
mtmrni vmmmm 

AD-A012  826 

MULTIVARIATE   DATA  ANALYSIS 

Herbert  Solomon 

Stanford University 

Prepared for: 

Office of Naval Research 
Army Research Office 
Air Force Office of Scientific Research 

3 February 1975 

DISTRIBUTED BY: 

urn 
National Technical Information Service 
U. S. DEPARTMENT OF COMMERCE 





wmmmm 

UNCLASSIFIED 
sr CuBn v CL »SSIFICATION or   TH.S PACIC rWK«n Dl» fnurtd; 

j                    REPORT DOCUMENTATION PAGE RtAD INSTRUCTIONS                  1 
BEFORE COMPLETING FORM            ! 

| 1    REPORT NUMBEN 

[     216 
2   OOVT  ACCCSIION NO 1     RECiRiF.NT's CATALOG NUMBER                    i 

j «     TITLE (and SubiUU) 

MULTIVARIATE DATA ANALYSIS 

1 

S.    TYPE OF REPORT A PERIOD COHERED      | 

Technical Report                   j 
•     PERFORMING ORC. REPORT NUMBER 

|     HERBERT SOLOMON 

•     CONTRACT OR GRANT NUMBER'tJ                 | 

N00OT4-67-A-0112-0085          | 

[9     PERFORMING ORCANIZ* nor. N AME AND AOORE»! 

|     Department of Statistics 
Stanford University 
Stanford, California 94305 

10.   PROGRAM ELEMENT. PROJECT, TASK        1 
AREA * VORK UNIT NUMBERS                       | 

(NR-042-267)                            \ 
1 

III      CONTROLLING OFFICE  NAME   AND ADORES» 

Office of Naval  Research 
|     Statistics & Probability Program   Code 436 

Arlington. Virginia 22217 

12.   REPORT DAT! 

February 3, 1975                 1 
<S    NL'MBCR OF PAGES                                             i 

40 
1 1«    MONITORING AGENCY NAME ft AOORCSSf" <tlll»tml Inm Cottltoltlnt Olllct) IB    SECURITY CLASS, fo/lhl« r»porlJ 

Unclassified                         | 

It«.   DCCLASSlFICATION/DOWNGRAOING         1 
SCHEDULE 

1 16     DISTRIBUTION STATEMENT ral IhU Rtporl)                                                                                                                                                                       j 

|      Approved for public release:    distribution unlimited                                            | 

17.    DISTRIBUTION STATEMENT fol Iht »biltmcl tuff<l In Block 30, II dllUrtnl Inm K»poil) 

■ •      SUPPLEMENTARY NOTES 

II     KEY WORDS (Contlnu» on rorono mid» II ntcoootr tnd Idonillf kr 6lock numbor) 

multivariate data analysis; clustering; multidimensional contingency tables; 
factor analysis 

20     ABSTRACT (Conilnum on r*vw«* old» II nmcmtfrr ltd Idtntltr »f Mock mmttt) 

This paper contains an account of several techniques in multivariate data 
analysis.    Included among these techniques are classification and clustering 
procedures, multidimensional contingency table analysis, and some graphical 
representation techniques.    Some data bases are employed to illustrate the 
techniques. 

L 
DO .^NT, 1473    "moN 

S/N oio: NATIONAL TECHNICAL UNCLASSIFIED  
INFORMATION SERVICE     «ITY CLAMIHCäTIOM or TMII PAOI (m>— o»i« ■"••»•«> 

iic   r. ^_-..i  ..i  r^-«..^« U i   D«>pJ»rtfn:.nf  ol   Co 
Spnngli.ld.  VA    22151 

mmmm 



^PIM««" >V 

MULTIVARIATE DATA ANALYSIS 

by 

HERBERT SOLOMON 

TECHNICAL REPORT NO. 216 

FEBRUARY 3, 1975 

PREPARED UNDER CONTRACT N00014-67-A-0n2-0085 
(NR-042-267) 

OFFICE OF NAVAL RESEARCH 

Herbert Solomon, Project Director 

Reproduction in Whole or in Part is Permitted for 
any Purpose of the United States Government 

Approved for public release; distribution unlimited 

DEPARTMENT OF STATISTICS 

STANFORD UNIVERSITY 

STANFORD, CALIFORNIA 

D D C 
fir •    i 
X,   JUL 29 1975      11 
n ill 

— B ^ 

.--   ^^^m^^^tt^^mmm^m m—mm 



•««na wm—mmr-mmw* 

MULTIVARIATE DATA ANALYSIS 

Herbert Solomon 
Stanford University 

Table of Contents 

1.  Ttitro^uction   I'fiS^ 1 

2.  History   Page 2 

3. Assignment Prccedures and Discriminant Analysis   Page 5 

4.  Data Summarization   Page 10 

5. Distance Matrix   Page 14 

6. Clustering   Page 17 

7.  Initial Partitioning   Page 20 

8. Data Representation Techniques   Page 25 

9. Multidimensional Contingency Table Analysis   Page 26 

Bibliography   Page 37 

>~ «——-aMMMMMMBMaMMMaMI 



MULT IVAKIATE DATA ANALYSIS* 

by 

Herbert Soloinon 
Stanford University 

1.   Introduct ion 

There has always been a need to achieve parsimonious yet opera- 

tionally meaningful accounts of what is going on in nature and in human 

behavior.  We are aware of attempts by biologists to classify flora and 

fauna, and even that dichotomy was a major step forward.  It is in the 

physical and life sciences that we find the first quantifiers at work 

on such matters.  Later we find social anthropologists and psyrhologlst', 

engaging in studies on how groupings can be accomplished.  Today we find 

numerical taxonomy pervasive in practically every field of study. This 

has been spurred by increased activity in data collection and develop- 

ments in computer technology.  Multiple measurements on elements, 

individuals, or variables abound nowadays, and one sees investigators 

scurrying about to apply discriminant analysis, classification or 

clurir»nng techniques, multidimensional contingency table analysis, factor 

analysis, and with good reason.  We will return to these topics. 

Even though we regard classification in social sciences as rather 

new, it is difficult to think of its counterpart in physical sciences as 

very old unless one thinks of a few hundred years in the course of mankind 

as a very long step.  It was just two or three hundred years ago that 

many physical ailments were labeled "consumption", because they were 

characterized by a "wasting away of the tissues".  Under this were 

*This is an extended version of an invited talk given at the 20th 
Annual Army Design of Experiments Conference, Ft. Belvoir, Virginia, 
October 1974. 
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lumped such diseases as leprosy, tuberculosis, diabetes, and others. 

11 was not until some time later that someone noted that the urine of 

some of these sufferers was sweet and that of others was not.  Of course, 

the subsequent discoveries of two different bacilli for leprosy and 

tuberculosis suggested f^ner groupings that obviously wen.; more meaning- 

ful in connection with specific treatments. 

