AD-A015 842

PATH EXPRESSIONS

A. N. Habermann

Carnegie-Mellon University
Pittsburgh, Pennsylvania

June 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

NATIONA
FORMATI

= SECURITY CLASSIFITATION OF THIS PAGE (When Dete Entered)

; oy READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCHESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
AFCSE < TR- ¥ 5 =5 L.
4. TITLE (end Subtitis) S. TYPE OF REPORT & PERIOD COVERED

PATH EXPRESSIONS Interim

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(e)

A. N. Habermann
F44620-73-C-0074

9. PERFORMING ORGANIZATION NAME AND ADORESS t0. PROGRAM ELEMENT. PROJECT, TASK
Carnegie-Mellon University MRS W WV TR E
Computer Science Dept 61101D
Pittsburgh, Pa 15213 A0-2466

1t. CONTROLLING OFFICE NAMF AND ADORESS t2. REPORT DATE
Defense Advanced icesearch Projects Agency June 1975
1400 WiISOn BlVd t3. NUMBER OF PAGES
Arlington, Va 22209 I8
. MONITORING AGENCY NAME & ADORESS(I! diffarent Iror. Controlling Oflices) 1S. SECURITY CLASS. (of this report)
Air Force Office of Scientific Research/NM
1400 Wilson Blvd UNCLASSIFIED
Arlington' va 22209 1Sa. gg&éoka‘sjglcATIONI'OOWNGRADING

16. OISTRIBUTION STATEMENT (of thie Raport)

Approved for public release; distribution unlimited.

t7. DISTRIBUTION STATEMENT (of the abstract enterad In Block 20, If diftarent from Report)

18. SUPPLEMENTARY NOTES

19. KE' WORDS (Continue on ravarss side il nacessaery and identity by bdlock number)

"

20. ABSTRACT (Continue on raveree slde Il neceseary and identily by block number)
Traditionally, synchronization of concurrent processes is coded in line by

operations on semaphores or similar objects. Path expressions move the
responsibility of implementing such restrictions from the programmer to a
compiler. The programmer specifies as part of a type definition which
execution sequences are permitted. The advantage of using path expressions

instead of P, V operations on semaphores (or similar operations) is
comparable to the advantage of using for- and while- statements instead

DD .:2304" 1475 EOITION OF | NOV 65 1S OBSOLETE °

UNCILASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dste Entere.

5 - - 5
ey B et = s o o e g i et LN O 5 s i 7 : - ars e

"'”C'\Jf.‘l‘l'v CLASSIFICATION OF THIS PAGE(When Data Entared)

)

Elock 20/Abstract

of JUMP or BRANCH instructions. In this paper the rules for
writing a path expression are described, parsing and implementation
are discussed and the use of path expressions is shown by a2 number
of examples.

~

A0/

UNCLASSIFIED

SZCURITY GLASSIFICAYTION OF THMIS PASE(When Data Entered)

PATH EXPRESSIONS

A. N. Habermann
Carnegie-Mellon University
¢ Pittsburgh, PA 15213

June 1975

Abstract. Traditionally, synchronization of concurrent processes is coded in line by
operations on semaphores or similar objects. Path expressions move ' the
responsibility of implementing such restrictions from the programmer to a compiler.,
The programmer specifies as part of a type definition which execution sequences are
permitted. The advantage of using path expressions instead of P, V operations on
se:naphores (or similar operations) is comparable to the advantage of using for- and
while-statements instead ot JUMP or BRANCH instructions. In this paper the rules for
writing a path expression are described, parsing and implementation are discussed and

the use of path expressions is shown by a number of examples.

This work was supported in part by the Defense Advanced Research Projects
Agency under contract F44620-73-C-0074 monitored by the Air Force Office
of Scientific Research, and in part by the National Scierce Foundation

under grant DRC74-24573.
ib

B A Bl = 2 oL EaEaL e) W s

s] e il e e e i e e e

1. INTRODUCTION

The concept of subroutine was invented to save the programmer the unrewarding
task of rewriting the same lines of code several times. Presently, the significance of
procedures or functions goes far beyond the original subroutine idea. The procedure
declaration is an important program design tool. First, it allows the programmer to
split the programming task into several parts, where each part is significantly smaller
than the total program. Secondly, the procedure concept provides an important
abstraction tool. In a well-designed program, the implementation of a procedure is
irrelevant to the program environment in which the procedure is called. All tnat
matters at the call site is the functional specification of the procedure, i.e. the

parameters it expects and its effect on the calling environment.

In lerge programs (such as a compiler or an operating system) the procedure
concept is useful but not sufficient to make the programming task simple enough.
Here the number of procedures rises to such a height that it becomes necessary to
partition the set of all procedures into meaningful subsets. The promising concept for
achieving such a meaningful partitioning is that of a "type definition” (or “"class” in

SIMULA 67). A type definition describes the internal structure of a set of data

objects and all the procedures which define operations on these objects. E.g., applied

to compiler design, one finds type definitions for objects such as a hash table, a
symbol table, a lexeme, a syntax stack, etc. More detailed examples follow in

subsequent sections,

An operating system makes it possible that user programs share resources and
run in parallel. However, it is a well-known fact that 1ser programs cannot have

unrestricted access to shared objects [1] In many cases only one operation on a

1. INTRODUCTION

shared object may be executed at a time, though the order is immaterial. In other
cases operations must be executed in a given order (e.g. placing the first message in

a queue must precede taking a message out of the queue).

