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ABSTRACT

This report deals with sequential tests of problems
which can be formulated in terms of a 2x2 contingency table.
All of the important cases (marginal probabilities known and
unknown and marginal populations "observable" and "not
observable") are treated. Theory for finding the sequential
test regions is developed and the exact values of the impor-
tant test properties are found using Aroian's direct method
of sequential analysis. The tests are compared with fixed
size tests and a method of estimation is presented. Numerical

examples and computer programs are included.
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INTRODUCTION

This report presents theory and methods for treating
sequentially certain problems which can be formulated in terms
of 2x2 contingency tables. The report is organized as follows.
Chapter 1 contains some preliminary material, including a dis-
cussion of the different models which arise with the treatment
of 2x2 contingency tables. Chapter 2 treats some general
topics related to sequential analysis which are common to ail
of the models considered here. Chapters 3, 4 and 5 show how
to develop sequential tests and evaluate exactly their prop-
erties, for three important models of the 2x2 contingency
tables. Numerical examples are provided and the tests com-
pared with other similar tests, both fixed size and sequential
(when available). Chapter 6 presents a method which can be
used to estimate the parameters of a 2x2 contingency table at
the termination of a sequential hypothesis test. Chapter 7
summarizes the results, discusses some possible areas for
further research and ends with some concluding remarks. Compuier
programs used to perform the necessary computations are given

in the Appendix.
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CHAPTER 1

DISCUSSION OF 2x2 TABLES AND REVIEW OF THE LITERATURE

1.0 INTRODUCTION

This chapter introduces 2x2 contingency tables and treats
some of the common methods of analysis which have been used for
them. In general, 2x2 tables are used to test independence of a
bivariate Bernoulli process. The first section discusses, in
general, the tests of independence to be considered here. The
different types of 2x2 contingency tables can be divided into
two broad groups, tables for which the marginal probability func-
tions ire known and tables for which marginal probability functions
are unknown. These cases are discussed in Sections 1.2 and 1.3
respectively. The fixed size tebt procedures for these cases
are also reviewed. Section 1.4 surveys the different types of
problems which can be formulated in terms of a 2x2 table.

Some approximate methods of treating contingency tables

(e.g., the x2

test) are only appropriate when the sample size is
sufficiently large to meet certain conditions. For small samples,
some exact methods (i.e., methods which are not based on any

asympi~iLiv approximations) have been proposed. It is these exact

methods for small samples which are treated sequentially here.
The exact methods are, in theory, equally applicable to large :

samples; however, the necessary computation becomes laborious,

if not prohibitive, with presently available computing machinery. :
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1.1 TESTS OF INDEPENDENCE

This section introduces some of the preliminaries necessary
for the treatment given here to sequential tests of 2x2 con-
tingency tables. As explained in detail below, one is interested
in testing for independence or for some degree of dependence
between the rows and columns of a 2x2 contingency table. De-
pending on the underlying probability model of the situation
being considered, the degree of dependence can be expressed in
terms of a single parameter, say 9. There is one particular value

of 6, say 6 tor which the hypothesis of independence is true.

OI
There is positive dependence in the table if 9<90 and negative
dependence if 6>90. The probability models and the particular
value of 6 to be used for each are described in the following

sections.

In a two decision test, the hypothesis might be expressed,

for example, as :

4
HO: 8 = 90 vﬂ
(1.1) '

o]
[e2}
"

8,76,

Ho is usually known as tte null hypothesis and Hl is the alterna-

tive hypothesis and may be either simple or composite. When

testing this hypothesis, there are two types of errors with which H

one must be concerncd. Thesc are shown in Figure 1.1. |

D I T T T




Decision Based on Test Results

H H

0 1
HO No Error a Error
True State
of Nature Hl, R Error No Error

Figure 1.1 Error Probabilities for a Two Decision Test

The first is called a Type I or a error and is made when

there is a decision to reject H, when it is true; the proba-

0
bility of committing such an error is usually denoted by «a.
A Type II or B error occurs when the null hypothesis is accepted
when in fact some specified alternate hypothesis is truc. The
probability of such an error is usually denoted by R. The
following notation, however, is used here. Let a and # denote
the desired probabilities of the Type I and Type II errors re-
spectively and let a' and B' denote the actual error probabilities
of the sequential tests.

When a three decision test procedure* is being used, onc of

the three hypotheses must be selected. These hypotheses can be

specified as

1 1 70
HO: 9 =6, (1.2)
H2- 0 =ez>e0

*
The three decision test is a generalization of the standard two-

sided test;

that is, separate o and B errors can be specified

for each alternate hypothesis (see Goss (1974b)).
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In this case, there are four types of errors which can be made;

e T

a. is the probability of accepting Hl when ”0 is true and B]

is the probability of accepting HO or H2 when Hl is true; @,

is the probability of accepting H2 when HO is true, and ﬂ2 is the

probability of accepting Hl or ”0 when H2 is true. These error

probabilities are shown in Figqure 1.2.

-

Decision Based on Test Results

4 H H H

f 1 0 2
] H1 No Error Bl Error
True State HO al Error No Error “2 Error
of Nature i
Hz 32 Error | No Error

Figure 1.2 Error Probabilities for a Three Decision
Test
The following sections of this chapter will treat the
individual cases which arise with 2x2 contingency tables. The
underlying probability models are discussed and fixcd size pro-
cedures are examined. In the succeeding chapters, sequential

methods for testing these hypotheses are treated.

1.2 CONTINGENCY TABLES WITH KNOWN MARGINAL PROBABILITIES

The underlying probability model of a 2x2 contingency table 1

is a bivariate Bernoulli process. This is illustrated in Figure

L213%
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Dark Eyes Light Eyes
D D _
Dark Hair E Py, Py, ]T Py
- —+
Light Hair E Py Py : P,
P1 P2 1

Figure 1.3 Probabilities in a 2x2 Table

The observations from this model are assumed to be identically
and independently distributed. Such a situation arises when one
samples from an infinite population (or from a finite population
with replacement) and the presence or absence of two attributes
is observed at each trial.

If, for example, the event D represents dark eyes and the
event E represents dark hair observed on a person selected at
random with replacement from a specified population, Pypr Pye
Pyy and Pys in Figure 1.3 are the joint probabilities of observing

the respective combination of attributes. This model is more

conveniently represented as in Figure 1.4 which expresses the

D D
E Py Py.7 P11 Py.
E | P 7Py | 1-P 7P ¥Ry, 1-p;
P, 1-p 4 1
]

Figure 1.4 Probabilities in a 2x2 Table
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model in terms of only three parameters. This notation will be
used below.

4 The test to be performed in this model is of independence
between the two characteristics being observed. The null hypothesis

of independence can be stated, for example, as

Pyp " P1.P (1.3)

or _ 'R PPy _ 0
{p 17P1y) (Py -Pyy) '

implying, for the above example, that dark eyes do not tend to
occur more often with the characteristic dark hair than with
light hair. The statements in (1.3) and (1.4) can be shown to
be equivalent.

In this section the marginal probabilities (i.e., Py and p.l)
are assumed known. Such a case might occur in the example given
above if the characteristics of hair and eye color had been studied
independently, but no information is available on the frequency
with which they tend to occur together. The underlying distribu-
tion can also be expressed as a multinomial distribution with four

cells. If the observed data from a sample of size n is represented

as in Figure 1.5,
D D
E X nl. =1 X n1
E | Ma17¥ L S R L |
" L | n

Figure 1.5 Observed Contingency Table




the probability of observing this data can be expressed as

= ) _ (1.5)
F(x,n) 4N 1iP)ysP) /P )=

-X n -X n-n l-n +x

n
1. 1 .
(1-p; =P 1*Ppq)

X
ntpy; (P} -Py) (P 1Py,)

x!(nl'-x)!(n.l-x)!(n-nl.-n.l+x)!

Because Py and p 1 are assumed known, the hypotheses to be

tested are specified as

o PSRN
(1.6}

versus Ha: pll#pl.p.l

This hypothesis is discussed in detail in Chapter 3 wherc it is

1,x) is a minimal sufficient statistic

for the state of nature (pll)'

shown that the triplet (nl ,N

An exact fixed size procedure for small samples can be con-
structed to test (1.6) by ordering the multinomial probabilities
for all of the possible occurrences under the null hypothesis and
partitioning off a critical region consisting of those points with
the smallest probabilities which favor Ha and which sum to the
desired significance level. The power of the test can be found by
finding the probability of observing a point in the critical region
under specified alternatives to the null hypothesis.

For large samples, the computation necessary for the above
tests becomes laborious. The x2 distribution provides an casy--to-
use approximation to the null distribution of the test. The x2
test is constructed in the usual manner (for the approximation of

a multinomial distribution) except that the proper number of degrees




(Rindac bitae dn CRadtin s Pl R Yy tatad o ) T

of freedom is three beccause the parameters P;. and p , are known.
Guttman et al. (1971) give an example of the use of the X2 approx-
imation for this case; it is also treated by Rao (1952). 1In

b Chapter 3, exact sequential tests for such hypotheses are devel-

F opad.

There are two special cases of 2x2 contingency tables with
known maraginal probabilities. The first arises when both mar-
ginal totals are random variables and only one cf the marginal
probability distributions is known. Not much treatment secms to

have been given to this case in the past. The X2 approximation

with two degrees of freedom is appropriate for large samples.
The other special case arises when one ~f the marginz) distribu-
tions is "observable." "Observable" in this case means that the
distribution from the margin can be controlled by the experimentcr
in some way and is not a random variable except in its relations
to the sample size in a sequential {est. This means that a se-
quential (or fixed size) test can be constructed such that a de-
sired proportion of units can be taken from each category of the
"observable" margin at each stage of the test. Lehmann (1959)
points out that tests which take equal numbers from each category
are asymptotically most powerful.

The case where one margin is "observable" and the other is
random with an unknown probability distribution is treated in

the next section. The case where onc margin is "observable" and

the other is random with a known probability distribution reduces

to a simple binomial distribution if one samples exclusively from




one of the characteristics of the "observable" margin. This

. test can be shown to be asymptotically most powerful (Lehmann,
1959) and can be treated sequentially by using a simple binomial
procedure. (See Ghosh (1970), p.282). The case where both

margins are "observable" is mentioned briefly in the next section.
1.3 CONTINGENCY TABLES WITH UNKNOWN MARGINAL PROBABILITTES

The treatment of 2x2 tables with unknown marginal proba-
bilities, as described in this section, has been a classical
problem in the field of mathematical statistics. It is particu-
larly .nteresting because of the controversies which have ariscn
concerning their proper treatment. A brief history of the re-
sults obtained with this well-known model is given here. The
model considered in this section is the same bivariate Bernoulli
process discussed in the last section, except that here both of
the marginal probability distributions are assumed to be unknown.
The hypothesis of independence being tested, however, is the same.
The unknown marginal probabilities P, . and p , are so-called

"nuisance parameters," causing the method of testing with small
samples to be quite different. This subject is treated in detail

in Chapters 4 and 5.

Karl Pearson (1900) was apparently the first to treat the
problem when he suggested the x2 distribution as an approximation !
to the test of independence. This is still the accepted approach
when the expected number in each cell is sufficiently large.
There was, for a time, some controversy as to the proper number

of degrees of freedom to be used for the test. This was settled
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[ by Fisher (1922) and Yule (1922) who show that when the marginal
probabilities are unknown, the proper number of degrees of freedom

is one.
i» The use of the x2 distribution is an approximaticn to the
; true multinomial distribution which assumes the count in each

cell of the table to be normally distributed. Because of this,

it is necessary that the expected values of the entries in each
cell of the table be of sufficient size to justify this assump-
tion. In most cases an expected number of 5 in each cell is
considered sufficient for the use of the x2 approximation, al-
though this is still a matter of some controversy. A continuity
correction for the approximation can also be used. Recent treat-
ment of this subject is given, for example, by Lancaster (1969)
and Fleiss (1972).

Fisher (1935) and Yates (1934) concurrently presented a

test for 2x2 tables which is exact for small samples. The test

is based on the concept of ancillary statistics as defined by i
Fisher (1935). Briefly, the test is constructed to be conditional ¥
on the observed margins. In this case, the distribution of the ‘
observations in the table under the null hypothesis of independence {‘

reduces to the much simpler hypergeometric distribution. This

also produces a much smaller reference set from which to choose

the critical region. This test is treated more completely in

it il il o

Sections 4.2 aid 5.1.

The Fisher-Yates test (also known as Fisher's exact test)
led to a great deal of controversy among some of the most well-
known mathematical statisticians, including E.B. Wilson (Wilson,

1941), G.A. Barnard (Barnard, 1945, 1947a and 1947b) and

e Sl bt il




i i

12

E.S. Pearson (Pearson, 1947). Their basic disagreement was with
Fisher's reference set. Pearson and Barnard believed that the
test of significance should be based on all of the possible
occurrences from a given sample size. Fisher insisted on limit-
ing the reference set to only those different possible outcomes,
given the observed marginal totals. Fisher's argument, based on
the concept of ancillary statistics, as an answer to this criti-
cism, is given in Section 4.2; it is now generally agrecd that
Fisher's method is the one which shnuld properly be used for the
above model.

Barnard (1947a) surveys the different types of 2x2 tables
with unknown marginal probabilities. He divides the tables into
three groups, depending on whether the margin totals are random
variables or fixed constants. He terms these "double dichotomy,"
"2x2 comparative trial" and "2x2 independence trial," for the
cases where neither, one, and both margins are fixed (i.c.,
"observable") respectively. A brief discussion of these models
follows.

If both margins are random variables, one is intecrested in
the degree of dependence between the rows and columns. If one
of the margins is "observable" as explained in Section 1.2,
that margin's totals can be controlled by the experimentoer. This
is Barnard's "comparative trial" and can be used, for example,
to test homogeneity of the two populations with respect to some
attribute. Although it is not nccessary to do so, if the test is

is conducted such that an equal number of observations arc taken

3 s TRl
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from each category of the fixed margin, the asymptotic power
of the test for a given significance level can be shown to be a
maximum (Lehmann, 1959). An example of such a test would be
selecting n/2 people with dark hair and n/2 people with light
hair. The proportions of dark-eyed people in each category are
then compared.

If a sample of fixed size is selected from each category
of one margin, there are two parameters in the model; namely, for
the present example, the proportions of dark-cyed people with dark
hair and with light hair. The probability model is illustrated

in Figure 1.6 where
P1=P11/P) .
(1.7)

P,=(P 17Py;)/ (1-py )

Dark Eyes Light Eyes

D D
Dark Hair E Py l—pl
Light Hair E P, 1-p,

Figure 1.6 2x2 Table for Testing P,=P,

ik S

This is the common test for the equality of two unknown binomial

proportions where the null hypotheses to be tested can be

expressed as




(1.8)

or pl(l-p2)
pzil-pIF

]
—

iR
| I P17P;
I

For fixed size tests with large samples, the normal distributicn

ey

approximation can be used to test the hypotheses in (1.8).
5 “ The Fisher's exact test (Fisher, 1935) can be used for small

i samples to treat this situation. The model can_also be formu-

lated in a logistic form. This is done in Chapter 5.

Barnard (1945, and 1947a) gives a test of homogeneity which
- he claims is "more powerful than Fisher's." 1In this test, Barnard
i. considers the larger reference set of outcomes mentioned above.

I' The test's introduction was followed by some discussion (Fisher

’ (1945), Barnard (1945, 1947a, 1949)) which led to the general
consensus that Fisher's test is the one which should properly

be used. Some further treatment of this subject is given 1ir
Section 4.2 and Chapter 5, where sequential tests for thesc cases
1 are presented.

The other case delineated by Barnard is the independence
trial, where both of the margin totals are fixed. This is situation
illustrated by Fisher's famous tea-tasting experiment where a lady
is to decide whether the milk or the tea was put intou the cup
- first. In this test the lady is informed as to how many of the
e cups are in each category, and it is assumed that her ancwers will

correspond in number. This is again a test concerning the inde-

pendence of the margirial characteristics. Fisher's exact test




15

is also used in this case. Because such "fixed" margin models

do not often arise in sequential analysis, they are not treated

here.

1.4 OTHER PROBLEMS FORMULATED IN TERMS OF 2x2 CONTINGENCY TABLLS

This section will survey some of the statistical problems
which have been formulated in terms of 2x2 tables. All of these
cases have been treated in the literature for fixed size tests.
Some of them can be solved sequentially with the methods given
here. Others will have to be treated in a somewhat different
manner. Some discussion of these possible extensions is contained
in Chapter 7.

The three most commonly used models for 2x2 tables are the
"double-dichotomous," the "comparative trial" and the "independence
trial," as named by Barnard and discussed in Section 1.3. These
are models with unknown marginal probabilities (for the random
margins) and have 0, 1, and 2 fixed margins respectively. The
"double dichotomous" model is used for testing the independence
of two Bernoulli processes. The use of such tests is common, for
example, in both medical and psychological research. The "com-
parative trial" is used to test the equality of two unknown
binomial proportions, or to test for independence when one of
the populations in the "double dichotomous" model is "observable"
as explained in Section 1.3. Such tests might be used, for
example, to test whether a new drug is significantly more effective

than a placebo or another standard. The "independence trial" is
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a test ot independence between two fixed marginal totals.
The first two cases can often be treated more conveniently

with a sequential test. This is especially true if the data are

—y ey ey

1 obtained, or if the test is conducted, sequentially. The sequen-

: tial tests for these cases are developed in Chapters 4 and 5
i 4 respectively. The third case has limited applicability within
' = the area of sequential analysis.
: i It is interesting to note that the fixed size test of the
; - null hypothesis for all of these cases is the same. For small
é 3: samples, Fisher's exact test (see Chapter 4) can be used, and
E .- for large enough samples, the x2 distribution with one degree
. {“ of freedom is appropriate. Two other applications of the
! { "double dichotomous” model are non-parametric tests of location
E o and for dispersion. These tests are treated, for example, by E

Gibbons (1971) and Owen (1962).

If either or both of the marginal distributions are known,
different fixed size procedures are required, as explained in
Section 1.1. The sequential procedure to be used when both

marginal probability distributions are known is developed in !

Chapter 3.

In addition to the above, other problems have been formu- 3
lated in terms of 2x2 tables or combinations of 2x2 tables. Dr. i
John Gart has been a leader in this field of application. Some
of the problems which he has formulated in terms of 2x2 tables
include tests for comparing matched proportions in crossover

designs (Gart, 1969) comparison of several proportions adjusted




17

for an auxiliary variable or covariate, and test of incidence

rates when the underlying distribution can be assumed to be

Poisson (Gart, 1974).

k.
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I CHAPTER 2

SEQUENTIAL ANALYSIS AND THE DIRECT METHOD

e 2.0 INTRODUCTION

This chapter introduces and reviews some of the important
topics and considerations relating to sequential analysis which

‘- are used in the sequential tests for 2x2 contingency tables

treated in Chapters 3, 4 and 5. The first section discusses the
use of sequential analysis when testing composite hypotheses and
the basic importance of the operating characteristic (0C) func-
tion. Section 2.2 introduces the direct method of sequential
analysis which is used later to find the exact properties of the
sequential tests. The next section treats different methods of
developing sequential tests for three decision test procedurcs.
The last section explains the truncation of sequential tests to

eliminate the possibility of very large sample sizes.

2.1 SEQUENTIAL ANALYSIS AND COMPOSITE HYPOTHESES

This section will consider sequential tests of composite
hypotheses. It will be shown here that the Wald (1947) sequen- i
tial probability ratio test (SPRT), used in the following chap-

ters and based on pairs of simple hypotheses, can be used to g

obtain satisfactory sequential tests for composite hypotheses.
The discussion below pertains to two decision tests, although

the ideas also apply to k>2 decision tests.

18
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When finding a fixed size sample test to choose between one
of two specified hypotheses, one must specify both the sample
size n* and critical value c* to give the desired error probab-
bilities. When this special case is generalized to a sequential
procedure where stopping rules are selected for each trial, the
problem of selection of the proper test becomes much more com-
plicated because there are many more possible tests to choosec
from. To find a sequential test, one must partition the sample
space at each trial into three regions: one for acceptance of ”0’
one for rejection of HO and one for continuation of the sequential

test.

It is well known that Wald SPRT gives optimum regions for
testing a simple hypothesis against a simple alternative under
certain conditions (Wald and Wolfowitz, 1948). Such hypotheses

are stated, using the binomial parameter p for an example, as
H,: P=Pq versus H : P=p, (2.1)

as shown in Fiqure 2.1. The hypotheses are represented as points
if they are simple, as in this case, and as line segments if they
are composite. For our purpose, we define simple and composite
hypotheses to be hypotheses specifying exactly one point (in

the parameter space), and more than one point, respectively.
Statistical tests between two alternative simple hypotheses imply
that the experimenter believes that there arc only two possible
values for the true state of nature. Such situations do not often

occur in practice.
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Simple Hypothesis

N Composite Hypothesis o

Dy Dy

Figure 2.1 Simple and Composite Hypotheses

In most cAaces the hypotheses to be tested are composite

and are expressed in a form similar to

P=P, versus Hl: p#po (2.2)

or H_ : P<P, versus Hl: PP, 2P (2.3)

When using a statistical test, the important distinction betwecn
the simple hypotheses in (2.1) and the composite hypotheses of
(2.2) and (2.3) is that in the latter one is interested in all
of the points of the OC function over a specified range of the
parameter values given by the hypothesized states of nature.

The hypotheses shown in (2.2) do not contain any specific

alternative and are the type generally specified in so-called
fixed size sample "tests of significance." Users of such tests
generally use a specified significance level (a error) and sample
size, but do not mention a specific alternative hypotheses and

therefore often do not consider the "power" of their tests.

The rationale for such a test is that there is a strong prior




belief in (or preference for) thc¢ null hypothesis, and that it
is not to be rejected unless there is strong evidence (i.c., at
the l-a confidence level) that it is not true.

By examining the Type II error (which is one minus the power
Of the test at a specific alternative), one can determince if the
significance level of the test has been set too low (or too high)
for a given sample size or if the sample size is too large (or
too small) for the required sensitivity against alternatives to
the null hypothesis. Either of these conseuguences could be costly.
It does no harm for even the "significance tester" to investigate
to which his alternatives his test will be sensitive. From this
it is seen that it is important to examine the power of a
statistical test.

In this light, the pair of hypotheses in (2.3) is considercd.

Here a range of values has been specified for H the alternative

1’
hypothesis, as well as for HO, the null hypothesis (see Figure 2.1).
The values in between Py and P constitute an "indifference zone."
For the situation where one must make a decision either for ”0
or for Hl, and there are positive costs (tangible or not) for both
types of errors, this is a more practical way of specifying the
hypothesis to be tested.

This again brings out the subtle difference between a "test
of significance" and other composite tests of hypotheses. A test
of significance might be valid, for example, for a test used in
proving some law of nature, for which it is nearly impossible to
specify all of the possible alternatives. 1In contrast, when

testing the ability of a new drug to cure a disease, the situation

is different.
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If the proportion of successful cures of a drug is to be
compared with that of a control or a placebo, the hypotheses to
be tested will usually be stated as

H.: p.=p
g =L =2 (2.4)

versus H : p,“Pp,

where Py and p, are the probabilities of a successful cure for the
control and the drug being tested, respectively (both probabilitics
being unknown). In this case, there are true costs (although they
are probably intangibie) for both types of errors; that is, for
accepting the new drug as "significantly better"* when it is not
and for rejecting it when it is "significantly better." Becausc
both of these errors are important, it is imperative that the
experimenter examine the power of his statistical test so that

the errors can be balanced if necessary. These samc ideas arc
important in the development of sequential tests of composite
hypotheses.

When developing sequential tests, it is usually necessary to
specify some specific alternatives to tte null hypothesis, so that
the proper stopping rules can be formulated to control both types
of errors and so that the test properties of the sequential test
may be assessed. If one wishes to test a composite hypothesis

such as (2.3), one must find a sequential test procedure which has

*
Here we mean a difference of practical significance, rather than

simply a difference of statistical significance.
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a satisfactory OC function over a specified range of paramctcr
values. This is usually done with respect to some additional
criterion concerning the cost of sampling.

Although the Wald procedure provides optimal tests under
certain conditions, there remains the problem of finding optimum
sequential tests for the composite hypotheses considered here.
Wald (1947) discusses this problem at some length. He comes to
the conclusion that the test of the simple hypothesis in (2.1)
can be used to approximate a test of a composite hypothesis
such as (2.3) without much loss of efficiency. This is the method
most commonly used to find regions for a sequential test of a
composite hypothesis. In Chapters 3, 4 and 5, sequential test
regions are found by specifying simple hypotheses.

One should examine the possible consequences of using such
an approximation; that is, carefully examine the OC function of
the test. If the resulting OC function is not close to the
desired OC function, the test region can be modified so that it is.

This is briefly discussed in Section 3.3.
2.2 THE DIRECT METHOD OF SEQUENTIAL ANALYSIS

The direct method of sequential analysis, given by Aroian
(1968), describes a general method whereby the exact properties
of a given sequential test region may be obtained. Since
Aroian's 1968 article, the method has been used in a variety of
applications, including tests for the mean of a normal distribu-
tion with the standard deviation known (Aroian and Robison, 1969)
and unknown (Schmee, 1974), two sided tests of the normal dis-

tribution with the standard deviation known (Goss, 1974b)
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sequential rank tests (Elfring and Schultz, 1973b), tests of the
binomial distribution (Corneliussen and Ladd, 1970 and 1971), and

tests of a normal distribution with mean known and unknown

— e o= N

(Aroian, Gorge, Goss and Robison, 1975).

Before using a sequential test procedure, one should know
or have available reasonable approximations to the actual test
properties. The most important test properties are the true «
and B error probabilities (denoted @' and B' here) and the ecx-
pected or average sample number (ASN). A typical ASN function
for a state of nature which can be expressed in one dimension
é . (e.g., the binomial parameter p) is shown in Figure 2.2. Also
of interest is the operating characteristic (OC) function which
gives the probability of accepting the null hypothesis as a

L function of the state of nature. A typical OC function for a

one-dimensional state of nature is shown in Figure 2.3. 1If the
state of nature must be defined in two dimensions, these functions
can be represented as contours or by single graphs with one param-
eter being held constant. If more than two dimensions are nec-
essary to describe the state of nature, it will be best to show

the test properties in tables. The true o and § error probabilities
for a two decision procedure are obtained directly from the OC

function as

u'=l-OC(p0)
(2.5) ‘
B'=OC(p1)

where Po and p, are the parameters specified by the null and

alternate hypotheses respectively.
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1 .
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i State of Nature
Figure 2.2 Typical ASN Function
¢
1.
; oc (D)
State of Nature
Figure 2.3 Typical OC Function
- P(n) ‘
|
.11

0 4 8 12 14 Sample size n

Figure 2.4 Typical Distribution of the DSN
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Another interesting test characteristic, which is often
neglecved, is the distribution of the decisive sample number
(DSN); that is, the probability mass function of the sample size
necessary to reach a decision. This distribution is a function
of the true state of nature. From this distribution, one can
obtain the ASN, the variance of the sample number (VSN) or other
moments. The direct method is also used to find the distribution
of the DSN. A typical probability mass function for the DSN is
shown in Figure 2.4.

In general, the direct method is carried out as follows.
Once the sequential test region (i.e., the sequential test rules)
has been specified, one chooses a state of nature, which allows the
computation of the probability of accepting each possible hypothesis
at the first trial. The remaining probability, that is, the prob-
ability of being in the continuation region, is spread out among
all the possible values of the sample statistic which are included
in the continuation region. At the second trial, another sample
is taken. It is again necessary to find the probability of accept-
ing each hypothesis and the distribution of the probability of
remaining in the continuation region. Using convolutions, one may

continue this process at each succeeding trial or until the prob-

bability of remining in the continuation region is so small as to
be insignificant. This entire procedure is then repeated using ?
different values for the true state of nature, each giving a point :

on the OC function and a distribution of the DSN. This procedure

is used in Chapters 3, 4 and 5 to find the exact properties for

sequential tests of 2x2 contingency tables.

b Ll B 5k o e P
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2.3 METHODS FOR THREE DECISION SEQUENTTAL TEST PROCEDURES

In this section, the procedures for developing three decision
sequential tests are reviewed. Three decision tests are often
necessary in practice. An example of such a test would be the
comparison of two drugs where one might be interested in testing
the proportion of successful cures in a conirolled test. The hy-

potheses to be tested might be expressed as

LR

versus ﬂoz P,=P, (2.6)

versus .
Hy: PP,

where P, and P, represent the proportion of successful cures for
drug 1 and 2 respectively. One might also use such a test to
distinguish among lots of items which are of superior quality
(for which some incentive bonus might be given), standard quality
and substandard quality. The hypotheses for this case might be

specified as

= 170
v : = .
ersus HO D D0 (2.7)
versus H2: D=D2<D0

where D represents the number (or proportion) of defectives in
the lot.
The following is a brief sketch of the different approaches

to three decision tests which have been treated in the literature.
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Ghosh (1970) and Goss (1974b) give excellent and somewhat more
comprehensive treatment of this subject. The discussibn here is
general in that it pertains to no specific distribution. No
attempt has been made to cover the many applications of these
tests. For this, the reader is referred to Wetherill (1966).
Wald (1947), in his book, gives a method of formulating a
two-sided test by using weight functions. Barnard (1947c), in
i1is review of Wald's book, mentions an alternate method which
simply tests the null hypotheses separately 2against the two
alternatives. This is done by using two SPRTs at one time. The
resulting test regions are shown geometrically in Figure 2.5.
Sobel and Wald (1949), in their paper, treat the three decision
test in detail. They use a test similar to that suggested by
Barnard. The difference is that each SPRT 1is treated independ-
ently of the other. This would mean, for example, that when line
AB is crossed by the path shown in Figure 2.5, we no longer allow
acceptance of Hl and concern ourselves only with the results of
SPRT2. Thus, HO is accepted when line AC is crossed at point p,
before a shaded region is even reached. Sobel and Wald hasten to
point out that such a test, which depends not only on the total
sample results, but also on the sample path (order of the observa-
tions), cannot be an optimal one. However, the test was used in
their case because the independence of the two tests enabled tiwe
authors to derive approximations for some of the properties of
this three decision test. The Sobel-Wald tests and their approxi-

mate properties are treated in detail by Ghosh (1971). Herec, we
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use the direct method of sequential analysis which can be used
to find the exact properties of any specified sequential test
region,

Goss (1974b), when treating three decision sequential tests
of the mean cf a normal distribution, compared the Sobel-Wald
test with the Barnard test. He used the direct method to obtain
exact test results for such tests. From his results, (as one
would expect intuitively), it is seen that the test with inde-
pendently run SPRTs has a smaller expected sample size, but
slightly larger error probabilities. The differences, however,
are quite small. For this reason and because it has somewhat
more intuitive appeal, the approach suggested by Sobel and Wald
is used here, although a decision to accept a hypothesis is
allowed if and only if one enters a shaded region in Figure 2.5.

Another approach to the three decision test is given by
Armitage (1950). In this paper, Armitage suggests using three
SPRTs simultaneously. The three SPRTs are constructed to dis-
and H,, H, and H, and between H., and H,.

1 0 2 0 1 2
This is shown graphically in Figure 2.6.

tinguish between H

To devise the three decision sequential tests used here, a
modified version of the Sobel-Wald procedure (Sobel and Wald,
1949) is used. Following their treatment, two SPRTs are used
simultaneously. One SPRT, say SPRT:i. is used to distinguish be-
tween Ho and H,. The other SPRT, say SPRT2, is used to distinguish

1

between Ho and H2. The procedure for developing and evaluating
the test properties of the three decision test procedures is
treated in detail for the special cases of the 2x2 contingency

tables in Chapters 3, 4 and 5.

i s i i b e e )
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2.4 TRUNCATION OF THE SEQUENTIAL TEST REGIONS

One disadvantage of using sequential test procedures is
that because the sample size is a random variable, it is some-
times possible for the sample size to be significantly larger
(although with small probability) than the sample size necessary
for a fixed size sample test. This section presents methods for
truncating sequential tests at some trial, say n,- This will
result in a closed sequential test whose test properties, with
respect to the ASN function, will be much improved. The price
paid for this improvement is usually quite small.

When one wishes to truncate a sequential test at some trial,
say n,, one must specify which one of the hypotheses is to be
chosen for each possible value of the test statistic (which may
be multidimensional) at trial ng- Some general rules of thumb
for doing this are given in Section 3.3. Further modification of
the region can be made on a trial and error basis, using the exact
probabilities (obtained by using the direct method of sequential
analysis) of reaching each of the decision points in the sample
space as a guide. Such careful modification, though tedious,
could be used to obtain a sequential test with test properties
closely approaching those which are desired.

Ofter when truncation procedures are put forward, the
truncs: ' .» .. int suggested is from 1.5 to 3 times n, (see, for
example, .. :d (1947)). This is probably because in the past,
very littt: was known about the exact properties of such truncated

tests. When using the direct method, however, this presents no
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T problem because the direct method is general and can be used
- to evaluate any specified test region. The sequential tests
_ presented here are usually truncated at the sample size required

for a similar fixed size test (n*) and are compared with such
i i, fixed size tests.

When a sequential test is truncated at some trial, say Ny
! o the true a and B error probabilities will increase by some,

! usually small, amount (when compared to the untruncated test).

If the size of this increase cannot be tolerated, the error prob-

abilities can be reduced in one of two ways. First, the test can

be truncated at some trial n0>n* (i.e., at some trial greater than

the comparable fixed size test). This, however, will allow the

j sample size to increase (usually with small probability) above n*.
It will also tend to a general increase in the ASN function. The
other method is to modify the test region by including more points
in the continuation region for trials n<ng. This will enable one

) to approach the a and B error probabilities of the fixed size test
with n  trials by increasing the ASN function (which will approach

0
a constant function equal to no).

