJq'F0co82eo + rF>J(- q,F08in2eo + q'E0CO82e0 

-ß08ineo)]}jVTj     ♦   j   -K1V9pR(^FpRiJ + [L2tanai/(F:-e)]*ET>J)eTj 

+  j  [^"e^{"2t- ♦E.JV, 
+ ♦P.^Vo + r + e + 2b2B0) - VJ^]) 

+ ixdr{- n2*,EJ8ineo} + iYdr{n2(*'EJ8ineo - ♦•F^co8eo)) 
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KlL2
tana

1
(*FPR..1 

* ixdr{nWeo*.EJ*.Etl} ♦ ^irmr^J- ♦•E.iBin2eo * ^•F.iBln2eo) 

Tail rotor control system contribution: 

" Cl(*FPR.J  + t^^-^W.A 

-K1
(*FPRJ  + CVanai/(R-e,]*ET.j)X

2 

Main rotor control system contribution: 

♦ [- 'fC Uj^ j + [L2tanai/(R-e)]*ET    )(1 + Vp (-(sin6 + cos6)sin<|» 
S 

+ (co86 - sin6)cosi|;))]XA + [- W^^ , + [l^tano^AR-e)]^^(1 

+ ^B/j, ((sinÖ - co86)8in(|) - (cosö + 8in6)co8i|»))]iF + [- C^^p 

+ [L tano /(R-e)]^_   .)(cos6sin* + sinöcos*)]^ 
2 1 r.i, J •" 

+ The coefficients of X., X-, and X^ wnich are identical to those of XA 

iL, and X. respectively, with G    replaced by K  . 

- 0 (A79) 
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m ^ .. . ^        l-i    ~-JmH. 

Tall Rotor Control SystMi Eovtatlon« 

2   2 

♦ C^tMo^CR-e)]^^)^^) ♦ d X2)    * Czii - C2X3 

I 
+£ {KlL2*epReT " KlL2t*nö3e - KxLztanaiY 

- E (K/<h»R.i + C^tanoi/CR-e)]^^)^^) ♦ Kfo}* «-2*2 K2X3 ■ 0 

(A80) 

M3X3  +   (C2 + C3 ♦    030X3  - C2X2  - 03^3!   - €3^  +   (K2 + K3  ♦ K31)X3 

- K2X2  - K31X31 - K3Xj+" 0 

(A8l) 

Mi,Xk ■»• (C3 + 01» + C^Xi» - C3X3 - CjjjXm- CXs +  (K3 + Ku + Km) x», 

- K3X3 - K31X31 - Ki^Xs ■ 0 

1(5X5 +  (Ci, + C5 + 050X5    -    0kX^  - 05^5! 

+   (Ku + K5 + K51)X5- KX-KX    -KX = 0 H ' 5l/   5       «♦   i*      51 51       6    0 

When the servo is included, the damper C5 Is not used. 
•• • • 

M3lX31 ♦ C31X3l- 03^3 + K31X31- K31X3 ■ 0 

•• . . 
^♦iX^j  + CijjXm- C^Xi»  + K^jXjjj— K^JXI» ■ 0 

M51X51   + 051X51-05lX5  + K5XX51- K52X5 ■ 0 

The computer program of the analysis allows the user to 
Include or omit any of the above tail rotor control system 
degrees of freedom as desired. 
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Main Rotor Oontrol Systcn Eoufttiom 

W/qiitt ♦ iL) ♦ ^)]xA ♦ fc^d, - ipA) ♦ VJXy + tV2R2(- iJDx, 
HA N 

+ co8«]8iu* ♦ [Bln6 - co86]co8«))*epRfiT - »sC^^anÖ^l - V« ([ßin« 

+ co86]8in^ ♦ [sinJ - co86]cos^))0- hC L tana (l .    B/_ ([sln6 + co86]8ln<|( 
1    2 l Kg 

HE 
♦ [8ln6 - CO86]CO8*))Y -    £ (J5C

1
(*FPR,i * [Vano^R-e)]^^! 

- Vj, ([8in6 + cos«]8in<) + [sin« - coBSjcoa*))^ i) + (J5C (^/p )2C-(8in6 

♦ co86)8int - \blno - COB6)CO8I|( - J5C082Ö8in2ij» - 1581026008211» + y+^C  )XA} 

+ C.X.  ♦    2l tCüC ( ö/R )2[- 2co868in* - 28in6coBi[» + 8in268in2i(< - coB2fico82ij/] 'A A 1        «S " "       n«l        *       '"s 

HP )iL} +    X) OiC (^/o )2[coB68in* + 8in6co8* + »5(00826 - Bin26)8in2i|» 
1 ^ n-1      1        ^ 

- (sinö + co36)cos6sin2^ -  (sinö - co36)sin6cos2i|)]xL } 

+ DiBplacement coefficientB which are identical to the velocity coeffici- 
entB, with C    and C.  replaced by K    and K. reBpectively. 

-KAX0A    -    0 (A87) 

iki1/^ - iFA) + ^)]xA + wV^dpA ♦ V * ^)]^ ♦ l1/^- iL)]xL 

NA N 
+ c 5i( S(' *ex'ilFA" *9Y'ilL) + ^.i1^3 + R{iiC^{1 

- ^B/n ([COBö - Bin6]Binij» + [Bin6 + co86]coBi|»))^ö_08r.  - ^C L tan6,(l 
n_ orri  i 12 3 

- B/R ([COB6 - Bin6]Binij) + [sinö + COB6]COB^))$ - ^C L tan« (1 

R_ •        m 

- RB/R([co86 - Bin6]Binij» + [8in6 + cosö^os*))? -    V (^C^ppj^ i 
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.. Mi      , -■   -    ^   .*«--*^.l       llfc«l>»1     —- - 

♦ [L2t«noi/(R-e)]4ET^1)(1  - V» ([COB6 - 8ln«>ln* ♦ [«In« ♦ 

♦ COBAJCO«*))^ i + (HiC (^Z. )2[- 2COB«B1IH(» - 2Bin6coB<» ■♦• Bln2«Bin2</ 

N 
- COB2«COB2*] ♦ hC)XA} *    23 HhPAH/- )2[(8in6 - COB6)B1D^ - (COB6 

1    * n-1        1        "s 

♦ Bin6)coB* + lscoB2«8in2* ♦ 'sBln2ÖC0B2V» + h] + ^CJXj,} + Cjj^, 

+   J^   ihC i^/n )2[co8«8in<) + BinficoB* - h(coB26 + 8ln26)Bin2i|» - (COB6 
n-1 ^B 

- 8ln6)coB6Bin2^ - (COBö + Bin6)8inöco82^]iL} 

+ DiBpr.acement coefficientB which are identical to the velocity coeffici- 
entß, with C    and Cv replaced by K    and K- respectively. 

I e I ' 

-KpXoj,    -    0 (ASS) 

l1/^- iL)]iA 

+   £,   {C L ^/p (cosösin* + 8in6co8i|»)*flp §    -    C L tan«  ^/p (coBÖsin* 
n«l       1  2      "s 3      "S 

NE 
+ 8in6co8^)S _ c L tan0 V    (coBfisin* + 8in6cos^)Y    +    ^ (- C (^p i 

♦ [L2tanai/(R-e)]*ETji)(co86Bin* + 8in6co8i|») )ir i + (isC^V« )2(c0868in* 

+ Bin^cos^ + 35(cos26 - 8in26)8in2^ - (sinfi + co86)cos68in2ij( + (cosö 

- sin6)8in6co82*))XA + (^ (VR )2(co868ini|; + sinöcoBiJ» - '5(co826 
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.T   • ' 

♦ 8in26)8in2* + (sind - CO86)COSÖ81D2<* - (cosä ♦ 8in6)Bin6coB2(J») )iL 

♦ (^SC (Vp )2(»ln2«8in2* ♦ 2co«2S8in2<» ♦ 28in2«cos2*))XL} ♦ cj^ 
D 

♦ Displacement coefficlenta which are identical to the velocity coeffici- 
ents, with C    and C   replaced by K   and K.  respectively. 

-VOL   '    0 (A89) 

When the seirvos are included, the dangers C., C  , and C.   are not used. 
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.inMwiw>MMi     —   ■-  ■••^-.■frv^yv.'1'     'a'- ■" 

T>il Rotor Servo Eouatlon 

(a8/u1)(Ap/a8C<i)(l ♦ Ky2)X0 

HA 
- (VSKVV^    S (^A^X.! + 8FA.Y*y.l + 8PA.Z*Z.i 

+ 8FA.exVi + 8FA.eY*eY.i4) + ^s^i + K)xo " Kx 

- (VMl)(R3/a8,(  Ji (8FAyX.i  + 8FA.Y*y.i * SFA.Z*Z.l 

+ 8FA.ex*ex.i + SFA.9Y*eY.i)^) 

NA 

+ 8Fv.ex*ex.i + ^w^Y.i^i5   '   0 (A90) 

In this equation K represents K   or K  , etc., in the tall rotor control 

system shown In Figure A2, depending on which elements are Included In the 
model employed by the user.    The computer program of the analysis auto- 
matically Incorporates the appropriate value and also allows Inclusion or 
omission of the servo, as desired. 
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 M ^.l «, ..■^rr itoitif-rm : •-  so^^sr." . 