Until now, concurrency restrictions have been coded in line by inserting critical
regions and wait/signal operations in the programs [2] There has been an extensive
discussion about a variety of synchronization primitives. An analysis of their relative

power is found in [3) Path expressions do not introduce yet another synchronization

primitive. A path expression relates to such primitives as a for- or while-statement of
an ALGOL-like language relates to a JUMP or BRANCH instruction in an Assembly
language. A programmer specifies control by a while-statement; the statement is
implemented by test and branch instructions. Likewise, a programmer specifies
restrictions on the execution of operations on shared objects; the specified
restrictions are translated by a compiler into instructions which use synchronization
primitivés. The purpose of writing path expressions is'to bring the design of
concurrency restrictions to a higher lzvel in the same sense as eluded to by the
phrase “higher level programming language”. Programmers have learned by

experience how important this is.

Concurrency restrictions apply to operations which access a shared object. Since
a shared object is completely described by a type definition, a path expression is
placed in a type definition as part of the internal structure description (examples
follow in subsequent sections). A path expression describes the allowable sequences
of executing operations on a shared object. In the common simple case, a path

expression is a regular expression from which all possible execution sequences can be

]
i derived.
?

e R i oy i o o a

1. INTRODUCTION

Subsequent sections deal with simple pith expressions, with conditional alements
and concatenaticn of path expressions, ani with parsing and implementation of path
expressions. The use of path expressions is demonstrated v, <everal examples, some

of which have been borrowed from the paper on Monitors [4).

2. ON WRITING PATH EXPRESSIONS

2.1 A path expression is delimited by the keywords path and end. Its operands are
function names. The operators are (in precedence order) %, ;, +. The precedence is
overru.ed by parentheses (). The operator ; is the sequencing operator. The
sequencing operator can be omitted (analogous to the multiplication operator in
arithmetic expressions). Eg.,

path-a ; b ; c end or path a b ¢ end
means that the only permissible execution sequence is :abcabcabcabcabca

b ¢ ----. An operand to which the secuencing operator applies is called a "factor™.

The keywords path, end represent an implicit Kleene star, i.e. once the end of a
path is reached, the path can be entered agai, 2t the beginning. The operator # also
represents the Kleene star. It is used as a unary postfix operator indicating that the
operand it modifies can be executed zero or more times before going on to the next.
Eg.,

path p ; (q; r)%; s end or path p (q r)= s end

means that an arbitrary number of sequences g; r (including none) can be executed in

between an execution of p and the subsequent execution of s.

2. ON WRITING PATH EXFRESSIONS

The operator + represents exclusive selection. E.g.,

path f ; (g + h); k end
ieans that either a g or an h (but not both or none) raust be executed between an
execution of f and the subsequent execution of k. An operand to which the operator

+ appiies is called a "term",

The operator ; is distributive with respect to the operator +. Eg,
path f (g + h) k end = path (fg + fh) k end = path fgt + fhk end,
because in all cascs an execution of k ié separated from the preceding execution of f

by an execution of either g or h.

The operator # is not distributive with respect to either + or ;. E.g,

pathp ;(q;r)s ;s end ¢ pathp;(qs;rs); s end
because in the latter all q’s between a p and an s precede all r’s between thace two.
Also, |

path f (g + h)s k end ¢ path f (g* + hs) k end
because the first path allows an arbitrary mixture »f g's and h’s between every pair
(f,k), whereas the second path allows either all g’s or all h’s (but no mixture) between

an execution of f and a subsequent execution of k.

2.2. A path expression can easily be translated into a graph model r=>.ezenting the 4
finite state machine defined by the regular expression. The arcs in the graph .;
represent the functions, the nodes represent the initial state, ‘he final state ana the
sequential states corresponding to the semicolons in the path expression. E.g.,

path f (gh + kmenXp + q) s end]

is represented by the graph

2. ON WRITING PATH EXPRESSIONS 5

(The final state is identical to the inital state.)

The difference between path f (g + hit k end and path f (ge + hs) k end is

shown in the graphs below. 9
9 &
! -

4 P 3Q\{>p

The first of these paths is called a “simple path™. The second is not a simple path.

£

In terms of the graphs, a simple path has a graph in which no two arcs carry the same
name. In terms of finite state machines, an operand of 8 simple path has a unique
starting state and a unique result state. The result state is in general a function of
the current state and the executed function. However, the result state in a simple
path expression is 2 function of the executed operation, but not of the current state.
It was shown in [5) that simple path expressions can be implemented by PV

operations on Boolean semaphores.

L I D T

2. ON WRITING PATH EXPRESSIONS 6

2.3. In many cases in which synchronization is necessary, simple paths are adequate.
£.g., a set of critical regions {a,b,c,d} is programmed by
patha + b + ¢ +d end
| because this path specifies that each time exactly one of the four functions c2n

| execute.

If the execution of a function named in a path expression is attempted and the
current state of the path expression does not allow its immediate execution, the
program attempting the execution is suspended. When the state of the path
expression changes and some programs are waiting for a function which can be
executed in that state, the longest waiting program will be reactivated and will be
enabled to execute the requested function. In other words, the programs are
scheduled per state in first-come, first-serve order (FCFS). In Section 3 we will see
how the order can be specified, up to a limited extent, by the programmer.

Example .1. A communciation between two procasses is initiated by declaring a buffer
which can hold a message whose interpretation is known to both processes. Assuming

] the existence of the type message, the buffer objects are défined by

type oneslotbutier =
var mes = message
path deposit; remove end
lot b = oneslotbuffer, in = ref message in
4 op b.deposit(m) = mes « m

op b.remove(m) = m « mes

end

2. ON WRITING PATH EXPRESSIONS

The type definition consists of two parts. The first part is a record describing the
internal structure of the objects of that type. The second part describes the
operations which can be performed on these objects. The let-clause specifies the
parameters used in the operations. The prefix parameter of an operation is of the

same type as the type in which the operation is declared (SIMULA 67 laudatur).

Unprefixed fieldnames, such as "mes”, in the body of an operation relate to the given

prefix parameter.

