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PROGRAMING LANGUAGE FOR THE SOLUTION OF PARTIAL
DIFFERENTIAL EQUATIONS USING HYBRID COMPUTERS
PHASE 1

1. INTRODUCTION

1.  Objective. The objective of this report is twofold. The first objective is to
provide a progress report on hybrid-computer solution techniques for partial differential
cquations. The second objective is to provide documented details of the solution me-
chanics and to illustrate the power and speed of the hybrid computer when solving partial
differential equations (PDE). A solution-speed comparison between the hybrid and digi-
tal techniques shows the hybiid to be the faster of the two.

2. Background. The Electrical Equipment Division, U.S. Army Mobility Equip-
ment Research and Development Center (USAMERDC), is involved in the research,
development, and engineering of electromagnetic machinery, power conditioners, and
power electronics componcnts (SCR’s, transistors, and rectifiers). These efforts require
the solution of partial differential equations in order to provide flux plots and equipo-
tential plots. When digital-computer techniques are used, these problem solutions are
slow and costly. However, by using hybrid-computer techniques, we can reduce these
computing costs by a factor of 15 to 25, with a corresponding increase in computing
speed by a factor of between 15 and 100. The Electrical Equipment Division has a
powerful, interactive hybrid-computer facility (Figure 1), which is part of the CAD-E
facility (Figure 2). The hybrid computer is a Digital Equipment Corporation PDP-15/
Applied Dynamics AD-4 hybrid computer coupled to a Tektronix 4010 Graphic Termi-
nal. Figure 3 shows the PDP-15/76 digital processor which has a unichannel, 1.2-
million-word disk and 16K of core. The AD-4 analog processor (Figure 4) has 96 ampli-
fiers as well as an autopatch capability. The technical paper Hybrid Computer Solution
Techniques for Laplace’s Equations, by the authors of this report, has helped immensely
in preparing this report.*

3. Organization. This report is divided into five parts: Introduction, Program
Philosophy, Computer-Solution Mechanics, Examples, and Conclusions and Future Work.
Additional material is given in the three appendixes. The Program Philosophy section
describes the philosophy of program development. The section on Computer-Solution
Mechanics presents the details of problem setup for the hybrid-computer solution. The
Examples section and the appendixes present sample problem solutions and special con-
siderations. This report will provide the basis for comparing the intcractive hybrid-
computer solution of partial differential equations to the digital-computer approach.

¢ ].T. Broach and R. M. McKechnie, Hybrid Computer Solution Techniques for Laplace's Equation, Proceedings of
1974 Aniny Numerical Analysis Conference, ARO Report 74-2, pp. 253-271.
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Figure 1. Interactive hybrid-computer facility.
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Figure 3. PDP-15/76 digital processor. 13365-74




Figure 4. AD-4 analog processor. 13364-74




1. PROGRAM PHILOSOPHY

This report describes a hybrid-computer solution approach to the solution of
partial differential equations. However, to understand the reasoning for this method,
the pure analog-computer approach to the solution of partial differential equations
must be discussed. The technical background for this effort also will be useful to the
full understanding of the program philosophy.

4.  Technical Background. The background of the present work, typical equa-
tions, and their method of solution are discussed below.

a.  Status in this Area of Work. During the carly 1960’s, much work was
accomplished for the solution of partial differential equations on analog computers.
With the expected use of hybrid computers, the emphasis was shifted to their utilization.
However, the efforts since then have been small, with little to show but theory. In the
digital area, work has progressed, mainly because of the easier man/machine interface
and because of the efforts of universities and the large computer companies.

b.  Types of Problems. The Electrical Equipment Division is involved in the
solution of partial differential equations for heat transfer and magnetic flux in eleetric
and electronic equipment. As a result, the first problem to be examined and set up will
be the diffusion problem and its associated equations. The solution of this type of equa-
tion will provide immediate benefits to the Electrical Equipment Division.

