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ABSTRACT

Since production systems were first proposed in 1943 as a general computational mechanism,
the methodology has seen a great deal of development and has been applied to a diverse
collection of problems. Despite the wide scope of goals and perspectives demonstrated by the
various systems, ther - appear to be many recurrent themes. This pape; is an attempt to
provide a1 analysis and overview of those themes, as well as a conceptual tramework by
which many of the seemingly disparate efforts can be viewed, both in relation tv each other,
and to other methodologies. :

Accordingly, we use the term ‘production system’ in a broad sense, and attempt to show how
- most systems which have used the term can be fit into the framework. The comparison t
other methodologies is intended to provide a view of PS characteristics in a broader
context, with primary reference to procedurally-based techniques, but with reference also to
some of the current developments in programming and the organization of data and
knowledge bases. This is a slightly revised version of a paper to appear in Afachine
Representations of Knowledge, Dordrecht, D. Reidel Publishing Company (1976).

T he work reported here was funded in part by grants from the National Institutes of Hewlth,
NIH Grant HSOI1544, and the Advanced Research Projects Agency ARP A Contract DAHCI15.73-
C-0435

T he views and conclusions contained in this document are those of the author(s) and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
University, ARPA, NIH, or the U. S. Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Virginia 22151.
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INTROOUCTION

{1} INTRODUCTION AND BACKGROUND

Since production systems (PS) were first proposed by Post (1948) as a general computationa!
mechanism, the methodology has seen a great deal of development and has been applied to a
diverse collection of problems. Despite the wide scope of goals and perspectives demonstrated by the
various systems, there appear to be many recurrent themes. This paper is an attempt to provide an
analysis and overview of those themes, as well as a conceptual framework by which many of the
seemingly disparate efforts can be viewed, both in relation to each other, and to other methodologies
(1l

Accordingly, we use the term ‘production system’ in a broad sense, and attempt to show how
most systems which have used the term can be fit into the framework. The comparison to other
methodologies is intended to provicle a view of PS characteristics in a broader context, with primary
reference to procedurally-based techniques, but with reference alto to some of the current
developments in programming and the organization of data and knowledge bases.

We begin by offering a review of the essential structure and function of a PS, presenting 2
Eicture of a “pure” P> to provide a basis for subsequent eiaborations. We then suggest that current
views of PSs fall into two distinct classes, and demonstrate that this dichotomy may explain much of
the existing variation in goals and methods. This is followed by some speculations on the nature of
appropriate and inappropriate problem domains for PSs — ie. what is it about a problem that
makes the PS methodology appropriate, and how do these factors arise out of the system’s basic
structure and function? Next we review a dozen different characteristics which we found common to
all systems, explaining how they contribute to the basic character, 2nd noting their interrelationships.

Finally, we present a taxonomy for PSs, selecting four dimensions of characterization, and indicatirig

the range of possibilities as suggested by recent efforts.

Two points of methodology should be noted — first, we make frequent reference to what is
"typically” found, and what is "in the spirit of things.” Since there is really no one formal design for
current PSs, and recent implementations have expiored variations on virtually every aspect, their use
becomes more an issue of a programming style than anything else. It is difficult, then, to excinde
designs or methods on formal grounds, and we refer instead to an Informal, but, we feel, well
established style of approach.

A sezond, related point will be important to keep in mind as we compare the capabilities of
PSs with those of other approaches. Since it is possible to imagine coding any given Turing
machine in either procedural or PS terms (see [Anderson1976) for a formal proof of the latter), in
the formal sense their computational power is equivalent. This suggests that, given sufficient effort,
they are ultimately capable of solving the same problems. The issues we wish to examine are not,
however, questions of absolute computational power, but the impact of a particular methodology on
program structure, as well as the relative ease or difficuky with which certain capabilities can be
achieved, and the extent to which they can be achieved in the spirit of things."
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PURE PRODUCTION SYSTENS

{2} "PURE" PRODUCTION SYSTEMS

A production systems may be viewed as consisting of three basic components: a set of rules, a
data base, and an interpreter for the rules. In the simplest design, a rule is an ordered pair of
symbol strings, with a left and right hand side (LHS and RHS); the rule et has a predetermined,
total ordering: and the data base is simply a collection of symbols. The interpreter in this simple
design operates by scanning the LHS of each rule until one is found which can be successfully
matched against the data base. At that point the symbols matched in the data base are replaced with |
those found in the RHS of the rule, and scanning either continues with the next rule or begins {
again with the first. A rule can also be viewed as simple conditional statement, and the invocation of 1
rules as a chained sequence of modus ponens actions. ]

{2.1} RULES
More generally, one side of a rule is evaluated with reference to the data base, and if this

succeeds (i.e. evaluates to TRUE in some sense), the action specified by the other side is performed.
Note that evaluate is typically taken to mean a passive operation of “perception”, or, "an operation
involving only matching and detection” (2], while the action is generally one or more conceptually
primitive operations (akhough more complex constructs are also being examined; see {5.9]). As
noterd, the simplest evaluation is a matching of literals, and the simplest action a replacement.

Note that we do not specify which side is to be matched, since either is possible. For example,
given a grammar written in production rule form [3),

S+-ABA
B-BO A-Al
B-»0 A=1

matching the LHS on a data base which consists of the start symbol S, gives a generator for strings
in the language. Matching on the RHS of the same set of rules gives a recognizer for the language.
We can also vary the methodology slightly to obtain a top down recognizer, by interpreting e'ements
of the LHS as goals to be obtained by the successful matching of elements from the RHS. In tnis
case the rules “unwind.” Thus we can use the same set of rules in several ways. Note, however, that
in doing so “ve obtain quite different systems, with characteristically different control structures and
behavior.

The organization and accessing of the rule set is also an important issue. The simplest scheme
is the fixed, total ordering menticned, but elaborations quickly grow more complex. The term i
conflict resolution has been used o describe the process of selecting a rule. These issues of ruts :
evaluation and organization are explored in more detail below. .
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{22} DATA BASE

In the simplest production system, the data base is simply a collection of symbols iniended
to reflect the state of the world, but the interpretation of those symbols depends in large part on
the nature of the application. For those systems intended to explore symbol processing aspects of
human cognition, the data base is interpreted as modelling the contents of some memory
mechanism (typically short term memory, STM), with each symbol rzpresenting some “chunk” of
knowledge, and hence its total length {typically z.ound seven elements), and organization (linear,
hierarchical, etc.), are important theoretical issues. Typical contents of STM for psychological
models are those of PSG [Newvell1973], where STM might contain pureiy content-free symbols like:

Q
(EEFP)
T

or VIS [Moran1973a), where the STM contains symbuls representing directions on a visualized map:

(NEW C-1 CORNER WEST L-i NORTH L-2)
(L-2 LINE EAST P-2 P-1)

(HEAR NORTH EAST % END)

For systems iriended to be knowledge-based experts, the data base contains facts 2nd assertions
about the world, is typically of arbitrary size, and has no a priori constraints on the complexity of
organization. For example, the MYCIN system [Davis1975) uses a collection of 4-tuples, consisting of
an associative triple and a “certainty factor™ (CF, see [Shortliffe1975b]), which indicates (on a scale
from -1 to 1) how strongly the fact has been confirmed (CF > 0) or disconfirmed (CF < 0):

(IDENTITY ORGANISM-1 E.COLI .8)
(SITE CULTURE-2 BLOOD 1.0

(SENSITIVE ORGANISM-1 PENICILLIN -1.0)

As another example, in the DENDRAL system [Feigenbaum1971, Smith1972) the data base contain:.
complex graph structures which represent molecules and molecular fragments. The structures are
built by assigning unique numbers to each atom of a molecule and by describing chemical bonds by
a pair of numbers indicating the atoms they join.

A third style of organization for the data base is the "token stream" approach used, for
example, in LISP70 (Tesler1973]. Here the data base is a linear stream of tokens, accessible only in
sequence. Each production in turn is matched against the beginning of the stream (i.e. If the first
character of a production and the first character of the stream differ, the whole match fails), and if
the rule is invoked, it may act to add, delete, of modify characters in the matched segment. The
anchoring of the match at the first token offers the possibility of great efficiency in rule selection,
since the productions can be “compiled” into a decision tree which keys off sequential tokens from

-3 -
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PURE PRODUCTION SYSTENS

the stream (a very simple example is shown below).
production set
ABC » XY
ACF =« wz

BBA -« X2Z

ACD - WY XY WZ WY XZ

Whatever the organization of the data base, one important characteristic should be noted:
it is the sole storage medium for all state variables of the system. In particular, unlike
procedurally.oriented languages there is no provision for separate storage of control state
information — no separate program counter, pushdown stack, etc. There is nothing but the single
data base, and all information to be recorded must go there. We refer to this as the unity of data
and control store, and examine some of its implications below. This store is, moreover, universally
accessible to every rule in the system, so that anything put there is potentially detectable by any
rule. We will see that both of these have significant consequences for the use of the data base as
a communication channel
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{2.3} INTERPRETER

The interpreter is the source of much of the variation found among different systems, but
it may be seen in the simplest terms as a select-¢xecute loop, in which one rule applicable to the
current state of the data base is chosen, and then executed. Its action results in a modified data base,
and the select phase begins again. Given that the selection is often a process of choosing the first
rule which matches the current data base, it is clear why this cycle is often referred to as a
‘recognize-act’, or ‘situation-action’ loop. The range of variations on this theme is explored in the
-&ction on control cycle architecture.

