
■vpiu i i««vw "■ iipfiiji.^ii^wpB^wwaw^wiBi«.1! !i|"P,"li*l|nii IIIILIJP.II-''^^CTW||".||-"|I.I «. i■■fillippfi .M*amBVt*w**^^*ir****m—v*F***",mitifw*,vH i RI ii« in m wmmi mm\

AD-A015 842

PATH EXPRESSIONS

A. N. Habermann

Carnegie-Mellon University
Pittsburgh, Pennsylvania

June 1975

>

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

KMH ■MMMt J

-»Bw Mini i ii WII nivHii ii «•■»miBwupvi>[iiii«^i «^npn^i i«*WLaiWi«liiMip«pil'ri*N,*l">*,nM<PW>apiin.ii JII»«««P^IW ^n*

••""""UMU.I.ilil liTT-^
SCCURITV CLASSIFICATION Of THIS PAGE 'HTIMI Datm Enfrtd)

REPORT DOCUMENTAVION PAGE czz
II. REPORT NUMBER

AFOSS • TR -W .'-. - ; 1
2. GOVT ACCESSION NO.

«. TITLE (mtd Submit)

PATH EXPRESSIONS

7. AUTHORf»;

A. N. Habermann

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

8. TYPE OF REPORT ft PERIOD COVERED

Interim

6 PERFORMING ORG. REPORT NUMBER

i CONTRACT OR GRANT NUM8ERC»J

F44620-73-C-0074

t. PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Computer Science Dept
Pittsburgh, Pa 15213

II. CONTROLLING OFFICE NAMF AND ADDRESS

Defense Advanced I^esearch Projects Agency
1400 Wilson Blvd
Arlington. Va 22209

14. MONITORING AGENCY NAME i ADDRESV" dlllmtmtl Iron. Controlllnt Ollico)

Ait Force Office of Scientific Reseirch/NM
1400 Wilson Blvd
Arlington, Va 22209

10. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT Nl MBERS

61101D
AO-2466

12. REPORT DATE

June 1975
13, NUMBER OF PAGES

^& £8
15. SECURITY CLASS, (ol thl* «port;

UNCLASSIFIED
(Sa. DECLASSIFICATION- DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (ol Ihl* Rtport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol Mi« •biltael entered In Block 30, II dtlltfnt (torn Report)

IS. SUPPLEMENTARY NOTES

19. KEV WORDS (Contlnur on everte »Id» It nteoitmry and IdtnUly by block number)

20. ABSTRACT (Conllnut on rovrr«* »Id» II n»e»»»»ry and Identlly by block number)

Traditionally, synchronization of concurrent processes is coded in line by
operations on semaphores or similar objects. Path expressions move the
responsibility of implementing such restrictions from the programmer to a
compiler. The programmer specifies as part of a type definition which
execution sequences are permitted. The advantage of using path expression!

instead of P, V operations on semaphores (or similar operations) is
comparable to the advantage of using for- and while- statements instead

DD . ^NRM7, 1473 EDITION OF I NOV SS IS OBSOLETE

I. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE CWTien D»l» Enlrte.-

•^MaaaaMMfl ■ ■■■ M*M ■-^-- —

I " .■ "■W^WIPBPBipiWIlpP'Hiiii'iiiii ■»1WW^«BIUIlllU]lii,JUJ«ili ■liifiiijii jw wi ii NIP i IMKIJI^HUH iWJiiliii mi ■ i

4 «aCurtlTY CLASSIFICATION OF THIS PAGEfl»Tt»n O««« Kri^tod^^

£lock 20/Abstract

of JUMP or BRANCH instructions. In this paper th« rules for
writing a path expression are described, parsing and implementation
are discussed and the use of path expressions is shown by a number
of examples.

1

SUL
UNCLASSIFIED

SICU^ITY CLASSIFICATION OF THIS PASCMW..» D.f En„„d>

■■■
 .. ^ i n^^*^—^ ■

■■■■•■■

<m—~ " ■■t •mi *POTIP«aMSPP*IM"MMIWi«i^' MV.i I •WWIM " ' ^ «WM _—„

PATH EXPRESSIONS

A. N. Habermann
Carnegie-Mellon University

Pittsburgh, PA 15213

June 1975

Abstract. Traditionally, synchronization of concurrent processes is coded in line by

operations on semaphores or similar objects. Path expressions move the

responsibility of implementing such restrictions from the programmer to a compiler.

The programmer specifies as part of a type definition which execution sequences are

permitted. The advantage of using path expressions instead of P, V operations on

semaphores (or similar operations) is comparable to the advantage of using for- and

wLile-statements instead of JUMP or BRANCH instructions. In this paper the rules for

writing a path expression are described, parsing and implementation are discussed and

the use of path expressions is shown by a number of examples.

This work was supported In part by the Defense Advanced Research Projects
Agency under contract F44620-73.C-0074 monitored by the Air Force Office
of Scientific Research, and In part by the National Science Foundation
under grant DRC74-24573.

— ^__ _ ■ ■ - tlMMllii III1 — - - -

M' j <. ii<!-ww>iwi»uiimiiLii ■■ ■iiii>^imqpvpiMpn>*"Psiw9^ mumrmK^m** *•*'*•**

1. INTRODUCTION

The concept of subroutine was invented to save the programmer the unrewarding

task of rewriting the same lines of code several times. Presently, the significance of

procedures or functions goes far beyond the original subroutine idea. The procedure

declaration is an important program design tool. First, it allows the programmer to

split the programming task into several parts, where each part is significantly smaller

than the tot'jl program. Secondly, the procedure concept provides an important

abstraction tool. In a well-designed program, the implementation of a procedure is

irrelevant to the program environment in which the procedure is called. All that

matters at the call site is the functional specification of the procedure, i.e. the

parameters it expects and its effect on the calling environment.

In Urge programs (such as a compiler or an operating system) the procedure

concept is useful but not sufficent to make the programming task simple enough.

Here the number of procedures rises to such a height that it becomes necessary to

partition the set of all procedures into meaningful subsets. The promising concept for

achieving such a meaningful partitioning is that of a "type definition" (or "class" in

SIMULA 67). A type definition describes the internal structure of a set of data

objects and all the procedures which define operations on these objects. E.g., applied

to compiler design, one finds type definitions for objects such as a hash table, a

symbol table, a lexeme, a syntax stack, etc. More detailed examples follow In

subsequent section;».

An operating system makes »♦ possible thai user programs share resources and

run in parallel. However, it is a well-known fact that 'iser programs cannot have

unrestricted access to shared objects [1]. In many cases only one operation on a

IT I M- i

1. INTRODUCTION J

shared object may be executed at a time, though the order is immaterial. In other

cases operations must be executed in a given order (e.g. placing the first message in

a queue must precede taking a message out of the queue).