Main Rotor Bgnro IqiiatioM 
Alt BWVO 

- (a8y»,M)(APyoß.ACq.A)KAll2tA
iA 

NA 

* SFA.z.A*z.i * ^A.exyex.i * SFA,eY.A*eY.i,ii) 

+ ^^.A * KA)X0.A 

-KAXA 
NA 

1"1 

* 8FA.exyex.i + SFA.eY.A*eY.i)5i) 

NA 
+ (o8.A /»'l.A^^.A^S.A^ £ (SFV.x.A*X,i + SFV.Y.A*Y.i * SFV.ZfA*Z.i 

+ SFv.ex.A*ex.i + BV.A*eY.i)5i) " 0 (A91) 

The equations for the forward and lateral servos are identical to the 
above, with the subscript A replaced by F and L respectively. 

The computer program of the analysis allows the user to omit or Include 
any or all of the servos, as desired. 
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'- -y».»-. x-*. -rti.yrr.m.V.:       JUT. .-..  r^S   ' 

Aero<^ynaaic Forcea 

At this Juncture, ve have developed the differential equations that 
govern the free vibration of the dynamic System. These were developed 
using Lagrangian procedures and Lagrange's equations In the form of Equation 
Al. We now wish to add the Influence of aerodynamic forces on the system 
such that Langrange's equations become 

J^iT ) . ar + av + 3£ . Q (A92) 

where the Q. are the generalized aerodynamic forces. 
J 

Since we are Interested In the stability of the system and not partic- 
ularly In forced response phenomena, the Qj will be those forces that arise 
from motions of the dynamic system. That Is, Equation A92 will define a 
set of homogeneous differential equations In the generalized coordinates, 
q,   . This being a linear analysis, the Q. can be obtained by the method 
or small perturbations. 

Although the analysis Is linear. It Is worth pointing out that the 
coordinate perturbations are performed about certain steady Initial valuer 
of the generalized coordinates that do not necessarily correspond to regions 
of linear lift coefficient, drag coefficient, etc. Rather, it is assumed 
that the perturbations are small enough for the behavior of the system to 
be considered linear at that instant. This allows us to include stall and 
compressibility effects even though the generalized aerodynamic forces 
developed represent quasi-steady effects. In a later section, we shall 
further refine the aerodynamics by adding circulatory and noncirculatory 
unsteady effects of the types postulated by Theodorsen^1' and Loewy/2' 

(1) Theodorsen, T., General Theory of Aerodynamic Instability and the 

Mechanism of Flutter, NACA Report ^96. National Advisory Committee 
for Aeronautics, Langley Aeronautical Laboratory, Langley Field, 
Virginia. 

(2) Loewy, R. G., "A Tvo-Dimensional Approximation to the Unsteady Aero- 
dynamics of Rotary Wings," Journal of the Aeronautical Sciences. Vol. 
2U, February, 1957. 
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Blade Ilamantal Aerodymunlc Forces 

The elaaantal aero<^naalc lift, drag, anl pitching moment on any 
element 1 of any blade n are given by 

^r.   i " ^PC«   iUn   <CT   n   i*'*   i n,i n,i n,i L(n(l    n,l 

^.l * ,apCn.lUJ.lCD.n.i6rn.l 

^n.l " ^n.lX.i^.n.l^n.l 

(A93) 

(A9U) 

(A95) 

Here, (INQ ^ la the aerodynamic pitching moment at the airfoil aero- 
dynamic center I and dl^ ^ and <l%ti act In the directions shown In Figure 
AJ, The lift and drag forces can be resolved Into the X  Y  Z axis 
system to give elemental T and H forces defined by 

dT 

dH 

n.l " ^n.l^^n.l " ^.^♦n.l 

■ dL .sln^  . ♦ dD .cos^ . 
ntl     n,l  

Tn,l   n.i  Tn1l 

(A96) 

(A97) 

vhere the local inflow angle is defined 

-1 
♦n.l   "   **   ^.n.i'XnJ (A98) 

of 
Thus, to evaluate dT    lt dHn it    and ^,1» we 

Un.i» "P.n.1» UT.n,l» 8L.n,i» ^D.n.l» ^ CM.n.l* 

must know the values 

CL n i » CD n i» ard   CM n,i depend on the local angle of attack, and 
this is*seen frim*Figure A5 io be given by 

'n.l 3Pfn,l " en.l " ♦n.l CA99) 

156 



JteJI ■ Ji   i ■     f Ir 

3/4 CHORD 

Figure A5. Forces and Velocities at a Local Blade Element. 
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Also from Figure A5, It la apparent that 

Up>n ^ and  UT n>i, being the local relative velocities in the X , Y  , Z 
axis system, are obtained as follows: 

Neglecting, for the moment, the forward velocity component, it is 
readily,established by inspection of Figure Al and using Equation A28 to 
define x^ ^ that the absolute velocity of any blade element i on any blade 
n is given by 

V   "   ^-^.i (A101) 

where     V   -    {0, 0, - VA} 

The local relative velocities at any blade element are obtained by 
appropriate transformation of 7   ..      Thus 

T.n.i» R.n.i» "P.n.i   L ^ ^ex *»n ß*n Y'n ^E.n.i ^F.n.i ^^ 

(A102) 

are 
Therefore, in the X , Y , Z axis system, the local relative velocities 

{üT.n.i' UR.n.i-UP.n.i} ' ^/g^'l.n.i'  UR.n.i-UP.n.i> 

(A103) 

Inserting the steady initial displacements of the generalized coordi- 
nates and assuming zero initial velocities of the generalized coordinates In 
this expression, it can be shown that, initially. 
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VM    ■   Qt*n * rn.i * »n.lYo.n " bn.lßo.n " (anti 

" rn.lYo.n)(Yo.n " »'iO.ii.l^ " Vo.nCYo.n '  ^EO.n.l^ 

(AlOi») 

Vn.l   "    " flC{en * rn.l),l,POfn.i(Yo.n " ^EO.n.i'^ + (ftntl 

" rn.iYo.n)(ßo.n + ^FOtn^ + VA tA105) 

Since the angle of attack 1B measured at the 3A chord, the appropriate 
definitions of a i  and bn ^ in Equations AlOU and A105 are 

•n.i " ^EO.n.i + (Cn.iA - ^n.i^Vl (A106) 

V " ^EO.n.l + (Cn.l/U - ^n.i^^on.i (A107) 

These quantities define the position of the 3A chord on the deformed 
blade relative to the blade feathering, or elastic, axis. 

UR Q 1 is the local relative radial velocity and is ignored since the 
effects 'of radial flow are not taken into account in this analysis. 

We are new in a position to calculate the blade elemental aerodynamic 
forces and, therefore, the generalized aerodynamic forces. 

Generalized Aerodynamic Forces 

If ve apply the principle of virtual work, it cam readily be established 
that the system generalized aerodynamic forces are given by 

(A108) 
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for a . In the rotating system, and 

N NB 

J  n-l 1-1   n*1  3qn,J n»1     n»i  äT , n»1 

^1,J (A109} 

for a    . In the fixed aye tern. 

{dPn j,} is obtained by rotating the blade elemental T and H forces such 
that they act In the directions of the absolute displacements.    Thus, 

{dF    .}    -    HL-„ A->.    A0    A      ]{dH    ..O.dT    .} n,l L qey    qex ♦.n 3fn Y,nJ     n,l*   *    n,i 
(A110) 

{dMjj '1 Is Obtained by transforming the local blade elemental pitching 
moment vector to the absolute axis system.    Thus, 

{dMn.i}   "    CAqeYVA.nAa.nA
Y.n:1{0'dMn.l0} 

CA111) 

On l) i8 ^he rotational displaceat vector In the absolute cuds system 
on vhlcA (dN    .} acts.    It la given by 

{9    .}    -    [A.   JL-VA,    A.    A     ]{0, - 9    ,,0} 
n.l' L      '^ITBX"*.!! ß,n YtnJl n.l» (A112) 

If ve nov perturb the generalized forces given by Equations A106 and 
A107 such that. In general, 

^ 3 CQ4)n + «Q- (All^) 
J     Jo   J 

where the (Qi)o are the values of the generalized forces at the steady 
Initial values of the generalized coordinates, and the &q. are increments 
of the generalized forces resulting from small perturbations of the gener- 
alized coordinates, it can be shown that if we make a first-order Taylor 
expansion   of the ÖQ. about the steady valuee (Qj )0l then the perturbation 
forces are given by the following general expression: 
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where the summation Is performed over the number of generalized coordinates. 

The subscript o In this expression Implies that the quantities are to 
be evaluated at the steady initial values of the generalized coordinates. 
It will be remembered that a summation over all blades Is Implicit when 
the generalized coordinates cure In the fixed system. 