The internal structure defined in a type definition can be accessed in the programs
of the operations defined in that type. Outside the type definition, the operations can

be applied, but the internal structure is not accessible.

The path expression is part of the internal structure, ie, every object declared of
type oneslotbuffer has its own path. A path is not defined for the collection of
objects of that type; on the contrary, a new instance of the path is created every time

a new object of that type is ceclared.

The path expression specifies that every deposit must be followed by a remove
action and every remove by a deposit. If a second remove is attempted, it will
automatically be delayed until another deposit has taken place. A second attempt to

deposit is likewise delayed until the first message has been removed.

Example 2. Some cases which an operating system must handle call for a
scheduling discipline different from the straightforward FCFS discipline postulated for
path expressions. An example is given in [4] suggested by A. Ballard and J. J.

Horning.

2. ON WRITING PATH EXPRESSICNS

An alarm clock service raust be designed which enables a cailing program to delay

. itself for a given number of time units, or “ticks". A program sets the alarm clock by

calilng wakeme(r = integer). The programs must be awakened by smallest waksup
time first and not in FCFS order. Time is measured by a hardware clock which

activates the alarm clock procedure “tick” every time unit.

The alarmlclock feature is provided by a definition of "wakeuptime” and a

definition of "alarmclock”.
type wakeuptime =
var wt = integer () comment wt is initialized with the value o
path set; pass; wakeup end
let v = wakeupfime, n = integer in
op uset(n) = wt «n
op u.pass = wt « 0
op u~.wakeup =wt e
op u.val = result integer; return wt

end

A type definition describes an object and its operations, but it does not declare
any objects of its type. If we wish to combine a type definition with the declaration

of one object of that type, we use the keyword decl instead of type.

The alarm clock maintains a list of wakeuptimes. A list w is declared by
var w = list <n> of <t>
where n is the number of initial elements and t the type of the lic' elements. The

current element of a list w is represented by .w. Relevant list operations are

e

2. ON WRITING PATH EXPRESSIONS

advance w current is set to the next element or to nil
if it is moved past the end of the list

reset w set current back to the first element

new .w a new list element is created and inserted preceding
the current. The current is set to the new element

free .w the current element is deleted and current is advanced

Assuming that only one alarm clock is needed, the declaration of alarm clock is
decl alarmciock =
var wlist = list 1 of wakeuptime
comment the list is initialized with a permanent last element with value o
var now = integer(0), first = integer()
path setalarm + tick end
let n = integer in
proc sétalarm(n) = result ref wak: sptime
begin cons t = n + now
reset wlist; while .wlist.wt <t do advance wlist od
comment terriination is guaranteed by the fact that last element.wt =
if first > t then first « t fi; new.wlist; .wlist.set(t)
return ref .wlist
end

comment a proc is not available outside a type definition

2. ON WRITING PATH EXPRESSIONS

op wakeme(n) =
begin var x = setalarm(n); x.wakeup end
op tick =
begin now « now + 1; reset wlist
while .wlist.wt s now do .wlist.pass; free .wlist od
end

comment tick Is activated at regular intervals by the hardware clock

A program calling wakeme adds a new element to the list of wakeuptimes which Is
inserted such that the list is sorted by ascending wakeup times at all times. The
program then cpplies wakeup to this element. The path expression in type
wakeuptime ensures that the wakeup operation is not scheduled until operation pass
has been applied to this element. The latter operation is performed by tick, but not

until "now" overtakes the stated wakeuptime.

This solution seems more complicated than the Monltor solution given in [4) This
is primarily due to explanation of the list operation. However, the given solution
deserves this title more than the Monitor solution. The latter has the drawback that
the program whose wakeuptime is the first is awakened every clock tick! (Imagine the
poor guy who wants to get up early in the morning at 5:30 a.m. and turns in early at
9:00 P.M. He is awakened after every time unit and he must inspect his watch every
time to see if it is time to get up.) A fair comparison cannot be made unless an

accurate Monitor solution is presented.

Example 3. The delay between two data transfers from (or to) a disk with a
moving head is proportional to the distance the head must travel. Therefore, the most

efficient schedule for processing disk requests is not FCFS, but "nearest track flrst”,

10

2. ON WRITING PATH EXPRESSIONS 11

i.e., if a transfer involving track t is completed, the disk scheduler should pick as next
request the one asking for a track nearest to t. However, this scheduling discipline
has the drawback of a potential starvation. It may happen that the scheduler picks
requests for tracks at one end of the disk all the time, neglecting requests for the
other end of the disk. This problem is solved by an “elevator schedule”. The
scheduler will pick the nearest track, but it will move in one directlon,'either up or

down like an elevator, until there are no more requests for tracks in that direction.

A program activates the disk by placing a command in its command buffer. We
assume the existence of type command, describing the internal structure of a disk
command. A disk device is represented by the definition
type DISKDEVICE(n,p = integer) =

array [1:n] of array [1:p] of storagecell
var combuf = command

path a;:tivate; execute; release end

let D = DISKDEVICE, ¢ = command In

op D.activate(c) = combuf « ¢

op D.execute = <data transfer by device>

op Drelease = combuf « nil

end

The operation execute represents the action of the disk device oxoéufing the
command in its command buffer. The details of this action are not relevant here. The
path specifies that a program cannot execute release until the device has completed

transfer. The action corresponds to the program detecting that the device is done.

Its occurrence in the path is more important than the action It performs. Instead of

2. ON WRITING PATH EXPRESSIONS

setting combuf to nil, the body could have been defined as a noop. Its position in the
path, however, gusrantees that the next command cannot be placed in the command

buffer unless the completion of the current data transfer has been detected.