c.  Types of Partial Differential Equations. There are three types of partial
differential equations which are representative of a large number of engineering problems
encountered:

at¢ v? o+ f (hcat equation or diffusion equation),
at? V o+f (wave equation), and

g 2¢ V o+ f (dynamic structural equation (biharmonic
- equation)),

2 2
vk :a_¢+a_¢+a_¢ v! __¢+_¢ _.i
Fhersvise ox?  ay? 9z’ and V"¢ ox* oay* ozt

¢ ¢ 0%¢
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- {sz oy’ axiel oy 0w




d.  Usual Methods of Solution. There are three major techniques of solu-
tion: (1) separation of variables, (2) finite difference, and (3) stochastic. Generally,
we will use the finite-difference teehnique because it ean handle time-varying boundary
conditions and nonlinearities easily. The separation-of-variables technique assumes
linearity. For the digital solution, one reduees the partial differential equation to a set
of algebraic equations using the finite-difference technique. This means that iterative
techniques must be employed to obtain solutions. For the analog solution, one obtains
a set of ordinary differential equations using the finite-difference technique.

5. Analog Approach. The general approach to be used to solve the two-

2 2
dimensional Laplace equation, %—f— g—;ﬁ =0, is to use finite differences for one of
x y

the space variables and to solve the other variable continuously. On the analog compu-
ter, this means we have two choiees. We can divide the space such that we solve for a
continuous solution as a function of y at each of a series of x-stations, or we ean solve
for a continuous solution as a function of x at cach of a series of y-stations. Basing
our calculations on engineering considerations for accuracy, we will try to use only a
few stations. This also will reduce the number of analog components. In order to
demonstrate solution accuracy and to identify mechanization problems, the first test
problem is one that has an exact solution and that is a special case of the more general
problem which will be solved as the approach is refined into a programing language.

The interesting general problem for the electrical engincer designing military
generators and motors is one which provides the flux or flowline patterns and the equi-
potential-line patterns of the magnetostatic field in a section of the air gap of the
machine. Figure 5 is a diagram of this complicated gcometry. Here we need to be able
to take care of a complicated geometry with different types of iron and with various
boundary conditions. The overall objective is to provide a language which allows the
design engineer to draw this picture on the graphic screen, to input the required bound-
ary eonditions, to solve the problem on the hybrid computer, and to provide a picture
of the desired distributions of flux and potential, displayed on the graphic screen. The
first test ease is a simplified example, that will allow for an exact solution, which can
be used for a eomparison of results. Figure 6 is a diagram of a rectangular space used
for the first test case.

Hl. COMPUTER-SOLUTION MECHANICS

6. Solution Mechanies. For the test case, we have a reetangular region, and we
will investigate the field inside this region when three boundaries are at $=0 and one is

at y=f(x). The exact solution for this case is 100 Y(x,y)=100 sin ? . SIgiI;hLTg)l;;,a){a]
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Figure 5. Typical electromagnetic machine geometry.
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where a and b are as defined in Figure 6. This solution has been mechanized on the
PDP-15 section of the hybrid to provide y(x,y) for comparisons. Two analog solutions
have been studied (6a and 6b, below).

a. Continuous x, Discrete y. In this solution, the analog computer simul-
tancously solves a set of differential equations at each of a series of y-stations to pro-
vide Y (x) IYa , where ais the station number/location, which will give the value of Y(x,y)
at all points if y is on a station line. Some extrapolation means is assumed: of course,
if Ay is small enough, it will not matter. For this solution-method example, we will use
six stations in the y-direction. For boundary conditions, we have even derivates (y, is

considered even) specified at the boundaries = 100 sin =X ,and ys= 0 for all x. Also,
a

¥1,Y¥2, Y3, and y, have a boundary condition of 0 for x=0 and x=a. In Hausner’s rules
for mechanization (Appendix A), rule 2 states that we should arrange the grid station

so that an integer station (y , ys) appears at the boundary since we have even derivatives
specified at the boundary. The next Hausner rule (rule 3) says that we should generate
high-order derivates with first-order approximations, mechanizing all lower order de-
rivates as summational outputs.

