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Abstract. Traditionally, synchronization of concurrent processes is coded in line by 

operations on semaphores or similar objects. Path expressions move the 

responsibility of implementing such restrictions from the programmer to a compiler. 

The programmer specifies as part of a type definition which execution sequences are 

permitted. The advantage of using path expressions instead of P, V operations on 

semaphores (or similar operations) is comparable to the advantage of using for- and 

wLile-statements instead of JUMP or BRANCH instructions. In this paper the rules for 

writing a path expression are described, parsing and implementation are discussed and 

the use of path expressions is shown by a number of examples. 
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1.    INTRODUCTION 

The concept of subroutine was invented to save the programmer the unrewarding 

task of rewriting the same lines of code several times. Presently, the significance of 

procedures or functions goes far beyond the original subroutine idea. The procedure 

declaration is an important program design tool. First, it allows the programmer to 

split the programming task into several parts, where each part is significantly smaller 

than the tot'jl program. Secondly, the procedure concept provides an important 

abstraction tool. In a well-designed program, the implementation of a procedure is 

irrelevant to the program environment in which the procedure is called. All that 

matters at the call site is the functional specification of the procedure, i.e. the 

parameters it expects and its effect on the calling environment. 

In Urge programs (such as a compiler or an operating system) the procedure 

concept is useful but not sufficent to make the programming task simple enough. 

Here the number of procedures rises to such a height that it becomes necessary to 

partition the set of all procedures into meaningful subsets. The promising concept for 

achieving such a meaningful partitioning is that of a "type definition" (or "class" in 

SIMULA 67). A type definition describes the internal structure of a set of data 

objects and all the procedures which define operations on these objects. E.g., applied 

to compiler design, one finds type definitions for objects such as a hash table, a 

symbol table, a lexeme, a syntax stack, etc. More detailed examples follow In 

subsequent section;». 

An operating system makes »♦ possible thai user programs share resources and 

run in parallel. However, it is a well-known fact that 'iser programs cannot have 

unrestricted access to shared objects [1].    In many cases only one operation on a 

IT I M-  i 



1. INTRODUCTION J 

shared object may be executed at a time, though the order is immaterial. In other 

cases operations must be executed in a given order (e.g. placing the first message in 

a queue must precede taking a message out of the queue). 

Until now, concurrency restrictions have been coded in line by inserting critical 

regions and wait/signal operations in the programs [21 There has been an extensive 

discussion about a variety of synchronization primitives. An analysis of their relative 

power is found in [3]. Path expressions do not introduce yet another synchronization 

primitive. A path expression relates to such primitives as a for- or while-statement of 

an ALGOL-like language relates to a JUMP or BRANCH instruction in an Assembly 

language. A programmer specifies control by a while-statement; the statement is 

implemented by test and branch instructions. Likewise, a programmer specifies 

restrictions on the execution of operations on shared objects; the specified 

restrictions are translated by a compiler into instructions which use synchronization 

primitives. The purpose of writing path expressions is to bring the design of 

concurrency restrictions to a higher kvel in the same sense as eluded to by the 

phrase "higher level programming language". Programmers have learned by 

experience how important this is. 

Concurrency restrictions apply to operations which access a shared object. Since 

a shared object is completely described by a type definition, a path expression is 

placed in a type definition as part of the internal structure description (examples 

follow in subsequent sections). A path expression describes the allowable sequences 

of executing operations on a shared object. In the common simple case, a path 

expression is a regular expression from which all possible execution sequences can be 

derived. 

\ 
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1. INTRODUCTION 3 

Subsequent sections deal with simple pith expressions, with conditional elements 

and concatenation of path expressions, ano with parsing and implementation of path 

expressions. The use of path expressions is demonstrated u, 'everal examples, some 

of which have been borrowed from the paper on Monitors [4J 

2.   ON WRITING PATH EXPRESSIONS 

2.1 A path expression is delimited by the keywords path and end. Its operands are 

function names. The operator-; are (in precedence order) *, ;, +. The precedence is 

overru.'id by parentheses ( ). The operator ; is the sequencing operator. The 

sequencing operator can be omitted (analogous to the multiplication operator in 

arithmetic expressions).   E.g., 

path a ; b ; c end or path a b c end 

means that the only permissible execution sequence is:abcabcabcabcabca 

b c .   An operand to which the sec.uencing operator applies is called a "factor". 

The keywords path, end represent an implicit Kleene star, i.e. once the end of a 

path is reached, the path can be entered again al the beginning. The operator * also 

represents the Kleene star. It is used as a unary postfix operator indicating that the 

operand it modifies can be executed zero or more times before going on to the next. 

E.g.. 

path p j (q ; »-)*; s end or path p (q r)« s end 

means that an arbitrary number of sequences q; r (including none) can be executed in 

between an execution of p and the subsequent execution of s. 
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2.    ON WRITING    PATH EXPRESSIONS 

The operator ♦ represents exclusive selection.   E.g., 

path f ; (g ♦ h) { k end 

.-vear,:: that either a g or an h (but not both or none) must be executed between an 

execution of f and the subsequent execution of k.   An operand to which the operator 

♦ applies is called a "term". 

The operator ; is distributive with respect to the operator ♦.   E.g., 

path f (g -•■ h) k end - path (fg ♦ fh) k end - path fgk + fhk end, 

because in all cases an execution of k is separated from the preceding execution of f 

by an execution of either g or h. 