Data transfer requests will be sorted by arrival time per track, i.e. requests for
one track are treated FCFS. Grouping requests by track is made possible by
type track =
var com = command(nil)
path reserve ; val ; leave end
lot t = track, ¢ = command in
op t.reserve(c) = com « ¢
op t.val = result command; return com
op t.leave = com « nil

end

The operation leave p'lays a role similar to that of the operation release in type
DISKDEVICE. Its usefulness becomes clear in the definition of DISKSCHEDULER (see

the definition of access).

The direction. in which the head is traveling is represented by a "range type".
This is a type definition in which all the constants of that type are listed by name (e.g.
range type color = red, orange, yellow, green, blue, violet end). The operation of type
direction allows us to change the direction.
range typ'o direction = {up,down}

let d = direction in

op d.invert = result direction; return if d = up then down else up fi

end

12

2. CN WRITING PATH EXPRESSIONS

We are now ready for the DISKSCHEDULER. The scheduler keeps track of the first
request in both diections in the variubles next[down] and next[p]. It changes
direction when there are no more requests In that direction. The scheduler makes
only one operation available to programs which vant to use the DISK device controlled
by the scheduler. This operation is "access” and it requires a track number and e
command to be executed. The operation access uses the procedures "enter” and
"exit" (not available outside the scheduler) in which respectively a request is entsred
and a next data transfer is scheduled (if any).
type DISKSCHEDULER(n,p = integer) =

array [1:n] of track; var D = DISKDEVICE(n,p)

var free = array [1:n] of Boolean(true)

var dir = direction(down), k = integer(0); const Dsize = n

var next = array direction of integer(0,0)

path enter + exit end

let S = DISKSCHEDULER, i = index, ¢ = command in

proc S.enter(i) = |
if next{up] = O and next[down] = o then k « i; D.activate(S[k}val)
else free(i] « false
if i = k then next[dir.invert] « |
else if i < k and next[up] <i then next[up) « i
else if i > k and i < next[down] then next[down] « i fi

fi fi ti

13

2. ON WRITING PATH EXPRESSIONS 14

proc S.exit(i) =

begin var x = integer; it next(dir] = 0 or next[dir]) = co then dir « dir.invert fi

if 0 < next[dir] < w then

k « next[dir} D.activate(S[k].val) i
if dir = down than

if some x in [k+1 : Dcize] sat nol free[x]

P —

then free[x] « true; nexi[down] « x else next[downj « oo fi

dado g o

if some x in - [1 : k-1] sat not free[x]
then free[x] « true; next[up] « x else next[up] « O fi
fi fi
end

el Ll s -

op S.aczess(ic) =
begin S[ilreserve(c); enter(i,c); D.release; S[i}leave; exit(i) end

end

The procedure enter immediately activates the requested data transfer if this is
the only request in existence. Otherwise, it updates the appropriate next pointer (if
necessary). The procedure exit changes the direction if there are no more requests
in the present direction. The variables next[up] and next[down] are primarily used

for improving the DISK utilization. Without them, procedure exit must search the I

array of tracks for the next requested track before it can activate the DISK. The

:
4
variables next[up] and next[down] make it unnecessary that the search through the
array precedes the activation of the DISK. This saving of time is important, because,

if it is not activated within a critical time limit, the DISK cannot operate at full speed.

(The problem can be solved in another way if the array is replaced by two lists, one

2. ON WRITING PATH EXPRESSIONS

for the direction up and one for down. Type track musi then be extended with an
-+ additional field "num" which records the track number. The bulk of Ihe work is now
performed in procedure enter. As before, " immediately nctivates the requested
trancfer if this 1s the tirst request. Other s It places » new element in the
a;}p»opriato list (depending on i<k) such that the up-list is sorted by descending track
numbér and th§ down-list by ascending track number. Procedure exit reduces to a
change of direction if the list it is working on is empty and activiting the. first element

of the list in"the current direction.)

The search through the array of tracks cannct be omitted, but instead of

preceding the DISK activation, it is performed after the DISK has been activated. The

construct

some <var> in {-}<-ange> sat <Boolean expr>
is equivalert to a Isgical predicate prefixed by the quantor 3. (The keyword sat reads
as "satisfies” cr “satisfy".) If the range is empiy or the Boolean expression is faise for
sll the range values, then the resuit is false and the variabie is undefined. If there iz
a value in the range which satisfies the Boolean expression, the resuit is true and the
value of the variable is the leftmost range eiement for which the Boolean expression Is
satistied. The optional minus sign in front of the range means that the range is
traversed from right to left. In that case the rightmost range element is returned.
(The obvious compiement of this predicate is

8il <var> in {-}<range> sat <Boolean expr>

which is short for not some <var> in {-}<range> sat ~>t <Boolean expr>.)

The programs for enter and exit become substantially' shorter if the variables

next{up) and next[down] are deleted. Procedure entsr reduces to an activation If the

2. ON WRITING PATH EXPRESSIONS

request is the first. Procedure exit amounls to the search for the next and its
activation (if one is found). However, it was noted that this may result in poor

performance of the DISK device. In this simplified form. the SCHEDULER is essentially

the same as the DISK MONITOR presented in [4}

3. CONDITIONALS, PRIORITY AND CONNECTEL PATHS

3.1 In some cases the programmer should be able to sperify that an operation can be
executed only if a certain condition is true. o' examyis, if the type stack is defined
with the operations push and pop, the former must not be executable when the stack

has reached its maximum height and the latter must not be executable when the stack

is empty.

A coﬁditional element in a path expression has the form
[<cond.1>:<e|em.l>,<cor.d.2>:<elem.2>,...,<cond.n>:<e|em.n>,{e|em.(n+1)}]
The conditional element I equal to the leftmost element for which the preceding
condition is true. The optional (n+1)st element is the "otherwise". It represents the

conditional element if all conditions cond.l,..cond.n are false.

