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loading phenomena.
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INTRODUCTION

The low speed performance, safety and handling qualities of high
span loading aircraft depend on the structure and stability of the vortex
flow created by the wing. The development of a unified theory of vortex
flow phenomena near the wing would permit one to predict the 1ift distrib-
ution on such a wing as well as the structure and stability of the free
vortex flow field. In principle, such knowledge would allow one to tailor
the wing-vortex interaction to achieve good handling qualities and a stable
flow over the wing. At least, detailed knowledge of the vortex phenomena
might enable the designer to reduce their possible detrimental effect on
the aerodynamic characteristics of the aircraft. For example, consider the
adverse effects of breakdown of the leading-edne vortices, studied by Hummel
and Redeker (1967). Another example is the effect of vortex filaments on
yawed aircraft, as examined by Landahl and Widnall (1971),

The flow field of high aspect ratio winas have been handled fairly
well by existing lifting-surface theories. {For more detail, see the recent
surveys by Landahl and Stark (1968) and Ashley and Rodden (1972).] Linear
1ifting surface theories fail, however, when strong vortex flows are created
near the wing. This failure is particularly evident for the case of the
small aspect ratio wing, where the pressure distribution is strongly effected
by the near flow field.

Hummel, D., and Redeker, G., "Uber den Einfluss_des Aufplatzens der Wirbel
auf die aerodynamischen Beiwerte von Deltaflugeln mit kleinem
Seitenverhaltnis beim Schiebeflus," Jahrbuch 1967 of WGLR, pp. 232-240.

Landahl, M. T. and Widnall, S. E., "Vortex Control," M.1.T., Supported by the
Air Force Office of Scientific Research under Contract Nos. AF49(638)-1622
and F44620-69-C-0900, in Olsen, Goldburg & Rogers, 1971.

Landahl, M. and Stark, V., "Numerical Lifting Surface Theory-Problems and
Progress,""AIAA J., 6, No. 11, pp. 2049-2060, Nov. 1968.

Ashley, H. and Rodden, W., "Wing-Body Aerodynamic Interaction,” Annual Review
of Fluid Mechanics, Vol. 4, pp. 431-472.




The delta wing of low aspect ratio is of primary interest in modern
aerodynamics for transonic and low supersonic speed flight, because of its
flignt properties which include a fairly smooth transition from the subsonic
to the sunersonic flight regime. Furthermore, the flat plate delta wing has
been more amenable to thecretical consideration and consequently much of the
recent research on low-aspect-ratio wings with regions of concentrated vor-
ticity has been restricted to delta-wing-tyoe qeometries. The delta wing
configuration also demonstrates most of the characteristics of vortex flow
phenomena near the wing and it is hoped that eventually the results for the
delta wing will lead to extensions to more aenera’ planforms. Thus, because
of its role as a practical wing nlanform and its simplicity, this planform
will be the primary subject in the following report.

The following general procedure will be used to accomplish this
background study for a unified theory of vortex flow phenomena.

1) Review existing theories and mathematical models for the individual
elements in the vortex-wing flow field. This will include models for the
roll-up of a vortex sheet, the development of axial gradients, and the
occurrence of vortex breakdown.

2) Review existing models for their ability to predict the response of the
flow field elements to external influences, which is necessary to construct

a theory involving interactions between wings and free vortices. This would
include a discussion of evistina models for wings with free vortices based

on slender-body theory as well as existing models for their ability to predict
response of a vortex to external pressure gradients.

3) Identify areas where further research is necessary to complete the theory
and to suggest methods of approach to these problems.

-
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Historical Development

When attempting to devise a unified theory of vortex flow nhenomena,
one realizes that the actual flow is governed by the Navier-Stokes ezuations
of motion, which are both nonlinear and elliptic. Their solution proves to
be an impossible task except in the simplest of flows. Thus, one is forced
to search for a simplified form for the governing equations and one resorts
to experiment to discover the important parameters governing the flow. Early
experiments demonstrated the need for a theory which applied to low asoect
ratio wings with strong vortex flows, in place of the linear liftina surface

theory for high aspect ratio winas.

Winter (1936) conducted an extensive series of tests on low aspect
ratio wings, including the delta wina, and noted the apoearance of leading-
edge vortices and the nonlinear character of the lift. Wilson and Lovell
(1947) gave a more detailed picture of the flow field over a triangular
wing and compared this flow to that over the standard attached flow model of
linear 1ifting surface theory, which only occurs at relatively low angles
and with rounded leading edges, while the separated flow field occurs at
higher angles of attack and sharp leading edges. [See Figure 1.] However,
their primary concern were the forces on the wing, rather than a detailed
flow description.

A fairly complete physical description of the flow field was given
by Ornberg (1954). [See Figure 2.] He considered the separation at the
leading edge and included the form of both the primary separated vortices
(d) and of the secondary vortices (e) in a schematic sketch of the flow over
a flat plate delta wing.

Winter, H., "Flow Phenomena on Plates and Airfoils of Short Span," NACA TM
No. 798, 1936,

Wilson, H. and Lovell, J., “Full-Scale Investigation of the Maximum Lift
and Flow Characteristics of an Airplane Having Approximate Triangular
Planform," NACA RM No. L6K20, 1947,

Ornberg, T., "A Note on the Flow around Delta Wings," KTH Aero TN 38, R.I.T.,
1954,




G. H. Lee (1958) conducted oil flow tests on the upper surface
to study the boundary layer flow picture, including secondary separation
and veattachment.

Elle (1958) conducted extensive flow visualization studies involving
air-bubble suspension in a water tank and smoke in a wind tunnel. For the
water tunnel results, slender delta wings were tested and showed a "nearly '
linear vortex center-line from the apex downstream to somewhere near the
trailing edge, at which point it bent off rather sharply" in the direction of
the free stream, which indicated that trailing-edge effects might be 1imited
to a small region. However, these early results are qualitative rather than
quantitative,

Early attempts to define the flow field were made by Fink and Taylor
(1967) who carried out some total head traverses to describe the vortex core
position and the nature of the leading-edge separation at low speeds. For
a 20° anglc delta wing with sharp leading edges, they obtained unseparated
flow for an angle of attack of 3°; for angles of attack greater than 5°, the
flow was clearly separated. According to Fink and Taylor, the principal
features of the cross flow (viewed at a constant chordwise station on the
wing), are:

1) Separation of the boundary-layer flow from the pressure side at the

leading edges.

2) Formation of vortex cores in the stream from the boundary-layer fluid

which has left both surfaces of the wing upstream of the trarisversed station.

3) Secondary separation of suction-side boundary-layer a little outboard

of the main vortex position.

4) Reattachment of the cross-flow outboard of the secondary separation :
points.

T ¥ P g et
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Lee, G. H., "Note on the Flow around Delta Wings with Sharp Leading Edges," ]
ARC R&M 3070, Sept. 1958.

Elle, B. J., "An Investigation at Low Speed of Flow Near the Apex of Thin . %
Deita Wings with Sharp Leading Edges," ARC R&M 3176, 1958,

Fink, £. T. and Taylor. J., "Some Early Experiments on Vortex Separation,"
ARC &M 3489, 1967.
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They found that increasing the angle of attack led to:
1) A movement of the main vortex cores away from the leading edges.
2) A progressive reduction of the total pressure in the vortex cores.
3) An increased intensity of the vortex sheets which spring from the
primary separation points.
. 4) Progressive reduction of the boundary layer thickness on the central
portion of the suction side of the wing.

They also investigated the static pressure along seven rays passing
through the apex to determine whether there were stations at which the
pressure distribution might be taken to be approximately conical. However,
their results indicate that even for an 80° sweepn wing, the flow cannot be
described as conical, although the pressure did change slowly over the middle
third of the wing. The trailing edge was found to have a considerable effect
on the upstream flow. The 1ift was shown to be greater by Fink and Taylor
for the delta wing with separated flow than would have been predicted by

\ linear theory.

In 1957, Peckham and Atkinson (1957) noted that when the incidence
was increased above 25° for a gothic wing of aspect ratio one, the "conden-
sation trail representing the vortex core appeared to 'bell-out' before
disappearing -- as though the core was becoming more diffuse."

Elle (1958) noticed the same phenomena and described it more
completely. He coined the term "breakdown" since the pattern broke down.
The centerline became "wavy in front of the breakdown point (Figure 3).

This slight waviness very soon becomes unstable with the result that the
vortex center-line changes shape into a low pitched spiral." After this,
the fluid appeared to spread out rapidly.

He noted that the breakdown occurred at higher incidences the
higher the leading-edge sweep and that it first occurred far downstream of
the trailing edge and moved upstream as the angle of attack was increased.

Peckham, D. H. and Atkinson, S. A., "Preliminary Results of Low Speed Wind
Tunnel Tests on a Gothic Wing of Aspect Ratio 1.0," ARC CP No. 508,
) 1957.




Again, early descriptions were fairly qualitative and only later were
quantitative descriptions of the vortex core obtained.

Earnshaw (1961) attempred to obtain the small-scale structure of
the velocity field of the vortex layer spiraling into the core. He obtained
his results with a five-tube yawmeter for a delta wing of unit aspect ratio.
He concluded from his experiments that the leading-edge vortex can be divided
into three regions:

1) A vortex core of approximately 30% of the local semispan in diameter
wherein traces of the vortex sheet are small. The flow here was essentially
conical except for a slender region along the axis.

2) A viscous sub-core of approximately 5% semispan in diameter in which the
gradients of total head, static pressure and velocity are high, and conse-
quently viscosity cannot be neglected. Within the sub-core, circumferential
velocities were found to be almost equal to the free stream velocity and
axial velocities of 2.3 times the uniform velocity were recorded at 15° angle
of attack.

3) A region where the trace of the vortex sheet is still clear, between the
leading edge and the vortex core.

Lambourne and Bryer (1961) described the vortex breai.down in detail.
When vortex bursting occurred, there was an expansion of the fluid flow along
the axis of the laminar vortex which resulted in the formation of a large
turbulent core. [See Figure 3.]

They found two possible ways in which the vortex could burst. One
was an asymmetrical spiral arrangement in which the dye remained in a discrete
filament after the expansion of the core. The other possibility was an
axisymmetrical arrangement in which the Jye is diffused over a bell-shaped
region; this latter form was only occasionally observed according to
Lambourvc uid Bryer. ‘

Earnshaw, P. B., "An Experimental Investigation of the Structure of a Leading-
Edge Vortex," ARC R&M 3281, 1961.

Lambourne, N. C. and Bryer, D. W., “The Bursting of Leading-Edge Vortices-
Some Observations and Discussinn of the Phenomena," ARC R&M 3282, 1961,
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They considered the more common asymmetric breakdown to occur in

three successive stages [See Figure 4]:

1) A sudden deceleration of the fluid along the axial filament,

2) An abrupt kink where the axial filament was deflected into a spiral
configuration, which persisted for a few turns.

3) A breakdown to large-scale turbulence.

Their experiments showed that the burst position was sensitive to the
pressure distribution along the vortex. They concluded that:

1) An essential feature for bursting to occur was believed to be a low
total pressure region at the axis of the laminar vortex.

2) A positive pressure gradient was required which could, for example, be
furnished by viscous action within the core of the vortex or the deceleration
of the flow external to the core due to the presence of the trailing edge.

They also found that the bursting caused a loss of suction locally
at the surface.

These are the basic phenomena observed over the delta wing at
moderate angles of attack when the flow separates at the leading edge. Some
of the phenomena still require some clarification. For example, Bergeson
and Porter (1960) conceded that opinion on the effect of secondary vortices
was quite diverse. This is because of their small scale which makes accu-
rate measurement of the flow properties difficult. Also, experimental evi-
dence of the effect of viscosity on bursting of the vortex is small. A
qualitative indication from comparison of water tunnel [Elle (1958)] and
wind tunnel experiments suggest the bursting phenomena is not strongly
Reynolds number dependent. However, it is difficult to separate out the
other effects which might have caused the differences between experiments
with delta wings of similar aspect ratio. These other effects include the
thickness and roughness of the planform. More will be said on this later
when experimental results are compared with theory.

Bergesen, A. J. and Porter, J. D., "An Investigation of the Flow around
?lgnder Delta Wings with Leading Edge Separation," Princeton Rep. 510,
960.
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VORTEX FLOW ELEMENTS

As described ir the introduction, an attempt will be made to study
the individual elements in the vortex flow field. The first element to be
considered are the spiral sheets from the leading edges whiéh terminate
in a core region of rotational flow. Recently, Smith (1966b) published an
article on the formation of vortex sheets which includes historical as well
as fairly recent contributions. As is seen from the experiments on delta
wings with sharp leading edges, the primary separation occurs along them at
relatively small angles of attack. The separated flow forms a spiral vortex
on each wing half under the influence of its own vorticity. In such a
flow, viscosity is important only in regions of large velocity gradients,
i.e., in the boundary layer, at the point of separation and in a small viscous
sub-core at the center of the spiral. Since the primary vortex creates a
suction peak on the wing below it, the boundary-layer flow after passing
under it towards the leading edge encounters an adverse pressure gradient
and separates to form the secondary vortex. Smith reports that outside of
those regions, the effect of Reynolds number appears small.