Equations A108 and A109 give the values of the general!zedjaerodynamic 
forces, and they both contain the absolute displacement vector Xn ^.  When 
XQ £ as defined by Equation A28 was developed, we were at that time 
coAcemed with the displacement of the center of gravity of the blade 
element 1. Hovever, we axe  now concerned with aerodynamic forces; and if 
we consider these forces to act at the element aerodynamic center, then it 
Is the displacement of this point that must be defined. This is easily 
accomplished by substituting AC . for CG . In the expression for X ., 

It now only remains to define the derivatives given in Equation Allk 
to establish the values of the generalized aerodynamic forces Q. required 
In A72. J 

The following list of aerodynamic forces and derivatives is presented 
without subscripts to preserve clarity. This also applies to the generalized 
force expressions, which are presented xn Integral form. Nevertheless, it 
should be remembered that In these force expressions, all generalized 

'•Cw»v dlnates and physical properties associated with the zotor system have 

a subscript n, the blade number. 
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dT - %peü[cLüT - cDupJ 

dH - »speuE^Up + cDuT] 

dM ■ '5pc2U2C, M 

m. 

m 

- CDfa
UP + ^cl/vfCL.MUT " CD,MUTV 

^i^pcU^^-C^UpJ 

^. = ^V^c^Up ♦ cD(u2 + u*) + cLtau2 

4^ - ^^c^ + cM)aup] 

^ - ^PC^C^Up - CM>aUT] 

3CdM) 
3a " i5pc2CM.au2 

(A115) 

(A116) 

CA117) 

(A118) 

(A119) 

(A120) 

(A121) 

(A122) 

(A123) 

(A12l» 

(A125) 

(A126) 
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SA 

"    A {*«.i(üPC08,,' ' "^o " ^EO^111^ 

" ♦ex,i(upCYo " ^EO^08* * up8in*,}^ 

- {fi(aß0 ♦bq'i0))*eeT 

-{ne(Yo -<1,E0) +UP0o}Y 

♦   f ^[♦•E,i(- a - eY0 * (r + e)q'E0) - ^'^ - ^^ 

+ riJ - "P^VA  + <1,F0) + ♦,F.i(Yo " ^V^K.i 
HA 

+ i^ {Vi[b(Yo " *'Eo)ain* - (b + ^o)co»*] + ♦ex.i^^o " ^V008* 

+ (b + rß0)8inl|»] + ♦Xti[(Y0 - I'^sin* - cos*] + ♦Yfi[-(Y0 

- q,
B0)co8* - sinij»]}^ 

♦ {bHeeT 

+   {^Yo-q'Eo)}0 

+ {r + aq'^j}-? 

HE 
+   I.   ^i^EO + ♦E.i^.i 

i-1 (A127) 

3Up       9 Up 

P       3q 34 

HA 

"  tn(a-rY0) +Up(ßo+q'F0)}ß 
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•»• {n(reo - e<i'po)}Y 
NE 

+  Si ^'F.!^ 
a + V + ♦i.i(6o + »ro^ - VF.I^O 

+ ^FO^^T,! 

+   X   {(-(a - rY0)cos* ♦ (r + e + bq'^ ♦ aY0)Bin*)^ey^ 

♦ ((a - rYo)elni|/ ♦ tr + e ♦ bq'pQ •»• aY0)coBi|»)*eXtl 

+ ♦z.i^ 
+ ta}*eÄT 

+ {aY0 + r + bq^Ö 

NE 
+ ^1 {" ^'PO + ♦F.i^.i {A128) 

6a " H + If " {-1}*eeT CA129) 

Equations A115 throu^x A129 and used in the computation of the 
generalized aerodynamic forces.    These forces con^rise the right-hand 
side of Equation A92 and have the following forms: 

( R    r N NA 

X ■ b    [Z ( I (♦.x.Ai.j«- Vo * V«o ♦'♦•>'» 
+ ai(ßo + I'FO^^ + ♦x.j^ey.i^ " V/W^ 

+  {*8X.j[(- V111* ' ai(Yo  " ^'BO)208*^1 -  ^fW -  (V'PO 

- biY0)cos<»)dT] + ♦eyj^V08* ' ai(Yo " I'jo^in*)«« + (b^os* 

+  {\^T0 - Yo)8ln*)dTl>VT 

+ {*ex.jf((bißo - r - VV8111* + e(^ - ^W008*^ 
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- (fti(eo + (l,F0)8in♦ + e(eo + I'yo)^»»)«] ♦ ♦ey.jf^- Vo + r 

♦ aiq'B0)co8* ♦ e(Y0 - q,E0)8ln*)dH + (a^ + q'F0)co8i|» - e($o 

+ q'ro)8in*)dT] + ♦j^ilB^dT - ♦y)Jco8*dT + ^^((Y,, - l'^)^ 

- (ß0 ♦ q,F0)dT)}ß 

* '♦ex,jC(bi(Yo " 4,io,,la* + (eßo " V008*)«1« " ^Vro + Vo 

♦ r)8ln<» - (Ej - rY0)co8*)dT]-*eYJ[(bi(Y0 - q,E0)co8)|» - (eßo 

- b^sin*)^ ♦ ((- b^'pQ - aiY0 - r)co8* - ^ - nro)8ini|»)dT] 

- ^^((YQ - q,E0)co8l|» + 8in«)dH - q'^COl^dT] - ^t^^yo ' ^'EO^10* 

- co8i|»)dH - q'po8ini|»dT] + ♦Zjß0dHh 

N£ 
+     fo {W((- ♦F.l + bl(Yo " "»'BÖ ♦,E,i + aiVE.!)81"* 

"  (♦F.i^e - ^EO)  + Vl.! * «VE.i)c08*)dH " (UE.i + h
l\ 

' I'EO^'F.i + ai(ßo + ^FO^'p.i + bi<l,ro*
,E.i)8in* +  (*E.iYo 

" ri " ^FO^F.i +  (r + e)^^^.!^08^^ - *eY.j[((- ♦p.i 

+ bl(Yo " ^EO^'E.i + ^^o^E.i^08* +  (*F.i(Yo " iV  + bl*,E.i 

" eß0rEti)8in*)dH ♦ {(- ♦ E>i - bi(Y0 - «I'JJO)*^.! " »A + ^FO^'F.I 

" bi<l,FX)*,E.i)c08* + (*E.iYo " ri " ^VF.! +  (r + e)q'porF>i)8in*)dT] 

" ♦x,J[(*,E.i8in* + ♦'E.i^o " ^V008*^ +  (- ♦,F.i9in* "  (♦'F.i^o 

" <l,EO)  + (l,FO*'E.i)c0,*)dT] " ♦Y.J[C- ♦,E.iC08* + ♦'E.i^o 

- q'E0)8in*)dH ♦  (♦•Ffico8* -   (♦,
Pti(Y0 - q'^)  ♦ q'ro*'Eti).i^)dT] 

" *zj - WE,!** 
+ ♦,F.i(*o + ^Fo^^^.i + U*nJVo + r + e 
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♦ VW - W»i ■ "V 

* b
1

<l,FO) ♦ ♦l.J^o + <l,ro
,,8in* * ♦ztj3Ct16UT ♦ t2«Up ♦ t3«a] 

* ♦x.J,C08* " (Wbi * ^o) + ♦eY.^l^o - ^V + ♦x.J^o - ^W 

- ♦Y^)8ln*][h1«UT + h2«Up + h3öa]}]dr| 

-  Ü&jdH - (ai - rY0)dT)Y 

HS 

" rl " ♦,F.i(b
1 " r<l,FO))dT)<1T.i 

+ (a^ ♦ r ♦ bjd'^Kt^ + t2öUp ♦ t36o) 

- ^^o - ^Vi)HhiWT * VUP + ll36o)Jdr 
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(A130) 

HE 

* A ((" *** ' ♦,«.l*,10b
l
,<ffl " (*E.i + ♦,E.i<i,K)bi 

* ai(VUT + t2dUP + t36a)*9 

- bjOi^Ulj, + h2fiUp + h36a)*e 

" (V^^V"?*^«^]^! (A131) 

CA132) 



»Tt   t~<'i »—  .'W      "'"_'"■,.'.-—""K.-.t _ ■.uzr'-STT— 

' ire 

" ^V,po)(ti6UT+ VUP + S600 

]dr| 

i*J     '   KE 

+    £1
C(-*Vj.l-*V<l,EO*EJ-rj>)dH 

"  ^'PO^EJ^E,! + ♦,pfi
(- «»♦l.J  + 'j  + ^PO^Pj) 

^'po'j.i^^.i 

+ ♦FJ(tl6üT + S^P + S60) 

(A133) 

(A13U) 

167 



► '♦ - •    rr-- r**        KJ7""-'-m 

UMte>dy Aerodhrmunlci 

Circulatory Coaponent» 

nie liqportance of the effect of unsteady aerodynamics on rotor stability 
has been demonstrated by a number of Investigators. Anderson and Watts(3) 
give a good account of some of the vork that has been done. Their discussions 
generally relate to flutter phenomena experienced by unstalled blades in 
hover conditions. Under such conditions, the unsteady aerodynamic theories 
postulated by Theodorsen and Loevy can be used. Tbese theories differ only 
in that, if Theodorsen functions are employed, the effects of wakes from 
previous blades either are Ignored or are negligible, whereas the use of 
Loevy functions permits the effects of preceding blades to be taken into 
account. Theodorsen analysis, therefore, necessarily constitutes a single 
blade analysis, while Loevy analysis yields a multiblade solution. 