Until now, concurrency restrictions have been coded in line by inserting critical

regions and wait/signal operations in the programs [21 There has been an extensive

discussion about a variety of synchronization primitives. An analysis of their relative

power is found in [3]. Path expressions do not introduce yet another synchronization

primitive. A path expression relates to such primitives as a for- or while-statement of

an ALGOL-like language relates to a JUMP or BRANCH instruction in an Assembly

language. A programmer specifies control by a while-statement; the statement is

implemented by test and branch instructions. Likewise, a programmer specifies

restrictions on the execution of operations on shared objects; the specified

restrictions are translated by a compiler into instructions which use synchronization

primitives. The purpose of writing path expressions is to bring the design of

concurrency restrictions to a higher kvel in the same sense as eluded to by the

phrase "higher level programming language". Programmers have learned by

experience how important this is.

Concurrency restrictions apply to operations which access a shared object. Since

a shared object is completely described by a type definition, a path expression is

placed in a type definition as part of the internal structure description (examples

follow in subsequent sections). A path expression describes the allowable sequences

of executing operations on a shared object. In the common simple case, a path

expression is a regular expression from which all possible execution sequences can be

derived.

\

—"-~——*—*~~~— ■ —— *—— M Mi ■ ■■«■m 11

 —>wpw«*WIP1IWW«» n^'UH^m^^BWW^iWü—^^IIPPBP-—^PBBm»» " ■'•"•I "' n \tl' y,mtm^mp*m* "• »m IIIIBI iw«v^|p

r

1. INTRODUCTION 3

Subsequent sections deal with simple pith expressions, with conditional elements

and concatenation of path expressions, ano with parsing and implementation of path

expressions. The use of path expressions is demonstrated u, 'everal examples, some

of which have been borrowed from the paper on Monitors [4J

2. ON WRITING PATH EXPRESSIONS

2.1 A path expression is delimited by the keywords path and end. Its operands are

function names. The operator-; are (in precedence order) *, ;, +. The precedence is

overru.'id by parentheses (). The operator ; is the sequencing operator. The

sequencing operator can be omitted (analogous to the multiplication operator in

arithmetic expressions). E.g.,

path a ; b ; c end or path a b c end

means that the only permissible execution sequence is:abcabcabcabcabca

b c . An operand to which the sec.uencing operator applies is called a "factor".

The keywords path, end represent an implicit Kleene star, i.e. once the end of a

path is reached, the path can be entered again al the beginning. The operator * also

represents the Kleene star. It is used as a unary postfix operator indicating that the

operand it modifies can be executed zero or more times before going on to the next.

E.g..

path p j (q ; »-)*; s end or path p (q r)« s end

means that an arbitrary number of sequences q; r (including none) can be executed in

between an execution of p and the subsequent execution of s.

w*i^mFmmmmm^m^mwmmmmi^^m^uf.\i.\m >< « ,^,^m.^,^

2. ON WRITING PATH EXPRESSIONS

The operator ♦ represents exclusive selection. E.g.,

path f ; (g ♦ h) { k end

.-vear,:: that either a g or an h (but not both or none) must be executed between an

execution of f and the subsequent execution of k. An operand to which the operator

♦ applies is called a "term".

The operator ; is distributive with respect to the operator ♦. E.g.,

path f (g -•■ h) k end - path (fg ♦ fh) k end - path fgk + fhk end,

because in all cases an execution of k is separated from the preceding execution of f

by an execution of either g or h.

The operator- * is not distributive with respect to either + or ;. E.g.,

path p ; (q , r)* ; s end i< path p ; (q* ; r«); s end

because in the latter all q's betv/een a p and an s precede all r's between these two.

Also,

path f (g ♦ h)* k end ^ path f (g* ♦ h«) k end

because the first path allows an arbitrary mixture)f gls and h's between every pair

(f,k), whereas the second path allows either all g's or all h's (but no mixture) between

an execution of f and a subsequent execution of k.

2.2. A path expression can easily be translated into a graph model '•-■-.. «renting the

finite stite machine defined by the regular expression. The arcs in the graph

represent the functions, the nodes represent the initial state, 'he final state .no tho

sequential states corresponding to the semicolons in the path expression. E.g.,

path f (gh + km*nKp + q) s end

is represented by the graph

wme^f^^^mi^mw*i*^m^*^*^^*mmmm*mqmm*'*^^mi!*'~'''^li■'■!'■. m■■■•s"wflWPiw*ni«S"*W«»PW""^i""w»1''^"^^^"^"^"",", ' ^r9mmmm^***m

f

2. ON WRITING PATH EXPRESSIONS

(The final slate is identical to the inital state.)

The difference between path f {g * h)« k end and path f {g* * h») K end is

shown in the graphs below.

(9-
^

^< JK-^

on.

The first of these paths is called a "simple path". The second is not a simple path.

In terms of the graphs. • simple path has a graph in which no two arcs carry the same

name. In terms of finite state machines, an operand of a simple path has a unique

starting state and a unique result state. The result state is in general a function of

the current state and the executed function. However, the result state in a simple

path expression is 9 function of the executed operation, but not of the current state.

It was shown in [5] that simple path expressions can be implemented by P,V

operations on Boolean semaphores.

■MMMtM

2. ON WRITING PATH EXPRESSIONS '

2.3. In many cases in which synchronization is necessary, simple paths are adequate.

E.g., a set of critical regions {a,b,c,d) is programmed by

path a ♦ b + c ♦ d end

because this path specifies that each time exactly one of the four functions «n

execute.

If the execution of a function named in a path expression is attempted and the

current state of the path expression does not allow its immediate execution, the

program attempting the execution is suspended. When the state of the path

expression changes and some programs are waiting for a function which can be

executed in that state, the longest waiting program will be reactivated and will be

enabled to execute the requested function. In other words, the programs are

scheduled per state in first-come, first-serve order (FCFS). In Section 3 we will see

how the order can be specified, up to a limited extent, by the programmer.

Example 1. A communciation between two procasses is initiated by declaring a buffer

which can hold a message whose interpretation is Known to both processes. Assuming

the existence of the type message, the buffer objects are defined by

type oneslotbuffer -

var mes - message

path deposit; remove and

let b - oneslotbuffer, in - ref message in

op b.deposit(m) ■ mes *- m

op b.remove(m) - m <- mes

end

MM

■wn^-""""« 'miwm.wiimmmmrm* nM^pipP«MMP«IPVHRW«naT<MP^~nl. "< KHilHIPPIIiPI mi IJIP ■uuu iiKiiinwiiiwiiiWi n m mnmu •w^^ß^mmmi

2. ON WRITING PATH EXPRESSIONS '

The type definition consists of two parts. The first part is a record describing the

internal structure of the objects of that type. The second part describes the

operations which can be performed on these objects. The l«t-clause specifies the

parameters used in the operations. The prefix parameter of an operation is of the

same type as the type in which the operation is declared (SIMULA 67 laudatur).