The operator- * is not distributive with respect to either + or ;.   E.g., 

path p ; (q , r)* ; s end i< path p ; (q* ; r«); s end 

because in the latter all q's betv/een a p and an s precede all r's between these two. 

Also, 

path f (g ♦ h)* k end ^ path f (g* ♦ h«) k end 

because the first path allows an arbitrary mixture )f gls and h's between every pair 

(f,k), whereas the second path allows either all g's or all h's (but no mixture) between 

an execution of f and a subsequent execution of k. 

2.2. A path expression can easily be translated into a graph model '•-■-.. «renting the 

finite stite machine defined by the regular expression. The arcs in the graph 

represent the functions, the nodes represent the initial state, 'he final state .no tho 

sequential states corresponding to the semicolons in the path expression.   E.g., 

path f (gh + km*nKp + q) s end 

is represented by the graph 
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2.    ON WRITING    PATH EXPRESSIONS 

(The final slate is identical to the inital state.) 

The difference between   path f {g * h)« k end   and   path f {g* * h») K end   is 

shown in the graphs below. 

(9- 
^ 

^< JK-^ 

on. 

The first of these paths is called a "simple path". The second is not a simple path. 

In terms of the graphs. • simple path has a graph in which no two arcs carry the same 

name. In terms of finite state machines, an operand of a simple path has a unique 

starting state and a unique result state. The result state is in general a function of 

the current state and the executed function. However, the result state in a simple 

path expression is 9 function of the executed operation, but not of the current state. 

It was shown in [5] that simple path expressions can be implemented by P,V 

operations on Boolean semaphores. 

■MMMtM 



2.    ON WRITING    PATH EXPRESSIONS ' 

2.3. In many cases in which synchronization is necessary, simple paths are adequate. 

E.g., a set of critical regions {a,b,c,d) is programmed by 

path a ♦ b + c ♦ d end 

because this  path specifies that each time exactly one of the four functions «n 

execute. 

If the execution of a function named in a path expression is attempted and the 

current state of the  path expression does not allow its immediate execution, the 

program   attempting   the   execution  is  suspended.    When   the   state  of  the  path 

expression changes and some programs are waiting for  a function which can be 

executed in that state, the longest waiting program will be reactivated and will be 

enabled  to  execute  the  requested function.    In other  words, the  programs  are 

scheduled per state in first-come, first-serve order (FCFS).   In Section 3 we will see 

how the order can be specified, up to a limited extent, by the programmer. 

Example 1.   A communciation between two procasses is initiated by declaring a buffer 

which can hold a message whose interpretation is Known to both processes.   Assuming 

the existence of the type message, the buffer objects are defined by 

type oneslotbuffer - 

var mes - message 

path deposit; remove and 

let b - oneslotbuffer, in - ref message in 

op b.deposit(m) ■ mes *- m 

op b.remove(m) - m <- mes 

end 

MM 
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2.    ON WRITING    PATH EXPRESSIONS ' 

The type definition consists of two parts. The first part is a record describing the 

internal structure of the objects of that type. The second part describes the 

operations which can be performed on these objects. The l«t-clause specifies the 

parameters used in the operations. The prefix parameter of an operation is of the 

same type as the type in which the operation is declared (SIMULA 67 laudatur). 

Unprefixeci fieldnames, such as "mes", in the body of an operation relate to the given 

prefix parameter. 

The internal structure defined in a type definition can be accessed in the programs 

of the operations defined in that type. Outside the type definition, the operations can 

be applied, but the internal structure is not accessible. 

The path expression is part of the internal structure, i.e., every object declared of 

type oneslotbuffer has its own path. A path is not defined for the collection of 

objects of that type; on the contrary, a new instance of the path is created every time 

a new object of that type is declared. 

The path expression specifies that every deposit must be followed by a remove 

action and every remove by a deposit. If a second remove is attempted, it will 

automatically be delayed until another deposit has taKen place. A second attempt to 

deposit is likewise delayed until the firrt message has been removed. 

Example 2. Some cases which an operating system must handle call for a 

scheduling discipline different from the straightforward FCFS discipline postulated for 

path expressions. An example is given in [4] suggested by A. Ballard and J. J. 

Horning. 
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An alarm clock service must be designed which enables a calling program to delay 

itself for a given number of time units, or "ticks". A program sets the alarm clock by 

calling wakeme(r. - integer). The programs must be awakened by smallest wakeup 

time first and not in FCFS order. Time is measured by a hardware clock which 

activates the alarm clock procedure "tick" every time unit. 

The   alarm  clock  feature  is  provided  by  a  definition of  "wakeuptime"  and   a 

definition of "alarmclock". 

type wakeuptime - 

var wt - integer (oo) comment   wt is initialized with the value oo 

path set; pass; wakeup end 

let u  ' wakeuptime, n ■ integer in 

op u.set(n) - wt <- n 

op u.pass « wt <- 0 

op u.waKeup = wt «- oo 

op u.val ■ result integer; return wt 

•n«i 

A type definition describes an object and its operations, but it does not declare 

any objects of its type. If we wish to combine a type definition with the declaration 

of one object of that type, we use the keyword decl instead of type. 