All of the sequential tests for 2x2 contingency tables pre-

sented here have been truncated. Some further discussion of the

particular methods used to truncate these tests is contained in ;

Section 3.3.
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CHAPTER 3

SEQUENTIAL TESTS WHEN THE MARGINAL PROBABILITIES
ARE KNOWN

3.0 INTRODUCTION

This chapter treats sequential methods for 2x2 contingency
tables when the marginal probabilities are known. Section 3.1
discusses such contingency tables and gives their underlying
probability model. Section 3.2 describes the hypothesis being
tested. Sections 3.3 to 3.6 present the development and evalua-
tion of the sequential tests for both two and three decision test
procedures. Section 3.5 also compares the sequential tests devel-

oped here with a comparable fixed size test.

3.1 2x2 CONTINGENCY TABLES AND THE MULTINOMIAL DISTRIBUTION

The underlying probability model for a 2x2 contingency table

is depicted in Figure 3.1.

P11 P1.7P11 Py,
P 17P1) 1-p; =P 1*Py, 1-p, .
P 1=p 1

Fiqgqure 3.1 Probability model for a 2x2 contingency table

33
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As indicated in Section 1.1, this can be considered a
bivariate binomial distribution. The two marginal distributions
are independent if and only if Py117P1.P ;- One is usually inter-
ested in testing the hypothesis of independence, although tests
for any degree of association can be easily constructed. A full
discussion of these hypotheses is given in the next section.

The probability model in Figure 3.1 can also be expressed as
a multinomial distribution. The probability of obscrving the

sample shown in Figure 3.2

D D
E X L .
E n.l-x n-n.l-nl.+x n-nl.
n.l n-n-l n

Figure 3.2 Sample from a 2x2 contingency table

is then

pF(x'nl.'n.l’n’pl.’p.l’p11)= (3.1)

n -X n -X n-n -n +X
b ¢ 1. .1 1. .1
nipy, (P ~Pyy) (P 1-P1y) (1-py -P ;*Py;)

x!(nl -x) ! (n l—x)!(n-n -n, +x)!

171

Because the marginal probabilities Py and p 1 are known, the
state of nature is completely specified by Py1° That is, there

are no nuisance parameters to deal with, as is the case when one
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- or both of the marginal probability functions are unknown. The

triplet (x,n n 1) is a minimal sufficient statistic for P11

l.' L]
This can be shown as follows.

In order to show sufficiency one must show that the ratio

| Pp(x,n; »n 1in,pyPy /P ) (3.2)
PF (YIml. rm.l7nlplllpl. 'p.l)

is independent of the state of nature (see Lindgren (1968),

p.256). The probability mass function Po is as defined in (3.1).

Equation (3.2) is independent of the state of nature if

and only if
n. M.
= (3.3)
2250
and X=y

The vector (x,nl.,n.l) therefore is the minimal sufficient statistic
for the true state of nature, Pi1- Sequential tests based on this
statistic are presented in subsequent sections.

As mentioned in Section 1.1, a special case arises if one
of the marginal distributions is "observable" and one category
of that margin can be sampled from exclusively. Because one knows
the marginal probability function of the other margin, the problem

reduces to a simple binomial distribution which can be used to

“test association between the two marginal characteristics. This

greatly simplifies the problem.

If, for example, n, can be chosen to be the same as n (the

total sample size), the distribution of x is

T T
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n n, =X

N (3.4)

1) (p') X (1-p")
X

P(xlnl. IP')-" (

and x is a sufficient statistic for Pyp- The hypothesis to be

tested is

Hy: P'=Py=P
(3.5)

. t=nn?
versus Hl. p pla\fp.l

where p' is the conditional probability of obtaining an observa-
tion in cell 1 of Figure 3.3, given the observation is in ecither

cell 1 or 2. _
D D

o]}
w
o

Figure 3.3 2x2 Table Cell Numbers

This hypothesis can be treated sequentially by using a simple

binomial test (Wald, 1947).
3.2 THE HYPOTHESIS BEING TESTED

This section discusses the hypothesis being tested in a
2x2 contingency table when marginal probabilities ave known. As
mentioned in the last section, one is interested in testing inde-
pendence of two binomial characteristics. The hypothesis can be

expressed as
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| Hot P117P1.P)
(3.6)
versus H;: p) #P; P,

As indicated in Section 3.1, P1, alone exactly specifies the
state of nature in this case. Two other equivalent ways of

specifying this null hypothesis are

}

_ P
PP
(3.7)
P13 (1-Py P 1*Py;)

or t =
(Py . -Pyy) (P 17Py;!

The first is the ratio between the two values which are hypothe-
sized as being equal; the second is commonly known as the cross
product ratio and is treated in detail in Section 4.2.

Thus there are three methods of specifying the alternate
hypothesis to be tested. The ranges of variation of the param-

eters mentioned above are

[ ZaY

MIN (py /P ;)
(3.8)

P ——,
o
el
Lo )
ol +
. e
[
[
|
(=]
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A
=
-
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P g,
h.lw
|
=
=
A O g

For the purposes of testing the case with known marginal proba-
bilities considered here, specifying the alternate hypothesis

directly in terms of P is most convenient.
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A three decision test of independence for the above model

can be specified as:

Byt P11 7P Py
é versus H : p,,=p,=P P ; (3.9)
) versus H2: pll=p2>p0
Sequential tests for these hypotheses are treated in Sections 3.4

and 3.6.

3.3 THEORY FOR SEQUENTIAL TESTS WITH TWO DECISIONS

In this section, sequential tests for the two decision
hypotheses discussed in the last section are developed. It is
assumed that the marginal distributions of the bivariate Bernoulli
process are known and that items are sequentially selected at
random from a population which follows this distribution. The

hypothesis to be tested is:

Ho

P117Po
(3.10)

versus le p].‘,|.=p:l->p0

The sequential test for distinguishing between these two ?

simple hypotheses is developed as follows. Following Wald (1947),

A

the sequential test is carried out by calculating the likelihood

ratio at trial n, with a sample outcome (x,nl ,h f(see Figure 3.2).
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P.(x,n ,,n, :n,p, P +,P,)
- Lny/ing = pipratiale TPL AP (3.11)
b ) AR KAts DALY 3 IS S 2 ')
- n, =-x n ,=-x n-n, -n ,+x
x 1. .1 1.7 ™1
A i Py Py, Py (p,17Py) (1-p),"P.1*Py)
1 n, -x n ,-x n-n., -n .+x
: L 1. 1 1.7
Po (P}, ~Pg) (P -Py) (1-p; -P ;*Pg)

The sequential test is then carried out by using the following

procedure:

i accept HO if Lnl/Ln0 < B

. (3.12)
| accept Hl if Lnl/Ln0 2 A
é take another sample if B < Lnl/Ln0 <A

The values A and B, which are needed for the test, are quite

difficult to determine exactly. However, the approximate values
A = (1-8)/a, B=B8/(1-a) (3.13)

given by Wald (1947) are used. Here o is the desired probability
of a Type I error and B is the desired probability of a Type II

error.

To carry out the test procedure, it is usually more con-

venient to work in terms of the log likelihood ratio

n(Ln,/Lng)=g(x,n) +n 1,P) /P 1+Py/Py)= (3.14)

X‘Rl-(nl.-x)°R2-(n.l-x)'R3+(n-n1.-n.1+x)'R4
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where Rl=2n(pl/po)
R2=2n((p'1-p1)/(p.1-p0))

R3=En((pl.-p1)/(p1.-po))
R4=ln( (l-pl.'P.l"‘Pl)/(l‘Pl.‘P. l+p0))

With this modification, the test procedure becomes

accept Ho if Qn(Lnl/Lno)sb
accept H, if Qn(Lnl/Lno)za (3:15)

take another sample if b<£n(Lnl/Ln0)<a

where a=4n((1-8)/a) and b =¢n(8/(1-a)) and Qn(Lnl/LnO) is
shown in (3.14).

Because the test statistic at each trial is in three
dimensions, tables of these test plans will be quite lengthy
for large sample sizes. In particular, at each trial n one
must specify upper and lower limits on x (the count in cell 1 of
Figure 3.3) for each of the (n+l)2 different possible margin
arrangements. Another approach, which might be used when a
given test will be performed only once, is to compute either
the critical limits or the likelihood ratio at each trial in
order to decide what action should be taken. The method for
finding the critical limits which define the test region is
given next.

Letting cL(nl.,n.l,n) denote the lower limit and

(

c,(ny, /n l,n) the upper limit for x given the marginal totals

g e i i
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n, and n 1 at trial n, the sequential test procedure becomes
accept Ho if xscL(nl )N 1,n)
(3.16)
accept Hl if xzcu(n1 )N 1,n)

and take another sample if cL(nl.,n.l,n)<x<cU(n1_,n.l,n)
where x, ny N, and n are shown in Figure 3.2. The values

( n l,n) and cU(n1 /N 1,n) are easily obtained by inversion

CLify.’
of the equations

b=9(x,n1.,n.l.n.pl.,p.l,po,p1)=2n(Ln1/Lno)

(3.17)
a=g(x,n; ,n ,,n,py; 4P ;+Py/Py)=n(Ln,/Ln,)
by solving for x. These values can be expressed as
c. (n n n)=g“1 (b,n n n,p P 1/Pa/P J
LA AR A LA [l PR LA R |
= [(b+nl.(R2+R4)+n.l(R3+R4)+nR4)/(R1+R2+R3+R4))]

_1.-1
cu‘“l.'".l'""[g ‘a'"l.'".1'“'91.'9.1'%'?1)] 1 3.8

= [(a+n1_(R2+R4)+n_1(R3+R4)+nn4)/(R1+R2+R3+R4ﬂ +1

where the Ri's are defined in (3.14) and M=[K] is the greatest
integer less than or equal to K.

These sequential tests of 2x2 contingency tables can be
truncated as indicated in Section 2.4. If the test is truncated
at some n, say n,. one must choose the critical values
cL(nl.,n.l,n) and cU(nl_,n.l,n) for each of the (n0+1)2 possible
combinations of values which the marginal totals can take on at
the truncation trial n,. Some general rules of thumb are given

0
for doing this; these can be further modified in order to give
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the test the desired properties.

As a first guess, the critical values are chosen to be

!
SIS s [g ((a+b)/2'“1.'“.1'"'91.'9.1'90’914

cU(nl.,n.l,n)=cL(n1.,n.l,n)+1 (3.19)

The value (a+b)/2 is used in an effort to truncate the test

while keeping the true a and B errors in the proper proportion.
Any of the (n0+l)2 values for cL(nl.,n.l,n) may be changed

,n) such that the second equation in (3.19)

(along with cU(n N

1.77°.1
holds). Such changes will not affect the ASN function; however,
they will change the OC function. Thus, the truncation can be
used to "balance" the a and B error probabilities. In order to
make the best decision as to which points belong in the acceptance
region and which belong in the rejection region at n,, one can
examine the exact probabilities of reaching the different points,
(obtained by using the direct method of sequential analysis)

under different specified alternate hypotheses.

A numerical example of the above procedure for determining

the sequential test regions is now given. Let P, =0.5 and

p 1=0.5. The hypothesis to be tested is

Hy: Py,"Pp=Pp P 170.25 f
(3.20) 1

versus Hl: p11=p1=0'40 :

with desired error probabilities «=0.05 and £f=0.1. The test is i

truncated at trial n0=25. For this case, the critical values are
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3 Table 3.1
Critical Values for the
1 Scquential) Toeat Lx mple
’
] PL.e 0,500
E P.13 0,500 ALVWAS 0,100
POt 0.2%0 ytlas  0,0%0
TRI1AL ) N, Pie 0,400
. TS TRIAL 1 N,
0 1 2 3 4 ] N,
0 1. & -4, b 0, 6 0, ? 1, 7 1. 8 0 }
1 “2. 9 -4, % -1, & 0, 6 0, ? . 7 0 “2: 3 -2, 4
2 =2, 4 2,5 -1,5% -1, 6 0, 6 0, 7 1 2,3 -2,
3 “2s0 4 =2, 4 -2, 9% -1,5 -1, ¢ 0, &
4 2, ) 2,04 <2, 4 2,5 1,5 -4, &
S “2s 3 2,3 =2, & 2,4 2,5 -1, 5 TRIAL 2 N.g
* Nll
0 1 2
TRIAL [ N3 0 =24 -2, 4 2,59
o Nt .4 2,3 =2, 84 2, 4
0 1 2 3 4 5 6 2 2, 2,3 -2, 4
0 -1: & 0, ? 0, 7 t, 7 1, 8 2., 8 2, 9
1 1, &6 -1, ¢ 0, & 0, ? 1, 7 1, 8 2 8
2 “2:. 5 -1, 5 -1, ¢ 0, 6 0,7 1, 7 1, 8 TRIAL 3 N.g
3 ~2. 4 ~2,% -1, 9% -4, 6 0, 6 0. 7 1y 7 LI
[} “2, 4 -2, 4 <2, 9% -1,5 -3, 6 0., & 0» 7 0 1 2 3
) “2, 3 -2, 4 -2, & 2,5 1,5 -3, 6 0, 6 0 -2, 4 =2,5 1,95 ¢, %
[} “2, 3 =203 2, 4 -2, 4 2,5 - % 1, 6 1 “2. 4 -2, 4 «2, 9% -1, 8%
2 2.3 2, 4 2,4 2,8
3 213 2,3 =2, ¢ -2, ¢
TRIAL 7 N.{
NE. TRIAL 4 N.L
0 1 ? 3 ] L [ ? Nt
0 0. ? 0, 7 1, 8 1,8 2,8 2, 9 3y 9 3,10 0 1 2 3 ¢
1 1. 6 0, 7 0, ? 1,7 4.8 2, 8 2, 9 3, 9 0 2,9 -4, 5 -1, 6 0, 6 0,7
2 1.6 -1, 6 0, ¢ 0,7 1,7 4,8 2,8 2,9 1 2,4 =2,5 1,5 -1, 4 0, 6
3 -2, % -1, 5 -1, ¢ 0, & 0, 7 t, 7 1, 6 2, 8 2 2. 4 -2, 4 *2, %9 -4, 5 “3; ¢
| 4 “2. 4 <2, 5 -4, 5 -1, 6 0, & 0, 7 1. 7 1, 6 3 *2. 3 =2, 4 2, 4 2,8 1,8
5 -2, 4 -2, 4 '2. 5 -1, ] "o [ 0, 6 0 7 1‘ 7 4 '2; 3 '2‘ ; '2. 4 '2, 4 ’2. ’
[} “2: 3 -2, 4 2, 4 -2,85 1,5 :1: 6 0y & 0, 7
? *2. 3 -2, 3 =2, 4 f?u 4 -2,8% 4,5 -3, 6 0, 6
TRIAL ] N,3 ‘
Ni,
0 1 2 3 4 5 [ ? [} ;
0 0: 7 1, 8 1, 8 2,9 2,9 3, 9 0 4,10 4,13 l
1 0: ? 0, 7 1, 8 1, 8 2, 8 2, 9 3¢ 9 340 4,40
2 -1. 6 0., 7 0, ? {, 7 1, 8 2, B8 2v 9 3, 9 3'1' !
3 -1, 6 -1, 6 0, ¢ 0, ?7 1, 7 1, 8 2, 8 2, 9 LTI
¢ c2.% 1,5 -1, 6 0,6 0,7 $,7 1.8 2,8 2,9 1
s -2.46 -2,5 -1, 3% -4, 6 0,6 0.7 1+7 1,8 2,0 {
6 2,084 -2, 4 -2,5 -1, 5 4,6 0,6 0v7 1,7 1,0 {
? -2, 3 -2, 4 =2, 4 =2, 5 -3, 5 4, 6 0, © 0, 7 1, ? |
8 2.3 2,3 -2, 4 -2, 1 +2,5 4.5 176 0,6 0,7 l
TRIAL ’ N.g !
Ni.
0 1 ? 3 4 $ [ 7 (] 9 i
0 1: 8 1, 8 2, 9 2, 9 3,40 3,40 4,10 4,11 TR §Y 9,12 {1
1 0i7 1.8 1,8 2,9 2,9 3,9 3110 4,10 4,11 5,14 H
2 0, ? 0, ? 1, 8 1, 8 2. 8 2, 9 3 3,10 4,10 4,11
3 3. & 0, 7 0, 7 1, 7 1, 8 2, 8 9 3 9 320 4,10
4 -1, & “1, & o. é 0. ? 1, 7 1. 8 H 8 ?a 9 3' 9 3010 |
5 '21 ] ~1, 5 ‘lg 6 0. [} 0, ? i 7 1s & 2' ‘ 2, ] 30 9 l
(] 2. 4 -2, % <3, % -1, 6 0, 6 0, 7 1y / 1. 8 2, 8 2, 9 1
? 2. 4 -2, 4 <2, 8 -4, 5 <4, b [} 0o 7 1,7 1, § 2, 0 §
8 2.3 -2, 4 2,4 -2,% 41,5 -1, 6 0,6 9,7 1,7 1,8 H
9 "2, 3 2,3 2, & -2, 4 2,5 -4, 95 -1, 0 0, 6 0,7 1,7 )
i
44
TRIAL 10 N, L ! F
N§. g
] 1 2 3 [] H 6 7 [ ] 9 10 H
0 10 2 2, 9 2, ¢ 3,10 3,10 411 401l 9,11 5,42 6,12 6,13 i
’ 17 8 } ) 8 2. 9 7. 9 J.’.o 3.‘0 "10 ‘Ill "11 5012 .012 f
2 0;7 .8 1, R 2,9 2,9 3 9 310 410 4,31 5,11 9,12 H
3 0: ? 0. ? 1, 8 1, 8 r ] 2, 9 3, 9 3'10 4.10 ‘1’* ’011 L]
4 1, 6 0, 7 0, 7 1, ? 1, 8 2, 8 2 9 3, 9 3,10 4,10 4,11
S 1,6 1,6 0,6 0,7 1,7 §£, 8 2,8 2,9 3 ¥ 310 4,10
[ -2, ’ -3 5 '1, 4 Dl é °' 7 11 ? i 8 !' ‘ 20 ’ ;0 9 3:30 y
7 -2: 4 2,5 1,9 1,6 0.6 0,7 1,7 1,8 2,0 2,9 39 j
8 “2; 4 2, 4 2, 9% -4, 6 .4, 6 0, & 0r 7 07 4, 8 I 2, ¢ A
9 c2¢ Y 22,4 <2, 4 -2, 8 1,95 -4, 6 0y 6 0, 7 1.7 Ha 2, 8 i
10 -2, 3 =2, 8 <2, & -2, 4 2,5 -3, 5 -3, 6 0,6 0,7 4,7 3,08 {
d
43 ’i
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given in Table 3.1 for each trial up to n=10. These regions
e were computed using (3.17) and (3.18) and are truncated at
trail n, using (3.19). They were computed using the computer
E B program listed in the Appendix.
5 N The sequential test is carried out as follows. At each
trial an item is selected at random from the population. The
s : presence or absence of each of the two binary characteristics
is noted. For the observed marginal totals at trial n, the
observed value of x is compared with the proper critical limits in

the table (or otherwise computed using (3.19) if no table is

available). When one of the critical limits is met, the test
is terminated and the proper hypothesis is accepted; otherwise,
the test is continued and another observation is taken.

A typical sample for such a test is shown in Table 3.2

Table 3.2
Typical Sequential Sample

TRIAL D E n, . n, X {
1 1 0 0 1 0
2 1 35 1 2 1
3 0 0 1 2 1 ]
4 1 0 1 3 1 ‘
5 1 1 2 4 2 1
6 0 1 3 4 2
7 0 1 4 4 2
8 1 0 4 5 2

Here each inspected item has the characteristic of being either
D or D and being either E or E. At trial 10, the observed

results are summarized in the table given in Figure 3.4.
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D D
E 2 2 4
E 3 1 4

—

5 3 8

Figure 3.4 Observed 2x2 Contingency Table

Comparing the value x=2 with the proper critical values for the
marginal totals n, =4 and n 1=5, it is seen that the test is

terminated and Ho is accepted. This sequential test region is

evaluated in Section 3.5.

3.4 THEORY FOR SEQUENTIAL TESTS WITH THREE DECISIONS

As explained in Section 2.3, sequential tests for a three
decision test procedure can be developed by simultaneously using
two SPRTs. The development here uses the same notation and under-
lying probability model as the last section. For a three decision

test procedure the hypotheses are specified as:

Hy: P117Py
versus HO: pll=p0>pl (3.21)
versus H

2° P117P27Py
In addition, the desired o and B error probabilities are specified

(for each hypothesis) along with a truncation point ng- The test

procedure at each trial n involves computing two likelihood ratios,
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one for each hypothesis, and comparing them to critical values.

The sequential test rules for the test at trial n are:

accept Hl if Lno/Ln1 < B1
and Ln./Ln, < B,,

A= e (3.22)
accept Ho if Lno/Ln1 > Al
and Ln2/Ln0 < 82
accept H2 Lno/Ln1 > Al
and Ln2/Ln0 > A2,

otherwise, the test is continued by takinc another sample and

repeating the procedure. Wald's approximations are used to

find the values Al,Bl,A2 and 82; that is,
A.=(l-a,)/B A_~(1-8,)/a
. LR z M (3.23)
Blzal/(l-Bl) Bzzsz/(l-az).
The values
a,=2n(A,) a.=4n(A,)
1 1 2 2 (3.24)
b1=£n(Bl) b2=£n(B2)

are used below.

For this case it is again possible, and usually desirable,
to compute critical values to be compared with the test statistic
at each trial. The minimal sufficient test statistic is again

(x,n1 /N 1). The use of two SPRTs means that there are four
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critical limits for each possible combination of marginal totals

| at each trial. With observed margin totals (nl ,n 1) (sce
Figure 3.2) at trial n, the test procedure is to
: t H, if <c. | )
accep 1 1 x<ep (n) yn ,yn
and X’;dL(nl‘ln.lrn)
accept H, if x2c,. (n, ,n ,,n)
0 LRl (R A o | (3.25)
and xgdL(nl‘,n.l,n)
A accept H2 if xch(nl.,n.l,n)

and xgdL(nl.,n.l,n/

and take another sample if none of these conditions is met.
Here cL(-), cU(-), dL(-), dU(-) are critical limits for SPRT 1
and 2 respectively. The critical limits for the test are com-
puted (using the same notation introduced in Section 3.3) as
for SPRT 1 (3.26)

CL(nl.’n.l’n)= Bbl+nl.(R2+R4)+n.1(R3+R4)+nR4)/(R1+R2+R3+R4ﬂ

cylny on yon)= Ba1+"1.‘R2+R4)+“.1(R3+R4)+“R4)/‘R1+R2+R3+R4ﬂ gl

for SPRT 2

S Ko St Bb2+“1.(R2+R4’+“.1‘R3+R4'*"R4)/(R1+R2+R3+R4q

dU (nl. n 1,n)= [(a2+nl . (R2+R4)+n. 1 (R3+R4)+nR4)/ (R1+R2+R3+R4)] +1 1

where a, . bi' i=1,2 are defined in (3.24) and the other notation

is the same as is used in (3.18).

ddaatacaiiat
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. Each SPRT can be truncated separately in the same manner

- outlined in Section 3.3. The critical limits used in (3.25)
can again be computed either individually as the test progresses
or in tabular form for the entire test plan. When using a three
decision test procedure one must compute two tables, one for
each SPRT. The preceding is now illustrated with an extension
of the numerical example given in Section 3.3.

Again letting p1.=p.l='5' it is desired to choose among

the three hypotheses
le p11=p1=0.10
versus H,: Ppy,=Py=p; Py =0.25 (3.27)

versus H2: p11=p2=0.40

The desired error probabilities are chosen to be al=a2=.05 and

Bl=82=0.1. The critical limits for the SPRT used to distinguish

between Ho and H2 are given in the example in Section 3.3. The

critical limits to distinguish between Ho and H2 are shown in
Table 3.3. (Note that the designation of a and B has been reversed
beacuse p1<p0.) A typical sequential sample from the 2x2 table

is shown in Table 3.4; the corresponding 2x2 table at trial 10

is shown in Figure 3.5. By examination of both sets of critical

values at each trial, one finds that H, is accepted at trial 10.

0
The properties of this sequential test region are found in

Section 3.6.
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4
] . Critical Valuern for the
, Throee Decinson Sequential Test
Py.s 0.5C0
P18 0.500 ALPHAS 0,100
POs 0,100 UETas 0,050
TataL 5 Nt 3 TRIAL 1 N,
[ Ng. Pis 0,250 N 1
0 1 ? 3 4 ] [ 1
0 3,19 2.14 1,43 0,12 ~-1,11 =-2.,10 0 ~2. 7 -2, 6
1 1) 0,12 1,01 -2,10 <2, Y -2. 8 1 -2,5 -2, 4
2 1e38 2,40 -2, 9 -2, 8 -2,7 -2.°8
3 2. % 2,8 2,7 -2,06 -2,% -2.4
4 *2, 7 -2, 6 -2, 9% -2, 4 2,3 -2.2 TRIAL 4 N. %
S *2, % -2, 4 2,3 -2,2 2,1 -2.1 Ni.
0 20 9 21 ] 4
TIaL 8 N1 1 N o G oM i _;: ;
LI 2 -24% -2, 4 -
0 1 2 3 ‘ s 6 Eh Cupd
0 5.17 4,16 L% &) 2,14 1,13 0,12 -1.,11
1 3.18 2,44 1,43 0,12 ~-1,11 ~-2,10 -2, 9 TR]AL 3 N.§
F 1.13 0,12 =-1,11¢ -2,10 2, 9 -2, 8 2.7 NL,
3 3 1431 2,10 -2, 9 -2, 8 2,7 -2, 6 -2,5% 0 1 2 3
4 “2. 9 -2, 8 2,7 2,6 2,9 -2, 4 -2, 0 “1e1y -2,10 -2, 9 -2, 8
5 “2:Y -2, 6 -2, % -2, 4 2,3 -2,2 -2 ¢ 1 2. 9 -2, 8 -2, -2 'y
k 6 “2:09 =20 & =2, Y -2, 2 2,1 2.% 2.0 2 -2, 7 <2, 6 -2, 5 .?: .
| 3 2. %5 -2. 4 2,3 -2,2
TRiaAL ? N, TRIAL 4 N1
Ni. NL.
0 1 2 3 [] 1 [ ? 0 1 2 3 .
0 719 6,10 5,87 4,16 3,15 2:14 1,13 0,12 0 1.13 0,12 =1,31 -2,10 -2, ¢
1 $.17 4,16 3, 1% 2,14 1,13 0,82 -1,11 -2,10 1 1418 -2,10 -2, 9 -2, 8 -2. ?
2 31 244 1,13 0,12 1,41 -2,10 -2, 9 -2, 8 2 <209 2,8 <2,7 -2,4 2.3
3 1,13 0,12 1,1t 2,10 -2, 9 -2, 8 =-2.7 -2, 6 3 ~2¢ 7 -2, & -2, 9 _" 4 _2' 3
4 eis18 2,30 =2, 9 -2, 8 2,7 -2, 86 2,5 -2, ¢ 4 s 2k w75 .2. 2 s
S  ~2.9 22,8 2,7 -2,6 -2,5 -2, 4 2.8 2,3 ' : Go ¥
é *2: 7 2,6 2,5 -2, 4 2,3 -2, 2 <202 -2, 1
? “2¢% -2, 4 2,3 =2,2 2,1 =2+3 00 -24=1
TRIAL 8 N,
N .
(] 1 2 3 [] 5 [ ? 8
0 924 8,20 7,19 6,18 5.47 16 315 2,14 ti13
1 7.19 6,18 5,47 4,16 3,15 2,14 1,13 0,12 ~1,1%
2 5;.'7 ‘rle 30‘5 2014 1'13 0,12 ~1,11 -?.10 '20 9
3 3;15 2,14 1.83 0,42 -1,11 -2.,10 =2, 9 -2, 8 -2, 7
4 1:13 0,12 ~=1,31 =2,10 <~2, 9 -2, 8 =~2,.7 -2, 6 -2, 9
L] “1.18 2,10 -2, 9 -2, 8 -2, 7 -2, 6 =2,%5 -2, 4 -2, 4
[} '2; 9 -2, ] '2' ? 2., 6 “2, ] -2, 4 -2 3 -2, 3 '20 F4
? -2. 7 -2, 6 *2, % -2, 4 -2, 3 <@+ 2 =2/ ¢ -2, % =2, 0
[ ] '21 ] “2, 4 '2. 3 -2. 2 -2, 1 -2, 3 «2, 0 '2;'1 '2:’1
TRIAL [ ] N.g
L}
[ ] 1 2 3 4 5 [ 7 8 [
] 11,23 $0.22 9,31 8,20 7,39 6,18 5,17 4,16 3,15 2,14
1 9,20 8,20 7,19 6,18 5,17 4,16 ,1b 2,14 1,13 0,12
e 7.19 6,18 5,47 4,16 3,19 2.14 1,13 0,12 1,18 -2,10
3 5.17 4,16 3,15 2,14 1,13 0,12 -1,11 2,10 -2, Y -2, 8
4 315 2,14 1,13 0,12 <~3,11 =-2,10 -2, 9 -2, 8 2,7 <2, 6
5 1.13 0,12 r,1,81 =~2,40 =2, 9 -2, B -2, 7 -2, 86 <2, 5% -2, 5
[} 1.18 2,10 -2, 9 -2, 8 -2,7 2,6 -1 5 -2, 4 2,4 -2,
7T 29 2,8 2,7 2,6 2,5 -2,4 -2, 2,3 2,2 -2,
8 2.7 2,6 =2,% -2,4 +2,3 2,2 “2,¢ 2.1 2,0 -2,-%
[ ] *2,9 2, 8 =2, 3 2,2 2,1 2,1 200 =2,°i c=2;%a =2,-%
TRiat 10 N.1
Ni.
0 1 2 3 4 5 [ 7 8 9 10
0 13§25 12,24 11,33 10,22 9,21 8,20 7,19 6,18 5,47 4,16 3,15
1 11323 10,22 9,4t 8,20 7,49 6,18 $ey7 4,16 3,1° 2,14 1,13
2 952‘ ’120 7.19 elle 5:’7 4,16 "15 2,14 1'1-’ 0012 -1,11
3 7,19 6,10 5,17 4,16 3,15 2,14 1013 0,12 1,18 2,10 -2. 9
4 $.1? 4,16 3,19 2,14 1,43 0:32 =181 =2,10 =2, 9 -2, &8 -2, 7
S 3015 2,14 lo" 0,12 -1,11 -2,10 2, v -2, 8 [ [}
[) 1,13 0,12 =~3,43 =2,10 -2, 9 -2, 8 -0 -2, ¢ 5 4
7 =1:18 2410 =2, 9 -2, 8 -2, 7 -2, 86 2,5 -2, 4 3 4
[ ] “2e 9 2,08 -y} -2y 0 -2, % -de § g v 2,3 1 0
9 =27 2,6 =2,8% -2, 4 2,3 -2,2 ¢ -2, 1 1
10 '2; ] 2, 4 -2, 3 2. 2 2. 1 -2, 1 =2+ U 241
4
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Table 3.4
Typical Sequential Sample

50

D E nl. X
1 1l 1 1 1 1
2 1 1l 2 2 2
3 1l 1 3 3 3
4 1l 1l 4 4 4
5 1 1l 5 5 5
6 1l 1l 6 6 6
7 0 0 6 6 6
8 1l 1l 7 7 7
9 1 1 8 8 8
10 1 1 9 9 9
D

9

E 1

10

Figure 3.5 Observed 2x2 Contingency Table
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3.5 EVALUATION OF THE TWO DECISION TEST REGIONS

This section describes the evaluation of the sequential
test plans for 2x2 contingency tables. The direct method of
sequential analysis, as outlined in Section 2.2, is used to
find the exact values of the important test properties. It
will be shown below how to compute the OC function and the
distribution of the decisive sample number (DSN). From these,
one can also find the ASN function and the true a and [ ecrror
probabilities, a' and RB'. The two decision test procedure
obtained in Section 3.3 is evaluated as a numerical example.
The results given here are extended in the following section to
treat exact evaluation of test plans for a three decision test
procedure.

As explained in Section 2.2, the direct method is used by
computing both the probability of making each decision and the
distribution of the probability remaining in the continuation
region at each trial. The probabilities at trial n+l are com-
puted by convoluting the probability remaining in the continua-
tion region at trial n with the sample taken at trial n+l. This
is done for each trial n=1,2,...n0, where n, is the truncation
trial at which the sequential test is terminated. In order to
use the direct method, these probabilities are computed for ecach
possible value of some statistic which is both sufficient and
transitive. Transitivity of a statistic S implies that the

distribution of S at trial n depends only on the value of § at
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trial n-1 and the data observed at trial n. A transitive sta-
tistic is necessary to compute the probability of the values of
the test statistic from one trial to the next. The minimal

sufficient statistic (x,nl_,n.l) is also (obviously) transitive

and is used here to compute the probabilities necessary for the

direct method.

E Each point in the sample space at trial n can be denoted

by (x,n1 /N 1). From each point (x,n1 /N 1) which is in the

continuation region at trial n, the statistic will take on any

one of four values at trial n+l, namely (x+l,n, +1,n l+l),

1
(x,nl.,n.l+l), (x,nl.+l,n.l) or (x,nl.,n'l) with the probabilities

shown in Figure 3.6.