Both approaches define circulatory unsteady effects and cure readily 
accommodated by employing the unsteady aerodynamic lift deficiency function 
C» F» *  IG' defined by 

H^^k) + 2J1(k:)W 

H^^k) + iHo
(2,(k) + 2[Ji(k) + iJ0(k)]w 

(A135) 

This expression defines the Loevy lift deficiency function.    When 
W«0, Theodorsen lift deficiency functions are defined. 

In Equation A135, the modifier   W, which is used only when multiblade 
or preceding blade wake effects are considered, is given by 

N-l N=S. 
1 ♦     I   [e^V21™1] N e^n 

ael 
khN i2im e     e - 1 

(A136) 

where k« 2U is a reduced frequency parameter, u is the flutter frequency, 
c is the chord, and U is the total inflow velocity, m*"/^is the ratio of 

the flutter frequency and the rotor speed. h»'*irUp/cfi     is the nondimensional 
vertical wake spacing,    tn is the interblade phase which depends on the 
type of mode being analyzed. 

(3)    Anderson, W. D., and Watts, G. A., Rotor Blade Wake Flutter. Lockheed 
Report LR 26213, December, 1973. 
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For collective nodes. ♦n"0 

For reactionlesfl modes, ♦n-wn 

For advancing modes. ♦n - (-t/2)n 

For regressing modes. ♦n - (ir/2)n 

- 1, 2. ... (H - 1) Here,    n ■ 

Using all of the foregoing^' can be defined at every blade radial 
station. 

In this analysis, it is assumed that the rotor is in some steady-state 
condition when the perturbations of the generalized coordinates are made. 
Therefore, circulatory unsteady aerodynamic effects are incorporated as 
follows: 

We have previously derived expressions for all of the generalized 
aerodynamic forces resulting from the perturbations of the generalized 
coordinates. Equations A130 through A13U.    Clearly, these will exist whether 
or not unsteady effects are present.    Therefore, any unsteady effects must 
be added to these. 

Hence, the unsteady aerodynamics are assumed to affect only the 
derivatives of the lift curve slope with respect to angle of attack and 
Mach number, and those aerodynamic derivatives associated with the T and 
H    forces. Equations A118 through A123.    They are assumed to have no effect 
on steady lift, drag, or pitching moment, or pitching moment derivatives. 
Equations A115 through All? and A12U through A126.    Therefore, the circula- 
tory unsteady components of the generalized aerodynamic forces are obtained 
by first setting Equations A115 through A117 and A12k through A126 to zero, 
setting CL,    Cp,    CDta, and Cp^ to zero, and multiplying Equations A118 
through A123 by C .    The quantities given by Equations A115 through A126 
are then substituted for their equivalents in the generalized aerodynamic 
force expressions. Equations A130 through A13U. 

Noncirculatory Components 

In addition to the circulatory effects Just discussed, noncirculatory 
forces and moments exist that do not depend on wake effects.    These are 
produced by air mass accelerations and can be shown to be given by expres- 
sions of the form 

^c s Pu2VCi|j Äo + (V2 + "0ae] (A137) 

"NC " ""X^iJ Vo + H + S*2 " ^ " \W\1 CA138) 
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where h0 correspondfl to a blade plunging ciordlnate, defined positive down, 
and   a0 is a blade pitching coordinate, defined positive nose up. LRC ^nd 

H^fcare defined positive up and nose up and act at the quarter chord and 
elastic axis respectively.    The quantity a^b^ ■ a^c/g ■ EA.    ho is measured 
at the semi-chord. 

These equations have the form 

3%; r    ^ 3LHC da 
(A139) 

(AlUO) 

We can now make analogies between the coordinates h.0 and   a0  and the 
equivalent quantities in the present analysis. IIQ   is the equivalent of a 
change In inflow velocity and a0  is a blade pitch coordinate.    Therefore, 
we can write 

3MWC £ 

3LNC 
Ü^6UP 

3%C. 
3ür^Up 

3a 3a . 
37 ao = ' 36" e 

o 

In addition, from equations A96 and A97 we can write 

(AlUl) 

(A1U2) 

(A1U3) 

6T = 5Lco8f (All»U) 

6H a 6Lsln^ (A1U5) 

where ^ is given by Equation A98. 
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Substituting Equations A139 In Equations All*!* and Al 1*5, and using the 
equivalencies AlUl through Al 1*3, the following noncirculatory unsteady T 
and H force derivatives can be defined. 

t-    - |^SL - -ipUy | »k {All*6) 

tj    - ^p - pUUp | nl^k2 ♦ ik) (AH»7) 

h2     ■^"-ipUp|nk (A1,48) 

3H 
hl   " 1^' PUUP 2 ^'iP2 + ik) (AlU9) 

1 

Using Equations Al 1*2 and Al 1*3, the noncirculatory unsteady moment 
derivatives can be shown to be given by 

3M»/i p2 

.»g£.pUf[(^ + i)k2.1(l.Vk]. (A151) m 

The noncirculatory components of the generalized aerodynamic forces 
are obtainea by setting Equations A115 through A126 to zero and substituting 
the quantities defined by Equations A1U6 through A151 for their equivalents 
in the generalized aerodynamic force expressions. Equations A130 through 
A131*. 

Total Aerodynamic Effect 

The total generalized aerodynamic forces are obtained by adding the 
quasi-steady, the circulatory unsteady, and the noncirculatory unsteady 
components. 
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All of the above derivations have been discussed in general terms. 
However, it should be remembered that the aerodynamic derivatives and lift 
deficiency functions depend on the local environment and geometry of the 
particular blade elemei.t under consideration.    Therefore, these quantities 
and the parameters on which they depend are functions of the blade radius. 

Flutter Solutions 

Clearly, the values of the unsteady quantities depend, among other 
things, on the value of     u, the flutter frequency.    This is normally an 
assumed quantity.    If, for example, we are employing Theodorsen functions, 
we would assume a flutter frequency w and solve the set of equations.    If 
one of the roots in our solution corresponds identically with   u,    we have 
a valid solution.    If not, we would try more values of w and iterate on a 
solution.    When Loewy functions are employed, only one additional complica- 
tion is added; that is. In addition to specifying the flutter frequency, we 
must also specify the mode of flutter, namely, reactionless, collective, 
etc. 

Having specified the mode of flutter, we proceed as described for 
cases employing Theodorsen functions.    This should be repeated for all modes 
of flutter. 

Coordinate Transformation 

Hingeless or Articulated Rotors 

The dynamic system equations and generalized aerodynam. c force expres- 
sions that we have derived are expressed in terms of the syutem generalized 
coordinates.    The coefficients are seen to contain time-depend2.'<t quantities. 
These could be solved directly and the transient response of the system 
determined.    However, transient responses, although useful from the view- 
point of forced response phenomena, are less satisfactory for 1cUrmining 
whether or not a system is stable.    This ambiguity derives frov thft fact 
that transient responses    contain contributions from all of the   5,vs em modes, 
and spectral analysis may be required to separate individual modal contri- 
butions.    This is a costly and time-consuming procedure.    Experience has 
shown that there are, in the majority of cases, only a few modes that ore 
cause for concern, that is, in regard to stability.    Generally, these are 
the fundamental modes.    The higher order modes are normally important more 
in relation to forced response.    Consequently, in order to obtain eigen- 
solutions of the system of equations we have developed, other than using 
Ploquet type theory, it is necessary that we remove the time dependence of 
the coefficients.    This is achieved by assuming a form of response of the 
rotating system coordinates and making the required coordinate transforma- 
tions. 

In this analysis, it was assumed that each rotating system generalised 
coordinate q could be expressed in the form 
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4 " ^iS) * 1/I,,I>(-1,n + 2/*Bgi**n * 2/n%ooB^ (A152) 

Thus, each Individual blade mode is replaced by four rotor modes, 
qo defines collective motion, qD defines differential collective or reac- 

tionless motion, and ^    and ^ combine to define cyclic motion,    'nie reac- 
tionless motion as defined here can only occur in rotors vith an even 
number of blades.    The rotor warping motions involving terms in 2i|/,    3^. 
etc., were neglected. 