The conditions in a conditional element are severely restricted. The permitted
conditions are Boolean expressions in which the operands are either constants or
fieldnames of the type definition in which the path expression is defined. Moreover,
all operations which modify the operands of the conditions must occur in the path
expression of which the conditional element is a part. These restrictions. are

necessary to make sure that the evaluation of a condition does not conflict with other

3. CONDITIONALS, PRIORITY AND CONNEC™'D TATHS 17

operations on the opsrands used in that condititn. Such a conflict Is not possible if -
the operations which modiiy operands of a condition occur in the path, becauce

evaluation of the path and execution of r.ne of its elements exclude one another.

Example 4. The operations on a stack sre push and pop. The elements of a stack

k. can be of arbitrary type. However, we restrict ourselves to a stack of uniform type,

‘ i.e. all the stack elements must be of the same type. When a stack is declarec, its .
maximum height must be specified.

type stack(n = integer, t = type) =

array [1:n] of t

cons max = n; var top = integer(0)

path[top = O: push, top = max: pop, push + pop] end
let st = stack, x = ref t in

op st.push(x) = begin top+1; st[top] « x end

op st.pc;p(x) = begin x « st[top]; top-1 end

end

The conditions in this path expression clearly satisfy the restrictions.

3.2. The normal scheduling discipline in a path expression is FCFS. However, there are
cases in which execution of two different functions is possible, but the execution of
“one of these two is more important than execution of the other. If such a fixed
priority relation exists between two elements p and q of a selective element p+q, the
priority can be indicated in a path by one of the symbols > or <. These symbols I‘wave'
the same precedence as the operator +. Eg,
path (g > h) k end

" means that after an execution of f either a g or an h can be executud. However, if an

e il o s

e s

o AP . ol Ny L R PR e T A R e

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 18

execution of both g and h is requested, g will be scheduled first.

Stating a fixed priority introduces the prodlem of a potential starvatior If
executions of g are requested so frequently that another request for g has arrived by
the time f completes, then h will never be executed. Thus, the priority operator must
be applied with care. It can be used in cases in which starvation is not possible or in
cases where the starvation is allowed. (An example of the latter is the null operation

which is performed on an idling CPU.)

Example 5. The operating system maintains a pool.of storage blocks, equal in size,
which ¢an be allocated to user programs and will be released in due time. The
operations available to a user program are getspace and release. We postu'ate
the ¢ .istence of a type baseaddress, which gives access to a block of storage. The
operating system maintains a stack of free blocks. (All free storage blocks are
identical,.so a stack is as good as a queue.) If there is a state in which either getspace
or release can be executed, there is a slight preference for executing releass first.
This cannot lead to starvation, because there is a tinite number of storage blocks in
the pool. The number of consecutive executions of release is limited by that number.
The type definition for the storage pool is, of course, very simiiar to the preceding
stack example because of our choice to record the free blocks in a stack.
deci POOL(n = integer) =

array [1:n] of baseaddress

cons max = n; var free = integer(n)

path[free = O: release, free = max: getspace, release > zetspace] end

let b = baseaddress in

op release(b) = begin free+1; POOL[free] « b end

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 19

op getspace(b) = begin b « POOL[free]; free-1 end

end

33. It is zllowed to define more than one path within a type definition. These paths
may be independent in the sense that none of the operands in one path occurs in the
other, or the psths may share some 'operands. A multiple path constiruct can, for
instance, be used to express potential parallelism. E.g., the multipie path

hath pirend '

pathq; r end
specifies that two subsequent p's are separated by an r, that two subsequent q's are
separated by an r, and that two subsequent r’s are separated by a p and a q. But the
m'ultiple path does not specify any ordering between p and q. Therefore, it does not
matter in which order p and g are executed in between two subsequent r's. The
executions of p and g may even overiap in time. Howevér, the next r canpot be

executed until both p and q have been completed.

A path expression allows the execution of only one of the functions named In that
path at a time. (In other words, the functions named in a path are automaticaily
embedded in a critical region specific for that path.) The computation of the next state
in the path takes place in between two function executions and does not overiap with

the execution of one of the functions.

The functions in the multiple path of the preceding example are not necessarily
mutually exclusive. In addition, the next state of one path may be evaluated while a
non-shared function in the other path is executing. We call such a muitipie path

structure a "parallel path", because there is an inherent paralleiism in the execution of

non-shared functions.

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS

A stronger connection between paths is obtained by concatenating several paths

into one path. The symbol & is used to represent concatenation. E.g.,

pathp;r&q;rend

is the concatenation of the paths nath p ; r end and path q;r end. The

concatenated paths are treated as one. This means that only one function named in

the path can be executed at a time. In addition, the next state computation takes

~ place in between the execution of func 'ns named in the path, so the next state

computation cannot cverlap with the execution of fone of the functions. All the
function execuiions and the next state computation are mutually exclusive in this case.
We call this multiple path structure a "connected path”. The given example states that

every execution of r must be preceded by an execution of p and an execution of 4.

The order in which p and q are executed is not specified. However, since p and q

o o—

occur in a connectad path, it is not possible that p and q execute in parallel.

Therefore, every execution of r is preceded by either the sequence p;q or by the

sequence q;p.

The restrictions imposed upon conditional elements cause no problem in a
connected path. In a parillel path, however, the variable operands in a condition can

only be modified by operations in the path in which the condition occurs. E.g.,

path (s st:pr] & {s <t:qr] end

path [s s t: p,r] end and path [s < t: q,r] end
where p=ses-],qmtet-1,rm{ses+!;tet+ 1} The connected path is
correct, because all the operations on the variable operands in the conditions occur in
the path. The parallel p;th violates the restrictions on the variable operands in the
conditions, because p in the first path modifies a variable in the condition of the

second path and q, in the second path, one in the first path.