[ S < e

-

(x+1. nl.+l, n.1+10 n+1) {pll}

(xony *#Ln 1on4d)  {(p) Py

(Xemy om q00)

Gemy on 40t (e 3-py )}

(x,ny +n_5,0tl) {‘l"Pl.‘P.l‘Pll’}

Figure 3.6 Possible Outcomes at Each Trial
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The procedure begins at trial 0 where the only possible
"outcome" is (x=0,n1.=0,n.1=0) which therefore has a probability
of 1. The probabilities of reaching each point (x,nl.,n.l) at
trial n for n=1,2,...n0 are computed recursively starting with
this point at the origin.

As shown in Figure 3.6, the probabiiity of reaching each
point inside or on the boundary of the sequential test region is
a function of the true state of nature. Because the marginal
probabilities Py. and p , are assumed known, the state of nature
is completely specified by Py, alone. The operating character-
istic (OC) and the average sample number (ASN) are functions of
the true state of nature and one can specify as many points as
necessary or desired at which to evaluate the properties of the
sequential test.

After choosing a particular value for the state of nature,
the probability of reaching each point in the sample space is
computed. This is done by convoluting the probability remaining
in the continuation region at trial n with the sample taken at
trial n+l. This is done in the following manner.

Let Ain denote the event of accepting hypothesis Hi’
i=0,1 and Cn the event of being in the continuation region at

trial n. That is
A0n= ,(x,nl.,n.l,n)|x5cL(n1_,n-1,n)f

(3.28)
Al = ;(x,nl.,n.l,n)|x3cU(n1.,n.l,n);

C =
n

(x,nl‘,n.l,n)ch(nl_,n.l,n)<x<cU(n1 ,n.l,n)f
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The recursive formula used to find the probabilities for each
point in the (x,n1 n 1,n) space is:
Pg(x/ny 4m_1s0i Py P 1/ )=

(3.29)
I(x-l,nl.-l,n.l-l,n-l)PS(x-l,nl.-l,n.l-—l,n-l;pl.,p.l,pll)pll

*xony o0 y-len-l)Bg(x,n) .0 y-l.n-lipy P 3Py} (P 3-Pyy)
rdoeny Sdon entl) Belnony Shon, cnmLing B g 0Py )Ryl SR )

+1(x,ny o0 n-1)Pg(x,ny ,n y,n-1;py ,P 1,P1;) (1-P ;+P;;)
where

l if x%x=n, =n .=0
Pg{xyny 4n 1,0ip) 4P y/Pp4)=

1. .1
0 otherwise
1 if (x,nl_,n.l,n)ccn

I(x,nl N 1,n)= {
© 0 otherwise

The indicator function I accounts for the fact that the test
terminates when one of the critical values is reached. Of course,
the probability of all of these points need not be computed; one
need only compute the probabilities of those points which are
inside or on the boundary of this four-dimensional sequential test
region (other points have probability zero).

It should again be noted that the probahility of reaching

any point (x,n, ,n l,n) in the sample space, for a fixed size

1.

sample of size n is a multinomial distribution; that is,

Pplx,ny yn yinpy 4P 1/P1y)= (3.30)
n, -x n -X n-n., -n +Xx
X 1. ! 10 .1
nipy; (Py -Pyy) (P 1-Py;) (1-py -P y*P;;)

x!(nl.-x)!(n 1—x)!(n—nl -n . +x)!

1
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The probability of reaching this point under the sequential

test rules, as computed from (3.29), can also be expressed us

Ps(x'“l.'".1’"'91.'p.1'911)= (3.31)
n -X n l-x X

X .
K(x,ny »n y,n)py, (P) ~Ppy) (P 1-Pyy) (1-p; -P ;*Py;)

where x4=n-nl.-n.l+x and K(x,nl.,n_l,n) is the number of admissable
paths to the point (x,nl.,n.l,n). This leads to a computational
simplification whan one desires (which is usually the case) to

find these probabilities for several or many different values of
the true state of nature. If one computes (using (3.29)) the
probability of reaching a point (s,nlo,n.l,n) under the sequential
test rules for a specified state of nature Pyyr the probability

of reaching that point under the same sequential test rules, but

with true state of nature q,4 is

Ps(x'"l.'“.1’“'91.'9.1’q11)= (3.32)

Ps(x'nl.’n.]_;n'p]__’p,l'pll) PF (X,nl.,n.l;n:pl.rp_qull)
PF(xlnl.In.l;nlpl.lp.lipll)

PF(-) is, of course, relatively easy to compute. This simplifi-
cation is used in the computer programs (which are listed in the
Appendix) for finding the sequential test properties.

It is desired to compute the OC function and the distribution
of the DSN for different specified values of the state of nature.
From these, it is a simple matter to find the ASN function and

the true a and (¢ error probabilitics.
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The probabilities of each of the events Ain,i=0,1 are
computed for each specified state of nature Pyp- This is done

as follows:

P (AL )=

n'P11

n n IU
220 n §=o xErp Ji (%eny on o) Polx,ny unoyinepy 4P 40Py)

(3 28)

n

where IL=MAX(0,n1 +n 1-n)

IU=MIN(n1 )

.1
1 if (x,nl.,n.l,n)sAln

Ji(x,n 0 otherwise

1.0 =

The indicator functions Ji’ i=0,1 are used to sum only those
probabilities which are on the boundary of or outside the sequen-
tial test region. Once these probabilities have been computed,
the distribution of the DSN can also be computed.

The probability mass function of the DSN is

P(n;pll)=P(A0n\JAl )=P(A0n )+P(Aln ) (3.34)

n‘P11 PPy iP1y

This is computed up to Ny the truncation point where

cU(nl.,n.l,n)=cL(n1.,n.l,n)+l for all possible combinations of
n, and n 1° The ASN function is then computed as
"o
ASN(p11 =n§lnP(n;pll) (3.35)

Other moments of the distribution of the DSN can also be

found. The variance of the DSN is
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n
P 2 .
VSN(pll)—ngl(n ASN(pll)) P(n,pll) (3.36)

Similarly, the kth moment about the origin can be expressed as

Mo

E(nk;pll)=n;1nkP(n;pll) (3.37)

Defining Cn to be the event of being in the continuation
region at trial n, the ASN function can also be expressed as

-1

"o
ASN(p,q)=1+ Z, P( ). (3.38)

1 Cn;pll

This alternate form is given by Aroian (1975) and shows how
the ASN function "builds up" at each trial of the sequential
test. The OC function of the sequential test is computed as

N

OC (p,,)=_Z,P (A0 ) (3.39)

niP11
and the true o and B error probabilities are

a'=l-OC(p0)
(3.40)
'=
OC(pl)
The computer program listed in the Appendix finds both
*he OC and ASN functions Sfor a given sequential test region.

Also computed is the probability of continuing to trial n,

from trial n,-1(P(C_ )Y. This is the most important point on

-1
0
the CDF (actually one minus the CDF) of the distribution of the
DSN and gives the probability that the test will be terminated

at trial n the truncation point. 1In general, this probability

ol
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v+ 11 be large if the ASN is also large. It is a good measure
to help one decide if the sequential test has been truncated
too soon.
The test properties have been found for the sequential test
region obtained in the numerical example given in Section 3.3.

The hypothesis being tested is
HO: pll=p0=0.25

versus HI: p11=pl=0.40

with desired error probabilities a=0.05 and 8=0.1.

These properties were computed using the computer program
given in the appendix and are displayed in Table 3.5a. Graphs
of the OC and ASN functions are shown in Figure 3.7. It can be
seen that the ASN function varies between 8.73 and 15.63 and
that the true a and R erro. probabilities for this sequential
test are a'=0.057 and B'=0.085, which are very close to the desired
values.

In some cases, the true a and B error probabilities ob-
tained from a given test plan turn out to be different than what
is desired (here, a'=0.057-0=0.05). In such cases, modification
of the test region at the truncation point can be used to achieve
the desired error probabilities. Certain points can be moved from
the region for acceptance of Hl to the region for acceptance of
HO. This can be done in a systematic manner by examining the

probability of reaching the points in question, under the truc

states of nature specified by Ho and Hl (these probabilities are




0
™

o

LA A R LU RU RU RV EV RV XV RV EU RV XV XV X XY

® ® ¢ 2 o @ & v s e ® @ e o o s e
LA A R L RV RY U RU RV FVU RV NV RV NV RV U Y
0000000000000 00
® * o ® ° 4 ® 3 ® ® @ o ° e e = e

0000000000000

b2
[
.
o
.
VI WABARAARAVARARARWN .,

® ® ® e o 6 © 8 e ® ® o e ° e o ® @
(S AU RU RURU RUNT KU U RS NE R RS RU RS RU RS AN |
- E-N-R-N-N-N-N-N_-N-N-N-N-F-N-N-N-N-3
@ ® 8 2 o o © ® ® ® ® ® ® & @ ° o @

Pya

0.2300
0,2400
0.2500
0.2600
0.2700
0.2800
0.2900
0.3000
0.3200
0,3400
0,3600
0.3700
0,380¢
0.3900
0.4000
0,4100
0.4200
0.4300

P13

0.2300
0,2400
0.2500
0.,2600
0,2700
09,2800
0,2900
0.3000
0.,3200
0.,3400
0,3600
0,3700
0,3600
0,3900
0.,4000
0.,4100
0,4200
0,4300

Table 3.5a

Test Properties for the
Two Decision Example

P(Ho)

0.97390
0.9§084
0.94278
0.9185%
0.84709
0.84750
0.79925
0.74234
0.608/7
0.45103
0.29959
0.24222
0.17339
0.13434
0.08542
0.056u8
0.03510
0.03087

P(Hl)

0.02609
0.03913
0,05722
0,08144
0.112914
0.,15250
0.20075
0.25765%
0.39423
0,54897
0.70040
0.,76777
0.82661
0.87565
0,91457
0.9439%
0.96489
0.97912

Table 3.5b

ASN

8,73

9.41
10,13
10.69
11.67
12.44
13.19
13.89
15,02
15,63
15.58
15.30
14,87
14,30
13.63
12,88
12.10
11.31

Test Properties for the
Two Decision Example

(Favoring Ho)

P(Ho)

0.98415
0.97672
0.96640
0.95237
0.94370
0.90939
0.87849
0.84013
0.74853
0.60613
0.45168
0.37226
0.29545
0,22459
0.16185
0.10987
0.0§942
0.04027
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P(Hl)

0.01585
0,02328
0,03360
0,04763
0.06630
0.09060
0.12150
0.45986
0.,26107
0.3938%
0.54832
0.62774
0.,70455
0.77564
0,8381¢4
0.89012
0.93058
0.95973

ASN

8,73

9.41
10.13
10.89
11.67
12,44
13,19
13.89
15.02
15.63
15.58
15.30
14,87
14,30
13.63
12,08
12,10
11,31

P(C )

no-l
0,03671
0.05196
0.07091
0,09345
0,11900
0.14652
0.17450
0.20097
0.,24061
0.24941
0,22026
0,19333
0.16112
0.12666
0.09309
0.,06323
0,03905
0,02144

p(Cn -1)
0.03671
0,05196
0.07091
0.09345
0.11900
0,14652
0,17450
0.20097
0.2406%
0.,24941
0.22026
0.19333
0.16112
0.12666
0.09309
0,06323
0.03905
0,02144
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obtained by using the direct method of sequential analysis).
This type of modification will of course result in some loss of
power. Table 3.5b shows the test properties for the previous
numerical example with the region modified in this manner.

It is seen that a' is reduced from 0.057 to 0.034 and that the
power (1-B') is reduced from 0.915 to 0.838. It should be noted
that the ASN function and P(Cno_l) remain the same for such
modifications. Such procedures for region modification are used
in succeeding numerical examples and are treated more fully in
Chapter 7.

In order to show the relative superiority of this sequential
procedure, the above results are now compared, for the one-sided
test procedure, with a similar fixed size sample test. The fixed
gsize test with sample size n*=20 is used. The critical region
(for rejection of HO) for this test was found by including in it
all of the points which favor Hl and have the smallest proba-
bilities summing to 0.057, the true a error probability of the
sequential test. The power function for this fixed size test
is shown in Table 3.6. It is seen from this that the sequential
test has both higher power and an ASN function which is uniformly

less than the fixed size sample number, n*=20.




.31
.32
.33
- 314

K .35

.36
} .37
: .38
.39

Lana, b i
g - o Wi

£

.41
.42
.43
.44

.45

Table 3.6

Power Function for the Fixed Size

Sample Test (n*=20)

P(H)ipy;

.0136
.0186
.0250
. 0333
.0438

.0571
.0737
.0942
.1193
.1495

.1854
.2274
. 2757
.3300
: 3902

.4552
. 5238
.5942
.6644
.7322

.7952
.8513
.8987
.9363
.9640

.9823

)
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3.6 EVALUATION OF THE THREE DECISION TEST REGIONS

This section describes the method whereby one can obtain
the test properties of the three decision sequential test regions
found in Section 3.4. The evaluations performed here are similar
to those in the previous section; the preliminary information
presented there is not repeated here. Again, the OC function
and distribution of the DSN are found, from ;hich one can casily
obtain the ASN f .nction and the true a and [ error probabilitices.

At each trial, an observation is taken and either one of

the three hypotheses is accepted , terminating the test, or the

TN

test is continued by taking another observation. This can bc

continued up to trial n the truncation point.

: 0’
l Let Ain denote the events of accepting hypotheses Hi at

trial n, i=0,1,2 and Cn the event of continuing to trial n+l.

(Note: P(C0)=l, P(Cn )=0.) There will be an OC function asso-
0
ciated with each of the three hypotheses giving the probability

of accepting Hi under a specified state of nacure Py Each

point in the sample space can again Be denoted (x,n, ,n .,n).

1.77.1

Each of these points is a member of one of the above-mentioned

sets, that is,

Al = {(x,nl.,n.l,n)|x§cL(nl',n.l,n) and x:zd; (n; ,n ,n) !

L

AO = {(x,nl.,n.l,n)Ixzcu(nl.,n_l,n) and xzd; (n, ,n ,n)}

Ltes s, (3.41)

n'l,n)lxzcu(nl',n.l,n) and x:d, (n

A2n= {(x,n ,nhl,n)}

1.’ 1.

or the continuation region, Cn
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Again, it is necessary to find the probability of 1caching
each point in the sample space under the specified sequential
test rules and different states of nature; that is, Ps(x,nl.,n.l,n)
Using the same general procedure outlined in the last
section, these probabilities are found recursively using the

following formula
PS(x'nl.’n.l;pl.’p.l'pll)= (3.42)
I(x-l,nl.-l,n.l—l,n-l)Ps(x-l,nl.—l,n.1-1,n-—l;pl.,p.l,pll)p11
+I(x'nl.'l'".l’"'l)Ps(x'nl.'l'n.l'n'l;pl.’p.l’pll)(pl.—pll)
+I(x,nl_,n.l-l,n-l)Ps(x,nl.,n.l-l,n-l;pl.,p.l,pll)(p.l—pll)

BRI Ls LR slxany T oS LRy R NG R e R R )

where

1 if x-nl.=n-l=0

P.(x,n, ,n .,0;p;, /P ,+/P,,)=
S 1.7°.1 1. 1711 0 otherwise

0 if (x,n.l,nul,n—l)rcn

and I(x,n, ,n l,n-l)=

1 1 otherwise

Here the indicator function I accounts for the fact that the test
terminates when the test statistic leaves the continuation region.
The simplification for computation of these probabilities given in
the last section is also applicable here.

The probability of each of the events Ain, i=0,1,2 is computed

for each trial n=1,2,...,n0. This is done as follows

kst N il i peasad o
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P(Aln,pll)=
n0 n0 IU
n1£=0 o §=o x=ap, Ji (¥eny on pemPgixyngy un oyunipy 4P qePpy)

1 if (x,n, ,n ,,n)cAl
Lo ot n (3.43)

1 0 otherwise

and IL=MAX(0,n, +n l-n)

1

IU=MIN(nl.,n.l)

The probability mass function of the DSN can be expressed as

2 2
P(nipy,)=P(YyAi )= E P(AL ip;,) (3.44)
and is computed for n=l,2,...,n0. The ASN function 1is then
Mo
ASN(p,,)=_Z,nP(n;p, ) (3.45)

Other moments can similarly be expressed as in (3.37).

th

The OC function of the i hypothesis gives the probability

of accepting that hypothesis as a function of the true state of

nature and is computed as
n

Oci(p11)=nélp(Aln'pll) (3.46)
The true a and B error probabilities for each SPRT are found as

ai=0Cl(pO) Bi=OC0(pl)
(3.47)

@,=0C, (py) B5=0Cy (py)

The above properties, along with the probability of continuation
to trial n,, are computed by the computer program listed in the

Appendix.
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For the numerical example concerning the three decision
test given at the end of Section 3.4, the hypotheses being tested

are

Hl: p=pl=0.10

versus HO: p=p0=0.25 (3.47)
versus H2: p=p2=0.40

with desired error probabilities a1=a2=0.05 and Bl=82=0.1.

The exact test properties for this example are given in Table

3.7a. The OC and ASN functions are graphed in Figure 3.8.

Table 3.7b shows the test properties for the same sequential

test region, using the same truncation modification described

in Section 3.5.




Table 3.7a
Test Properties for the
J Three Decision VWxample
P). P P11 P P i) ALY ASN Mgt
0.5 0.5 0.,0500 0.999u1 0.00099% 0.00000 9,80 00436
0.5 0,5 0.0800 0.98307 0.01632 0.00000 12,28 8:04395
0.5 0.5 0,1000 0.64501 0.05497 0.00002 14,11 0,10509
0.5 0.5 0.31200 0.86642 0.13550  0.00007 15,81 0,18249
0.5 0.5 0,1500 0,64960 0,32974 0.00045 17.%6 0,27289
0,5 0.5 10,1800 0.43817 0,56934 0.00248 18,06 0,27889
4 0.5 0.5 0,2000 0.24224 0.7107¢ 0.00704 17,87 0,24245
0.5 0.5 0.2300 0.14496 0.R4690 0.02814 17,41 0,18001
E 0.5 0.5 10,2400 0.09038 0.86727 0.04234 17.33 0,10872
6.5 0.5 0,2500 0.06365 0,67433 0.06201 17,30 0,1651%
0.5 0.5 0.2600 0.043¢64 0.86797 0.08836 17.3% 0,16991
0.5 0.5 0.,2700 0.02913 0,84827 0.122%9 17,45 0,16238
0.5 0.5 0.3000 0.00740 0.71349  0.27911 17,98 0,24781
0.5 0.5 0.3200 0.00262 0.57233  0.42504 18,22 0,20613
0.5 0.5 10,3500 0.00047 0.,33201 0.6675) 17,79 0,28357
0.5 0.5 0.3800 0.00007 0.13455  0.86537 16,07 0,18798
0.5 0.5 0,4000 0.00002 0,05541  0.94457 14,35 0,10886
0.5 0.5 0.,4209 0.0000n 0.01645 0.9835% 1c.47 0,04537
0.5 0.5 0,4500 0.0pnUY9 0.00099 0.99900 9,89 0,00451
Table 3.7b
Test Properties for the
Threc Decsion Example
(Favoring Ho)
P, P, Py P(H,) P (Hy) P(H,) ASN P(Cno_l)
0.5 0.9 0,0500 0,99488 0.00512 0,00000 9,80 0,00436
0.5 0.5 0,0800 0.945%214 0.05478 0.00000 12,28 0,04395%
0.5 0.5 0,1000 0.82923 p.14074 0,00002 14,11 0,10509
6.5 0.5 0,1200 0.729¢8 0,27065 0.00007 15,81 0,18249
0.5 0.5 0,1500 0.49296 0.50665 0.00039 17,56 0,27289
0.5 0.5 0,1800 0.27813 0,72005 0.00181 16,06 0,27889 y
0.5 0.5 10,2000 0.17198 0,82344  0.00458 17,87 0,24245 1
0.5 0.5 10,2300 0.07238% 0.,91144 0.01621 17,41 0,16001 2
0.5 0.5 0,2400 0.02220 0.92393 0.02386 17,33 D,16872
0.5 0.5 0,2500 0.03697? 0,92B51 0.03451 17,30 0,16519 §
0.5 0.5 0,2600 0.035714 0,92527 0.04901 17,35 0,1699; K
0.5 0.5 0,2700 0.0175%5  0,91400 0.06835 17.45 0.18238 3
0.5 0.5 0,3000 0.00%00 0.82962 0.16537 17,98 0,24781
6.5 0.5 0.,3200 0.00197 0.72780 0.27022 18,22 0.,28613 4
0.5 0.5 0.3500 0.00042 0.51463 0.48494 17,79 0,28057
0.5 0.5 10,3800 0.20007 0.27622 0.72371 16,07 0,18795
0.5 0.5 0,4000 0.00002 0,14405 0.85593 14,35 0.,10836 1
0.5 0.5 0,4200 0.00000 op.0562y1 0.94378 12,47 0,04537 1
0.5 0.5 0,4500 0.00000 0,00527 0.99473 9,89 0,0045%
c7
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CHAPTER 4

SEQUENTIAL TESTS WHEN THE MARGINAL
PROBABILITIES ARF UNKNOWN

4.0 INTRODUCTION

This chapter treats sequential methods for testing 2x2
contingency tables when the marginal probabilities are unknown.
Section 4.1 discusses these tables and the hypothesis being
tested. Also introduced is the cross product ratio, the param-
cter on which the sequential tests are based. Section 4.2
examines Fisher's exact test for 2x2 tables with small samples,
along with the related "extended hypergeometric distribution.”
Section 4.3 develops the theory for the construction of the
sequential test regions for both two and three decision test
procedures. The last section shows how the exact properties of
these regions can be determined. Numerical examples are also

given.
4.1 THE HYPOTHESIS BEING TESTED AND THE CROSS PRODUCT RATIO

The underlying probability model for the 2x2 contingency
table treated here is the same as that given in Figure 3.1,
except that in the case considered here, the marginal proba-
bilities P;. and p, are assumed to be unknown. This is the
casc termed the "double dichotomy" by Barnard (1947a) and dis-

cussed in Section 1.3. The hypothesis being tested is for

69
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independence or for some specified degree of dependence bhetwcen
the two marginal distributions. As indicated in Section 3.2,
this can be expressed in terms of several different parameters.
The most convenient parameter to use for the present case is
the cross product ratio (CPR)

Py (1-Py <P 1*P)y)

(4.1)
(py,-Pyy) (P 1-P;)

t=

The cross product ratio has a long history in the analysis
of contingency table data for which it has been used as a measure
of association. When t=1, the two marginal distributions are
independent. For t>1 there is negative dependence, and for t<l,
there is positive dependence between the marginal distributions.

The hypotheses for tests of independence car be expressed as

(4.2)

versus Hl: t=tl#l

The cross product ratio is only one of many measures
of assoriation which have been proposed. The papers of Goodman
and Kruskal (1954, 1959, 1963 and 1971) discuss many of thesec.
Some are functions of the X2 statistic; others are functions
of a difference of probabilities or of ratios of probabilities.
Most authors, however, agree that the cross product ratio,
as a measure of association, has most of the desirable charac-
teristics, certainly more than most other measures which have
been proposed for use with 2x2 tables. This point is made, for
example, by Fleiss (1973) and Edwards (1963); the latter asserts

that the measure of association in a 2x2 contingency "should
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logically be some function of the cross-ratio." Fleiss also
mentions some criticism of the cross product ratio, first
pointed out by Berkson (1958). That is, the level of each rate
is lost in computing the ratio; this, however is true for
almost all measures of association.

It seems that the CPR first appeared as the parameter of
interest in Fisher's exact test (Fisher, 1935) for 2x2 tables,
as discussed in the next section. Wald uses the closely related
odds ratio for comparing two unknown binomial properties. The

odds ratio between two binomial probabilities is

pl(l-pz)
t= W (4.3)

Such tests are discussed in the next chapter. The odds ratio is
also the parameter which is used to specify the hypotheses in
Girshick's sequential two sample tests for Darmcis-Koopman type
populations (Girshick, 1946). Contours for the odds ratio with
respect to P, and p, are shown in Figure 4.1.

Cornfield (1956b) uses the cross product ratio in retro-

spective studiems. Fleiss (1973) discusses this and further ex-

plains the invariance of the measure to different types of studies.

This type of invariance is an important advantage of the CPR.
That is, if researchers are studying a phenomenon using different
methods (e.g., retrospective versus prospective studies) the
measure of association being studied will, on the average, be the
same for the different studies. Also, the odds ratio is the

natural parameter of association when a logistic model is used.
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The logistic form is treated by Cox (1958) and Gart (1971), and
is briefly discussed in the next chapter.

Estimates and confidence limits for the CPR and odds ratio
can also be found. Methods for doing this are given, for example,
by Fisher (1962), Goodman (1964) and Harkness (1959). A computer
algorithm for finding such estimates and confidence limits is
given by Thomas (1971). Sequential tests of hypotheses concerning
this parameter are treated in this chapter.

Because inferences are to be made on the cross product ratio
or the odds ratio, rather than the actual probabilities in the
table, the marginal probabilities are so-called nuisance param-
eters. That is, their values give no information concerning the
inferences to be made, but they do affect the overall power of
the procedures used.

The following is a justification for the use of the cross
product ratio when making comparisons between probabilities.

This short discussion concerns the comparison of two unknown
binomial proportions; the ideas presented, however, are useful
when testing for independence in the 2x2 contingency tables con-
sidered here. When comparing two binomial probabilities, one

might consider using the difference between the probabilities
4=py P,

to measure the degree of inequality. This is a rather poor
measure, however, because the importance of a given value of A

depends on the actual magnitudes of Py and P,- For cxample, the
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with small samples. This fixed size test is developed and dis-
cussed here. The test is to be used with the probability model
shown in Figure 3.1, with unknown marginal probabilities Py
and Py The probability of observing the 2x2 table shown in

Figure 3.2 is then the multinomial distribution

Pplx,ny wn yin,py 4P )/Py,)= (4.5)
n =¥ n -X n-n -N +X
x 1. 1 ) TN
nt py; Py, 7P ;) (P 17Py;) (1=py =P 1*Pp,)
x!(nl'—x)!(n.l—x)!(n-nl.—n.l+x)!

The hypothesis of independence to be tested is expressed
in terms of the cross product ratio

Py (1-py P 1*Py))

(4.6)
(py ~Pyy) (P 1-Pyy)

t=

Wh2n t=1, the hypothesis of independence is true. As the param-
eters P;. and p , are unknown, they are nuisance parameters having
no direct bearing on the degree of association.

Thus, Fisher's exact test is conditional on the obscrved
marginal totals. The conditional distribution is indepcendent
of these nuisance parameters. The probability of observing the
sample table shown in Figures 3.2, conditioned on the obscrved

marginal totals, n and n is then easily shown to bc

1. 1

P_ (x;n

C 1.'"

AR — (4.7)
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where IL=MAX(0,n, +n l-n)

1

IU=MIN(n1 )

.1

and t is the cross product ratio. For the case of independence,

nl. n_nl.
X n =X
PC(x,nl.,n.l,n,l)= =\ (4.8)

This is simply the hypergeometric distribution for which tables

when t=1, (4.7) reduces to

of the probability mass and cumulative distribution functions are
given by Lieberman and Owen (1961).

Fisher's exact test for independence is conducted by
choosing as the critical region (for each of the different com-

binations of n and n 1) those values of x which have the smallest

1.
probabilities (in one or both tails of the conditional distribu-
tion) summing to the desired significance level under the null
distribution in (4.8)., Tables for such tests are given, for
example, by Armsen (1955) and Owen (1962).

As mentioned earlier, there have been some arguments with
this approach. The controversy arises because the test is con-
ditioned on the observed margins, greatly reducing the reference

set from which the critical reqgion is chosen. Fisher's argument

(Fisher, 1935) in favor of this approach is based on the theory

of sufficient and ancillary statistics. Because ny and n 1

provide no information about the degree of dependence (i.e., t)

they are ancillary statistics. Ancillary statistics do, however,
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indicate the amount of information concerning the degree of
dependence which is available from the sample. Inferences
about t, the CPR, should therefore be made conditional on the
ancillary statistics. Lehmann (1959) shows that the uniformly
most powerful unbiased tests of hypotheses concerning t must be
based on the conditional distribution of x given (nl.,n'l).
This argument is given a more rigorous treatment in Section 5.2
where the problem is presented in the logistic form.

The distribution in (4.7) is known as the "extended hyper-
geometric distribution." This distribution gives the probability
of observing a given 2x2 contingency table, conditional on the
observed margins, for any value of t, the CPR. Harkness (1965)
discusses this distribution and its properties in detail.

While the conditional distribution in (4.7) is useful for
testing hypotheses about t, the unconditional multinomial dis-
tribution in (4.5) must be used to find the power of the test.
Harkness (1959) and Harkness and Katz (1964) treat the power of
the uniformly most powerful unbiased test (UMPUT) discussed, for
example, by Lehmann (1959). They also compare the power function

of the different 2x2 table models outlined in Section 1.3. The

power of the UMPUT test is compared with sequential tests presented

later. Following Lehmann (1959), the UMPUT of size « for

HO: t=t

0
versus Hl: t;ft:0

(4.9)

is
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,n.l) or x>c2(n N )

I xseq ) 0
¢(ny on yox)= Yy; if x=c;(n) n ,),i=1,2 (4.10)
R A AR R o e i
where 4 and v, are values satisfying the equations
E(¢(nl',n.l,x))= aE(x¢(n1.,n.l,x))= oE (x) (4.11)

and the expectations are taken with respect to the null distribu-
tion, that is, the hypergeometric in (4.8). This is a randomized
version of Fisher's test enabling the probability of a Type 1
error to be exactly a. This test is compared with the sequential
test in Section 4.4.

In the examination of the power function of the UMPUT given
by Harkness (1959), it is important to note that the « error in
all cases has a value of 0.05. That is, the probability of re-
jecting HO when t=1 is 0.05. The power, however, varies consid-
erably over equal values of t#l, depending on the values of the
nuisance parameters P, . and Py Thus the power (with respect
to t) of the test is dependent on these nuisance parameters. The
power is greatest when Py and p , are near 0.5. The reduction
of power for the more extreme values of Py and P, will also
occur to a lesser extent in the truncated sequential test devel-

oped here. This will be discussed further with the examination

of the exact test properties here and in Chapters 5 and 7.



79

4.3 THEORY FOR SEQUENTIAL TESTS WITH TWO AND THREE DECISIONS

This section develops the theory for sequentially testing
the hypothesis of independence of 2x2 contincency tables. It
is assumed that both marginal totals are random variables with
unknown probability distributions. The tests are based on the
extended hypergeometric distribution and the minimal sufficient

,n) from the table in Figure 3.2. The under-

statistic (x,n, ,n

108 Sl
lying probability model is the same as shown in Figure 3.1, with

P and p_, now assumed unknown.

To test the hypothesis

H.: t=t
L L (4.12)

versus le t=t1;‘t0

a Wald-type SPRT can be constructed by using the ratio

Ln. /Ln. = Po(x,ny wn yunity)
1 0 Pc(x,nl.,n.l,n,to) (4.13)
where PC(-) is the conditional distribution in (4.7). The rules

for the sequential test procedure are then to
accept H, if Qn(Lnl/LnO)sb
(4.14)

accept H if En(Lnl/LnO)za.

1

Otherwise the test is continued and another sample 1is taken.

Here a and b are again approximatcd by the values

a “4n(A)=n(B/(1-a))
(4.15)

b “&n(B)=4n((1-3)/«)
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The ratio in (4.13) does not represent a likelihood ratio
in the true sense of the word; it is a probability ratio, con-
ditional on the observed values of the ancillary statistics.
The values of to and t1 to be used for the test can be chosen
with the aid of Figure 4.1. Using the arqument of ancillary

statistics put forward by Fisher, the ratio in (4.13) is a

logical method of determining critical values for the sequential
tests presented here.

Paulson (1970) suggests a conditional sequential test, for
two sample problems of the Darmois-Koopman form, which is con-
ditional on an ancillary statistic. He rejects the formulation,
however, because the test properties are "difficult to deter-
mine." He then suggests a test based on the ratio of moment gen-
erating functions which would be guaranteed to meet the specified

error probabilities. By using the direct method of sequential

analysis, however, one can find the exact properties of any such
sequential tests, as shown below.
Although the individual critical values will 1in general l

be different, the sequential test regions will take on the same

form as the tests presented for the case ¢f known marginal prob-

abilities treated in Chapter 3. At each trial n=l,2,...n0, there

are again two critical values for x, cL(nl.,n.l,n) and cU(nl.,n-l,n),
for each of the (n+l)2 different combinations of the marginal totals.

The critical values cL(nl

meaning here as illustrated by the sequential test rules shown iIn

N l,n) and cU(n1 /N l,n) have the same

(3.16). The critical values for the present case are found by

inverting the log likelihood ratio equations
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b=g(x,n _,n_l,n,to,tl)=2n(Lnl/LnO)

1
(4.16)

a=g(x,n, ,n ,,n,tq,t,)=2n(Ln,/Ln)

1

again by solving for x. These values can be expressed as

_ -1
cL(nl.,n.l,n)- [g (b,nl.,n.l,n,tn,tl)]

= [(b+F(t0)-F(tl))/(Qn(tl)-Qn(to))]

(4.17)
_ -1
cylny «n 1/0)= [g (a’nl.'n.l'to’tl)] i
= [(a+F(to)-F(tl))/(Rn(tl)-kn(to)) +1 1
n ny n-n, .
where F(t)=F(n, ,n ,,n,t)= A )t and
1,k n 3 j n -3

M=[K] is the greatest integer less than or equal to K.