To expreps the differential equations of the rotating system degrees 
of freedom in terns of the rotor modes, the transformation. Equation A152, 
and its first and second time derivatives. Equations Al50 and A151, are 
substituted directly in Equations A76 through A79 and in the generalized 
aerodynamic force expressions. Equations A131 through AI3U.    The required 
time derivatives are 

* " Vo + VD(-1)n + 2/A - n<l,>in*n + 2/N(% + ^8)cos*n 

(A153) 

* ■ Vo + ^N^D^1^ + 2/A - ^c - a\^inK + 2//% + 2^ 
- fi2qo)co8*       (A15U) 

In making these substitutions, it is found that the equations still 
contain time dependent coefficients. This time dependence involves terms 
in sinip, cos<|), sin2i|i, co32^, sin2^, and cos2^, which can be removed for 
rotors that have polar symmetry, i.e.,rotors vith any number of equally 
spaced blades greater than two, by employing the following Identities: 

N N N 

Ii-V  I^^o«  ^x'<io 

iq(-i)n-V iU(-i)n»v i^-D11-^ 
N N 
5]qsin^n = q8,       5]qc08^n * qc 

H 
I48iü*n - «^ - nqc 

N t 
J]qcos*n « qc + ßq8 
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t vi^n ■ 
If 

3, - 20^ - *\ 
11 
I 4C0«*n - % ♦ 2flqg - a\ 

I •!»♦„- 
1 
I C08*n  - 0 

■ 1 
5:.in2*n - Zco.2*n ■ 0 

I«in\ - 
N 

1 co*\ -N/ '2 N>2 

The method of obtaining these will be Illustrated by example. If 
equation A152 Is summed from n=l to N, and It is recognized that because 

of the polar symmetry T (-l)n »  5* sin* ■ T  cos* ■ 0, It can be 
.        ** n " n 

seen that      5] <! ■    /«    T    q    " <1„ •    Similarly, If Equation A152 is *- H    t.      0       o 
multiplied by sin*    followed by summation from n=l to N, then again recog- 

nizing that because of the polar symmetry      £ sin*    ■      ^   (-l)n8ln4(    ■ 

sin* cos*    ■ 0, it can be seen that    T   qsin*    ■    /„q      V    sin2*   . n        n N n ti  3     c* n 
It can be shown that   £   sin2*    ■    /p for N>2, which leads to the result 

£ qsln*    = a   .    Continuing in this manner using Equations Al 1*9, A150, 

and AlHi the remaining terms are readily established. 

It is clear from the above that, provided the polar symmetry require 
ment is satisfied, the time dependence of the coefficients can be removed. 
This is accomplished in the following manner.    Suppose we eure deeding with 
the bleide rigid-body flapping equations given by Equations ATT and A132. 
By making appropriate substitutions from Equations A152, A153, and AI5I4 in 
Equations ATT and A132, the flapping equations will be expressed in terms 
of the rotor modes described eeurlier.    However, the coefficients will 
contain time-dependent terms.    This is removed in exactly the same manner 
eis described above.    Bf summing the equations that are expressed in terms 
of rotor modes fromn«lto N, the equation of motion of the collective flapping 
(8col) is defined.    By multiplying the equations by (-l)0, then sumning 
from n»l to N, the reactionless  flapping    (ßß)  equation is defined.    Multi- 
plying the equations by 8ln*nf then summing from n»l to N defines the cyclic 
flapping (ög)    equatlonjwhile multiplying by co8*n, then summing from n=l 
to N defines the cyclic flapping (BQ)    equation.    This procedure is repeated 
for all rotating system equations of motion. 

The fixed system and control system equations are expressed in terms 
of the rotor modes by substituting from Equations A152, A153, end AI5I* in 
Equations AT5, A80, A8T, A88, and A89, and in the genereLLized aerodynamic 
force expression A130.    In this case, the coefficient time dependence is 
removed by simply summing each equation from n»l to N and applying the above 
identities as appropriate. 
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Becaufle of the length of the equations involved, no attempt was made 
to rewrite them In their transformed form.    Instead, the transformations 
were performed in the computer program of the analysis. 

Gimbaled Rotors 

All of the foregoing can be applied only to rotors x.ha.t are not gimbaled. 
However, the gimbaled rotor is readily accommodated since the equations are 
expressed in terms of rotor modes.    The method employed is best illustrated 
by example. 

Consider a four-bladed gimbaled rotor system whose blades can move 
only in an out-of-plane direction.    For sero spring restraint on the gimbal 
the first mode of the blades will be rigid-body flapping, and since blade 
motions are transmitted across the hub, the mode will be purely cyclic. 
Therefore, for this mode, the coordinate transformation will be as given 
by Equation A152 with c^ and (iD set to zero.    The next blade mode will be 
a bending mode that is the equivalent of the first bending mode of a rotating, 
cantilevered beam.    Ibis mode will be purely collective, or reactionlees, 
and its coordinate transformation will, therefore, be as given by Equation 
A152 with Is And <lc set to zero.    The next mode will be the equivalent of 
the first bending mode of a hinged, rotating beam.    The mode will be purely 
cyclic, and its coordinate transformation will, therefore, be as given by 
Equation A152 with ^ and qp set to zero.    Continuing in this manner, all 
of the rotor modes and their respective coordinate transformations can be 
defined. 

An approach similar to the above is employed in this analysis  co 
describe the gimbaled rotor dynamics.    Since the blade modes used are fully 
coupled flatwise/edgewise, mode selection is slightly different but    he logic 
is the same.    Mode selection and coordinate transformations are carried out 
automatically In the computer program of the analysis whenever gimbaled 
rotors are being studied.    This is done in the following manner. 

The blade root boundary condition in the plane of the rotor is always 
assumed to be cantilevered.    The gimbal is restrained with the spring   kg, 
which may of course be zero.    Excluding torsion,  five blade modes are auto- 
matically used which cure, by virtue of the coordinate transformations, 
described in terms of rotor modes.    These, together with the coordinate 
transformations used, are shown below. 

Out-of-Plane 
Mode Root Bdry.  Cond. Type Coord. Trans. 

1 kß Rigid Body Flap q8t  qc 

2 Cantilevered 1st Flatwise q^,  q 
3 kß let Flatwise q0,  qD,  qs, qc 

k                              kß                              2nd Flatwise qg,  q^, 
5 Cantilevered 2nd Flatwise c^, qD 
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Thus, we have tvo nodes that are purely cyclic, two nodes that are 
purely collective, or reactlonless, and one node that has collective, reac- 
tlonless, and cyclic components.    It should be remembered that the reactlon- 
less components occur only In rotors with em even number of blades. 

Solution of Equations 

To compute the eigenvalues of the second-degree matrix system. It is 
first necessary to reduce the problem to the standard eigenvalue form. 
This Is accomplished by multiplying through by the Inverse of the stiffness 
matrix, and forming the companion matrix.    This companion matrix is then 
balanced to improve the accuracy in the cue where corresponding rows 
and columns have very different norms.    The balanced matrix is then reduced 
to upper Hessenberg form by stabilized elementary similarity transformations, 
and finally the eigenvalues are extracted using the nodirted LR method. 

For a given eigenvalue, the corresponding eigenvector is  found by using 
the eigenvalue to combine the matrices into one NxN matrix,    thus yielding 
a redundant system of N simultaneous equations in N unknowns.    This system 
is solved by setting the ith component of the eigenvector to 1.0 and 
solving the reduced system obtained by placing the ith column in the solution 
vector position and deleting the ith row by the Gauss-Jordon method with 
interchanging. 
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APPEHDIX B 

FORWARD-FLIGHT ANALYSIS 

This appendix gives details of a forvard-flight analysis that approxi- 
mates  forward-flight effects by neglecting certain periodic terms in the 
equations of motion.    It will be seen in what follows that the analysis is 
essentially the hover analysis developed in Appendix A, appropriately modi- 
fied to account for both dynamic and aerodynamic  forward-flight effects. 

Important assumptions are noted below. 

ASSUMPTIOMS 

1. Aerodynamic trim loads and derivatives with respect to perturbations 
in blade section total velocities and angle of attack are obtained from 
any desired aerodynamic analysis  (linear or nonlinear).    Steady, first 
and second harmonica of these quantities are retained. 

2. The trim inflow velocity distribution is determined from any appropriate 
analysis.    Steady and first harmonics sire retained. 

3. The trim values of the 'clade rigid-body and elastic deflections and 
slopes are determined from any appropriate analysis.    Steady and first 
harmonics are retained. 

U.    Trim values of steady and first harmonic pitch at each station are 
retained. 

5. Trim values of blade velocity as they affect the trim dynamic 
forces acting on the blades are neglected as higher order. 

6. Products of trim quantities are generally neglected in the aerodynamic 
force terms, but they are retained in the dynamic system equations 
where deemed appropriate.    Products of trim quantities involving aero- 
dynamic offset (which is assumed to be of the same order as the trim 
deflections) are generally neglected. 