Unprefixeci fieldnames, such as "mes", in the body of an operation relate to the given

prefix parameter.

The internal structure defined in a type definition can be accessed in the programs

of the operations defined in that type. Outside the type definition, the operations can

be applied, but the internal structure is not accessible.

The path expression is part of the internal structure, i.e., every object declared of

type oneslotbuffer has its own path. A path is not defined for the collection of

objects of that type; on the contrary, a new instance of the path is created every time

a new object of that type is declared.

The path expression specifies that every deposit must be followed by a remove

action and every remove by a deposit. If a second remove is attempted, it will

automatically be delayed until another deposit has taKen place. A second attempt to

deposit is likewise delayed until the firrt message has been removed.

Example 2. Some cases which an operating system must handle call for a

scheduling discipline different from the straightforward FCFS discipline postulated for

path expressions. An example is given in [4] suggested by A. Ballard and J. J.

Horning.

 "•■—' . \ 11 wimm^^^m miirmK-^rmm^^^mmmminw m i\iim*mi.'mm»m

2. ON WRITING PATH EXPRESSIONS 8

■MMM -

*

An alarm clock service must be designed which enables a calling program to delay

itself for a given number of time units, or "ticks". A program sets the alarm clock by

calling wakeme(r. - integer). The programs must be awakened by smallest wakeup

time first and not in FCFS order. Time is measured by a hardware clock which

activates the alarm clock procedure "tick" every time unit.

The alarm clock feature is provided by a definition of "wakeuptime" and a

definition of "alarmclock".

type wakeuptime -

var wt - integer (oo) comment wt is initialized with the value oo

path set; pass; wakeup end

let u ' wakeuptime, n ■ integer in

op u.set(n) - wt <- n

op u.pass « wt <- 0

op u.waKeup = wt «- oo

op u.val ■ result integer; return wt

•n«i

A type definition describes an object and its operations, but it does not declare

any objects of its type. If we wish to combine a type definition with the declaration

of one object of that type, we use the keyword decl instead of type.

The alarm clock maintains a list of wakeuptimes. A list w is declared by

ver w - list <n> of <t>

where n is the number of initial elements and t the type of the li'" elements. The

current element of a list w is represented by .w. Relevant list operations are

< I

wwm ~^mm* ■-w. wmmmr^ III.H ■nm^i« t^t^mmm

2. ON WRITING PATH EXPRESSIONS

advance w

r«s«i w

new .w

free .w

current is set to the next element or to nil

if it is moved past the end of the list

set current back to the first element

a new list element is created and inserted preceding

the current. The current is set to the new element

the current element is deleted and current is advanced

Assuming that only one alarm clock is needed, the declaration of alarm clock is

deel alarmclocK -

var wlist - list 1 of wakeuptime

comment the list is initialised with a permanent last element with value ot

var now - integer(O), first - integer(oo)

path setalarm ♦ tick end

let n - integer in

proc setalarm(n) - result ref wak:. jptime

begin cons t - n + now

reset wlist; while .wlist.wt < t do advance wlist od

comment terr ination it guaranteed by the fact that last element.wt - oo

If first > t then first ♦-1 fij new.wlist! .wlist.set(t)

return ref .wlist

end

comment a proc is not available outside a type definition

I

 ■ MaMuaw^Bi^.

.'iilPl!^pwwi^^|flW^^^w^^»^^^PfWPpiU|^wpWPP'P^w^PfÄ^w,rr ■-T^'1 "I"!nj«i»i^Mnp*W^rfpj|nii|,|iiiMm.jHmi^y JPW.I mm*»^*"* ^m i " 'w jp1"«'»»^^!!^™

-*». -fc fi - r-

2. ON WRITING PATH EXPRESSIONS 10

op wakeme(n) -

begi.i var x - setalarm(n); x.wakeup «nd

op tick -

begin now ♦- now ♦ 1; reset wlist

while .wlist.wt s now do .wlist.pass; free .wlist od

ond

comment tick is activated at regular intervals by the hardware clock

A program calling wakeme adds a new element to the list of wakeuptimes which is

inserted such that the list h sorted by ascending wakeup times at all times. The

program then applies wakeup to this element. The path expression in type

wakeuptime ensures that the wakeup operation is not scheduled until operation pass

has been applied to this element. The latter operation is performed by ticfv, but not

until "now" overtakes the stated wakeuptime.

This solution seems more complicated than the Monitor solution given in [4J This

is primarily due to explanation of the list operation. However, the given solution

deserves this title more than the Monitor solution. The latter has the drawback tha\

the program whose wakeuptime is the first is awakened every clock tick! (Imagine the

poor guy who wants to get up early in the morning at 5:30 a.m. and turns in early at

9:00 P.M. He is awakened after every time unit and he must inspect his watch every

time to see if it is time to get up.) A fair comparison cannot be made unless an

accurate Monitor solution is presented.

Example 3. The delay between two data transfers from (or to) a disk with a

moving head is proportional to the distance the head must travel. Therefore, the most

efficient schedule for processing disk requests is not FCFS, but "nearest track first",

!

■Jn.» w»ll'"«"i^wiw^W!WW"i ^»"■"^^•■^"■wii^HIBi»— I,«III'"'"™.I«IIII^«»W,JPIWIHJIIIII1IIIIJI'WI»«.P""IW.I»PH«IIH.I iv.ipii»«« ■ i - -^^mmmww^l*

X

2. ON WRITING PATH EXPRESSIONS U

i.e., if a transfer involving track t is completed, the disK scheduler should pick as next

request the one asking for a track nearest to t. However, this scheduling discipline

has the drawback of a potential starvation. It may happen that the scheduler picks

requests for tracks at one end of the disk all the time, neglecting requests for the

other end of the disk. This problem is solved by an "elevator schedule". The

scheduler will pick the nearest track, but it will move in one direction, either up or

down like an elevator, until there are no more requests for tracks in that direction.

i

A program activates the disk by placing a command in its command buffer. We

assume the existence of type command, describing the internal structure of a disk

command. A disk device is represented by the definition

type DISKDEVICE(n,p - integer) -

array [l:n] of array [l:p] of storagecell

var combuf - command

path activate; execute; release end

let 0 - DISKDEVICE, c - command in

op D.activate(c) - combuf <- c

op D.execute - <data transfer by device>

op D.release - combuf «■ nil

end

',

The operation execute represents the action of the disk device execu'lng the

command in its command buffer. The details of this action are not relevant here. The

path specifies that a program cannot execute release until the device has completed a

transfer. The action corresponds to the program detecting that the device is done.

Its occurrence in the path is more important than the action it performs. Instead of

^m^m^ - - . _.