The sequential test region defined by these critical limits
is used in the same manner as the regions discussed in Scction
3.3. A numerical example of the above procedurc follows. It

is desired to test the hypothesis

(4.18)

versus le t=t1=9

with desired error probabilities aua=0.1 and (3=0.25. The test is
truncated at trial 25. The critical limits for this test, which
are shown in Tables 4.1la and 4.1b, were computed using the computer
program for such tests which is listed in the Appendix. The
limits for trials 1-10 are shown in Table 4.la and Table 4.1b
gives the limits for trial 25, the truncation point. The test

procedure for the present case is exactly the same as explained
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at the end of Section 3.3, for the case when the marginal proba-

bilities are known.

The construction of the sequential test regions for three 1
decision test procedure 1is analogous to the development in

Section 3.4. In this case, however, the three hypotheses arc

specified as

H,: t=t, <t

1 1 0
q = «
versus HO. t t0 (4.19)
versus Hz: t:=t2>t0
In addition, the desired o and R errors, ty ﬁl, ) and
n 82, are specified as before. Two log likelihood ratios are

then constructed as

Qn(LnO/Lnl)=g(x,nl.,n.l,n,tl,to)

(4.20)
En(an/Ln0)=g(x,nl.,n.l,n,to,tz)
where g(-) is the same as (4.16) and the test procedure rules
are the same as the ones shown in (3.25), giving rise to two sets
of critical values, one each for the first and last pair of
hypotheses in (4.19).

As a numerical example, consider the hypctheses

Hl: t=t1=0.llll

4 = = )
ver sus Ho. t tO 1.0 (4.21)

ver sus HZ: t=t,=9.0
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and al=a2=0.1 and Bl=82=0.2. ay and Bl are again interchanged
because t1<t0. The limits for the second pair of hypotheses arc

the same as those shown in Tables 4.1la and b. The critical limits

for the first pair, up to trial 10, are shown in Table 4.2.
The exact values for the properticzc of regions for both the two
and three decision test procedures are found in the next section

by using the direct method of sequential analysis.
4.4 EVALUATION OF THE SEQUENTIAL TEST REGIONS

This section describes the evaluation of the sequential test
regions for a 2x2 contingency table when the marginal probabilitics
are unknown. The regions developed in the last section are eval-
uated here as a numerical example.

The method of finding the exact properties of the sequential
test regions for the present model is essentially the same as the
procedure used for the 2x2 contingency table with known marginal
probabilities, treated in Section 3.5. This is due to the same
underlying multinomial distribution. Because the marginal proba-
bilities are unknown in the present case, they must be specified
as part of the state of nature. This means that the OC function,
the ASN function and the distribution of the DSN will be functions
of three parameters. These can be specified in a number of ways.
Because the sequential test is based on the cross product ratio,
the state of nature is specified here by Py /P, and the cross
product ratio

Py 1Py 7P y*Py,y)

(4.22)
(py =Py (P 17Py;)

t=




R

TRIAL

TRIAL

k4
BN RAUN»OD o
-

TRIAL

x
PPV BE NI O >

TRl

=
=

OO VYERAINNO

-

0
1.
-1
“1s
-1,
-1
1.

-1,
-1s
-1
=1.
-1
-1a
-1.

“1.
-1,
-1,
-1
-1s
=1,
-1a
-1

10

-1
-1
-1,
-1,
.1.
ol:
-1s
-1.
-1,
-1,

o on pa pa pa pa P >0 o po po pa pa

90 08 08 B g 2o 0- g4 pa e P 08 4o 00 B4 94 pa pa ga 54 04 00 oa 28 0o o o

"o pa o 50 02 AS pa pa po po oo

1
-1,
-1,
L3 1
20
-1,

0,

AR e e e

Nt

-y,
12 1)
-1,
-1
2 Y
-1,
8.

ROR) >e 0o pa pa pa

-1,
-1,
-1
2y
2y

0,

[ O N N e

N.1

-1,
=%,
-1.
-1,
.‘,
-y,
-1,
-4,

0,

N R A Be s s po pa e

N,

=3,
-1,
-1,
2Y
2
-1,
-1,
=1
=1,

0,

L e O o

N.1

21
-1,
=%
=1,
B Y
-1,
-1,
=1,
2 ¥
1.
0.

B AR A SL pt bt g b b P

(2 R R N

A NN re b e N A A »e o pa

e LA NN AD NS NS pa e pa WA A A s s oo pa

Ll N AR A AP e pa b P

ol G ) s e

Bt PN e b X RZR SN NN N

TR N e e Bt NI NN e e e

BB UGEN NN R -

Critical values for the

Table 4,2

Sequential Test Fxample

ALPHAS 0,290

BtTas 0,100

L} 5
=1, 1 -1, 1
-y, 2 0, 2

0, 2 1,3
1, 3 2, 4
2. ¢ 3, 9
3, 5 4 &

[] S [
1, 1 -1, 1 -1y
-1, 1 -1, 2 0

0, 2 0, 2 1,
0., 3 1, 3 Qe
1, 3 2, 4 Y
2, ¢ 3,5 4y
3, % 4, & S
¢ 3 [
"1, 1 -4 1 -1
-1, 1 -1y 2 -1y
-1, 2 0, 2 O
0, 2 0, 3 H
0, 3 1,4 0
1.4 2,4 Y
2., ¢ 3, 9 4
3. 9 4, 6 "

[] 3 [
1, 1 4, 1 =1
1, 1 -1, 1 -3,
“1, ¢ -1, 2 0

0. 2 0, 2 0
0, 2 1, 3 1v
1, 3 1. ¢ 2
1, ¢ 2, 4 3
2. ¢ 3, 95 4y
3. 1] 4, 6 S

[ S )
1,1 -1+ 1 -1y
1, 1 1,3 -
“1, 2 =, 2 -1y
-1, 2 0, 2 O

°. e 0. 3 1
o, 3 11,3 1
1. 3 1, 4 2v
1, ¢ 2, % 3
2, ¢ 3, 5 4y
;. s " é ,l

4 3 6
°4, 1 1,1 =1
“1, 3 1, 1 =1y
1, 2 -4, 2 L3 1)
-1, 2 -3+ 2 0,

0, 2 0, 2 0
0, 2 0, 3 1
0, 3 t,3 2
1, 3 4, ¢ 2
1, 4 2, 9 3
2, ¢ 3, 9 L 1]
3, , 4 ¢ 5
86

NO WAL LN NV S R

MO APAR Bl N e WA SN N

NGO O DA N

GNP SN

BN RRAULUNN - BNV AU

BN ORAUWNN»

TRIaL 1
Ny,
0
0 -t
1 1,
TRIAL 4
N"
?
0 -i.
1 -1
? 3
TRIAL 3
Ni.
0
0 -l.
1 -1,
2 -1,
L I} 91
TRIAL 4
NL.
0
0 -i.
1 -~
FH -1s
3 -1,
4 -4
8
=1, 4
0, 2
1. 3
TR
3 9
4G 6
5 ?
6 8
7, ¢
] ’
“1, 3 -1, 14
L3 ¥} 2 0, 2
% 3 1.3
1, 3 2, 4
H ¢ 9
3 4 ¢
4 O %7
8, 7 6 0
6 8 h o
7, 9 8,30
[} [ ]
4, 3 -1, 1
=1, 2 -4, 2
0, 2 0,3
L3 4,
1, ¢ 2,4
29 )9
306 4, 8
95, 7 6, 8
6 0 7.9
7, 9 4,10

[

o0 oo pa 9o [ X

5o 08 ga po po

N.3

1
-1, 1
0, 2

N.g

1, 1
-1, L
0, 2

N.g

-y
-1,
-1,

0,

N e oo pa

[
-
L B R B N N LN

o1,
1,

-1,
-1,

1,

-y,
-1,
-1,

1,

S ND A oo oo

5N -

BLINN W

LR N TN




87

The procedure for determining the sequential test properties
which is described in Section 3.6 is used here with one modifi-
cation. As explained above, the state of nature will be spec.ficd
by (pl.,p.l,t). Because the state of nature must be specified in
three dimensinns, the test properties can be expressed in a graph
only if two of the parameters are held constant. A contour plot
can be used if one of the parameters is held constant. Tables of
the important test properties, however, are given below.

For the two decision example given in Scction 4.3, the
truncated sequential test for

H.: t=t =1
0 0 (4.23)

versus le t=tl=9
and a=0.1 and B=0.25 is evaluated for p1.=.l(.l).5, p.1=.1(.l)p1.
and t=1(2)9 (other values being unnecessary because of symmetry).
The same values of the state of nature are used to evaluate the

three decision example given in Section 4.3 to test the hypothesis

1} t=t1=0.llll

versus H.: t=t.=1 (4.24)
versus H2: t=t2=9

with a1=a2

=0.1 and Bl=82=0.25.

Both the OC and the ASN functions are given for these examples a
1
in Tables 4.3 and 4.4 for the two and three decision examples ]

respectively,
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1 Table 4.3
Teswt Properties for the
I Two Decasion Test Exomple
. Py Py t A i) Po) ASN "“no-l)
0.1 0.1 G,0100 1.000 1,00 0,87038 0.12v081 21.24 0,632066
0.1 0.1 0.,0220 3,000 2,40 0,09234 0.,30/8> 22,00 0.,71927
0.1 0.1 0,0300 5.000 3,00 0.5805) 0.4194/ 22,16 0,726%7
0.1 0.1 0,03%0 7.000 3,50 0.%0492 0.49%48 22.12 0,71714
0.3 0.4 10,0390 9,000 J,0n 0.44961  0.5%0)39 22.01 0,70267
0.2 0.1 0.0200 1,000 1,00 0,88487 0.13.3¢ 18,34 0,4825)3
6.2 0.1 0,0390 3,009 1,9% 0.64830 v.3%163 19.97 0,57048
0.2 0.1 0,0%00 9,000 2,59 8.5162%  0.48.574 29,32 0,5M138
0.2 0.1 0.0%70 7,000 2,89 0.4307Y 0.%6v20 20,34 0,56970
0.2 0.1 0.,0620 9,009 3.0 0.37154 0.07040 20.25 0,5%270
0.2 0.2 0,0400 1,000 1,00 0,87970 0.12u29 14.50 0,23948
0.2 0.2 0.0730 3,00% 1,83 0,61382 b.38017 16.86 0,35806
0.2 0.2 0.0890 5.000 2,22 5,44968  §.,%5031 17.21 0.35962
0.2 0.2 0,3000 7,000 2,50 0,34722  0,05.78 17,10 0,33709
0.2 0.2 0,1080 9,000 2.70 0.,27909 0.72690 16.085 0,31116
0.3 0.1 0,0300 1,000 1,00 0,85087 0.14v12 16,77 0,39245
0.3 0.3 0.0%30 3,000 1,77 0.61452 0,385%47 19.17 0.,53083
0.3 0.1 0,00640 $.60) 2,13 0.47972  0,%2027 19,84 0,55260
0.3 0.t 10,0730 7.000 2,3 0,39638  0.0056¢ 20,01 0.%4876
0.3 0.1 0,07%0 9,090 2.5%0 0,3404¢ 0.65v50 20.07 0.538614
0.3 0.2 0.,0600 1.000 1.00 0,88417 0,118 12.78 0,17784
0.3 0.2 0.1000 3,000 1,67 0.60035 0.399¢84 15.59 0.,29536
0.3 0.2 0,1890 5,000 1,98 n,42962 0.5703/ 16,04 0,29913
0.3 0.2 0.3310 7,000 2,18 0,3264) 0.673%0 19.96 0.27249
0.3 0.2 0,1390 9,009 2,32 0,25953 0.74047 1%.7% 0,24779
0.3 0.3 0,090 1,000 1,00 0,89764 0.10¢3% 10,92 0,10730
0.3 0.3 00,1410 3,009 1,57 0,%96006 0.40313 13.82 0,2048)
0.3 0.3 0.,1640 5,000 1,82 0,41428 0.58573 14.17 0,19028
0.3 0.3 90,1790 7.000 1,99 0.30629 0.6937% 13,99 0.17376
0.3 0.3 0.,1890 9.000 2,310 0,23793  9.76c00 13.68 0,149%2
0.4 0.1 0.0400 1,000 1,00 0.,01847 v.318152 16,23 0,38027
0.4 0.1 0,00640 3,000 1,60 0,56767 0.43¢33 19.24 0,54697
0.4 0.2 0,0740 9,000 1,8% 0,43663 0.%6336 20.16 0.58931
0.4 0.3 0.0799 7,000 1,97 0.35909 0.6409Y 20.9%95 0,59699
0.4 0.3 0.0830 9.¢c99 2,07 0.3081¢ 0.6918% 20.76 0.60011
0.4 0.2 0.,0000 1.000 1,00 0.07750 0.12¢50 12.27 0,17214
0.4 0.2 0,1230 3,000 1,94 0,50243 C.417%7 19.49 0,29740
0.4 0.2 0,140 5,009 1,78 0,41278 0.58/2% 16.14 0,30122
0.4 0.2 0.1%20 7,000 1,90 9,31300 0.68700 16,22 0,2027¢
0.4 0.2 0.1%90 9.000 1,99 9,24929 0.7%u7% 16.14¢ 0,261908
0.4 0.3 0.1200 1,000 1,00 0,89897 0.1010¢ 10.26 0,09047
0.4 0.3 0.,1760 3.000 1,47 0.58901 0.43019 13.31 0,10280
0.4 0.3 10,2000 5,000 1,67 0.40547 0,59453 13,70 0,17589 ;
0.4 0.3 0.215%0 7,000 1,79 0,29833 0.701684 13.96 0.1%272 X
6.4 0.3 0.,2250 9,000 1.87 0,23135 0.76c64 13,29 0.13038 E |
0.4 0.4 0.1600 1,009 1,00 0.90448 0,09551 °.38 0,0827% 1
0.4 0.4 10,2230 3.000 1,39 5,990C0  0.4099Y 12,34 0,14090 ]
0.4 0.4 0.2500 5,000 1,5¢ 0.40133 0.%9060 12.65 0,13228
0.4 0.4 0.2070 7,000 1,67 0.29274 0.7072% 12.43 0,11019 3
0.4 0.4 0,2780 9.000 1.74 0,225%% 0.77445 12.10 0,08990 3
0.9 0.1 0.,0500 1,000 1,00 0,77772¢ 0.22229 16,52 0,41334 K
0.5 0.1 0.0730 3,000 1,48 0.5108%9 0.48140 19.91 0.,63142 3
0.5 0.4 0,080 $.000 1,862 n,39573 0.60427 20.99 0,66701
0.9 0.1 0.0860 7,090 1,72 0.,32%69 0.67630 21.50 0,009682
6.9 0.1 0,00880 9.000 1,78 6.28067 0.71932 21.60 0,70080
0.5 0.2 0.1000 1,000 1,00 0.,06300 0,13099 12.%8 0,19944
0.5 0.2 0,1420 3,000 1.42 0,%9508% 0,944,085 16.2) 60,3440 7
6.9 0.2 0,1580 9.000 1,58 0,3948%¢ 0.6019 17.11 0,3%83% b
0.9 0.2 0.1670 7.000 1,67 0.30104  0.6909¢ 17.39 0.347¢7 s
0.5 0.2 0,1720 9,000 1,72 0.24162 (,75836  17.46 0,3328% ]
0.% 9.3 0.1%00 1,000 1,00 0,8912% 0.100879 310.431 0,10179
0.5 0.3 0,20060 3,000 1,3 0,57388 V.42012 13.73 0,20200
0.9 c.3 0,2280 9,000 1,52 0,39294 0.6070% 14,28 0,1970¢
0.5 0.3 0.2430 7,000 3,61 0,2897%  0,71y24 14.26 0,3753¢
0.5 0.3 0.2%0 9,000 1,87 0,22%68 0.7743¢ 14.11 0,1540%
0.5 0.4 10,2000 1,000 1,00 0.,9018¢4 0.09u84¢ 9.29 0,00206
0.5 0.4 0.2040 3,000 1,32 8.38262 0,41738 12,33 0,14030
0.9 0.4 0,290 $,000 1,45 0,3048¢ 0.6051> 12,69 0,33189
9.9 0.4 0.3070 7,000 1,53 n,28748 0.71213 12,51 0,1102%
0.9 0,4 0,3180 9.000 1.% £,22199 0.77504 12.23 0,07045
0.9 6.5 0.2%00 1,000 1,00 0,904082 0.09v1b 8,95 0.6%5139
0.% 0.5 0.3170 3,000 3,27 0.58635% p,4136% 11.A9 0,12329
0.% 0.9 0,3¢50 5,000 1,38 0.,39887 0.60512 12.18 0,11460
0.9 0.9 0,300 7.c00 1,48 0.20877 0.7112¢ 11.99 0,09390
$.% 0.5 0,375 9,000 1,50 0.22230 0.177689 11.62 0,07%18
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Test Jropertie o for the
PThree Dooa aon Tost 1o ample
o
] PPy Ppy t > ) Py pn ) AN P(Lnn_l)
b 0.4 0.1 0.0300 1,009 1,09 r.10915 0.7%040 0,13438 24,87 0.978%3
0.1 0.3 0,022¢ 3,000 2,2 s.cheb 4 £.63:0¢ £, 310840 24,49 0,97511
0.1 0.1 0,030 5,009 3.0 "LI20 19 0,540 0,43279 24,94 0,8714%
0.1 0.3 0,03%0 7,000 3,50 0.01%38  (.4749.  [,%097) 23,%2 0.627%9
f 0.4 0,1 10,0390 9.00y 3,99 9.31"19  0,42905%  (,%6478 23,17 0.7%073
3 0.2 0.1 0,0200 1,000 1,00 0,2425% Q.0144/  £,14294 24,67 9,9450%
] 0.2 0.1 0,039 J.ont 1,99 0,38927  (,53v¢ty e.371¢3 23.79 D,8a878
| 0.2 0.1 0.0%00 $.000 2,%) 0.04e02 0. 44058 .%6719 23,03 0,77136
] 0.2 0.1 10,0570 7,000 2,88 0,02~12  0.3763Y  0.%5%Y52 27,42 0,711
: 0.2 0.1 0,0620 9,009 3, 10 0.,01A4¢ G.32e9¢ 0,65229 21,93 0.,68%80
; 0.2 0.2 0,0400 1.000 1,00 p.27762  0.58L97  £,13%4) 23,92 0.00911
] 0.2 0.2 0,0730 J. 000 1,83 0,08237  (,48v64 0,42978 22,29 0,68006
g 0.2 0.2 0,009} 5,000 2,22 0.08708 b.35983 0.60330 23,98 0.574%4
0.2 0.2 0,1000 7,000 2,50 5.02c80 0.27.09 0,7071% 19.9% 0.4v448
0.2 0.2 10,3080 9,000 2,70 0.01304 D.¢1330 0.77157 19,13 0.43278
0.3 0.1 10,0300 1,000 1.09 0,27437  0,56/7y 8,1579¢ 24,47 0.,92226
0.3 0.1 0.u530 3,000 1,77 0.093%3 0.496206 0,40778 23.%7 0.82492
0.3 0.1 0,0640 5.000 2.1) 0.,04%27 0.40459 0,%461) 22,88 0.7%7387
0.3 0.1 10,0710 7,000 2.3? 0,030968 0.3395¢ 0,62952 22,38 0.,69437
0.3 0.1 0,0750 9,000 2,50 0.02157 C.29408 0,6843¢ 21,96 0,6573¢8
0.3 0.2 0.,0600 1.00? 1,0C 0.22263 0.6444¢ 0,13279 22,86 0.70252
0.3 0.2 0.1000 3,009 1,87 0.6Y340  D,49519 00,4514 21,24 0.97629
0.3 0.2 10,3190 5,009 1,98 £.,22370 0,3434yp 0,63290 19,95 0,484008
0.3 0.2 0.1312 7.000 2,18 0:.01333  0,24v64 0,73704 16,94 9.41269
0.3 0.2 0.1390 9.000 2,32 0.00647 0.,19u05 0.,8GC147 18,13 0.3%706
0.3 0.3 0.,0%00 1,009 1.00 0.,16867 0.711867 0,3198% 20,80 Q.47732
0.3 0.3 0,14190 3,000 1,9 0,02743 0.%50/4¢ 0,465%15 19,32 0.40188
0.3 0.3 0,1640 9,000 1,82 0,0102% 0.320806 0.b6288 18,04 0,33498
0.3 0.3 0,3790 7.009 1,99 0.00%22 0.22200 0,77274 16,92 0,27579
0.3 0.3 0.,18%0 9,000 2,10 0,00312 (,15874  0,83814 16,04 0.22878
0.4 0.3 10,0400 1.000 1,00 0,26094 0.5496) 0,18938 24,27 0.89%42
0.4 0.1 0.00640 3.000 1,60 0,08954 0.45916 0,45149 23.68 0.,83094
0.4 0.1 0.,2740 5,000 1,85 0,05002 (0,36534  1,%58465 23,23 0,78230
0.4 0.1 0,0790 7,000 1,9 nN.33%9  0,304%9 0,6617¢ 22,90 0,74580
0.4 0.1 0,0830 9,000 2,07 0.02%04 0,26360 0,71130 22,66 0,71448
0.4 0.2 10,0800 1,009 1,00 0,17914 p.68c62 0,13823 21,88 0.99230
0.4 0.2 0.1230 3. 000 1,54 0.,03595 0.49708 0,46698 20.02 0.%2673
0.4 0.2 0,1410 5,000 1,76 0,01%5%8  (0,3361% 0,06462) 19,66 0.4¢272
0.4 0.2 10,1520 r.000 1,90 0.,0089% 0.2445% £.7465) 19,08 0.40670
0.4 0.2 10,1590 9.000 1,99 0,00587 0.18044 (,80768 18,48 0.,36177
0.4 0.3 0,1200 1.000 1,00 0,14103% 0.74c38 v.11697 19,21 0,33794
0.4 0.3 0.1760 3,000 1,47 9,01739  0.54c36 0,47044 18,30 0,32016
0.4 0.3 0.2000 v.000 1,67 9.00565 p.32414 2,67020 17,2% g,27751
0.4 0.3 0.2350 7.00% 1,79 9.00268  0,21795 0,77936 16,34 0,23149
0.4 0.3 0,2250 9,000 1,87 0,30194 0.,15484 0,8438}% 15,%2 0,193511
0.4 0.4 10,1600 1.000 1,00 0.12249 0.7802¢ 0,10929 17.39 0.21097
0.4 6.4 10,2230 3,000 1,39 0.01213 p.5172¢ 0,47082 10,85 0,22627
0.4 0.4 0,2%500 3.000 1,58 0,90337  0.31970 0,67692 15,90 0.19948
0.4 0.4 10,2870 7,000 1,67 0.20142 0.2100¢ 0,7885¢ 14,97 0.,16310
0.4 0.4 0,2780 9,000 1,74 0,00074 0.34593 0,85332 14,18 0.13189%
0.5 0.1 0,0%00 1.000 1,9¢ 0,22751  D,54484  D,2275% 24,18 0,88063
0.5 0.1 0,0730 3,00 1,48 0,37723 0,42940 D,49334 24,00 0,86470
0.9 0.1 10,0010 3.000 1,62 0,04500 0,338106 0,61683 23.79 0,841>%
0.9 0.1 0.0860 7,000 1,72 0,03150 0.28238 0,68640 23,64 0.82333
0.5 0.1 0.0880 9.000 1.7¢ 8,02416 0.24570 0,73013 23,53 0.80928
0.5 0.2 0,1000 1,000 1,00 0.153t18 0,69378 0,15303 21,47 0,54876
6.9 0.2 0.,1420 3,000 1,42 0.02744 0.48793 0,48462 21.13 0.54090
0.5 0.2 0.1%80 5.000 1,58 0.,01187 0.3332% 0.65407 25,56 0.%0222
0.9 0.2 10,1870 7,000 1,67 0.00701  0.24477  0,74824 20,06 D. 46108
0.9 0.2 10,1720 9,000 1.72 0.00481% 0,19019  ©,080499 19,65 0.42278
0.9 6.3 0.1%00 1,000 1,00 0.32408 0.7519¢ 0.12399 18,63 0.,29293
0.5 0.3 10,2060 3,000 1,37 0,0137?7 0.%50s2¢6 0,4029¢ 18,3¢ 0,31422
9.% 0.3 0.22080 $,000 1,9%2 0,00427 0.J1674 0,67698 17,80 0.28559
0.9 0.3 0.2410 7,000 1,61 0,00197 0.21665 0.76137 16,87 D,24736
0.9 0.3 0,2900 9.000 1,67 0.00113 n,15624 0,8426) 16,2% 0,2138¢
0.9 0.4 10,2000 1.000 1,00 0,11187 0.77068 G,11164 16,77 0.17520
0.9 0.4 0,2640 J.000 1,32 0,01094 0.51318 0,47627 16,97 0,20903
9.9 0.4 0,210 3,000 1,48 0.,90290 0.310635 0,68074¢ 15,78 0.,18878
0.% 0.4 0,3070 7.009 1,%3 0.0032¢ 0.20832 0,7904¢ 14,95 0.15629
6.9 0.4 10,3100 9,000 1,59 0,00062 0,36v42 B,05309 14,2) 0.42762
0.9 ¢.5 o0.2%500 1,000 1,00 0.10782 0,7843¢ 0,1078% 16,14 0.,14311
0.5 0.5 0,317¢ 3,000 1,27 0.00990 0.%1/87 0,4722) 15,98 0,17909
0.5 0.% 10,3450 5,000 1,38 0.00289 0,31/72 0,87958 15,18 0.4625%
0.9 0.9 0,3630 7.000 1,49 0.00110 0.20/82 0.,791¢07 14,32 0.13242
0.9 0.5 0,37%0 9,000 1,90 0.00056 0.,14)99 0,05544 13.9%8 0.,10%90
89
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From Table 4.3, it can be seen that the values of thec power
function (i.e., P(Hl)), for different states of nature where t=1,
approach or achieve the desired error probability,a, for most
values of the nuisance parameters, pl.and Py Also, the p
error probabilities (i.e., the probability of accepting HO when
t=9) vary with the nuisance parameters, but approach or achieve
the desired value (B=0.25) in most cases. The test is shown to be
more powerful if one of the nuisance parameters has values close
to 0.5 as opposed to extreme values close to 0 or 1. The ASN
function for this test varies between 8.95 and 21.80.

The results for the three decision test are similar. Here,
however, the power has been reduced somewhat and the ASN function
is generally larger. This is due to additional hypotheses under
consideration. The test properties are still generally acceptable
for most values of the nuisance parameters andmodification of
the test region, as explained in Chapter 7, will enable one to
adjust the test properties to be within the desired limits.

Table 4.5 shows the test properties for the three decision
numerical example, with the region modified (as explained above)
to favor Ho at the truncation trial Nge reducing the a error
probability; this has caused a corresponding loss of power for
the test. This modification was made to facilitate comparisons

with the power of the fixed size test as given by Harkness (1959).

Table 4.6 shows, for a range of parameter values,

P(Ha:pl.,p.l,t)=P(Hl;pl_ ,p_l,t)+P(H2;pl.,p.l,t), (4.25)




Table 4.5
« Test Properties fur the
Three Decision Te:t sample,
(Favorany llu)

dd PP P t A PaI,) Py, P, ASN r(cno_l)
0.1 0.1 0,0300 1.000 1,00 9,00012 0,98537 0,0145% 24,07 0.,978%3
0.1 0.1 0,0220 3,000 2,20 0,90003 0,92v8¢ 0,07112 24,40 0.92312
0.1 0,1 ¢,0300 $.000 3,00 6,00002 0.8736v 0,12630 23,94 0,0714%
0.1 0.1 0,035 7,000 3,90 0.70008 0,82075 0,17323 23,92 0,02799
0.1 9,3 0,0390 9.000 3,90 n.000CD  0,78744  0,212%% 23,17 0.79073
0.2 0,2 0,0200 1,000 1,00 5.00158  0,96693 0,02948 24,07 0.9450%

3 0.2 0.1 ©0.,0390 3,000 1,99 0.00029 0,8sv43 0,13028 23,79 0,84873
! 0.2 6,1 0,0500 5,000 2.%0 0.,30010 0,78301 0,21998 23,0) 0.,77136
! 0.2 0.1 0,0%70 7,008 2,88 0.0000% 0,7179% 0,28199 22,42 0,7311%
;. 0.2 0.1 0,0620 9,000 3,an 0.00003 0.66672 9,3332¢ 21,93 0.66380
3 0.2 0,2 0,0400 1,000 1,00 0,91238  ©0.93062 0.0%108 23,92 0,0:911
0.2 0.2 0,0730 3,000 1,83 0.C0151  0.77¢%9 0,22%89 22,29 0.68006
0.2 0.2 0,0892 5,250 2,22 0.,CC044  0,03389  0,36%67 20,90 0.57454
0.2 0.2 0,1000 7,000 2,50 0,70718  0,53c66 D,46714 19,99 0,40443
0.2 0.2 0,3080 9,000 2,70 0.00609 0,45/8¢ 0,9429% 19,43 0,43278
0.3 0.1 10,0300 1,000 3.00 0,306¢%  0,9600L 0,03374 24,4 0,92226
6.3 0.1 00,0930 3.000 1,77 0,00090  0.6%5587  0,14322 23,97 0,02492
0.3 0.1 10,0640 5.000 2,313 0,20030 0.77130 0,22634 22,08 0.75237
0.3 0.1 0.,0719 7.000 2,%7 0,00014  0.71004 0,208902 22,36 0,69837
0.3 0.1 0,07%0 9.000 2.%50 0,00008  0.6£454  0,33938 21,9 0.65736
0.3 0.2 0.0600 1,000 .00 0.03027 0.91u40 0.05933 22,686 0.702%2
0.3 0.2 0.3000 3,000 1,07 0,30326 0.7326% 0,26400 21,24 0.57029
6.3 0.2 0,1190 5.000 31,98 0.,00098  0.58u38 0,41870 19,95 0.48466
0.3 0.2 0.1310 7,000 2,18 0.00038 0.47409 0,529%3 16,9¢ 0,41269
0.3 0,2 0,139 9,000 2,32 0.0003%  0.3984c 0,60138 18,13 0.35706
0.3 0.3 0,0900 1,000 1,00 0.05469 (.87483 0,070 20,80 0.47732
0.3 0.3 0.1430 3,000 1,97 0,00%44 0,67437  0,3200% 19,32 0.40:88
0.3 0.3 0.1640 5,000 4,82 0.00147 0,49,88 0,500064 18,04 0.,33498
0.3 0.3 10,1790 7,000 1,99 n,00059 0.37977  0,61943 16,92 0.27579
9.3 0.3 0,189 9.000 2.10 0.,00030  0.29925 0,70044 16,04 0,22878
0.4 0.3 0,0400 1.000 3,00 0,01434  0,95587 0,02999 24,27 0,09542
0.4 0.1 0.0640 3.000 1,60 0.30187 0.87417 0,32399 23,68 0.830%¢
0.4 0.1 10,0740 5,000 1,89 0,00064 0,80809 0,19129 23,23 0.78210
0.4 3,1 10,0790 7,090 1,97 0.00029 0.76¢31  0,23749 22,90 0.74500
0.4 0.1 0.0830 9,000 2,07 0.,00086 0.,7254% £,27038 22,66 0.712048
0.4 0.2 0.0800 1.000 .00 0.,04639 0.89327 10,0604 21,88 0.%9230
0.4 0.2 0.,1230 3,000 31,% 0,00694 0,72766 0,267)7 20,02 0.52675
0.4 0.2 0,1410 5,000 1,76 0,0014¢  (.508.46 0.41600 19,086 0.46272
0.4 0.2 0.,1320 7,200 1.9 0.00002 0.408368 0.91979 19,00 0.40670
0.4 0.2 0,1%90 9,000 1,99 0,00033 0.414%3 0,58%1¢ 18.4¢6 0.36177
0.4 0.3 0,1200 1,000 1,00 0.06868 0.85693 0,0744¢ 19,24 0,33794
0.4 0.3 0.4760 3,000 1,47 0,00604  0,65433 0,33882 18,30 0.32016
0.4 0.3 10,2000 5,000 t,67 0,00194 0.47463 0,52343 17,2% 0.2775%
0.4 0.) 0.2150 7,009 .79 0,00079 0.357%52 0,84160 16,31 0,23149
0.4 0.3 10,2250 9.000 1,87 0.00044 0.,27928 0,72030 19,52 0,19311
0.4 0.4 10,1600 1,009 1,00 0.07813  D,84c02 0,0798¢ 17,39 0,21097
0.4 0.4 0,2230 3.000 1,39 0.,0077%  0,62%21 0,36703 16,09 0.22627
0.4 0.4 10,2500 $.000 1,%6 0.00218 0.43456 0,56329 15,90 0.19948
0.4 0.4 10,2670 7,000 1,67 0.00094  0.31363 0.6834¢ 14,97 0,16310
0.6 0.4 00,2780 9.009 1,74 0,00046 0.23%502 0,76452 14,40 0.13189
0.9 0.1 0.0%00 1,000 1,00 0.,0230%  0.95427 0,02267 24,18 0,88063
0.% 0.1 10,0730 3,000 1,46 0.00303 0,9080) 0,0889) 24,00 0,86400
0.5 0.1 10,0810 5,000 1,62 0,00102 0.86080 0,1321? 23,70 0,84155
0.5 0.1 0.08¢0 7.00% 1,72 0,00049 0,83930 0,16020 23,64 0,02333
0.9 0.1 0,0880 9,000 1,7 0.,00028 0.82012 0,179%8 23,93 0,80928
0.5 0.2 0.,1000 1.000  1.00 0,05662 0n,88/22 0.0561% .47 0.54676
0.5 0.2 0.,1420 3.000 1,62 0,00632 0.74918  0,2445%) 21,43 0,540%0
0.3 0.2 0.1%680 3,000 1,58 0.00196  0.62423 0,37380 20,96 0.50222
0.9 0.2 0.4670 7,000 1,67 0.00089 0.54u50 0.45863 20,06 0.461688
0.5 0.2 0.1720 9,000 1,72 0.00049  0.48,23 0,%51728 19,65 n,42778
0.5 0.3 0,1500 1,000 1,00 0.07423 0,8517¢ 0,0740) 18,63 0.,29293
0.5 0.3 0,2060 3,000 1,37 0.0077¢  0,65562 0,33363 18,34 0,33422
6.5 0.3 0,2280 5,070 1,92 0.00229 0.48/92 0,%0979 17.60 0.20559
0.5 0.3 00,2410 7,000 1,8% 0.00100 0.37.62 0,62138 16,07 0.24736
0.9 0.3 10,2900 9,000 1,67 0.00053 0.30392 0.6935¢ 16,29 0,21384
0.%9 0.4 10,2000 1,000 1,00 0,08092 0,83:21 ©0,0808? 16,77 0,17520
0.9 0.4 10,2040 3,000 1,32 n,00820 0.62u81 0,37090 16,97 0,20903
0.9 0.4 0,2%10 $.009 1,43 0.00237  0.43142 0,96020 1%.70 0.18878
0.5 0.4 0.3070 7,000 1,53 90,0010  0.31<30 0,6080669 14,93 0.,1562%
0.% 0.4 0,380 9.000 1,%9 0,000%3 0.23%21 0,7642) 14,23 0.42702
0.% 0.9 10,2500 1,000 1,00 0.0625%  0,83492 0,08253 16,14 0,14311
6.% 0.5 0.3170 3,000 1,27 0,00454 0.63122 0.,3804¢ 15,98 0.17989
0.% 0.5 10,5450 9.000 1,38 2,10239 D.41726 0,%5003% 15,18 0.162%%
0.9 0.% 0,3630 7.000 1,45 0.0804 0.29629 0,70269 14,32 0.,13242
0.9 0.5 0,3750 9,000 1.%0 0.100%2 0.21882 0.780060 13,98 0.40%90
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1 Table 4.6
J Comparison with Fixed Size Tests
} Fixed Size Tests Sequential Test
* &

Py P, ) pzo(nl) P3o(“1) pﬁ(nl) ASN

.1 .1 1.00 .050 .050 .015 24.87

.1 .1 3.90 .109 .213 23.17

.2 .1 1.00 .050 .050 .031 24.67

<2 .1 3.10 .153 .333 21.93

.2 .2 1.00 .050 .050 .063 23.92

2 .2 2.70 .283 .542 19.13

8 .1 1.00 .050 .050 .040 24.47

.3 .1 2.50 .157 . 269 .336 21.96
3 .2 1.00 .050 .050 .090 22.86

%3 2 2.32 .340 .534 .602 18.13

.3 .3 1.00 .050 .050 125 20.80

.3 .3 2.10 .448 .658 .701 16.04

.4 .1 1.00 .050 .050 .044 24.27 1

.4 .1 2.07 .139 .242 .542 19.13 '

.4 .2 1.00 .050 .050 107 21.88

.4 .2 1.99 .333 532 . 590 18.46 ;

.4 .3 1.00 .050 .050 .143 19.21 i

.4 .3 1.87 .474 . 684 .721 15.02 1

.4 .4 1.00 .050 .050 .18 17. 34 1
4 .4 1.74 .546 .754 L7695 14.18 i
5 -1 1.00 .050 .050 .046 24.18 ﬂ
5 -0 1.76 .115 .195 .180 23.53 3
5 .2 1.00 .050 .050 .113 21.47 4

.5 .2 1.72 .282 .472 .518 23.064 L
5 IS 1.00 .050 .050 .159 18.63 ]

25 .3 1.67 .453 .666 L6906 16.25 y

15 .4 1.00 .050 .050 .162 16.77 3

.5 .4 1.59 .520 . 750 .765 14.23
5 .5 1.00 .050 .050 .164 16.14

.5 .5 1.50 .577 .780 .782 13.58

*

92
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(which is the power function) for the sequential test (PS(-))
whose properties are shown fully in Table 4.5 and for the fixed
size sample tests (Pn(-), as given by Harkness (1959). The
fixed size test properties are given for sample sizes of 20 and
30. The missing values in the table were not provided by
Harkness. The ASN function for the sequential test is also
shown in Table 4.6.