Vo =29 + ¢ g
= il j j*l = ay_kl j
Thus, we let Dj xl/j 2 and ¢j_” ybj_% — =
- -y.+ . -¢., +0
where h is and j is B = Vjry = —'—h—Jtl— ,s0 D; =~ *—’”l—””— . Thus, we gene-
1

rate five intermediate solutions (¢, ,, G372 P5722 P72 and ) and use eight integra-
tors (Figure 7).

Ch \bn ¢n +9h- ¢n-%

Setting 5y = T a finite-difference equation for y, in the
2y, _ 9y, | Brass~ G
2" = ~ equation gives us: - =~ |[2% 0% | Then we can solve
ax dy*? ax? |y, (by)?

for ¢ (x) |y by using the unscaled equations:
dz\bl -~ ¢1/2' ¢3/2

dx? (&y)*
dz \02 _ ¢312' ¢5/2
dx? (by)?
d2 ‘pB _ ¢5/2‘¢7/2
dx? (&y)?




2]
S




Figure 7. Grid for continuous x, discrete y.
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d2 ‘114 _ ¢7/2‘ ¢9/2

dx? (&y)?

912 = Vi -IOOSin?
b = V2 - Vs

b5, = Vs - Va

b = Va - Vs

bg;2 = 0- V4

For mechanization purposes, we replace t by x in a one-to-one replacement (i.e., 1
second = 1 unit of distance in x).

b
(No. of Stations - 1)
to incorporate a and b in the solution. For scaling use the values given in the table are
typical.

In the unscaled equation, Ay = , S0 we have a way

Variable Est. Max. Value Scale Factor Scaled Computer Variable
¢ 100 v - [¢]
v 100 v % [v]
v’ 100 v/s % (V)

(In our problem as it is set up, the X-generator (Integrator 271) is generating 10 v/s or
0.1 s/v. When we measure 10 volts on X at 10 v/s, we had 1 second, or 1 unit of dis-
tance in X, which corresponds to a.) For this problem, we used the initial-condition
(IC) pots on the Y -integrator to obtain the proper boundary condition for ¥, through
V4 at x=a. In this problem, we used these pots to make ¥, , V,, V3, and Y,=0 at x=a.

b.  Continuous y, Discrete x. This method is identical to the continuous x,
discrete y method except that the problem space is divided into stations in the x-direction.
The problem is solved continuously in the y-direction. This method is discussed in more
detail in the examples (section 1V).

12




7.  Special Techniques. Two special techniques for problem solution may be
mentioned.

a.  Dividing Problem Space. In an effort to minimize equipment and to
provide an easy conversion to autopatch, we will divide the problem space into three
fixed stations and one variable station. Using symmetry (special case), we get mirror-
image solutions in the right half and in the left half of the rectangular space. Therefore,
by this consideration, we get 2n-3 solutions for n stations. Using the hybrid-solution
control, we will set the variable station at a specified AX-spacing from the center station,
and a solution will be obtained. Then AX will be inereased, and the problem will be
solved again. This iterative process will be repeated until all specified stations are used.
This method allows for linear or nonlinear spacing.

b.  Approaching Boundary Value by Varying IC-Pots. Another iterative

process found to be useful occurs in satisfying the boundary equations. By varying the
IC-pots on the Y-integrators one at a time and in station order from left to right, we can
iteratively approach the required boundary value. This method requires that the first
pot be varied until the y, -variable equals zero at the prescribed location on the x-axis
(x=a) while all other pots are fixed. Then, the second pot is varied until Y=0 at the
same location. This process is repeated sequentially until all variables (Y, ¥, V3,
and y,) are zero at the same point. This method will be illustrated clearly by the

. examples, which follow in the next section. Both of the iterative processes deseribed
above are performed rapidly by the PDP-15 digital computer.

IV. EXAMPLES

8. Laplace Equations for Two-Dimensional Solution. The geometry of this prob-
lem dictates use of the continuous y, discrete x solution method. Based on trial solu-
tions, it was determined that six stations are adequate (five fixed and one variable station).
Two stations are at the boundaries, x=0 and x=a, where Y = ys=0. Figure 8 is a dia-
gram of the space, with the variable station shown as a broken line.