The alarm clock maintains a list of wakeuptimes.   A list w is declared by 

ver w - list <n> of <t> 

where n is the number of initial elements and t the type of the li'" elements.   The 

current element of a list w is represented by .w.   Relevant list operations are 

< I 
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2.    ON WRITING    PATH EXPRESSIONS 

advance w 

r«s«i w 

new .w 

free .w 

current is set to the next element or to nil 

if it is moved past the end of the list 

set current back to the first element 

a new list element is created and inserted preceding 

the current. The current is set to the new element 

the current element is deleted and current is advanced 

Assuming that only one alarm clock is needed, the declaration of alarm clock is 

deel alarmclocK - 

var wlist - list 1 of wakeuptime 

comment the list is initialised with a permanent last element with value ot 

var now - integer(O), first - integer(oo) 

path setalarm ♦ tick end 

let n - integer in 

proc setalarm(n) - result ref wak:. jptime 

begin cons t - n + now 

reset wlist; while   .wlist.wt < t do advance wlist od 

comment terr ination it guaranteed by the fact that last element.wt - oo 

If first > t then first ♦-1 fij new.wlist! .wlist.set(t) 

return ref .wlist 

end 

comment a proc is not available outside a type definition 

I 
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2.    ON WRITING    PATH EXPRESSIONS 10 

op wakeme(n) - 

begi.i var x - setalarm(n); x.wakeup «nd 

op tick - 

begin now ♦- now ♦ 1; reset wlist 

while .wlist.wt s now do  .wlist.pass; free .wlist    od 

ond 

comment tick is activated at regular intervals by the hardware clock 

A program calling wakeme adds a new element to the list of wakeuptimes which is 

inserted such that the list h sorted by ascending wakeup times at all times. The 

program then applies wakeup to this element. The path expression in type 

wakeuptime ensures that the wakeup operation is not scheduled until operation pass 

has been applied to this element. The latter operation is performed by ticfv, but not 

until "now" overtakes the stated wakeuptime. 

This solution seems more complicated than the Monitor solution given in [4J This 

is primarily due to explanation of the list operation. However, the given solution 

deserves this title more than the Monitor solution. The latter has the drawback tha\ 

the program whose wakeuptime is the first is awakened every clock tick! (Imagine the 

poor guy who wants to get up early in the morning at 5:30 a.m. and turns in early at 

9:00 P.M. He is awakened after every time unit and he must inspect his watch every 

time to see if it is time to get up.) A fair comparison cannot be made unless an 

accurate Monitor solution is presented. 

Example 3. The delay between two data transfers from (or to) a disk with a 

moving head is proportional to the distance the head must travel. Therefore, the most 

efficient schedule for processing disk requests is not FCFS, but "nearest track first", 

! 
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2.    ON WRITING    PATH EXPRESSIONS U 

i.e., if a transfer involving track t is completed, the disK scheduler should pick as next 

request the one asking for a track nearest to t. However, this scheduling discipline 

has the drawback of a potential starvation. It may happen that the scheduler picks 

requests for tracks at one end of the disk all the time, neglecting requests for the 

other end of the disk. This problem is solved by an "elevator schedule". The 

scheduler will pick the nearest track, but it will move in one direction, either up or 

down like an elevator, until there are no more requests for tracks in that direction. 

i 

A program activates the disk by placing a command in its command buffer.   We 

assume the existence of type command, describing the internal structure of a disk 

command.   A disk device is represented by the definition 

type DISKDEVICE(n,p - integer) - 

array [l:n] of array [l:p] of storagecell 

var combuf - command 

path activate; execute; release end 

let 0 - DISKDEVICE, c - command in 

op D.activate(c) - combuf <- c 

op D.execute - <data transfer by device> 

op D.release - combuf «■ nil 

end 

', 

The operation execute represents the action of the disk device execu'lng the 

command in its command buffer. The details of this action are not relevant here. The 

path specifies that a program cannot execute release until the device has completed a 

transfer. The action corresponds to the program detecting that the device is done. 

Its occurrence in the path is more important than the action it performs.   Instead of 

^m^m^ - - . _.  
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2.    ON WRiTING    PATH EXPRESS'ONS 12 

setting combuf to nil, the body could have been defined as a noop. Its position in the 

path, however, guarantees that the next command cannot be placed in the command 

buffer unless the completion of the current data transfer has been detected. 

Data transfer requests will be sorted by arrival time per tracK, i.e.   requests for 

one track are treated FCFS.   Grouping requests by track is made possible by 

type track - 

var com - command(ml) 

path reserve ; val ; leave end 

let t - track, c - command in 

op t.reserve(c) - com <- c 

op t.val ■ result command; return com 

op t.leave ■ com *- nil 

end 

The operation leave plays a role similar to that of the operation release in type 

DISKDEVICE. Its usefulness becomes clear in the definition of DISKSCHEDULER (see 

the definition of access). 

The direction in which the head is traveling is represented by a "range type". 

This is a type definition in which all the constants of that type are listed by name (e.g. 

range type color - red, orange, yellow, green, blue, violet end).   The operation of type 

direction allows us to change the direction, 

range type direction - (up.down) 

let d - direction in 

op d.invert - result direction; return if d - up then down else up fi 

end 



■I »■ ■   " ^ ■■, **im*mr' '-~^-~~mm^mm*^*9^**m*mmvim*mmi^****mmm*' iJIM an  iii^pwvit^i 

2.    ON WRITING    PATH EXPRESSIONS 13 

We are now ready for the DISKSCHEOULER. The scheduler keeps track of the first 

request in both drections in the varhbles next[down] and next[Lp]. It changes 

direction when there are no more requests in that direction. The scheduler makes 

only one operation available to programs which v/ant to use the DISK device controlled 

by the scheduler. This operation is "accoss" and it requires a track number and e 

command to be executed. The operation access uses the procedures "enter" and 

"exit" (not available outside the scheduler) in which respectively a request is entwred 

and a next data transfer is scheduled (if any). 