This akernation of selection and execution is an essential element of PS architecture that is
responsible for one of their most fundamental characteristics. By choosing each new rule for
execution on the basis of the total contents of the data base, we are effectively performing a
complete reevaluation of the control state of the system at every cycle (recall the unity of data and
control store). This is distinctly different from proceduraliy-oriented approaches, in which control
flow is typically the decision of the process currently executing, and is commonly dependent on only
a small fraction of the total number of state variables. PSs are thus sensitive to any change in the
entire environment, and potentially reactive to such changes within the scope of a single execution
cycle. The price of such reactivity is, of course, the computation time required for the reevaluation.

An example of one execution of the recognize-at loop for a much simplified version of
Neweil's PSG system will 1liustrate some of the foregoing notions. The production system, called
PS.ONE, is assumed for this example to contain two productions, PD1 and PD2. We indicate this as
follows:

PS.ONE{PD! PD2)

PD1: (DD AND (EE) --> BB)
PD2: (XX --> CC DD)

PDI1 says that if the symbol DD and some expression beginning with EE (that is, (EE ..)) is found
in STM, then insert the symbol BB at the front of STM. PD2 says that if the symbol XX is found
in STM, then first insert the symbol CC, then the symbol DD, at the front of the STM. The initial
contents of STM are:

STM: (QQ (EE FF) RR XX SS)

This STM is assumed (0 have a fixed maximum capacity of five elements. As new elements are
inserted at the beginning (left) of the STM, therefore, other elements will be lost (forgotten) off the
right end. Second, as illustrated below, for this system elements accessed in matching the condition of
a rule are ‘refreshed’ (pulled to the front of STM), rather than replaced.

The production system then scans the productions in order: PDI, then PD2. Only PD2
matchies, so it is evoked. The contents of STM after this step are:

-5‘
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STM: (DO CC XX QQ (EE FFy)

PD1 will match during the upcoming cycle to yield,
STM: (BB DO (EE FF) CC X0

completing two cycles of the system.
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{3} TWGO VIEWS OF PRODUCTION SYSTEMS

Throughnut much of the work reported, there appear to be two major views of PSs, as
characterized on one hand by the psychological modelling etforts (PSG, PAS II, VIS, etc), and on
the other by the performance oriented, knowledge-based expert systems (+.g. MYCIN, DENDRAL).
These appear to be two distinct efforts which have arrived at similar methodologies while pursuing
differing goals.

The efforts tc simulate human performance on simple tasks are aimed at creation of a
program which embedies a theory of that oehavior. From the performance record of experimental
sub jects the modeller atteinpts to formulate the mimmally competent set of production rules, the
smallest set still 2ble to reproduce the behavior. Note that ‘behavior’ here is meant to include all
aspects of human performance (including mistakes, the effects of forgetting, etc.), all shortcomings or
successes which may arise out of (and hence may be ciues to) the ‘architecture’ of human cognitive
systems (4]

An example of this approach is the PSG system, from which we constructec the example
above. This system has been used to test a number of theories to explain the results of the Sternberg
memory scanning tasks (Newell1973], with each set of productions representing a different theory of
how the human subject retains and recails the information given to him during the psychological
task. Here the subject first memorizes a small subsat of a class of familiar symbols (eg. digits), and
then attempts to respond (o a symbol flashed on a screen by indicating whether or not it was in the
initial set. His response times are noted.

The task was first simulated with a simple production system that performed' correctly, but did {
not account for timing variations (which were due to list length and other factors). Refinements were 1
then developed to incorporate new hypoth:ses suout how the symbols were brought into memory, i
and eventually a good simulation was built arounc a sinall number of productions. 5

Newell has reported [1973] that use of a production system methodology led in this case to a 1
novel hypothesis that certain timing effects are caused by a decoding process rather than a search
process, and that it also clearly illustrated the possible tradeoffs in speed and accuracy between
differing processing strategies. As such it was an efiective vehicle for the expression and evaluation
of theories of bet avior.

The performance-oriented expert systems, on the other hand, start with productions as a
representation of knowledge about a task or domain, and attempt to build a program which displays
competent behavior in that domain. These efforts are not concerned with similarities betweer: the
resulting systems and human performance {except insofar as the latter may provide a possible hint ;
about ways to structure the domain or to approach the problem, or as a yardstick for success, since : ;
few Al programs approach human levels of competence). They are intended simply to perform the | i
task without errors of any sort, human-like or otherwise. i

The approach is characterized by the DENDP.AL system, in which much of the development 5
has involved embedding a chemist’s knowledge about mass spectromesry into rules usable by the

-7 -
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program, without attempting to model the chemist’s thinking. The program'’s knowledge is excended
by adding rules that apply to new classes of chemical corapounds. Similarly, much of the work on
the MYCIN system has involved crystallizing informal knowledge of clinical medicine in a set of
production rules.

Despite the difference in emphasis, both approaches have been drawn to PSs as a
methodology. For the psychological modellers, production rules offer a clear, formal, and powerfut
way of expressing basic symbol pmeessing acts, which foria the primitives of ii.formation processing
psychology [5). For the ¢ signer of knowledge-based systems, production rules ofier a representation
of knowledge that is relatively easily acceised and modified, making it quite useful for systems
dusigned for incremental approaches tn competence. For example, much of the MYCIN system's
capability for explaining its actions is based on the representation of knowled~e as individual
production rules [Shortliffel975a) This makes the knowledge far more accessable tc the program
i.self than it might otherwise be if it were embodied in the form of ALGOL.-like procedures. As in
DENDRA L, the modification and upgrading of the system are by incremental modification of, or
addition to the rule set.

Note that we are suggesting here, and through much of the rest of the paper, that it is
possible to view a great deal of the work on PSs in terms of a unifying formalism. The intent is to
offer a conceptual structure which can iweip organize what may appear to be a disparate collection of
efforts. The presence of such a formalism should not, however, obscure the significant differences
which arise ¢'.. of the various perspectives. As one example, the decision to use RHS-driven rules in
a goal-directed fashion implies a control structure which is simple and direct, but relatively
inflexible. This offers a very different programming tool than the LHS-driven systems. The laticr
are capable of much more cemplex control structures, giving them capabilities much closer to those
of a complete programming language. Recent efforts, especially, have begun to explore the issues of
more complex, higher level control within the PS methodology (see {5.9}).

It should aiso be rioted that production systems are seen by some [Newell1972] not as simply a
convenient paradigm for approacking psychological modelling, but rather as a methodology whose
power arises out of its close similarity to fundamental mechanisms of human cognition. In this view,
human probiem solving behavior can be modelled easily and successfuily by a productior: system
Lecause it in fact is being generated by one:

We confess to a strong premonition that the actual organization of human
programs closely resembies the production system organization.. We cannot yet
prov: the correctness of this judgment, and we suspect that the ultimate
verification may depend on this organization’s proving relatively satisfactory in
many different small ways, no one of them decisive.

In summary, we do not think a conclusive case can be made yet for production
systems as the appropriate form of [human] program organization. Many of the
arguments ... raise difficulties. Nevertheless, our judgment stands that we should
choose production systems as the preferred language for expressing programs and
program organization.

(Neweli1972, p 803-4, 806)




T TR TR R g e - TR T T v — o e ~——yr —- ——— v —— -

— —— . m———— -

THO VIEUS OF PRUCUCTION S/STERS

This has fed to speculation [6] that the interest in production systems on the part of those
building high performance knowledge-based systems is more than a coincidence. It 13 suggested
that this is a resuk of current research (re)discovering what has been learned by naturaily
intelligent systems through evolution — that siructuring knowledge in a production system format
is an effective approach to the organization, retrieval, and use of very large amounts of
knowledge.

The success of some production rule based Al systems does give weight to this argument,
and the PS methodology iz clearly powerful But whether this is a resuk of its equivalence to
human cognitive processes, and whether this implies artificially intelligent systems ought to be
similarly structured, are, we feel, still open questions.

|
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APPROPRIHTE AND INAPPROPRIATE DOMAINS

{4} APPROPRIATE AND INAPPROPRIATE DOMAINS

Program designers have found that PSs easily model problems in some domains, but are
awkward for others. Let us briefly investigate why this may be so, and relate it to the basic structure
and function of a PS.

We can imagine two very different domains — the first is best viewed and understood as '
consisting of many independent states, while the second seems best understood via a concise, unified
theory, perhaps embodied in a single law. Examples of the former include some views of perceptual - 4
psychology or clinical medicine, in which there are a large number of states relative to the number 3
of actions (this may be due either to our lack of a cohesive theory, or to the basic complexity of the 1
system being modelled). Examples of the latter include well-established areas of physics and
mathematics, in which a few basic tenets serve to embody much of the required knowledge, and in
which the discovery of unifying principles has emphasized the similarlities in seemingly different
states. This first distinction appears to be one important factor in distinguishing appropriate from
inappropriate domains.