This implies that one can construct an inviscid model to describe
the large-scale features of the flow. Although the model would have to
include rotational regions, the vorticity is negligible in most of the flow
field, and he argues that it is attractive to regard the vorticity to be
concentrated on vortex sheets. Thus, the entire flow field, outside of the
sheets is considered irrotational and consequently, a velocity potential
exists.

Due to the difficulty in handling the remaining nonlinear problem,
further assumptions are often made. First, the flow can be considered
conical. This is strictly true over a supersonic flat plate delta wing and
has been seen to be approximately true away from the trailing edge for
subsonic flow. To further simplify the problem, Legendre (1956) attempted

Smith, J. H. B., "Thegretical Work on the Formation ¢f Vortex Sheets,” in
Progress in Aeronautical Sciences, Vol. 7, D. Kiichemann, ed., pp. 35-51,
1966b.

Legendre, R., "Ecoulement subsonique transversal a un secteur angulaire
plan," C. R. Acad. Sci., 243, p. 1716, Nov. 1956.
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to construct conical incompressible models of the flow and discovered that
this led to the appearance of singularities in the flow field. In view of
this difficulty of constructing a conical, incompressible, flow model, the
nonlinear character of the governing equations without the compressibility
assumption, and the occurrence of leading-edge separation only for slender
delta wings, Smith argues it is reasonable to employ the slender body theory
of Munk (1924), Jones (1946), and Ward (1949), to calculate the properties
of the model. Unfortunately, siender-body theory only applies to flow in
which the streamwise gradient of the streamwise velocity component is small
compared to transverse gradients. However, in the slender conical vortex
sheet, wound into the appropriate spiral, the velocity component along the
axis will later be shown to tend to infinity logarithmically. Thus, the
slender body theory is violated.

Some of the objections to the use of an indefinitely rolled-up
vortex sheet as a model of the flow and to the use of slender-body theory
to describe an incompressible flow are made by Roy (1966).

Munk, M. M., "The Aerodynamic Forces on Airship Hulls,” NACA Rep. 184, 1924,

Jones, R. T., "Properties of Low Aspect Ratio Pointed Wings at Speeds Below
and Above the Speed of Sound,” NACA Rep. 835, 1946.

Ward, G. N., "Supersonic Flow Past Slender Pointed Bodies," Quart. Journ.
Mech. and Appld. Math., 2, p. 75, 1949,

Roy, M., "On the Rolling-Up of the Conical Vortex Sheet Above a Delta Wing,"
:SGZrogress in_Aeronautical Sciences, Vol. 7, D. Kuchemann, ed., pp. 1-5,

13
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Vortex Sheets

Some of the works on the form of the rolled-up sheet will now be
considered. Kuchemann and Weber (1965) published a review of the available
models. Following Mangler and Weber (1966), they consider two methods of
analysis. The sheet can be assumed to be shed and then roll up as a function
of time; or the sheet can be assumed to be rolled up from the start of the
analysis. The first method of analysis will be considered further in the
section on the vortex models using discrete elements of vorticity. The
second method has been used to develop theories for continuous spiral sheets.

The following development of the problem can be found in Mangler
and Weber. They consider a steady three-dimensional flow past a body which
sheds a thin vortex sheet. Two conditions must be satisfied by the vortex
sheet. It must be a stream surface and it cannot sustain a pressure differ-
ence across it. Thus, the velocity vector on either side of the sheet must
lie in the sheet. For zero total pressure difference, the vorticity vector
must 1ie along the mean flow direction, e

For the two dimensional case, they obtain the result that the flow
must be unsteady to satisfy the pressure condition. Then the vorticity is
along the generators of the cylinder and the sheet grows to satisfy the
pressure condition.

For the delta wing leading-edge core problem, one is primarily
interested in a three-dimensional growing vortex with axial velocity. Mangler
and Weber model this phenomenon by assuming that the flow {s steady, incom-
pressible, conical and homentropic. The governing equation becomes the
continuity equation. Thev use a change of variables to simplify the boundary
conditions by mapping the region between turns of the spiral onto a strip.
They then assume an asymptotic expansion in the new variables for the inner
part of the core to avoid the singularities mentioned earlier for conical,

Kuchemann, D. and Weber, J., "Vortex Motions," ZAMM, 45, No. 7-8, pp. 457-
474, Dec. 1965,

Mangler, K. W. and Weber, J., "Flow Field near Centre of a Rolled-Up Vortex
Sheet," RAE TR No. 66324, 1966,

14
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incompressible flow. They obtain an asymptotic solution by using terms of
equal order in the differential equation. However, they note "the present
approach of term by term evaluation of the asymptotic expansion cannot
provide information about its convergence." Although convergence cannot be
proved, additional terms in the approximation can be generated by this scheme.
Mangler and Weber find for the velocity components in cylindrical coordinates
(x, r, 8) in the neighborhood of the axis

c(k=-1nr) + mcr(1/2 + k - ’lm")]/2 + ... = axial velocity (1)

W=

u=-1/2r ¢ nch(l +k-1nr) (1/2 + k - lm?')]/2 + ... =
radial velocity (2)

ve=oc(1/2 +k- lnF)]/2 + mer(k - 1nr) + ... = circumferential

velocity  (3)

where c and k are free constants and r = r/x. The shape of the sheet is
obtained by integrating

do ! X
= =z + 0(1nr) (4)
dF 720172 + k - Inf) /2

They similarly derive the results for the unsteady two-dimensional
case. As a special case of the unsteady problem, one can derive the conical,
slender-body result. They obtain for the sheet shape

—d% Z - C/Fz (5)
dr

which Mangler and Weber note is the result obtained by Mangler and Smith
(1959). They also find the radial and circumferential velocities

Mangler, K. W. and Smith, J. H. B., "A Theory of Flow past a Slender Delta
Hingogit?gteading Edge Separation," Proc. Roy. Soc. London, Ser. A, 251,
p. 3 9,

15




T T T Y P T VOV et N T P gt

——

use g (6)
v=0_Czar (7)

where C 1s a constant, There is no mean flow for the second result in the
radial direction since there is no place for the flow to go. This is a
common failing of two-dimensional theories. Furthermore, the azimuthal
velocity approaches a constant near the axis. Since the potential is two-
dimensional in the conical sense, it is possible to obtain the axial velocity
as

W= C2(1 +k - InF) +0(F) (8)

which blows up at the axis and so the slenderness assumption is violated by
the slender, conical solution, while the radial and tangential velocities
also differ from the nonslender results. Thus, Kiichemann and Weber con-
cluded, "It is therefore, difficult to see what physical significance it
(slender core) has." By suitable choosina, the two constants for the non-
slender core to match the experimental spiral of Earnshaw (unpublished at
the time of Kuchemann and Weber), they obtain fairly good agreement between
experiment and theory. [See Fioure 5.] A closer inspection of the experiment-
al data of Earnshaw shows the swirl component falls to zero at the axis. This
represents the small viscous sub-core. Also, the axial velocity is finite
at the core axis.

These are the primary results for infinite sheets. In connection
with more complete models of the flow field, additional representations of
the vortex sheet will be presented.
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Vortex Core

The core structure shall be treated next. Hall (1966b) oresents
a summary of the state of the art and also includes a brief descrintion of
vortex breakdown. [There are a considerable number of works devoted to the
trailing edge vortex, e.g., Moore and Saffman (1971, 1973), Newman (1959),
Rott (1958), Batchelor (1964), Widnall and Bliss (1971). Although this is
a different phenomenon, possibly some of these technigues to handle regions
of concentrated vorticity can be extended to the leading edge vortex.]

One of the first theoretical analyses on the leading-edge vortex
core was by Hall (1961) and Ludwieg (1962). They both assume an axisymmetric,
conical, incompressible, inviscid, rotational flow in the core. The flow then
depends on a single parameter r = r/x. They obtain the following differential
equations for the three velocity components (u, v, w) in cylindrical coordi-
nates (r, 9, x) from the Euler equations of motion

Hall, M. G., "The Structure of Concentrated Vortex Cores,” in Progress in
Aeronautical Sciences, Vol. 7, D. Kuchemann, ed., Pergamon Press, pp. 53-

’

Moore, D. W. and Saffman, P. 5., "Axjal Flow in Laminar Trailing Vortices,"
Proc. Roy. Soc., Ser. A., 333, pp. 491-508, 1973.

Moore, D. W. and Saffman, P. G., "The Motion of a Vortex Filament with Axial
Flow," Phil. Trans. Proc. Roy. Soc., Ser. A, 272, pp. 403-429, Oct. 1971.

Newman, B. G., "Flow in a Viscous Trailing Vortex," Aeron. Quart., 10, pp.
149-162, 1959.

Rott, N., "On the Viscous Core of a Line Vortex," CR Acad. Sci. pp. 543-553,
1958,

Batchelor, G. K., "Axial Flow in Trailing Line Vortices," JFM, 20, pp. 645-
658, 1964.

Widnall, S. E. and Bliss, D. B., "Slender-Body Analysis of the Motion and
Sgab;lity of a Vortex Filament Containing an Axial Flow," JFM, 50, pp.
335-353, 1971,

Hall, M. G. "A Theory for the Core of a Leading Edge Vortex," JFM, 11, pp.
209-228, 1961.

Ludwieg, H., "Zur Erklarung der Instabilitit der iiber angestellten Delta-
flugeln auftretenden freien Wirbelkerne," Z. Flugw., 10, pp. 242-249,
1962.
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Fuu' - ve - Flwy = - ; rp' (9)

Fuv' + uy - Fowy' = 0 (10)
Fuw' - Foww' = % 7! (1)
St =2 ol =

ri' +u =-r" =0 (12)

where ( )' represents differentiation with respect to r. They assume a
slender core r << 1, which implies u << v, u << w. They solve the resulting
differential equations and after applying the boundary condition that u is
not infinite at the axis, they obtain

u=-1/2cr (13)
v=c/~InF + 172 + K (14)
w=c(- Inr + k) ' (15)

which is seen to be identical to the lowest order solution agiven by
Mangler and Weber. The effect of the discrete vortex sheet does not enter
until the next higher term.

Hall notes that this solution is not valid near the axis where
viscosity becomes important to prevent the velocity from becoming infinite.
By an order of magnitude estimate, Hall finds that for

W,

r/x =0 [Vi'(WfY)]/Z ] (16)
where the subscript refers to the value at the outer edge of the core, viscous
effects become important. For this inner viscous sub-core, the flow is no
Tonger conical since viscous dissipation precludes the existence of a conical
flow. He employs a fairly involved calculation of the boundary-layer type
and obtains a soiution for the viscous sub-core which is presented in Hall
(1961). He matches the two solutions at an intermediate point to obtain a
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composite solution. He compares the results with experiment [see Figure 6]
and notes that there is good agreement for the outer solution, but for the
inner solutions, there is only gqualitative aareement. The thecretical
velocity and pressure gradients are too large and the peaks are too pro-
nounced. He suggests that a possible error was the fact that the theory is
laminar while the actual vortex core flow might be turbulent, and notes that
the use of an eddy viscosity would have imoroved agreement by increasing the
diffusion of the core.

Later, Stewartson and Hall (1963) obtain a more acceptable inner
solution. Instead of matching at a finite point, the new solution can be
matched asymptotically from the inner solutions. However, the solution is
found by numerical method, and although additional terms can be obtained
from the asymptotic expansion, it is fairly complicated and is not discussed
here. The solution is obtained partly in terms of universal functions which
are tabulated.

Brown (1965) considers another possibility. It is known from the
theoretical analysis that there is a low pressure region in the core. Thus,
the incompressible solution of Hall and others is onen to question. To allow
the problem with compressibility to be solved, the core flow is assumed to
be inviscid and consequently, conical everywhere. The flow is still considered
axisymmetric and by assuming slenderness, r << 1, the governing equations
become

o - G 82y - XL (42 L ) (17)
SF Mg (18)
dr

Stewartson, K. and Hall, M. G., "The Inner Viscous Solution for the Core of
a Leading-Edge Vortex," JFM, 15, pp. 306-318, 1963.

Brown, S. N., "The Compressible Inviscid Leading-Edge Vortex," JFM, 22, pp. 17-
32, 1965.
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after some manipulation; where - is the density, w is the axial velocity,
where both have becn normalized by their value at the edge 9¢ the core,
y = ratio of specific heats, and the other terms are constants. & is related
to the energy, "c is the Mach number at the edge, and : incorporates constants
from the edge of the core.

The boundary conditions used are similar to Hall for the inviscid
model and both swirl, v/w, and Yach number MC can be specified at the outer
edge of the core. The equations are solved numerically for a range of
constants. [t is seen that the effect of compressibility is confined to a
sub-core near the axis. In the compressible case, the circumferential velo-
city goes to zero while the axial velocity tends to a constant when the axis
is approached. She remarks on the similarity between her results and the
solution of Stewartson & Hall (1963) and obtains, usina a boundary-layer type
of approximation, a uniform solution for Tow Mach numbers with an incompressible
outer core and a compressible sub-core. It was previously mentioned that
the model of Hall and Ludwieg agreed to lowest order with the irrotational
model of Mangler and Weber (1965). Similarly, Brown and Mangler (1967) later
extend the Mangler and Weber solution to include the Brown model of the incom-
pressible sub-core, as the first approximation for the irrotational flow.