type DISKSCHEDULER(n,p - integer) - 

array [l:n] of track; var D - DISKDEVICE(n)p) 

var free - array [l:n] of Boolean(true) 

var dir - direction(down), k - integer(O); const Dsize - n 

var next - array direction of integer(0,oo) 

path enter ♦ exit end 

let S - DISKSCHEOULER, i - index, c - command in 

proc S.enter(i) - 

if next[up] - 0 and next[down] - oo then k «- i; n.activate(S[k].val) 

else       free[i] *- false 

if i - k then next[dir.invert]«- i 

else if i < k and next[up] < i then next[upl *■ i 

else if i > k and i < next[down] then next[down]«- i fl 

fi fi fi 

. 

mm MM» ~- IHHM        I I. I .»■ 
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2.    ON WRITING    PATH EXPRESSIONS 14 

proc S.exit(i) - 

begin vir x - integer; if neyt[dir] - 0 or next[dir] - oo ihen dir «- dir.invert fi 

if 0 < next[dir] < oo then 

k <- next[dir]j 0.activate(S[k].val) 

if dir - down then 

if some x In [k+1 : O^ze] sat  not free[x] 

then free[x] *- true; next[down] *■ x «Is« next[downj«- oo fi 

else 

If some x In - [1 : k-1] sat not free[x] 

then  free[x]«- true; next[up] *■ x else next[up] <- 0 fi 

flfl 

end 

op S.ac-.cssd.c) ■ 

begin S[i].reserve(c); enter{i,c); O.release; S[i].leave; exit(i) end 

The procedure enter immediately activates the requested data transfer if this is 

the only request in existence. Otherwise, it updates the appropriate next pointer (if 

necessary). The procedure exit changes the direction if there are no more requests 

in the present direction. The variables next[up] and next[down] are primarily used 

for improving the DISK utilization. Without them, procedure exit must search the 

array of tracks for the next requested track before it can activate the DISK. The 

variables next[up] and next[down] make it unnecessary that the search through the 

array precedes the activation of the DISK. This saving of time is important, because, 

if It is not activated within a critical time limit, the DISK cannot operate at full speed. 

(The problem can be solved in another way if the array Is replaced by two lists, one 

\   \ 
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2.    ON WRITING    PATH EXPRESSIONS 15 

for the direction up and one for down. Type track must lien be extended with an 

additional field "num" which records the track number. The bdk of »he work is now 

performed in procedure enter. As before, '* immediately nctivates the requested 

transfer if this is the first request. Otner a, it places i new element in the 

■pp^ opriate list (depending on i<k) such that the up-list is sorted by dsscendirs track 

number and the down-list by ascending track number. Procedure exit reduces to a 

change of direction if the list it is working on is empty and activiting the first element 

of !he list in the current direction.) 

The search through the array of tracks cannct be omittttd, but instead of 

preceding the DISK activation, it is performed after the DISK has been activated. The 

construct 

some <v3r> in {-}< •ange> sat <Boolean expr> 

is equivalei t to a hgical predicate prefixed by the quantor 3. (The keyword sat reads 

as "satisfies" cr "satisfy".) If the range is emply or the Boolean expression is false for 

all the r-ange values, then the result is false and the variable is undefined. If there h 

a value in the range which satisfies the Boolean expression, the result is true and the 

value of the variable is the leftmost range element for which the Boolean expression is 

satisfied. The optional minus sign in front of the range means that the range is 

traversed from right to left. In that case the rightmost range element is returned. 

(The obvious complement of this predicate is 

all <var> in {-}<range> sat <Boolean expr> 

which is short for not some <var> in {-}<range> sat    ?t <Boolean expr>. ) 

The programs for enter and exit become substantially shorter if the variables 

next[up] and next[down] are deleted.   Procedure enter reduces to an activation if the 

■I MM» MMMMMH ljatm 
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request is the first. Procedure exit amounts to the search for the rvxt and its 

activation (if one is found). However, it was noted th(it this «ay result in poor 

performance of the DISK device. In this simplified form, the SCHEDULER is essentially 

the same as the DISK MONITOR presented in [4) 

3.   CONDITIONALS, PRIORITY AND CONNECTEP PATHS 

3.1 In some cases the programmer should be able to spe-ify that an operation can be 

executed only if a certain condition is true. Fo' exa-vib, if the type stack is defined 

with the operations push and pop, the forme;- wjst not be executable when the stacK 

has reached its maximum height and the latter must not be executable when the stack 

is empty. 

A conditional element in a path expression has the form 

[<cond. 1 >:<elem. l>,<cor,d.2>:<elem.2>r..,<cond.n>:<elem.n>,{elem.(n+1)}] 

The conditional element in equal to the leftmost element for which the preceding 

condition is true.   The opt onal (n+l)st element is the -otherwise".   It represents the 

conditional element if all conditions cond.lr..,cond.n are false. 

The conditions in a conditional element are severely restricttd. The permitted 

conditions are Boolean expressions in which the operands are either constants or 

fieldnames of the type definition in which the path expression is defined. Moreover, 

all operations which modify the operands of the conditions must occur in the path 

expression of which the conditional element is a part. These restrictions are 

necessary to make sure that the evaluation of a condition does not conflict with other 

\ 
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operations on the operands used in that condiiitn. Such a conflict is not possible if 

the operations which mor'ify operands of a condition occur in the path, becauce 

evaluation of the path and execution of rne of its elements exclude one another. 