For this mechanization, X _, X;, X,, X3, and X; are fixed locations, and
X4 varies. Because of symmetry, X, and X, will have mirror-image solutions in the
right half-space, and X4 will have mirror-image solutions in the left half-space. Point

X3 is located at %3 , while X, is at a/6 and X, is at 26—a By symmetry conditions,

there will be an identical solution to X, at da ,to X, at 56_a ,and to X4 at (—3_+6_I&_)3 s

6

with K4 being specified by the user. For initial conditions along the y=0 boundary,
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¥, = 100 sin (f (0)) ;1 =100sin (% (a/6)) 3 ¥2= 100 sin (g (%")) s ¥3=100

sin (% (3—6a ) ; ¥s = 100 sin (E (%—a));and Yaq= lOOsin(a-"I (%—a-)) ; where

K=3+K4.

When the method described previously was used, it was possible to solve the
equations:

Equation Definition
w27 P3p0) _a
Vi = T“_ Bxyy ~6 1
(¢312- ¢5/2) a
" = 3/2 TS5/27 A -a 2
\bz szl X21 6 ( )
" _ (¢’5/2“ ¢7/2) . a
Vs T T AR Ax3 =% (3) +%% (Kq) 3
" (¢ = ¢ )
Va = 7/Azx“912 Dxgy =% (Kq) + % (Z%a - K4) (4)
- (=) _a
12 - —IE;::L Bxyy = 6 ()
- Y-y _a
by = Gt Bxy =2 (6)
_ (Wa-y a
¢5,2 LAJX——nzl Axs, 3 )
b0 = ﬂ%;&l Axg; = K4 (8)
a2
- (Us-¥a) _3a
be = e Axn =g - Ke )
Variable K, is defined as follows:
K, =KR (?) . (10)

where KR is the spacing factor.

15




Changing the equation form, we obtain the following ¢ and ¢ values:

i = (F) @i dsp)

V2

|
P
1
x —
N
~——
~~
©
w
~
©
»
~
S

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Continuing to change the equation form (since Y _= y5=0), we obtain the

b= (za) (W )
b= () Wam¥2)
b= () s )
following:

(Bx12) b5 = ¥
(BXz2) byyp = V2 ¥y
(Bx3) b5 = Va- V2
(BXaz) 873 = Va- Vs

(Axs3) ¢g/2 = (- ¥a) )

16

(20)
(21)
(22)
(23)

(24)




0019 = (32) ¢ip- (330) osn
oo - (32) 0, (22 o,
01} = (353) 4on- (52y) *on
001y} = (35) 412~ (Rxm) ®on

(Ax12) ¢ = (P22s) ¥,
(Axa3) ¢3/2 = (P226) V2~ (P223) ¥
(Bx32) &30 = (Paas) ¥3- (Pass) ¥2

(KyAxq7) ¢7/2 = (K1) (Page) Va- (K1) (P2ar) V3

Kl = AX32
Axgy

(K2 Axsa) @9y = - (K3 Pasg) s

K2 = AX32
Ast

Continuing the rearrangements:

0.01
P32 (Axy2) 4’1/2 (Ax ) ¢1/2

Paas (DX27) b3y = (%O—) é3/2
Pay (Bx22) 049 = (%2—;') D312
Pass (Bxan) 850 = (3 ) 4
Paas (Axsy) ¢5/2 - (%:l) ¢5/2

17

(25)

(26)

(28)

(29)
(30)
(31)
(32)
(33)

(34)

(35)

(30)

(38)

(39)

(40)




- .01

K, Pas3 (Bx42) b2 = (O—x > ®219 (41)
31

: 01

Ky Pygs (B%a2) ¢75 = (Rl) b2/2 (42)

Kz Pars (BXs52) @9 = (— b9)2 (43)

Finally, we obtain the following pot settings:

Paye = 1 (44)
Py =1 (45)
Pua=1 (46)
o= (47)
P =1 (48)
__AX32
L v (49) 1]
Ax
Pyg, = 2232 ;
w = (50)
Ax
Py = 2X32 51
3 =1 o (51)
0.01
P AN — b deal 52
2~ Rxn) (Bxra) 55
0.01
P - e 53
e (Axu)(szz) (53)
0.01
Pag= -0 54
2 (K (Bn) ©8
0.01
Py = ——M——— 55
233" (Axa) (Bxay) (35)
0.01
P = At u =
243 (Bx32) (Ax3) (56)

18




0.01

) 7
= (8x3)) (Axqz) (Ky) (57)
0.01
P =
65 " (Axar) (Bxaz) (Ky) (58)
0.01 o

ik (Axq1) (Axs2) (K3)

The program will scan the space as previously described, and with four differ-
ent positions for station X4 we actually obtain data for 15 equivalent stations as is shown
by Figure 9.

In order to obtain the desired plots, it is necessary to perform a core search
for a specified Y-value:

a.  Check out the specified X-station and its equivalent image.
b.  Use straight-line interpolation between data points.
For example: y value = ITM/10,000, where ITM = b
x-value = x-station location
For a specified X:
a.  Start at the maximum -value until ¥ in core is less than the specified .

b.  Back up one space and check discrete y-values; use linear extrapolation
to get specified value x,y data.

9. Hybrid-Computer Solution.

a. General. The hybrid-computer solution may be illustrated graphically.
The problem-space geometry is shown in Figure 8 and the space with the solution grid
is shown in Figure 9. The finite-difference equations are shown in Figure 10, and the
computer patching diagram is given as Figure 11. A program control flow chart is shown
in Figure 12, and the patchboard is shown in Figure 13. Figure 14 shows the logic patch-
board.

b. Computer Program PDR2B. The computer program is stored in the
execute file, PDR2B, in the RMM file on disk. Program listings and subroutines are

19




L o)

‘pud yum aoeds wafqoy ¢ aandig

Ex X €% '} vrx

_————.—-—.———_————o—._————————-—x
CEEm R M LS E oS mR TR, 4 S RES o megrn B e sae CE e oy, ol TS
'_'———'—‘_—'—_—————_——_——————__‘X

o s e e e s e Gen e GmE e G A — S GNP D e Gmm— Sme G G—— m— G cm——]

uxw..-_x
I
I
_
|
|
|
_
_
|
_
_
_
_
_
_
|
|
_
|
|
|
_
_
_
|

e — — t— — t— — — —— — — —— — — C— G— —— C— C— (— — — — — — —

e e e e e e e e G e E—— e e e —— e e S S C— — — C— — g—

_
_
_
_
_
_
_
|
_
_
|
_
|
_
_
_
_
|
_
_
|
_
_
|

20




BASIC FINITE DIFFERENCE SCHEME
FOR HYBRID COMPUTER

A CHANGE TO AN ORDINARY 2nd ORDER DIFFERENTIAL
EQUATION AT EACH X-STATION

b 1 B 1
q’f/_\_x" [4’1/2 - 4’3/2] WHERE ¢]/2=[m] [\"1 ~V,

) ;";2: A_;(21 [4’3/2 - 4’5/2] ¢3/2:[5;‘—22] ATRAIL
V= 5 [$52- $,] by = lays) (V= ¥,)
o 1 1
¥, = [AT“] (32 = ¥y, ) P12 :[ATQI V=¥,