3. CONDITIONALS, FRIORITY AND CONNECTED PATHS 21 i

Example 6. In the first paper on path expressionc [5] we described how a
bounded buffer of n slots (n > 1) can be built from the types oneslotbuffer and
ringbuffer. The connected paths make it possible to define a ringbuffer which builds

directly on the type message without having to define an auxiliary type oneslotbuffer.

A bounded buffer (or ringbuffer) has a number of i\ slots which can hold a
message (N > 1). The programs which place a message in a slot sre called the
“senders”, the programs which take a message out are called the "receivers”. The
constraint is that senders and receivers must not operate on a buffer slot at the same
time. This can, of course, be achieved by allowing only orie sender or one receiver to
access the ringbuffer at a time, i.e. by embedding deposit(im=message) and
remove(m=message) in one critical region. However, we consider this solution as too
restrictive. It is perfectly alright that several senders and several receivers access
the ringouffer at the same time if they access different slots. Thus, the restrictions
must be vimposed on finding a buffer slot in which a message can be placed or from

which a message can be taken.

A buffer siot can be in one of three states: empty, full or inuse. In the state
empty, the slot is available for placing a message. In the state fuli, a message can be
taken out. The state inuse indicates that this slot is momentarily not available,

because either a message is being placed in this slot, or a message is being taken out.

The type ringbuffer makes available two operations on a ringburier:
deposit(m=message) and remove(m=message). It uses four internal procedﬁres:
searchslot, searchmes, addslot and addmes. The procedure searchslot looks for a siot
in state empty and the procedure searchmes looks for a slot in state full. The

senders should not be able to execute searchslot if all the slots are full. The

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 22 ! ’

recéivers should not be able to execute searchmes if all the slots are erpty. These
" constraints will be expressed in a path e‘xpression. The procedure addslot is
performed by a receiver when it is done taking out a message. A sender performs

addmes-_when it is done placing a message in the fingbuffer.

The search process is slightly improved.by the use of two variables d (for deposit)
and r (for remove) which respectively point to the last fbund empty siot aind the last
found full slot. A search starts at d+1 or r+1 instead of always at the first buffer
slot. If the search always starts at the front, the probability of finding a slot in the
state we are Iookfng for is smaller at the front than at the end. The variables d and r
let a search start at the slots which have been least recently inspected.
type ringbuffer(N=integer) =
| array [0 : N-1] of message; cons size = N

var mesnum = integer(0), slotnum = size, d,r = integer(-1)
range iypo slotstate = {empty, inuse, full} end
var state = array [0 : size-1] of slotstate
path [mesnum > 0 : searchmes] + addmes & [slotnum > O : searchslot] + addslot end
let rb = ringbuffer, m = message, k = index in
proc rb.searchmes = result integer

begin local x = r+1; while state[x] # full do x « (x+1) % size od

state[x] « inuse; mesnum « mesnum - 1;r « x; return r
end

comment the operator % stands for the remainder function

TR —

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 23

proc rb.searchsiot = result integer

begin local y = d+1; while state[y] # eripty do y « (y+1) % size od

staig[y] « inuse; slotnum & siotnum - }; d « y; rewurn d

ond
proc rb.addmes(k) = begin mesnum « mesnum + 1; state[k] « full end
proc rb.addslot(k) = begin slotnum « slotnum + 1; state[k] « empty end
op rb.deposit(m) = begin local y = searchsiot; rb{y] « m; addmes(y) end
op rb.remove(m) = begin local x = searchmes; m « rb[x]; addslot(x) end

end

The path expression precludes the execution of deposit If there are no empty
slots available and it precludes the execution of remove if there are no messages In
the buffer. The path specifies that the search and add operations cannot overlap in
time. This guarantees that the elements of the state vector and the variables slotnum
and 'mesr;um have a meaningful value. The path does not specify that an execution of
searchslot must be followed by an execution of addmes, nor does it require
searchines; addslot. Thi; means that a number of senders and receivers can access

the ringbuffer at the same time, but only one at a time can search or add.

This solution differs from the solutions given in [5 and 6] in that here several
senders and several receivers can access the buffer, whereas the ofher solutions
aliow only one sender and one receiver to access; the buffer simultaneously.
However, P. Wodon showed that these solutions can be revised to handle several
senders and several receivers [7). The monitor solution given m [4]) is very

restrictive. It allows only one user at a time, either a sender or a recelver, but not

both. It scoms not hard to modify the buffer monitor such that it handles the search

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS

and add procedures, but not the buffer operations. Then it also allows several '

senders and several receivers to access the buffer simultaneously.

Example 7. Another problem that has frequently been discussed is the Readers-Writers
problem [8]. A group of "readers" can "read” a data object which they share with a
group of “writers” who can "write" the data object. Reading can go on in parallel, but
only one writer can write at a time. In addition, writing must not overlap in time with

reading.

Since the actions "read" and "write" are 5/ no consequence to the solution of the
problem, we will not present a complete type definition for the data objects to be
read and written. We confine the solution to the path expressions which restricts the

executions of reading and writing.

A writer cannot start as long as reading is going on. 1t is therefore necessary to
distinguish between the states “"reading is going on" and its negation. These states

and their transitions are easily implemented by counting the number of readers, r.

Let read be defined as { rinit ; actual reading ; rquit }, where
procedurs rinit =r «r + 1
and
procedure rquit =r «r - 1
If r is initialized at zero, the test r = O reveals whether writing can start or not. This
is expressed in the path expression
path [r=0: write, rquit] + rinit end
If r > 0, writing cannot start, but readers can start and leave. Thus, reading can go

on in parallel. If r = 0, either a reader or a writer c»n start. If a writer starts, a

reader cannot start until the writer is done.