A second distinction concerns the complexity of control flow. As two extremes, we can imagine
two processes, one of which is a set of independent actions, and the other a complex collection of
multiple, parallel process invoiving several dependent sub-processes.

A third distinction concerns the extent to which the knowledge to be embedded in a system
can be separated from the manner in which it is to be used (also known as the controversy betweer:
declarative and procedural representations; see [Winograd1975) for a extensive discussion). As one
example, we can imagine simply stating facts, perhaps in a language like predicate calculus. This
makes rno assumptions about the way those facts will be employed. Alternatively, we could write
procedural descriptions of how to accomplish a stated goal. Here the use of the knowledge is for the
most part predeterminad during the process of embodying it in this representation.

In all three of these distinctions, a PS is well suited to the first description and ill suited to the
latter. The existence of mukiple, non-trivially different, independent states is an indication of the
feasibility of writing multiple, nontrivial, moduiar rules. A process composed of a set of independent
actions requires only limited communication between the actions, and, as we shall see, this is an
important characteristic of PSs. The ability to state what knowledge ought to be in the system
without also describing its use makes an important difference in the ease with which a PS can be
written (see {5.9}). |

For the latter description (unified theory, complex control flow, predetermined use for the :
knowledge), the economy of the basic theory makes for either trivial rules, or multiple, almost !
redundant rules. In addition, a complex looping and branching process requires explicit |
communication between actions, in which one explicitly invokes the next, while interacting subgoals !
require a similary advanced communication process to avoid conflict. Such communication is not :
easily supplied in a PS-based system. The same difficulty also makes it hard to specify in advance
exactly how a given fact should be used.

sl

- 10 -

PIRORPE P PRRE

I st s, i 0 i e Ve N - . - j



APPRUPRIATE AND INAPPROPRIATE DOMAINS

It seems alio to be the nature of production systems to focus upon the variations within a
domain rather than upon the common threads that link different facts or operations. Thus for
example, (as we shall describe in more detail below) the process of addition is naturaily expressed
via productions as n? rewrite operations involving two symbels (the digits being added). The fact
that addition is commuiative, or rath=r, that there is a property of "commutativity” shared by all
operations that we consider to be addition, is a rather awkward one to express in production system
terms.

This same characteristic may, conversely, be viewed as a capability for focussing on and
handling significant amounts of detail. Thus, where the emphasis of a task is on recognition of large
numbers of distinct states, PSs provide a significant advantage. In a procedurally-oriented approach,
it is both difficult to organize and troublesome to update the repeated checking of large numbers of
state variables and the corresponding transfers of control. The task is far easier in PS terms, where
each rule can be viewed as a demon awaiting the occurrance of a specific state. (In the case of one
current PS (DENDRAL), the initial, procedural approach proved sufficiently inflexible that the
entire sy.cem was rewritten in production rule terms.)

In addition, we noted above the potential sensitivity and reactivity of PSs which arises
from their continua: reevaluation of the control state. This has also been referred to as the
‘openness’ of production rule based systems. It is characterized by the principle that ‘any rule can
fire at any time’, which emphasizes the fact that at any point in the computation, any rule could
possibly be the next to be selected, depending only on the state of the data base at the end of the
current cycle. Compare this to the normal situation in a procedurally-oriented language, where
such a principle is manifestly untrue: it is simply not typically the case that, depending - the
contents of that data base, any procedure in the entire prograrn could potentially be the nex. oe
invoked. :

PSs therefore appear to be useful where it is important to detect and deal with a large
number of independent states, in a system which requires a broad scope of attention, and the
capability of reacting quickly to small changes. In addition, where knowledge of the problem
domain falls naturally into a sequence of independent ‘recognize-act’ pairs, PSs offer a convenient
formalism for structuring and expressing that knowledge.

Finally, note that the implication is not that both approaches couldn’t perform in both
domains, but that there are tasks for which one of them would prove awkward, and the resulting
system unenlightening. Such tasks are far more elegantly accomplished in only one of the two
methodologies. The main point is that we can, to some extent, formalize our intuitive notion of
which approach seems more appropriate by considering two essential characteristics of any PS ~ its
set of multiple, independent rules, and its limited, indirect channel of interaction via the data base.
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PROOUCTION SYSTEW CHARACTERISTICS

{5} PRODUCTION SYSTEM CHARACTERISTICS

Despite the range of variations in methodologies, there appear to be many characteristics
common to almost all PSs. It is the presence of these, and their interactions, that contr_dute to the
‘nature’ of a PS, its capabilities, deficiencies, and characteristic behavior. This section is ar: attempt
to isolate and analyze ecch of these factors, discovering the primitive elements which compose them,
and providing an overview of their interactions.

The network of Figure . . a summary of features and relationships. Each box represents
some feature, capability, or pa amet'r of interest, with arrows labelled with +'s and -'s suggesting the
interactions between them. This rough scale of facilitation and iivhibition is naturally very crude,
but does indicate the interactions as we saw them.

Figure | contains at least three conceptually different sorts of factors: (a) those fundamental
characteristics of the basic PS8 scheme (eg. indirect/limited channel, constrained format); (b)
secondary effects of these (eg. automated modification of behavior); and (c) performance parameters
of implementation which are helpful in characterising PS strengths and weaknesses (eg. visibility of
behavior flow, extensibility). This division o] factors is suggested by the three levels ** : ted in the

figure.
Below we briefly describe each feature and suggest the nature of its interac. - with the

others.

{5.1} INDIRECT/LIMITED CHANNEL OF INTERACTION

Perhaps the most fundamental and significant characteristic = PSs .. their re - iction on the
interactions between rules. In the simplest model, & pure PS, we have a completely ordered set of
rules, with no interaction channel other than the data base. The total effect of any rule is
determined by its modifications to the data base, and hence subsequent rules must ‘read’ there any
traces it may leave behind. Winograd [1975) characterizes this in discussing global moddlarlty in

programming:

We can view production systems as a programming language in which all interaction
is forced through a very narrow channel..The temporal interactions [of individual
productions] is completely determined by the data in this STM, and a uniform
ordering regime for deciding which productions will be activated in caies where
more than one might apply.. Of course it is possible to use the STM to pass
arbitrarily complex messager which embody any degree of interaction we want. But
the spirit of the venture is very much opposed to this, and the formalism is
interesting to the degree that complex processes can be described without resort to
such kiudgery, maintaining the clear modularity between the pieces of knowledge and
the global process which uses them.

While this characterization it clearly true for a pure PS, with its limitations on the tize of
STM, we can generalize on it slightly to deal with a broader class of syitems. First, in ihe more
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PRODUCTION SYSTER CHARRCTERISTICS

general case, the channel is not 30 much narrow s indirect and unigue. Second, the kiudgery arises
not from arbitrarily complex messages, but from specially crafted messages which force highly
specific, carefully chosen interactions.

With reference to the first point, one of the most fundamental characteristics of the pure PS
organization is that rules must interact indirectly through a single channel. Indirection implies that
all interaction must occur by the effect of modifications written in the data base; uniqueness of the
channel implies that these modifications ars accessible to every one of the rules. Thus, to produce a
system with a specificd behavior, one must think not in the usual terms of having one section of
code cail another explicitly, but rather use an indirect approach in which each piece of code (ie.
each rule) leaves behind the proper traces to trigger the next relevant piece. The uniforin access to
the channel, along with the openness of PSs, implies that those traces must be constructed in the
light of a potential response from any rule in the system. It is in some sense like a difficult case of
programming purely by side effects.

With reference to the second point, in many systems the action of a single rule may, quite
legitimately, result in the addition of very complex structures to the data base (e.g. DENDRAL, see
Taxonomy, {6.1}). Yet another rule in th2 same system may deposit just one carefully selected symbci,
chosen solely because it will serve as an unmistakable -ymbol to precisely one other (carefully
preselected) rule. Choosing the symbol carefully provides a way of sending what becomes a private
message through a public channel; the continual reevaluation of the control state assures that the
message can take immediate effect. The result is that one rule has effectively called another,
procedure style, and this is the variety of kiudgery which is contrary to the style of knowledge
organization typically associated with a PS. We argue below (see {5.5)) that it is, in particuar, the
premeditated nature of such message passing (typically in an attempt to ‘produce a system with
specified behavior') which is the primary violation of the spirit of PS methodology.