,u«imimnm:immmmmmm^u,mmm i.m i m.i nun aw.iiiBwim .- ww 1 »• ■■ in wmm^mmmmmif^mmm^Wm^mmmmmf^mmf'mi < up.i i ■ piiiiu i in.

2. ON WRiTING PATH EXPRESS'ONS 12

setting combuf to nil, the body could have been defined as a noop. Its position in the

path, however, guarantees that the next command cannot be placed in the command

buffer unless the completion of the current data transfer has been detected.

Data transfer requests will be sorted by arrival time per tracK, i.e. requests for

one track are treated FCFS. Grouping requests by track is made possible by

type track -

var com - command(ml)

path reserve ; val ; leave end

let t - track, c - command in

op t.reserve(c) - com <- c

op t.val ■ result command; return com

op t.leave ■ com *- nil

end

The operation leave plays a role similar to that of the operation release in type

DISKDEVICE. Its usefulness becomes clear in the definition of DISKSCHEDULER (see

the definition of access).

The direction in which the head is traveling is represented by a "range type".

This is a type definition in which all the constants of that type are listed by name (e.g.

range type color - red, orange, yellow, green, blue, violet end). The operation of type

direction allows us to change the direction,

range type direction - (up.down)

let d - direction in

op d.invert - result direction; return if d - up then down else up fi

end

■I »■ ■ " ^ ■■, **im*mr' '-~^-~~mm^mm*^*9^**m*mmvim*mmi^****mmm*' iJIM an iii^pwvit^i

2. ON WRITING PATH EXPRESSIONS 13

We are now ready for the DISKSCHEOULER. The scheduler keeps track of the first

request in both drections in the varhbles next[down] and next[Lp]. It changes

direction when there are no more requests in that direction. The scheduler makes

only one operation available to programs which v/ant to use the DISK device controlled

by the scheduler. This operation is "accoss" and it requires a track number and e

command to be executed. The operation access uses the procedures "enter" and

"exit" (not available outside the scheduler) in which respectively a request is entwred

and a next data transfer is scheduled (if any).

type DISKSCHEDULER(n,p - integer) -

array [l:n] of track; var D - DISKDEVICE(n)p)

var free - array [l:n] of Boolean(true)

var dir - direction(down), k - integer(O); const Dsize - n

var next - array direction of integer(0,oo)

path enter ♦ exit end

let S - DISKSCHEOULER, i - index, c - command in

proc S.enter(i) -

if next[up] - 0 and next[down] - oo then k «- i; n.activate(S[k].val)

else free[i] *- false

if i - k then next[dir.invert]«- i

else if i < k and next[up] < i then next[upl *■ i

else if i > k and i < next[down] then next[down]«- i fl

fi fi fi

.

mm MM» ~- IHHM I I. I .»■

pMi w^iBWfw^pppwwwiww^pwTwwiwwwiniCTpusppw •mmfmr* '>'wi>'mmmmmmmiyq^im*em*miFmm*imftmm^wimmmRTim*mm'i*

2. ON WRITING PATH EXPRESSIONS 14

proc S.exit(i) -

begin vir x - integer; if neyt[dir] - 0 or next[dir] - oo ihen dir «- dir.invert fi

if 0 < next[dir] < oo then

k <- next[dir]j 0.activate(S[k].val)

if dir - down then

if some x In [k+1 : O^ze] sat not free[x]

then free[x] *- true; next[down] *■ x «Is« next[downj«- oo fi

else

If some x In - [1 : k-1] sat not free[x]

then free[x]«- true; next[up] *■ x else next[up] <- 0 fi

flfl

end

op S.ac-.cssd.c) ■

begin S[i].reserve(c); enter{i,c); O.release; S[i].leave; exit(i) end

The procedure enter immediately activates the requested data transfer if this is

the only request in existence. Otherwise, it updates the appropriate next pointer (if

necessary). The procedure exit changes the direction if there are no more requests

in the present direction. The variables next[up] and next[down] are primarily used

for improving the DISK utilization. Without them, procedure exit must search the

array of tracks for the next requested track before it can activate the DISK. The

variables next[up] and next[down] make it unnecessary that the search through the

array precedes the activation of the DISK. This saving of time is important, because,

if It is not activated within a critical time limit, the DISK cannot operate at full speed.

(The problem can be solved in another way if the array Is replaced by two lists, one

\ \

Mm——im»« «1111 tinnii—^i—i—iiwi i mmmmtm M mmn i—

vf^nmmmmmmmmm**** Hjpr-^^.niii.nwp iwmmmmmmmim mmmf^mm^mim n III Ulli Ml. Ulli* L

2. ON WRITING PATH EXPRESSIONS 15

for the direction up and one for down. Type track must lien be extended with an

additional field "num" which records the track number. The bdk of »he work is now

performed in procedure enter. As before, '* immediately nctivates the requested

transfer if this is the first request. Otner a, it places i new element in the

■pp^ opriate list (depending on i<k) such that the up-list is sorted by dsscendirs track

number and the down-list by ascending track number. Procedure exit reduces to a

change of direction if the list it is working on is empty and activiting the first element

of !he list in the current direction.)

The search through the array of tracks cannct be omittttd, but instead of

preceding the DISK activation, it is performed after the DISK has been activated. The

construct

some <v3r> in {-}< •ange> sat <Boolean expr>

is equivalei t to a hgical predicate prefixed by the quantor 3. (The keyword sat reads

as "satisfies" cr "satisfy".) If the range is emply or the Boolean expression is false for

all the r-ange values, then the result is false and the variable is undefined. If there h

a value in the range which satisfies the Boolean expression, the result is true and the

value of the variable is the leftmost range element for which the Boolean expression is

satisfied. The optional minus sign in front of the range means that the range is

traversed from right to left. In that case the rightmost range element is returned.

(The obvious complement of this predicate is

all <var> in {-}<range> sat <Boolean expr>

which is short for not some <var> in {-}<range> sat ?t <Boolean expr>.)

The programs for enter and exit become substantially shorter if the variables

next[up] and next[down] are deleted. Procedure enter reduces to an activation if the

■I MM» MMMMMH ljatm

mmnuiMiiL.i.tinu mmnmmmmmm^ ——" l"■l■"^ '" ■ iiiimw iwrniimnHiuu i i " ■-■"

2. ON WRITING PATH EXPRESSIONS 16

request is the first. Procedure exit amounts to the search for the rvxt and its

activation (if one is found). However, it was noted th(it this «ay result in poor

performance of the DISK device. In this simplified form, the SCHEDULER is essentially

the same as the DISK MONITOR presented in [4)

3. CONDITIONALS, PRIORITY AND CONNECTEP PATHS

3.1 In some cases the programmer should be able to spe-ify that an operation can be

executed only if a certain condition is true. Fo' exa-vib, if the type stack is defined

with the operations push and pop, the forme;- wjst not be executable when the stacK

has reached its maximum height and the latter must not be executable when the stack

is empty.