bop = Iz (W5 =¥,

Figure 10. Finite-difference equations,
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Figure 11. Computer patching diagram.
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Figure 12. Program flow chart.
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given in Appendix B. The large size of this problem requires “‘chaining,” and the pro-
gram details are in Appendix C. The following is a description of the use and response
of PDR2B. With the PDP-15/AD-4 hybrid up and running, the PDP-15 executive
supplies a “$” to indicate user input. To the “$” on the Tekt wnix 4010, the user
typesin “E PDR2B.” The computer prompting response is a statement for input:
“Input A, B, DEL1,DEL2, DEL3, DEL4, DEL5: F5.2, 5F5.4.” This allows the user
to provide the x and y space dimensions (A and B, respectively). The spacing for the
variable grid line, referenced from the center line, is not used. Once this spacing is in-
put, the computer responds with the prompting: “Specify Number of Lines LT16.”
This allows the user to vary the number of stations for trial solutions. The computer
prints the value of DEL (as measured from the center x-station) and the IC-pot values,
which are required to satisfy the boundary conditions through the closed-loop, analog
iterative process, described in Appendix B. Figure 15 shows the computer prompting.
Program solution output is shown by Figures 16 and 17. Figure 18 illustrates the solu-
tion with a grid, while Figure 19 depicts the solution without a grid. Normally, for pro-
duction runs, the problem grid would be well specified; but, for this problem, it was
not. Several linear and nonlinear spacings were investigated. It should be noted that
the nonlincar grid helps to clarify solution slopes in specific areas of interest. The use
of nonlinear grid is optional (i.c., it can be selected as necded). The 16K core of the
present PDP-15 digital subsection of the hybrid unit limits us to about 20 grid stations
(40 with symmctry), but more would be available if we had written the solution to
disk or tape storage and had performed the graphics with another program. Also, the
graphics display uses a simplified, point-to-point plotting routine, which could be re-
fined for smoother curves.

The b/a-ratio limits for this method as it is presently programed are
between 0.1 and 0.3, mainly because of the assumcd scaling. This limitation will be
eliminated later, but it is not serious enough to warrant a change for the trial example.
Figures 15 through 19, which depict the solution on the Tektronix 4010 Graphic Ter-
minal screen, were used to demonstrate the problem 1/0 and do not describe accurate
solutions. The next set of figures, which is hardcopy output for the Tektronix graphics
display, is used to provide the comparison of accuracy between the exact and hybrid
solutions for this example. The exact solution uses a mathematical solution subroutine
in place of the hybrid subroutine set PDE, MCON, and PDE2 (see Appendix C for more
details). All other input and output subroutines stay the same. Using the problem def-
inition parameters (A=1, B=.1) and 10 lines (stations), we can compare results. Note
that the computer uses ninc lines to divide the right-hand space of the problem into 10
spaces. Figure 20 is the hardcopy output for the hybrid solution, and Figure 21 is the
hardcopy output for the exact solution. Appendix C contains y(y)-data for each
X-station generated by the exact and hybrid solutions.
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tput of hybrid solution.

Figure 20. Hardcopy ou

Figure 21. Hardcopy output of exact solution
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In clock time, each hybrid-computer solution set took 30 seconds. (A
33-grid solution, including the symmetry, took about 7 minutes.) The hybrid-computer
solution runs 100 times faster than real time and is faster than the exact solution pro-
vided by the PDP-15 only. Figures 16 and 17 verify our original assumption: that we
could scan the space, while maintaining five stations fixed and one moving, because
the first three pot settings (two stations are at the boundary, where y=0) always return
to the same value at solution; however, the grid station, being moved, changes the pot
value.

V. CONCLUSIONS AND FUTURE WORK

10. Conclusions and Future Work. So far, we have shown a technique for solving
partial differential equations on hybrid computers which is at least 50 times faster than
the digital solution. This speed of solution occurs because we solve the problem in a
continuous, closed-loop, analog process. Also, we have established an iterative solution
technique, which converges rapidly and allows us to maintain overall, simplified digital
control over the closed-loop, analog solution process. The comparison of the hybrid
solution to the exact analytical solution demonstrates the accuracy of this approach.

The next steps are to generate the problem menus and to solve the field
problem for a slot geometry and, then, for other complex geometries. The progress
demonstrated to date offers an optimistic outlook for complete success in the future
planned work of this project.
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APPENDIX A

HAUSNER'S¥* RULES FOR MECHANIZATION

The following is a list of Hausner’s Rules used in this project:

Rule 1 — To obtain a kth-order solution, all approximations must be kth
order, including those accounting for boundary conditions.

Rule 2 — If only even derivatives of a dependent variable (such as u,u”’,u" ",
etc.) are specified at a boundary, arrange the grid stations so that an integer station
(say, X, or X, ) appears at a boundary. If at lcast one odd derivative (u', u"", etc.) is
specified at a boundary, a half-integer station (say, X /2) should be placed at a boundary.