The primary effect of this indirect, limited interaction is to produce a system which is strongly
modular, since no rule is ever called directly. It is also, however, perhaps the most significant factor
in making the behavior flow of a PS more difficult to analyze. This is due to the fact that, even for
very simple tasks, overall behavior of a PS may not be at all evident from a simple review of its
rules. A

To illustrate many of these issues, consider the algorithm for addition of positive, single digit
integers used by Waterman (1974] with his PAS II production system interpreter. First, the
procedural version of the algorithm, in which transfe. of control is direct and simple:

add(m,n) ::=
A] count « O; nneny;
B] L1: if count = m then return(nn);
C] count « successor(count);
D] nn « successor(nn);
E) golLl);

- 14 -
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PRODUCTION SYSTEN CHNARACTLRISTICS

Compare this with the set of productions for the same task, in Figure 2 (the notation may be
somewhat unfamiliar; we have provided a brief explanation). The two are not precisely analogous,
since ihe procedural version does simple addition, while the production set boths adds and “learns”
(see note [7) and the comments in Figure 2). The example is still quite illustrative, however, and
Waterman points out some direct correspondences between pruduciions and statements in the
procedure. For example, productions 1 and 2 accomplish the initialization of line A, rule 3
corresponds to line B, and rule 4 to lines C and D. There is no production equivalent to the goto of
line E because the production system execution cycle takes care of that implicitly. On the other hand,
note that in the procedure, there is no question whatsoever that the initialization step nn « n is the
second statement of “add”, and that it is to be executed just once, at the beginning of the procedure.
In the productions, the same action is predicated on an unintuitive condition of the STM (essentially
it says if the value of n is known, but nn has never been referenced or incremented, then initialize
nn to the value that n has at that time). This degree of explicitness is necessary because the
production system has no notion that the initialization step has already been performed in the given
ordering of statements, so the system must check the conditions each time it goes through a new
cycle.

Thus, procedural languages are oriented toward the explicit handiling of control flow and
stress the importance of its influence on the fundamental organization of the program (as, for
example, in recent developments in structured programming). PSs, cn the other hand, emphasize the
statement of independent chunks of knowledge from a domain, and make contro! flow a secondary
issue. Given, moreover, the limited form of communication available, it is more difficult to express
concepts which require structures larger than a single rule. Thus, where the emphasis is on global

behavior of a system rather than the expression of small chunks of knowledge, PSs are, in general,

going to be less transparent than formulations of equivalent routines in procedural terms.

- 15 -
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CONDITION ACTION
1] (READY) (ORDER X1) => (REF (READY) (CO'*IT X1))
(ATTEND)

7

2] (N X1) - (NN) - (S NN (DEP (NN X1))

3] (COUNT X1) (M X1) (NN X2) (N X3) => {GAY X2 IS THE ANSWER)
(COND (M X1) (N X3))
(ACTION (STOP))
(ACTION (SAY X2 IS THE ANSWER))
(PROC)
(STOP)

4] (COUNT) (NN) => (REP (COUNT) (S COUNT))
(REP (NN) (S NND)

5] (ORDER X1 X2) => (REP (X1 X2) (X2))
(COND (S X3 X1))
(ACTION (REP (S X3 X1) (X3 X2)))
(PROD) -

initial STM: (READY) (ORDER0123456789)

netation:

The Xi's in the CONDITION are variables in the pattern match, all other symbols are literals. An
Xi appearing only in the ACTION is also taken as a literal. Thus if rule 5 is matched with X1 = ¢
and X2 = 5, as its second action it would depasit (COND (S X3 4)) in STM.

All elements of the LHS must be matched for a match to succeed, except “~" indicates the
ANDNOT operation.

An expression enclosed in parentheses and starting with a literal [eg. (COUNT) in production 4]
will match any expression in STM which starts with the same literal [=.g. (COUNT 2)1

Figure 2s
(afver [Waterman1974), simplified slightly)

- 16 -
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ngtation (continued)

REP REPiace, 3o that, eg. the RHS of production 1 will replace the expression
(READY) in the data base with the expression (COUNT X1) [where the variable
X1 stands for the element matched by the X1 in (ORDER X 1))

DEP DEPosit symbols at front of STM

ATTEND  wait for input from tty. For this example, typing (M 4N 2) will have the system
add 4 and 2

SAY output to tty

(COND ..)  shorthand for (DEP (COND ..))
(ACTION .) shorthand for (DEP (ACTION ..))

PROD gather all items in the STM of the form (COND ..) and put them together into a
LHS; gather all items of the form (ACTION ..) and put them together into a RHS;
removing all these expressions from the STM. Form a production from the resulting
LHS and RHS, and add it to the front of the set of productions (i.e. before rule 1).
(see note [11] for a comment on the importance of rule order] )

| comments on system behavior

The "S” (rules 2, 3 and 5) is intended to indicate the successor function.

After initialization (rules | and 2), the system loops around rules 4 and 5, incrementing N by |
for M interations. In this 'oop, intermediate calculations (the results of successor function
computations) are saved via the (PROD) in rule 5, and the final answer is saved by the (PROD) in
rule 3. Thus, after computing ¢ + 2, the rule set will contain the additional rules:

k.

J——™

(SX30) => (REP(SX30)(X31)
(SX31) => (REP(SX31)(X32)
(M Q) (N2 => (SAY 6 IS THE ANSWER) (STOP) !

The system is thus recording it, intermediate and final results by writing new productions, and in i
the future will have these answers avaiiable a single step. Note that the set of productions therefore
is memory (and in fact long term memory, LTM, since productions are never lost from the set).

Figure 2b

- 17 -




T R T YR T T I i re e T TSy vy v e o manrgiit e e e e e e e

| F N,

e

PRODUCTION SYSTER CHARACTERISTICS

{52} CONSTRAINED FORMAT

While there are wide variations in the format permitted by various PSs, in any given
system the syntax is traditionally quite restrictive, and generally follows the conventions accepted
for PSs [8] Most commonly this means, first, that the side of the rule to be matched should be a
simple predicate buikt out of a Boolean combination of computationally primitive operations,
which invoive (as noted above) only matching and detection. Second, it means the side of the rule
to be executed should perform conceptually simpic operations on the data base. In many of the
systems oriented toward psychological madelling, the side to be matched consists of a set of literals
o. simple patterns, with the understanding that the set is to be taken as a con junction, so that the
predicate is an implicit one regarding the success or failure of matching all of the elements.
Simiiarly, the side to be executed performs a simple symbol replacement or rearrangement.

Whatever the format, though, the conventions noted lead to clear restrictions for a pure
procuction systems First, as a predicate, the matching side of a rule should rev“m only some
indication of the success or failure of the match (while binding individual variables or segments
in the process of pattern matching is quite often used, it would be considered inappropriate to
have the matching process produce a complex dat» structure intended for processing by another
part of the system). Second, as a iimple expression, the matching operation is precluded from
using more complex control structures like iteration or recursion within the expression itself (such
operations can be constructed from multiple rules, however). Finally, as a matching and detection
operation, it must only ‘observe’ the staie of the data base, and not change it in the operation of
testing it.

We can characterize a continuum of possibilities for the side of the rule to be executed.
There might be a single primitive action, a simple collection of independent actions, a carefully
ordered sequence of actions, or yet more complex control structures. We suggest that there arz two
related forms of simplicity which are important here. First, each action to be performed should be
one which is a conceptual primtive for the domain. In the DENDRAL system, for example, it is
appropriate to use chemical bond breaking as the primitive, rather than describing the process at
some lower level. Second, the complexity of control flow for the execution of these primitives
should be limited — in a ‘pure’ production system, for example, we might be wary of a complex
set of actions that is, in effect, a small program of its own. Again, it sh:ic be noted that the
system designer may of course follow or disregard these restrictions. The result, however, will
conform to the traditional P$ architecture to the extent that they are mez.

These constraints on form make the dissection and ‘understanding’ of productions by other
parts of the prograin a more straightforward task, strongly enhancing ihe possibility of having the
program itself read, and/or modify (rewrite) its own productions [9] Expressability suffers,
however, since the limited syntax may not be sufficiently powerful to make expressing each piece
of knowledge an easy task. This in turn both restricts extensibility (zdding something is difficult if
it's hard to express it), and makes mudification of the syster’s behavior more difficult (eg. it
might not be particularly attractive to implement a desired iteration if it requires several rules
rather than a line or two of code).

- 18 -
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{5.3} RULES AS PRIMITIVE ACTIONS

In z ‘pure’ PS, the smallest unit of behavior is a rule invocation, which, at its simplest,
involves the matching of literals on the LHS, followed by replacement of those symbols in the
data base with the ones found on the RHS. While the variation= can be more complex, it is in
some sense a violation of the spirit of things to have eg. a sequence of actions in the RHS.

Moran [1973b) for example, acknowledges a deviation from the spirit of production
systems in his VIS, when he groups rules in “procedures” within which the rules are totally
ordered for the purpose ¢f ~onflict resolution. He sees several advantages in this departure: it is
“natural® for the user (a builder of psychological models) to write rules as a group working toward
a single goal. This grouping restricts the context of the rules. It also helps minimize the problem
of implicit context: when rules are ordered, a rule which occurs later in the list may really be
applicable only if some of the conditions checked by earlier rules are untrue. This dependency,
referred to as implicit context, is often not made explicit in the rule, but may be critical to system
performance. The price paid for these advantages is twofold: first, extra rules, less directly
attributable to psychological processes, are needed to switch aniong procedures; second, it violates
the basic production system tenet that any rule should (in principle) be able to fire at any time —
here only those in the currently active procedure can fire.