There is a lesson here for all of us, namely that the classification 

and grouping of inolviduals or elements based on data analyses of sets of 

variables can lead to man-made group concoctions that are artificial and 

sometimes misleading.  What should be kept in mind is that when this is 

done, a grouping has some meaning to the investigator.  For the last 

forty years or so, aberrant mental behavior has been subjected to classi- 

fication and giOupings produced on the basis of observations made on any 

number of variables.  For an individual placed in one of these groupings, 

some treatment is suggested.  I imagine one does not feel as comfortable 

here in a diagnosis as in the case of diabetes or tuberculosis groupings 

at present; and rightfully so.  Yet treatment will be undertaken based 

on a diagnostic category to which an individual is assigned.  This should 

give us pause when classification is attempted by data analysis in the 

newer investigations such as those that occur, for example, in the 

reenlistment decision in the armed services. 

2.  History 

It  is in  the  late  19th century  that we  find a  blossoming of 

inquiries into classification through the selection and appropriate use 

of manifest variables.     Quite often a one-dimensional  index  that 
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Inrorporates all ptTtinunt variables was sought so that ,1 Luchnician 

couhl assign an Individual to one of several groups based on Ills responses 

to the variables employed.  For example, the coeffir lent of racial 

likeness was an index developed at ti'e turn of the century 10 distinguish 

difteren'. national or trib.,1 groups un the basis of a set of physical 

measurements.  Inquiries on association of criminal types with physical 

moasurements ot Individuals also received attention in this period by 

such investigators as Lombroso. 

Much of this inquiry took place in the British community of scholars. 

In a way it might be. viewed to have begun at least in a larger sense 

with Charles Darwin's vast collection of data arising from his travels 

around the world.  His diaries presented many observations on the animal 

kingdom and served as a base for study by many who came later in the 

19th century. 

It was with these investigators in the last quarter of the 19th 

century that we have the beginnings of statistical contributions to 

classification.  In fact, it is the classification problem that in a 

way motivated and created statistical inference as an area of scientific 

inquiry. The modern discipline we now call statistics was brought about 

by the anthropometrists, biologists, and psychologists of that era. 

Such initial contributors to modern statistics as Francis Galton and 

Karl Pearson stem from that period. 

Galton seemed to be perpetually engaged in data analysis.  He and 

his cousin, Darwin, and others revolved in an age of scientific inquiry 

that emphasized empiricism.  Pearson, along with others, later attempted 

quantification and mathematization from the empirical analyses provided 
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by their colleagues. r.alLon, whom we regard .is the founder of 

regression analysis through his study on relationships between children's 

heights and parents' heights, also initiated and developed the notion 

of correlation prior to 1885.  The correlation coefficient serves as a 

basic summarization in multivarlate data analysis and consequently In 

studies that go into techniques of grouping.  From its very nature, 

obviously a high correlation coefficient would indicate that the two 

variables belong in a group and a low correlation would suggest that 

they do not. 

In one of his papers in 1888, Galton became interested in the 

classification problem.  He pointed out that 12 measures proposed by 

Bertillon to be used for classification of criminals were not 

independent and suggested that the observed measurements be transformed 

into a set of independent measures.  He also suggested the method of 

transformation, which we can now view as simple or unweighted summation 

in factor analysis. Thus quite early we see the Intermingling of 

classification analysis and factor analysis - and of course this is still 

quite current.  We will return to factor analysis and its place in 

classification analysis. 

Pearson was engaged in studies that were obviously related to 

classification.  In an interesting paper in 1901, he discussed mathematical 

representations of lines and planes of closest fit to systems of points 

in space.  This geometrical way of looking at the classification problem 

may present a neater view of the problem to some. In effect, the multi- 

dimensional observations at hand, e.g., age, IQ, schooling, number of 

dependents, rank, length of enlistment, etc., for each member of a 
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nopuljtion ol     N    members up for   reenllstment decision can ho  viewed av 

N     ixiint;;  In  a   7-dirafinsional   space.     Morrover,  tfnch point   cannot  be 

reached  hy traveling along 7 perpendicular axes,   for the  7 variables can 

and   usually have  degrees of association wliich must  be  taken  into account. 

This eftort   is a   fundamental   problem  In multivarlate data analysis, 

namely  finding a  grid  of ortliogunal  axes  to  replace  the  grid of correlated 

axes   (naturally  the points  remain where  they are).     If  tiie number  of 

dimensions can be  reduced  to  two or  three,   some ease  is achieved since 

elements  can  be  grouped  by  eye.     In  fact,   this  is related   to one of   the 

central  problem,c  in factor analysis and  is pertinent  to  the use of  factor 

analysis as a  classification  technique. 

3.       Assignment  Procedures and  Discriminant Analysis 

It   is now  important  to be  specific about  the term "classification". 

For  our  purposes,  ve will  assume  that  the  term comprises both  the 

clustering of  data into  groups and  the assignment  of data  to previously 

specified  groups.    Actually,   the  latter can be valued as a  subset  of 

the   former.     In  uhe  former  category,  we  require the data to produce 

both  the number  of groupings or  clusters and  the assignment  of  each 

element  or individual   to  these  groupings.     In  the latter category,   the 

number of  groups or clusters  is  predetermined.     Each group  is  labeled, 

and   rules are  designed on  the basis  of which an assignment of  each 

element  is made  to one of  the  fixed  groups. 

We do not wish  to convey a  sharp distinction between clustering and 

assignment procedures.     If  a classification procedure is not  producing 

meaningful groups  through  the  assignments  that are made,  then changes 

are  called for,  namely revising  the  predetermined groupings either  in 
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number or  In shape or In both on the basis of   the new information. 

This sequential revision of groups on the basis of the data available 

at different times suggests that one is Indirectly engaging in 

clustering procedures.    On the other hand,  it   is wise to keep in mind 

the conceptual differences just mentioned between attempts at clustering 

and attempts at assignment. 

An essential step in classification procedures is the representation 

of the  relationships among the variables on which data has been collected. 

Among other important and prior steps,  there are the processes of 

developing numbers to measure phenomena,  making decisions on the employ- 

ment of nominal,  ordinal or continuous data,  and subsequent coding of 

this data  for analysis.     In this paper,  we do not review these Issues, 

but we are mindful of their impact on the data analysis that will undergo 

investigation.    Thus, we return quickly to clustering and assignment 

techniques and the basic summarizatlons of data for these purposes. 

The clustering and assignment problems,   even though they were 

recognized  for some time, did not possess any  techniques until rather 

recently.     The assignment problem received the first thrust.    The analysis 

was provided by one of the great savants of modern statistical inference, 

namely R.  A.  Fisher.     In a paper in 1936, we  find what is now Fisher's 

classic work on discriminant analysis.     It is entitled "The Use of Multiple 

Measurements in Taxonomic Problems" and was published in The Annals of 

Eugenics.     The author was to say somewhat later that the paper was written 

to embody the working of a practical numerical example arising in plant 

taxonomy in which the concept of a discriminant function seems to be of 

immediate service.    This is a simple but fascinating statement, because 

mm* MMHMHHMI ■ mamm 
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it   tlamonstr.'iLcs OHL-C af>aln that when  there  is a  problem ruquirlnn 

solution  son»;   atridos t'.;in  be made.      Too  ofttüi we   find  soJutions  looking 

for  a   problem,   and   this   la  somethiiif, wu   sliouJd  be  especially  concerned 

with   in  classification problems. 