Brown, S. N. and Mangler, K. W., "An Asymptotic Solution for the Centre of
a Rolled-up Conical Vortex Sheet in Compressible Flow,” Aeron. Ouart.,
18, Part 4 pp. 354-366, Nov. 196/.

20




-

'S

Jortex Breakdown

The next element to be cons‘dered is the vortex breakdown phenomenon.
[See Hall (1972) for a criticism of available vortex models.]

The study of the breakdown of vortex core has been studied in vortex
tubes as well as over the leading-edge of the delta wing. The reason for this
is two-fold. First, delta wings are not the only phenomena which incorporate
vortex breakdown. Secondly, the breakdown in a tube is much easier to control.
It is noted by Hall (1966b) that a difference between the observations of
Harvey in a tube and of Lambourne and Bryer {1961) over a wing, which may be
important, is that while Harvey's flow in the vicinity of the stagnation
points appears to be axially symmetric while that of Lambourne and Bryer
usually shows a spiral disturbance. Also, Jones (1960) believed that "there
is no great similarity between this (vortex tube) instability and vortex
breakdown but it is hardly to be expected since the boundary conditions are
so different. Because of the presence of the walls, viscosity is likely to
have a much larger effect in disturbances in the tube than in a free vortex.
Lambourne and Bryer (1961) also commented similarly on the differences and
similarity of the two phenomena. Although vortex breakdown of the leading-
edge vortices is of primary concern, the continuous growth of the vortex as
a function of the distance from the apex increases the complexity of the
problem. The vortex tube offers a simpler flow field and many theories are
originally derived for a vortex tube. It is to be hoped that the theory can
be extended to the leading-edge vortex later. An experimental contribution
to this area was made by Sarpkaya (1970), who found spiral breakdown in a
vortex tube as well as the axisymmetric breakdown found by earlier investiga-
tors. Thus, this eliminates one of the primary differences between the two
flow fields although the difference of the relative effect of viscosity is
still unclear.

Ha11, M. G., "Vortex Breakdown", in Annual Review of Fluid Mechanics, Vol. 4,
Annual Reviews, Inc., Palo Alto, pp. 195-218, 1972,

Jones, J. P., "The Breakdown of Vortices in Separated Flow," Univ. of
Southampton, Rep. 140, 1960.

Sarpkaya, T., "Experimental Investigation of the Vortex-Breakdown Phenomenon,"
NASA Accession No. N71-11955, 1970.
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Vortex breakdown has elicited a number of plausible explanations.
They can be divided into attempts to describe vortex breakdown as
1) A result of hydrodynamic instability ;
2) A separation phenomenon . 1
3) A standing wave phenomenon
4) A finite transiticn between conjugate flow states
5) A trapped wave phenomenon
6) A normal development of the flow.

Instability

An early explanation of breakdown as an instability phenomenon
was presented by Jones (1960). He considers axisymmetric disturbances as
a function of downstream distance superposed on a cylindrical base flow
that is i1icompressible and inviscid. The equations are simplified forms
of the Navier-Stokes equations. Assuming a disturbance of the form u =
u](r) e1(xx'°t), he obtains for the radial perturbation equation

e 2 ) »

r ,d (1 dw
w0 e E e
_2v(v/r +2dv/dr) up =0 (19)
r{w-c)

where w is the axial base flow and v is the tangential base flow and ¢ = o/).
He obtains the following condition for instability, when radial
gradients of the radial flow are small at the inner and outer boundary values

L and "o and when the radial velocity is zero. For unstable flows, the

function
4 . E‘ dv] !
1 dw v r  dr
r = i) - — (20)
dr r TZ - 82

changes sign between r. and ro» Where ¢ = a + iR, T = wir) - u.
His theory cannot be, in general, simplified and thus has limited
usefulness. It can only be applied in specific examples. Furthermore, he

only considers axisymmetric disturbances.
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Ludwieg (1960, 1961) developed a theory for the study of the

. stability of the helical flow in a narrow cylindrical annulus based on the
stability criterion of Rayleigh for rotating fluids. Rayleigh showed for
the flow in an annulus, that the flow is unstable if the circumferential
velocity falls off more rapidly than 1/r for the inviscid, axisymmetric ;
case with zero axial flow. Ludwieg adds axial flow to the model to study ‘
helical flow. Again he assumes inviscid, axisymmetric flow in a cylindrical
annulus. He assumes no radial velocity and a circumferential and axial

velocity which are linear in r.

<
[[]

v, * cv(r - ro) (21)

Wy * cw(r - ro) (22)

T TR UL ST TR N p——
X
n

where L is the mean radius of the annulus.
He nondimensionalizes by the average radius and circumferential
velocity V!

Ciatd 0 ¥ WO (23)

and obtains a necessary and sufficient stability criterion by employing
perturbation vortices. Ludwieg finds that the flow is stable to helical
disturbances for

ye2, (24)

-0 -8hH-3-¥E,

For Cy® 0, the Rayleigh criterion is recovered [see Figure 7]. He notes

! (1960) that the previous results only held for a narrow annulus. He suggests

Ludwieg, H., "Stabilitat der Stromung in einem zylindrischen Ringraum," Z.
F'\ Flugw., 8, No. 5, pp. 135-140, 1960.

Ludwieg, H., "Erganzung zu der Arbeit: Stabilitat der Stromung in einem
zylindrischen Ringraum," Z. Flugw., 9, No. 11, pp. 359-361, 1961.
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that a broader annulus could be considered by dividing it into many smaller
rings of small thickness ir. Although not proved, he surmises that the flow
would be stable if for each radius, the stability criterion is satisfied.

Hummel (1965) compares the experimental results he obtained over a
slender delta wing (aspect ratio = .78) with the predictions of Ludwieg for
a station before the breakdown and notes "a comparison of measurements with
Ludwieg's stability theory furnishes good agreement."

Ludwieg (1962) later applies his stability criterion to the Hall-
Ludwieg vortex model. He finds, for this case, that the flow is most unstable
at the outer edge, so the fact that this leading-edge model is not applicable
at the core is of no concern. He obtains the result that the flow is unstable
for : = tan”! v/w greater than 48°.

Ludwieg (1965) further argues that his model provides for the asym-
metric breakdown of the originally axisymmetric leading-edge vortex. He
supports such a contention by referring to the experimental work of Hummel
(1965), which shows such asymmetry.

He explains that the instability theory can predict the violent
nature of breakdown due to the low velocity and total pressure region which
accompanies the vortex. Hall (1972) criticizes Ludwieg's explanation on
the basis it failed to explain the axisymmetric [Ludwieg (1965) considered
the axisymmetric and asymmetric breakdown distinct, while experiments by
Sarpkaya (1970) have shown for the vortex tube that they are aspects of the
same problem]. Finally, Hall argues that the theory is difficult to test
since there are always velocity gradients of the required magnitude somewhere
in the flow. Also, Hall questions the explanation of the suddenness of the
transition and concludes that "the abruptness of the change in core structure
is explained by the existence of a critical state."

a

Hummel, D., "Untersuchungen uber das Aufplatzen der Wirbel an schlanken
Deltaflugeln," Z. Flugw., 13, No. 5, pp. 158-168, 1965.

Ludwieg, H. "Erk]arung des Wirbelaufplatzens mit Hilfe der Stabilitdts-
theorle fur Stromungen mit schraubenlinienformigen Stromlinien," Z. Flugw.
35, p. 437-442, 1965,
a1l M s "A New Approach to Vortex Breakdown," in Proc. of 1967 Heat
Tfansfer and Fluid Mechanics Institute, ». A. Libby, ed., Stanford U.
Press, pp. 319-340, 1967.
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Jones (1960) suggests that compressibility may be another factor
which should not be left out due to the analogy with supersonic jets.

Separation Phenomenon
Hall (1967) drew an analogy with the boundary-layer separation,

which separates near the value where the boundary-layer approximations fail,
He observed from experiments involving leading-edge vortices, that the flow
upstream only varied slowly in the axial direction, the axial agradients were
small compared to the radial gradients and the stream surfaces were approxi-
mately cylindrical. By assumina that the flow is steady, laminar, incompress-
ible and axisymmetric, and assuming the flow is auasi-cylindrical, as above,

he obtains
U , U, 9w _
F‘C'F*f'a";'-o (25)
2
.13
r par (26)
2
v, uv v _ 3 v, lav_v
r tr +w8x'v[;"2'+r3r 7} (27)
r r
2
aw, . w__1ap,  [aw,1aw
UartWax T Tty [;:2 y ar] 128

from the Navier-Stokes equations.

The boundary conditions are 1) those to be satisfied on the axis
of symmetry, 2) one condition -- e.g., pressure is supplied at r = rc(x)
of the vortex core, where the shape must then be unprescribed -- and finally
3) an initial velocity distribution is given at some starting point. Since
the problem is now parabolic, rather than elliptic, one can calculate the
solution by proceding step by step in the axial direction. The numerical
method is outlined in Hall (1967).

Breakdown is noted whenever the axial gradients become large and
violate the quasi-cylindrical approximation. He says his results are con-
sistent with observations concerning breakdown as a function of Reynolds
numbers and of pressure gradients. He concludes that 1) breakdown depends
on the stream surface (pressure) and on the swirl in the usual manner, and
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2) for an increase in Reynolds number, the breakdown moves upstream,
although he said this is a smaller effect than swirl or pressure. He
compares his results with Benjamin (1962) and Ludwieg (1962) for a vortex
tube breakdown. Ludwieg's criterion is not in agreement in predicting this
breakdown while Benjamin's is. Hall (1972) criticizes the theory on the
basis that it can only describe the flow up to the breakdown of the quasi-
cylindric approximation. It is of merit though since it includes the
effects of Reynolds number and of pressure, although the onset of Hall's
results (1967) fail to agree with the actual abruptness of the phenomena.

Standing Wave Phengmena

An early theory was that of Squire (1960) who developed the theory
of long standing waves on a cylindrical vortex flow. Although he was
investigating the breakdown of leading-edge vortices, for simplicity, he
considered only cylindrical vortices and symmetrical disturbances. He
formulates the critical condition as follows: The minimum condition for
the possible existence of a standing wave is sought. Because if it exists,
he postulates disturbances which are generally downstream will spread
upstream and cause the breakdown. He considers an inviscid, steady,
incompressible flow, which is cylindrical. As a result, the unperturbed
velocities w and u are functions of r only. It is supposed that this base
flow has a steady disturbance of small amplitude superposed on it. Then,
the stream function , satisfies the single equation derived from continuity
and momentum equations by Scuire (1956)

2 2 2 2
? 3 13 _ a2, orfdH  d(x
;’z*;z-rﬁ“'”-paw e 29

Benjamin, T.B., "Theory of the Vortex Breakdown Phenomenon," JFM, 14, pp. 593-

629, 1962.

Squire, H. B., "Analysis of the 'Vortex Breakdown' Phenomenon, Part I,"
Imperial College, Aero. Dept., Rep. 102, 1960.

Squire, H. B., "Rotating Fluids," in Surveys in Mechanics, Batchelor and
Davis, ea., 1956.
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where H is the total head and 2+« = circulation. Letting . = . + 1 where
’ is the unperturbed stream function and -1 Vs the stream £inction of the
disturbance, o satisfies

2 2
029 S dlc’) (30)
o) o) d‘yo Zd',bo

For o]. one obtains

2 42 2, 2
02 - W][_ d ngl ] (31)
o dw 2dy,

Assuming a periodic disturbance
¥y = f(r) cosa x (32)

implies the following form of the differential equation

1 2k W -rw

v, .r rr 29 _
e o f[rsf2 b -a1=0 (33)

The criticality condition is determined by the case when standing waves
first become possible.
Squire first considers the simple case of

{ ver for r <1 (34)
v =

v /r for r>1

W, = constant (35)

3
"

He solves this explicitly and finds that the smallest value of vc/wc which
allows standing waves to exist is

Y
w—°—= 1.20=% (36)
(4 c
for which a = 0. Furthermore, he considers two other swirl values for

constant axial flows also. He obtains from the three cases for n = 0, that
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1.00 < BaY < 1.20 (37)

(38)

He concludes that vortex breakdown may occur when the ratio of maximum swirl | 3
to axial velocity is slightly greater than one.

Experimental research was reported by Harvey {1360) over a thin . %
delta wing for a 20° apex angle delta wing with breakdown at approximately ;
45°. He reports a swirl angle of 51°, He does not state the location of
- breakdown nor the precise angle of attack.

F This theory is criticized by Benjamin (1962) because from a similar
analysis he obtains the result that the group velocity of the standing wave _
] is directed downstream, thus Squire's belief that disturbances would propagate §
é upstream breaks down. Ludwieg (1965) criticizes the theory since the Hall-

5 Ludwieg vortex i; always stable according to it. HNevertheless, as Hall (1972)
noted, the theory does have the advantage of simplicity.