To the extent that the pure production system restrictions are met, we can consider rules as
the quanta of intelligent behavior in the system. Otherwise, as in the VIS, svstem, we must look at
larger aggregations of rules to trace behavior. In doing so we lose some of the ability to quantify
and measure behavior, as i3 done, for example, with the PSG system simulation of the Sternberg
task, where responsc times are attributed to individual production rules, and then compared
against actual psychological data.

A different sort of deviation i3 found in the DENDRAL system, and in a few MYCIN
rules. In both, the RHS is effectively a small program, carrying out complex sequences of actions.
In this case, the quanta of behavior are the individual actions of these programs, and
understanding the system thus requires familiarity with them.

By embodying these bits of behavior in a stylized format, it becomes possible for the
system to ‘read’ them to its users (as is done in MYCIN, see [Shortliffei975a] and note [9]), and
hence provide some explanation of its behavior, at least at this level. This prohibition against
complex behaviors within a rule, however, may force us to impiement what are (conceptually)
simple control structures by using the combined effects of several rules. This of course may make
overall behavior of the system much more opaque [see Visibility, {5.5} below]
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{5.4] MOMULARITY

We can regard the modulerity of a program as the degree of separation of its functional
units into isotatable pieces. A program is Aighly modular if any functional unit can be changed
(added, ~->"~ 1. or replaced) with no unanticipated change to other functional units. Thus program
modularity is inversely related to the strength of coupling between its functional units.

The modularity of programs written as pure production systems arises f-om the important fact
that the next rule to be invoked is determined solely by the contents of the data base, and no rule is
ever called directly. Thus the addition (or daletion) of a rule does not require the modification of
any other rule to provide for (delete) a cali to it. We might demonstrate this by repeatedly reroving
rules from a PS: many systems will continue to display some sort of “reasonable” behavior, up to a
point [10] By contrast, adding a procedure to an ALGOL-like program requires modification of
other parts of the code to insure that it is invoked, while removing an arbitrary procedure from
such a program will generally cripple it.

Note that the issue here is more than simply the ‘undefined function' error message which
would result from a missinng procedure. The problem persists even if the compiler or interpreter were
altered to treat undefined functions as no-ops. The issue is a much more fundamental one
concerning organization of knowledge: programs written in procedure-oriented languages stress the
kind of explicit passing of control from one section of code to another that is characterized by the
calling of procedures. This is typically done at a selected time and in a particular context, both
carefully chosen by the programmer. If a no-op is substituted for a missing procedure, the context
upon returning will not be what the programmer expected, and subsequent procedure calls will be
executed in increasingly incorrect environments. Similarly, procedures which have been added must
be called from somewhere in the program, but the location of the call must be chosen carefully if the
effect is to be meaningful.

Production systems, on the other hand, especially in their pure form, emphasize the
decoupling of control flow from the writing of rules. Each rule is designed to be, ideally, an
independent chunk of knowledge with its own statement of relevance (either the conditions of the
LHS, as in a data-driven system, or the action of the RHS, as in a goal-directed system). Thus where
the ALGOL programmer carefully chooses the order of procedure calls to create a selected sequence
of environments, in a production system it is the environment which chooses the nex: rule for
execution. And since a rule can only be chosen if its criteria of relevance have been met, the choice
will continue to be a plausible one, and system behavior remain “reasonable”, even as rules are
successively deleted.

This inherent modularity of pure production systems eases the task of programming in them.
Given some primitive action that the system fails to perform, it becomes a matter of writing a rule
whose LHS matches the relevant indicators in the data base, and whose RHS performs the action.
Where the task is then complete for a pure PS, systems which vary from this design have the
additional task of assuring proper invocation of the rule (not unlike assuring the proper call of a
new procedure). The difficulty of this varies from trivial in the case of systems with goal oriented
behavicr (like MYCIN), t> substantial in systems that use more complex LHS scans and conflict
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resolution strategies.

For systems using the goal-oriented approach, rule order is usually unimoortant. Insertion of a
new rule is thus simple, and can often be totally automated. This is of course a distinct advantage
where the rule set is large, and the problems of system coriplexity are significant.

For others (like PSG and PASII) rule order can be critical to performance and hence
requires careful attention. This can, however, be viewed as an advantage, and indeed, Newell
(1978] tests different theories of behavior by the simple expedient of changing the order of rules.
The family of Sternberg task simulators there includes a number of production systems which
differ only by the interchange of two rules, yet display very different behavior. Waterman's system
[1974) accomplishes ‘adaptation’ by the simpie heuristic of placing a new rule immediately before
a rule that causes an an error [11].

{5.5} VISIBILITY OF BEHAVIOR FLOW

Visibility of behavior flow is the ease with which the overall behavior of a PS can be
understood, either by observing the system, or by reviewing its rule base. Even for conceptually
simple tasks, the stepwise behavior of a PS is often rather opaque. The poor visibility of PS
behavior compared te that of the proceduial formalism is illustrated by the Waterman arithmetic
example. The procedural version of the iterative loop there is reasonably clear (lines B.C and E),
and an ALGOL-type FOR L=! UNTIL N DO.. would be completely obvious. Yet the PS
formalism for the same thing requires non-intuitive productions (like 1 and 2), and symbols like
NN whose only purpose is to "mask” the condition portion of a rule so it will not be invoked iater
(such symbols are termed control ¢lements [Anderson1976)).

The requirement for control elements and much of the opacity of PS behavior is a direct
result of two factors noted above: the unity of control and data store, and the reevaluation of the
data base at every cycle. Any attempt to ‘read’ a PS requires keeping in mind the entire contents of
the data base, and scanhing the entire rule set at every cycle. Control is much more explicit and
localized in procedural languages, so that reading ALGOL code is a far easier task (Indeed, one of
the motivations for the the current interest in structured programming is the attempt tc emphasize
still further the degree of explicitness and localization of control).

The perspective on knowledge representation suggested by PSs also contributes '3 this opacity.
As suggested above, PSs are appropriaie when it is possible to specify the content of required
knowledge, without also specifying the way in which it is to be used. Thus, reading a PS does not
generally make clear how it works, so much as what it may know, and the behavior is consequently
obscured. The situation is often reversed in procedural languages — program behavior may .e
reasonably clear, but the domain knowledge used is often opaquely embedded in the procedures.
The two methodologies thus emphasize different aspects of knowledge and program organization.
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{56} MACHINE READABLE
Several interesting capabilities arise from making it possible for the system to examine its
own rules. As one example, it becomes possible to implement automatic consistency checking. This
can proceed at several levels: in the simplest approach we can search for straightforward ‘syntactic’
problems such as contradictions (eg. 2 rules of the form A A B+ Cand A A B » (), or
subsumption (eg. D A EA F+ G, DA F <+ G). A more sophisticated approach, which would
require entensive domain-specific knowledge, might be able to detect ‘semantic’ problems, as for
example a rule of the form A A B + C, when it is known from the meaning of A and B that A +
~ 8. Many other (domain specific) tests may also be possible. The point is that by automating the
process, extensive (perhaps exhaustive) checks of newly added productions are possible (and could
perhaps be run in background mode when the system is otherwise idle).
A second sort of capability is described in detail in note [9), and deals with the MYCIN
system’s approach to examining its rules. This is used in several ways [Davis1976], ana produces
both a more efficient control structure, and precise explanations of system behavior.

{5.77 EXPLANATION OF PRIMITIVE ACTIONS .

Production system rules are intended to be modular chunks of knowledge and to represent
primitive actions. Thus, explaining primitive acts should be as simple as stating the corresponding
rule — all necessary contextual information should be included in the rule itself. Achieving such
clear explanations, however, evidently strongly depends upon the extent to *vhich the assumptions of
modularicy and explicit context are met. In the case where stating a rule does provide a clear
explanation, the task of modification of program behavior becomes easier.

As an example, the MYCIN sysiem often successfully uses rules to explain its behavior (see
[Davis1975) and [Shortiiffel975a) for examples). This form of explanation fails, however, when
considerations of system pe:crmance or human engineering lead to rules whose context is obscure.
One rule, for examgle, says in effect, "If A seems to be true, and B seems to be true, then that's
(more) evidence in favor of A" It is phrased this way rather than simply “if B seems true, .hat's
evidence in favor of A", because B is a very rare condition, and it appears counterintuitive to ask
about it unless you suspect A to begin with. The first clause of the rule is thus acting as a strategic
filter, to insure that the rule is not even tried unless it has a reasonable chance of succeeding. Sysiem
performance has been improved (especially as regards human engineering considerations), at the cost
of a somewhat more opaque rule.

{58} MODIFIABILITY, CONSISTENCY, RULE SELECTION MECHANISM
As noted above, the tightly constrained format of rules makes it possible for the system to
examine its cwn rule base, with the possibility of modifying it in response to requests from the user,
or to insure consistency with respect to newly added riles. While all these are conceivable in a
system using a standard procedural approach, it is the heavily stylized format of rules and the
typically simple control structure of the interpreters that makes them ali realizable prospects in a PS.
Finally, the relative complexity of the rule selection mechanism will have varying effects on

- 22 -

b



mevg;._ ikl P e Lo s aadhe il o - R e o A T U S A A

f e e o ———— s o
. - . . b ————

PRODUCTION SYSTEN CHARACTERISTICS

the ability to automate consistency checks, or behavior modification and extension. A RHS scan
with backward chaining seems to be the easiest to follow since it mimics part of human reasoning
behavior, while a LHS scan with a comples conflict resolution strategy makes the system generally
more difficuk to understand. As a resukt, predicting and controlling the effects of changes in, or
additions to, the rule base are directly influenced in either direction by the choice of rule selection
method.