Example 4.   The operations on a stack f,re push and pop.   The elements of a stack 

can be of arbitrary type.   However, we restrict ourselves to a stack of uniform t/pe, 

i.e.    all the stack elements must be of the same type.   When a stack is declaret, its 

maximum height must be specified. 

type stack(n - integer, t - type) - 

array [l:n] of t 

cons max - nj var top ■ integer(O) 

path[top - 0: push, top - max: pop, push ♦ pop] end 

let st - stack, x - ref t in 

op st.push(x) - begin top+1; st[top] <- x end 

op st.pop(x) - begin x <- st[top]; top-1 end 

end 

The conditions in this path expression clearly satisfy the restrictions. 

3.2. The normal scheduling discipline in a path expression is FCFS. However, there are 

cases in which execution of two different functions is possible, but the execution of 

one of these two is more important than execution of the other. If such a fixed 

priority relation exists between two elements p and q of a selective element p+q, the 

priority can be indicated in a path by one of the symbols > or <. These symbols have 

the same precedence as the ope: ator ♦ .   E.g., 

path f(g > h) k end 

means that after an execution of f either a g or an h can be executud.   However, if an 

■MM 
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execution of both g and h is requested, g will be scheduled first. 

Stating a fixed priority introduces the problem of a potential starvation If 

executions of g are requested so frequently that another request for g has arrived by 

the time f completes, then h will never be executed. Thus, the priority operator must 

be applied with care. It can be used in cases in which starvation is nol possible or in 

cases where the starvation is allowed.   (An example of the latter is the null operation 

which is performed on an idling CPU.) 

■ 

Example 5. The operating system maintains a pool of storage blocks, equal in size, 

which Can be allocated to user programs and will be released in due time. The 

operations available to a user program are getspace and release. We postulate 

the i .istence of a type baseaddress, which gives access to a block of storage. The 

operating system maintains a stack of free blocks. (All free storage blocks are 

identical, so a stack is as good as a queue.) If there is a state in which either getspace 

or release can be executed, there is a slight preference for executing release first. 

This cannot lead to starvation, because there is a finite number of storage blocks in 

the pool. The number of consecutive executions of release is limited by that number. 

The type definition for the storage pool is, of course, very similar to the preceding 

stack example because of our choice to -ecord the free blocks in a stack, 

deci POOUn - integer) - 

array [l:n] of baseaddress 

cons max - n; var free - integer(n) 

path[free - 0: release, free - max: getspace, release > betspace] end 

let b - baseaddress in 

op release(b) - begin free+lj P00L[free]«- b and 
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op getspace(b) - b«|in b «- POOL[free]; free-1 «nd 

•nd 

3.3. It is allowed to define more than one path within a type definition. These paths 

may be independent in the sense that none of the operands in one path occurs in the 

other, or the paths may share some operands. A multiple path construct can, for 

instance, be used to express potential parallelism.   E.g., the multiple path 

path p ; r end 

path q ; r end 

specifies that two subsequent p's are separated by an r, that two subsequent q's are 

separated by an r, and that two subsequent r's are separated by a p and a q. But the 

multiple path does not specify any ordering between p and q. Therefore, it does not 

matter in which order p and q are executed in between two subsequent r's. The 

executions of p and q may even overlap in lime. However, the next r cannot be 

executed until both p and q ha^e been completed. 

A path expression allows the execution of only one of the functions named in that 

path at a time. (In other words, the functions named in a path are automatically 

embedded in a critical region specific for that path.) The computation of the next state 

in the path takes place in between two function executions and does not overlap with 

the execution of one of the functions. 

The functions in the multiple path of the preceding example are not necessarily 

mutually exclusive. In addition, the next state of one path may be evaluated while a 

non-shared function in the other path is executing. We call such a multiple path 

structure a "parallel path", because there is an inherent paralleiism In the execution of 

non-shared functions. 

aaM 
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A stronger connection between paths is obtaineo by concatenating several paths 

into one path.   The symbol & is used to represent concatenation.   E.g., 

path p ; r & q ; r end 

is the concatenation of the paths nath p ; r end and path q ; r -nd. The 

concatenated paths are treated as one. This means that only one function named in 

the path can be executed at a time. In addition, the next state computation takes 

place in between the execution of func >ns named in the path, so the next state 

computation cannot overlap with the execution of one of the functions. All the 

function execiuions and the next state computation are mutually exclusive in this case. 

We call this multiple path structure a "connected path". The given example states that 

every execution of r must be preceded by an execution of p and an execution of q. 

The order in which p and q are executed is not specified. However, since p and q 

occur in a connected path, it is not possible that p and q execute in parallel. 

Therefore, every execution of r is preceded by either the sequence pjq or by the 

sequence q;p. 

The restrictions imposed upon conditional elements cause no problem in a 

connected path. In a parallel path, however, the variable operands in a condition can 

only be modified by operations in the path in which the condition occurs.   E.g., 

path [s i t: p,r] & [s < t: a.r] end 

path [s S t: p,r] end and path [s < t: q,r] end 

where p-s«-s-l, q-t«-t-lIr-{s«-s + :;t«-t + 1}. The connected path is 

correct, because all the operations on the variable operands in the conditions occur in 

the path. The parallel path violates the restrictions on the variable operands in the 

conditions, because p in the first path modifies a variable in the condition of the 

second path and q, in the second path, one in the first path. 