In his paper,   FJslier also  listed   the basic  data he analyzed.     This 

is  rarely  done  by  authors,   and   so  we   find  the  Fisher data ami   just  a 

tew other  data  bases  rtderred   to   time  and  time  ay^in by  subsequent 

authors who are experimenting with new  assignment  or clustering 

techniques.     In this way,  an anchor  is  provided  against  which the results 

of  other   techniques  can be assessed. 

The  data  employed  by  Fisher was  supplied by  a  botanist,   and   It 

represented measurements on tiie  irises  of  the Gaspe Peninsula.     This  data 

was previously published  in the Bulletin of  the  American Iris Society and 

was  therefore not  a likely contender  for a best   seller.     Since It  is a 

classical  piece  in   the  statistical  literature,   let  us  look at  it   in   some 

detail.     Four  measurements on each  of   fifty  plants  in each of  three   iris 

categories were obtained.     The  categories are:      Iris Vlrginica,   Iris 

Versicolor,  and   Iris  Setosa.     For  each  of   the 150  plants already   assigned 

to  one  of   three  categories,   there  are  measurements of  sepal   length,   sepal 

breadth,   petal  length,  and  petal   breadth. 

If  we  refer  back  to our geometrical  representation,  we  have  150 

points  scattered   In a   four-dimensional   space,  except that  each point   is 

already  labeled as  belonging to one of   three groups.    The question  is 

whether   in some neat and  simple way we  can  separate the 50 points belonging 

to any  one group  from the other  two  sets.     This   is compounded by  the   fact, 

in  this  case,   that   two of  the  irises,   namely Versicolor and Vlrginica, 
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actually have a specific genetic relationship and obviously, then, do 

have some overlap.  In other words. Fisher is looking for hyperplanes 

trat partition the four-dimensional npace, and after partitioning, 

hopefully leave each group inviolate. Algebraically, he is asking for 

a linear function of the four measurements (later called the discriminant 

function) that accomplishes this.  As a reasonable index for determining 

the coefficients of the linear function, he suggests one that will 

maximize the ratio of the difference between the means to the standard 

deviations within species.  To be specific, let d ,p ■ 1,2,3,4 represent 

the difference in the observed means. 

Then for any linear function,  X, of the measurements, namely 

X,x    + X-x0 + Ax. + X.x. 11   22   33   44 

the difference between the means of    X    in the two species Is 

D = X1d1 + A2d2 + X3d3 + X4d4 

while  the variance of    X   within species is proportional to 

4      4 
s = y   y x x s 

p^l   q=l      rim 

where    S        is the sum of squares or products in   X      and    X pq n r p q 

The particular linear function that best discriminates the two 

2 
species will be one for which the ratio    D /S    is greatest,  by variation 

of the four coefficients    X   ,X2,X-,X,   .    Geometrically we are locating 

the hyperplane that best separates  two groups of points in the sense 

that the distance between the four-dimensional centroids is greatest. 

Even though there are three groups of irises,   in effect Fisher acts as 
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if there are two groups, since Iris Versicolor and Iris Virginica are 

genetically tied together. Note that the variations within cpecles is 

assumed to be the same In this development. 

The index that is employed to provide the delineation is tied at 

first to the multivariate normal structure assumed for each species. 

Yet it is very similar to the indexes suggested by strict multivariate 

data analysis as we will see in the next section. Here we are maximizing 

the difference between the centroids of the two species of irises, or, 

in other words, maximizing heterogeneity between groups. This theme 

will carry through all of our attempts of classification. Either we 

will maximize heterogeneity between groups or minimize the scatter 

(i.e., seek homogeneity) within groups. 

As a result of the analysis. Fisher arrives at a linear discriminant 

function that accomplishes a nice separation. For example. Iris Setosa 

is separated completely from Versicolor and Virginica. It turns out 

that only one of the four measurements is really necessary to do this, 

namely petal length, and this can probably be seen by just looking at 

the 150 sets of measurements. This should be something for us to highlight, 

especially when we get into data sets for which meanings are not so 

specific and measurements are not so commensurate. This will obviously 

be so in any number of studies in criminal justice. 

Fisher's work has been extended to assign an element to any one of 

k groups, and computer programs exist in Computer Center libraries to 

accomplish multiple linear discriminant analysis. Attached to this 

subject is the question of how many variables should be used in a 

discriminant function. It is obvious that the more variables one uses, 

the better the discrimination should be, but it is also obvious that the 
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marginal gain in using additional variables can decrease sharply 

and therefore some variables can best be omitted in the Interests of 

parsimony.  Thus we seek the best discriminating variables. 

We might also atk what one would do if one were faced with the 150 

irises and did not know their groupings; that is, if we had only the 

four measurements on each, and we wished to see what number of groupings 

as well as assignments could be made.  Here we are no longer faced with 

the assignment problem alone, but with the clustering problem or 

grouping problem, which of course subsumes an assignment problem.  It is 

to this topic that we now turn. 

4.  Data Summarization 

It is important in talking about grouping to consider whether we 

are grouping measurement variables or Individuals or elements of a 

population.  For the iris data, we are grouping elements of a population. 

Quite often, one is interested in grouping measurement or test variables. 

The basic data summarization in multivariate data analysis will depend 

on whether we are grouping variables or elements. We will resolve this 

in subsequent discussion by first going in some detail into the data 

summarization question. 

There are several ways to begin the data summarization. All give 

a picture of data interrelationship, but each has special reasons for 

its employment by an investigator. One representation is that of the 

scatter matrix.  Here we portray the total scatter or dispersion 

displayed by n individuals or elements each measured on p variables 

(n points in a p-dlmensional space) by a matrix with p rows and p 

columns where an element in the i  row and j  column, say t..,  is 

10 
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the sum of the n cross products of measurements (taken around the mean) 

on variable x  with measurements (taken around the mean) on variable 

x .  In brief, 

r r u 
k-l Ik 

Let us label this matrix T .  Naturally an element in the main diagonal, 

say i  row and 1  column, is the sum of the squares of the deviations 

of x  from its mean.  If p = 1,  then T is a scalar, namely 

I   (xj-C)  where C 
k=l 

n 

k=l K 

If each element in the scatter matrix T is divided by n, the 

resulting matrix is the covariance matrix with cell entries s., and 

we label this K .  Now if we also divide each element, s..,  in K 

by the standard deviations of x  and x , the resulting element 

r.. = s.^/s.s^  is the correlation coefficient between x,    and x. and 

the resulting matrix is now the correlation matrix which we label R . 