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 25

This solution has a starvation problem. It is possible. that the writers will never
get a chance if reading is gding on. By the time a reader quits, another reader may
have performed rinit. If this happens al' the time, r will never reach the value zero

and writing is impossible.

Writers gat a fair chance if no new readers could do rinit after a writer attempts
to start. Therefore, we introduce the procedure "writeattempt” and redefine write =
{writeattempt ; actual writing}. Reading will die out ofter a write attempt has
succeeded if we add

path rinit + (writeattempt ; write) end

to the path above. The additional path does not allow another rinit to start If

writeattempt succeeded and r > 0, because the first path does not allow a write to

proceed. This means that the element (writeattempt ; write) cannot complete until r

I = 0.

l The first solution favors the readers and the second solution gives both writers '
and readers a fair chance. The problem discussed most frequently is the one in which
the writers have a preferential status. le. as soon as a Iwriter attempts to write, no
new readers should be able to start reading. The solution of this problem Is obtained

by a simple modification of the fair solution. The selection operator + in the additional

path is replaced by the selection operator < which assigns priority to writing. The
path solution is then

path [r = O: write, rquit] + rinit end

path rinit < (writeattempt ; write) end
If a reader must wait because writing is going on and another writer arrives later than

this reader, the writer is selected when the second path becomes available. Only If

3. CONDITIONALS, PRIORITY AND CONNECTED PATHS 26

no other writer a-rived before the last write operation has been completed, then a
reader can perform rinit. The first path assures that writing will not start until ail

reading has ceased.

The two paths of the last two solutions form a paraliel path instead of a connected
path. This means that the non-shared operands rquit and writeattempt can be
executed in 'paraiiel. It would not make much difference in this case if the paths were
connected, because not much is gained by the parallel execution of these two triviai

procedures.

4; PARSING AND IMPLEMENTING PATH EXPRESSIONS

4.1 A path expression has an ambiguity if its graph has two arcs with the same name
leaving the same state, but resulting in different states. E.g., the graphs of
path f(gh + gk)m end and

path f(gh + gsk)m end are

The programmer is allowed to write such ambiguities, because they can be resolved
when the path expression is compiied.. in the first case the twq arcs are replaced by
one and the result states are merged into one. This means that the operand g in the
path expression is taken out as common factor. The result is

path fg(h + k)m end

M L N R I

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS 27

If the ambiguity involves a repeated element, the triék is to replace this element,

g* say, by ¢ + ggs where ¢ means the empty action. The given example is then

transformed into

path f (gh + (¢ + gg+) k) m end =

path f (g (h + g#k) + k) m end
The last version is free of ambiguities. (If necessary, gs can be replaced by ¢ + g(¢ +
gl€..+ gge).). Applying this rule, path f (ggh + gsk) m end is transformed into
“path f (ggh + k + g (¢ + gg#)) m end which reducqs to path f (k + g (k + g(h +
gsk))) m end)

A given path expression can be simplified in a manasr simllar to the simplification
of algebraic expressions. Common factors can be taken out not only from the left but
also from the right. E.g.

path (a+b)p + a(p+q) + b(p+q) end
can be written as

path (a+b)p + (a+bXp+q) end = path (a+b)Xp+p+q) end
Since p+p = p, the path can be reduced to

path (a+b)Xp+q) end

It turns out that an unambiguous path expression can be reduced to a canonical
form. The proof is essentially the same as the one given for the state reduction of a
deterministic finite state machine in [9]1 The proof and the algorithms for bringing a

given path expression in its canonical form will_ be discussed In a separate paper.

4.2 The graph of a non-simple path expression hqs several arcs which carry the same

name. Thus, an operand of a non-simple path may be executable in several :;htes.

e N

— e A

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS

Let variable STATE indicate ‘or 2 given path expression p ‘which functions can execute.
A function f in this path expression is programmed as

F = p.wait(f); f; p.signal(f)
The signal operation includes the computation of the next state which depends on the

current state and the executed function f.

If execution of f is requested and f is not included in the current state, the

28

execution of f is delayed and the process reguesting the execution of f is put on a

waiting fist. It is in principle possible to sort requests per state. However, this
means that a requesting process may have to be placed in several waiting lists. If
one of the states subsequently allows the execution of the requested function, the
process must be removed from several lists. We consider such an implementation as
too cumbersome. Instead, a palh expression has a single waiting list. If a process P.i
requests execution o1 a function f which cannot be executed right away, a new
element (i,f) is added to the list, where i is the process index and f the requested
function. The element is appended to the end of the list if no priority is indicated.

Otherwise, it is inserted such that the given priority is maintained.

After computing the next state, the signal operation scans the waiting list until it
finds an element which can go in this state (if any). If it finds one, this element is
removed from the list and the corresponding process is reac‘ivated so that it can

execute the requested function,

Only one function named in a path expression can execute at a time. This imples
that a new request arriving while one of the functions is executing must be put or. the

waiting list. If no function is executing, we say that the path is "idie”. The

operations wait and signal can be programmed using P, V operations on a mutual

==

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS

exclﬁsion semaphore "mutex” and a set of private semnbhore: “nsera[1:n]", one for
each process. The programs are: |
p.wait(f) =
begin local x = (if)
P(mutex)
if idle and x.f ¢ STATE then idle « false; V(imutex)
else insert(x into waitinglist); V(mutex); P(psem{x.i)) fi
end
p.signal(f) =
begin local x
P(mutex); STATE « next(STATE,)
if some x in waitirglist sat x.f ¢ STATE then iree x; V(psem[x.i])
else idle « true fi
V(mutex)
end

The subpaths of a connected path or a parallel path share one single mutua!
exclusion semaphore so that orly one path is testec at a time. A connected path
differs from a parallel path in that the former has one single variable “idle”, used by

all its subpaths, whereas each subpath k in the latter has its own variable “idle[k]".