7. All products of perturbation quantities have been dropped. 

8. Terms involving products of a perturb at ional quantity and a first-order 
trim quantity eure retained. 

9. The approach used implies implicit retention of some "higher order" 
terms because terms involving products of aerodynamic derivatives, 
first-order trim, and first-order perturbation are retained.    To the 
extent that the aerodynamic derivative is a function of trim quantities, 
higher order terms will be present. 
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rBviLOPHBirr OF TOWARD-FLIGHT AMALYSIS 

In Appendix A, ve developed a stability analysis for rotors in hover 
or conditions of pure axial flow. The equations were written with all peri- 
odicity retained, and it was shown that by asking appropriate rotating 
system generalised coordinate transformations, the periodicity could be 
removed, leading to a set of constant coefficient equations in a fixed-axis 
system. Making this coordinate transformation necessitated that each rotat- 
ing system degree of freedom be assumed to respond in a prescribed number 
and type of modes. This was done to allow computation of system eigenvalues 
and eigenvectors for stability analysis. 

Such an approach is not essential; we could have solved the equations 
directly, obtained the system transient response characteristics, and 
assessed stability from these. However, this approach is not entirely 
satisfactory since the transients contain conponents of response from all 
modes and it is not always apparent, without making runs that involve 
excessive coqputer time, whether a system is stable or unstable. We could 
also have employed analytical techniques that determine eigenvalues of 
systems with time-dependent coefficients. Floquet theory is one such 
technique. Here, again, the time to obtain solutions has to be considered. 
In multi-degree-of-freedom systems Floquet solutions can be costly, and 
their physical implications require a degree of expertise not required in 
solutions for constant coefficient systems. 

When forward-flight effects are added to the equations of motion of 
the system, it is not possible, by a simple coordinate t reins format ion, to 
remove the resultant periodicity in the coefficients. For exact solutions, 
we have to revert to either of the alternatives mentioned above. However, 
approximate solutions can be obtained without recourse to these alternatives 
if certain higher harmonic periodic terms are neglected. 

If the same coordinate transformation that was used in the hover analysis 
is also used in the forward-flight equations, it is found that in the fixed 
system equations, a substantial amount of the periodicity disappears by 
virtue of the summation over the number of blades, rotor system polar sym- 
metry being implied. However, in the rotating system equations, terms in 
all rotor harmonics higher than the first can appear. We do not, therefore, 
have a system of constant coefficient equations. If it is assumed that these 
higher harmonic terms can be neglected, constant coefficiert 
equations result that eure identical in form to the hover equations except 
that they now contain terms that are functions of advance ratio. These can 
then be solved using standard eigenvalue approaches. 
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HoheneMerC*) auggesta that the approach gives valid results up to 
advance ratios as high as 0.5.    Biggeraw) reached this same conclusion but 
suggests that the approximation be used with caution when higher frequency 
nodes are important. 

Considering the conclusions reached by these researchers, and remembering 
Biggero1 caution, it was decided to apply this approximate technique to the 
stability equations derived in Appendix A.    The approach used is described 
in what follows. 

By way of exaiqpls, let us examine a single aerodynamic force component 
on a fixed system coordinate q*  arising from an inplane bending perturbation 
qg     of the blades of a rotor in forward flight.    The condition is Illustrated 
in Figure Bl.    Considering only that part of the force caused by changes 
in the blade tangential velocity, it can be seen that for small perturbations, 
the moment in the direction öy is given by 

6M »       Z  (^R"e((^-)6UT(r ♦ e)sin*)dr) (Bl) 

From Figure Bl, 

6UT »  [air + e)  - VpSin^cosCq'g + Y0)]- ["(r + e) - VpSiml»] = VFq'EYo8ini|' 
J   (B2) 

With q'g *  2* ^'F t^r 1» the aomeat  becomes 

«M.  I (^-e(VF(r + eho(^-)sin^  f U',^^) )dr) 
n-l T      1-1 (B3) 

(1+)    Hohenemser, K. H.,"Some Applications of the Method of Multiblade 
Coordinates," Journal of the American Helicopter Society, Vol. 17, 
No.  3, July, 1972. 

(5)     Biggers, J.  B.,  "Some Approximations  to the Flapping Stability of 
Helicopter Rotors,"    AHS/NASA-Ames Specialists Meeting on Rotorcraft 
Dynamics, Feb. 13-15, 197^. 
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Figure Bl. Source of Force Component Resulting From an 
Inplane Blade Bending Perturbation. 
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The force on the coordinate q. Is then given by 

'"j " ♦OY.J4'« 

1"1 n ■*■       * 
(BU) 

N An examination of Equation Bk  reveals that only the terms under the 
£ are time dependent. If we know the time histories of these terms for 

each blade, wr» could compute the force component 6F<. However, this is not 
our immediate objective. We are, rather, more concerned with expressing 
Equation Bk in  an analytical form suitable for inclusion in an eigenanalysis, 
If the transients of y0  and ( -j.. ')  were available, we could represent these 
as Fourier series In harmonics of <|i. In addition, if the response of the 
generalized coordinate qi> ^ has known analytical form, it is apparent that 
6F« can be expressed analytically. 

In Appendix A, we made a coordinate transformation that expressed 
q», . in the form 

^T.I 
m Vro.i + ^H^VM 

+ 2/Nq-rs,i8in* + ^N^ci«08* 
(B5) 

Suppose we now assume that the Fourier series expressions for Y and 

(  Ji. *) can be tnincated such that 

Y    » Y      + Y    sinil» + Y    cosi) (B6) 
'o       '01       'si      T       'ci      r 

and 

irffi-) " tj - t01 + tl8sin* + tlccos* ♦ ti828ln2i|/ + tic2cos2* (B7) 

At this Juncture, let us also assume that ß  , q^, q^, q'pQ. I'EQ' 

6   , and Up are all expressible in the form of Equation B6 and that t., 

t,, h  , h  , h  , m , m , m , dT, dH, and dM are all expressible in the form 

of Equation B?. 

181 



Substituting Equationr B5, B6, and B7 in Equation Bk gives 

,R-.,   n 

H       1-1 

x     Z   [(YOI ♦ Y.-sln* + Y^.coB*) 

x (t01 + tia8lra|» ■♦■ tlcC08i|/ + tl82flln2* + tlc2C082V») 

x 8ln2i|0))dr) 

(B8) 

After expansion of the harmonic terms In this equation and appropriate 
summation over the number of blades N, It can be shown that 

NE 
ÄFJ " (£ "e( gi (Vr + ^♦,Efi*eYf^c0qTo>i + c^^ * ccqTOfi 

+ tennB Involving products o^ ^ i t ^p i. «Ipg i t and ^ j »»d 

harmonics of ij» equal to or greater than 2]))dr) (B9) 

where C  , C8, and Cc are constants that are functions of Y    , Y  ., Y  ., t  ,. 

*!•• tlC»  tli2» •ndtlc2' 

If we assume that the harmonic terms  in Equation B9 can be neglected, 
then performing the required integration we can write 

NE 
«F,  =     y     (A.q^,  ,   * kq„_   t   + A.q^,  J (BIO) 

'J  =    ^  (A0<lT0.i+AsqTs.i+AcqTc.i) 

where A , Ag , and A are quantities that are independent of time. This 
equation expresses the element of force 6F. in an identical form to the 
force elements in the hover analysis. 

It will be noticed that the removal of the harmonic terms in. Equation 
B9 results in the elimination of the reactionless coordinate q^ i  from 
the TJ^J, or fixed system, equations. This was mathematically correct in 
the hover analysis since, as the name implies, the mode is indeed reaction- 
less.  It is therefore apparent that coupling of the reactionless mode with 
the fixed system modes can occur only if harmonics of ty  greater than the 
first are retained in the analysis. 
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The total force on the coordinate q.» resulting from the blade Inplane 
bending perturbation q.g is the sum of all of the OF. resulting from this 
perturbation.    We derived above a single component caused by changes In 
tangential velocity.    Clearly, other components arise from changes in inflow 
velocity, changes in thrust, changes in drag, etc.    Also, additional 
components of force result from blade out-of-plane bending perturbations, 
and yet others arise from blade inplane and out-of-plane bending velocity 
perturbations.    In any event, by following the procedure outlined above, 
all of the elements of force resulting from the blade bending displacement 
perturbations can be expressed in the form of Equation BIO, while those 
resulting from blade bending velocity perturbations will have exactly 
the same form except that they will be in terms of q^o ^, qp8 ^,    and 

q      ^ a Sunning all of the force elements resulting from the displacement 
perturbations gives the complete aerodynamic coefficients of q^ £, q-rs  i» 
and qTc ^in the q.  equation.    Likewise, summing all of the force'elements 
resulting from the velocity perturbation gives the complete aerodynamic 
coefficients of q,^ ., q^s .,    and      C/jv, »1 in the «Ti equation. 

Any coefficient of any displacement, velocity, or acceleration of any 
of the system generalized coordinates in the q« equation can be obtained 
in the same way.    This is so whether the coefficients arise from purely 
dynamic considerations or aerodynamic considerations, or both. 

All of the dynamic and aerodynamic force elements in each coefficient 
in the q.   equation for a purely axial flow condition were derived in 
AppendlJrA.    To include the forweurd-flight aerodynamic effects, it is only 
necessary to modify the expressions for 6UT and 6Up given in Appendix A 
by adding the quantities given below. 