An important advantage of T is the manner in which it can be 

decomposed into two matrices that are especially pertinent in clustering 

and classification studies. In a classification study, the n elements 

will be assigned to k predetermined groups. Each group with, say, 

n. elements can be viewed as a universe with its own scatter matrix 

formed as before and labeled W .  If we sum all the W  scatter 
k i 

matrices, we get W = £ W and let this represent the within scatter 
1=1 

11 
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or homogeneity of the groupings. Likewise, if for each of the k 

groups, we compute the group mean (a p-dimensional vector where the 

r  coordinate is the mean value based on the n  observations for 
r 

x )     and  then produce  the     (pxp)    matrix that we  label    B,    for  it 

expresses a measi're of  the "betweenness" or  heterogeneity of the    k 

groups.    The central point  in this development  is the existence of the 

fundamental matrix equation 

T = W + B     . 

This result suggests immediately an index by which classification 

(predetermined number of groups) can be evaluated and, by extension, 

how clustering can be terminated at  some cluster size.    For any given 

data set    T    is fixed.    Thus measures of "grouplness" or "clusterlness" 

as functions of    W    and    B    are thrust forth for examination. 

For    p = 1,     the matrix equation reduces to an equation about scalars. 

Thus a good grouping index is one which minimizes    W    or equivalently 

maximizes    B  .     We may also consider maximizing either  the ratio    B/W 

or    T/W = 1  + B/W  .    An added benefit is that this ratio is invariant 

under linear transformations of the data.     Statisticians have long 

exploited this fact,   for    B/W   multiplied by an appropriate constant is 

the familiar    F    ratio In the analysis of variance. 

When the number of measurements per element  is two or more     (p > 1), 

grouping criteria are not so straightforward.     Several possibilities 

suggest themselves and have been developed and studied by investigators. 

One criterion suggested by several authors  that  is a quite natural 

index is the minimization of the trace of    W    (sum of all elements in 

12 
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the main diagonal of the matrix) over all possible partitions into k 

groups. This Is equivalent to maximizing Trace B because 

Trace T = Trace W + Trace B  . 

However, Trace W is invariant only under an orthogonal tr&risfornation 

and not under non-singular linear transformations. 

Another rrlterion that may be employed for r > 1 is the ratio of 

the determinants 

ITI/IWI - |I + W^BI . 

We can use     |T|/|W|     as a criterion for grouping and select that 

grouping for which this  index is maximized,  or equivalently    |w|     is 

minimized.     Also we may employ    log(|T|/|w|)     since  it  is a monotonic 

function. 

Another criterion for grouping is the  trace of    W    B    and we select 

the grouping  that maximizes  this index.     This  index has been used as 

a test statistic in multivariate statistical analysis as has the ratio 

|W|/|T|   .     The  latter was employed by Wilks  to test whether groups 

differ in mean values,  and  the former has been put  forth by Hotelling 

in some situations and  by Rao as a generalization of  the Mahalanobis 

distance between two groups  for    k > 2    groups.    We will shortly define 

and discuss the implications and uses of  the Mahalanobis distance in 

clustering procedures. 

Both Trace   (W    B)    and     |T|/|W|    may be expressed in terms of the 

eigenvalues,     A   ,     of   the matrix    W    B  .     We write 

|T|/|W| =   n (i + A ) 
i=l 

13 
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P 
Trace  W'iB =    )"    A. 

1=1     1 

where    A      are  the  roots of  the detennlnantal  equation,     |B-Xw|  ■ 0  . 

The characterization of   these  ratios in terms of  eigenvalues  is helpful 

in data  representation especially when  the effects of  some reduction 

in dimensionality   is desired.     All the  eigenvalues of   this  equation arc 

invariant under  non-singular  linear  transformations of   the data.     It 

can be proved that  these eigenvalues are the only invariants of    W    and 

B    under non-singular  linear  transformations. 

5.       Distance Matrix 

Thus  far we have  discussed  some summarizations of multivariate data 

in matrix  form,   either    T     (scatter),     K    (covarlance),   or    R     (correla- 

tion)  and  the kinds of  grouping criteria that  are suggested by the    T 

format.     Intuitively,  we  see  that any grouping  criterion  is a function 

of homogeneity within groups  and heterogeneity  between groups and the 

indexes already described are  specific  quantities embodying  these notions. 

We  shall discuss other   indexes as we  proceed,   but  each will be a function 

of hotiiOgeneitv within  groups and heterogeneity between groups in which 

attempts will be made  to minimize the former,  maximize  the  latter,  or 

in effect do both.     For  the  correlation coefficient  index,  large values 

indicate homogeneity;   small values indicate  heterogeneity. 

Another method of   summarizing data that  is more appropriate on 

occasion  is to  find  the distance between each pair of  the    n    points 

in the p-dimensional   space.     This leads  to a  representation  in matrix 

14 
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form of an n^n matrix wheru each element, in the i  row and the j 

column, say d.,,  is the distance In the p-dimensional space between 

the i  element or individual and the j  element or individual. All 

the elements in the main diagonal arc zero.  The distance matrix is akin 

to the correlation matrix in that both may be viewed as similarity 

matrices - the jumplng-off place for clustering attempts. 

The decision as to whether correlation matrices or distance matrices 

are to be employed is usually determined by the problem at hand. If 

n individuals or n elements are to be grouped on the basis of p 

measurements on each, then the n*n distance matrix is the natural 

summarization; if the p measurement variables are to be grouped on the 

basis of the measurements on n individuals or n elements, then the 

pxp correlation matrix is the natural summarization of the data. 

This latter matrix is the natural beginning point in factor analysis 

where parsimony in the number of latent measurement variables is a 

desired goal.  We will return to factor analysis and its place in clustering 

in subsequent sections.  In some taxonomic situations the question of which 

measure of similarity to employ, whether it is of the association or 

distance type, will require some thought. While we will touch on these 

points, these inquiries will not be featured in this exposition. 

The notion of a distance matrix will be placed in sharper focus, and 

this will be done by some discussion of appropriate distance measures. 

Because we will normally think of our data bases for clustering individuals 

or elements as n points in a p-dimensional space, the distance measures 

usually appropriate and available are Euclidean distance and Mahalanobis 

distance. The Euclidean distance between individuals or elements with 
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respect to all p measurement variables may be written in vector 

notation 

d  =« (P -P )'(P -P ) alj   ^1 rj; Ui ,i) 

where d   is the Euclidean distance between individual  i and 

individual j,  P,  and P  are column vectors each with p rows 

listing the p measurements on the i  and j  individuals respectively. 

The product of the difference row vector  (P -P,)'  by its transpose is 

a scalar. This is the distance function with which most of us are 

familiar. The Mahalanobis distance may be written as in the notation 

above as 

m^j = (PrV'w-W 

-1 r where W  is the inverse matrix of W = )  W.  and W,  is obtained 
1»1 

for each of the 1 = 1,3,...,k groups by 

m 

i   S  mi  i  mi i 
m=l 

Note that a grouping of elements is necessary to compute W  and 

consequently W . Thus the Mahalanobis distance takes into account the 

associations or interrelationships in the measurement variables.  If 

two measurement variables are highly correlated, the Euclidean distance 

can be misleading because of the equal weight it Imposes inaccurately on 

each measurement variable, but this will not be so with the Mahalanobis 

distance. The Mahalanobis distance is more tedious to compute and for 
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a long time It wan avoided for this reason alone, but tlie computer has 

brought it within reach. Actually if eacli of the correlations between 

the measurement variables Is low, the error in employing the Euclidean 

distance is not damaging. As a rule of thumb, correlations as high as 

0 • 5 will not produce Euclidean distances that lead to operational 

difficulties. 