Finite Transition

Benjamin (1962, 1967) went on to develop a theory of vortex break-
down that was consistent with this observation. He proposes that breakdown
is a transition between two conjugate steady states of axisymmetric swirling 3
flows being analogous to hydraulic jumps in open-channel flow.

The stream function in inviscid cylindrical flow can be described
by 3

o et

n

d 2

[}
|-
oo
Sie
o|3
ajo
<|x

<k g (39) 1

[« %

r

Harvey, J., "Analysis of the Vortex Breakdown Phenomengn, Part II," Aero.
Dept., Imperial College, Rep. 103, 1960.

Benjamin, T. B., "Theory of the Vortex Breakdown Phenomenon,"JFM, 14, pp. 593-
629, 1962.

Benjamin, .. B., “Some Developments in the Theory of Vortex Breakdown," JFM,
28, pp. 65-84, 1967,

28




T T

where H = total head, and « = vr, where only Squire's (1956) axial derivative
has been dropped. A pair of flow stream functions A and ;B are defined as
conjugates of one another if they satisfy the came equation and sarme boundary
conditions at the endpoints .(0) = 0, o(rc) = . and if the two curves do

not intersect at any points other than their endﬁoints. Benjamin (1962)

shows that if one is subcritical, the other is supercritical, where the
critical condition is the same as Squire's (1960). The transition considered
is from a supercritical flow which cannot support waves to a subcritical one
that can. However, he finds that this subcritical flow has a greater momentum
flux

SN 12
2n J (oW + p) rdr (40)
0

than the supercritical one.

To conserve the momentum flux, he hypoth.sizes the existence of
small standing waves on the subcritical flow to balance the momentum flux
for infinitesimal differences. For more violent transitions, Benjamin
proposes that turbulence accomplishes this same purpose. Hall (1972) criti-
cizes Benjamin on the basis of the fact that it is only applicable to small
perturbations, while actual breakdown observed by Harvey (1962), for example,
is marked. However, in this case, the flow is not turbulent, Furthermore,
it says nothing about the structure of the breakdown. Also, Benjamin, 1like
Squire, only considers cylindrical flows which is appropriate only for certain
vortex tube flows. Finaliy, although he extends the analysis for infinite
radius, he does not consider the more complicated problem of leading-edge
vortices.

Trapped Wave Model
Due to Hall's criticisms that Benjamin's analysis cannot predict
the location and mechanism of breakdown, Randall and Leibovich (1973) present

J i

Harvey, J., "Some Observations of the Vortex Breakdown Phenomenon," JFM, 14,
pp. 585-592, 1Y62.

Randall, J. D. and Leibovich, S., "The Critical State: A Trapped Wave Model
of Vortex Breakdown," JFM, 58, pp. 495-515, 1973.
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a similar theory for vortex tube flows, which eliminates some of these 1imi-
tations. Their theory will only be treated briefly since extension to
leading-edge vortices appears complicated. The model is centered on a theory
of long, weakly nonlinear axisymmetric waves in tubes of slowly variable cross
sections.

They note the theory is limited to small amplitude as Benjamin's
(1962), but suggest that it can possibly be used as a model, rather than as
a theory of breakdown. They consider a flow at the critical condition and
obtain the following results:
1) The flow is supercritical upstream and subcritical below.
2) A stationary wave may occur only if the tube diverges in the direction
of the flow, i.e., adverse pressure gradient,
3) They obtain a bubble representing the boundary of the trapped wave.
4) The calculated wall pressure is similar to that found by Sarpkaya (1971).
5) The calculated position of the breakdown depends on Reynolds number and
is in accord with the experiments of Sarpkaya (1971); the breakdown is driven
upstream for increasing Reynolds numbers.

Bilanin (1973) has considered a similar problem to model vortex
breakdown in a vortex filament.

Smooth Development

Bossel (1967) considers two special cases of the governing differ-
ential equations for the vortex flow phenomenon with respect to vortex
breakdown. Starting from the Navier-Stokes equations, he assumes incom-
pressible, axisymmetric motion. Furthermore, he considers the case of:
1) slender vortex flows, with swirl approximately one, and viscosity
important, similar to the quasi-cylindric assumption of Hall; and 2) expand-
ing (or contracting) flows, with viscosity important, swirl approximately

Sarpkaya, T., "On Stationary and Travelling Vortex Breakdowns," JFM, 45, pp.
545-559, 1971,

Bilanin, A. J., “"Wave Mechanics of Line Vortices," Ph.D. Thesis, M.I.T., 1973.

Bossel, H. H., "Inviscid and Viscous Models of the Vortex Breakdown Pheno-
menon," Ph.D. Thesis, U. of C., Berkeley, 1967.
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one, and expansion u/w = order 1. Bossel (1969) clarifies the model of
breakdown in the vortex tube where he breaks the vortex flow into four
regions (see Figure 8). He applies his second model involving the expand-
ing flows to obtain flow shapes of the bubble which appear qualitatively
similar to the results of Harvey (1962). He concludes “vortex breakdown is
a necessary feature of symmetric flows having high swirl cinse to the criti-
cal and some flow retardation at and near the axis, perhaps caused by the
exterior pressure gradient or by an object on the axis itself. Vortex
breakdown is fully explainable and describable by the supercritical solutions
to the inviscid equations to which the Navier-Stokes equations approximate
in the breakdown region. MNeither the explanation of vortex breakdown as a
finite transition (analogous to the hydraulic jump) from supercritical to
the subcritical nor as the result of hydrodynamic instability aopear justi-
fied." Later, he extends his views on vortex breakdown for higher swirl
ratios (Bossel, 1972). Considering Bossel's (1967) thesis, Hall agrees
that Bossel seems to give a representation of the axisymmetric bubble, for
properly adjusted parameters. Because Bossel's form of the equations are
elliptic near the breakdown bubble, he has to furnish a downstream boundary
condition on the bubble. And Hall notes his breakdown "depends very much
on the form assumed for the downstream distribution of y(r) (the stream
function)." Secondly, as with most theories, this is primarily a model for
the axisymmetric breakdown in a vortex tube. Bossel does not consider the
problem of the leading-edge vortex.

Simplified Analysis

Since vortex breakdown criterion are fairly complicated, it is
difficult to see that breakdown actually develops from the form of the equa-
tions. Thus, Bossel (1968) presents a simplified stagnation model to show

Bossel, H. H., "Vortex Breakdown Flowfield," Physics of Fluids, 12, pp. 498-
508, 1969.

Bossel, H. H., "Vortex Equations: Singularities, Numerical Solution, and
Axisymmetric Vortex Breakdown," NASA CR-2090, July 1972.

Bossel, H. H., "Stagnation Criterion for Vortex Flows," AIAAJ, 6, pp. 1192-
1193, 1968.
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the significance of both the high swirl and the adverse pressure gradient.
He considers a rigid body rotation from 0 < r < g in an inviscid,

quasi-cylindrical and incompressible flow. If the initially constant axial

velocity W, is changed by the amount 4w, to first order, by continuity

2/ 2

ro W = (ro + ar)® (w) + ow) (41)
-+ ar s -

T |r'c/.2wo (42)

By conservation of angular momentum and (42)

e Ve = (rc + Ar)(vc + Av) (43)
- Av _
T vc/2w° (44)

Ar

. w2 Ar
bp = ch o (45)
c
Substituting (42) gives the change of pressure
Ap = - ov2 LW/ 2w (46)
Ap ¢ & A

Finally, the axial momentum balance for this pressure difference requires
a new change of the axial velocity Aw at ret Ar

AW _

2,, 2
A—W = VC/ZWO (47)

The initial velocity disturbance is thus amplified at ro tar for vc/wo >
vZ = tan ¢
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6 = tan"! (/Z) = 54.8° (48)

He then combines this with a result given by Hall (1966b). For incompress-
ible, quasi-cylindrical flow, the centrifugal force balance with Kelvin's
theorem and Bernoulli's theorem yields

r

2 2 c
dw dw 2
ax . _¢ _, u(dc“/dr) dr (49)
dx dx 2
a9 rw

with x = vr. Hall thus found that a change in the axial velocity along the
outside is accompanied by a more pronounced change along the axis.
Specificallg, in a retarded flow, Bossel states that the integrand

is positive, while E!g is negative and therefore
dx
2
dw
l 22 | > |awl/ax] (50)

Thus, one finds 1{f the initial axial velocity disturbance at the core is
decelerating, that stagnation will eventually result if the initial maximum
swirl parameter v/w > V2.

In another effort to illustrate the conjugate flow states in a
simpler manner, Landahl and Widnall (1971) devise a simplified "one-
dimensional" model of breakdown similar to the example of Bossel by extending
the analysis of Barcilon (1967) to include a rotating flow field. They
obtain transitions similar to those of Benjamin by energy considerations.

For solid body rotation, they obtain the criticality condition that
v/w = V2.

Hall, M. G., "The Structure of Concentrated Vortex Cores," in Progress in
Aeronautical Sciences, Vol. 7, D. Kuchemann, ed., Pergamon Press, pp. 53-
110, 1966b.

Landahl, M. T. and Widnall, S. E., "Vortex Control," M.I.T., supported by the
Air Force Office of Scientific Research under Contract Nos. AF 49(638{-
1622 and F44620-69-C-0009, in Olsen, Goldburg & Rogers, 1971.

Bargi]on. A., "Vortex Decay above a Stationary Boundary," JFM, 27, pp. 155-
75, 1967,
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| CONTINUOUS SLENDER-BODY MODELS
i Method of Legendre (I)

One of the earliest works on a mathematical formulation of the
leading-edge vortex sheet problem was proposed by Legendre (1952). He
considers the simple case of an infinite, conical flat plate delta wing,
strongly swept, Mach number near one, at incidences of approximately 10
degrees. The flow outside of the wing and the vortex sheets emanating from
the leading edges is considered irrotational. He neglects the effect of
viscosity except at the leading edge where he applies the Joukowsky
condition, reasoning that there is only an arbitrary distinction between

: the leading and trailing edges when the edges are sufficiently sharp so
¢ that the flow separates. As a result of these simplifications and restric-

tions, he is able to obtain a rough approximation for the separated flow
field on a delta wing. He admits that the restrictions are considerable
and not particularly applicable to the real practical problem -- sharp
leading edges, and infinitesimal aspect ratio. However, it appears to be
an improvement over R. T. Jones (1946) attached flow model when the flow
separates at moderate angles of attack. As a result of the simplifications,
1 the velocity can be divided into a uniform free stream and perturbation velo- ]
city and the governing equation becomes lLanlace's equation in the cross-flow :
plane. This is a result of slender body theory (SBT).

Legendre comments that the SBT assumptions of small perturbations
E of the velocity are violated near the leading-edge vortex cores where the ;
velocity goes to infinity as 1/r. He cites justifications for proceeding
in light of this violation to the basic assumption. First, he claims that
the error introduced should be local and should not affect global results,
citing the analogous condition at the leading edge for the attached flow
model of Jones, where the velocity goes to infinity as 1/r]/2.
also notes that the use of point singularities is only a mathematical

Secondly, he

: artifice and in reality the velocity does not apprzach infinity, although
it does become several factors larger than the free s rcam near the core. :

He suggests ihat the point singularities could be replaced by viscous regions

~egendre, R., "Ccoulement au voisinaje de la pointe avant d'une aile 2 ‘orte
fleche wux incidences moyennes," Recherche Aeronautique, No. 30, 3-¢,

]' 'J:.'.
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of finite dimensions to alleviate this violation of the assumptions, if
necessary. These regions, of course, would not satisfy Laplace's equation,
Only the region outside of the vortices would be considered as the region
of interest. More importantly, the conformal transformation of such shapes
would further complicate the problem. The actual formulation of Legendre
follows.

With the above assumptions, the continuity equation becomes the

governing equation and for the perturbation velocity potential takes the
farm

2 .
(- M) gy + oy, + 0, =0 (51)

For "slender" wings near Mach number = 1,
(1-M2) ¢ <o 0 (52)
XX yy' "2z
and the governing equation becomes Laplace's equation in two dimensions.

Oy * 022 = 0 (53)

Thus ¢ is a harmonic function. For conical flow
o = RIxF, (n)] (54)

where F] is an analytic function of n = 5—%—11 » where b = local semispan =

« cot A. He separates out a free stream component
Fy = U cosa + U sina coth F(n) (55)

For moderate incidences at which leading-edge separation occurs
and the linearization of the velocity is still valid, he models the flow by
placing two isolated vortices above the wing [see Figure 9]. Since the
flow is conical, the strength of the vortices grows linearly with x, and
as a result, Helmholtz' theorem of conservation of circulation is violated.
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i Thus, the model cannot be rigorously justified, but it does seem to be
# more accurate than the Jones attached flow model.
The ~-plane is difficult to use since image vortices are required

] in the slit representing the wing to satisfy the no-flow condition through
I the wing, Therefore, Legendre suggests making a conformal transforration

to the S-plane or the z-plane.
2=1+n2or2n=5-1/S (56)

In the S-plane, the potential becomes
(S - S,)(s - 1/5.)