Rule 3 — Generate high-order derivates with first-order-derivative approxima-
tions, mechanizing all lower order derivatives as summational outputs.

*
A. Hausner, **Analog and Analog/Hybrid Computer Programing,” Prentice-Hall 1971, pp 435-436.
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APPENDIX B

ANALOG CONTROL ROUTINES

A brief discussion of the analog control routines used to reach solutions is given
in this appendix.

B-1. Differentiation with Respect to y. The analog computer actually performs
dy dt
generator, integrator 271, normally is providing 10 v/s; thus, we get 0.1 s/v as the out-
put. Since 1 unit of y is equivalent to 1 sccond, it takes 0.2 second to provide 0.2
unit of y. This means that the integrator output is 2 volts in 0.2 second (0.1 s/v - 2
volts = 0.2 second). In order to provide the proper output rate for integrator 271, pot
273 is set to 0.01 with 100 volts input. The normal integrator rate is 10 v/s in quad-
rant two of the analog patchboard.

, where y is represented as t on a one-to-one basis. The time-base (or y-base)

B-2. Closed-Loop Analog Solution. The fastest possible solution is obtained
when the analog computer operates in a closed-loop fashion. The solution control is
accomplished as follows: (1) The user provides input parameters to the digital unit;
(2) the digital computer uses these parameters to automatically scale the problem, to
set the analog comparator pot settings for time (or b) value in order to place the com-
puter in hold, and to set the pots and start the solution; (3) the digital unit waits a
sufficient time in order to allow the analog unit to go to “hold,” checks end-point
values for convergence, resets the computer to run again, and repeats this until con-
vergence occurs; (4) once convergence occurs, the digital unit resets the computer and
causes the analog unit to operate for a set number of predetermined increments, at
which points the analog comparator places the computer into the “hold’ mode and the
digital unit samples and stores Y-, y-, and x-data; (5) this process is repeated until all
specified x-stations have been used; (6) once all x-stations have been used, the digital
unit asks the user to specify ¥, A ¢, and the number of lines to plot; and (7) the digi-
tal unit uses these data to search its stored -, y-, and x-data and to provide the plot.
The digital unit is programed to provide many variations of the plotting, once the hy-
brid unit has finished computing, in order to keep from having to recompute each time
a new plot variation is needed.

B-3. Analog Comparator Logic. The logic and analog patching needed to accom-

plish the time (or y-) control is shown by Figure 11. The output of integrator 271 is
fed through pot 277 to amplifier 233. The output of amplifier 233 goes to comparator
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231 on the analog patchboard. The reference voltage (equivalent to y=b) comes from
amplifier 223, which is the other input to comparator 231. When the sum of the in-
puts goes positive (occurs at the instant y becomes infinitesimally larger than b), a logic
1 is generated by the out-point on the logic patchboard. Since “‘out™ on comparator
231 is connected to SYS Hold, it receives a logic 1, which places the analog unit in the
“hold”” mode, thus stopping computation. In order to reset properly, the digital unit
overrides the patched *hold”” mode by a “hold” command, reads the desired y-value,
places the computer in the IC-mode, and resets the comparator output to logic 0 by
sctting pot 237 to 0. For the sampling of ¥-, x-, and y-data after convergence tests are
met, pot 237 is incremented to the preset values, thus stopping the computer at the
desired points of y, reading the data, and continuing to the next point as soon as pot
237 is updated. This process is limited to 12 data points because of the dimension
statement, which reflects present core limits. Methods that would allow more points
could be used but are not required for the test example.