Other distance measures appear in the literature. The Minkowski 

distance is the name applied to all distance measures that are of the 

form 

fP       "U/n 

We have discussed the case n=2 . When n=-l, the label "city-block" 

distance is sometimes employed and it may be relevant for some distance 

situations. 

6.  Clustering 

We now look at the clustering side of classification analysis. Our 

main emphasis will be on clustering as an exploratory device. Development 

of assignment procedures is for those who already enjoy the luxury of 

knowing the groups that exist.  We will place ourselves in the situation 

where a body of multidimensional data has been collected by some investigator 

and he wishes to decipher what kind of structure, if any, underlies the data 

collected. A wide variety of techniques have been suggested and attempted. 

They run the gamut from looking at all possible partitionings of the data to 

f.rving to zero in on an optimal partitioning without having to look at too 

much of all the possibilities. The former method is a "dumb" procedure w! ich 
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is workable  if  the computer can quickly  look at  everything,  and of  course 

this  is not  so even  for a small  number of observations   in a snail number 

of  dimensions.     Thus we  sacrifice optical  partitioning  for what  we hope 

are  suboptimal  partitions  that  can bo achieved much more cheaply. 

Let  us  consider one general  way of  looking at  the  problem considered 

by  several  authors.     We  start  with any given partition   into    g    groups. 

Consider moving a single object  into every group other   than the one  it  is 

in.     If no move will create a  partition  for which a clustering criterion 

is  increased,   leave  the object  where  it   is.    Otherwise,  move  it  so  that 

the maximum increase  in the criterion occurs.     Naturally,  we are assuming 

the  existence of a reasonable  criterion.     Using the  partition thus created, 

we process the second object  in the same way,  then the  third,  etc.    After 

several   masses,  one will  reach a point  at which no move of a single  object 

from the group it is in to a different group will cause an increase  in the 

criterion  function.     At  this  point we say we have  found a  "local maximum" 

of  our  criterion function.     This  rarely  takes more  than a reasonable  time 

on a computer.    This has been  labeled  the "hill-climbing" pass algorithm 

by Friedman and Rubin. 

They and others have suggested modifications.     For  example,  we  start 

with the best partition yet known.    Then process one group at a time,   in 

sequence,  by placing each object  of  the group being processed  into  the 

outside group with nearest center of gravity,  recalculating the criterion 

function after each move.     This  is done  in order,  the object nearest an 

outside  group being moved  first.     Although the criterion  initially 

decreases,   it may at son», point during the process achieve a value higher 

than previously found.     This will  especially be the case  if the group 
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being processed consists of  two  clunters widely separated  in  space.     After 

processing all  the olijects of  one  grovp,  we  restore  the best   partition  yet 

found,  and proceed  to process  the  next  group.    This has been  labeled  a 

"forcing  pass" algorithm.     It   is  defined as  the application of   this 

procedure  once to each group,   In  sequence.     Forcing passes are  repeated 

until  they produce no lirprovement.     These passes are relatively  fast, 

compared  to  hill-climbing,   since we neei not evaluate every possible move 

for  an object. 

Still  another procedure proposed by Friedman and  Rubin and others 

involves  starting with a  partition    0     (we use the best partition currently 

known)  and  reassigning each object   to  the group with nearest  center of 

gravity.     The value of the newly  formed partition is  then calculated. 

With  either of  the other  two criteria just  discussed,  we use  the metric 

defined by the matrix    W computed  from the partition    P    —  i.e. 

-1 T 
d(?,C  )  =   (P-C  )W    (P-C  )     .     The  centers of gravity    C      and  the scatter 

matrix    W    are maintained as those  of  the original partition    Q    until all 

n    objects have been reassigned,   at which  time new values for     C.     and    W 

are  computed.     This contrasts with hill-climbing,  for which  the partition 

and  the derived    W    change with each move of an object. 

The  reassignment of  each object  in the above manner is  termed a 

"reassignment  pass".    Reassignment  passes are repeated until  a  partition 

with higher value  is no longer achieved.     Sets of  forcing passes and 

reassignment  passes are alternated  until neither produces  improvement,  and 

then hill-climbing  is resorted  to  for a new local maximum.     Other 

modifications are also applied,   but when it  proves  impossible  to reach a 

higher local maximum,   the procedure  is  terminated.     If one  is willing and 
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financially able to spend the computer time, one can repeat the entire 

procedure using another startinn partition chosen at  random or, as we 

will soon see, obtained by a quick step-wise method.  The forcing and 

reassignment passes are fast, but only occasionally helpful.  Restarting 

from each of several random partitions or the step-wise solution is slow 

but provides more confidence in the result. 

7.   Initial Partitioning 

There is a much simpler way of initiating clustering. It was proposed 

by King and in tffect gives a quick, initial partitioning of the data 

whether it be measurement variable groupings or delineation of individuals 

in a population. Either something of interest and use to the investigator 

appears quickly, or what does emerge can serve as the first step for those 

algorithms that require a start upon which various kinds of Iterations are 

attempted.  These were just described in the previous section. 

The procedure proposed by Kinp, is a step-wise clustering procedure. 

This is its principal asset because it leads to a simple and quick 

algorithm that involves  (n - 1)  scannings of a correlation matrix based 

on n variables. At each scanning or pass, the variables are sorted into 

a number of groups that is one less than at the previous pass.  In this 

way, we obtain  (n - k) groups of variables at the k  scanning. The 

(n yn)    matrix can also be a distance matrix.  In that case, we sort 

individuals or elements into groups. 

The procedure operates as follows.  We WILJ employ the correlation 

matrix as our similarity matrix for expository purposes, and bring in the 

distance matrix when appropriate to highlight differences. 
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As a start, we can view the i  variables as n groups,  e variable 

to each group.  Now scan the correlation matrix for the maximum cell entry 

(naturally without regird to sl^n).  In a distance matrix we would seek 

the minimum distance cell entry.  Suppose the maximum correlation Is between 

variables X,  and X, .  Label it  r.,., .  We place X.  and X,  in the 
i      J i J *       j 

same group, and we now have  (n- I)  groups X X,,,..., (X ,X.),... ,X  . ,X 

This produces an  (n- 1) x (n - 1) correlation matrix, all pairs of 

correlation coetficients over the original  (n-2) variables plus the 

correlations obtained by pairing each of these with the concocted variable 

X + X = Y  .  Essentially, we are representing the group of two elements 

by its centroid. 