- — (57)
(S = SIS - 1/5,)

2F=S+1/S+%-Y-1n

where So is the location of the point vortex in the upper right hand quadrant
and y is the intensity of that vortex. The () stands for the complex
conjugate of the quantity in question. The Joukowsky condition of finite
velocity at the wing tips furnishes one equation for the three unknowns,

vy and the real and imaginary parts of So' The remaining two equations used
by Legendre are that the cross-flow velocity is zero at So so that there
are no forces on the point vortices, in the y and z directions. With these
three equations, Legendre obtains a CL curve after calculating the pressure
distribution on the wing [See Figure 10]. The 1ift is a fairly complicated
function of X and «. For small angles of attack, the 1ift is negative and
remains less than the attached flow 1ift (CL = %-/R sin a) for angles of
attack less than about 10°, Eventually, the 1ift for the Legendre model
exceeds that for the attached flow model; this occurs at lower angles of
attack for the lower aspect ratios. Legendre concludes that this model
is not valid at low angles of attack where the flow remains attached.
This rodel is primarily of historical interest and it has since been
supplanted.

Later, Legendre (1953b) revises this method upon the instigation

Legerdre, “., "Ecoulement au voisinage de la poninte avant d'une aile a forte

fleche aux incidences moyennes,” Recherche Aeronautique, No. 35, pp. 7-8,
HOTS A
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of Mac C. Adams (1953). In his first work, he notes that he had implicitly
assumed a cut joining the two vortices. However, Adams noted that as a
result the 1ift was multivalued, since the region was no longer simply
connected. In the second form, Legendre includes a cut between the vortices
and their respective leading edges to roughly account for the feeding sheets.
However, this formulation allows a pressure difference across the sheet, and
the force on the wing depends on whether or not one calculates the pressure
force on the wing, or whether one takes a contour integral around the wing-
vortex combination.

Method of Brown and Michael

Edwards (1954) and later Brown and Michael (1954, 1955) further
pursue this slender body model of conical flow for the delta wina. Edwards
and Brown and Michael both include a no-force condition on the vortex-cut
combination so that the 1ift is single-valued and the pressure distribution

on the wing gives the same result as the contour integration for the momentum
flux. Edwards furnishes the small angle of attack result

1/3 0‘5/3 (58)

C =7 Ra+r(R)
where the first term is identical to that of the slender body theory of
Jones and the second term is the additional term due to the leading-edge
vortices. Brown and Michael (1954) note that Jones' result was obtained
using a special irrotational flow pattern; since, by Kelvin's theorem, the
irrotational flow yields the least kinetic energy and hence the least appa-
rent mass, where L = aUzm' (m' = apparent mass of the two-dimensional flow
at the trailing edge), they conclude that the 1ift in all other cases must
always be greater than that computed by Jones. Since Brown and Michael
formulated it in much more detail in their publications, their derivation

Edwards, R. H., "Leading-Edge Separation from Delta Wings," JAS, 21, pp. 134-
135, Feb. 1954.

Brown, C. E. and Michael, W. H., "Effect of Leading-Edge Separation on the
Lift of a Delta Wing," JAS, 21, No. 10, pp. 690-694, Oct. 1954,

Brown. C. E. and Michael, W. H., "On Slender Delta Wings with Leadinq-Edge
Separation," NACA TN 3430, 1955.
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shall be followed here, although the results of Edwards are identical to
those of Brown and Michael.
They make the standard slender body assumption of Jones and

obtain

dyy * %22 " 0 (59) ]

as the governing equation, They use the coordinate system shown in Figure
11, where they approximate the flow by two point vortices above a flat plate.

As with Legendre (1952), there are three unknowns here, the loca-
tion of the vortices and their strength, The three equations used by Brown 1
and Michael are the no-force condition on the vortex-cut combination on
each side and the Joukowsky condition at the leading edge.

The vortices are connected to the leading edges by cuts across
which a pressure jump exists. The vector force on the sheet due to this
pressure discontinuity is given by

io0[34 s, - b) (60)

The force on the vortex is -pv*y where v* is the net velocity at Tye Since
the flow is assumed conical, the vortex strength increases linearly and thus
the circulation is given by

=y (61)

The zero net-force condition requires that

U(o. - b
P T (62)

By using the transformation 6 = /02 i b2 , 1t is easy to satisfy the no-flow

consideration on the plate and obtain in the 8-plane [see Figure 11] the
potential
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W(z) = 2 n it iU
=) = =t = 49 (63)
(7 + 90)

In the %~-plane, a stagnation point at 5 = 0 corresponds to the Joukowsky
condition since this is a singular point of the transformation. This gives
the third relation and one obtains

~ ~

1 (: 2 _ z
z (02 - b%) #/0% - b* /G2 - b2 /(3Z - b*)(a] - b)

[of 2
-0 4 b =ulp 2] (64)
c; - b* H co(c; - b?) N

where the real and imaginary parts furnish two equations for the real and

imaginary parts of % which give the locations of the vortices. vy may be

eliminated by the Joukowsky condition, to get the solution in terms of the
aspect ratio and angle of attack.

Yy = 2nUu/[ - ! ! ] (65)

+
/ol -a? /5 - at
) 0

Brown and ifichael calculate the 1ift by computing the flow of momentum at
the trailing edge through a contour including the wing. Thus,

-
Il

= - oUff(e, - Ua) dzdy

- ol j s dy (66)
C

2ye eo + 8
¢ =T

where € = semiapex angle, AR Y 4c, and to the lowest 2 orders, this

2 + 2mace (67)

b

corresponds to the result of Edwards.

Several problems occur with this type of formulation. First,
even at relatively low Mach numbers, Brown and Michael note that the
absolute pressure can be negative (unphysical) at moderate angles of attack
[see Figure 12]. For example, the pressure becomes neqative for 75" sween
at approximately 12° angle of attack for a Mach number of 1. ihis is due
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to the fact that the velocity becomes infinite at the point vortices. As

a result, this violates the condition of linearized velocity. Secondly,,
Brown and Michael comment that they did not consider the possitility of more
than one pair of stationary vortices. That is, they neglect to consider the
possibility of secondary vortices. The basic model also allows a oressure
discontinuity across the model of the sheet as well as allowing normal
velocities across the sheet. As a result, Bryson (1959) argues there is a
resulting moment even though the force is zero on each vortex sheet, although
over the entire flow, the left and right symmetry causes this to vanish.
Furthermore, the assumption that (1 - '*42)¢xx is small is violated by experi-
mental results, where there are large axial velocities. Thus, the flow near
the point vortices cannot hope to be well-represented. Finally, in the real
flow, both the vortex sheet and the end of the spiral should be located on
stream surfaces, and they should be force-free at every point instead of
being globally so.

Thus, comparison with experiment cannot be perfect. Elle (1958)
compares the theory with his experimental results and finds the vortex cores
are actually farther inboard than predicted by Brown and Michael. Also,
the experimental 1ift is always less than the theoretical prediction. He
concludes that from his analysis that the "concept of a discrete vortex with
a feeding sheet is basically sound," but the assumed model of the flow pattern
is not suitable and must be replaced by another one.

The primary value of this theory of Brown and Michael is not its
correctness or completeness, but its simplicity. For example, one can
consider the case of secondary separation. Even early'experiments. Peckham
(1958) and Earnshaw and Lawford (1966), indicate the presence of secondary
vortices as well as the primary vortices. Bergeson and Porter (1960) report

Bryson, A. E., "Symmetric Vortex Separation on Circular Cylinders and Cones,"
Journ. of Applied Mech., pp. 643-648, Dec. 1959.

Peckham, D. H., "Low Speed Wind Tunnel Tests on a Series of Uncambered
Slender Pointed Wings with Sharp Edges," ARC R&M 3186, 1958.

Earnshaw, P. B. and Lawford, J. A., "Low-Speed Wind-Tunnel Experiments on
a Series of Sharp-tdged Delta Wings," ARC R&M 3424, 1966.
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that the strength of the secondary vortices relative to that of the primary
vortices is not negligible. Hence, they conclude, no mathematical treatment
which fails to include the effect of secondary vortices on the flow field

can accirately predict the 1ift curve. Smith (1966a) says he tried unsuccess-
fully to include the presence of the secondary vortices in a Brown-and-
Michael-type model. He does not present details of his attempt there. The
governing equations would seem to be the same as before. One would have
three additional unknowns which determine the location and strength of the
secondary vortices. One needs to specify three additional boundary conditions,
as a result, to determine these unknowns. One would probably have to resort
to a boundary layer argument to find the separation point induced on the wing
for the pressure distribution given by the primary vortex, using the Brown

and Michael model for simplicity. The no-force condition on the secondary
vortex-cut configuration would be similar to the one for the primary vortex.
Now, one would have six equations far six unknowns. [t would help to perform
such a calculation as it would help answer the question concerning the
importance of secondary separation on the entire flow field.

Nangia and Hancock (1968) attempt to include the trailing edge
effect by incorporating the shed vorticity into the Brown and Michael model
with the more standard 1ifting surface theory using bound and trailing vorti-
city to describe the planform and two isolated vortices to describe the
leading-edge vortices, which are joined to the leading edges by cuts. The
model is no longer conical. The Joukowsky condition at the trailing edge
is satisfied by a collocation method, and the problem is solved by an
iterative procedure.

This model no longer requires a center of pressure at the 2/3
chord point, and for the delta wing considered (angle of attack = .25 radians,
aspect ratio = 1), they obtain the center of pressure at .6 chord, compared
to then unpublished experimental results which placed it at .61 chord. They

Smith, J. H. B., "Improved Caiculations of Leading-Edge Separation from
Slender Delta Wings," RAE TR 66070, March 1966a.

Nangia, R. and Hancock, G. J., "A Theoretical Investigation for Delta Wings
with Leading-Edge Separation at Low Speeds," ARC CP No. 10486, 1968.
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do menticn that the question which needs recognizing before proceeding
further is whether it is worthwhile to incorporate large expenses in utiliz-
ing large amounts of computer time when the results will still contain the
inherent faults of the Brown and Michael method.

Portnoy and Russell (1971) consider another extension and add
rhombic thickness to the Brown and Michael model using a conformal trans-
formation. Their results show a decrease in 1ift and the outboard trend
as the thickness increases, but their results for the vertical displacement
are inconclusive.

A final example is provided by Smith (1957), who considers curved
leading edges. Applying the conical model at the apex and then using slender
body theory to march from the apex downstream, he applies the Brown and
Michael no-force condition to each vortex location and obtains vortex core
locations which follow the leading edge fairly well.

Another important use of the Brown and Michael method is for
initial approximations for iterative procedures. For example, Pullin (1973)
uses the Brown and Michael scheme to provide the initial configuration for
a more sophisticated model considered later.

Method of Mangler and Smith
In an effort to improve the agreement between experiment and theory,
Mangler and Smith (1957) propose a slightly different model. They consider
a rough approximation of the vortex sheet in the cross-flow plane, as well
as the concentrated vortex core. Again they assume a conical, slender flow

Portnoy, H. and Russell, S. C., "The Effect of Small Conical Thickness
Distributions on the Separated Flow past Slender Delta Wings," ARC
CP1189, 1971.

Smith, J. H. B., "A Theory of the Separated Flow from the Curved Leading Edge
of a Slender Wing," ARC R&M No. 3116, Nov. 1957.

Pullin, b. I., "A Method for Calculating Inviscid Separated Flow about Conical
Slender Bodies," ARL/A14, Australian Defense Scientific Service, Rep. 140,
May 1973.

Mangler, K. %W. and Snith, J. H. B., "Calculation of the Flow past Slender
Delta Wings with Leading Edqge Separation," RAE Rep. Aero. 2593, May 1957,
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and obtain the two-dimensional Laplacian as the qoverning equation.
Since they now attempt to represent the outer part of the sheet, near
the leading edge, the following notation must be considered [see Figure
13].

The boundary conditions are given as follows. Far from the body
o = u, ¢, =al. On the surface of the body or on a vortex sheet, the
normal velocity vanishes. If the equation of the surface is

S=r - bF(8) (68)

where b = Kx = x tan ¢; ¢ = semiapex angle, the normal velocity condition
becomes

¢, = -(KU/b)rsine (69)

The condition that the vortex sheet cannot support a pressure difference
becomes

bé
86 = ad(rr - =) (70)
KU

where (') indicates differentiation along the arc, o, where A is the
difference of the value across the vortex sheet and ¢om is the mean value
of ¢, across the sheet.

Arguing that the vortex sheet nearest the wing will have the
greatest effect on the wing loading, they approximate the rolled up sheet
by the approximation shown in Figure 14, where the inner part of the
spiral has been replaced by an isolated vortex located at point D which
contains all of the vorticity inside the circle of radius R.