It can be seen from Table 4.6, using the value of the ASN
function to decide which fixed size procedure to compare with
for different points in the parameter space, that the sequential
procedure has considerable advantage. Where the error
probabilities are comparable, the ASN function is considerabliy
smaller than the fixed size test necessary to obtain the same

power.
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CHAPTER 5

A NEW SEQUENTIAL TEST FOR THE EQUALITY
OF TWO UNKNOWN BINOMIAL PROPORTIONS

5.0 INTRODUCTION

This chapter presents a new sequential test for the equality
of twc unknown binomial proportions. Several other such tests
have been suggested in the past; a brief review of the reclevant
literature is contained in the first section, followed by a de-
scription of the underlying probability model. Section 5.2
develops the theory for the sequential test and the following
section describes the evaluation of the resulting sequential test
regions. Both two and three decision test procedures are con-
sidered. The last section gives further numerical examples and
compares the tests with some other similar tests, both fixed

size and sequential.
5.1 TESTS WHICH COMPARE TWO UNKNOWN BINOMIAL PROPORTIONS

One of the most common statistical problems arising in
practice is the comparison of two unknown binomial proportions.
It occurs, for example, when comparing two drug treatments, two
production processes, or two teaching methods. The underlying
probability model of this situation is depicted in Figure 5.1,
where Py is the probability that a member of population 1
selected at random will have attribute D; P, is the same proba-

bility for population 2.

e i
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1=

Population 1 Py l-p1

Population 2 P, 1-p,

Figure 5.1 Probability Model for the
Two-Sample Binomial Problem
A sample arising in such a situation with n, observations

from population 1 and n, observations from population 2 is

represented tabularly in Figure 5.2.

D D
Population 1 X n,-x ny
Population 2 y n,-y n,

Figure 5.2 Observed Data from a Two-Sample
Binomial Experiment

The probability of observing the sample in Figure 5.2 is the
joint distribution of two independent binomial distributions.

That is,

n, n,-x n, n,-y
P(x,y:nl.,n.l,pl,p2)= pl(l-pl) pz(l'pz)
2 y (5.1)

The hypothesis usually being tested in this situation is
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Hot P17P,
(5.2)
versus Hl: p]fp2
and the test can bLe either a one-sided (two decision) or a
two-sided (three decision) procedure. Tests of such hypotheses
are treated in detail, for example, by Fleiss (1973)

It can be shown that the type of tests considered here are
asymptotically most powerful if equal sample sizes are taken from
each population (Lehmann, 1959). For small samples, the amount
of information obtained is dependert on the sample outcome. For
this reason, and for simplicity, although the results presented
here are perfectly general, it will be assumed that n and N,
shown in Figure 5.2, are equal; sequential tests for this special
case are developed here.

For large samples, the central limit th=2orem allows the use
of the normal approximation for this test; this is equivalent to
the X2 test with one degree of freedom and was first used by Karl
Pearson (1900). For small samples, Fisher's exact test, as de-
scribed in Section 4.2, is appropriate.

Because one margin is controlled by the experimenter, Fisher's

exact test is conditioned on the one remaining random margin. As

shown in Section 4.2, the hypergeometric is again the null dis-

tribution. This test has also been criticized because it limits

e ke il

the reference set of possible outcomes; however, it is now gen-

erally accepted as correct. The power of this test has been eval-

uated, for example, by Bennett and Hsu (1960) and Harkness (1959).
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It should be noted that the probability model in (5.1)
is not correct if there is "pairing" within observations. This
occurs if, at each trial, observations are not procured at random,
but rather chosen in pairs from different strata (which will
affect the frequency of a given response). That is, each pair
is mutched with respect to some characteristics (e.g., by age when
testing the value of two new drugs). Such "pairing"” is often used
to reduce the variability between the individual observations and
can result in a more powerful test. The extreme case of such pair-
ing occurs in drug testing, for example, when a patient receives
both treatments being tested at different times. Thus, there is
some correlation between the treatments. McNemar (1949) and
Cochran (1950) treat such tests. A comprehensive review of this
subject is given by Fleiss (1973). The sequential tests presented
here assume that the two treatments are assigned to subjects at
random or that one observation is taken at random from each pop-
ulation at each trial in order to compare the two unknown binorial
proportions; that is, there is no "pairing" of the observations.

The odds ratio

pl(l-pz)

t= -p—z(T_p;Y ’ (5.3)

on which these tests are based, is analougous to the cross product
ratio discussed in Section 4.1. If t=1, Py and p, are equal. If
teal'; P, is greater :han Py and if t<1, Py is less than Py- As

explained 1n Section 4.1, the odds ratio is the most appropriate
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method of comparing two proportions over a wide range of param-
eter values. Table 4.1 shows the odds ratio as a function of

Py and P,- This table can be used to aid one in cnoosing the

proper values of the odds ratio to use in a given test situation.

5.2 CONSTRUCTION OF THE SEQUENTIAL TEST REGIONS FOR TWO AND
THREE DECISION TEST PROCEDURES

In this section, the literature concerning seguential
tests for comparing two binomial proportions is briefly re-
viewed. Following this, it is shown how the results of the
last chapter can be modified to solve such problems sequen-
tially and with a sufficient statistic.

There have been many suggested sequential procedures
for comparing two binomial proportions, as explained above.
The important ones are mentioned here; a more thorough review
is given, for example, by 5ksoy (1972). Wald (1947) suggests a
procedure which ignores ties when they occur and uses the test
statistic D=x-y, where x and y are the number of observed suc-
cesses for populations 1 and 2 respectively. The test then
reduces to a test of a single binomial proportion. Wald com-
ments that because the statistic D is not sufficient, this

procedure is not in general optimal. It can be shown, however,

by using the two sample sequential procedure of Girshick (1946),

that D is sufficient for testing the special case

Hy: t=t 71
(5.4)
versus Hl: t=1/t0

oy
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where t is the hypothesized odds ratio shown in (5.3).

Ghosh (1970) reviews the theory of this test. He also
treats in detail the concept of Fraser sufficiency (Fraser, 1956)
which can be used to treat certain problems with nuisance param-
eters. For the important cases when one must test hypotheses
different than (5.4) (e.g., for the equality of Py and Py
implying t=1), D=x-y is no longer sufficient. Wald, however,
points out that for large samples there is little loss of effi-
ciency. The test presented here uses a sufficient statistic
and is valid for small samples.

Tests similar to the above have been used by several
au:hors to test the null hypothesis P{=Py; these include Bross
(1952), Armitage (1960), Choi (1968), Oksoy (1972), and Elfring
and Schultz (1973a). Except for being truncated, most of these
rlans have regions similar to those proposed by Wald (1947).

In practice, such tests are almost always truncated at some

trial ng in order to eliminate the possibility of large sample
sizes. This is especially true for certain applications such as
medical trials. In the papers of Gksoy (1972) and Elfring and
Schultz (1973a), the sequential test properties are found exactly
by using the direct method of sequential analysis. Also, their
tests are trurcated at a fixed trial, rather than at a fixed
number of untied pairs, as is the case with the tests of Armitage
and Wald, for example. These tests can be made quite efficient
if one knows in advance the approximate values of Py and Py-

This is done by a trial and error procedure, comparing the

e b T s Sl

o
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test properties for alternate tests plans, as explained by
Oksoy (1972). Hall (1965) suggests a sequential test which is
conditional on the observed ancillary statistic at each trial.

If the sequential test is based on a sufficient statistic,
a powerful test can be found over a much wider ranger of param-
eter values. The sequential tests presented here, a special
case of the tests given in Chapter 4, are based on such a

statistic.

It will be convenient to use the notation of Figure 3.2
with the following modification. It is assumed that the right-
hand margin is controlled such that equal sample sizes are

! taken from each population. Thus nl.=n/2 for all n. The
quantity n is still a random variable and equal to the total
number of successes found in both populations (and n o, -x is the

number of successes found in population 2). The joint dis-

tribution of the sample (x,n l—x) at trial n is

1z
P(x,n_l-x;nl.,pl,p2)= (5.5)
n n e n n -X n -n +X
1. x 1. . .1 1. .1
x L]

To examine the nature of the hypothesis being tested,
one can reparameterize this into the logistic model. This formu-
lation was first suggested by Cox (1958) and is further treated

Cox (1970) and Gart (1971). In the reparameterized model,

1 _ exp(B+)2/2) _ exp{B=1/2)
‘ Py " 1$exp7§éi72) Py Trexp(goi/a) ©  (5+6)
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From this it is easy to see that the odds ratio is

p, (1-p
t= _lTT:—l) =exp{}). (5.7)
Py 117Py

Thus A=2n(pl/1-p1)-ln(pz/l-pz)) is the difference in logits and

is also known as the log odds ratio. The probabilities P, and

p, are equal when t=1, implying A=0. Using this form, the joint

probability function of x and n 17X when n pairs have been

1.
sampled is

P(x,n.l-x;nl.,la8)=
n n
( 1)( 1. )exp(()\/Z)(Zx-n l)+Bn 1) (5.8)
X n ,-X * °
.1
n n.

(1+exp (R+12/2)) ~ " (l+exp(B-1/2))

The degree of inequality of Py and P, is expressed in terms
of the parameter ). The parameter B is related to the actual
parameter values Py and Py In (5.8), no is the sum of the
successes from both populations. The quantity 2x—n.l is the dif-
ference between the number of successes observed from populations
1 and 2. It can be seen in (5.8) that although the probability
function cannot be completely factored, factorization of the
numerator (the denominator is not subject to random variation)
shows that 2x-n.l and n

It is desired to make inferences on X, the log odds ratio.

are sufficient for A and B respectively.

The quantity n is therefore an ancillary statistic for B. When

1

making inferences about )\, it is proper to consider the conditional
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distribution of 2x-n.1 (or x itself--the distributions are
equivalent) given the observed value n,-. ?his conditional
distribution is the extended hypergeometric distribution shown
(4.7), except that t is now equal to the odds ratio rather than
the cross product ratio. The null distribution is again the
hypergeometric shown in (4.8), which does not depend on the
nuisance parameter 8.

To conduct the sequential tests for this case, an observa-
tion is chosen at random from each of the two populations at
each trial. The sequential test rules are similar to those shown

in (3.16), with the modification that n ,=n/2 is really the

9

trial number and each trial consists of one observation from each
population.

For this case, the sequential test rules are:

)

'n

accept H, if xscL(n 1

0 1.

(5:9)

accept H, if xch(n1 ,n )

Sl

and otherwise continue the test and take another sample. These
critical valves are based on the theory developed in Section 4.3

and are thus found as

¢y, (ny [g '“.1'2"1.'to't1)]
[(b+F(t )-F(t))/an () -n (t ))] (5.10)

cylny. [9 ny,/m,pe20 1.'to't1)]’rl
[(a+F(t ) F(t ))/(ln(t )-2n(t ))]
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using the same notation as in (4.17). Here there are only 2n1.+1
possible values for n oy at each trial n . That is, Ozn-l;an..
Tables of the test procedure critical values will therefore be
much smaller than those of the cases considered earlier. A
numerical example for this case follows.

The hypothesis of equal probability >f success for the two

populations is specified as

(5.11)

versus le t=t1=5

The desired a and B error probabilities are chosen to be 0.025
and 0.2 respectively. The computer program in the Appendix was
used to generate the table of critical values, defining the test
rules, shown in Table 5.1. These tests are truncated as in the
previous tests presented here. The method of finding the exact
properties of this sequential test procedure is given in the next
section and the sequential test region shown in Table 5.1 is
evaluated there as a numerical example.

In order to conduct such a test, at each trial one selects
an item at random from each of the two populations. A score is
kept of the cumulative number of successes in both populations.
One then compares at each trial the total number of successes in
population 1 with the critical value for the corresponding margin
totals, using the test rules in (5.9). A numerical example of

this procedure follows.
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Table 5.2 contains a typical sequential sample which might
be obtained using the above test procedure. Here a 1 represents

a success and a0 represents a failure.

Table 5.2
Typical Sequential Sample

x

TRIAL POPULATION 1 POPULATION 2 n

OV A WN
OHOFHOO I
HE OO MO
VO DS WN
BB W W N NN

The results of this sample at trial 8 (i.e., after 8

pairs have been observed) are summarized in Figure 5.3.

4 4 8
5 3 8
9 7 16

Figure 5.3 Summary of Data From
Sample Sequential Test

From examination of the critical values in Table 5.1, it is seen
that x=4 is a lower critical value when n 1=9; therefore, the

test is terminated there and a decision is made in favor of HO.

an v s bobeni i o e a1 . o akinde RO diatiaiahanl b AR R e e s e PN TR R e s
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The three decision test procedure to test the hypotheses

Ho: t=tl<t0

versus Hl: t=t0 (5.12)

versus HZ: t=t1>t0
is similar to that given in Section 3.4.
Again, two SPRTs are used simultaneously; therefore two
sets of tables like thot: in Table 5.1 are computed. The rules

for carrying out the sequential test are:

accept H, if XSCL(nl.’n.l)

and xde(nl.,n‘l)

accept H0 if xzcu(n1 /N l)
(5.13)

and xde(nl',n.l)

accept H, if xZCU(nl.,n.l)

and xsz(nl.,n_l)

where c; (-) and c¢,(:) are the lower and upper limits for SPRT1
(i.e., for the first pair of hypotheses in (5.12)) and d,(.) and
dU(-) are the upper and lower limits for SPRT2 (i.e., for the
second pair of hypotheses in (5.12)). These limits are found

in a manner analogous to that in Section 3.4, using (5.10).

As a numerical example, consider testing the hypotheses

le t=tl=0.2

versus HO: t=t0=1.0 (5.14)

versus sz t=t2=5.0
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The desired error probabilities are chosen to be m1=02=0.025
and 81=82=0.2. It is again necessary to generate two sets of
critical values, one each for testing between H1 and HO and

between H0 and H2' The first s2t of critical values is shown
in Table 5.3; the second set is the same as was used in the
previous two decision numerical example and is shown in Table
5.1. The test region is again truncated as before. The pro-

cedure for carrying out such a test is as explained above, using

the rules in (5.13).
5.3 EVALUATION OF THE SEQUENTIAL TEST REGIONS

This section describes the method used to find the exact
test properties of the sequential test regions developed in the
last section. The direct method of sequential analysis is used
in a manner similar to that of Section 3.5. Because the under-
lying probability model and the test procedure are different,
there are some changes. These are outlined below.

At each tricl, one observation is taken from each population
on the right-hand margin. Let x and n ,-x denote the number of

.1
successes observed in populations 1 and 2 respectively at trial

ny - From each point (x,n 1°%/0y ) in the sample space at each
trial n, there are four possible outcomes at trial n, t1.
They are (x+l,n.1-x+l,nl.+1), (x+1,n.1-x,n1.+1), (x,n.l-x.nl.+1),

and (x,n l-x+l,n +1). The probabilities of each of these occur-

1.
rences are shown in Figure 5.4.

— ’ s —
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(x+1,n.1-x+1,nl.+1) {plpz }

(X, n.l-x+1,nl.+1) {pz(l_pl) }

(X.n.l-x,nl.)

(x+1,n_)-x,n, +1) { 91(1-92)}

(x.nl.-x,n.1+1) {(1_p1)(1.p2)}

Figure 5.4 Possible Outcomes at Each Trial

The sequential test begins at trial 0 where the only possi-
bility is (x=0,n 1-x=0,n1 =0), which therefore has a probability
of 1. The probabilities of reaching each point (x,n 17Xny ) at

trral n, is then computed recursively for n, =1,2,...,n0 start-

ing with the point at the origin. The probability of reaching
each point inside or on the boundary of the sequential test region
is a function of the true state of nature, which is completely
specified by P, and P,- The OC and ASN functions and the dis-
tribution of the DSN will therefore be functions of thewe two
parameters.

Starting at trial 0, the probabilities of reaching each point

( x ,n l-x,n1 ) for a specified state of nature are computed using

the multiplication rule and summing the probabilities of all the
different ways one might reach a point in the space. For example,

the point (x,n 17X/ny ) at trial n could have been reached from

1.

one of four points at trial n, -1, that is, from (x-1,n l-x-l,n1 -1),

(x,n.l-x-l.nl.-l), (X-lpn_l-x.nl.-l) or from (x,nl.-x,nl.-l). Let

Ain denote the event of
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of accepting hypothesis Hi=0,l and Cn the event of being in the

continuation region at trial n, that is,

A0n= {(x,n.l-x,nl.)[xch(nl.,n.l)}

(5.15)
[ Al = {{x,n  =x,ny )|xccylny on )}
)}

c,= {(x,n ;-xyn; )|, (n; yn )<x<cy(n, ,n

k- il

{ The recursive formula used to find the probabilities for each

p point in the (x,n 17X/0y ) space is

Ps(x'“.l'x'"1.7p1'pz)= (5.16)

I(x-l,n.l-x—l,nlo-l)PS(x-l,n.l-x-l;nln-l,pl,pz)(pl)(pz)

3 +1 (x,n.l’X"'lpnl."l)PS (x’n l-x—l;nl--l'pl Ipz) (l_pl)pz
+I(x-l,n.l—x.nl.-l)Ps(x-l,n.l—x;nl.-l,pl,pz)pl(1—p2)

+I(x,n.l—x,nl.-l)Ps(x,n.l-x;nl.-l,pl,pz)(l~pl)(1-p2)

1 if x=n1 =n l=0
where P_(x,n, -x;0,p,,p,)=
S 1. 1772 0 otherwise
1 if (x,n'l-x,nl.)ccn
: ‘ 0 otherwise

The indicator function I accounts for the termination of the test
when one of the critical values has been reached. Once again,
one need only compute the probabilities for those points inside
or on the boundary of the sequential test region; all other

points have probability zero. The probabilities of each uf the
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events Ain , i=0,1 and n, =1,2,...n, must be computed for each

1. 0

1.
desired state of nature (pl,pz). (The computational simplifi-
cation given in Section 3.5 cin again be used here, . ith some

small modification.) The probabilities are computed as follows

P(Alnl ,91,P2)= (5.17)
any 1y
n f=o xErp 7 (Xen =%xymy JPg(x,n -xin ;,P).Py)
where IL=MAX(0,n.l-n1.)

IU=MIN (n 1'n )

l.

1 if (x,n.l-x,n].)cAin

Ji(x'n.l-x’nl )= 1-

0 otherwise

The indicator function Ji' i=0,1 is used to accumulate all of the
probability of accepting Hi. Once these probabilities have been
computed, one can find the exact test properties by using the
same procedure given in Section 3.5.

The procedure for finding the properties of a three decision
test region is analogous to the development in Section 3.6, con-
structing two SPRTs (i.e., sets of critical values for the test
statistic) to be run simultaneously. The sequential test rules
are the same as those in (3.25).

As a numerical example, the sequential test regions found in
the last section and evaluated here. The hypothesis being tested

for the two decision example is

L
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(5.18)

versusle t=tl=5

with a=0.025 and B=0.2. The sequential test region is shown in
Table 5.1; the exact test properties for this truncated test
region are shown in Table 5.4.

For the three decision test example, the hypotheses being

tested are

versus le t=to=l (5.19)

versus Hz: t=t2=5,

with al=a2=0.025 and Bl=82=0.2. The sequential test regions for

this example are shown in Tables 5.1 and 5.3. The exact test
properties are shown in Table 5.5.

There are several things which should be noted about the
properties of these tests. First, the a error probabilities

' and o respectively for

1 2
the three decision test procedure) are somewhat higher than what

(i.e., P(Hl) and P(HZ) when t=1, give a

was specified as the desired probability. Also, the sizes cf the
error probabilities vary with values of P{=P,- For example, when
p1=p2=0.4 in Tablec 5.5, al=a}=o.0459 and when pl=p2=0.5,
al=a}=0.0396. The power of the test (i.e., P(Ho) when t=5) also
varies over the equal Vvalues of t. The table shows clearly that

more power can be expected if one of the probabilities is close to

0.5 (again considering equal values of t over the (pl,pz) space) .




] Table 5.4
Two Decision pé=p

Example Test Properties
3 t P(H,) P(1,) ASN P(C_ _,)
P, P, 0 1 ng-1
0.10000 0,10000 1,0 0.890162 0,10638 18,42 0,45817
0.10000 0,05263 2,0 0.71863 0,28137 22,40 0,76284
0.10000 0,03%71 3,0 0.61290 €,38710 23.63 0,86948
0.10000 0.02703 4,0 0,54612 0.45388 24,15 N,931677
0,10000 0.02174 5,0 0,50076 0.49924 24,42 0,94153
0.10000 0.01818 6,0 0,46809 0,53191 24,58 0.95602
0,10000 0,01562 7,0 0,44349  0.55651 24,67 0,96519
0.20000 ©0,20000 1,0 0,9292¢ 0,07076 14,48 0,25443
0.20000 0,11111 2,0 0,70145 0,29b685 20,01 0.59500
0.20000 0.07692 3.0 0.52774 0,47226 22,03 0,78372
| 0.20000 0,05882 4,0 0.41481  0.58%19 22,92 0,79312
- 0.20000 0,04762 s,0 0,33933 0.66067 23,38 0.82104
0,20000 0.04000 6,0 0,28652 0.71348 23.64 0,83494
0,20000 0,03448 7.0 0,24799 0.75201 23.80 0,84199
0.30000 0,30000 1.0 0,94¢23 0.05377 12.30 0,16144
f 0.30000 0.17647 2,0 0.70231 0.29769 18,33 0.48263
; 0,30000 0,12500 3,0 0,49521  0,50479 20.58 0.60788
: 0.30000 0,09677 4,0 0,36012 0.63988 21.47 0,64254
0.30000 0.07895 5,0 9.27242 0,72758 21.83 0,64484
0.30000 0.06667 6,0 0.21342 0.78658 21,98 0,63572
1 0.30000 0,05769 7,0 0.17214¢ 0,8278¢6 22,04 0,62291
0.40000 0,40000 1,0 0.95642 0.04358 11,05 0,11744
E( 0.40000 0,25000 2,0 0.70523  0.29477 16,93 0,39305
b 0.40000 0.18182 3,0 0.47149  0.52851 19.16 0,49473 i
3 0.40000 0,14286 4,0 0,32054 0,67946 19.86 0,50134 H
: 0,40000 0.11765 5,0 0,22686 0,77314 19.99 0,47714
: 0.40000 0,10000 6,0 0.16710 0.83290 19,92 0,44595
0.40000 0,08696 7.0 0.12741  0,87259 19,77 0,41557
0.50000 0,50000 1,0 0.96234  9,03766 10,45 0,10643
; 0.50000 0,33333 2,0 0,71993 0.28007 15.99 0,34105
; 0.50000 0,25C00 3,0 0.46620 0.53380 18,01 0.41490 ;
1 0.50000 0.20000 4,0 0,30129 0.69871 18.47 0,39892 7
3 0.50000 0,16667 5,0 0.20165 0.796815 33,35 0,3%727
3 0.50000 0.14286 6,0 0,14085 0.85915 18,04 0,31357
5 0.50000 0.12500 7,0 0.1020¢ 0,89796 17,69 0.27468
' 0.60000 0.60000 1,0 0.95642 0.04358 11.05 0,11744 ;
0.60000 0.42857 2,0 0,73222 0.26778 15.71 0.32836
0.60000 0,33333 3,0 0,48188 0.,531812 17,38 0,37880
0.60000 0,23077 5.0 9,19715 0.,80285 17,18 0.28751
0.,60000 0,20000 6,0 0,13211 0,86789 16.66 0.23569
0.60000 0.17647 7,0 0.09211  0.90789 16,14 0,19307
Q 0.70000 0.70000 1,0 0.94623 0.,05377 12.30 0,16144
0.70000 0,53846 2,0 8.71230 0.28770 16,28 0,35607
1 0.70000 0,43750 3,0 0.47538  0,52469 17,54 0,38707
i 0.70000 0.36842 4,0 0,30923  0,69077 17.40 0.33577 ]
3 0.70000 0,31618 5,0 0.20265 0,79735 16,76 0,26854
1 0.70000 0,28000 6,0 0,13580  0.,86420 16,02 0.20881 [k
0.70000 0.25000 7,0 0,09372 0,90628 15.32 0,16144 |
0.80000 0,80000 1,0 0,9292¢ 0,07076 14,48 0.29443 e
0.80000 0.66667 2,0 0,70235 0.29765 17,82 0,44940
0,00000 0,57143 3.0 0,46793  0,53207 18,79 0,46799
0.80000 ©0,50000 4,0 0.30129 0,69871 18,47 0,39892
0.80000 0.44444 8,0 0.19647 0,.B80353 17,63 0,31202
0.80000 0.40000 6,0 0,13211 0,86789 16,66 0.23569
0.80000 0,36364 7,0 0,09492 0,90808 15,74 0.17622 4
0.90000 0,90000 1,0 0,89162 0.10838 18,42 0,45817 ]
0.90000 0,61818 2,0 0,70037 0,29963 20,37 0,61855 j
0.90000 0.75000 3, c 0.51075 0,48925 21,34 0.67053
0.90000 0,69231 4,0 0,35654 0.64346 21,34 0.63078
0.90000 0,64286 5,0 0,2441%  0,75%85 20,78 0,54425
0.90000 0,60000 6.0 0.16710 0.83290 19,92 0,44595
0,90000 0,56250 7,0 0.11%9 0,88431 18,94 0,35451
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P

0,10000
0.10000
0.10000
0.10000
0.10000
0.10000
0,10000
0,20000
0.20000
0,20000
0.20000
0.20000
0.20000
0.20000
0.30000
0.30000
0.30000
0.30000
0.30000
0.30000
0.30000
0.40000
0.40000
0.40000
0.40000
0.40000
0.40000
0.40000
0.50000
0.50000
0,50000
0.50000
0.50000
0.50000
0.50000
0.60000
0.60000
0.60000
0.60000
0.60000
0.60000
0.60000
0.70000
0.70000
0.70000
0.70000
0.70000
0.70000
0.70000
0.80000
0.80000
0.80000
0.80000
0.80000
0.80000
0,60000
0.90000
0.90000
0.90000
0.,90000
0.90000
0,90000
0,90000

P,

0.10000
0.05263
0,03571
0.02703
0.,02174
0.,01818
0.01562
0,20000
0,11111
0,07692
0.05882
0,04762
0.04000
0.03448
0.,30000
0.17647
0.12500
0.09677
0.07895
0,006667
0.05769
0.40000
0.25000
0.18182
0.,14286
0.11765
0,10000
0.08696
0.50000
0.,33333
0,25000
0.20000
0.16667
0.,14286
0.12500
0.60000
0.42857
0,33333
0.27273
0,23077
0.20000
0,17647
0.70000
0,53846
0.43750
0.36842
0,316818
0.28000
0.2%5000
0.,80000
0,66667
0.57143
0.50000
0.44444
0.40000
0,36364
0.90000
0.61818
0.7%5000
0.6923%
0,64286
0,60000
0.,56250
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Table 5.5

Ghiaia s bite |

Three Decision p,=p
Example Test Prop&rt es
P(H P (H
Y (Hg) P(H,)

0.10893 0,78214 0,10093
0.03%82 0.68234 0,28184
0.01840 0.59418 0,38743
0,04433 0.53456 0,45440
0,00772 0.49287 0,49944
0.00564 0.46236 0.53204
0,00426 0.43913 0,5566%
0.07373 0.85254 0.07373
0,01452 0.67997 0.3055¢
0.00%87 0.51533 0,4768¢
0.00319 0.4060¢ 0.59075
0.,00203 0,33273 0.66525
0,00142 0,28134 0.,7172%
0,00105 0.24380 0.75515
0.05686 0.88629 0.05686
0,00616 0.68306 0,31078
0,00165 0,477¢45 0.52120
0.00069 0.34365 0.65566
0.00037? 0.,25804 0,74159
0,00023 0.20106 0,79874
0.00015 0.16154 0.83830
0,04592 0.90617 0.04592
0.00336 0,68783 0,30882
0,00060 0.45009 0,54934
0.00048 0,29854 0.70429
0.00007 0,20643 0,79350
0,00004 0.1489% 0.85106
0,00002 0.11147 0.,8885¢
0,03958 0,92085 0,03958
0,00249 0.70465 0,29346
0,00030 0,44469 0.55504
0.00007 0.27806 0.72187
0.00002 0.17978 0.82020
0,00001 0.12096 c.87903
0.00000 0.08450 0,91550
0,04%92 0.90817 0.04592
p,00¢82 0,71801% 0,28047
0,00021 0.46202 0.53877
0,00004 0,28489 0,71807
0,00001 0,17443 0,82556
0,00000 0.131453 0,B88846
0,00000 0,07399 0.,9260¢
0,05686 0.,88629 0.05686
0,00254 0,69621 0,30125
0,00023 0,45418 D.54559
0.00004 0.28582 0,71414
0,00001 0,17975 0,8202¢4
0,00000 0.,13478 0.8852¢
0,00000 0.07501 0.92498
0,07373 0,85254 0,07373
0,00492 0.683%3 0,311%9
0.00047 0.44637 0,55315
0,00007 0.,27806 0.72187
0.00002 0.17400 0.82598
0.00000 0.11153 0,88646
0,00000 0.07355 0,92649%
0,10893  0,78214 0,1089)
0.01729 0,67792 0,30479
0,00308 0.49%90 0.50102
0,00062 0.33045 0,65993
0,00014 0.,223567 0,77419
0,00004 0.14691 0.,85406
0.00001 0.09880 0,90%19
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ASN

24,63
24,08
24,94
24,96
2¢,97
24,97
24,97
22,52
23,94
24,32
¢,42
24,43
24,42
24,40
19.53
22.04
22,91
23,05
22,98
22,85
22,74
17,65
20,05
21.14
21,35
24,02
20,74
20,40
17,07
16,83
19,76
19,69
19,25
18,73
18,24
17,65
18,%0
19,07
18,74
18,03
17,31
16,65
19,353
19,19
19,24
18,56
17,62
16,67
15,82
22,52
21,32
20,69
19,69
168,49
17,34
16,34
24,03
24,19
23,73
22,92
21,088
20,71
19,94

)
p(cno_1
0.89490
0.96440
0.98260
0.98879
0.99128
0.99241
0.99296
0.59699
0.78741
V85868
0.86804¢2
0.68525
0.88406
0.88074
0.36266
0.59731
0.69534
0.71037
0.69806
0.67817
0.65737
0.25677
0.45427
0.54776
0.54709
0.51551
0.47786
0.44217
0.23180
0.38289
0.45092
0.43042
0.38388
0.3357%
0.29316
0.25677
0.36713
0,41043
0.36944
0.30863
0.25239
0.20634
0.36366
0.40247
0.41947
0.36170
0.28864
0.2241%
0.47305
0.59699
0.54182
0.51438
0.43042
0.3348%
0.29239
0.48854
0.89490
0.82273
0.77808
0.69684
0.56900
0.47786
0.37788
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It is interesting to note that the deviations of actual test
properties from the desired test properties over the range of Py
and p, are remarkably small (when compared with other truncated
sequential and fixed size tests of such hypotheses). This is
especially true when the probability of continuation to trial n

0
(i.e., P(Cn _1)) is not too large.