On the second pass of what is now an  (n- 1) * (n- 1)  correlation 

matrix, a third variable may join the group of two variables formed en the 

first pass if the correlation between it and Y,.  is maximum, or the 

naximura correlation value in the reduced correlation matrix may again 

involve two individual variables. Thus we would get either one group of 

three variables and  (n - 3)  groups each containing one variable, or two 

groups each containing two variables and  (n - 4) groups each containing 

one variable.  In either situation we merge variables and revise the 

correlation matrix as on the first pass.  In the former case, the centroid 

of the group of three variables represents its group, and in the latter 

case, each group with two variables is represented by its centroid. 

Recall that we do not have to divide the sum of the variables by the number 

of variables to obtain the centroid because the correlation coefficient is 

invariant when one variable of the pair is always multiplied by the same 

constant. 
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Thus, at each pass, the two groups with the highest correlations 

are merged and the total number of groups to that oolnt Is reduced by 

one.  After a variable has Joined a group of variables, It cannot be 

removed from that group.  In this way It Is possible to miss an optimal 

grouping.  This Is very similar to selection of predictors In step-wise 

linear regression.  It should also be mentioned that a group can lose Its 

identity by merging with another group on a later pass.  By the time all 

the scanning Is completed we have produced successively (n-1), (n-2), 

(n - 3),...,3,2 groupings. 

The clustering Index employed by King for measuring the worth of 

the grouping Is that of minimum correlation (or maximal distance) between 

the group centrolds when the scanning has placed the variables Into two 

groups.  This leaves something to be desired because It does not look at 

the effectiveness of the grouping when more than two groups are Involved. 

He also reviews another Index, suggested originally by Wllks for testing 

the mutual Independence of k subsets of n multlvarlate normal random 

variables.  In terms of what we described earlier In the paper, the index 

is the ratio of the determinants 

Z = 
k 
n 

1=1 
w. 

where T is the scatter matrix defined previously and each W  is the 

scatter matrix for each of the k groups. 

This index has some nice geometrical and statistical properties.  For 

example, when k = 2, 

Z « 
W, W„ 

- n(l-rj) 
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where r.  is the i  canonical correlation between the two sets of 

variables. This index may be viewed as a "generalized alienation coeffi- 

2 
cient" since it is an extension of 1 - R , where K is the multiple 

correlation coefficient occurring when two groups have one variable in 

one group and  (n-1) in the other.  However, it is not too useful in 

some data analyses, especially in social science, because a number of 

data sets lead to quasi-singular correlation matrices and truncation error 

can give ridiculous results.  For this reason, and possibly others, negative 

determinants appear and make it impossible to employ the Wilks index. 

Let us look at the King method for two particular data bases.  The 

first is ir connection with a penalty jury decision in California, and 

the second is the iris data we discussed previously. 

Individuals convicted of murder:  238 individuals convicted of first-degree 

murder in California over a recent ten-year period were studied on the 

basis of 25 measurements each as to whether an association existed between 

their 25-dimensional descriptions and the penalty decision that resulted 

in life imprisonment for 135 and capital punishment for 103.  These 25 

variables consisted of biographical information on the individual, descrip- 

tion of the crime, information on defense counsel, the prosecution, and 

the judge. A King step-wise clustering procedure was employed to cluster 

the 238 individuals and then seek a substantive association, if any, 

between the characteristics of the individual, characteristics of the 

crime, judicial process, and the penalty decision. My thanks for the data 

under analysis go to several Law Review students at Stanford with whom I 

worked on this study. One of their major concerns was to see if there 

were any association between the penalty decided upon by a jury, which 
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under the law Is given no instruction on rtandards to be employed in 

arriving at a decision, and socio-economic characteristics or racial and 

ethnic background of the Individual.  The clustering printout did not 

reveal any significant associations between penalty and whether the 

defendant was black, Mexican-American, or white; or whether the defendant 

was a blue-collar worker or not. At the 58th pass, there was one 

significant group that contained 18 members, all of whom had received 

the life penalty.  As the number of passes increased, this group remained 

the principal group until the last few passes.  At the 75th step the 

group contained 34 members, of whom 30 received life imprisonment.  At 

the 100th step the group contained 42 life cases out of 62 members, and 

at the 125th step, the group contained 63 life cases out of 102 members— 

a 62 to 38 percent mixture for all 238 cases.  What we seem to be getting 

is clustering indicating very little or no association of penalty with 

defendant and judicial characteristics.  This may also have judicial 

implications; for a penalty jury is, in effect, tossing for each defendant 

a coin which lands head or tall in a 55 to 45 percent ratio. 

Irises;  In Fisher's well-known paper on the linear discriminant function, 

he employed three groups of Irises, each containing 50 members.  Sepal 

width and length, petal width and length were obtained for each of the 150 

Irises—50 Iris Setosa, 50 Iris Virginica, 50 Iris Versicolor. We will 

assume only that we have 150 Irises represented as points in a four- 

dimensional space which we wish to cluster by the King step-wise clustering 

scheme.  The results are Interesting.  The Iris Setosa are quite different 

from the other two, which overlap a great deal.  Thus we find at the 137th 

pass that there is a cluster of 48 members, each an Iris Setosa; there are 
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four clusters containing 23, 24, 17, and 24 members resjierlively, with 

12, 4, 16, and 18 Iris Vorsic.olor resp^clively, .-ill demonstrating the 

natural overlap between Iris Versicolor and Iris Virglnlca.  At the very 

next pass (138th) the two groups with 24 members each merge into a group 

with 48 members, 22 Iris Versicolor and 26 Iris Virginica.  Thus when 

there is real and decided overlap the step-wise clustering scheme reflects 

it; but if we did not know of the original three groups, we would be hard 

pressed for a decision, and obviously would have to resort to additional 

techniques, or expertise, or both. 

These data bases and several others are discussed in a paper by 

Solomon [11]« In that paper some computer printouts for the King procedure 

are displayed. 

8.  Data Representation Techniques 

An interesting idea in multivariate data analysis has been proposed 

by Chernoff [1].  It is a graphical data representation technique.  In 

his procedure Chernoff transforms multidimensional vectors into human 

faces.  Thus, for e/ample, several hundred vectors are transformed into 

several hundred faces and the faces are then classified into groups 

according to the similarity perceived by the classifier. The theme here 

is that we are very familiar through experiences in life in classifying 

facial characteristics.  In his paper Chernoff presents a computer program 

which handles up to 18-dimensional vectors.  The reader is referred to 

his paper for more details. 

Up to this point, we have mentioned factor analysis but not said 

much about it.  There is an extensive literature on this subject.  Its 

current use in multivariate data analysis is from the representation point 
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of view.  Computer libraries have factor analysis programs which can 

take large order correlation matrices and obtain principal component 

solutions.  In this way a large number of measurement variables, say 50 

to 100, can be transformed Into many fewer variables, say on the order 

of 5 to 10.  Classification and clustering can then be applied to multi- 

dimensional vectors of very small order.  A real payoff occurs when the 

largest two or three factors are employed, because a graphical display 

can then be arranged.  When this occurs, clustering or classification 

of the data points can be achieved by eye.  See Solomon [11] for more 

details. 