In case of a connected path or a parallel path the states of all the subpaths must
be tested in which the requested function occurs. The if clause in p.wait(f) is modified
for a connected path into

idle and all k in {1 : np] sat x.f ¢ p[k] » x.f € STATE[K)

where np is the number of subpaths of the connected path. The if-clause in p.wail(f)

for a parallel path is

29

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS

all k in [1:np] sat x.f € p[k] = (idle[k] and x.f € STATE[K])
The modifications in the zssignments to the variable idle and in the if-clause in p.signal

are self-evident.

The next state is derived from the parse tree which corresponds to the graph of
the path expression. In case of a simple path, the next state depends on the
executed function. In that case the next state function amounts to copying an
attribute of the executed function. Otherwise, if all the operands of a selection are
single factors (e.g. (a+b+c)), then the next state only depends on the current ctate.
In that case the next state function amounts to copying an attribute of the current
state. If a path expression does not belong to one of these categories, a
case-statement is attached to each state. The next state is now computad by
executing the case-statement attached to the curren! state. The value of the

case-clause depends on the executed function.

4.3. The use of path expressions does not exclude the possibility of starvation or
deadlock. E.g., the parallel path

path a + ¢ end

patﬁ b +c end
may never schedule ¢ if an execution of b is requested while a is being executed and
vice-versa. The parallel path

path f p q end

pathg qp end

runs into a deadlock after the first execution of f and g.

30

4. PARSING AND IMPLEMENTING PATH EXPRESSIONS . 31

Although starvation and deadlock are not impossible, it is easier to detect such
problems in a path structure than in programs which use P, V operations on
semaphores. In the latter case the problem must be derived from several places in
the code. In the introduction path expressions were compared to control structures

' such as a while-statement. Control statements can be misused as much as path
expressions. lf not programmed on purpose, a starvation problem in a parallel path is

comparable to programming an infinite loop, a mistake which can very easily be made.

An additional advantage of path expressions over ¢oding synchronization in line is
the detection of deadlocks at compile time. A parallel path can easily be tested for
the presence of cadlocks and an error report can be given at compile time.
Unfortunately, only deadlocks in path expressions can be detected at compile time. It
is still possible to cause deadlocks at run time. E.g. the paths

path f g end and

path .p q end

could be used by two programs P.1 and P.2 such that P.1 successively calls gip and P.2
qif. This obviously leads to a deadlock. The best a compiler can do is spot the i
potential deadlock state. The occurrence of function calls in conditional statements ;
make it impossibie to find at compile time which functions wil be executed. Thus,
nath expressions make it easier for a programmer to avoir starvation and deadlock]
problems, but the responsibility for avoiding these problems is still up to the

programmer.

SUMMARY

 SUMMARY

Path expressions make it possible to program the necessary synchronization at a

higher level than that of assembly code. Simple path expressions are already

powerful tools which would be hard to code in line by P, V operations on semaphores

or similar primitive concepts. The examples show that the given rules for writing path

expressions are adequate to program useful operating system funciions.

A path exprescion is a regular expression describing the allowable execution

sequences of its operands. Several path expressions can be concatenated into one
connected path or, by sharing operand names, into a parallel path. A path expression
may correspond to an undeterministic finite state machine. The ambiguities can easily
be removed by taking out common factors and rewriting repeated elements. The
programmer does not have to worry about writing unambiguous path expressions.
The ambiguities can be removed by a compiler. The latter also can recuce a path

expression to its canonical form.

The testing in a non-simple path expression is slightly more elaborate than in a
simple path expression. Connected paths and parallel paths add to the complexity of
the test. The programmer must still watch cut for unwanted starvation and possible
deadlocks. The compiler is able to detect deadlocks present in a connected path or a
parallel path., However, the order in which functions, named in a path expression, are

called may still cause deadlocks at run time.

The usefulness of path expressions will be demonstrated in the design of an
operating system family. Path expressions will be defined as an extension of the

1 process and multiprogramming facilities. At the same time, a modifiable design

language is being developed in which path expressions are incorporated. The

reduction and compilation of path expressions is incorporated in a compiler for the

SUMMARY

I design language. More theoretical results about path expressions (and generalization

of path expressions) will be presented in E. A. Schneider’s thesis by the end of this

I . year.

l ACKNOWLEDGMENT

1 am gratetul for the interesting discussions I had with Roy Campbell while I was in
Newcasile, England and while he visited me during the summer of 1974 at CMU. The

“many hours | spent with Ed Schneider contributed enormously to the development of

the path expfossions.

34

REFERENCES

(1] Dijkstra, E. W. "Cooperating Sequential Processes”
In Programming Languages (ed. F. Genuys)
Academic Press, New York (1968)

[2] Brinch-Hansen, P. “Structured Multiprogramming”
CACM 15,7 (July 1972)

[3]) Lipten, R, On Synchronization Primitive Systems
Thesis, Carnegie-Mellon University (1973)

[4] Hoare, C.AR. "Monitors: An Operating Structuring Concept"”
CACM 17,10 (October 1974)

(5] Campbell, R. H. and Habermann, A. N. "The specification of
Process Synchronization by Path Expressions”
Lecture Notes in Computer Science, Vol. 16
Springer Verlag, Heidelberg, Berlin, New York (1974)

[6] Habermann, A. N. “Synchronization of Communicating Procesces”
CACM 15,3 (March 1972)

(7] Wodon, P. Private Communication

(8] Courtois, P. J.,, Heymans, F. and Parnas, D. L.
. “Concurrent Control with Readers and Writers”
CACM 14,10 (October 1971)

(9] Hopcroft, J. E. and Ullman, J. D.
Formal Languages and their Relation o Automata
Addison Wesley, Reading, Mass. (1969)