■   
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Example 6. In the first raper on path expressions [5] we described how a 

bounded buffer of n slots (n > 1) can be built from the types oneslotbuffer ?nd 

ringbuffer. The connected paths make it possible to define a ringbuffer which builds 

directly on the type message without having to define an auxiliary type oneslotbuffer. 

A bounded buffer (or ringbuffer) has a number of N slots which can hold a 

message (N > 1). The programs which place a message in a slot are called the 

"senders", the programs which take a message out are called the "receivers". The 

constraint is that senders and receivers must not operate on a buffer slot at the same 

time. This can, of course, be achieved by allowing only one sender or one receiver to 

access the ringbuffer at a time, i.e. by embedding deposit(m-message) and 

remove(m-message) in one critical region. However, we consider this solution as too 

restrictive. It is perfectly alright that several senders and several receivers access 

the ringbuffer at the same time if they a-cess different slots. Thus, the restrictions 

must be imposed on finding a buffer slot in which a message can be placed or from 

which a message can be taken. 

A buffer slot can be in one of three states: empty, full or inuse. In the state 

empty, the slot is available for placing a message. In the state full, a message can be 

taken out. The state inuse indicates that this slot is momentarily not available, 

because either a message is being placed in this slot, or a message is being taken out. 

The type ringbuffer makes available two operations on a ringbuner: 

deposit(m-message) and removes-message). It uses four internal procedures: 

searchslot, searchmes, addslot and addmes. The procedure searchslot looks for a siot 

in state empty and the procedure searchmes looks for a slot in state full. The 

senders should not  be  able to execute searchslot if all the slots are full.    The 
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receivers should not be able to execute searchmes if all the slots are et pty. These 

constraints will be expressed in a path expression. The procedure addslot Is 

performed by a receiver when it is done taking out a message. A sender performs 

addmes when it is done placing a message in the ringbuffer. 

The search process is slightly improved by the use of two variables a (for deposit) 

and r (for remove) which respectively point to the last found empty siot and the last 

found full slot.    A search starts at d+1 or r+1 instead of always at the first buffer 

slot.    If the search always starts at the front, the probability of finding a slot in the 

state we are looking for is smaller at the front than at the end.   The variables d and r 

let a search start at the slots which have been least recently inspected, 

type ringbuffer(N-integer) - 

array [0 : N-l] of message; cent size - N 

var mesnum - integer(O), slotnum - size, d,r - integer(-l) 

range type slotstate - {empty, inuse, full} end 

var state - array [0 : size-1] of slotstate 

path [mesnum > 0 : searchmes] + addmes & [slotnum > 0 : searchslot] ♦ addslot end 

let rb - ringbuffer, m - message, k - index in 

proc rb.searchmes - result integer 

begin local x - r+1; while state[x] t full do x «- (x+1) H size od 

state[x] *- inuse; mesnum «- mesnum - 1; r <- x; return r 

end 

comment the operator Z stands for the remainder function 
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proc rb.searchslot - result integer 

begin local y - d+l; while state[y] t erpty do y «- (y+J) 7. size od 

stat8[y] <- inuse; slotnum <- slotnum - 1; d «- y; re.urn d 

end 

proc rb.addmes(K) - begin mesnum <- mesnum ♦ 1; state[K] *- full end 

proc rb.addslot(K) - begin slotnum <- slotnum ♦ 1; state[K]«- empty end 

op rb.deposit(m) - begin local y - searchslot; rb[y] <- m; addmes(y) end 

op rb.remove(m) - begin local x - searchmesj m «- rb[x]5 addslot(x) end 

end 

The path expression precludes the execution of deposit if there are no empty 

slots available and it precludes the execution of remove if there are no messages In 

the buffer. The path specifies that the search and add operations cannot overlap in 

time. This guarantees that the elements of the state vector and the variables slotnum 

and mesnum have a meaningful value. The path does not specify that an execution of 

searchslot must be followed by an execution of addmes, nor does it require 

searchmes; addslot. This means that a number of senders and receivers can access 

the ringbuffer at the same time, but only one at a time can search or add. 

This solution differs from the solutions given in [5 and 6] in that here several 

senders and several receivers can access the buffer, whereas the other solutions 

aliuw only one sender and one receiver to access the buffer simultaneously. 

However, P. Wodon showed that these solutions can be revised to handle seyeral 

senders and several receivers [7]. The monitor solution given in [4] is very 

restrictive. It allows only one user at a time, either a sender or a receiver, but not 

both.   It seems not hard to modify the buffer monitor such that it handles the search 
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and  add procedures, but not  the buffer operations.    Then it  also allows several 

sonders and several receivers to access the buffer simultaneously. 

Example 7. Another problem that has frequently been discussed is the Readers-Writers 

problem [8]. A group of "readers" can "read" a data object which they share with a 

group of "writers" who can "write" the data object. Reading can go on in parallel, but 

only one writer can write at a time. In addition, writing must not overlap in time with 

reading. 

Since the actions "read" and "write" are of no consequence to the solution of the 

problem, we will not present a complete type definition for the data objects to be 

read and written. We confine the solution to the path expressions which restricts the 

executions of reading and writing. 

A writer cannot start as long as reading is going on. It is therefore necessary to 

distinguish between the states "reading is going on" and its negation. These states 

and their transitions are easily implemented by counting the number of readers, r. 