A conditional element in a path expression has the form

[<cond. 1 >:<elem. l>,<cor,d.2>:<elem.2>r..,<cond.n>:<elem.n>,{elem.(n+1)}]

The conditional element in equal to the leftmost element for which the preceding

condition is true. The opt onal (n+l)st element is the -otherwise". It represents the

conditional element if all conditions cond.lr..,cond.n are false.

The conditions in a conditional element are severely restricttd. The permitted

conditions are Boolean expressions in which the operands are either constants or

fieldnames of the type definition in which the path expression is defined. Moreover,

all operations which modify the operands of the conditions must occur in the path

expression of which the conditional element is a part. These restrictions are

necessary to make sure that the evaluation of a condition does not conflict with other

\

 ■

|7p|IH«pMn|PMIpm|P«PPmim«WPFV^«i^"^"^»^li'IM~PJP.>'ll«> I. .•lapm iwpn I' -HI.IHIHI upm mi .ini ■m«« IIII.I MWmnmnnppilM!

3. CONDITIONALS, PRIORITY AND CONNEC^TD nATHS 17

operations on the operands used in that condiiitn. Such a conflict is not possible if

the operations which mor'ify operands of a condition occur in the path, becauce

evaluation of the path and execution of rne of its elements exclude one another.

Example 4. The operations on a stack f,re push and pop. The elements of a stack

can be of arbitrary type. However, we restrict ourselves to a stack of uniform t/pe,

i.e. all the stack elements must be of the same type. When a stack is declaret, its

maximum height must be specified.

type stack(n - integer, t - type) -

array [l:n] of t

cons max - nj var top ■ integer(O)

path[top - 0: push, top - max: pop, push ♦ pop] end

let st - stack, x - ref t in

op st.push(x) - begin top+1; st[top] <- x end

op st.pop(x) - begin x <- st[top]; top-1 end

end

The conditions in this path expression clearly satisfy the restrictions.

3.2. The normal scheduling discipline in a path expression is FCFS. However, there are

cases in which execution of two different functions is possible, but the execution of

one of these two is more important than execution of the other. If such a fixed

priority relation exists between two elements p and q of a selective element p+q, the

priority can be indicated in a path by one of the symbols > or <. These symbols have

the same precedence as the ope: ator ♦ . E.g.,

path f(g > h) k end

means that after an execution of f either a g or an h can be executud. However, if an

■MM

■^p^^^^^^^J||JlJlll^l|^^l^Pi^w^^^w^l^^^pBl^T^^pwwp^wwwpwwl^BlWp^>wp^pl■l^-Jpp^ .. "'■T'■—T^pgmipiTW

\

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 18 I
execution of both g and h is requested, g will be scheduled first.

Stating a fixed priority introduces the problem of a potential starvation If

executions of g are requested so frequently that another request for g has arrived by

the time f completes, then h will never be executed. Thus, the priority operator must

be applied with care. It can be used in cases in which starvation is nol possible or in

cases where the starvation is allowed. (An example of the latter is the null operation

which is performed on an idling CPU.)

■

Example 5. The operating system maintains a pool of storage blocks, equal in size,

which Can be allocated to user programs and will be released in due time. The

operations available to a user program are getspace and release. We postulate

the i .istence of a type baseaddress, which gives access to a block of storage. The

operating system maintains a stack of free blocks. (All free storage blocks are

identical, so a stack is as good as a queue.) If there is a state in which either getspace

or release can be executed, there is a slight preference for executing release first.

This cannot lead to starvation, because there is a finite number of storage blocks in

the pool. The number of consecutive executions of release is limited by that number.

The type definition for the storage pool is, of course, very similar to the preceding

stack example because of our choice to -ecord the free blocks in a stack,

deci POOUn - integer) -

array [l:n] of baseaddress

cons max - n; var free - integer(n)

path[free - 0: release, free - max: getspace, release > betspace] end

let b - baseaddress in

op release(b) - begin free+lj P00L[free]«- b and

Hi in ii mrnmn-mr*. IIIWMJWIW^WWWWWUI u» "MHUJIN u » iii9(.j|i> -«nmwn^pmapp ^•i" w^s' •^■wwn.panp^f^^i «•' •■

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 19

op getspace(b) - b«|in b «- POOL[free]; free-1 «nd

•nd

3.3. It is allowed to define more than one path within a type definition. These paths

may be independent in the sense that none of the operands in one path occurs in the

other, or the paths may share some operands. A multiple path construct can, for

instance, be used to express potential parallelism. E.g., the multiple path

path p ; r end

path q ; r end

specifies that two subsequent p's are separated by an r, that two subsequent q's are

separated by an r, and that two subsequent r's are separated by a p and a q. But the

multiple path does not specify any ordering between p and q. Therefore, it does not

matter in which order p and q are executed in between two subsequent r's. The

executions of p and q may even overlap in lime. However, the next r cannot be

executed until both p and q ha^e been completed.

A path expression allows the execution of only one of the functions named in that

path at a time. (In other words, the functions named in a path are automatically

embedded in a critical region specific for that path.) The computation of the next state

in the path takes place in between two function executions and does not overlap with

the execution of one of the functions.

The functions in the multiple path of the preceding example are not necessarily

mutually exclusive. In addition, the next state of one path may be evaluated while a

non-shared function in the other path is executing. We call such a multiple path

structure a "parallel path", because there is an inherent paralleiism In the execution of

non-shared functions.

aaM

^^^^mm^^

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 20

A stronger connection between paths is obtaineo by concatenating several paths

into one path. The symbol & is used to represent concatenation. E.g.,

path p ; r & q ; r end

is the concatenation of the paths nath p ; r end and path q ; r -nd. The

concatenated paths are treated as one. This means that only one function named in

the path can be executed at a time. In addition, the next state computation takes

place in between the execution of func >ns named in the path, so the next state

computation cannot overlap with the execution of one of the functions. All the

function execiuions and the next state computation are mutually exclusive in this case.

We call this multiple path structure a "connected path". The given example states that

every execution of r must be preceded by an execution of p and an execution of q.

The order in which p and q are executed is not specified. However, since p and q

occur in a connected path, it is not possible that p and q execute in parallel.

Therefore, every execution of r is preceded by either the sequence pjq or by the

sequence q;p.

The restrictions imposed upon conditional elements cause no problem in a

connected path. In a parallel path, however, the variable operands in a condition can

only be modified by operations in the path in which the condition occurs. E.g.,

path [s i t: p,r] & [s < t: a.r] end

path [s S t: p,r] end and path [s < t: q,r] end

where p-s«-s-l, q-t«-t-lIr-{s«-s + :;t«-t + 1}. The connected path is

correct, because all the operations on the variable operands in the conditions occur in

the path. The parallel path violates the restrictions on the variable operands in the

conditions, because p in the first path modifies a variable in the condition of the

second path and q, in the second path, one in the first path.