{59} PROGRAMMABILITY

It is hard to imagine any factor in this section which does not interact with
p:ogrammability (and it has therefore been omitted from Figure 1). In our experience, the answer
to "how easy is it to program in this formalism?® is "it's reasonably difficult.” This experience is
apparently not unique:

Any structure which is added to the system diminishes the explicitness of rule
conditions...Thus rules acquire implicit conditions. This makes them (superficially)
more concise, but at the price of clarity and precision...Another questionable device
in most present production systems (including mine) is the use of tags, markers, and
other cute conventions for communicating between rules. Again, this makes for
conciseness, but it obscures the meaning of what is intended. The consequence of
this in my program is that it is very delicate: one little slip with a tag and it goes
off the track. Also, it is very difficult to alter the program,; it takes a lot of time to
read just the signals.

(Moran1973a)

One source of the difficulties in programming production systems is the necessity referred to
above, of programming “by side effect.” Another is the difficulty of using the PS methodology on
a problem that cannot be broken down into the solution of independent subproblems, or into the
synthesis of a behavior which is neatly decomposable.

Several techniques have been investigated to deal with this difficulty. One of them is the
use of ‘tags and markers’ (control elements) referred to above. These can be used in various ways,
and we have come to believe that the manner in which they are used, particularly in the
psychological modelling systems, can be an indicativn of how successfully the problem has been
put into PS terms.

To demonstrate this, consider two very different (and somewhat idealized) approacher to
writing a PS. In the first, the programmer writes each rule independently of all the others, simply
attempting to capture in each some chunk of required knowle ge. The creation of each rule is
thus a separate task. Only when all of them have been written are they assembled, the data base
is initialized, and the behavior produced by the entire set of rules is noted. '

As a second approach, the programmer starts out with a specific behavior which he wants
to recreate. The entire rule set is written as a group with this in mind, and, where necessary, one
rule might deposit a symbol like A0G124 in STM solely to trigger a second specific rule on the next
cycle.
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In the first case, the control elements would correspond to recognizabie states of the system. As
such, they function as indicators of those states and serve to trigger what is generaily a large class of
potentiaily applicable rules {12} In the second case there is no such correspondance, and often only a
single rule recognizes a given control element. The idea here is to insure the execution of a specific
sequence of rules, often because a desired effect could not be accomplished in a single rule
invocatior.

Such idiosyncratic use of control elements is formally equivalent to allowing one rule to call
a second, specific rule, and hence is very much out of character for a PS. To the extent that it is
used, it appears to us to be suggestive of a failure of the methodology — perhaps because a PS
was ill-suited to the task to begin with, or because the particular decomposition used for the task
was not well chosen. [The possibility remains, of course, that a ‘natural’ interpretation of a control
element will be forthcoming as the model develops, and additional rules which refer to it will be
added. In that case the ease of adding the new rules arises out of the fact that the technique of
allowing one rule to call another was not used.] Since one fundamental assumption of the PS
methodology as a psychological modelling tool is that itates of the system correspond to what are
at least plausible (if not immediately recognizable) individual “states of mind", the relative
abuncance of the two uses of controi elements mentioned above can conceivably be taken as an
indication of how successfully the methodology has been applied.

A second approach to dealing with the difficully of programming in PSs is the use of
increasingly complex forms within a single rule. Where a ‘pure’ PS might have a single action in
its RHS, many of the current psychological modelling systems (PAS II, VIS) have explored the
use of more complex sequences of actions, including the use of conditional exits from the
sequence.

Finally, one recent effort [Rycheneri975] has investigated the use of PSs which are
unconstrained by prior restric ~ns on rule format, use of tags, etc. The aim here is to employ the
methodology as a furmalism for explicating knowledge sources, understanding control structures,
and examining the effectiveness of PSs for attacki.g the large problems typical of artificial
intelligence. The productions in this system often turn out to have a relatively simple format, but
complex control structures are built via carefully orchestrated interaction of rules. This is done
with several techniques. including explicit reliance on both control elements and certain
characteristics of the data base architecture. For example, iterative loops are manufactured via
explicit use of control elements, and data is (redundantly) re-asserted in order to make use of the
‘recency’ ordering on rules {the rule which mentions the most recently asserted data item is chosen
first; see {6.3}). These techniques have supported the reincarnation into PSs of a number of
sizable Al programs (eg. Bobrow's STUDENT (Bobrow1968]), but, as the author notes, "control
tends to be rather inflexible, failing to take advantage of the openness that seems to be inherent
in PSs.”

This reflects something of a new perspective on the use of PSs. Previous efforts have used
them as tools for analyzing both the core of knowledge essential to a given task, and the manner
in which such knowledge is used. Such efforts relied in part on the austerity of the available
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control structure to keep all the knowledge explicit (recall Moran's comment above). The
expectation is that each production will embody a single chunk of knowledge. Even in the work
of [Neweli1973), which used PSs as a medium for expressing different theories [« different control
structures) in the Sternberg task, an important emphasis is placed on productions as a model of
the detailed control structure of humans. In fact, “every aspect of the system” is assumed to have a
psychological correlate [Newell1978, pg 472]

The work reported in [Rychener1975) however, after explicitly detailing the chunks of

knowledge required in the word problem domain of STUDENT, notes a many-to-many mapping
between its knowledge chunks and productions. It also focusses on complex control regimes which
can be built using PSs. While still concerned with knowledge extraction and explication, it views
PSs more as an abstract programming language and uses them as a vehicle for exploring control
structures. While this approach does offer an interesting perspective on such issues, it should also
be noted that as productions and their interactions grow more complex, many of the advantages
associated with ‘traditional’ PS architecture may be lost (as for example, the loss of openness noted
above). The benefits to be gained are roughly analogous to those of using a higher level
programming language: while the finer grain of the process being examined may become less
obvious, the power of the language permits far larger scale tasks to be undertaken, and makes it
easier to examine larger scale phenomena like the interaction of entire categories of knowledge.

The use of PS has thus grown to encompass many different forms, many of which are far
more complex than the ‘pure’ PS model described initially.
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{6} TAXONOMY FOR PRODUCTION SYSTEMS

In this section we suggest four dimensions along which 1o characterize PSs, examine refated '
issues for each, and indicate the range of each dimension as evidenced by systems currently (or !
recently) in operation.

{6.1} Form - how primitive or complex should the syittax of each side be?

There is a wide varjation in syntax used by various systems, and corresponding differences in
both the matching & detection process, and the subsequent action caused by rule invocation. For
matching, in the simplest case only literals are allowed, and it is a conceptually trivial process
(although the rule and data base may be so large that efficiency becomes a consideration).
Successively more complex approaches allow free variables (Waterman's poker pisyer
[(Waterman1970)), syntactic classes (as in some parsing systems), and increasingly sophisticated
capabilities of variable and segment binding, and pattern specification (PAS II, VIS, LISP70; for an
especially thorough discussion of pattern matching methods in production systems as used in VIS,
see [Moran1973a}. pp. 42-5).

The content of the data base also influences the question of form. One interesting example is
Anderson’s ACT system (Anderson1978), whose rules have node networks in their LHS. The
appearance of an additional piece of network as input results in a “spread of activation” occurring
in parallel through the LHS of each production. The rule that is chosen is the one whose LHS most
closely matches the input and which has the largest subpiece of network already in its working
memory.

As another example, the DENDRAL system uses a literal pattern match, but its patterns are
graphs representing chemical classes, and can be quite complex. Each class is defined by a bacic
chemical structure, referred to as a skeleton. As in the data base, atoms composing the skeleton are
given unique numbers, and chemics! bonds are described by the numbers of the atoms they join
[e.g. (5 6)]). The LHS of a rule is the name of one of these skeletons, and a side effect of a successful
match is the recording of the correspondence between atoms in the skeleton and those in the
molecule.

The action parts of these rules describe a sequence of actions to perform: break one or more !
bonds, saving a molecular fragment, and (ransfer one or more ﬁydrogen atoms from one fragment to i
another. An example of a simple rule is:

ESTROGEN ==> (BREAK(1415)(1317))
(HTRANS +1 +2)

The LHS here is the name of the graph structute which describes the estrogen class of molecules,
while the RHS indicates the likely iocations for bond breakages and hydrogen transfers when such
mclecules are sub jected to mass spectral bombarcment. Note that while both sides of the rule are
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relatively complex, they are written in tesms which are conceptual primitives in the domain.