The derivation for this is fairly involved and is summarized
below. By a geometrical asymptotic derivation, Mangler and Smith (1959)
relate the distance to a point on the spiral to its relative anglie and

Mangler, K. W. and Smith, J. H. B., "A Theory of Fiow past a Slender
Delta Wing with Leading Edge Separation," Proc. Roy. Soc. London,
Ser. A, 251, p. 200, 1959.
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the location of its center. For large angle By f.e., many turns of the
spiral, they obtain the relation for the spiral radius as a function of
3 as

r= aue;m + higher order terms (m > 0) (n)

where u, m characterize the spiral. By applying boundary conditions of the
fact that the sheet is a stream surface and supports no oressure difference,
they derive two equations. By applying various lowest order approximations,
continuity equation, geometric construction, and equating the coefficients
of the resulting equalities, they obtain the flow characteristics in the in-
ner part of the spiral. The effect of the vorticity in the small circle on
the remainder of the flow field is shown to be the same as that from an
jsolated vortex of strength A = 2mukU %-R at its center (see Figure 14 for
notation), as they produce the same velocity on the boundary and have the
same total circulation. Their calculations also specify the strength of

the vortex sheet where it is tangent to the small circle. These calcula-
tions also specify some of the boundary conditions applied at the point
vortex to calculate the flow field.

There is a cut similar to the one employed by Brown and Michael
between the point C, the point of the sheet tangent to the circle at point
0, and the point D. However, due to the relative shortness of this cut,
the forces should be reduced.

To simplify the normal condition on the flat plate, they make
use of the standard transformation [see Figure 15].

- b? (72)

Mangler and Smith assume that R is sufficiently small that the circle of
radius R can be considered to transform into a circle of radius R*. As
before, the point Z* = 0 becomes a stagnation point to satisfy the Joukowsky
condition. The nther boundary conditions become

* .
iy -%!<r* sin ¢ (73)
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Ab = -n('-;-,)z (2 - r* cos 2 178}

where
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~
o

Y

Y= - oy ()

To find an approximate configuration, they introduce a finite set
of parameters to define the sheet shape and strength. Then the boundary
conditions are satisfied at a finite number of points to find the unknown
parameters. The parametrization chosen first is the following. The curve
in the Z-plane is assumed to be defined by a circular arc of radius s and
length 2r] &. For the function v*, the following is chosen

* - - v, €in © (
Y Y, * Y, €0s 8 vy sin g] (76)

The systen depends on the seven parameters, ¢, F1s Ty = R*, Yor Yps (40 and
u, where u characterizes the strength of the isolated vortex. The seven
conditions to determine the unknowns are
1) By symmetry, y* = 0 at A*,
2) y* must equal EEEQ R '%%7 at C* to match the isolated vortex properly.
3) A* must be a stagnation point.
4) The nonsingular part of the velocity at D must be 5%1 along OD. This
likewise follows from the representation of the tip of the vortex sheet and
provides two conditions.
5) The normal velocity condition is applied at B*, midpoint of A*C*.
6a) The pressure condition is applied at A*, or
6b) The pressure condition is applied at B*.

They neglect the forces on the cut from D to C at times and at

other times, they use the method of Brown and Michael to eliminate this force.

However, this shall not be considered further as it dces not greatly affect
the form of the solution.
The actual mathematical formulation for these boundary conditions

is given in their Appendix. The equations are nonlinear and simple expressions

cannot be written down for the location of the vortex sheets and the vortices
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as a function of angle of attack and aspect ratio. Because of this non-
Tinearity of quadratic equations, they consider the possibility -4 2o.ble
roots. They note that there is little difficulty in choosing the correct
root on the basis of the fact that the vorticity and the angle of attack
must be positive., They end up solving simultaneously a pair of nonlinear
equations by an interpolation method.

Once these equations are solved, all of the unknowns can be calcu-
lated for the flow field. The pressure distribution is obtained from
Bernoulli's equation while the normal force coefficient can be obtained
in either of two ways. First, they integrate the pressure over the entire
wing. Alternately, they use a momentum integral in the plane at the trail-
ing edge of the wing [see Figure 16]. The results are slightly different
since the first method only considers the forces on the wing, while the
latter method includes the forces on the sheet-source system as well. The
force is not identically equal to zero on the sheet-vortex system, since
the no-pressure and normal flow condition are only satisfied at one point.
There are some differences, therefore, between the various methods used to
calculate the shape of the sheet. These depend on the location of the point
at which the pressure condition is satisfied and whether a no-net force
condition is applied to the vortex only or to the vortex-cut combination.
However, all four rosults are grouped near a 1ine corresponding to the choice
of pressure satisfied at the leading edge of the wing and the use of the
Brown and Michael no-force condition. An attempt is made to curve fit the
line for moderate values of u/K which turns out to be the crucial parameter
in their calculations. They obtain

Cy=F Ra+da’ for 3 < 1.6 (77)

where the choice of constants is probably guided by experience, i.e., note
that the first term gives the slender body 1imit of Jones. Again, as in the
case of Brown and Michael, the force is always agreater than the R. T. Jones
case, unlike Legendre's early model. They also give the representatinn of
the vortex core and the sheet shape [see Figure 17]. Their result: sre in
better agreement with experiment than those of Brown and Michael, but it
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still leaves the question of justified assumptions unanswered. They note
that unlike Jones' attached flow model, there is vorticity of the szz:site
sense in the trailing edge vorticity. See the following Table fro~ “2nzler
and Smith (1957).

Table 1. Vorticity Origin
Origin and Sense

of Vorticity 2.5 1.0 .5 .25 Jones
Leading Edge 86% 76% 57% 57% %
T. E. Normal Sense 1 1 6 15 100
T. E. Opposite Sense 13 23 37 28 0

After Mangler and Smith complete their calculations, they check
their assumptions. They check the error in the normal velocity and pressure
on the sheet due to the different treatments for the circle containing the
core region and the circular arc representing the sheet; there is a loga-
rithmic singularity in the normal velocity at the junction of the two models,
no matter how far the model of the sheet is extended. This occurs wherever
the sheet is terminated. Roy (1957) has suggested in a similar problem that
a finite core of vorticity be used to replace the end ot the spiral sheet
in order to limit the velocity. Mangler and Smith suggest that this singu-
larity may be acceptable, so they do not suggest any means of alleviating
this problem, although they do attempt to justify its existence. The
pressure difference on the sheet is also given and is always less than .8
of the wing center Tine pressure difference. The difference is far less than
this on the average.

They state that the similarity of the 1ift forces for the various
calculations indicate that representing the core by an isolated vortex is
not a serious modification. Although the proportion of total vorticity on
the sheet is small for small ratios of a/K and only rises to about 20% for
a/K = 1, it is important because it occurs closer to the leading edge than

Roy, M., "Sur la Theorie de 1'aile en delta: Tourbillons d'apex et nappes
en cornet," Recherche Aeronautique, No. 56, pp. 3-12, Feb. 1957.
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that of tne isolated vortex. This is borne out by their better agreement
with experiment than Brown and Michael. At large u/K, there is increasing
divergence between theory and experiment. At the same time, there is
considerable scatter in the data. Part of the scatter in the data can be
explained by the fact that different methods were used to calculate the
normal force and different cross-sectional models were employed, different
amounts of wind tunnel wall effects were included, and different Reynolds
numbers were encountered in the experiments. Mangler and Smith suggest
that the discrepancy between experiment and theory can be possibly explained
by the presence of secondary vortices. This would reduce the pressure
peaks and consequently, the 1ift, giving better agreement with experiment.
They do not consider viscous effects as a possible culprit and do not
include Reynolds numbers with the experimental data that they present.

Method of Smith

Due to the limitations of the preceding model and the advent of
greater computing power, Smith (1966a, 1968) later proposed a better repre-
sentation of the leading-edge vortex sheet. The problem is formulated in
the same manner as the earlier Mangler and Smith problem except when it comes
to representing the outer part of the spiral sheet [see Figure 18]. The
unknowns chosen are the polar distances of the sheet segments, the values
representing the sheet strength, and the strength of the isolated vortex and
its two coordinates which furnishes 2n + 3 unknowns.

To solve for these unknowns, he chooses the following set of equa-
tions. The Kutta-Joukowsky condition of finite velocity at the leading edge,
the no-force condition for the vortex-cut combination, the no-pressure dif-
ference condition across the sheet, and the conical normal velocity condi-
tion on the sheet, which is equivalent to the stream surface condition of
the three-dimensional flow, are employed. Since the pressure condition
is nonlinear, Smith does not try to solve the equations explicitly for the

Smith, J. H. B., "Improved Calculations of Leading-Edge Separation from
Slender Delta Winas," RAE TR 66070, March 1966a.

Smith, J. H. B., "Improved Calculations of Leading-Edge Separation from
Slender, Thin Delta Wings," Proc. Roy. Soc., Ser. A, 306, pp. 67-90,
1968,
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] shape and strength of the sheet. Rather he uses an iterative approach.
From a known solution, either from a simpler model or a nearby condition,
he adjusts the shape and the strength of the vortex sheet to sa.isfy the
governing equations. The nonlinear pressure condition is hand,ed by the
method of steepest descent, which has the difficulty, that the mathematical
region near the solution is fairly oblate and convergence is conseguently
slow. From the dimensionless form of the equations, it is found that the
quantity characterizing the flow field is a = a/K. Also, one must specify !
the extent of the sheet shape, since this cutoff is arbitrary. Also, one

has to furnish tolerances of what constitutes a satisfactory solution and

one must finally furnish that initial quess to represent the leading-edge
sheet. In order to justify the different treatment of the inner and outer
regions of the spiral sheet, Smith (1968) examines the effect of changing the
extent of tne sheet,

L LY T — T P

Table 2. Effect of Sheet

e
R

Circulation
Sheet
Source emax y/b z/b Total Fraction Lift
Brown & Michael (1954) 0 .871 220 4.45 0 11.22
Smith {1968) 157° 722 225 4.22 .23 9.93
Smith (1968) 517° .744 215 4.22 .47 9.88
Smith (1968) 877° .738 227 4.22 .60 9.87
Mangler & Smith (1959) 157¢ .803 A7 3.77 .19 9.12

Thus, the importance of correctly representing the outer sheet is seen.
Compared to the Brown and Michael model, the new vortex position is 13% of
the semispan further inboard, the overall circulation is 5% lower and the
1ift is 12% lower. There are also discrepancies with the Mangler and Smith
model even when identical sheet extents (emax = 157°) are compared. This ?
may either be due to the application of the pressure and the normal velocity :
conditions at only one point or may be due to the fact that the sheet was 1
poorly approximated by a circular arc in the transformed plane, or that the !
sheet strength was inadequately specified by three constants. For the 1
different extents, the sheet shapes are compared [see Figure 19] and there ;

o
.,

\'.
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is little discrepancy between the results and he suggests that even the
shortest sheet extent is probably adequate while there is little justifica-
tion for carrying the calculation further than the intarmediate value.

Noting that there is an infinite singularity at the end of the
sheet, he says that the shape of the sheet is relatively independent of the
extent of the sheet, since even when this singularity is not alleviated,
the sheet shapes for the various extents are closely similar. This implies
that although there was some question earlier about the singularity, it
does not appear to be responsible for the difficulty.

Smith compares his sheet shape with the asymptotic results of
Mangler and Weber (1965) [see Figure 20]. He also plots the sheet strength
Qég versus the arc length and obtains the following solution in the physical
plane which shows remarkable agreement to the asymptotic solution of Mangler
and Weber for large 6 [see Figure 20]. Although the analysis would seem to
be most valid as a = o/K tends towards zero, as it is a perturbation solution,
Smith does not carry out the problem for a less than .20. This is due to a
variety of reasons which he considers.

1) The calculations took longer as a was reduced.

2) The sheet shape developed an inflection point suggesting a larger value
of 8 ax:

3) The agreement between theory and experiment was poor.

The first conditior may be the result of the closeness of the isolated vortex
to the wing for small a. Smith tried to alleviate the second problem by
extending the sheet, but the sheet came close to crossing itself near the
end, which would have been unphysical, so he discontinued that approach.
Finally, the third problem could be due to the failure of the physical model.
For small a, the curvature at the leading edge may become important and the :
flow may not be fully separated, or may not separate at exiactly the leading
edge. Also, the boundary layer thickness becomes Targer with respect to the
height of the isolated vortex above the wing, and here the model would be

inadequate.
As before, the 1ift may be calculated by two different methods.
Either the pressure on the wing may be integrated over the surface or a

momentunm analysis can be used at the "trailing edge". Since the pressure

3
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condition is satisfied at only a finite number of points, there are discre-
pancies between the two methods, which should disappear as the number of
points per arc length are increased. After plotting the curve of the normal
force coefficient versus the parameter a, Smith obtains the curve fit for
.25 <a<2.5

Gy=F Ra+32 (&)° (78)
which may be compared to the Brown and Michael solution of
Cy=F Ra+ a3 (79)

Finally, one must compare this result with experiment to discover if it can
be justified. Before this can be done, a few notes must be made to partially
explain the discrepancy between experimental models.

1) Wind tunnel corrections should be considered; at high angles of attack
and for larger aspect ratios, wind tunnel effects become important but are
often neglected.

2) Reynolds number affects the boundary layer transition. For example,

when Earnshaw (1961) induced turbulence by roughening the wing, this resulted
in the vortex core moving outward and upward. Also, Smith notes an intensi-
fication of the suction peak after the transition.