■

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 21

Example 6. In the first raper on path expressions [5] we described how a

bounded buffer of n slots (n > 1) can be built from the types oneslotbuffer ?nd

ringbuffer. The connected paths make it possible to define a ringbuffer which builds

directly on the type message without having to define an auxiliary type oneslotbuffer.

A bounded buffer (or ringbuffer) has a number of N slots which can hold a

message (N > 1). The programs which place a message in a slot are called the

"senders", the programs which take a message out are called the "receivers". The

constraint is that senders and receivers must not operate on a buffer slot at the same

time. This can, of course, be achieved by allowing only one sender or one receiver to

access the ringbuffer at a time, i.e. by embedding deposit(m-message) and

remove(m-message) in one critical region. However, we consider this solution as too

restrictive. It is perfectly alright that several senders and several receivers access

the ringbuffer at the same time if they a-cess different slots. Thus, the restrictions

must be imposed on finding a buffer slot in which a message can be placed or from

which a message can be taken.

A buffer slot can be in one of three states: empty, full or inuse. In the state

empty, the slot is available for placing a message. In the state full, a message can be

taken out. The state inuse indicates that this slot is momentarily not available,

because either a message is being placed in this slot, or a message is being taken out.

The type ringbuffer makes available two operations on a ringbuner:

deposit(m-message) and removes-message). It uses four internal procedures:

searchslot, searchmes, addslot and addmes. The procedure searchslot looks for a siot

in state empty and the procedure searchmes looks for a slot in state full. The

senders should not be able to execute searchslot if all the slots are full. The

—~-»*~——-~-——>——— " HI n

 — m , i n " i mm—mmmmswmi

3. CONDITIONALS, PRIORITY ANL» CONNECTED PATHS 22

receivers should not be able to execute searchmes if all the slots are et pty. These

constraints will be expressed in a path expression. The procedure addslot Is

performed by a receiver when it is done taking out a message. A sender performs

addmes when it is done placing a message in the ringbuffer.

The search process is slightly improved by the use of two variables a (for deposit)

and r (for remove) which respectively point to the last found empty siot and the last

found full slot. A search starts at d+1 or r+1 instead of always at the first buffer

slot. If the search always starts at the front, the probability of finding a slot in the

state we are looking for is smaller at the front than at the end. The variables d and r

let a search start at the slots which have been least recently inspected,

type ringbuffer(N-integer) -

array [0 : N-l] of message; cent size - N

var mesnum - integer(O), slotnum - size, d,r - integer(-l)

range type slotstate - {empty, inuse, full} end

var state - array [0 : size-1] of slotstate

path [mesnum > 0 : searchmes] + addmes & [slotnum > 0 : searchslot] ♦ addslot end

let rb - ringbuffer, m - message, k - index in

proc rb.searchmes - result integer

begin local x - r+1; while state[x] t full do x «- (x+1) H size od

state[x] *- inuse; mesnum «- mesnum - 1; r <- x; return r

end

comment the operator Z stands for the remainder function

^WMMWaMUMtmiMi. < i ■■- --—

HPWwnMNwjyippiiwiijmuiiMiM MI HI i . u imiipiiKiKmnMpfiiiwipipnHHpn^^ifnpniVRni^ppvwpf «Mil ii v^mmt^HiBfjiifKmtlßn^-TmmmFZm*^***

■

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 23

proc rb.searchslot - result integer

begin local y - d+l; while state[y] t erpty do y «- (y+J) 7. size od

stat8[y] <- inuse; slotnum <- slotnum - 1; d «- y; re.urn d

end

proc rb.addmes(K) - begin mesnum <- mesnum ♦ 1; state[K] *- full end

proc rb.addslot(K) - begin slotnum <- slotnum ♦ 1; state[K]«- empty end

op rb.deposit(m) - begin local y - searchslot; rb[y] <- m; addmes(y) end

op rb.remove(m) - begin local x - searchmesj m «- rb[x]5 addslot(x) end

end

The path expression precludes the execution of deposit if there are no empty

slots available and it precludes the execution of remove if there are no messages In

the buffer. The path specifies that the search and add operations cannot overlap in

time. This guarantees that the elements of the state vector and the variables slotnum

and mesnum have a meaningful value. The path does not specify that an execution of

searchslot must be followed by an execution of addmes, nor does it require

searchmes; addslot. This means that a number of senders and receivers can access

the ringbuffer at the same time, but only one at a time can search or add.

This solution differs from the solutions given in [5 and 6] in that here several

senders and several receivers can access the buffer, whereas the other solutions

aliuw only one sender and one receiver to access the buffer simultaneously.

However, P. Wodon showed that these solutions can be revised to handle seyeral

senders and several receivers [7]. The monitor solution given in [4] is very

restrictive. It allows only one user at a time, either a sender or a receiver, but not

both. It seems not hard to modify the buffer monitor such that it handles the search

■liMBfiUllrMiaMfiliMHi iii'in i i inmiiiMl

«IWPPHWWPIPWWWB^WWIW^1 i " i»»»,i,ww ■ i inw« "• , IiUlipilPIWI|»|I»p»WIISW"M,.,Jiii» ii>ii!iuiivpmii>wiia«iiW>ji>rwia«ppppPimiP9^~''«l||^^n^

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 24

and add procedures, but not the buffer operations. Then it also allows several

sonders and several receivers to access the buffer simultaneously.

Example 7. Another problem that has frequently been discussed is the Readers-Writers

problem [8]. A group of "readers" can "read" a data object which they share with a

group of "writers" who can "write" the data object. Reading can go on in parallel, but

only one writer can write at a time. In addition, writing must not overlap in time with

reading.

Since the actions "read" and "write" are of no consequence to the solution of the

problem, we will not present a complete type definition for the data objects to be

read and written. We confine the solution to the path expressions which restricts the

executions of reading and writing.

A writer cannot start as long as reading is going on. It is therefore necessary to

distinguish between the states "reading is going on" and its negation. These states

and their transitions are easily implemented by counting the number of readers, r.