B-4. Iteration Control. The computer is programed to sct all four IC-pots (for
the first derivative of ) initially and, then, to go through a preset sequence to set the
first IC-pot until Y, goes to 0 at y=b. The computer then goes to the second IC-pot
and changes it until {,=0 at y=b. Each time, all J’s are sampled to see if they are
simultaneously 0 at y=b. This process continues to Y3, ¥4, ¥y, V2, V3, ¥4, etc. until
V1=¥2=¢3=¥4=0 at y=b. This process generally converges in less than 30 seconds
(about 10 iterations at most).
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APPENDIX C

COMPUTER PROGRAM LISTINGS

C-1. Introduction. This appendix gives a listing of the problem source code, the
chaining routine, and the several programs used in this study and depicts the program
flowcharts.

The hybrid-computer program consists of a main program (designated sub-
routine POT) and eight subroutines: PDE, MCON, CON, READSI, PDE2, DISK, DRW,
and DRWA. The hybrid-computer program also requires the hybrid routines and the
Tektronix routines. The problem requires “chaining” on the 16K core configuration
of the PDP-15. The chaining routine produces the XCT and XCU files and allows the
program to be run by using E_ PDR2B.

C-2. Hybrid Program Listings. The following listings are the routines used for the
hybrid-computer solution.
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20851

6804

2850

681
seon
697

11

2oy
SUBROUTINMNE POT 33/ //

THIS WILL ACT AS THE MAIN PROGRAM
DIMENSION TST(2)
COMMON/W/YC18), IPSI
COMMON/DRWP/XLOCC18), IVC(18), ITM(12), ISTAH(28, 12), IV(4), DELTAR(15)
COMMON/POTY/F(20>, DEL. &
COMMON-DIM/B. [BR
COMMON-P1~NA, JK, K2
COMMON/GRD/NPSIG, NTF

DATA TSTC1), TST(2)73HTST, 4H SRC/
JK=4

HA=1

CALL STINDCIE, 2237, 8>

VRITE(4, 601>

READC(4. 6Q01A

RERD(4, 6888

IBR=IFIX(100€0. #B)

WRITEC(4, 2051>

FORMATC(1X, 25HSPECIFY NO OF LINES LT 16>
READC4, 6004 NLINES

FORMATCIZ2)
DELTX=.S/CFLOAT(HLINES?Y)>
DELTAC1>=DELTX

NTF=NHLINES-{

DO 28S8 NT=2, NTF
DELTACNT>=DELTAC(NT-1)>+DELTX
COMTINUE

DELTR(¢1>=1.18.

DELTR(2>=2. /18.

DELTAC14)=2.6/185.

DELTR(3)>=4.18.

DELTAC(4>=5.18.

DELTAC1S>=8.718,

DELTACS =7, 718.

DELTA(E)>=7.3/18.

DELTAC(?>=7.6/18.

DELTACB)=3. /18.

DELTA(9>=8.1-1¢.

DELTAC18)>=2.5/18.
DELTR(11)>=8,.3/18.

DELTRC12>=8. 4718.
DELTAC132=8.5-13

FORRATC1K, * INPUT A, B, DEL1, DELZ, DEL3, DEL4, DELS :FS.2,5F5.4°)
COHTIHNUE

FORMATCLR, 23HINPUT. A, DEL: FS.2,FS5. 4»
WRITEC4, 11>DELTACHAY
DEL=DELTAR KA

FORMATCIX, *DEL=",F Q. 4)
CrR=2. %DEL

CH4=CR*<+(3. /&, )
Rlil=Rs6.

DRE1=A/S.

DX3I1=(A+(E. %CIM 12,

DXAi=CCa/72 D+ 3, »Hrs. 3-Ch) 2.
PRl8=n
IR22=n/
D32=h

@ i

T
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DR4z=Ca
DNS2=(H 2. -4
C1=DXI2/DK<2

o LT

2=0NEEr BT

602 FORMATC(1¥, €C1X, F19. %))
PCl)=1.
PC2y=1.
P(3>= 01-¢(DX11%DK12)
PC4)=SIN(3.14159/6. >
P(S)=.01/¢DKX11xDK22)
P¢6>=1
PC(7)=SINC(3.14153%2 /6.
P(8)=1,
PC(9>=.01/(DX22+DK21)
PC(10)>=. 017 (DX32%#DK21)
PC11)>=3IN(3. 14159%3, /€.
PC12)=.81/(DX3<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>