3) Furthermore, Smith considers the effect of wing thickness, since it is
impossible to build a flat plate delta wing without thickness, due to struc-
tural reasons. On a thick wing, the vortex tends to be higher up and further
outboard than on a thin wing.

4) One must consider the effect of the trailing edge on the nonconicality

of the subsonic flow which is often used for these experiments. Experimental
agreement would probably be most satisfying if the 1ift were obtained by
integrating the pressure (assumed conical) at a chordwise station sufficiently
far from the trailing edge. As the trailing edge is approached, the vortex
moves higher and further inboard, while the pressure difference falls to zero.
5) The Reynolds number also affects the boundary layer thickness. Smith
suggests the possibility that at low Reynolds numbers, the vortex would be
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-.rtner inboard and higher due to the boundary layer displacement effect.
Thus, it was concluded that the size of the vortex model was well

Jescribed by the theoretical model of Smith and that its shape differs in

a manner closely related to the lateral displacement of its core from the

calculated position of the isolated vortex. This is confirmed by plots of
the low pressure region and by flow visualization techniques. Due to the
displacement of the isolated vortices due to the boundary layer effects, the
model is less successful in predicting the size and shape of the suction
peak beneath the vortex on the wing. There is a definite difference between
experimental resuits for laminar and turbulent secondary separation and it
is impossible for an inviscid theory to adequately model both phenomena.

The disagreement between experiment and theory is especially severe at low
a, where the boundary layer displacement thickness becomes noticeable with
respect to the height of the isolated vortex abave the wing. The measure-
ments of the integrated pressure -- sectional 1ift -- appear adequate for the
approximately conical flow. The agreement between theory and experiment is
everywhere reasonable and seems to justify the use of slender body theory.
Most of the remaining discrepancy seems to be explained in terms of Reynolds
number effects rather than in terms of high axial velocity gradients that
would invalidate the theory.

Pullin (1973) formulates the problem for the flat plate delta wing
in a manner similar to Smith. However, he departs in the method of numerical
treatment of the governing integro-differential equation. While Smith uses
a more or less trial and error procedure for finding the solution, Pullin
obtains a gradient matrix with respect to the 2N + 3 variables describing
the outer sheet and the isolated vortex in terms of the governing equations.
The formulation is slightly different and one must specify the per cent of
vorticity in the sheet, instead of the extent of the sheet.

Pullin, D. I., "A Method for Calculating Inviscia Separated Flow about
Conical Slender Bodies," ARL/A14, Australian Defense Scientific Service,
Rep. 140, May 1973.
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The problem becomes one of the following 2N + 3 unknowns

Position of the vortex sheet 2N
Position of the isolated vortex 2
Overall Vorticity 1

The 2N + 3 equations are

Joukowsky condition

The no-force condition on the cut-vortex

The tangency condition on the sheet

The pressure condition on the sheet N
Instead of considering the strength of the sheet at isnlated points as
unknowns, he allows the vortex sheet two degrees of freedom and allows the
vorticity to be distributed according to an initial guess. Smith, on the
other hand, assumes an angular distribution and left the radial distance of
the sheet and the strength at those points as the 2N unknowns. Instead,
following the early work of Legendre (1953a), Pullin assumes that the
sheet strength to be a dummy variable of integration. Smith had previously
shown that the sheet strength A was a monotonic function of the angular
extent of arc length, so this is justified.

One other comment is noteworthy. Using the Biot-Savart Law for
calculating the induced velocity, one obtains an integral of the form of a
Cauchy-Principal Value. Both Smith and Pullin linearize the integrand near
that point and consequently simply neglect the singularity.

Since Pullin's analysis is based on an iterative method, albeit
more rational than Smith's, it requires an initial approximation. Pullin
obtains an initial approximation by using Brown and Michael's no sheet solu-
tion for one control point. Then, this solution is used to furnish an initial
approximation for the two-control point problem, etc., until the desired
number of control points is obtained. Since this method will produce an
approximate solution and not an exact one, it is necessary to determine when

2 N~

Legendre, R., "Ecoulement au voisinage de 1a pointe avant d'une aile a forte
fléche aux incidences moyennes," Recherche Aeronautique, No. 31, pp. 3-6,
1953a.
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wnen a sufficiently accurate solution is found. Pullin uses two parameters

L0 describe the convergence of the method. First, he uses the mean error of
tne unknowns in satisfying the governing difference equations, and secondly,
the modulus of the total force acting on the cut-vortex system for that
approximation. After formulating the problem, Pullin goes on to calculate
some examples for both the flat plate and the flat plate-circular cone
problem. For 45% of the vorticity in the outer sheet, the Newton-Raphson
scheme for N = 20 breaks down (fails to converge) for a = .5. For only 20%
of the vorticity in the sheet and M = 10, Pullin was able to obtain solutions
for a down to .2. This is similar to the difficulty encountered by Smith.
Pullin suggests that the problem may be due to ths behavior of the stronaly
nonlinear finite difference equations, since the onset of divergence occurs
quite suddenly; near the point of breakdown, there is no appreciable increase
in the time required for the computation. Physically, this is no explanation;
however, as previously noted, this type of formulation is not very applicable
for small a, and, consequently, it is probably not worth too much additional
effort to clarify this difficulty. However, if it were to turn out to be a
manifestation of the nonlinear behavior of the equation, this may indicate
the need for a greater understanding of the governing equation. The question
of existence, uniqueness and stability of the solution are of primary considera-
tion if one is to have faith in the results. He compares his solutions with
Smith for a comparable number of points and the agreement between the two is
reasonable as it should be. He furthermore compares his method with Sacks'
(1967) method employing finite elementary vortices [see Figure 21]. The outer
sheet shzpe is approximately given and the overall 1ift is in good agreement.
The vortex sheet is further outboard for Sacks' representation. However,

the position of the vortex core is outboard and lower for Sacks' method.

This can possibly be attributable to the fact that different criteria have
been used to determine the vortex core position. Smith and Pullin use the

Sacks, A. H., Lundberg, R. and Hanson, C., "A Theoretical Investigation of
the Aerodynamics of Slender Wing-Body Combinations Exhibiting Leading-
Edge Separation," NASA CR-719, 1967.
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the position of the isolated vortex to mark the vortex core location. This
is justified since this position appears to be relatively independent of
the sheet extent for the extent of 517 of the rolled-up sheet.

Sacks et al, on the other hand, use a center of gravity [see
Figure 21] calculation to calculate the location of the vortex center.
Although they do not go into detail of how they calculate the vortex center,

its location would differ depending on what extent of the outer sheet they
include in the center of gravity calculation. Inclusion of the outer part
of the sheet near the leading edge would mean that one would obtain a
center of gravity position which is lower and farther outboard. Possibly,
a more reasonable way to locate the vortex core using the discrete vortex
model would be to search for some type of convergence by just using the
vortices outside the first 90° to 180° of the sheet. Since the shift of
the entire sheet and the core are in the same direction for the comparison
between the two methods, it is probable that they have already used such a
method. Also notable is the outboard displacement of Sacks' sheet shape.
This could possibly be accounted for by the suppression of vertical velo-
cities near the leading edge in Sacks' model or the handling of the Cauchy
Principal Value in Smith and Pullin models.

Included in Pullin's report is much of the computer program
necessary to obtain the solution for the problem. However, he leaves
several subroutines unspecified and not even all of the parameters are
defined.

Pullin (1973) says in lieu of the representation of the core by
an isolated vortex, he tried to incorporate one of the available asymptotic
solutions for the sheet structure in the core region into the vortex sheet
model in order to construct the sheet shape from an "inner" and "outer"
solution. This attempt failed due to the difficulty in properly formulating
the problem. He gives no additional details on this attempt.

Smith (1971) later extends his method to a body with a rhombic
cross-section by using a Schwarz-Christoffel transformation. With increasing

Smith, J. H. B., "Calculations of the Flow over Thick, Conical, Slender Wings
with Leading-Edge Separation,” ARC R&M 3694, March 1971,
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thickness, the vortex cores move upwards and outwards and the circulation
falls off accordingly. Experimental agreement decreases with increasing
thickness, possibly due to secondary separation, according to Smith,

Levinsky and Wei (1968) extend the results of Smith by usina a
more general conformal transformation to study conical wing-body combina-
tions, where strakes are used to fix the separation point. The basic
difference in their numerical approach is that of satisfying the force
balance condition on the vortex-cut; Smith uses a steepest descent method,
while Levinsky uses a procedure devised by Warner (1957).

For the problem of the cone with strakes, they find a multi-
valued 1ift for intermediate values of a/e. They suggest that the multi-
valued 1ift may be a result of their assumptions, such as neglecting second-
ary vortices, etc. Later, they publish with Maki [Levinsky, Wei, Maki
(1969)] a further development of this theory. They use the same system of
2N + 3 unknowns and governing equations as did Smith,

In the multi-valued region, three possible theoretical solutions
exist for the same a/e. A "weak" solution gives a weak vortex near the wing
tip, and progressively stronger solutions locate vortices farther from the
wing. In an accompanying discussion, Levinsky notes that for the case of the
conical body with small strakes, three different solutions appear to satisfy
all of the boundary conditions. In order to check this method, they used
the Brown and Michael approach and obtained the same result. They consider
it to be the consequence of the fact that there may be more than a single
solution to a set of nonlinear equations. An alternate possibility is the
lTocation of a false solution due to the nature of the problem and error
limit which "determines a solution." Examples of this type are often given

Levinsky, E. S. and Wei, M. H., "Nonlinear Lift and Pressure Distribution
of Slender Conical Bodies with Strakes at Low Speeds," NASA CR-1202, 1968.

Warner, F. J., "On the Solution of Jury' Problems with Many Degrees of Free-
dom," Math. Tables and Other Aids to Computation, 11, pp. 268-271, 1957.

Levinsky, E. S., Wei, M. H. and Maki, R. L., "Theoretical Studies nf Vortex
Flow on Slender Wing-Body Combinations,"” NASA Accession No. N70-21358,
also in NASA SP-228, pp. 113-129, 1969.

56

T o e e . L | B YT T




in books on computing techniques as possible pitfalls of numeriri! ~ethods,
The nonlinear theory is also extended by Levinsky, et 2%, “3 non-
conical transformations. The Joukowsky and the tangential flow conditions
remain unaltered while the remaining boundary conditions are no longer
algebraic as for the conical flow case. The same boundary conditions are
used, but their form is considerably more complex and is listed in this
reference. ]

Method of Legendre (11) :
Soon after Legendre proposed his original simplified model with

two isolated vortices, he (1953a) also formulated the problem for the

leading-edge vortex sheets. Again, making the same assumption about the

flow field, Legendre obtains the governing equation

2 B i

Instead of just point vortices, he now formulates the problem for sheets of
distributed vorticity. As before,

¢ = Re[x(U cosa + U sinu cotx F(n))] (81) :
E
where '
2 + iy
ns= (82)
X coth
; . 2 _ 2 3
Using the transformation ¢= =1 + n 1
A - ‘g - F
F=C-Jln—~—_-dc J — dc (83)
S AN 3 PR 3

Legendre, R., "Ecoulement au voisinage de la pointe avant d'une aile a forte
fleche aux incidences moyennes," Recherche Aeronautique, No. 21, pp. 3-6,
1953a.
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wnere “(c) determines the shape of the sheet and ¢ is proportional to the
intensity of the shed vorticity, which varies from 1 at the leading edge
to zero at the free end, where the Joukowsky condition has already been
applied to eliminate the vorticity constant.

To determine the location of the sheet, two additional conditions
are required. First, there is the condition that the pressure difference
across the sheet is zero.

F o F-

2¢ - ;ﬂ - ﬁﬂ.+ tana tan) [+ 1| =0 (84)
e e ne e

where subscripts refer to partial differentiation. Secondly, there is the
condition that the sheet is convected by the fluid, the so-called normal
velocity condition.

n

x X wione tana tand ¢ Alc) (85)
c Te n

After these conditions are applied, the governing equation becomes
1
r-] - Cf-’l ] -7 _] dc
c o (6 - ¢) E(5 -¢) (86)

o tano tani =
L
o &

Legendre suggests the following method for solving this equation. An initial
form for the sheet is chosen. This can, for example, be based on the flow
field for the model with two isolated vortices. The integral on the right
hand side is performed to give a first approximation for e Once this is
known, it can be integrated as a function of ¢ to obtain a second approxima-
tion for the shape of the sheet. This process can be jterated until the
solution converges to an acceptable degree. Legendre notes in 1953 that the
application of this method and its theoretical justification have yet to be
accomplished. In a later report, Legendre (1963) considered a slightly
different formulation of the same problem.

Legendre, R., "Tourbillons en cornet des ailes delta," C. R. Acad. Sci., 257,
pp. 3814-3817, Dec, 1963,
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Due to the violation of slender body theory at the core of the
axis for all flows ana specifizally for the case of the finite aspect ratio
wing, Roy (1966) and Legendre (1959, 1964, 1966) have considered the possi-
bility and form of a conical, incompressible, nonsiender flow field.