Let read be defined as { rinit; actual reading ; rquit }, where

procedure» rinit - r <- r + 1

and

procedure rquit - r <- r - 1

If r is initialized at zero, the test r - 0 reveals whether writing can start or not. This

is expressed in the path expression

path [r-0: write, rquit] + rinit end

If r > 0, writing cannot start, but readers can start and leave. Thus, reading can go

on in parallel. If r - 0, either a reader or a writer c^n start. If a writer starts, a

reader cannot start until the writer is done.

mmm _—- tämm '-HiMI i

■ w.xiiiijw-T'sin^miyiiMiwviiiijmcm^'wn^'rv^ ijiui« u^ uni nMii.i'wpwnpp^^wnw'wiKxmijwi •■■■in •" -^atm-n *m HII.J inn nn^«««

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 25

This solution has a starvation problem. It is possible that the writers will never

get a chance if reading is going on. By the time a reader quits, another reader may

have performed rinlt. If this happens al the time, r will never reach the value zero

and writing is impossible.

Writers gat a fair chance if no new readers could do rinit after a writer attempts

to start. Therefore, we introduce the procedure "writeattempt" and redefine write -

{writeattempt ; actual writing}. Reading will die out «fter a write attempt has

succeeded if we add

path rinit ♦ (writeattempt ; write) end

to the path above. The additional path does not allow another rinit to start if

writeattempt succeeded and r > 0, because the first path does not allow a write to

proceed. This means that the element (writeattempt; write) cannot complete until r

-0.

The first solution favors the readers and the second solution gives both writers

and readers a fair chance. The problem discussed most frequently is the one in which

the writers have a preferential status. I.e., as soon as a writer attempts to write, no

new readers should be able to start reading. The solution of this problem is obtained

by a simple modification of the fair solution. The selection operator ♦ in the additional

path is replaced by the selection operator < which assigns priority to writing. The

path solution is then

path [r - 0: write, rquit] 4 rinit end

path rinit < (writeattempt; write) end

If a reader must wait because writing is going on and another writer arrives later than

this reader, the writer is selected when the second path becomes available. Only If

'

tft*lltil,lllllll'tifllMlillllll>il1'*111^^ - _ .^^IMM,—^^^ , .-..■_,:

^^BPBPPP ■WflPWWPPP^—■""-,-~" [■II^PI iiioia W*IWi?HWIH.ili 1 mi w*j «^wjif^rww^i

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 26

no other writer a. rived before the last write operation has been completed, then a

reader can perform rinit. The first path assures that writing will not start until all

reading has ceased.

The two paths of the last two solutions form a parallel path instead of a connected

path. This means that the non-shared operands rquit and writeattempt can be

executed in parallel. It would not make much difference in this case if the paths were

connected, because not much is gained by the parallel execution of these two trivial

procedures.

4; PARSING AND IMPLEMENTING PATH EXPRESSIONS

4.1 A path expression has an ambiguity if its graph has two arcs with the same name

leaving the same state, but resulting in different states. E.g., the graphs of

path f(gh + gk)m end and

path f(gh ♦ g*k)m end are

The programmer is allowed to write such ambiguities, because they can be resolved

when the path expression is compiled. In the first case the two arcs are replaced by

one and the result states are merged into one. This means that the operand g in the

path expression is taken out as common factor. The result is

path fg(h ♦ k)m end

 ■"■— - -" ^'-—^^'ilAMff^ifcri i.-^ ililMMri I Uli « ---""'—UMiBMiiiliiiaiiiiaM

ii iiwup^wi!« Tmi*immi^mmmimmwimm*^*^*mi!i^ ' ^wmmmmnumvjwf»

■■"■

4, PARSING AND IMPLEMENTING PATH EXPRESSIONS 27

If the ambiguity involves a repeated element, the trick is to replace this element,

g* say, by (+ gg* where < means the empty action. The given example is then

transformed into

path f (gh + (< + gg«) k) m end -

path f (g (h -f g«k) ♦ k) m end

The last version is free of ambiguities. (If necessary, g« can be replaced by (+ g((♦

g(<-..+ gg*)-..). Applying this rule, path f (ggh ♦ g*K) m end is transformed into

"path f (ggh + k + g (< + gg»)) m end which reduces to path f (k ■•• g (k + g(h ♦

g*k))) m end.)

A given path expression can be simplified in a manner similar to the simplification

of algebraic expressions. Common factors can be t*ken out not only from the left but

also from the right. E.g.

path (a+b)p + a(p-t-q) + b(p+q) end

can be written as

path (a+b)p + (a+bKp+q) end - path (a+bKp+p+q) end

Since p+p ■ p, the path can be reduced to

path (a+bKp+q) end

It turns out that an unambiguous path expression can be reduced to a canonical

form. The proof is essentially the same as the one given for the state reduction of a

deterministic finite state machine in [9]. The proof and the algorithms for bringing a

given path expression in its canonical form will be discussed in a separate paper.

4.2 The graph of a non-simple path expression has several arc which carry the same

name. Thus, an operand of a non-simple path may be executable in several states.

■PWP^WiPlBWW^"^"1 "'""'-"Win iiniJWliiil i «UHR« iiiwiii II.IMIIII«I,WPP»PWB^!IIHII^I I»*III ■JI«W»I> iiiiinwiiBMiiimii-'

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS 28

Let variable STATE indicate for ? given path expression p which functions can execute.

A function f in this path expression is programmed as

F ■ p.wait(f); f; p.signai(f)

The signal operation includes the computation of the next state which depends on the

current state and the executed function f.

If execution of f is requested and f is not included in the current state, the

execution of f is delayed and the process r^uesting the execution of f is put on a

waiting list. It is in principle possible to sort requests per state. However, this

means that a requesting process may have to be placed in several waiting lists. If

one of the states subsequently allows the execution of the requested function, the

process must be removed from several lists. We consider such an implementation as

too cumbersome. Instead, a path expression has a single wailing list. If a process P.i

requests execution Oi a function f which cannot be executed right away, a new

element (i,f) is added to the list, where i is the process index and f the ^quested

function. The element is appended to the end of the list if no priority is indicated.

Otherwise, it is inserted such that the given priority is maintained.

After computing the next stale, the signal Operation scans the waiting list until it

finds an element which can go in this slate (if any). If it finds one, ihis element is

removed from the list and the corresponding process is reactivated so that It can

execute the requested function.

Only one function named in a path expression can execute at a time. This impl'es

that a new request arriving while one of the functions is executinf, must be put or. the

waiting list. If no function is executing, we say that the path is "idle". The

operations wait and signal can be programmed using P, V operations on a mutual

mrlt» nitM—i um i m i»

'" ■"■"• wmmmmmmm «nw wm^mmm**^

A. PARSING AND IMPLEMENTING PATH EXPRESSIONS 29

:

exclusion semaphore "mutex" and a set of private semaphore: Hpsew[l:n]", one for

each process. The programs are:

p.wait(f) -

begin local x - (i,f)

P(mutex)

if idle and x.f (STATE then idle *■ false; V(mutex)

else insert(x into waitinglist); V(mutex)i P(psem[x.i]) fi

end

p.signal(f) -

begin local x

P(mutex); STATE «- next(STATE,f)

if some x in waitir glist sat x.f i ST ATE then rree x; V(psem[x.i])

else idle *- true fi

V(mutex)

end

The subpaths of a connected path or a parallel path share one single mutual

exclusion semaphore so that orly one path is tested at a time. A connected path

differs from a parallel path in that the former has one single variable "idle", used by

all its subpaths, whereas each subpath k in the latter has its own variable "idle[K]-.