If theoactual error probabilities are not satisfactory,
there are two possible solutions to the problem. First, modifi-
cation of the truncation rules at trial n, can be used to adjust
the error probabilities, as discussed in Section 3.5. Also, one
might try using different values for a and b, which are used in
(4.15) to develop the sequential test regions. The exact test
properties are easy enough to compute (especially in this special
case), so that one can use a trial and error method to obtain the
desired results. An example of this procedure is given in the
next section, along with a comparison of the tests given here with
other tests which have been proposed for testing the same hy-
potheses. Further discussion of this topic is contained in
Chapter 7.

5.4 FURTHER NUMERICAL EXAMPLES AND COMPARISON WITH OTHER

SIMILAR TESTS

This section presents two further numerical examples.

The first example is compared with a similar fixed size test;

the second is compared with a similar sequential test.
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Table 5.6 gives the test properties of a sequential test
for the equality of two unknown binomial proportions, testing

the hypotheses

H .

1° t=t1=1/9.3333

versus HO: t=t0=l (5.20)

versus H2: t=t2=9.3333

with specified desired error probabilities a1=a2=0.023 and
Bl=82=0.35. The test is truncated at trial 25. The sequential
test region for this test can be found, as explained above, by
using the computer program given in the Appendix. Table 5.7
compares the power and ASN functions of this test with the power
function of the UMPUT fixed size test with sample size n*=15
(i.e., 15 pairs are sampled). The power of the latter is given
by Harkness (1959).

The o error probability for the UMPUT test is 0.05 for all
values of P,=P,- For the sequential test, the a error probabilities
vary (for the combinations of P, and P, shown in the table) from
0.079 (when pl=p2=0.l) to 0.045 (when p1=p2=0.5). These proba-
bilities are close enough to 0.05 to facilitate comparisons. The
power of the sequential test (again for the points shown in the
table) is seen to be uniformly higher than that of the fixed size
sample test. Also, for most of these points, the ASN function is
less than 15, the sample size of the fixed size test. For some

combinations of the values of Py and Py the ASN exceeds 15.

This occurs when Py and/or P, approach the extreme values of 0 and 1.

. EXS .- - .
——d ———

.
e
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Table 5.6
Three Decision p,=p
Example Test Prop%‘rt. es

5 t P(H,) P(H) P) ASN Plc_ )
3 P, 1 0 2 L
0.10000 0,10000 1,0 0.0739t 0,85218 U,0739% 19,96 0.42634
0.10000 0.,01000 9,3 0.00249 0,43385 0,56366 24,11 0.8707%
0.10000 0.01000 20,0 0.00060 0.35319  (,64821 24,91 0.92368
0.20000 0,20000 1,0 0.03957  0.92089 L,03953 14,44 0.1561%
0.20000 0.10000 2,2 0.00565 0.75036 0,24379 18,42 0.37453
0.20000 0.03000 9.3 0.00053  0.,27608 U,72144 22,44 0.6512%
0,20000 0,01000 40,0 0,00014 0.14539  (,B85047 22,17 0.66791
0.30000 0.30000 1.0 0,02776 0,94477 (1, 02747 11,03 0.05669
0,30000 0,20000 1.7 0,00537 0,86%28 0,1293% 13,26 0.13772
0,30000 0,10000 3,9 0,00039 0.52511 0,47451 17,46 0.33221
: 0.30000 0.04000 9,3 0.00005 0.,20117 0,79678 19,21 0.37420
| 0.30000 0.02000 0.7 0.00001 0,07798 v.92201 19,17 0.32638
i 0,40000 0,40000 1,1 0,02¢14 0.95:44  (,02342 9,44 0.02744
0.40000 0,30000 1,6 0,00573 0.90627 U,08800 10,64 0.0602%
0.40000 0.20000 2,7 0.00083 0,71763 (,28154 13,17 0.15005
0.40000 0,10000 6.0 0.00003  0.32108 0,87889 15,70 0.21608
0.40000 0.07000 9,3 8,00001 0,17220 ©,82780 15,91 0.19147
0.40000 0.03000 20,0 0,00000 0,0505%1 U,94949 15,39 0.12/744
0.50000 0.50000 1.0 0,02345 0.9%406 U, 02250 8,96 0.020u04
0.50000 0.,40000 1.9 0.00803 0.9161¢ (,0/587 9.56 0.03837
0.50000 0,30000 2.3 0,00125 0.78661 0,21214 11,15 0.08657
) 0.50000 0.20000 4“n 9,00%16 0,52146 (,47887 12,95 0.13282
- 0.50000 0.10000 9.0 9,00001 0.17633 ©,B2367 13,37 0.10083
t 0.50000 0.,10000 9.3 7.00000 0.16630 U.B83369 13,34 0.09797
.. 0.50000 0,05000 20.0 0.00700 0,043588 G,95612 12,44 0.04612
- 0.60000 0.60000 1.0 n,02414  0,95244  (,02342 9,44 0.02744
i ) 0.60000 0.50000 1.5 0,00603 0,91810 ©.,07587 9,%6 0.036807
/ 0.60000 0.40000 2.2 n,00139 0.80251F u.19611 10,55 0.07064
h 0.60000 0.30000 3.5 0.00027 0.59350 (.40624 11,73 0.09964
: 0.60000 0.20000 6,0 0,00003 0.32231 .67766 12,16 0.08726
] 0.60000 0.14000 9,3 0,00001 0,16557 (,83442 11,69 0.,05500
0.60000 0,07000 20,0 0,00000 0.04303 ,95697 10,44 0.01689
1 0.60000 0,10000 13.5 0.0G200 0.08804 0.91196 11,08 p.03222
0.70000 0.70000 1,0 0.02776 0,94477 0,02747 11,03 0.05669
0.70000 0.60000 1,6 9,00573 0,90627 U,08800 10,64 0.0602%
0.70000 0.50000 2,3 0,00125 0.78661 0,21214 11,15 0.08657
0.70000 0.,40000 3.5 n,00727 0,59350 (,40624 11,73 0.09964
0.70000 0,30000 5,4 5,00005 0.36616 U.63379 11,74 0.08043
0.70000 0,20000 9,3 5.00008 0.16641 0.83358 10,85 0.03824
0.70000 0.10000 20,0 0,00000 0,04416 0,95984 9,27 0.00711
0.70000 0.10000 21,0 6.,00000 0,04038 0,95962 9,18 0.00629
0.80000 0.80000 1.0 0.03957 0,92089 0.03953 14,44 0.15615
0.80000 0.70000 1.7 0,00537 0.86%28 (.12935 13,26 0.13772
0.80000 0.60000 2,7 0,00083 0.71763  (,28154 13,17 0.1500%
0.80000 0.50000 4.0 0.00016 0.52146 0,47837 12,95 0.13282
0.80000 0.40000 6,0 0.00003 0,32231% U.,67766 12,16 0.08726
0.80000 0.30000 9.3 0.00001 C.16641 0,83358 10,85 0.03824
0.80000 0.20000 16,0 0,00000 0,06793 0,93206 9.28 0.00882
0.80000 0.17000 Q0.0 0.00000 0.04609 0,9539% 8,75 0.00432
0.80000 0,10000 36.0 0,00000 0,01592 ©,98408 7.72 0.00056
0.90000 0,90000 1.0 6,07391 0.85218 0,0739% 19,96 0.42634
0.90000 0.30000 2.2 6,00585 0,75036 (,24379 18,42 0.37453
0.90000 0.70000 3.9 0.0093% 0,52511 0,4745% 17,46 0.33221 ]
0.90000 0.60000 6,0 0,00203 0.32108 0,67889 15,70 0.21608
0,90000 0,50000 9,0 0,00001 0.17633 0,B82367 13,37 0.10083 3
0.90000 0.49000 9.3 6.00000 0.16616 0.B83384 13,15 0.09244
0,90000 0,40000 13,9 9,00900 0.08804 0,91196 11,08 0.03222 ;
0,90000 0,31000 30,0 0,00000 0,04397  0.95603 9,36 0.00767
0.90000 0,30000 2%,0 0.00000 0,04038 0,95962 9.48 0.00629
0.90000 0,20000 6,0 0,00000 0,01%92 u,98408 7.72 0.00056
0.90000 0.,10000 &1,0 0.060000 0.00375 0,99625 6,55 0.00001
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E B Table 5.7
' Comparison with Fixed Size Test
| Py P, t P (H) P_(H,) ASN
f .1 1 1.00 0.0500 0.1472 19.96
‘ 2 ) 1.00 0.0500 0.0791 14.44
2 .1 2.25 0.1040 0.2496 18.42
. .3 .3 1.00 0.0500 0.0552 11.03
.3 .1 3.85 0.2535 0.4749 17.46
, .4 .4 1.00 0.0500 0.0476 9.44
: .4 .1 6.00 0.4646 0.6789 15.70
i 5 .5 1.00 0.0500 0.0459 8.96
E 5 .1 9.00 0.6820 0.8237 13.37
g .6 .6 1.00  0.0500 0.0476 9.44
N .6 22 6.00 0.6095 0.6777 12.16
] 7 .7 1.00 0.0500 0.0552 11.03
7 .2 9.33 0.8020 0.8336 10.85
.8 .8 1.00 0.0500 0.0791 14.44
.8 .3 9.33 0.8020 0.8336 10.85
.9 .9 1.00 0.0500 0.14783 19. 36
.9 .5 9.00 0.6820 0.8237 13.37
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Overall, however, the sequential tests seems superior to the
fixed size test.

Table 5.8 gives the test properties of another numerical
example for this same problem. The specified desired error
probabilities, however, have been changed to al=u2=0.05 and
Bl=82=0.2. The test is still truncated at trial 25. Table 5.9
compares the properties of this test with those of Test Plan #4
from the Ph.D. dissertation of Oksoy (1972). His is also a test
for the equality of two unknown binomial proportions but is based
on the statistic D=x-y (the difference between the number of suc-
cesses 1in the two populations, which is not, in general, a suf-
ficient statistic) and the test is truncated at trial 30.

While uniform superiority cannot be claimed for the new
sequential test presented here, it appears that for most points
in the (pl.pz) parameter space, it will offer considerable advan-
tage. The new test seems to have better properties over a wider
range of the values of Py and P,y- The test of Oksoy outperforms
the new test in two parts of the (pl,pz) parameter space. The
first is where the differences between Py and p, are very large
(e.g., .5 vs. .9 and .8 vs. .3). The advantage with respect to
the power, in this part of the (pl,pz) space, however, is not
large. The test of Oksoy is also superior with respect to the
a error probabilities for values of P,=P, which are small. This,
bowever, results in a corresponding loss of power for his test
for values of Py and P, which differ much with respect to the odds

ratio, but little with respect to the difference A=pl—p2 between
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Table 5.8
Three Decision p,=p
] Example Test Propért es
f
E -
¥ wr
f P P, t P(H)) P(H) P(H,) ASN p(cno_l)
[ 0.10000 0,10000 1,0 0.108%7 0.78285 0,10857 21.72 0.61937
) i 0.10000 0,01000 9.3 0.00253 £.40202 0,59545 24,50 0.91599
1 0.10000 0.01000 20.0 0.00061 0.33603 0.66336 24,55 0.91927
0.20000 0.20000 1.9 0,06%958 0.,86284 0,06858 15.78 0.22288
- 0.20000 €.10000 2,2 0.01145 0,64912 0,33943 19,34 0.44272
0.20000 0.03000 9,3 0,.00062 0.19243 v,80696 21,56 0.56303
. 0.20000 0,01000 30,0 0,00015 0.09952 0,90033 21,42 0.52571
0.30000 0.30000 1,0 9,04932 0.90135 0,n4932 12.09 0.08025
0.30000 0,20000 1,7 0,01154 0,79729 0,19117 14,25 0.17222
: 0.30000 0.10000 3.9 0.00103 0.41986 0,57911 17,33 0.31627
i ; 0.30000 0.04000 9,3 0.00009 0.13157 (,B86R34 17,72 0.27964
1 0.30000 0,02000 20,0 £,00002 0.04303 0.959695 17.11 0.20810
, 0.40000 0.°9000 1.0 0.04407 0.91186 (,04407 10,39 0.03611
: 0.40000 0.30000 1,8 0.01275 0.85129 0,13596 11,48 0.07332
0.40000 0.20000 2.7 0.00235 0.62853 u,36912 13,94 0.15928
0.40000 0.10000 6,0 0,00014  6,23957 0,76029 14,82 0.17829
1 0.40000 0,07000 9.3 0.00003 0.,11731 ©,BB266 14,48 0.1370%
' 0.40000 0.03000 Q0.0 0,00000 0.02978 (,97022 13,51 0.07306
1 0.50000 0.50000 1.0 0,04283 0.91435 0,04283 9,93 0.02671
3 0.50000 0.,40000 1.9 9,01385 0.86801 U,11814 10,42 0.04337
. 0.50000 0.30000 2.3 0,00369 0.71030 Uu,28601 11,61 0.0892%
0.50000 0.,20000 4.0 0,00065 0.42926 1.57009 12,64 0.12312
0.50000 0.10000 9.0 0.00004 0.12490 0,R7507 12,11 0.07488
0.50000 0.10000 9,3 0,00003 0,11709 ©,88287 12,05 0.07189
0.50000 0.0%5000 0.0 0,00000 0,02790 0,97210 10,48 0.02606
0.60000 0,60000 1.0 0,04497 0,91186 u.04407 10,39 0.03611
0.60000 0,50000 1,5 0,01385 0.86801 u.11814 10,42 0.043837
0.60000 0.40000 2,2 0,00419 0.73252 0,”26328 11,08 0.07070
0,60000 0,30000 3,5 0,00109 0.50799  0,49092 11,62 0.08899
0.60000 0.20000 6.0 0.00019 0.24846 0,75135 11,25 0.06971
0.60000 0.14000 9.3 0.00004 0.11792 0,88204 10,40 0.04045
0.60000 0.07000 20,0 9,00000 0,02818 0.97182 9 02 0.01011
0.60000 0.,10000 13,% 0.00001 0.05972 © 23027 9,67 0.02174
0.70000 0,70000 1,0 0,04932 0,90135 0 J4932 12,09 0.08025
0.70000 0.60000 1,6 0.01275 0.85129 0,13596 11,48 0.07332
0.70000 0,50000 2,3 0,00369 0.71p30 0,28601 11,61 0.08925
0.70000 0,40000 3,5 0,00409 0.50799 U,49092 11,62 0.08889
0.70000 0,30000 5,4 0.00027 0.28985 ©1.70987 10,96 0.06176
0.70000  0,20000 9,3 0,.00005 0.11760 ©,88236 9,5 0.02519
0.70000 0,10000 40,0 0.00000 0.02791 0,97209 7,83 0.00413
0.70000 0.,10000 g¢,0 0.00000 0.02541 0,97459 7.75 0.00363
0.80000 0.80000 1,0 0.06858 0.86284 0,06858 15,78 0.22288
0.80000 0,70000 1,7 0,01354¢ 0,79729  0,19:17 14,25 0.17222
0.80000 0.60000 2.7 0,00235 0.62853 (,36912 13,54 0.15923
0.80000 0.50000 4,0 0.00065 0.42926 0,57009 12,64 0.12312
0.80000 ©0.40000 6.0 0.00019 0.24846 0,75135 11,25 0.06971
0.80000 0,30000 9,3 0,00005 0.,131760 0,88236 9.55 0.02%19
0.80000 0.,20000 16,0 0.00001 0.04221 0,95778 7,83 0.00461
0.80000 0.17000 30,0 0,00000 0.02727 ©,97272 7,30 0.00208
D.80000 0.10000 J6.0 0.00000 D0.00855 0,99145 6,33 0.000238
0.90000 0,90000 1,0 0,10857 0.78285 0.10857 21.72 0.61937
0.90000 0.80000 2,2 0,01145 0,64932 0,33943 19,34 0.44272
0.90000 0.70000 3,9 0,00103 0.41986 0,57911 17,33 0.31627
0.90000 0.60000 6,0 0,00014 0.23957 0,76029 14,82 0.17829
0.90000 0.50000 9.0 0.00004 0.12490 U©,87507 12,11 0.07488
0,90000 0.49000 9.3 0,00003 0,11723 0,88274 11,87 0.06806
0.90000 0.40000 13,5 0.0000t 0.05972 0,94027 9,67 0.02174
0,90000 0.31000 20,0 0,00000 0.02797 0,97202 7.92 0.004%2
0.90c00 0,30000 31,0 0.00000 0.02541 0,97459 7.75 0.00363
0.90000 0,20000 36,0 0,00000 0.00855 (,99145 6,33 0.00023
0.90000 0,10000 64,0 0.00000 0.00154 0,99846 5,27 0.00000
120
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Table 5.9
Comparison with Oksoy Plan 4

1 * *
i Py P, t P* (H_) P_(H,) ASN ASN
- 1 1 1.00 _ 0.0090 0.2172 11 21.70
i .2 .2 1.00  0.0586 0.1372 12 15.78
T 12 .1 2.25  0.0778 0.3509 13 19.34
1 .3 3 1.00  0.1159 0.0987 11 12.09
1N .3 1 3.85  0.3077 0.5801 14 17.33
.4 .4 1.00  0.1544 0.0881 11 10.39
h g .4 .1 6.00 0.6182 0.7604 13 14.82
3 .5 .5 1.00  0.1675 0.0857 11 9.93
3 .5 .1 9.00  0.8848 0.8751 11 12.11
; .6 .6 1.00  0.1544 0.0881 11 10. 39
.6 2 6.00  0.8210 0.7515 10 11.25
.7 .7 1.00  0.1159 0.0987 11 12.09
.7 .2 9.33  0.9354 0.8824 8 9.55
.8 .8 1.00  0.0586 0.1372 12 15.78
.8 3 9.33  0.9354 0.8824 8 12.11
.9 .9 1.00  0.0090 0.2172 11 21.70
.9 .5 9.00  0.8848 0.8751 11 12.11
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the probabilities (e.g., .2 vs. .1 and .3 vs. 1.). The former,
as explained in Section 4.1 is the preferred method of comparing
unknown proportions.

The ASN functions of the two tests do not differ appreciably
except when Py and p, are both small or both large, in which case
the ASN of the new test increases considerably (as is expected),
to correct for the lower average amount of information obtained
per trial for such values of Py and P, - Similar comparisons can
be made with the tests proposed by Armitage (1960), which are
based on the same statistic, D=x-y. His tests, however, are
truncated after a fixed number of untied pairs have been observed,
causing the ASN to be extremely large for values of P1=P, which
are close to 0 or 1.

From these comparisons, it seems reasonable to conclude that
the new tests given here have a decided advantage when using
such sequeritial tests and when the sample sizes will generally be
small. This will be especially true when extreme values of P,
and P, can be expected, for which larger samples are necessary for
the central limit theorem to become applicable, allowing the simpler
statistic of Armitage and Oksoy to become acceptable for such tests.
In any case, the new test will not be any worse than tests which

do not use a sufficient statistic.
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CHAPTER 6

ESTIMATING PARAMETERS OF A 2x2 CONTINGENCY
TABLE AFTER A SEQUENTIAL TEST

6.0 INTRODUCTION

Often, after completion of sequential tests of hypoth-
eses, it is desirable or necessary to estimate the parameters
in question. This subject is treated here. The general method
of estimation used here is due to Goss (1974a) and Schmee (1974).
Some of the preliminaries for the material presented here, in-
cluding a brief history of sequential estimation, an explana-
tion of the general method of estimation given by Schmee and
Goss, and a section describing the interpretation of these esti-
mates, is contained in Meeker (1975) and will be referred to
below. The first section of this chapter reviews the estimation
of the binomial parameter, p, as treated by Goss (1974a).
Section 6.2 applies the general method to estimation of the
parameters of 2x2 contingency tables. The last section illus-

trates the procedures with a numerical example.

6.1 ESTIMATION IN THE BINOMIAL CASE

The following is a development of the posterior distribution
and estimation procedures for the binomial distribution parameter p.
For the cases considered here (although it is not true in general)

the estimates will be independent of the stopping rule; that is,
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the estimates (and confidence intervals) will depend only on
the observed data at the termination of the test, and do not
depend on the particular stopping rules (except that the stop-
ping rules dictate where the sequential test may terminate).

The probability mass function of the binomial distribution
is

_ n x _ =X
b(x,n,p)= %] P (1-p) (6.1)

Following Goss (1974a) and the general procedure outlined in
the preliminaries, the likelihood of a sample point (n,x)

(i.e., of the observed data) at the termination of a sequential
test is

bs(X:Prn)=K(npx)px(l-p)n-x (6.2)
where K(n,x) is the number of admissible paths from the origin

(0,0) to the point (n,x). The posterior distribution of p

(assuming a uniform (0-1) prior) is then

b, (x,p,n) X, 4 N=X
G(p,x,n)= ——— = B ll-P)
of

(6.3)

bg (x,q,n)dg 0fqu(l-q)n-xdq

From the postericr, one can find a point estimate of a
parameter by using, for example, the mean of the distribut:on.
The expected value of p with respect to the posterior distribution
is
B=E(p)=y/ p-G(p,n,x)dp (6.4)

The complete beta function is defined as
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B(a,b)= r1q* 1 (1-9)°ldg = (r(a)r(b))/r(a+b) (6.5)

where I'(*} is the well-known gamma function and TI'(k+l)=k! for

integer k. From this (6.4) reduces to

s B(x+2,n-x+1) _
P B(x+l,n-x+1)

(x+1) / (n+2) (6.6)

Confidence intervals (witii a Bayesian interpretation) can be
constructed by finding values p and P such that

ppr(p,x,n)dp=l-a (6.7)

-~

giving a 100(1-a)® confidence level.

The upper and lower confidence limits P and’g can be chosen
in a number of different ways. If a one-sided interval is
desired, Pp=1 or p=0 for a lower and upper tailed one-sided inter-
val respectively. For a two-sided interval, the values can be
chosen to minimize the interval length'ﬁ-g or to have equal prob-
ability (a/2) in each tail of the posterior distribution.

By using the incomplete beta distribution function,

1,(a,b)=(1/B(a,b)) Pg? 1 (1-q) P L4gq (6.8)
0

(a very thorcugh treatment of this function is given, for example,
by Abramowitz and Stegun (1965) and Johnson and Kotz (1971)), the

values p and p are easily found. If

I ,b)=
p(a )=Y

then (6.9)

p=I;l(a,b)

is the inverse beta distribution function and p is the 100yth
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percentile of the distribution. An equal tailed 100(1l-a)#%

confidence interval can be found, for example, by

-1
Ia/

~=I‘l
P=l1_4/2

P 2(x+1,n-x+l)

(6.10)

(x+1,n-x+1)

6.2 ESTIMATION OF THE PARAMETERS OF A 2x2 CONTINGENCY TABLE

This section treats the estimation of the parameters of a
2x2 contingency table; the estimation is to be performed at the
completion of a sequential test. The estimation procedure, a
Bayesian approach, is based on the general method given by Goss
(1974a) and Schmee {(1974) and in particular, its application to
the binomial distribution, as described in the previous section.

The underlying probability model of a 2x2 contingency table
with both margins random (and the probability mass functions
assumed to be unknown) is the multincmial distribution shown 1in
(3.1). The observed data from such a 2x2 contingency table and
the corresponding probabilities are shown in Figures 3.2 and
3.1 respectively.

The multinomial probability mass function in (3.1) can be

factored as follows.
PF(x,nl.,n.l,n)= (6.11)

b(nl.,pl.,n)b(x,pl,nl.)b(n.l—x,pz,n-nl.)
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i where b(x,p,n)= (:)px(l-p)n-x is the binomial distribution

and

‘ a PP P (6.12)

p2= (p. l-pll)/(l-pl. )

are the conditional (on the right-hand margin (n1 ) of Figure

3.2) probabilities for each of the rows.

Because (3.1) factors exactly into the binomial distribu-
5 tions in (6.11), the three parameters Pys P, and Py which

] completely describe the state of nature, can be estimated inde- ¢

pendently. Also, Py and p, are often more important than the
individual cell probabilities within the table, as their equality
signifies independence of the row and column characteristics
being observed. Lindley (1964) uses similar factorization for

Beyesian analysis of general RxXC contingency tables.

o

Using the above and the results presented in Section 6.1, one {
can find estimates and confidence intervals for these three param- :
eters of a 2x2 contingency table. Estimates (i.e., the expected
value with respect to the posterior distribution) for the three n

independent parameters in (6.11) are

ﬁl.=(n1.+l)/(n+2)

B, =(x+1)/(n; +2) (6.13)

=(n ,=-x+1)/(n-n

o)

+2).

2 .1 1
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Using the inverse incomplete beta distribution as in (6.10),
one can find (independent) Bayesian confidence intervals for

each of these parameters. For example,

-1 -
Py=Iy o (x+1,n; -x+1) (6.14)

7’1=1I}a/2 (x+1,mp -x+1)
give the upper and lower limits for a two-sided 100(l-q)% v
Bayesian confidence interval for Py- This can be done in a '1
similar manner for P, and Py -

Because of the independence of the three binomial distribu-
tions in (6.11), simultaneous confidence intervals for these
parameters can easily be found. For example, in order to find
a joint 100(l1-a)% confidence region for all three of the param-
eters, one should choose the confidence level for each individual
interval to be 100(1-Y1), i=1,3 such that

a=1=n(l-yi). (6.15)
i 4

The estimation procedure for the binomial distribution is
easily generalized to treat the individual probabilities of the
multinomial distribution of the 2x2 contingency tables considered
here. The expected value (with respect to the posterior distribu-
tion) of the probability of a given cell of the multinomial dis-
tributior (assuming a uniform (0-1) prior distribution) can be

shown (¢ 'ar .~ (1975) and Good (1965)) to reduce to
o= 7ui41) / (n+k) (6.16)

where x is the observed count in the cell being considered, n is




the sample size and k is the number of cells in the multinomial
distribution. Equation (6.6), for the binomial distribution,
can be seen to be a special case (i.e , k=2) of (6.16).

The above can be used to obtain point estimates of each of
the cell probabilities. Letting "i' i=1,4 equal the individual
probabilities of the cells shown in Fiqure 3.1, these estimates
are

ﬁ1=(x+1)/(n+4)

ﬁ =(n1 -x+1)/(n+4)

2

o (6.17)
H3=(n’l-x+l)/(n+4)

H4=(n-n1.-n.l+x+l)/(n+4)

Bayesian confidence intervals for the individual cell prob-
abilities can be constructed in a manner anilogous to that for
the binomial distribution, treated in the previous section. For

example, a 100(1l-a)% upper confidence limit for Hl is

-~

1

T=I]_, /o (x+1,n-x+4) (6.18)

Upper and lower confidence limits for the other parameters are

similarly constructed. This is done as follows:

-1

gl=1a/2(x+1,n-x+l)

M—-l _ _

My=Iy /2Py ~¥*+l,n-n; +x+4) (6.19)
_ =t _ _

B5=Tay2 (P x*1.nmny +x+4)
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(]

-1 _ -
3°11-a/2 (0, 1 7X*Lonn  +xtd)

=l . -
’I~I._3-I(Jl/2(n.1 Xx+1l,n n.1+x+4)
1

' 'H4=Il_a/2(n-nl.-n'1+x+1,n1.+n.l-x+4) :
| e i
‘_34—10‘/2 (n n,. n.l+x+1,nl.+n_l-x+4) )

i 6.3 NUMERICAL EXAMPLE OF THE ESTIMATION PROCEDURE

Suppose that a sequential test is terminated at trial 25

with the observed data shown in Figure 6.1.

.

3 %=8 2 et

L.

3 7 8 15 |
i

F n 1=15 10 n=25 i

3 Figure 6.1 Observed Data from a 2x2 Table

The estimates and 90% confidence intervals for the parameters

of this example are shown in Table 6.1.

Table 6.1
Point Estimates and
90% Confidence Limits

Estimate Lower Limit Upper Limit
pl 0.407 0.234 0.593
pl 0.750 0.484 0.939
p2 0.471 0.248 0.700
ne 0.310 0.197 0.409
n2 0.103 0.039 0.173
n3 0.276 0.168 0.372
n4 0.310 0.197 0.409 ;




e R

T

CHAPTER 7

CONCLUSION AND DISCUSSION OF POSSIBLE
AREAS FOR FURTHER RESEARCH

7.0 INTRODUCTION

This chapter begins with a brief review of the models which
can be formulated in terms of a 2x2 contingency table. This is
followed by a discussion of some possible refinements and arcas

for further research, and some concluding remarks.

7.1 REVIEW OF 2x2 CONTINGENCY TABLE MODELS

The different probability models which can be formulated
in terms of 2x2 tables are treated at some length in Sections
1.2 and 1.3. There, six different models are discussed. These
models differ with respect to the number of margins which are
"observable" (i.e., margins which can be controlled by the
experimenter) and the number of marginal probability distribu-
tions which are known (knowledge of the probability function of
a margin which is controlled by the experimenter, of course, has
rro additional value). These six models are depicted in Figure
7.1 and are explained below.

Case I This model is used when both marginal totals are
random variables and marginal probability distributions are
unknown. Inferences coincerning the degree of dependence (meas-

ured by the cross product ratio) are made conditional on the

131

A S SRS TR S————————————E A S ]




L o Saaa ol i te uha it o agtiinb aat b iaal S A ANREY
o wor -,
1
3

TN VY, | vy g -

132

# Margins Which Are "Observable"

0 1 2

0 I II III
# Margins
with Known
Marginal 1 v v
Probabil-
ities

2 VI

Figure 7.1 2x2 Contingency Table Models

observed values of the ancillary statistics, the marginal totals.
This case is treated in Chapter 4.

Case II This model differs from that of Case I in that one
of the marginal populations is "observable." That is, the experi-
menter can choose at will an observation from either category of
the "observable" population. The test is then for the equality
(or some degree of inequality) of two unknown binomial propor-
tions. Inferences for this model are made by conditioning on
the observed value of the ancillary statistic, which is the total
number of successes for both populations. This model is treated
in Chapter 5 for the special case when one observation is taken
from each population at each stage of the test (a common sampling
procedure). The method given there, however, is general and can
be applied to other problems when one margin is controlled in
some other prespecified manner.

Case III 1In this model, both marginal totals can be fixed
in advance. This is not a commonly used model. The classic

example of such a test is Fisher's tea-tasting experiment, briefly
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mentioned in Section 1.3. Sequential applications for this model
seem limited.

Case IV This model occurs when both marginal totals are
random variables and the probability distribution of one of the
totals is known. This case has not been treated herec.

Case V When one marginal population is "observable" (i.e.,
can be controlled by the experimenter) and the other marginal
distribution has a known probability distribtion, the problem
can be reduced to a simple binomial model by taking all obscrva-
tions from one of the categories of the "observable" population,
as explained in Section 1.2. Such a procedure gives an asymptot-
ically most powerful test (Lehmann, 1959).