NE 
6UT(fWd.   fit.)  =  [   ^(VJPC- rEti[Y0   - q'E0]sl^ + ♦•Eticos*)qr4)] 

♦  [VF(- ß0[Y0  - q'EO]cos*)0] 

+  [VF(-[Y0 - q'^sin* + COSIMY] 

NA 
+ t 1^ (-♦ex.iVo^o -^EO^^ 

(Bll) 
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6Up(fird. fit.) ■ 
NE 

Cl (VF((- ♦•„ i*^ - ♦•F.iCY0  " l'»^10* + ♦,F.iC08*)^.i^ 

♦ [vFcoi*e] 

NA 
+ [  Z  (♦ex,ivF)^i^ (B12) 

Although ve have discussed only the construction of the fixed system 
equations, the procedure outlined is equally applicable to the construction 
of the rotating system equations.    The only difference is that, whereas a 
summation over the number of blades appears in the fixed system equations, 
as seen in Equation B8, no such summation appears in the rotating system 
equations.    Therefore, the force components in the rotating system equa- 
tions will have a form similar to that of Equation B8 with the 6 omitted. 

Again by way of example, a typical aerodynamic force element in the 
rigid-body flapping, 0  , equation resulting from a blade out-of-plane 
bending perturbation is 

6F3-(Zi(-r^F)iUp(0o+qV(HfI)^.i) 
(B13) 

Using the assumed forms for the time-dependent quantities as defined 
earlier, this can be rewritten 

NE 
rR-e 

♦ UpCCOS*)(ß01 ♦ q'FOl +  [ß08  ♦ q'ro8]8in* 

+  Caoc + <l,F0c>O8,,')(t02 + ^s810"' + ^c008* 

+ t282sin2* + t2c2cos2*)(1/NqTo^1  ♦ '/„(-l)^^ 

+ 2/N<1Ts,i8in,,' + 2/H,,Tc.lCO,*,:,),,lr) 
(BlU) 
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It is clear that If the harmonic terms In this are expanded, the result 
can be expressed in the general form 

a + bsinip + ccosij» + dsin2<* + eco82^ + (B15) 

where the a, b, c, etc., are functions of the Up, 0, q'   , t, and q_,. 

If In B15 we Ignore harmonics higher than the first, then after substi- 
tuting back Into Equation Bib and performing the required Integration, the 
result can be written 

NE 
«P, 0 »     Z    f(Aol^o.l + Aoi(-l)nqTD,l + W,! + AciV.i5 

1»1 

+  (AsiV.l + Asl(-l)n<1TD.l + ^2^.1 + Ac2,1Tc.i),in* 

+  (AciV,i * ACl(-1)n<>TD.i + ^^s.l + AC3,,Tc.i,COi*:i (B16) 

where the A's are quantities that are Independent of time.    This equation 
expresses the element of force 6F0 In an Identical form to the force 
elements In the hover analysis.    The total force on the rigid-body flapping 
resulting from the blade out-of-plane bending perturbation is the sum of 
all of the 6F0    resulting from this perturbation.    Similarly, the forces 
from all other perturbations of any generalized coordinates, whether they 
be displacement, velocity, or acceleration or arise from purely dynamic or 
aerodynamic considerations, or both, are obtained in the same manner and 
can be expressed in the same form as Equation Bl6. 

If each of the rotating system equations, expressed in the form of 
Equation Bl6, is multiplied by   (-l)n and sunned over the number of blades 
N, the reactionless mode equations are obtained.    Summing each equation 
over the number of blades gives the collective mode equations.    Multiplying 
each equation by sin^ and cos^«,respectively, and sunning over the number 
of blades gives the cyclic mode equations.    On completing   these manipu- 
lations,  it is again found that the reactionless mode is completely decoupled 
due to the harmonics of    ty above the first being discarded. 

In some of the system equations, products involving sin60 and cosO 
are encountered.    In this analysis, the blade angle  60 is not considered 
to be small.    Therefore, when substitutions of the form given in Equation 
B6 are made for 6, we get 
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flinen ■ BinCe^    ♦ 6. aln^ + 6    cos*) O 01 81 Cl 
(BIT) 

co«eÄ ■ coeCe      +9. sin* + 6 ,co8i|») 0 018 1 Cl 

These were expressed in terms of Bessel functions such that 

sine    = B sine     + B cose 
o i 01 2 01 

* ^o^s^o^ci) + (^siK^d* 

" J2(ec^)Jo(esl)))co82,'' 

- 2J (eo   )J (6,,  )8in2* 
1   81   1   cl 

- ^2^i1)J2tec1
)co,22*>ineo1 

♦C2Jl(eil)Jo{eci),ln* 

- kJ (e8   )J (ec  )sirmcos2i(i 

+   2Jl(eCl)J0(981)C08^ 

♦ 1*J  (9    )J  (9    )cos*co82*lco8 9 
1     Cl     2     31 J 01 

cose    ■ B cc«!9      - B 8in9 (Bl8) 

The Bessel series was trucated at J due to the rapid decrease In 
the magnitudes of the lUnctlons beyond this point at typical values of 
the arguments. 

It should he clear from what has preceded that literal expression 
of the forward-flight equations would Indeed be a monumental task.    There- 
fore, this task was left to the computer.    Special routines were developed 
that perform all of the manipulations described here, the end product 
always being the stability matrices from which the system eigenvalues and 
eigenvectors are extracted. 
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LIST OF SYMBOL 

ft " ^EO + (C/U " EA)c089o 

'l " ^EO " ACc08eo 

ft2 " ^EO " CGc08eo 

\ -EA/^ 

A      Servo piston area 
P 

AC     Distance from blade elastic axis to aerodynamic center- 
positive toward leading edge 

A 
o 

Aol 

As 

A  [   Non-time dependent coefficients arising from expansions of 
products of harmonic series in forward flight analysis 

AS2 " 

A 
c 

Aci 

AC2 

AC3 

q 

\ 

Hub roll transformation matrix 

A— Hub pitch transformation matrix q e 

ex 
A Blade azimuth tranrformation matrix 

A0 Blade flapping transformation matrix 

Blade lagging transformation matrix 

A. Blade pitch transformation matrix 

Ae Blade inplane bending slope transformation matrix 

Ac Blade out-of-plane bending slope transformation matrix 
4i F 

b '  ^FO +  {C/h ' ^^^o 
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bl ■ «fO - kCaineo 

b2 " <lro " COeineo 

h. Chord /2 

C Chord 

C Lift deficiency function 

C Deunping constant at pushrod 

C Tail rotor control system damping constants 

C Tail rotor control system damping constants 
31,Ul,51 

CL Lift coefficient 

C Drag coefficient 

n Pitching moment coefficient 

C-     Damping constant at forward main rotor servo 

C      Damping constant at aft main rotor servo 

CTT     Damping constant at lateral main rotor servo 

C      Servo valve flow gain 
1 

Servo valve pressure gain 

Co 

C   [ Mon-tiine dependent coefficients arising from expansions of 
produces of harmonic series in forward flight analysis 

Cc* 
Crc Servo leakage coefficient 

C. Slope of lift curve 

C.. Slope of drag curve 
D,a 

Cu Slope of pitching moment curve 

C M Partial derivative of lift coefficient with respect to Mach 

* number 

CD Partial derivative of drag coefficient with respect to Mach 
* number 
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Cu „ Partial derivative of pitching moment coefficient with respect 
M,M 

to Mach number 

CG     Distance from blade elastic axis to center of gravity—positive 
toward leading edge 

dL Elemental lift 

dD Elemented drag 

iM Elemental pitching moment 

dT Elemental thrust 

dH Elemental inplane force 

{dF}    Blade eleimsntaü. lift and drag force vector in absolute 
coordinate system 

{diÖ    Blade elemental pitching moment vector in absolute coordinate 
system 

D      Dissipation potential 

e      Blade offset 

{£}    Blade offset vector 

EA     Distance from blade semi-chord to elastic axis—positive toward 
trailing edge 

F»     Real part of lift deficiency function 

G      Blade torslonal modulus of elasticity 

G«     Imaginary part of lift deficiency function 

H'
2
'    Hankel function of second type of order 

r 

h Wake spacing parameter 

h Blade plunging coordinate used in definition of unsteady 
aerodynamics 

h Partial derivative of drag with respect to local blade tangen- 
tial velocity 

h Partial derivative of drag with respect to local blade vertical 
2 velocity 
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h Partl&l derivative of drag vith respect to local blade angle 
3 of attack 

[1] Blade flatvlse, edgewise, tonional Bass moment of Inertia 
matrix 

IB Blade torsional mass mument of inertia 

lyy Blade edgewise second moment of area 

I Elemental blade flatvise mass moment of inertia 
A 

h 

i 

Elemental blade torsional mass moment of inertia 

I Elemental blade chordvisn mass moment of inertia 
Z 

I Total blade torsional mass moment of inertia 
T 

I Blade mass moment of inertia about lag hinge 
y 

I Main rotor swash plate fore/aft mass moment of inertia 
FA 

I Main rotor swash plate lateral mass moment of inertia 
L 

j Local blade polar second moment of area 

j Bessel function of first kind of order 
r 

K Blade torsional stiffness 

K_ Air frame mode generalized stiffness G 

K Blade lag hinge spring rate 

K- Blade flapping hinge spring rate 
P 

K Pitch beam stiffness or stiffness at main or tall rotor blade 
pushrod 

K      Tail rotor control system spring rates 
2,3,'♦,5 r ^ 

K      Tail rotor control system spring rates 
3 l,1» 1,51 

K      Stiffness of tail rotor pitch actuator for pure moment applied 
at pitch beam end 