In case of a connected path or a parallel path the states of all the subpaths must

be tested in which the requested function occurs. The if clause in p.wait(f) is modified

for a connected path into

idle and all k in [1 • np] sat x.f i p[k] t x.f < STATE[k]

where np is the number of subpaths of the connected path. The lf-clause in p.wait(f)

for a parallel path is

mmmm ■^■•■iiiiii •■! ii^ iJW^nm^vwMRnn IV« WWHWW^WT»«!!»1!««^

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS 30

all k in [l:np] «at x.f (p[K] -»(idle[K] and x.f < STATE[K])

The modifications in the assignments to the variable idle and in the if-clause in p.signal

are self-evident.

The next state is derived from the parse tree which corresponds to the graph of

the path expression. In case of a simple path, the next state depends on the

executed function. In that case the next state function amounts to copying an

attribute of the executed function. Otherwise, if all the operands of a selection are

single factors (e.g. (a+b+c)), then the next state only depends on the current ttate.

In that case the next state function amounts to copying an attribute of the current

state. If a path expression does not belong to one of these categories, a

case-statement is attached to each state. The next state is now computsd by

executing the case-statement attached to the current state. The value of the

case-clause depends on the executed function.

4.3. The use of path expressions does not exclude the possibility of starvation or

deadlock. E.g., the parallel path

path a + c end

path b + c end

may never schedule c if an execution of b is requested while a is being executed and

vice-versa. The parallel püith

path f p q end

path g q p end

runs into a deadlock after the first execution of f and g.

MMMMMMM i— ^i — M^i

i i uminm^mmmm'm "'• •"i**wmmm*mi*m^^^i&!im~™ vwuM'mm-miw.tmimimmmmimmiiiB'm fwm ii mitmmam'm ^Htm

A. PARSING AND IMPLEMENTING PATH EXPRESSIONS 31

Although starvation and deadlock are not impossible, it is easier to detect such

problems in a path structure than in programs which use P, V operations on

semaphores. In the latter case the problem must be derived from several places in

the code. In the introduction path expressions were compared to control structures

such as a while-statement. Control statements can be misused as much as path

expressions. If not programmed on purpose, a starvation problem in a parallel path is

comparable to programming an infinite loop, a mistake which can very easily be made.

An additional advantage of path expressions over coding synchronization in line is

the detection of deadlocks at .ompile time. A parallel path can easily be tested for

the presence of deadlocks and an error report can be given at compile time.

Unfortunately, only deadlocks in path expressions can be detected at compile time. It

is still possible to cause deadlocks at run time. E.g. the paths

path f g and and

path p q end

could be used by two programs P.l and P.2 such that P.l successively calls g;p and P.2

q;f. This obviously leads to a deadlock. The best a compiler can do is spot the

potential deadlock state. The occurrence of function calls in conditional statements

make it impossible to find at compile time which functions wil be executed. Thus,

path expressions make it easier for a programmer to avok starvation and deadlock

problems, but the responsibility for avoiding these problems is still up to the

programmer.

SUMMARY

«*__«. ... -■- ■■-- - ■

"—" mmm^immm*^ «^ ■" ,l"111 ' ' i" " KU**'

\:

SUMMARY 32

Path expressions make it possible to program the necessary synchronization at a

higher level than that of assembly code. Simple path expressions are already

powerful tools which would be hard to code in line by P, V operations on semaphores

or similar primitive concepts. The examples show that the given rules for writing path

expressions are adequate to program useful operating system functions.

A path expression is a regular expression describing the allowable execution

sequences of its operands. Several path expressions can oe concatenated into one

connected path or, by sharing operand names, into a parallel path. A path expression

may correspond to an undeterministic finite state machine. The ambiguities can easily

be removed by taKing out common factors and rewriting repeated elements. The

programmer does not have to worry about writing unambiguous path expressions.

The ambiguities can be removed by a compiler. The latter also can reduce a path

expression to its canonical form.

The testing in a non-simple path expression is slightly more elaborate than in a

simple path expression. Connected paths and parallel paths add to the complexity of

the test. The programmer must still watch out for unwanted starvation and possible

deadlocks. The compiler is able to detect deadlocks present in a connected pcth or a

parallel path. However, the order in which functions, named in a path expression, are

called may still cause deadlocks at run time.

The usefulness of path expressions will be demonstrated in the design of an

operating system fanily. Path expressions will be defined as an extension of the

process and multiprogramming facilities. At the same time, a modifiable design

language is being developed in which path expressions are incorporated. The

reduction and compilation of path expressions is incorporated in a compiler for the

--■- __..

■ um um»!.» wmim», pj^iip^-^ipiii, ii ■IIII nuiiwiNiiiiii i iiim mmmmmmw* wiiptum ii^n^iii

SUMMARY

design language. More theoretical results about path expressions (and generalization

of path expressions) will be presented in E. A. Schneider's thesis by the end of this

year.

ACKNOWLEDGMENT

I am grateful for the interesting discussions I had with Roy Campbell while I was in

Newcasile, England and while he visited me during the summer of 1974 at CMU. The

many hours I spent with Ed Schneider contributed enormously to the development of

the path expressions.

mmmmmn^mmm^mmm .nn.« -_~ - ^

REFERENCES

[1] Dijkstra, E. W. "Cooperating Sequential Processes"
In Programmint Languages (ed. F. Genuys)
Academic Press, New York (1968)

[2] Brinch-Hansen, P. "Structured Multiprogramming"
CACM 15,7 (July 1972)

[3] Upton, R. On Synchronization Primitive Systems
Thesis, Carnegie-K-tellon University (1973)

[4] Hoare, C.A.R. "Monitors: An Operating Structuring Concept"
CACM 17,10 (October 1974)

[5] Campbell, R. K and Habermann, A. N. "The specification of
Process Synchronization by Path Expressions
Lecture Notes in Computer Science, Vol. 16
Springer Verlag, Heidelberg, Berlin, New York (1974)

[6j Habermann, A. N. "Synchronization of Communicating Processes"
CACM 15,3 (March 1972)

[7] Wodon, P. Private Communication

[8] Courtois, P. J., Heymans, F. and Parnas, D. L u ,. ,
"Concurrent Control with Readers and Wr.ters
CACM 14,10 (October 1971)

[9] Hopcroft, J. E. and Ullman, J. D.
Formal Languages and their Relation to Automata
Addison Wesley, Reading, Mass. (1969)

34

n m - - „