9.  Multidimensional Contingency Table Analysis 

A multivariate data analysis technique which Is receiving more 

attention these days is that of multidimensional contingency table 

analysis (logistic response analysis). A number of authors (e.g., 

Kullback [8,9] and Goodman [6], among others) have done fundamental work 

on this technique.  We will discuss this model by illustrating its use 

to study reenlistment decision in the armed services. The data stems 

from some recent Marine Corps analyses. 

In this section the structure underlying contingency table analysis 

is discussed, and the mechanics of obtaining odds and probabilities for 

the reenlistment decision are illustrated.  The reenlistment analysis 

is based on a large number of categorical variables. Regression analysis 

and similar multivariate techniques for continuous variables become 

inefficient and inappropriate for this situation.  Multidimensional 

contingency table analysis, which we now explore, is more suitable. 
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We are intereBted in accounting for the variation in reenlistments 

in a parsimonious way and with meaningful factors.  Consider a simple 

example with two factors, reenlistment decision and rank. Assume rank 

is categorized into two levels, i.e., high rank or low rank. The 

reenlistment decision and rank of forty individuals might produce the 

table 

Reenlistment 

No Reenlistment 

High Rank Low Rank 

10 10 

10 10 

which yields probability estimates 

Reenlistment 

No Reenlistment 

High Rank Low Rank 

.25 .25    | 

.25 .25 

or more generally 

Reenlistment 

No Reenlistment 

Hinh Rank Low Rank 

Pll 
P12     1 

P21 
P22     1 

The overall probability that a person reenlists is P11 + PIT = •■'   ' 

The probability that a reenlistment is of high rank is also  .5 for 

'11 .25 
Pll + P21 

.25 + .25 
=  .5 

In this example, the probabilities of reenlistment are the same regardless 

of rank. This table suggests reenlistment decision and rank are independent, 
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A related measure denoted as an odds measure has an interpreta- 

tion well known to bettors.  In the above ejcample, if one wagers that a 

person selected at random rcenlists, the overall odds, i.e., the odds of 

reenlistaent regardless of rank are one to one or even.  Knowledge that 

the bet is on the high rank group or low rank group does not change the 

odds.  Realistically, however, the probability and odds that a high rank 

and a low rank will reeruist are not the same.  As an illustration, con- 

sider the table 

Reenlistment 

No Reenlistment 

High Rank Low Rank 

15 5 

5 15 

This gives probability estimates 

Reenlistment 

No Reenlistment 

Higli Rank Low Rank 

.375 .125 

.125 .375 

From this table the overall probability of a person reenlisting, 

.375 + .125 = .5,  remains the same but the probability that a high rank 

reenlists is 

,357 
375 + .125 

.75 . 

This differs substantially from the overall probability of 0.5 which 

no longer summarizes the data. The odds will change as well, being three 

to one for high rank, one to three for low rank. The information 

contained in this and the preceding table is described in terms of three 
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characteristics:     the overall probability that a person will reenlist, 

the probability that a low rank will reenlist,  and  the probability that 

a high rank will reenlist. 

The basic objective  in a more complex table  is to  identify the 

minimum number of probabilities that must be specified  to adequately 

describe the table.    The specification of probabilities given in the 

last example can be used.    However,  recent research has developed a more 

formal descriptive model  similar to analysis of vatiance or regression 

models.     Instead of dealing directly with cell probabilities,  it is 

convenient to deal with their logarithms.    These new variables,  the 

logarithms of  the cell probabilities,  have characteristics similar to 

measurement data,  and  they can be incorporated into a linear model 

whose parameters indicate the contribution of the various factors and 

their interactions to the cell probability. 

The linear model  for estimating logarithms of    p .     (for our analysis 

where we  fix and employ only the marginals)  is 

T K TK 
(9.1)      ^Ptk = VJ + 0^ + \ + atk ' t = 1,  2, k = 1,  2 

where Inp  .  is the natural logarithm of p , . The constant y is a 

general mean indicating the average value of 5,np tk The parameter a 

indicates the "effect" of reenlistment decision on ^P,.^ independent 

of rank; a  measures the effect of rank on ^nPri, independent of 

TK 
reenlistment decision.  The parameter a   measures the Interaction 

effect of reenlistment decision and rank on ^nVtt,  • ^or t^16 first 

example cited, where all the p   (and consequently all the Jlnp , ) 

T       K 
are equal, a  and a  are zero since ^np ,  does not vary with either 
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TK reenllst'ient  decision or  rank;   and  for  this  reason,   too,     Ot is zero. 

Hence,    p        is equal   to  the anti-log uf    |J   ,    which  in  this; case is  the 

overall probability that  a person reenlists. 

The model  in  (9.1)  allows  the step-by-step computation of  cell 

probabilities similar  to  regression analysis.     For example,   if  reenlist- 

ment decision  is considered as a  function of rank,  the odds of reenlist- 

ment     (t =  1)     to non-reenlistment     (t = 2)     for a given rank are 

Ik 
^k 

,  say k = 1 for high rank, k = 2 for low rank. 

Using the model in (9.1) to obtain these odds in logarithmic form 

(denoted hereafter as the log odds), we get 

Ik TK, K   .     TKV TK 
(9.2)    Jin   =  (p + o^ + ak + alk) - (u + a2 + ak + a2k)  = 2a1 + 2alk 

2k 

T T ,       TK TK 
where    a,   = -ot_    and    a,,   = -a»,    . 12 Ik 2k 

Since  the    a    parameters measure deviations  from a general mean,  a 

deviation from the mean at  one  level leads  to a deviation  in the opposite 

T TK T 
direction at  the other  level.     Replacing    2a      and    2a...     by    B      and 

TK 
ß.       to simplify the notation  in  (9.2)  yields 

'Ik •J . „TK 
(9.3) In -^ = ß^ + ß' 

p2k       k 
k = 1 for high rank, k = 2 for low rank. 

From (9.3) the log odds of reenlistment to non-reenlistment are seen to 

T TK 
depend on ß ,  the general mean for the log odds, and ß.  , the rela- 

tionship between rank and reenlistment decision. 
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To further illustrate these  Ideas,  let us consider another example. 

Assume that  reenlistment   is  dependent on two variables:     length of 

enlistment,    L ,    and  the presence of absence of dependents,    D  .    Then 

p  . ,     represents  the probability  that a specified  reenlistment decision 

is made given an individual's length of enlistment and dependency status. 

Following the previous example,   the  logarithm of  the odds of reenlisting 

to not  reenlisting 3s a  function of  the predictor variables can be 

written as 

(9.A) In 
Ud 

'lid 

,TL   .   „TD TLD 
-   ß    +h    +h    + hd 

Each one of the ß parameters has the same interpretation given 

T TL 
previously,  ß  is a general mean for the log odds.  The  ß^  ,  £ = 1 

(two year enlistment), 9. =  2    (three year enlistment), £ = 3 (enlist- 

ment of four or more years) are numerical measures of the impact on 

TD 
reenlistment of enlistment length.  Similarly, the ß,  are numerical 

measures of the impact of dependents on reenlistment where the subscript 

d identifies the number of dependents, d = 1 (no dependents), d = 2 

TLD 
(one or more dependents). The parameters ßp,  are interaction terms. 