K      Spring rate at forward main rotor servo 

K      Spring rate at aft main rotor servo 
A 

K Spring rate at lateral main rotor servo 
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K Spring rate at servo support 
c 

k Reduced frequency parameter 

L Distance from blade elastic axis to pushrod--positive toward 
2 leading edge 

L Radial location of blade pitch horn 

L Length of one arm of tail rotor blade pitch spider beam 

It. Noncirculatory lift 

L Length of tail rotor pitch beam arm 

m Blade elemental mass and flutter frequency ratio 

M Alrframe node generalized mass 

VL Noncirculatory pitching moment 

M Generalized mass of blade bending modes 
<l 

M. Generalized mass of fix.-d system modes 
A 

M Mass at pushrod 

M Tail rotor control system masses 

M Tail rotor control system masses 
31fm,51 

VL Main rotor swash plate mass 

M Mach number 

m Partial derivative of pitching moment vlth respect to local 
1 blade tangential velocity 

m Partial derivative of pitching moment with respect to local 
2 blade vertical velocity 

m Partial derivative of pitching moment with respect to local 
blade angle of attack 

n Blade number 

N Number of blades 

NE Number of blade bending modes 

NA Number of fixed system modes 
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H- Bulk modulus of servo fluid 
8 

q Fixed System mode generalized coordinate 
J 

"TJ 
Blade bending mode generalized coordinate—bending up and 
leading positive 

Steady blade flatwise deflection—up positive 

Steady blade inplane deflection—lag positive 

Hub pitch coordinate 

Hub roll coordinate 

Hub lateral coordinate 

Hub longitudinal coordinate 

Hub vertical coordinate 

Collective mode coordinate 

Reactlonless mode coordinate 

Sine cyclic coordinate 

Cosine cyclic coordinate 

Blade bending collective, reactlonless, sine cyclic, and 
cosine cyclic coordinates 

q« \      Blade flatwise bending slope steady, and sine and cosine 
f08 (  coefficient components 

Generalized forces 

Generalized force on J 'th fixed system mode 

Generalized force on blade pitch 

Generalized force on blade flapping 

Generalized force on blade lagging 
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Q Generalized force on J 'th blade bending mode 

Qy Flow through servo valve 

Q Generalized aerodynamic force 
J 

r      Radius of local blade element from off re i/ 

r Radial location  of Inner snubber of crossbeam rotor 

r Radial location of outer snubber of crossbeam rotor 

R Rotor radius 

R Radius to servo connections on main rotor svash plate 

«B 
Radius to pushrod connections on main rotor svash plate 

R Servo linkage ratios 
1,2.3 

SF Servo valve feedback factors 
V,X,i .Z.Ö^.By 

SF Servo support feedback factors 
/ jX.YjZ.e^jSy 

T Kinetic energy 

t Peurtieü. derivative of thrust with respect to local blade 
1 tangential velocity 

t Partial derivative of thrubt with respect to local blade 
2 vertical velocity 

t Partial derivative of thrust with respect to local blade angle 
3 of attack 

t 
18 

t 

'IS 2 

Scz 
^2 
t2s 

Steady, first, and second harmonic coefficients of the partial 
ic   /        of thrust with respect to tangential velocity 

t 

.        f        Steady, first, and second harmonic coefficients of the partial 
2c   )        of thrust with respect to inflow velocity 

t 
2c2 

U      Total local blade inflow velocity 
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u. 

u, PO 

"PC 

UT 

v 

V 

F 

{V} 

w 

{X) 

X 

X 

X 

1 

2   3   «♦   5 
•   t   * 

31   m   51 »      » 

XA 

X0F 

X0A 

X0L 

XAF 

Local blade vertical velocity 

Steady and first harmonic coefficients of Inflow velocity 

Local blade tangential velocity 

Speed of sound 

Potential energy 

Total volume of servo fluid under compression 

Rotor axial velocity 

Foivard-flight speed 

Airspeed vector 

Loewy unsteady aerodynamics factor—Equation A136 

Absolute displacement vector 

Displacement at blade pushrod 

Tall rotor control system motions 

Tail rotor control system motions 
l 

Motion of main rotor swash plate «-t forward servo 

Motion of main rotor swash plate at aft servo 

Motion of main rotor swash plate at lateral servo 

Motion of output of forward main rotor servo 

Motion of output of aft main rotor servo 

Motion of output of lateral main rotoi* servo 

Feedback motion at servo valve 

Feedback motion at servo support 

Motion at output of tail rotor servo 

Motion at servo support 
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a Local blade angle of attack 

a Blade pitch coordinate used In definition of unsteady aercdy- 
0 namlcB 

a Pitch-lag coupling—lead, pitch-up positive 

a Servo linkage ratio 

0 Blade rigid-body flapping generalized coordinate—up positive 

0 Steady blade coning—up positive 
o 

ßcol 

ß   (   cosine cyclic coordinates 

Bri ^   Blade flapping collective, reactlonless, sine cyclic, and 

ßc 

ßol 

0 }       Steady and first harmonic coefficients of blade flapping 

c 
Y Blade rigid-body lag generalized coordinate—lead positive 

Y Steady blade lag—lead positive 

Yoi 
Y [        Steady and first harmonic coefficients of blade lagging 
'si f 

Ycl 

6 Pitch-flap coupling—flap up, pitch-down positive 
3 

6P Servo differential pressure 

6 Angle between airframe longitudinal axis and main rotor fore/ 
re aft servo axis—yaw right positive 

6 Angle measured at center of rotation from blade feathering 
axis to pushrod—positive in direction of rotation 

jr Element of blade radius 

6F Perturbation force 

6M Perturbation moment 

5F Perturbation force on flapping coordinate 
3 
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SÜP 

«u 

Change In inflow velocity resulting from displacement and 
Telocity perturbations 

Change in tangential velocity resulting from displacement 
T and velocity perturbations 

c Motion of servo valve relative to housing 

C Fraction of critical structural damping of blade bending 
modes—based on modal frequency 

;e Fraction of critical structural damping of blade pitch mode- 
baaed on rotor speed 

c Fraction of critical rigid-body lag damping—based on uncoupled 
lag frequency 

C. Fraction of critical structural damping of fixed system modes— 
based on nodal frequency 

6 Blade pitch generalized coordinate—leading edge down positive 

6 Steady blade pitch angle—leading edge down positive 

9 Blade pitch normal coordinate 

8p Geometric blade pitch angle—leading edge up positive 

6      )        Steady and first harmonic coefficients of blade pitching 
81 l 

"=. 

6 \ Blade flatvise, torsional, and edgewise angular velocities 

«z 
{^}     Absolute blade angular velocity vector 

y      Servo parameter—Equation AtT 

u      Servo parameter—Equation A68 

\ ' ^r(- ♦'E.^'EO 
+ ♦,P.i*,ro)dr) ' -ri 

■ (^♦'E.i^E.J + ♦'F.i^F.J^) ' -i ' -ri.J 
p      Air mass density 
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Tl 

(1> T2 

"EN 

% 

^      Local blade Inflow angle 

*      Fixed system translatlonal mode shapes at hub 
X,i ,Z 

^      Fixed system rotational mode shapes at hub 
6X(6Y 

A      Blade flatwise bending mode shape 
w 

ä Blade inplane bending mode shape TE 
^      Blade torsional mode Phape 

A      Blade torsional mode shape at pushrod radial station TePR 
^      Blade flatwise bending mode shape at pushrod radial station 

A      Blade inplane bending mode shape at tip radius 

A Wake phase angle parameter Tn 
^      Blade azimuthal angle 

Blade asymmetric torsional frequency 

Blade symmetric torsional frequency 

Hub pitch frequency 

Hub yaw frequency 

Blade edgewise natural frequency 

Frequency of blade bending modes 

„,      Uncoupled rigid-body leg frequency 
Y 

Frequency of fixed system modes 

u Flutter frequency 

Q Rotor speed 

Subscripts 

A Refers to aft servo 

F Refers to forward servo 

L Refers to lateral servo 

i Refers to blade element or mode number 
I 
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:i 
Refers to node or force number 

Refers to mode number 

c      Refers to blade number 

PR     Refers to pushrod 

X 

Y 

Z 
Refers to hub lateral, longitudinal, and vertical directions 

Refers to hub pitch and roll directions 

'Y 

Superscripts 

c      Means coupled 

u      Means uncoupled 

Differential Notation 

•      Differentiation with respect to radius 

Differentiation with respect to time 

Second differential with respect to time 

671-76 
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