Case VI This model is similar to that of Case T except
that in this case the marginal probability distributions are
known. The null hypothesis of independence is most conveniently

expressed as

H (7.1)

o' P117P1.P1
There are no nuisance parameters in this model (p11 is the only
unknown parameter) and an unconditional test of the hypothesis

in (7.1) is easily found. Sequential methods for this case are

treated in Chapter 3.
7.2 POSSIBLE AREAS FOR FURTHER RESEARCH

There are several topics related to the above results which
might lead to further research. Some of these are briefly out-

lined below.
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Evaluation of the exact properties 2f the sequential tests
for 2x2 contingency tables which are given in Chapters 3 and 4
involves a large amount of computation when the test is not
. truncated at a relatively small sample size. This problem is
1 less severe for the cases treated in Chapter 5. The numerical
examples given in Chapters 3 and 4 were truncated at trial 25.
E Truncation at larger sample sizes was not feasible because of

limitations of computer memory with available facilities. With

a medium size computer (e.g., 32k words of memory), it would be

sizes which are much larger than this, some other methods might
. be developed. Asymptotic theory might be of some assistance here.
It is well known that the xz distribution can be used to
approximate the multinomial distribution associated with a con-
tingency table and can therefore be used to make tests of signif-
icance for this model. The observed marginal totals are used to
estimate the marginal probabilities if they are unknown. The X2
approximation is valid when the expected values of each of the
contingency table's cells is of sufficient size (usually an ex-
pected value of 5 is specified, although some argue for a lower
value).
The usual x2 statistic for a general RxC contingency table
is computed as
21 R 2

X“= jI; jEp(ng5E ) %/E, (7.2)

possible to run cases up to trial 100. For tests requiring sample

' '
"

L = =



gk

where E..=n, n
ij i,

esis of independence) of cell (i,j) and

j/n is the expected value (under the null hypoth-

(7.3)

As mentioned in Section 1.3, a half integer continuity correction
can also be used here. The X2 statistic has one degree of frec-
dom for cases I, II and III; two degrees of freedom for cases IV
and V; and three degrees of freedom for case VI, as shown in
Figure 7.1.

Harkness (1959) treats the asymptotic power of such tests.
He shows that for non-independent 2x2 tables, the x2 statistic
in (7.1) asymptotically follows a non-central X2 distribution
with non-centrality parameter

2
§ = "Pp P y(1-p),/(py P 1)) (7.4)
((1-p; ) (1-p ;)

(which is zero under the null hypothesis of independence).

For sequential analysis of 2x2 contingency tables when large
sample sizes are required, it would be reasonable to have a
test procedure based on a model similar to this. Such a test
might be based on the non-centrality parameter (corrected for the
sample size), using some function of the X2 statistic in (7.1)
(corrected for the sample size as a test statistic). A reasonable

statistic might be the phi coefficient
2
o= (2 /m) %, (7.5)

Goodman and Kruskal (1954) aive an account of this statistic as

i e i i Al




136

a measure of association. Such a test could be evaluated using
the methods given in Chapter 3, still leaving the computational
difficulties for large samples. Approximate properties of such
tests could be obtained by using the direct method to evaluate
the non-central x2 distribution under sequential test rules (such
a procedure has not yet been investigated) or with Monte Carlo
techniques. Such a test, based on the xz statistic (or some

function of it), has two advantages:

l. The test statistic has only one dimension.
2. Results could be easily extended to general
RxC or multidimensional contingency tables.

At the beginning of the sequential test, when the x2 distribu-

tion is not applicable (say for n<25), special considerations

must be used. Two possibilities seem reasonable:

l. Use the small sample procedures given above for

n<25.

2. Do not allow termination of the sequential test

until n=25, or until the expected values of each

» .- ,‘

of the cells are "large enough."

The development of a test procedure similar to the above

would be valuable in situations where relatively large samples

)

will be required to obtain the desired test properties.

Finally, it should be pointed out that the results in

.

Chapters 3, 4 and 5 remain valid for large samples (although the

procedures are more difficult than for asymptotic (e.g., x2)

o Y
[ Sy

tests). Also, it is not too difficult (given a small computer

.
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program like the one listed in the Appendix) to compute the indi-
vidual critical values for the two and three dimensional test
statistics for such large sample sizes. Tables for complete plans,
however, would be quite lengthy. The difficult problem is in
finding the exact test properties for tests requiring such large
samples.

One problem which has arisen with the use of sequential
analysis is that in the past exact test properties of the sequen-
tial tests were unknown. Researchers and experimenters usually had
to rely on the sometimes crude approximations and bounds given by
Wald (1947) and others. For cases where no such approximations
are available, Monte Carlo techniques have been used (and some-
times misused). The direct method of sequential analysis has pro-
vided a vehicle for overcoming this problem. The results obtained
thus far with the direct method of sequential analysis (see the
references given in Section 2.2) have been substantial and have
shown that the Wald regions give generally good results, even when
the sequential test is terminated at or near the sample size nec-
essary for a comparable fixed size sample test. When a given test
procedure does not have the desired test properties, the direct
method can be used to evaluate other alternate regions.

Schmee (1974) uses the direct method in the presence of a
nuisance parameter. In his treatment of the sequential t-test,

o, the standard deviation of the normal population, is a nuisance
parameter. As explained in Chapters 4 and 5, the marginal proba-

bilities of 2x2 contingency tables are nuisance parameters when

ey
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one wishes to make inferences concerning the degree of dependence
(i.e., inferences concerning t, the cross product or odds ratio).
The problem in the present case, however, is somewhat different
than that of the sequential t-test. 1In the sequential t-test,
the parameter under test is d=u/o, where p is the mean of the

normai population. The test properties for the sequential t-test

will be exactly the same for equal values of d, irrespective of
the actual values of y and o. Th'.. is the property of invariance
(Hall, Wijsman and Ghosh, 1965). This is not true in the casec of
the cross product (or odds) ratio with respect to nuisance param- i
eter(s) of a 2x2 contingency table. That is, the test properties
will vary over the parameter space for equal values of the cross
product (or odds) ratio. It is encouraging to note, however,
that the test properties do not vary appreciably when the proba-
bilities of continuation for a given point in the parameter space,
is small, as shown in the numerical examples of Chapter 5. This
is discussed below.

However, for certain values of the nuisance parameters, the
test properties will deviate considerably from the specified
"desired" error probabilities. It is sometimes a problem to attain
the desired error probabilities in the presence of such nuisance
parameters, but several methods of approach (all relying heavily
on the direct method for test property evaluation) are suggested.

First, one can modify the critical values (usually, but not
necessarily at the truncation point, no) to favor one hypothesis
or the other. This can be done in a systematic manner by exam-

ination of the probabilities of reaching the points in question

i il
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(these probabilities are available from the direct method).
Some rules of thumb can be devised for this procedure by exam-
ination of the distribution of the ancillary statistics under
states of nature where the test properties need to be changed.
For example, if one desires to change (for the most part) the
probability of acceptance of one hypothesis or another in a
test for the equality of two unknown binomial proportions (as
treated in Chapter 5), for values of P, =P, when brth are small,
one would modify the truncation rule for small values of the
ancillary statistic n oy the total number of successes from both
populations. Such a modification will have very little effect
on the test properties for values of P,=p, near 0.5. This pro-
ce.dure is easily generalized for the 2x2 tables treated in
Chapter 4. Also, such modification at trial n, will have the
largest effect on those points in the parameter space which have
the largest probability of continuation at trial no—l. It must be
reriembered that such modification will result, for example, in a
reduction of the o error probabilities, with a resulting loss in
power at alternates to the null hypothesis; the hope being that
the relative gain will exceed this loss. Use of the direct method
will facilitate such modifications. It should be noted that mod-
ification of the region in this manner will not affect the dis-
tribution of the DSN or the ASN function.

When the probability of continuation at trial no—l is small
at points in the parameter space where the error probabilitics

deviate from the desired values, another approach may have to be

ey oy
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used (this approach may be the best in any case, however). This
is because the above method of region modification will have
little or no effect on the error probabilities.

The numerical example given in Table 5.8 shows that for
most points in the (pl’pZ) parameter space, the actual f error

probabilities are considerably less than the specified values

(the u error probabilities, for most points, are ncar the desired
values). For most of these points, the probability of contin-
uation at trial no-l is small. This indicates that it would bec
reasonable to change the values with which the likelihood ratio

is compared at each trial (or equivalently, the specified "desired"
error probabilities) in order to achieve the desired test prop-
erties. In the present example, one would allow an increasc in the
B error probabilities in the hope of making some gains with respect
to the ASN function. Table 7.1 shows the test properties for the
same example, except that the desired error probabilities were
specified as «

=a,=0.024 and Bl=82=0.45. The resulting test prop-

1 72
erties after this change dre closer to the original desired values
and the ASN function has decreased somewhat. This procedure could

be repeated until the desired error probabilities are morec closely

approached.

For certain cases, especially for extreme values of the nui-
sance parameters (e.g., when it is necessary to discriminate bc-

tween Py and Py and both are expected to be small), the abovce

regions modification procedures may not be able to give satisfac-

tory results. In such cases, it will be necessary to incrcase the
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1 Table 7.1
Three Decision p,=p.
[ I Exannple Test Propéttfcs
: & t P(H,)
‘ J» Py P, (Hy P(HO) P(”z) ASN p(cno_l)
{ 0.10000 0,10000 1,0 0.06929 0,B6143 (,06929 16,31 0.33713
o 0.10000 0.01000 9,3 0.00249 0.,4389] 0,55860 23.10 0.83099
0.10000 0.,01000 Q0,0 0,00060 0,35994  (,6434% 23,99 0.90213
: s 0.20000 0.,20000 1,0 0,03587 0,92627 (,03%87 11,67 0.11396
] 0.20000 0.10000 2,2 0,00538 0.78090 (.21372 14,93 0.26148
| . 0.20000 0.03000 9,3 0.00053 0.32107 0,6784% 20,20 0.55993
0.20000 0,01000 20,0 0,00014 0.17677 (,82309 21.41 0.61114
0.30000 0.30000 1,0 0.02838 0,94325 (,02838 9,65 0.04162
‘ 0.30000 0,20000 054 0,00552 0.87365 ,312063 1,18 0.10159
0.30000 0.10000 3.9 0.00039 0.57722 0,42239 14,60 0.24689
; 0.30000 0.04000 9.3 0,00005 0.2696% 0,7303¢ 16,75 0.29142
] 0.30000 0.02000 20,0 0,0000L ©.$2729 0,6/270 17,40 0.27247
4 . 0.40000 0.,40000 1.0 0,02544 0,94913 0,02544 8,682 0.02084
] 0.40000 0,30000 1,6 0.00623 0.90352 0,09025 9,64 0.04460
0.40000 0,20000 °~ 2,7 0.00094 0.729060 0.2/006 11.55 0.11121
0.40000 0.10000 6.0 0.00004 0,37472  (,62924 138,61 0.16001
0.40000 0.07000 9,3 0,00001 0,23343 y,7665%6 13,92 0.14241
0.40000 0.03000 20,0 0.00000 0.09886 L.9C114 14,63 0.09773
0.50000 0.50000 1,0 0,02456 0,95088 0,026¢56 6,98 0.01746
0.50000 0,40000 1,5 p.00646 0,91435 0.,07919 9.07 0.03099
0.50000 0,30000 2,3 0.00136 0.78504 y,21%60 10,36 0.0623Y
0.50000 0.20000 4.0 0.00048 0.53489  ,46493 11,76 0.09986
0.50000 0,10000 9,0 p,00001 0,21696 (,7€303 12,05 0.07447
0.50000 0,10000 9,3 0,0000L 0,20737 §,79763 12,03 g.07233
] 0.50000 0,05000 20,9 0,00000 0.07984  (,52016 11,38 0.034006
. 0.60000 0,60000 1,9 0,02544 0,94913  U,02544 8,82 0.020n4
0.60000 0,50000 1.5 0.00646 0.91435 (0.C7919 9,07 0.03099
0.60000 0.40000 2.2 0.00149 0.79977  0,1%AR74 16,03 0.05946
0,60000 0.30000 3,5 0,00028 0,59601 U,4037% 11,06 0.0817Y
0.60000 0.20000 6,0 0,00003 0.,33647 (,66349 11,36 0.06791
0.60000 0.14000 9,3 0,70001 0.18761 ©,81238 10,91 0.0413%
0.60000 ©0.07000 20,0 n,00000 0.06487 0,93513 9,84 0.0123,
0.60000 0.,10000 13,5 0,00000 0,1119%  ©,BB80S 10,37 0.02388
0,70000 0,70000 1.9 0.02838 0.9432% y,02838 9,65 0.04162
0.70000 0,60000 1,6 0,00823 0.90352 0.09925 9,64 0.04460
0.70080 6.,50000 2.3 0,00436 0.76504 C,21360 10,96 0.06739
0.70000 0,40000 3,8 0,00028 0.59601 0,4037% 11,06 0.08175
0.70000 0,30000 5,4 0.00005 0.,37262 0.62733 11,13 0.06730
0.70000 0,20000 9,3 0,0000f 0.17621 0,82378 10,31 0.03100
0.70000 0.10000 20,0 0,00000 0.05436 0.94564 8,90 0.0053%
0.70000 0,10000 24,0 0,00r00 0.05042 0,94957 6,82 0.00472
0.80000 0.80000 1,0 0,035587 0.92827 0,03587 11,67 0.11396
0.80000 0.70000 1,? 0,.00552 0.87365 0,12083 11,18 0.10159
0.80000 0.,60000 2,7 9,00094 0.72900 0,27006 11,55 p.11121
0.80000 0.50000 4,0 3.00018  0.53489  (,46493 11.76 0.09986
0.80000 0.40000 6,0 0.00003 C.33647 y,.66349 11,36 0.06791
0.80000 0.30000 9.3 0,00001 0.17621 0,52378 10,31 0.03100
:.80000 0.20000 16.0 0,00000 0,07269 0,9273% 8,99 0.00729
0.80000 0.17000 20,0 0.00000 £.04986 1.95014 8,42 0.00354
0.80000 0.10000 36,0 0,000060 0,01640 0.98160 7.49 0.00043
0.90000 0.90000 1,0 6.06929 0.86143 C.06929 16,31 0.33713
0.90000 0.80000 2.2 0.00538 0.78090 u,21172 14,93 0.28146
0.90000 0,70000 3,9 0.00039 0.57722  (.42739 14,060 0.24649
0.90000 0.,60000 6,0 0.00004 0.37472 (.t2%24 13,061 0.1600%
0.90000 0.,50000 9,0 0.00001 0.,21696 0,78303 12,05 0.07447
0.90000 0.49000 9.3 0.060001 0.20529 0,79470 11,90 0.06826
0.90000 0,40000 3,5 $.00900 0.1119%  G,H8805 10.37 0.02383
0.90000 0,31000 30,0 0.00000 0,05519 0.94481 8,97 0.00%574
0.90000 0.30000 Q1,0 0.00000 0,05042 0.94957 8,82 0.00472
0,.90000 0.20000 36,0 0,00000 0.01840 U,98160 7,49 ¢.00043
0.90000 0,10000 @i,0 0,00000 0.00405 0,99595 6,40 0.00001
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the value of ng the truncation point of the sequential test.
One other important and desirable characteristic of the
sequential *tests with nuisance parameters presented here is
that they give a method of obtaining a test procedure which
affords approximately equal error protection against specified

(by H, or HZ) values of alternate hypotheses (the hypothescs

1
being specified in terms of the cross product (or odds) ratio),

with a certain amount of "invariance" to the actual values of
the nuisance parameter(s). For example, as shown in Table 5.7,
the fixed size (UMPUT) (see 4.10) for the hypotheses in (5.12)
has a probability of rejecting Ho equal to 0.05 for all Py=P,-
For equal values of t other than one in the (pl,pz) parameter
space (see Figure 4.1), however, the power varies considerably
with the actual values of the nuisance parameters.

Because the amount of information obtained from a given
sample depends on the observed values of the ancillary sta-
tistic(s) (whose distribution depends only on the values of the
nuisance parameter(s)), there is no fixed size test procedure

which will give even approximately equal protection (with

respect to the power function) along contours of equal values

of t#l in the (pl,pz) parameter space. The sequential procedures
presented here help correct for this and the power function of
such tests will bhe relatively constant over such contours in that

pact of the (pl,pz) space where the probability of continuation

to the truncation trial n, (P(Cn _1)) is small. This is cvidenced,
0
for example, in the test propcrties of the numerical examples which 1

are given in Tables 5.6, 5.8, and 7.1.
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This "invariance" property (which is not invariance in the
strict sense of Hall, Wijsman and Ghosh (1965), but is similar
in nature) is present in the sequential tests for the 2x2 con-
tingency tables treated in Chapter 4 as well as for those treated
in Chapter 5.

Another area for possible further research is the applica-
tion of some of the above results with respect to the wide varicty
of other statistical problems which can be formulated in terms
of a 2x2 contingency table. Some of these models include thr
study of matchod proportions in crossover designs (Gart, 1969)
and the study of Poisson distributed incidence rates (Gart, 1974).

Also, nonparametric two-sample tests for the equality of medians

can be formulated in terms of a 2x2 contingency table (Owen, 1962).

The methods presented here might be used in two ways to help solve
these problems sequentially. That is,
l. To obtain a SPRT which is conditional on obscrved
ancillary statistic(s), yielding a test based on
a sufficient statistic (which is usually desirable).
2. To find the exact test properties of such tests,
based on evaluation procedures similar to those
given here.
The underlying probability distributions of these models are
usually somewhat more complex (especially under alternatives to

the null hypothesis) than the multinomial and binomial distribu-

tions considered here.
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7.3 CONCLUSION

It is hoped that the results presented here will be valuable
both in a practical sense and as a stimulus toward further in-
vestigation of sequential methods for related problems. Some
new methods of finding sequential test regions have been inves-
tigated here. In addition, methods of exact evaluation of the
properties for these (and other similar) tests have been developed,
enabling the experimenter using such methods to know more pre-
cisely the size of the risks associated with a given test pro-
cedure, and to help one find the best test procedure for the prob-
lem at hand.

The results presented here should have wide applicability
in situations where it is difficult or expensive to obtain ob-
servations or when data are naturally obtained sequentially. As
shown in the numerical comparisons given in Chapters 3, 4 and 5,

the sequential tests presented here are clearly superior (with

respect to expected sample size requirements) to similar fixed
size and other proposed sequential (in the case of the comparison
of two unknown binomial proportions) procedures, allowing sig-
nificant savings with respect to the necessary time and/or

expense associated with sampling.
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P

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1650

C
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Co
Ce
Ce
Ce
Ce

THIS PROGRAM COMPUTES THE SEQUENTIAL TEST REGION
FOR TESTING THL INDEPENDENCE OF A 2Xx2 CONTINGENCY
TABLE WHEN THE MARGINAL PROBABILITIES ARE UNKNOWN,
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C

1212
25

233

62

4“2

701

700

DIMENSION KT (101)

DIMENSION KL (100)4KU(100)
COMMON IL,JU

DATA INPUT.10UT/50¢66/

1uP=0

READ(INPUT,1212) IREG

FORMAT (12)

00 25 I=14101

KT(lyzla}

READ ( INPUT+62) ALPHA 4BETA
READ(INFUT+62)T2,4T70
ATOsALOG(TO)

AT2:AL0G(T2)
WRITF(IOUT4233)T0eT24ALPHALBETA
FORFAT ("]1T0="FT¢3/" T1a%oFT43/" ALPHAZ"4FT,3/"BETAZ"FTe3/7//)
READ (INPUT+62) XMO

MOzXMO

FORVMAT (BF10.0)
AL1SALODG(BETAZ (1le=ALPHA))
BL1=ALOG((1.=BETA) /ALPHA)

DO 22 Nzl MO

NP1zNel

WRITF(I0UT.888)

FORMAT (»0")

WRITE(IOUTs62)N

FORMAT(* TRIAL "el4¢5Xe"Nol™)
1F(N,NE.MO) GO TO 9
ALIZ(ALLeELLY /24

BL12aLl

1F(IREGeLE.=1)1UP2=]
lF(lQEG.Gf.l)lUp3l
IF(IUP.EQ, 1)WRITE(IOUT.701)
FORMAT (* REGION MOVE UP™)
IF(JUPEQ.=1)WRITE(IOUT,L700)
FORMAT (» REGION MOVE DOWN™)
CONTINUE

XNz
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1460 WRITE(IOUT+0662)
_ 16470 662  FORMAT(3Xe"Nl,")
- 1480 WRITE(IOUT+49) (KT(1) oIzl NP1}
2 1490 ’ » FORMAT (TXe15(1443X))
1500 00 33 1s1,.NP)
1510 IM1z1=1
1520 N1DOT=]-1
1530 XN1DOTz]=1
1540 D0 464 JzlNPL
1550 NDOT12y-]
1560 XNOOT12J-1
1570 TUsSMINO (MDOT14N1DOT) el
1580 ILEMAXO (NCOT1eNIDOT=N40) ¢l
1590 FTOEFNOD(NDOT1+N1DOT4NoATO)
1600 FT22FNOD (NDOT1 oNIDOTyN9AT2)
le6lo KL(JIEJLNT ((ALLoFT0=FT2)/(AT2=AT0))
1620 KU(JYSILNT((BL1¢FTO0-FT2)/(AT2=ATO0)) o}
1630 IF(KU(J) oL Te=1IKL (J)5=]
1640 44 CONTINUE
1650 WRITE(IOUT 41) IM]
1660 41 FORMAT ("e" 4 14)
1670 WRITE(JOUT «40) (KL (J)sKU(J)} s Ju}oNP1)

1680 40 FORMAT (* "oaXe2XelS5(1Xs120"e%e]2e1X))
1690 33 CONTINUE
1700 22 CONTINUE

1710 SToP

1720 END

1730 €

17"0 CQ.QQQQQQQQQQQQQQ IQIQQOQQQ'QQQQQDIQQIIIIQIIQQ!QQ.IQQIQQD.Q..
1750 C#»

1760 C» THIS PRNGRAM COMPUTES THE SEQUENTIAL TEST REGION
1770 €Ce FOR TESTING THE EQUALITY JOF Tw) BINOMIAL PROPORTIONS
1780 Ce wHEN ONF ITEM IS SELECTED FROM EACH POPULATION AT
1790 C» EACH TRIAL,.

1800 C»

1810 LCIQQQQQQOQIQIQQIllllllQQQlQQQQiDQllQO'QQQQIDI!QQQQ!QDQIIQQ
1820 €

1830 DIMENSION KT (LOD)

1840 DIVENSION KI (100)4KU(100)

1850 COMMON ILeILoGI%) 0 X (&)

1860 DATA INFUT.10UT/50466/

1870 lupsp

1880 READ (INPUT+1212) IREG

1890 1212 FORMAT(]2)

1500 00 25 [=21,101

1910 25 KT(ly=l-1

1920 READ (INPUT 4621 ALPHA(BETA

1930 REAC (INPUT,62)T0,T1

1940 WRITE(IOUT +¢64)TO4TL4ALPHALBETA

1950 64 FOQMAT(*1TO="4FBe2/" T13"¢F8,2/% ALPHAZ"FB8,3/" BETAz"FB843///)
1960 AT0zALOGITO)
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L33
. 1970 AT13ALODG(T])
1980 REAC (INPUT . 62) XMO
1990 MO = XMO
= 2000 62 FORMAT (8F10,0)
2010 NP1z2oM0e]
! 9 2020 WRITE(IOUT+663)
2030 663  FORMAT (50X +"Nel")
4 i 2040 WRITE (10UT+49) (KT(I) o121 4NP1)
2050 WRITE {10UT4662)
i g 2060 662  FORMAT(" TRIAL®/" Nle")
2070 BL12ALOG((],=BETA) /ALPHA)
! 2080 AL1=ALOG(BETAZ (le=ALPHA))
2090 DO 22 N= .0
2100 NP1z 28N, -
: 2110 1F (N,NE,MO) GO TO 9 ;
2120 AL)3(ALL1+BLYY /2. :
e 2130 BLi=aALl 3
2140 1F(IREG,GEL1) JUPz]
E 2150 IF(IREG.LE.=1)IUPS=]
% 2160 IF(IUPJNEL,OYWRITE(I0UT4700)
- {. 2170 700  FORMAT(* REGION MOVE™)
e 2180 9 CONTINUE
: 2190 49 FORMAT (TXe15(1443X))
| 2200 N1DHTaN A
2210 CO 44 Jz1 NP}
) 2220 NDCT1z2J-l 3
2230 ILaMAXO(NDOT1=Ns0) #]
2240 - TUaMINO (NDOY]1 oN) ol
2250 FTOzFNOD(NDCTLWNLDOT2#N1DOT4ATO)
2260 FT1sFMNUDINDOTY o N1DOT42o0NIDOT4ATL)
2270 KL(JIZILNT((AL1¢FTO=FT1)/(AT1=ATO))
2280 e+ 1uP
| 2290 KU(JYSILNT((RL1¢FTOFT1)/(AT1=ATO) )l :
2300 e+ 1UP E
2310 TF (RO LT o=KL () 3=] ]
2320 44 CONTINUE '
2330 WRITE(IQUT 41N 4
2340 &) FORMAT ("s"y14) s
2350 WRITE (10UT +40) (KL (J) +KU (J) o J31 oNP1) i

2360 40 FORMAT (* "o&X92Xol5(1Xel20"e"el2:1X))
2370 22 CONTINUE

2380 SToP

2390 END

2400 C

2410 CRRARBRARARRARARARARARRARARRRRARARRANNRRAARRERRARARRARD

2620 Ca

2430 C» THIS PROGRAM COMPUTES THFE SEQUENTIAL TEST REGION

2460 Ca FOR TESTING THE !nwDEPEMDENCE OF A 2X2 CONTINGENCY

gzzg g. TABLE WHEN THE MARGINAL PROBABJLITIES ARE KNOWN,
»

2‘70 CRARRBERARAR AR A RARRRRRARNCRARRARRARARPARRONRRNRARDARRNARRANRN
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2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2100
2710
2720
2730
2740
2150
2760
2170
2180
2790
2800
2810
2820
2830
2840
285¢C
2860
2870
28R0
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980

DIMENSION KT (101}
DIMENSION KL (100)4KU(100)
DATA INPUTI0UT/50466/
lup=0
READ (INPUT.1212) IREG
1212 FORMAT(12)
00 25 I=z1.10C!
25 KT(ly=l=1
READ (INPUT +62)ALPHALBETA
READ (INPUT+62)P1DOT4PDOT14P04P1
READ (INPUT462) XMO
WRITF(IOUT+6T7)P1DOT4PDOTL+PO+P1sALPHABETA
67 FORMAT("1P1oz"eF743/" Polz"osFT43/" POz "sF7e3/" Plz"sFTe3/
6" ALPHA=z" F7.3/" BETAZ"F7,3///)
MOsXMO
62 FORMAT(8F10.0)
XU1=ALOG(PL1/PO)
XU2sALOG( (PCOTLI=PL)/(PDOT1=-P1))
XU3zaLOG((FINOT=Pl)/(P1DOT=P0O))
XU4=ALOG((1.=Pl00T=PDOTL¢P0}/(1e=P1DOT=PDOT]1P1))
ZUzXyl=XU2-XU3eXUé
XU43=XUb=XU3
XUe2sXJb=XU2
BL12ALOG((1e=BETA) /ALPHA)}
AL1=ALOG(BETA/ (1o=ALPHA))
DO 22 Nzl MO
NPi=Nel]
WRITF(10UT.888)
888 FORMAT ("0")
WRITE(IOUT.42)N
62 FORMAT(™ TRIAL "el4s5Xe*Nel™)
IF (N_NE.,MO) GO TO 9
AL1=s(AL1eBL1Y /2.
BL1zaLl
1F(1REGeLEa=1)1UP3=]
IF(IEG.GEL1) JUP=]
701 FORMAT(* REGION MOVE UP™)
IF(JUPEQe=1)WRITELIOUT 4700)
700 FORMAT (» KEGION MOVE LOWN")

? CONTINUE
XN=N .
WRITE(IOUT 662)
662 FORMAT (3X4"M1,e")

WRITF (I0OUT69) (KT(I) eIzl eNPL)
‘.9 FOQ"A‘("XolS(l‘H. e

D0 33 I=z1,4NP1

IM1s1-1

XN1D9Tz]-1

DO 44 Jz14HP1
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al

2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3200
3290
3300
3310
3320
3330
3340
3350
3360
370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490

o
6}
«0

3
22

<

aalis Aol Cobl A ca bt

XNDOT13J=1
XNUSXNDOT1aXUI63eXNIDOT#XUG2=-XNRXUG
KL (JY=JLNT ((AL1+XNU) 72U}
e+ 1UP
KU(JYSILNT L(RLL*XNU) /ZU) ¢}
e+ 1UP
IF (KL () LTl )KL (J)B=2
IF(XU(J) el Te=11KU(J)B=]
CONTINUE
WRITE(IOUT441) 1M1
FORMAT("e®o14)
WRITELIOUT«40) (KL (J) oKU(J) sJs1eNP})
FORMAT (" "q4aXe2Xe15(1Xel2e"0"012e1X))
CONTINUE
CONTINUE
SToP
END

CRANARAANARANRANNARRARARRRRNARAARNRIANARNANRRNRIRRRNRRRARNNRR

Ce
Ca
Co
Ca
Co
Ce
Co
Ce
Ce
Cw
Co
Co
Co
Ca

THIS PROGRAM FIGURES AND EVALUATES REGIONS FOR A SEQUENTIAL
TEST OF A 2X2 CONTINGENCY TABLE. THE TEST IS BASED ON THE CROSS
PRODUCT RATIC, TRUNCATION OF REGIONS IS ALLOWED,

SAMPLES ARE TO BE TAKEN IN PAIRS FROM TWO DIFFERENT POPULATION,
TH]S PROGRAM IS FOR A THREE DECISION TEST,

WILLIAM Q. MEEKERs JR,

INSTITUTE OF ADMINISTIATION AND MANAGEMENT
UNION COLLEGE

SCHENECTADY+ NEW YORK 12308

AUGUST 1974

c........Ql...l.l.l.llll.l..ﬂlQllQQDQQQQI.QQQQQQQQQQQQ.IQIIIII..I..QQQ.

C

C

C
C

OIMENSION A(27427)4B(27427)

DIVENSION ACCO(T5) +ACCLI(T75)4ACC2(T5)
DIMENSION ACCOT(75)ACCIT(75)+ACC2T(75) ¢N9(T5) «PCH(T5)
DIVMENSION PAR(T75)+F3(75) +PA(T5) «PN(T5)

DIMENSION X(4)

INTEGER TWON

REAL N9NT9

LOGICAL UP1.UP2+.DOWN} +DOWN2
COMMON ILeIUsG(4) s X1eX24X39X4
EQUIVALENCE (X1eX(1) )
ECUIVALENCE (11 4K)

DATA [PNOUT/S8/

DATA INPUTLI10UT/S50466/

SPECIFY H1 (LOWER)+s HO(MIDDLE) + H2 (UPPER)
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3500
3sl0
3520
3530
3540

C
C

1212

70

47

4]

9922

TAKE LOGS FOR LATER USE

READ(INPUT+1212) IPUN4IREG
FORMAT (211)

lup=p

READ(INPUT «TO)ALPHAL ¢BETAL JALPHA248ETA24XMO+sT2,T0,T1
IF(T0.60.0,0)7021,0
IF(T1,E60.0,01T12Le/T2
FORMAT (8F10.0)

MOz XMO

AT12ALOG(T])

AYusaLOG(TO)

AT23AL06G(T2)

SET OESIRED ERROR PROBABILITIESs CRITICAL LIMITS AND THEIR LOG
AlsALPHAL/(1,-BETAL)
Blzs(le~ALPHAL)/BETA]
A2:=BETA2/(1.,-ALPHA2)
B22(]¢=-BETA2)/ALPHA2
WRITE(IOUT +4T)
FORMAT (1H] eSXelHT 07X s THALDG(T) /)
WRITF(IOUT «41)T1eAT1eTOGATOWTReAT2
FORMAT(3H T142X02(3XeFTe4)/3H TO92X92(IXeFT04)/3H T242%X02(3XeFT44)

o)

WRITF{IOUT 45)ALPHAL +BETA]

FORMAT(//7/710H ALPHAL = +F5,3/9H BETAL = +F5,3 )

WRITF(IOUT «945)ALPHA2 4BETA2

FORMAT(/ 10H ALPHA2 = F5,3/9H BETA2 = (FS5,3 }

READ SCLECTED ALTERNATE HYPOTHESES WHERE THE REGION IS TO BE E

120

CONTINUE

I=]e)

REAC (INFUT.701P1L4P2
IF(P1.EC.0,0) GO TO 9922
02:21,=P2

01=z1,-P}
PAR(1)=ALOGI( P2)
PA(I)=ALOG(P] )
PB(I)Y=ALOG! ol
PN(l)=ALOGH Q2)
Go T2 1

NALTz]-]
AL1=ALOG(AL)
BL1=ALOG(B])
AL2=ALOG(A2)
BL2=aL0%5(B2)

INITILIZE
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4010
4020
4030
4040
4050
«060
«070
©«080
4090
©100
4110
4120
4130
4160
41%0
4160
«170
4180
%190
4200
4210
©220
4230
©240
©250
4260
%270
4280
4290
«300
6310
4320
«330
4340
4350
4360
4370
4380
4390
4400
46410
4420
4430
4440
4450
4460
4670
44RO
4490
4500
4510

4488

66

"7

4499

[aNalal

4617

700
56

[aXaNal

[alal

A(le))=,25
A(102)3,25
A(2¢1)8,25
A(2¢2)8,25

DO 4488 Iz]1NALT
ACCIlTI(])20.0
ACC2T(])=20,0
ACCOT(1)20,0
N9(1)30,0

CONT INUE

INCREMENT TRIAL NUMBER

DO 34 Nz1,MO
WRITE{IOUT66)N

FORMAT (» TRIAL NUMBER "415)

TWONz2eh

N1sTwCNel

13zN.2

D0 77 Ix1,13

00 77 Jsl,13

B(l1eJ)z0,

DO 4499 [=x]+NALT

ACCO (I120,0

ACCl (1)20,0

ACC2 (1)=0,C

CONT INVE

IF(N.NE,MO) GO TO 56

ALLOW TRUNCATION IF DESIRED

DO 4477 1=14NALT

PCHIT)I=Z1.-ACCOTIT) =ACCIT () =ACC2TL])

ALlz(AL1eBL1)/2,
BL1=aLl
AL2z (AL2eBL2)V /20

BL2=aL2

IF(IREG.,EQ. 1) IUPs]
IF(IUPLEQ1IWRITE(IOUT700)
FORMAT (* REGION MOVE®™)
CONTINUE
O=FLOAT(N)®#(0,69314718)
O0z-2#0 .