It may be, for example, that the presence of dependents may influence 

the reenlistment decision of four year enlistees differently than that 

of three or two year enlistees.  First, dependents are more common among 

four year enlistees and they tend to have more of them. Second, four 

year enlistees who serve to end of term tend to be older at the time 

they must decide whether to reenlist. Hence the Impetus to reenlist may 

be greater among members of this group than would be Indicated by adding 
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the separate effects of dependency status and length of enlistment. 

The presence of n joint interaction et feet ot length of enlistment and 

TLD 
dependency status on reenliatment implies a non-zero ß_ 

By exponentiation of each side of the log-linear model (9.4), the 

odds of reenlisting to not reenlisting (hereafter referred to simply as 

the odds of reenlistment) can be written in the form 

(9.5) 
Ud ,T ,TL ,TD .TLD 

6 o  o, 6. , 
i      d Id 

where the 6's are the anti-logs of the 3*8 .  In this form of the 

T 
model,  o  can be interpreted as the overall mean odds of reenlistment 

which is modified by more detailed Information about the levels or values 

of the predictor variables and their interactions. 

T 
For the full model, the overall odds 6  is estimated as 

-T   ß    -2.60   .7. 6 = e  = e     = .074 , 

that is, the odds are  .074  to one in favor of reenlistment.*  If the 

odds of reenlistment are desired for Marines who enlist for four years, 

we need to compute 

6T 6^L = (.074) (2.46) = .182 . 

*Note  that   this  is not   the odds that would be computed  directly from 
the observations,  but  rather   from  their  logarithmic  transforms,   then 
averaging,   then  transforming back  to  the odds domain.     Thus,   this  "mean 
odds"  is a multiplicative mean,  not  an additive mean. 
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Thus, the odds of reenllstment Increase from .074 to  .182 for Marines 

who enlist for four years. 

The calculation can be extended, for example, to Marines who enlist 

for four years who have one or more dependents by the end of their 

enlistment period.  If these independent variables entered linearly in 

the model, the estimated odds for reenllstment would be given by 

'"'T "TL ^TD 
6 6» 6?  , but since dependency status and length of enlistment are 

found to interact jointly on enlistment, the odds of enlistment for this 

group of individuals are given by 

(9.6)  6T t]1  6™ *32D = (-074) (2-46) (1-72) (1-46) = •457 • 

where the last term measures the interaction effect of L and D . 

Note, the odds of reenllstment for four year enlistees with one or more 

dependents would have been substantially underestimated if the first 

order interaction effect had been omitted from the calculation. 

As can be seen from this example, the estimation of a small number 

of 6*8 permits the computation of odds of reenllstment for individuals 

having very diverse characteristics.  It should be noted that as in the 

case of regression analysis, the coefficients of the linear model (9.A) 

(and consequently the 6's in (9.6)} show the effect of a change in a 

ATL 
variable holding all the other variables constant. Thus 6.  measures 

the direct effect of length of enlistment on the odds of reenllstment. 

If an Indirect effect with dependency status is also present, this is 

ATLD 
measured by 6.  .  Both the direct and indirect effects of length of 

enlistment are net of the effects of other variables such as rank, 
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education, race, etc. That Is, the effects of variation In the latter 

variables on the odds of reenllstment are taken Into account In the 

iTLD 
computation of    Ö.      and    o. . 'i           "Id 

Given the odds of reenllstment for Individuals with a given set of 

characteristics.  It  Is a simple matter  to compute the probability of 

reenllstment  for the group from the relationship 

/„    v      VX.J      -r ,J probability of reenllstlng 
(9. 7)      Odds of reenllstment - —r.   T-7T7Z— c 1 , .  r?—    . v       ' probability of not reenllstlng 

For example. If the probability of reenllstlng, p , Is .07 , then 

the probability of not reenllstlng, 1-p, is .93 , and the odds of 

reenllstment are    .074    to one.     Solving for    p    In (9.6) yields 

(9.8)      Probability of reenllstlng 
odds of reenllstment 

1 + odds of reenllstment 

In  these calculations It  is  Important  to distinguish between 

TL       TO       TLD 
Individual    6's    referred to as "odds factors"  (e.g.,  6,6,6       ) 

T 
which Indicate how the overall mean reenllstment odds,    6    ,     is modified 

T    TL    TD    TLD 
and the product of    ö's    (e.g.,   6    6      6      6"    )    which measures the 

odds of  reenllstment  for Individuals with a specified set of character- 

istics.     Since  (9.7) converts the odds of reenllstment for a given group 

of individuals to the probability of reenllstment for that group,  it 

cannot be applied to the Individual    6's   . 

The above discussion makes clear that a large number of parameters 

may enter the contingency table model,  thus raising the problem of Iden- 

tifying which parameters are to be included in a model and which are to 
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be excluded. Statistical distribution theory and a measure 1 , wlilch 

is similar to K , tlie multiple correlation coefficient in regreF.sion 

analysis,   is used  to  resolve   this  problem. 

In  regression analysis  the  explanatory value of a  set  of  predictor 

variables  is measured by  the  percentage of  variation  in  the dependent 

variable explained by  the predictor  variables.     The base measure of varia- 

tion  in regression analysis   is   the   sum of  squares about  the mean of   the 

2 
dependent  variable,   i.e.,     £(Y    -  Y)     .     As  predictor variables  are added 

to  the model,   the  predicted values  of   the  dependent  variable,     Y     ,     are 

- 2 
used  to measure  the amount of  variation,     ^(Y.  - Y)     >     explained.     The 

percentage of  base variation explained   is  then 

Z(Y     -  Y)2  -  Z(Y     - Y.)2 

100 R    =  100 i — 
Z(Y    - Y)Z 

One method of measuring the  contribution of  any particular variable  is 

the  change  in    R      when that  predictor  variable i^ added  to  the model. 

For contingency tables,   the base measure of variation  is computed 

either  as   the  chi-square  statistic* 

I (Ü  - E)' 

or  the  information measure 

2  Z  0 .n ^ 

* h symbol 0 stands for the observed cell count and E  the 
estr'ma   cell count. The summation is over all cells in a table. 
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under the hypothesis that all ß parameters in (9.A) except the general 
* 

mean are zero.  I  is then the percentage of base variation explained 

by the introduction of some collection of ß parameters into the model, 

i.e., 

*      ^  ° to | Base - (i: " ta | Model 

« 0 ^ f> Ba8e 

In practice, an I  of 70 percent or better is desired.  Sometimes a 

lower value is acceptable because increasing I  requires the addition 

of many interaction parameters with the consequent difficulty of inter- 

pretation.  The prime objective is to find the most important parameters. 

When the number of observations is large, parameters signifying marginal 

Impact will be statistically significant.  Thus we may adopt a convention, 

say, of excluding parameters when th.>y increase I  by less than two 

percentage points. 
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