A related issue is illustraied by the rules used by MYCIN, where the LHS consists of a
Boolean combination of standardized predicate functions. Hare the testing of a rule for relevance
consists of having the siandard LISP evaluator evaluate the LI4S, and all matching and detection is
controlled by the functions themselves. While there is power available in usizig functions that is
missing from a simple pattert: tnasch, there is also the temptation of writing onu function to do what
should have been expressed by several sules.

For exampe, one sneell task in MYCIN is to deduce that certain organisms are present, even
though they have not been recovered from any culture. This iz a conceptually complex, muiti-step
operation, which is currently handled by invocation of a single function. (Work is underway in
MYCIN to provide a much cieaner, rule based solution, which will allow easier access and

- modification of the knowledge required for the task).

If one succumbs often to the temptation to write one function rather than several rules, the
result can be a system that may perform the initial task, but which loses a great many of the other
advantages of the PS approach. The problem is that the knowledge embodiad in these functions is
unavailable to anything else in the sysem. Where ruies can be accessed and their knowledge
examined (because of their constrained format), chunks of ALGOL-like code are not nearly as
informative. The availability of a standardized, well structured set of operational primitives can
help to avoid the temptation to create new functions unnecessarily.
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{6.2} Content - How ‘far’ conceptually is it from the LHS to the RHS?
Which conceptual levels of knowledge beiong in rules?

The question here is how large a reasoning step is to be embodied in a single rule, and there
seem to be two distinct approaches. Systems designed for psychological modelling (PAS 11, PSG, etc),
try to measur® and compare tasks and determine required knowledge and skills. As a result, they try
to dissect cognition into its most primitive terms. While there is, of course, a range of possibilities,
from the simple literal replacement of PSG to the more sophisticated abilities of PAS II to construct
new productions, rules in these systems tend to embody only the most basic conceptual steps

Grouped at the other end of this spectrum are the task oriented’ systems like DENDRAL and
MYCIN, which are designed to be competent at selected real world problems. Here the conceptual
primitives are at a much higher level, encompassing in a single rule a piece of reasoning which may
be based both on experience and a highly complex model of the domain. For example, the statement
that "a gram negative rod in the blood is likely to be an E.coli” is based in part on a knowledge of
physiological systems, and in part on clinical experience. Often the reasoning step is sufficiently
large that the rule becomes a significant statement of a fact or principle in the domain, and,
especially where reasoning is not yvet highly formalized, a comprehensive collection of such rules may
represent a substantial portion of the knowledge in the field.

An interesting, related point of methodology is the question of what kinds of knowledge ought
to go into rules. Rules expressing knowledge about the domain are the necessary initial step, but
interest has been generated lately in the question of embodying strategies in rules. One of us has
been actively pursuing this in the implementation of meta-rules in the MYCIN system {Davis1975}
These are rules about rules, and contain strategies and heuristics. Thus while the ordinary rules
contain standard ob ject-level knowledge about the medical domain, meta-rules contain information
about rules, and embody strategies for selecting potentially useful paths of reasoning. For example, a
meta-rule might suggest that

if the patient has had an ulcer, then in concluding about organism identity, rules
which mention the gastre-intestinal tract are more likely to be useful

There is clearly no reason to stop at one level, however —~ third order rules could be used to select
from or order the meta-rules, by using information about how to select a strategy (and hence
represent a search through "strategy space”); fourth order rules would suggest how to select criteria
for choosing a strategy, etc.

This approach appears to be promising for several reatons. First, the expression of any new
level of knowledge in the system can mean an increase in competence. This sort of strategy
information, moreover, may translate rather directly into increased speed (since fewer rulex need be
tried), or equivalently, no degradation in speed even with large increases in the number of rules.
Second, since meta-rules refer to rule content rather than rule names, they automatically take care of
new ob ject level rules that may be added to the system. Third, the possibility of expressing this
information in a format that is essentially the same as the standard one means a uniform expression
of many levels of knowledge. This uniformity in turn means that the advantages which arise out of
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the embodiment of any knowledge in a production rule (accessibility, and the possibility of A
automated explanations, modifications, and acquisition of rules) should be available for the higher E
order rutes as weil.
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{6.3} Control cycie architecture [i3)
The basic control cycle can be broken dewn into twn phases called recognition an~ action.
The recognition phase involves selecting a single rule for execution. and can be further subdivided
into selection and conflict resolution. In the selection process, one or more potentially applicable rules
are chosen fron the set, and passed to the conflict resolution algorithm, which choses on> of them.
There are several agproaches to jelection, which can be categorized by their rule scan method.
Most systems (eg. PSG, PASII) use some variation of a LHS scan, in which each LHS is evaluated
in turn. Many stop scanning at the first successful evaluation (eg. PSG), and. hence conflict
resolution becomes a trivial step (although the question then remains of where to start the scan on
the next cycle: start cver at the first rule, or continue from the cusrent rule).
Some systems, however, collzct all rules whose LHS's evaluate successfully. Conflict resolution
then requires some criterion for choosing a single rule from this set {called the conflict set). Several

have been suggested, and include:

i) rule order — there is a complete ordering of all rules in the system, and the rule in
the conflict set with the highest priority is chosen

ii) data order — elements of the data base are ordered, and that rule chosen which
matches element(s) in the data base with highest priority

iii) generality order — the most specific rule is chosen

iv) rule precedence — a precedence network (perhaps containing cycles) determines the
hierarchy

v) recency order — choosing either the most recently executed rule, or the rule containing
the most recently updated element of the data base

For example, the LISP70 interpreter uses (iii), while DENDRAL uses (iv).

A different approach to the selection process is used in the MYCIN system. It is goal-oriented,
and uses a RHS scan. The process is quite similar to the unwinding of consequent theorems in
PLANNER [Hewitt1972) ~ given a required subgoal, tie system retrieves the (unordered) set of
rules whose actions conclude something about that subgoal. The evaluation of the first LHS is
begun, and if any clause in it refers to a fact not yet in the data base, a generalized version of this
fact becomes the new subgoal, and the process recurses. However, because MYCIN is designed to
work with judgmental knowledge in a domain (clinical medicine) where collecting all relevant data
and considering all possibilities are very important, it in general executes all rules from the conflict
set, rather than stopping after the first success.

The meta-rules mentioned above may also be seen as a way of selecting a subset of the conflict
set for execution. There are several interesting advantages to this. First, the conflict resolution
algorithm is stated explicitly in the meta-rules (rather than implicitly in the system's interpreter), and
in the same representation as the rest of the rule-based knowledge.

Second, since there can be a set of meta-rules for each subgoal type, MYCIN can specify
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distinct, and hence potentially more customized conflict resolution strategies for each individual
subgoal. Since the backward chaining of rules may also be viewed as a depth first search of an
AND/OR goal tree, we have the appearance of doing a tree search through a tree with an
interesting property — a collection of specific heuristics about which path to take are stored at every
branch point in the tree.

In addition, rules in the system are inexact, judgemental rules with a model of “"approximate
implication” in which the user may specif; a measure of how firmly he believes that a given LHS
implies its RHS ([Shortliffel975b) This admits the possibility of writing numerous, perhaps
conflicting heuristics, whose combined judgement forms the conflict resolution algorithm.

Control cycle architecture affects the rest of the production system in various ways. Overall
efficiency, for example, can be strongly influenced. The RHS scan in a geal-oriented system
insures that only relevant rules are considered in the conflict set. Since this is often a small subset
of the total, and one which can be computed once and stored for reference, there is no search
necessary at execution time, so the approach can be quite efficient. (In addition, since this
approach seems natural to humans, the system's behavior becomes easier to follow).

Among the conflict resolution algorithms mentioned, rule order and recency order require a
minimal amount of checking to determine the -ule with highest priority. The generality order can
be efficiently implemented, and in fact the LISP70 compiler uses it quite effectively. Data order
and rule precedence require a significant amount of bookkeeping and processing, and hence may
be slower (PSH, a recent development along the lines of PSG, attacks precisely this problem.)

The relative difficulty of adding a new rule to the system is also determined to a
significant degree by the choice of control cycle architecture. Like PLANNER with its consequent
theoreins, the goal oriented approach makes it possible to simply “throw the rule in the pot” and
still be assured that it will be retrieved properly. The generality ordering technique also admits of
a simple, automatic method for placing the new rule, as do the data ordering and recency strategy.
In the latter two cases, howaver, the primary factor in ordering is exteraal to the rule, and hence
while they may be added to the rule set easily, it is somewhat harder to predic: and control their
subsequent selection. For both complete rule order and rule precedence networks, rule addition
may be a substantially more difficulkk problem, and depends primarily on the complexity of the
criteria used to determine the hierarchy.
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{6.4} System augmentability, extensibility

Learning, viewed as augmentaion of the system's rule base, is of concern to both the
information processing psychologists, who view it as an essential aspect of human cognition, and
designers of knowledge-based systems, who acknowledge that building truly expert systems requires
an incremental approach to competence. As yet we have no range or even points of comparison to
offer, because of the scarcity of examples. Instead we suggest some standards by which the ease of 4
augmentation may be judged. {It should be noted, however, that this discussion is oriented |
primarily toward an interactive, mixed initiative view of learning, in which the human expert
teaches the system, and answers questions it may generate. It has also been influenced by the _ ;
experience of one of us in attacking this problem for the MYCIN system [Davis1976) Many other
models of the process (eg. teaching by selected examples) are of course possible, and would most ,
likely require differenting sets of criteria}. 1

i,

:

{

i

area of competence by itself, and thus we are really asking how much of that competence has been f ?