Let read be defined as { rinit; actual reading ; rquit },        where 

procedure» rinit - r <- r + 1 

and 

procedure rquit - r <- r - 1 

If r is initialized at zero, the test r - 0 reveals whether writing can start or not.   This 

is expressed in the path expression 

path [r-0: write, rquit] + rinit end 

If r > 0, writing cannot start, but readers can start and leave.   Thus, reading can go 

on in parallel.    If r - 0, either a reader or a writer c^n start.   If a writer starts, a 

reader cannot start until the writer is done. 

mmm    _—- tämm '-HiMI    i 
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This solution has a starvation problem. It is possible that the writers will never 

get a chance if reading is going on. By the time a reader quits, another reader may 

have performed rinlt. If this happens al the time, r will never reach the value zero 

and writing is impossible. 

Writers gat a fair chance if no new readers could do rinit after a writer attempts 

to start. Therefore, we introduce the procedure "writeattempt" and redefine write - 

{writeattempt ; actual writing}. Reading will die out «fter a write attempt has 

succeeded if we add 

path rinit ♦ (writeattempt ; write) end 

to  the path above.    The additional path does not allow another rinit to start if 

writeattempt succeeded and r > 0, because the first path does not allow a write to 

proceed.   This means that the element   (writeattempt; write)   cannot complete until r 

-0. 

The first solution favors the readers and the second solution gives both writers 

and readers a fair chance. The problem discussed most frequently is the one in which 

the writers have a preferential status. I.e., as soon as a writer attempts to write, no 

new readers should be able to start reading. The solution of this problem is obtained 

by a simple modification of the fair solution. The selection operator ♦ in the additional 

path is replaced by the selection operator < which assigns priority to writing. The 

path solution is then 

path [r - 0: write, rquit] 4 rinit end 

path rinit < (writeattempt; write) end 

If a reader must wait because writing is going on and another writer arrives later than 

this reader, the writer is selected when the second path becomes available.   Only If 

' 
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no other writer a. rived before the last write operation has been completed, then a 

reader can perform rinit. The first path assures that writing will not start until all 

reading has ceased. 

The two paths of the last two solutions form a parallel path instead of a connected 

path. This means that the non-shared operands rquit and writeattempt can be 

executed in parallel. It would not make much difference in this case if the paths were 

connected, because not much is gained by the parallel execution of these two trivial 

procedures. 

4; PARSING AND IMPLEMENTING PATH EXPRESSIONS 

4.1  A path expression has an ambiguity if its graph has two arcs with the same name 

leaving the same state, but resulting in different states.   E.g., the graphs of 

path f(gh + gk)m end and 

path f(gh ♦ g*k)m end are 

The programmer is allowed to write such ambiguities, because they can be resolved 

when the path expression is compiled.   In the first case the two arcs are replaced by 

one and the result states are merged into one.   This means that the operand g in the 

path expression is taken out as common factor.   The result is 

path fg(h ♦ k)m end 
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If the ambiguity involves a repeated element, the trick is to replace this element, 

g* say, by ( + gg* where < means the empty action. The given example is then 

transformed into 

path f (gh + (< + gg«) k) m end - 

path f (g (h -f g«k) ♦ k) m end 

The last version is free of ambiguities.   (If necessary, g« can be replaced by ( + g(( ♦ 

g(<-..+ gg*)-..).    Applying this rule,    path f (ggh ♦ g*K) m end    is transformed into 

"path f (ggh + k + g (< + gg»)) m end   which reduces to   path f (k ■•• g (k + g(h ♦ 

g*k))) m end.) 

A given path expression can be simplified in a manner similar to the simplification 

of algebraic expressions. Common factors can be t*ken out not only from the left but 

also from the right.   E.g. 

path (a+b)p + a(p-t-q) + b(p+q) end 

can be written as 

path (a+b)p + (a+bKp+q) end - path (a+bKp+p+q) end 

Since p+p ■ p, the path can be reduced to 

path (a+bKp+q) end 

It turns out that an unambiguous path expression can be reduced to a canonical 

form. The proof is essentially the same as the one given for the state reduction of a 

deterministic finite state machine in [9]. The proof and the algorithms for bringing a 

given path expression in its canonical form will be discussed in a separate paper. 

4.2 The graph of a non-simple path expression has several arc   which carry the same 

name.   Thus, an operand of a non-simple path may be executable in several states. 
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Let variable STATE indicate for ? given path expression p which functions can execute. 

A function f in this path expression is programmed as 

F ■ p.wait(f); f; p.signai(f) 

The signal operation includes the computation of the next state which depends on the 

current state and the executed function f. 

If execution of f is requested and f is not included in the current state, the 

execution of f is delayed and the process r^uesting the execution of f is put on a 

waiting list. It is in principle possible to sort requests per state. However, this 

means that a requesting process may have to be placed in several waiting lists. If 

one of the states subsequently allows the execution of the requested function, the 

process must be removed from several lists. We consider such an implementation as 

too cumbersome. Instead, a path expression has a single wailing list. If a process P.i 

requests execution Oi a function f which cannot be executed right away, a new 

element (i,f) is added to the list, where i is the process index and f the ^quested 

function. The element is appended to the end of the list if no priority is indicated. 

Otherwise, it is inserted such that the given priority is maintained. 

After computing the next stale, the signal Operation scans the waiting list until it 

finds an element which can go in this slate (if any). If it finds one, ihis element is 

removed from the list and the corresponding process is reactivated so that It can 

execute the requested function. 