ENUMERATE ALL POSSIBLE BOTTOM MARGINS

00 22 J=z1.N1
NDOT1=24-1
NDOT2=zTWON=KNOT1

FIGURE LOWER AND UPPER LIMITS
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4520
4%30
©540
4550
«560
«570
4580
4590
«600
4610
4620
©630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
47150
©760
4770
4780
479¢C
4800
4810
4820
4830
4840
4850
4860
4870
48R0
4890
4900
4910
4920
4930
4940
4930
4960
4970
4980
4990
5000
5010
5020

(aRaKal

15

[aNa¥al

(aNalal

JUsMIND (NDOT1eN) o)
IL=MAXO(NDOT1=Ns0) e}

SKIP IF REGIONS ARE ALREADY SAVED

FTO=FNOC(NDCT1 «N+sTWONGATO)
FT12FNOD(NDOT1 oo TWONSAT])
FT2=FNOC(NCCT1 «NoTWONWAT2)

FIGURE CRITICAL VALUES OF REGIINS

KLISILNT((ALLeFT1=FT0)/ (ATO=AT]))
seJyP
KUIZILNT((BL1eFT1=FTO)/(ATO=AT]))e]}
#=]1yYP
KL2ZILNT((AL2+FTO=FT2)/(AT2=AT0))
ne JUP
KU2ZJLNT((BL2¢FTO=FT2)/(AT2=ATO0)) e}
se[UP

ENUMERATE POSSIBILITIES FIR CURRENT REGIONS

DO 11 K=lLl.lU
XlsK=1

K2=X1

X2z:NaX1
X3z=NDOT1=-X1
XezhNaX3

Tl=X1el

JJzX3e}
PROP=zA(I1sJI)
IF(FROR) 15420415
UFP13¢26GE.KUL
PRODB5=PROB#,25
DOwN1=K2,LEKLI]
UP2=¢2,40GE oKL, 2
DCwiv22K2.LE.KL2

DETCRMINE PROPER ACTIOM,

IF (DOWN1,ANC .DO#N2) GO TO 200
IF (UP142AND,'P2) GO TO 400
IF,UPL,ANDL['OAN2) GO TO 300

IF THIS 1S A CONTINUATION POINT, SEND PROBABILITIES TO NEXT ST

BtllelodurizB(IleloJ)) +PROBS
B(IleJdJel)zR{110JJe1)+PROBS
BEIT4J=B(1T4JJ)+PROBS
B(l1leloddelr=B(11elsJdJel)+PROBS
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Y

[ .

5030
5040
5050
5060
5070
5080
5090
5100
s1lo
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
$230
5240
5250
5260
5270
5280
5290
5300
5310
$320
5330
S$340
5350
5360
5370
5380
5390
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530

T N Ay ey v T

c 6o To 20

C ACCUMULATE PROBABILITIES FOR A TERMINATION POINT,
C

200 DO 1099 Jvsl NALT

ACCl(IV)sACC1(1V)ePROB
@RCOEF (PA(IV) PB(IV) 4PAB(IV)PNIIV) (O)
1099 CONTINUE
GO To 20
300 DO 1199 Ivz1NALY
ACCO(IV)I=ACCO(IV)ePROB
ePCOEF(PA(IV) PB(IV) PABIIV)PN{IV) Q)
1199 CONTINUE
Go Yo 20
400 DO 1299 1Vvs1NALT
ACC2(1V)=sACC2(1V)+PROB
eRCOEF(PA(IV) JPB(IV) JPAB(IV)WPN(IV) Q)
1299 CONTINUE
20 CONTINUE
11 CONTINUE
22 CONTINUE
C
g ACCUMULATE PROBABILITIES AND EXPECTED VALUES,
DD 2590 1vsl NALT
T9sACCO(IV)«ACCLIIV)eACC2(IV
ACCITUIVISACCIT(IVI«ACCLIIV)
ACCOT(Iv)sACCOT(IV)+ACCOC(IV)
ACC2T(IV)=ACC2T(IV)«ACC2(1IV)
NT9zN®T9
N9 (Iv)=NG(IV)eNT9
2590 CONTINUE
IF(N.EQ.MO) GO TO 445

MOVE PRORABILITIES BACK FOR THE NEXT STEP,

[aNal al

D0 44 I=z1.13
DO 4¢ J=1.413
44 AtT1vJ)=B(T o)
445  CONTINUE
34 CONTINUE
DO 6258 I=1NALT
PlzExP(PA(]})
P2zExP(PAB(1))
T=Plu(le=P2)/(P228(]1,=P1))
IF(IPUNGEQS ) IWRITE (IPNOUT 0126)P1 4P2+ToACCIT (1) oACCOT (1) ¢ACC2T{I) N
89(1) PCHII
WRITE(] OUT+126)P1sP2oToACCIT(1)ACCOT (1) ACC2T(]) oN

€9(1) PCHL])
126 FORMAT(1Xe2F6423F10,543F10.54F10,24F1065)
6258 CONTINUE



160
t 5540 STOP
5550 END
5560 Cl.ll...l.Q.DDQQIIQIQQQQQQQQIQI.DDQI!.O.!QQQI!QQQQ.IQ.Illllll..ﬂﬂ'lﬂ..l
5570 C»
5580 C# THIS PROGRAM FIGURES AND FVALUATES REGIONS FOR A SEQUENTIAL TEST
5590 C#  OF A 2X2 CONTINGENCY TABLE. THE TESI [S BASED ON THE CROSS
5600 C#  PRODUCT RATIO, TRUNCATION OF REGIONS 15 ALLOWED, THE MARGINAL
5610 C#  PROBABILITIES ARE ASSUMED TD BE UNKNOWNe THIS PROGRAM IS FOR A
5620 C»  THREE DECISICN TEST,
5630 (»
5640 C# WILLIAM O, MEEKER. JR,
5650 C# INSTITUTE OF ADMINISTRATION AND MANAGEMENT
5660 C» UNJON COLLEGE
» 5670 Ca SCHENECTADYs NEW YORK 12308
| 5680 Co AUGUST 1974
1 5690 C»
$700 C#
2 5710 CRBBRanRanauRat AR AARARRRARRRRRRRRARRARRRRRARRERARNARNRNARRRANRRNRARRARD
3 5720 C
3 5730 DIMENSION A(27+27)48(2742742)
1 5740 DIMENSION P1(100)¢P2(100)¢P3(100)4+P4(100)
K- 5750 DIMENSION ACC1(100) yACC2(100)+ACCO(100)
5760 DIMENSION ACCLT(100) 4ACC2T (100} +ACCOT(100) 4PCH(100) 4N9(100)
: 5770 REAL N94NT9
3 5780 LOGICAL UP1,4UP2DOWN] +DOWN2
5790 COMMON ILoJLieGLloG24GIvGa X1 oX24XI 0 X4
5800 DATA TO/1./
: 5810 DATA ATG4W11412/00eel42/
! 5820 DATA ITOUTWITINCIPOUT  INPUT10UT/90+91458+50466/
k 5830 C
3 5840 C SPECIFY H1(LOWER) AND H2(UPPER), HO IS ASSUMED TO BE T=1,
5850 C TAKE LOGS FOR LATER USE
5860 C
5870 READ {JMPUT1212) IPUN4IREC
5880 1212 FORMAT(2]11)
5890 Iup=p
5900 READ (INPUT+70)ALPHAL JBETAL JALPHA; ySETA24XMO T2, TO,T1
5910 T1:z1./T2
5920 To:=1, :
5930 MOzXu0 i
5940 AT1=ALOGI(T])
5950 AT2=ALOG(T2) :
5960 C ) ]
59;o g SET DESIRED ERROR PROBABILITIES, CRITICAL LIMITS AND THEIR LOG |9
5980 4
5990 AlzALPHAL/(1,0=-8ETAL) 3
6000 A2:BFTA2/(1.0-ALPHA2) ‘
6010 Blz(1.0-ALPHAL) /BETAL
6020 B2:(1.,0-BETA2) /ALPHA2
6030 WRITE(IOUT 4 7)
6040 47 FORMAT (1H1 46X s SHNUMBER 45X ¢ 3HLDG/)
]
4




; 6050 WRITE (JOUT+41)TOGATO«T14AT]4T2,AT2
k 3 6060 ¢1 FORMAT (3H TO042Xe2(3XeFTe4)/3H T142Xe2(3XoFTeb)/3H T242X02(3XsFTe4)
! 6070 ¢) :
4 6080 WRITF (10UT+45) ALPHAL ¢BETAL s ALPHA2 4BETA2
6090 45 FORMAT(///10H ALPHAL = oF5,3/94 BETAL & (FSe3
; 6100 6/10H ALPHA2 s «F5.3/9H BETA2 s +F5,3 ///)
6110 C
6120 C QEAD SELECTED ALTERNATE HYPOTHESES WHERE REGIONS ARE TO BE EVA
6130 €
6140 120
6150 1 CONT INUE
6160 Iz1ey
6170 READ (INPUT«TOIPL (1) P2(1)4P3 (1) 4P4(])
6180 IF(P1(1).,EQ.040) GO TO 9995
6190 Pa(l)=1,-P1(11=P2{1)=P3(])
6200 GO To 1
6210 9995 NALTzl-])
6220 DO 2265 121 (NALT
6230 P1(11zALOGIPY(I))
6240 P2(1)=ALOG(P2(]))
6250 Pa(l)sALOG!PI(]))
6260 Pa(l)aALOG(F4 (1))
6270 2265 CONTINUE
6280 AL1=ALOG(AL)
6290 AL22ALOG(A2)
6300 BL1=ALOG(B])
6310 BL2:ALOG(B2)
6320 70 FORMAT (8F1040)
6330 CALL SETSCT(ITOUT.1)
6340 CALL SETSCT(ITINs1)
6350 C
6360 C WRITE PRNBABILITIES FOR THE FIRST STEP
6370 C
6380 Bilelel)z.25
6390 Bile2¢1)2,25
6400 Blle1e2)2.2%
6410 B(2+242)2,25
6420 WRITFUITIN ) ((B(KKoJKol) oKKZ142) 4JK3142)
6430 WRITF(ITIN ) ((BIKKoJKe2) oKK=Z142) 4JK2]42)
6440 CALL SETSCT(ITOUT,1)
6450 CALL SETSCT(ITING1)
6460 DO 900 I=1+NALT
6%70 Ng(1)=0.0
64680 ACCIT(1)30,0
66490 ACCOT(1)=0,0
6500 ACC2T(1)20,0
6510 900  CONTINUE
6520 C
6530 C <<< INCREMENT TRIAL NUMBER »>>
6540 C

6550 D0 34 Nz]l MO




6560
6570
6580
6590

5637

522

L1717

2177

aNaXal

17

are

[aNaKal

WRITE(JOUTe5637)N
FORMATY (» NOW AT TRIAL ",15)
OsFLOAT(N)®(=1,386294)
NlaNel

13aNe2

DO 522 IsleNALT
ACCli1)20,0

ACC2(1)20,0

ACCO¢])1=0,0

CONTINUE

IF (N.NE,MO) GO TO Se
IF(IREC.NE.O)PRINT 1777
FORMAT (» REGION MOVE®)

1'.LOW TPUNCATION IF DESIRED

ALY1=(AL]+BLL) /2,0

AL25(AL2+BL2) /2.0

BL1=zall

BL2=aL2

DO 2777 IzloNALT
PCHI1)21,=ACCIT(1)=ACC2T(1)=ACCOT(])
CONTINUE

DO 78 Ix1,13

DO 78 Jsl,13

B(lvgell)=z0.0

<<<  ENUMERATE ALL POSSIBLE MARGINS

DO 33 J=1.N}

D0 77 Kz1,413

DO 77 Jz1.413

B“'J012)=000

READ(ITIN) ((A(KK4JK) oKKELsN1) ¢ JK=14N1)
MIN0T=1al

DO 22 JsleN)

NDOTiz)-1

FIGURE LOWER AND UPPER LIMITS 5N N1}
TUzYINO (NDOT14N1DOT) &)
IL=MAXO(NDOT1+NIDOT=N4O) o]
FT1=FNOD(NDOTL WNIDDOT 4NyAT1)
FTY2=FNOD(NDOT1 4N1DOT ¢NoAT2)

FIGURE CRITICAL VALUES OF REGIONS

KLISILNT(=(AL1eFT1)/ATL)1UP
KULZILNT (= (HEL1eFT1)/AT1)=1UPs1]
KUZZILNT((RL2=FT2) /AT2) +1UPs]

>
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S b

7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280
7290
7300
7310
7320
7330
7340
7350
7360
7370
7380
7390
7400
7410
7.20
7430
7440
7450
7460
7470
7480
7490
7500
7510
7520
7530
7540
7950
7560
7570

C

[aXal

15

[aNakal

[aNala]

KL23ILNT((AL2=FT2)/AT2)«]UP
<<<  ENUMERATE POSSIBILITIES FOR CURRENT REGIONS »>»>

DO 11 Kks]LIU
Kz.‘-l

x1z2K2
X2sN1D0T-Kk2
X3sNpOT1=K?2
X4zNaN1DOT=-ADOT1eK2
PROBzA (K sJ)
IF (PROB) 15420015
UP12K2.GE KN
PROB25zPROBN, 25
DOWN2:K2.LE.KL2

DETERMINE PROPER ACTION,

IF((UP1,AND.DOWN2)) GO TO 400
DOWN13K2,LE.KL]

1F (DOWN]1 ,AND,DOWN2) GO TO 200
UP23K2,GE4KLI2

IF(UP1,AND.U'P2) GO TO 300

IF THIS IS A CONTINUATION POINT, SEND PROBABILITIES YO NEXT STE

BiKeJel2)zB(KeJde12) ¢PROB25S
BiKejoll)=B(KeJs]1)ePROB2S
BiKoJelsl1)=R(KeJels11)ePROB25S
Bike14Jel012)28(KeloJele12)+PROB2S
G0 17 20

ACCUMULATE PROBABILITIES FOR A TERMINATION POINT,

DO 8001 IvzleNALT

ACCIUIVIZACCLUIV) «PROBRCOEF(PLIIV) sP2LIV) PI(IV) 4P&(IV)+O)
CONTINUF
G0 1) 20
DO 8002 Iv=1+NALT
ACC2(IV)=ACC2LIV)ePROB#COEF(PLIIV)JP2IIVI+P3(IV) P& (IV) Q)
CONTINUE ’
GO To 20
00 8003 Iv=1,NALT .
ACCO(IV)=ACCOUIV) ePROBRCOEF (PL(IV) P2(IV)4P3(IV) P& (IV) O}
CONT [ NUE
CONTINUE ,
CONT INUF 3
CONTINUE ;
WRITE(1TOUT ) ({BIKJvJK 1Y) oCUZ10]3)0JK21413)

InoLo=11 .
I1=12 a

ks
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1
3
7580 12=IHOLD
7%90 33 CONTINUE
7600 WRITE(ITOUT ) ({B(KKsJKell)oekKZLa]3)eJKE]y]3)
7610 CaALL SETSCT(ITOUT.1)
7620 CALL SETSCT(ITINs])
y 7630 IHOLOFsITIN
] 7640 ITINzITOUT
‘ 7650 1TOUT=1HOLDF
1 7660 C
% 7670 g ACCUMULATE PROBABILITIES AND EXPECTED VALUES.
: 7680
7690 DO 8005 V=) NALT
7700 TozACCO(IV)«ACCL(IV)eACC2(TIV)
7710 ACC2T(IV)IZACC2TIIV)IeACC2(IV)
7720 ACCIT(IVIZACCITIIVI«ACCL(IV)
7730 ACCOT(IVI=ACCOT(IV)+ACCO(TIV)
7740 NTO=EFLOAT (N)#T9
7750 N9 (Tv)=NQ(IV)+NTS
7760 8005 CONTINUE
77170 34 CONTINUE
7780 DO 6565 [s]NALT
7790 PL(lysEXP(P1(1))
7800 P2(1yzEXP(P2(]))
7810 P3a(ly=EXP(P3(]))
7820 6565 Pa(lysEXP(P4(]))
7830 DY 3459 I=z](NALT
7840 WRITE(ICUT4562)P1 (1) 4P2(1)«P3(1)4P4(1)ACCIT(])
7850 A «ACCOT (1) dACC2T (1) NS (1)
7860 @sPCH(1)
7670 1F(IPUNLEQ. 1)
7680 & ARITE(IPOUT4562)P1(1)oP2(1)4P3 (1) P&(])4ACCITIL])
1890 [ «ACCOT (1) ACC2T (1) NS LI)
7900 ePcH ()
7910 6562 FORMAT(1Xes4F66393F10,5¢F12,3,4F10,5)
7920 3459 CONTINUE
7930 99 PRINLT 456
7940 456  FORMAT("OEND OF RUN®)
7950 SToP
7960 END
7970 C
7980 (QQ!QQQQQIlﬂll!liuui.lli'i.l..llDQQD!!QQQllﬂlliillllQC‘DQ.QQQ!!Q.QQ!IQQ
7990 C#
8000 Ca THIS PROGRAM FIGURES AND EVALUATEST REGIONS FOR A SEQUENTIAL TEST
8010 C#  OF A 2X2 COMTINGENCY TABLE WITH4 KNOWKN MARGINAL PROBABILITIES,
8020 C#  THIS PROGRANM 1S5 FOR A THREE DECISION TEST PROCEDURE,
8030 Ce TRUNCATION OF THE TEST IS ALLOWED,
8040 Co
8050 C» WILLIAM Q. MEEKER, JR,
8060 Ca INSTITUTE OF ADMINISTRATION AND MANAGEMENT -
8070 Co UNION COLLEGE 1

8080 C» SCHENECTADY s NEW YORK 12308 a o
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8090 C# i AUGUST 1974
0100 Ca

8110 C»

Bl20 CRrmaamnntanaa ot sattntaaasnRantanaanRaarRatiantoinsantnRennNanaeaRaRRtenne
8130 €

8140 DIMEMSION A(27427)4B(2742742)

8150 DIVMENSION P1120)4P2(20)4P3(20)4P6(20)

8160 DIMENSION ACC1(20)+sACC2(20)4ACCO(20)

8170 DIMENSION ACCLT(20) ¢ACC2T(20) +ACCOT (20) 4N9(20)
8180 DIMENSION PCH(20)

8190 EQUIVALENCE (AT]4XMO)

8200 REAL N9NT9

8210 LOGICAL UP1.UP2+DOWN] ¢DOWN2

8220 COMMON 1L a1UeG) +G2eG3 9G4 9 X1 o X2eX3 X4

8230 DATA ITOUTWITINGIPOUT W INPUTIOUT/90491458450466/
8240 DATA ATO4]1412/000142/

8250 C

8260 C SPECIFY H1(LOWER) AND H2(UPPER), HO IS ASSUMED TO BE T=l,
8270 C TAKE LOGS FOR LATER USE

n280 C

3290 READ (JNPUT41212) IPUN,IREC

8300 1212 FoaMaT(211)

83lo0 1UP=zQ

8320 READ (INPUT,70)ALPHAL +BETAL ¢ ALPHA2 +BETA2 ¢XMO
8330 106 READ (INFUTWT0)PIDOT 4yPDOT1 4 QHL o PHL 4 SH1

8340 IF(S5H1,€0.,0.0)5H1=P1DOT#PDOTI

4350 M0=zXMO0

R360 PH2=P1D0T=PH]

8370 PH3=pPDOT]=PH]

8380 PH4=] ¢=FDOT1-P1UOT+PH]

8390 QH2zP1D0T=0H1

8400 QH4=] 4-P1COT-PDOT1+0HI

8410 QH3I=PDIT]1=0KI

8420 SH2=P1C0OT=5H]

6430 SH3=pPDOT1=51]

8440 SH4=]4=P1D0T=-PNOT] eSH]

8450 XUL=ALCG(PHL /ML)

R4 60 XU2=ALOG(PH2/5H2)

8470 XU3=ALOG(PHI/SHI)

8480 XU6=ALOG(PH4/SH4)

8490 2Uz AUl =XU2=XU3+XUb

8500 XL1zALOG(SH]/QH])

8sl1o XL2=ALOG(SH2/QH2)

8520 XL3=aLOG(SHI/QHI)

8530 XL4=ALOG(SHG/0HH4)

8540 2LaXL1=XL2=XL3eXL&

8550 XtedzXL4=XL3

8560 XLe2=XL4=XL2

8570 XU63zXU4=XU3

68580 XU42=2XUb4=XU2

8590 WRITF(IOUT+47)QH1 +UHZ s0H3 s QH4 s SH] ¢ SH2 4 SH3 ¢ SH4 ¢PHL ¢ PH2 ¢ PH3 o PH4

T L TR
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9100

7

[a¥alal

5

ladalalal

9995

2265

¢

[a¥alal

FORMAT ("0 P11 P12 P21 P22%y

6" H1 "o4FB843/" HO "o4FB863/" HZ "e4F8,3)

SET DESIRED ERROR PROBABILITIESe CRITICAL LIMITS AND THEIR LOG

Al1zA PHA1/(1,0=-BETAL)
A2zEFTA2/(1.,0-ALPHA2)
Blz(],0~ALPHAL)/BETAL
B23(1,0-BETAZ) /ALPHA2
WRITE(JOUT 445) ALPHAL «BETAL ¢ALPHA2 4 BETA2

FORMAT(///710H ALPHAL 2 +F5,3/94 BETA]l = ¢F5,3

L/10H ALPHA2 = F5,3/9H BETA2 = +F5,3 ///)
120

READ SELECTED ALTERNATE HYPOTHESES WHERE REGIONS ARE TO BE EVA

CONTINUE
Iz1e)
READ (INPUT70)PLL])
IF(P1(]11.EC.040) GO TO 9995
P2(1)=P1DOT-PLI(])
P3(1)zPCOT1=-P1 (]}
P4(l)z1,0=PDOT1=P1DOT+PL(])
GO To 1
NALTzl=1
DO 2265 I=14NALT
P1{Iy=ALOG(P1(])
P2tly=zALOG(P2(])
P3(l)=ALOG(P3(])
Po(lysALOG(PA (D)
CONT NV
AL1=ALOG(A])
AL2=ALCG(A2)
JL12AL0G(B])
BL2=ALOG(D2)
FORMAT(BF10,.0)
CaLl SETSCT(ITOUT,.1)
CALL SETSCT(ITINGD)

)
)
)
)

wRITE PROBABILITIES FOR THE FIRST STEP

B(24242)2.25

B(l'll2’=025

B(lv241)2,25

B(lelsl)=,25

WRITEC(ITIM ) ((B(KKsJKol) sKK=142) o JK2142)

WRITE(ITIN ) ({BIKKyJK42) 4KKZ142) ¢ JK2142)
CALL SETSCT(ITOUT,1)

CALL SETSCT(ITINI)

DO 900 I=z1,NALT

N9 (1)=0,0




oo il

g

i -y

- oy g

9110
9120
9130
9140
9150
9160
9170
9180
9190
9200
9210
9220
9230
9240
9250
9260
9270
9280
9290
9300
9310
9320
9330
9340
9350
936",
9370
9380
9390
9400
9410
9420
9630
9440
9450
9460
9470
9480
9490

900

5637

522

2117

77

ACC1T(11820,0
ACCOT(I)80,0
ACC2T(1)30,0
CONTINUE

<<< [NCREMENT TRIAL NUMBER »>»>

DO ;‘ NSIQMO
WRITF(10UT+5437)N
FORMAT (* NOW AT TRIAL *,I5)
OeFLOAT(N)#(~1.386294)
XNzN

NlzNel

13=Ne2

DO 522 =1 ALY
ACCl(1)20,0
ACC2(1)20.,0
ACCO‘I)'OQO

CONTINUE

IF(N,NE,MO) GO TO 56

ALLOW TRUNCATION IF DESIRED

DN 777 1=z]«NALT

F o '1)z2)e=ACCIT(],=ACC2T(1)=-ACCOT(])
ALL1=(ALL«BL1Y /240

AL2E2 (AL2+BL21/240
BL1zALl

AL2=AaL2
IF(IRECLNELO)PRINT 777
IF(IRECNELC) IUP=]
FORMAT (» REGION MOVE®)
CONTINUE

DO 78 I=1413

DO T8 Jzl,.13
8(10J0|l)=000

«<<  ENUMERATE ALL POSSIBLE MARGINS

DL 33 1z14N1

DO 77 K=1.413

D0 77 J=1.13

B((OJ.IZ):0.0
READ(ITIN) ((A(KKoJK) oKK=19N1) s JKz]1,4N1)
N1DOT=]=1

XN1DOT=NIDOT

D0 22 J=z14N)

NDOT12u-1

XNDOT1=NCOTI

XNLEXNIDOT®X| 42¢XNDOTIAXL 43=XNRXL&
XHUSXNIDOT#Xt142 ¢ XNDOT1#XUG3I=-XN#XUS

PR

>

107




9620
9630
9640
9650
9660
9670
9680
9690
9700
9710
9720
9730
9740
9750
9760
9770
9780
9790
9800
9810
9820
9830
9840
9850
9860
9870
9880 1
9890
99C0
9910
9920
9930
9940
9950
9960
997¢
998C
9990 C
10000

10010

10029

10030

10040

10050

10060

10070

10080

10090

10100

10110

10120

[aNa¥ala¥alal [aNa¥a!

[aNa¥al

[aNa¥al

5

C

NANN

800]

168

FIGURE LOWER AND UPPER LIMITS ON N1}

TUzMINO (NDOT14NLIDOT) el
IL=MAXO (NDOT1eNIDOT=NsO) sl

SKIP IF REGIONS ARE KNOWN AND ALREADY SAVED ON UNIT ]TREG

FIGURE CRITICAL VALUES OF REGIDNS

KL1=ILNT( (AL 1eXNL}/72L)-1UP
KULEILNT ((BL1#XNLi72ZL)=1UPe]
KL2=TLNT ((AL2+XNU) /2U) o JUP
KU22ZTLNT L (DBL2¢XNU) 72ZU) ¢ TUPe L

<<<  ENUMERATE POSSIBILITIES FOR CURRENT REGIONS »»>

00 11 K=ILsIU
xllK-l

K2szX]
X2zN1DOT=K2
X3zNDOT1=K2
X4zNoN1DOT=HNOT1¢K2
PROBzA (KoJ)
IF(PROB) 15420415
UP12K2,GE,.KUL
PROB25zPROR#,25
DOWN2=K2,LE kL2

DETEFRMINLF PROPER ACTION,

IF((UP1,ANC.DOWN2)) (O TO 400
DONN1=K2.LL.‘L1

1F(COwN] AND,DOVINZ) GO TO 200
UP23K2,GE4KL:2

IF(UPl,AND,UIP2) GO TO 300

IF THIS IS A CONTINUAYION POINT, SEND PROBABILITIES TO NEXT STEP

B(KJel2)2P(KeJs12) +PROB2S
B(Kelodelsl2)=B(Keledelsl2)e+PROB2S
BiKoJelosll)zB(KosJeloll)+PROB25
B(KoJell1=28(KeJell)ePROB2S

G0 70 20

ACCUMULATE PROBABILITIES FOR A TERMINATION POINT,

00 BrOCl IV=14NALT
ACCL(IV)I=ACCLUIV) ¢FROBACOEF (PL(IV) oP2CIVIsPI(IV)4P&(IV)+0)
CONTINUE

i e i ———y

S L Al A b

e a8 e rwail




10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10340
10370
10380
10390
10400
10410
10420
10430
10440
104650
10460
10470
10«80
10490
10500
10510
10520
10530
10540
10550
10560
10570
10580
10590
10600
10610
10620
10630

o e e e B e B i s o L e i i RO & e T =
piiad e

300
8002
4«00
8003
20

11
22

33

[aRaXal

8005
34

6565

4562
3459
99

TRIFRAPT TRy
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GO 10 20

DO 8002 I1vz1«NALT

ACC2(IV)IZACC2(IV)+PROBHCOEF (PL(IV) sP2(IV) 4PI(IV)P&(IV) D)

CONTINUE

GO 10 20

D0 8003 I1v=z14NALT

ACCO(IV) =ACCO(IV)«PROBRCOEF (P11 (IV) 4P2(IV) 4PI(IV)+P&(IV)40)

CONTINUE

CONTINUE

CONTINUE

CONTINUE

WRITE (1TOUT Y U(BUKJoJKol1) oKJ319]13)0JK21013)

140LD=211

11312

12=1HOLD

CONTINUE

WRITE(]TOUT Y ((BIKKoJKo]1) oKKZ14]3)9JKz]1,413)
CALL SETSCT(ITOUT.I)

CALL SETSCT(ITINsI)

IHOLDF=ITIN

ITINs]TOUT

ITOUT=IHOLOF

ACCUMULATE PRCBABILITIES AND EXPECTED VALUES,

DO 8005 Jv=14NALT

T9=2ACCO(IV)I«ACCL(IV)IeACC2(IV)

ACCOT(IVI=ACC2T(IV)eACC2(IV)

ACCIT(IVI=ACCIT(IV)«ACCLITV)

ACCOT(IV)=ACCOT(IV)eACCOL(IV)

NT9=zFLOAT(N)#T9

N9 (IV)=NG(IV)eNTS

COMTINUL

CONT INUE

DD 6565 ]=1.NALT

PI(I)=EXP(PL1(]))

P2U1)=EXP(P2(I]})

Pal(I)sEXP(P3I(]))

Pel(1)sEXP(P&L(]))

CONTINUE

D0 3459 I=1.MALT
WRITE(ICUT4562)PL (1) 4P2(1)eP3(])P&(])ACCIT(])
& CACCOT (1) 4ACC2T LI WN(])
€PCHID)

IF(1PUNLLFO.])
O WRITE(IFOUT0562)PL(1)sP2(1)oPI(1)oPa(]) ACCITI(])
[ «ACCOT (1) oACC2T (1) NI LD
@.PCHII

FOPMAT (1Xo4F6e303F1045¢F12634F10,5)

CONTINUE

PRINT 456




10640
10650
10660
10670
10680
10690
10700
10710
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810
10820
10830
10840
10850
10860
10870
10880
10890
10900
10910
10920
10930
10940
10950
10960
10970
10980
10990
11000
11010
11020
11030
11040
11050
11060
11070
11080
11090
11100
11110
11120
11130
11140

atl audes ng g o nd

“56 FORMAT ("OEND OF RUN®}
STOP
END
C
c"."'l....lQ..QlIﬂ..'.IQ.QI.'Q.QIQQQ...IQI RAARARBARARAAR
Co
C» SUBROUTINFS USED IN THE PROGRAMS FOR SEQUENTIAL ANALYSIS
Ce OF 2x2 CONTINGENCY TABLES.
Ce
c....'......QQ.QQQI.Q...I.IQ.QDQ.QIl.llllll'li...l..'l.l..

c
c
E RETURN LOG RINOMIAL COEFFICIENT
FUNCTION BICOF (N+IR) 4
BICIF=FLNG (N) =FLNG(IR)=FLNG(N=IR)
RETURN
END
c
C FUNCTION TO DETERMINE THE LIKLINOJD RATIO
C

FUNCTION FNOD(NDOT] ¢NIDOT «N4AT)
COMWON ILeIV
TOPNUVM2BICOF (N+NDOTL )
FNOD'O.
DO 22 1=zlL.JU
Jzlal
FNONZFNOD+EXP (BICOF (N1DOT +J) «BICOF (NeN1DOTWNDOT1=J) ¢FLOAT (J) #AT=
& TOPNUM)
22 CONTINUE
FNOD=z<ALOG(FNOD)
RETURN
END
FUNCTION COEF(PlaP24P34P640)
COMMON TLaTUVGI4) 4X1eX20X3eX&
COFFSEXP(X1aP e X22P2+eX3IRPIeX4RP4L Q)

RETURN
END
C
g FUNCTION TO RETURN THE NATURAL LOG FACTORIAL
C
C RETURN LOG BINOMIAL COEFFICIENT
C
FUNCTICON BICOF (NsIR)
BICOF=FLNGIN) «FLNG(IR)=FLNG(N=IR)
RE TURN
END
C
g FUNCTION TO DETERMINE THE LIKLIHOJD RATIO

170
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; 11150 €
i - 11160 €
11170 € FUNCTION TO RETURN THE NATURAL LOG FACTORIAL
o 11180 €
i 11190 FUNCTION FLNG(J)
. 11200 DIMENSION F(105)
11210 DATA MARK/1/
3 4 11220 1F (MARK)20,20,21
d 11230 20 FLNGzF (Jel)
11240 RETURN
11250 21 F(l)s0,
11260 F(2)=0.
11270 00 22 1=x3,103
! 11280 F(l)zF(1=1)¢ALOG(FLOAT(1=1))
1 11290 22 CONTINUE
1 11300 MARK =0
] ! 11310 GO TO 20
11320 END
11330 C
11340 C THIS FUNCTION RETURNS THE GREATEST INTEGER LLEs X
11350 FUNCTION ILNT(X)
11360 XzXeo001
11370 IF(Xx)1e243
11380 1) ILMTSIFIX(X) =]
11390 GO 10 2
11400 3 ILNTSIFIX(X)
11410 2 RETURN
11420 END
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