Perhaps the most basic question is "How automatic is it?" The ability to learn is clearly an
captured in the system, and how much the user has to supply. Some aspects of this competence
include ~ : ]

if the current system displays evidence of a bug caused by a missing or
incorrect rule, how much of the diagnosing of the bug is handled by the system,
and how much tracing must be done by the user?

once the bug is uncovered, who fixes it? Must the user modify the code by
hand; tell the system in some command language what to do; indicate the generic :
type of the error; can he simply point out the offending rule, or can the system i
locate and fix the bug itself?

can the system indicate if the new rule will in fact fix the bug, or whether ;
it will have side effects or undesired interactions?

how much must the user know about rule format conventions when : |

expressing a new {(or modified) rule?> Must he know how to code it explicitly; know
precisely the vocabulary to use; know generally how to phrase it; or can he indicate
in some general way the desired rule and allow the system to make the
transformation? Who has to know the semantics of the domain? For example, can
the system detect impossible con junctions [A A B, where A = not-B, but ‘equivalent’
in the semantic sense), or trivial disjunctions [ A v B, where A = not-Bl? Who knows
enough about the system's idiosyncracies to suggest optimally fast or powerful ways of
expressing rules?

R

how hard is it to enter strategies?

how hard is it to enter control structure information? Where is the control
structure information stored: in aggregations of rules, or in higher order rules? The
former makes augmentation or medification a difficult problem, the latter makes it
somewhat easier, since the information is explicit, and concentrated in one place.

can you assure continued consistency of the rule base? Who has to do the
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checking?

We believe these are questions that will be important and useful to confront in designing
almost any system intended to do knowledge acquisition, and especially for those built around
production rules as knowledge representation.
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CONCLUSIONS

{7} CONCLUSIONS

In artificial intelligence research, production systems were first used as a means of embodying
primitive chunks of information processing behavior in simulation programs. Their adaptation to
other uses, and increased experience with them has focussed attention on their possible utility as a
general programming mechanism. Production systems permit the representation of knowledge in a
highly uniform and modular way. This may pay off handsomely in two areas of investigation —
development of programs that can manipulate their own representations, and development of a
theory of loosely coupled systems, both computational and psychological. Production systems are
potentially useful as a fiexible modeiling tool for many types of systems; current research efforts are
sufficiently diverse to discover the extent to which this potential may be realized.

Information processing psychologists continue to be interested in production systems for many
reasons. PSs can be used to study a wide range of tasks [2]; they constitute a general programming
system with the full power of a Turing Machine, but use a homogeneous encoding of knowledge; to
the extent that the methodology is that of a pure production system, the knowledge embedded is ﬂ
completely explicit, and thus aids experimental verilication or falsifiability of theories which use PSs J
as a medium of expression; productions may correspond to verifiable bits of psychological behavior
(Morani973aj, reflecting the role of postulated human information processing structures such as
short term memory; they are flexible enough to permit a wide range of variaticn based on reaction
times, adaptation, or other commonly tested psychological variables: the space of PS can be fit to
various alternative human information processing strategies; and finally, they provide a method for
studying learning and adaptive behavior (Waterman 1974].

For those wishing to build knowledge-based expert systems, the homogeneous encoding of
knowledge offers the possibility of automating parts of the task of dealing with the growing
complexity of such systems. Knowledge in production rules is both accessible and relatively easy to
modify. It can be executed by one part of the system as procedural code, and examined by znother
part as if it were a declarative expression. Despite the difficulties of programming PSs, and their
occasionally restrictive syntax, the fundamental methodology at times suggests a convenient and
appropriate framework for the task of structuring and specifiying large amounts of knowledge. It
may thus prove to be of great utility in dealing with the problems of com.plexity encountered in the j
construction of large knowledge bases.

.
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NOTES

Some of the observations reported iiere are insights gained by listening to the speakers in
a seminar held at Stanford in late 1974, and we have tried to acknowledge those sources as
accurately as possible. Apologies are offered in advance for any omissions; unattributed
opinions are those cf the authors.

Despite out best efforts, inevitable biases appear, so we may as well be explicit: our
experience with production systems as high performance application progsams is more
extensive than that with the psychological modelling applications, and this is no doubt
apparent at times. We have done our best to minimize such occurrances.

Newell A, Simon H Human Problem Solving p 44, Prentice-Hall, 1972,

One class of production systems we will not attempt to treat at any length here is their use as
grammars for formal languages. While the intellectual roots are similar [Floyd1961,
Evans1964), their use has evolved a distinctly different flavor. In particular, their use of
non-determinism is an important factor which provides a very different perspective on issues
of control structure and effectively renders the question of rule selection a moot point.

For example:
The critical evaluation of EPAM must ultimately depend not upon the

interest which it may have as a learning machine, but upon its ability to
explain and predict phenomena of verbal learning.
[Feigenbaum1963)
These phenomena included stimulus and response generalization, oscillation,
retroactive inhibition, and forgetting, all of which are ‘mistakes’ for a system intended for
high performance, but are important in a system meant to model human learning behavior.

Newell A, Remarks on the relationship between artificial intelligence and cognitive
psychology, in TAeoretical Approaches to Non-Numerical Problem Solving, Part 1V, pp
363-400, Springer-Verlag, 1970.

E. Feigenbaum, private communicaiion.

As noted in (Waterman1974), the production rule version does not assume the existence of a

successor function, tnstead rule 5 writes new productions that give the successor for specific
integers. Rule 3 builds what amounts to an addition table, writing a new production for each
example the system is given. Placing these new rules at the 'front’ of the rule set (i.e. before
rule 1) means that the addition table and successor function table will always be consulted
before a computation is attempted, and the answers obtained in one step if possible. Without
these extra steps, and with a successor function, the production rule set could be smaller and

hence slightly less complex.

Note, however, that the tradition arises out of 2 commonly followed convention rather than
any essential characteristic of a PS.

The current MYCIN system makes strong use of the concept of allowing one part to the
system to 'read’ the rules being executed by another part. As one example, the system does
a partial evaluation of rule premisss. Since a premise is a Boolean cumbination of
predicate functions like
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(11

(13]

NOTES

(SAND(SAME CNTXT SITE BLOOD)
(SAME CNTXT GRAM GRAMPOS)
(DEFIS CNTXT AIR AEROBIC))

{the site of the culture is blood and
the gramstain is grampositive and
the aerobicity is definitely aerobic)

and since clauses which are unknown cause subproblems to be set up which may involve
long computations, it makes sense to check to see if, based on what is currently known, the
entire premise is sure to fail (e.g. if any clause of a con junction is known to be false). We
cannot simple EVAL each clause, since this will trigger a search if the vaiue is sill
unknown. But if the clause can be ‘unpacked’ into its proper constituents, it is posi.ble to
determine whether or not the value is known as yet, aud if so, what it is. This is done via
a TEMPLATE associated with each predicate function. For example, the TEMPLATE for
SAME is

(SAME CNTXT PARM VALU)

and it giver the generic type and order of arguments to the function (much like a
siimplified nrocedure declaration). By using this as a guide to unpack and extract the
needed items, we can safely do a partial evalvation of the rule premise. A similar
technique is used to separate the known and unknown clauses of a rule for the user's
benefit when the system is explaining itself (see [Shortliffe1975a] for several examples).

Note that, first, part of the system is ‘reading’ the code being executed by the other
part, and second, that this reading is guided by information carried in the rule components
themseives. This latter characteristic .assures that the capability is unaffected by the
addition of new rules or predicate functions to the system.

How many rules could be removed without performance degradation (short of
redundancies) is an interesting characteristic, which would appear to be correlated with the
issue of which of the two common approaches to PSs is taken. The psychological modelling
systems would apparently degenerate fastest, since they are designed to be minimally
competent sets of rules. Knowledge-based expert systems, on the other hand, tend to
embody numerous independent subproblems in rules, and often contain overlapping or
even purposefully redundant representations of knowledge. Hence while losing their
competcnce on selected proolems, it appears they would still function reasonably well even
with several rules removed.

One specific example of the importance of rule order can be seen in our earlier example
of addition (Figure 2a). Here Ruie 5 assumes that an ordering of the digits exists in STM
in the form
(ORDER012.)

and from this can be createc the successor function for each digit. If Rule § were placed
vefore Rule 1, th2 system wouldn't add a: all. In additiun, acquiring the notion of successor
in subsequent runs depends entirely on the placement of the new succesor productions
before Rule 3, or the effect of this new knowledge would be masked.

This basic technique of ‘broadcasting’ of information and allewing individual segments of
the system to determinc thei. own relevance has been extended and generalized in systems
like HEARSAYII {Lesser1974}, and the BEINGS sy.tesm of Lenat [Lenat1975).

The range of couflict resolution algorithms in this section was suggested in a talk at the

seminar by Don Waterman.
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