Only one function named in a path expression can execute at a time. This impl'es 

that a new request arriving while one of the functions is executinf, must be put or. the 

waiting list. If no function is executing, we say that the path is "idle". The 

operations wait and signal can be programmed using P, V operations on a mutual 

mrlt» nitM—i um i m i» 
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: 

exclusion semaphore "mutex" and a set of private semaphore: Hpsew[l:n]", one for 

each process.   The programs are: 

p.wait(f) - 

begin local x - (i,f) 

P(mutex) 

if idle and x.f ( STATE then idle *■ false; V(mutex) 

else insert(x into waitinglist); V(mutex)i P(psem[x.i]) fi 

end 

p.signal(f) - 

begin local x 

P(mutex); STATE «- next(STATE,f) 

if some x in waitir glist sat x.f i ST ATE then rree x; V(psem[x.i]) 

else idle *- true fi 

V(mutex) 

end 

The subpaths of a connected path or a parallel path share one single mutual 

exclusion semaphore so that orly one path is tested at a time. A connected path 

differs from a parallel path in that the former has one single variable "idle", used by 

all its subpaths, whereas each subpath k in the latter has its own variable "idle[K]-. 

In case of a connected path or a parallel path the states of all the subpaths must 

be tested in which the requested function occurs. The if clause in p.wait(f) is modified 

for a connected path into 

idle and all k in [1 • np] sat x.f i p[k] t x.f < STATE[k] 

where np is the number of subpaths of the connected path.   The lf-clause in p.wait(f) 

for a parallel path is 
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all k in [l:np] «at x.f ( p[K] -»(idle[K] and x.f < STATE[K]) 

The modifications in the assignments to the variable idle and in the if-clause in p.signal 

are self-evident. 

The next state is derived from the parse tree which corresponds to the graph of 

the path expression. In case of a simple path, the next state depends on the 

executed function. In that case the next state function amounts to copying an 

attribute of the executed function. Otherwise, if all the operands of a selection are 

single factors (e.g. (a+b+c)), then the next state only depends on the current ttate. 

In that case the next state function amounts to copying an attribute of the current 

state. If a path expression does not belong to one of these categories, a 

case-statement is attached to each state. The next state is now computsd by 

executing the case-statement attached to the current state. The value of the 

case-clause depends on the executed function. 

4.3. The  use of  path expressions does not exclude the possibility of starvation or 

deadlock.   E.g., the parallel path 

path a + c end 

path b + c end 

may never schedule c if an execution of b is requested while a is being executed and 

vice-versa.   The parallel püith 

path f p q end 

path g q p end 

runs into a deadlock after the first execution of f and g. 

MMMMMMM i— ^i   — M^i 
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Although starvation and deadlock are not impossible, it is easier to detect such 

problems in a path structure than in programs which use P, V operations on 

semaphores. In the latter case the problem must be derived from several places in 

the code. In the introduction path expressions were compared to control structures 

such as a while-statement. Control statements can be misused as much as path 

expressions. If not programmed on purpose, a starvation problem in a parallel path is 

comparable to programming an infinite loop, a mistake which can very easily be made. 

An additional advantage of path expressions over coding synchronization in line is 

the detection of deadlocks at .ompile time. A parallel path can easily be tested for 

the presence of deadlocks and an error report can be given at compile time. 

Unfortunately, only deadlocks in path expressions can be detected at compile time. It 

is still possible to cause deadlocks at run time.   E.g.   the paths 

path f g and and 

path p q end 

could be used by two programs P.l and P.2 such that P.l successively calls g;p and P.2 

q;f. This obviously leads to a deadlock. The best a compiler can do is spot the 

potential deadlock state. The occurrence of function calls in conditional statements 

make it impossible to find at compile time which functions wil be executed. Thus, 

path expressions make it easier for a programmer to avok starvation and deadlock 

problems, but the responsibility for avoiding these problems is still up to the 

programmer. 

SUMMARY 

«*__«. ...    -■- ■■-- -  ■ 
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Path expressions make it possible to program the necessary synchronization at a 

higher level than that of assembly code. Simple path expressions are already 

powerful tools which would be hard to code in line by P, V operations on semaphores 

or similar primitive concepts. The examples show that the given rules for writing path 

expressions are adequate to program useful operating system functions. 

A path expression is a regular expression describing the allowable execution 

sequences of its operands. Several path expressions can oe concatenated into one 

connected path or, by sharing operand names, into a parallel path. A path expression 

may correspond to an undeterministic finite state machine. The ambiguities can easily 

be removed by taKing out common factors and rewriting repeated elements. The 

programmer does not have to worry about writing unambiguous path expressions. 

The ambiguities can be removed by a compiler. The latter also can reduce a path 

expression to its canonical form. 

The testing in a non-simple path expression is slightly more elaborate than in a 

simple path expression. Connected paths and parallel paths add to the complexity of 

the test. The programmer must still watch out for unwanted starvation and possible 

deadlocks. The compiler is able to detect deadlocks present in a connected pcth or a 

parallel path. However, the order in which functions, named in a path expression, are 

called may still cause deadlocks at run time. 

The usefulness of path expressions will be demonstrated in the design of an 

operating system fanily. Path expressions will be defined as an extension of the 

process and multiprogramming facilities. At the same time, a modifiable design 

language is being developed in which path expressions are incorporated. The 

reduction and compilation of path expressions is incorporated in a compiler for the 

--■- _ ..   ..._.. 
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SUMMARY 

design language.   More theoretical results about path expressions (and generalization 

of path expressions) will be presented in E. A. Schneider's thesis by the end of this 

year. 
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