According to Mangler and Weber (1966), it was proven by Germain
that "the assumption of a wholly conical incompressible flow must lead to
tne existence of singularities outside the wing and the vortex sheet origin-
ating at the wing; as a consequence, the solution is not uniquely defined."
Legendre (1959) has explicitly demonstrated this. However, to obtain some
type of nonslender conical solution, Legendre (1966) assumes the potential
of the form

-~
"

Re{xf - inw) (87)

where

y + iz
el . A I 22 (88)
+ X

He attempts a derivation for the conical flow over a plane angular
sector, datermined by its edges at + Sy By assuming no singularities up-
stream, the singularities of f are at the location of the point vortices
and their images. Also, the imaginary part of f must be the imaginary part
of an eigensolution for the conical flow.

The eigensolutions are i, cos w = 1/2(z + %), sinw = - % (7 - %).

Roy, M., "On the Rolling-Up of the Conical Vortex Sheet above a Delta Wing,"
in grog[ess in Aeronautical Sciences, Vol. 7, D. Kiuchemann, ed., pp. 1-5,
1966.

Legendre, R., "Nappes en cornets aux bords d'attaque d'une aile en delta,"
Recherche Aeronautique, No. 70, pp. 3-10, May 1959.

Legendre, R., "Nappes de tourbillons en cornets," C. R. Acad. Sci., 258,
pp. 429-432, Jan. 1964.

Legendre, R., "Vortex Sheets Rolling-Up along Leading-Edges of Delta Wings,"
in Progress in Aeronautical Sciences, Vol. 7, D. Kuchemann, ed., pp. 7-33,
1966.

59

e il



TV S R

ep—

S I S b T e T ST R LI PO Y Y U IY O YT

Finally, G‘ =g, - igT must be tangent to the plate and to the axis of
symmetry, where = = 2 + i, and 5 = ftanht - 1f .

He builds the following set of functions which satisfy the above
restrictions.

fa = i(z +1/¢) In X -

4 t - t] oo t]
t-t, th -

fo = (¢ - 1/c) In|——x (89)
t-t tty -1

where t], E]. I/t], I/E] represent the locations of the vortex singularities
and

& =14nq (90)
CO

(t + 1/t) (91)

Nof —

n:

Due to the condition that the coefficient of In(t - t]) must be zero for
t = t], he obtains the linear combination for the solution

Ly + ¢ & - ¢
/e e S (92)
2 21

f=c+Dn+i(1 - c]c])f3-

where U is determined by the condition that f and fm are finite for ¢ = ¢t ¢

(o}
orn=20

D = i(ny - n]) (93)
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He then attempts to satisfy the Joukowsky condition at the leading edges,
f» finite for t = + i. This cannot be done for this example. He then

applies a global condition for the forces on the axis of the core, 3. = 9.
0 for ; = S1e He obtains for the position of the isolated vortices.'with

2_ =
p = ﬂ]ﬂ]

32(] + 02) ri] + ']'2 2 (3 + 732 + 8:4)
> ¢}

———————
=
—y
[}
g |
—
_
no
n
|—a

s
2t | Yve2fe2d | 2 ] P Gealenh
(94)

He plots the solution for this in Progress in Aeronautical Sciences [see
Figure 22].
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JISCRETE SLENDER-BODY MODELS
Findarentals

In this investigation of vortex sheet rgll-uz from the leading
edge and its effect on the near field, occasional reference will be ~ade to
wake roll-up analysis. However, this is not the pri~ary concern of the
paper. For more detailed information on the wake roll-up, see Spreiter
and Sacks (1951) and McMahon (1967).

Due to the difficulty in handling the general problem as described
in the preceding section, an alternate development has been followed by
others. This development concerns the replacement of the continuous vortex
sheet by discrete arrays of two-dimensional vortices. To put this method
in proper perspective, a little history will be presented before the actual
application is made to leading-edge separation.

Fundamental to the theory of discrete arrays is the list of the
invariants of the discrete vortex flow phenomena in an infinite medium where
there are no external forces and where the velocities go to zero at infinity
[e.g., see Batchelor (1967) for details].

The Center of Gravity nvariant:

Zriyi =y ZF,- (95)

121

Zl‘ixi = Eri (96)

The Moment of Inertia Invariant:

Spreiter, J. R. and Sacks, A, H., "The Rolling Up of the Trailing Vortex
Sheet and Its Effect on Downwash behind Wings," JAS, 18, p. 21-32, 1951.

McMahon, T. A., "Review of the Vortex Wake Rollup Problem," M.I.T. ASRL TR
145-1, June 1967.

Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge University
Press, 1967.
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Iryx; - 08+ (y, - 1) (97)

The Energy Invariant:

z 2 "2

-4% izj rirj log rij where rij = Y/ (xi - xj) + (yi = yj) (98)
1 ]

itj

These can also be given in integral form for continuous distributions of
vorticity., All methods considered are open to question, if these invariants
are not preserved,

Rosenhead (1931) was one of the first to use the discrete vortex
model; he studied the stability of an infinite two-dimensional vortex sheat.
Westwater (1935) used an array of two-dimensional line vortices to study the
deformation of the vortex sheet behind an elliptic wing. This was the first
attempt found to analytically describe the roll-up of the vortex sheet behind
a wing of finite span. Earlier, Kaden (1931) had considered the rolling up
of a semi-infinite wake, but his similarity solution was based on the fact
that there was no reference length. However, it is felt that the Kaden model
can model the initial roll-up when the radius of curvature of the sheet is
small compared to the span. Westwater suggests the use of the Kaden model
for the tip of his sheet even for large times.

To handle the three-dimensional problem, Westwater uses the simpli-
fication of treating the vortex sheet as consisting of an array of two-
dimensional vortices lying in a plane. This consists of neglecting the bound
vorticity and of considering the additional effect of the semi-infinite array
in the direction of upstream infinity to be negligible. Since the array has
been assumed flat initially, while the bound vorticity is being neglected
at the same time, i.e., far away, this implies that this procedure is

Rosenhead, L., "The Formation of Vortices from a Surface of Discontinuity,"
Proc. of Roy. Soc., A, 134, pp. 170-192, 1931,

Westwater, F. L., "The Rolling Up of the Surface of Discontinuity behind an
Airfoil of Finite Span," ARC R&M 1692, Aug. 1935,

Kaden, H., "Augwicklung einer unstabilen Unstetigskeitsf1;che," Ingenieur-
Archiv, 2, pp. 140-168, 1931,
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applicable only to cases where the wake roll-up procedes slowly, i.e., light
wing loading.

Instead of calculating the three-dimensional roll-up, he c3lculates
the unsteady problem (where the x-axis becomes the pseudo-time in the standard
unsteady cross-flow analysis) of two-dimensional roll-up. He calzulates the
velocities induced by the vortex field of discrete vortices and then uses
the Euler method of integration to obtain the new vortex locations. He
continues this process until the vortex roll-up becomes pronounced. In
employing such a scheme, he neglects the self-induced velocities which occur
for curved vortices.

An easy check of the validity of such a discrete vortex array is
the vorticity theorems in Batchelor (1967) and Betz (1933). The easiest
condition to apply is that with the absence of external forces the center of
gravity of the vortex system must remain constant. Since there are no
external forces in the lateral direction, the lateral position of the center
of gravity for each half of the sheet must remain constant. This is satisfied
approximately by the model, but Westwater notes that it would be satisfied
approximately even if the entire sheet strength were placed in two vortices.
The discrepancy as a function of time is explained by Westwater, "The errors
are due solely to the finite time intervals. It is certain that the source
of error in this connection is the set of vortices whose velocities undergo
rapid changes, i.e., those at the end of the sheet."

He argues that the photographs taken by Kaden give confirmaticn to
the view that the numerical method gives a good approximation to the motion.
He finds that for flat wakes several spans behind the wing, the error ignored
by the two-dimensional approximation is negligible. However, he assumes the
effect of self-induced velocity due to the curvature to be small and does
not discuss it further. From this analysis, it would be assumed that the
sheet would be better represented for smaller step sizes and equi-strength ;
vortices. Contrary to this supposition, Hackett and Evans (1971) note that "

Betz, A., "Behavior of Vortex Systems," NACA TM 713, 1933.

Hackett, J. £, and Evans, 4. R., "Vortex Wakes behind High-Lift Wings," JA,
3, No. 5, pp. 334-340, 1971,
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one obtains a more uniform spiral if one uses longer time steps for equal
strength vortices in the case of the elliptic distribution of two-dimension-
al vortices. Also, one obtains a smoother spiral if one uses equally-spaced
vortices.

Many people accepted the calculations using discrete vortex models
of Rosenhead and of Westwater for 30 years, before the advent of greater
computing capacity encouraged investigators to recalculate the results
obtained. After an analysis of this approximation, Birkhoff and Fisher
(1959) say, "Our view is that continuous vortex sheets in inviscid fluids
are extremely unstable and will soon break up. Viscosity is essential to
stabilize the rolling up of real vortex sheets, which will only roll up
smoothly by diffusion for one or two complete turns at wost." However,
they realize that investigators resorted to the discrete array representation
because of the difficulty in handling the actual continuous problem. They
concentrate on the Helmholtz instability problem of the sinusoidally perturbed
infinite vortex sheet, which was treated originally by Rosenhead. Since then
many people have considered the use of the discrete vortex approximation.
However, almost all encountered some sort of difficulty and an attempt will
be made to discuss the difficulties as well as to describe the application
of the method.

Extensive numerical work has been done by Moore (1971, 1974) in
this area. In 1971, Moore states, "It must be emphasized that the purpose
of this work is not to deny that the vortex sheets roll-up -- the analytical
work of Kaden (1931) and Stern (1956) on the semi-infinite sheet suggest very
strongly that roll-up will occur in the finite case also -- but is to assert

Birkhoff, G. and Fisher, J., "Do Vortex Sheets Roll Up?" Circolo Matematico
0i Palermo Reconditi, 8, Series 2, pp. 77-89, 1959.

Moore, D. W., "The Discrete Vortex Approximation of a Finite Vortex Sheet,"
NASA Accession No. N72-24005, 1971.

Moore, D. W., "A Numerical Study of the Roll Up of a Finite Vortex Sheet,"
JFM, 63, Part 2, pp. 225-235, 1974.

Stern, M., "The Rolling-Up of a Vortex Sheet," ZAMP, 7, pp. 326-342, 1956.
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that useful guantitive information about the process cannot be founs =g
tne type of numerical procedure proposed by Westwater." He formilztz: <re
J

croblem as Westwater had done for the elliotic distribution and e-clc.s

vortices of equal strength placed at the vorticity centroid of eacn zez~ent,

.nstead of using the Euler integration scheme for the timewise intecrztion
of velocity as did Westwater, Moore uses the mathematically more acc.rate
fourth-order Runge-Kutta method with double precision arithmetic.

Moore considers the shortest time scale as the orbital period of
the two closest vortices (the tip vortices) and obtains the characteristic
time as t = nzb/M3v, where M = number of segments on each half of the
sheet. v is the downward velocity at the time t = 0 and b = semi-span.

Westwater fails to discuss the nondimensional time he used,
stating simply that his "t is a factor proportional to the time that has
elapsed since the sheet was straight." Using his notation where his initial
sheet strength is described by

Foy/bz/ 1 - yz/b2 (99)

where v = Fo/2b, relating this to the velocity used by Moore, the obvious
choice for a time would be

b2

= 10 sec (100)

7

0

His initial time step is given as .008, corresponding then to

At = [—?—2-] .008 (101)

0

where Moore has said that the time step should be for Westwater's choice of
parameters

dt(v/b) = dt* < < .01 (102)

In terms uf Moore's nondimensional time step, Westwater's result bLeci~es
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at* = ,004 (103)

If the time given by Westwater is actually .008 seconds, then the
initial step size would be smaller by a factor of 10 and it would be well
within the criterior of Moore. However, this can probably be easily clari-
fied by examining the work of authors who have reproduced the results of

Westwater, i
Although .004 is less than .01, Moore decreases dt* to .00001 for
his finest mesh. The tip vortices are shown by him to orbit each other as "
an almost linear function of time. Westwater stated that although the tip-
vortices would not represent the sheet properly, the central portion of the
sheet would be little affected by approximating the infinite spiral by a
handful of vortices. He also contended that the main source of error would

be from the large step size in time. Even with Moore's smaller step size,
“oore (1971) notes, "This orbiting motion of the tip vortices rapidly
affects the neighboring vortices and ruins the whole calculation.”" He then

increases the number of vortices to 40 and 60 vortices, but no smooth spiral
structure emerges, while the "vortices originally near the tip tend to collect
into a roughly circular patch." Since decreasing the time and increasing

the number of vortices fails to result in any improvement, this suggests to
Moore that the method of discretization is responsible for the problems.

In a later paper (1974), Moore elaborates on this discussion.

He notes that a possible reason for the "success" of Westwater's calculation
may be that the large step size increases the separation between vortices
near the tip beyond their true value. This would suppress problems asso-
ciated with the singular nature of the flow field as the separation distance
goes to zero, and would prevent the outer vortices from orbiting about each
other. More will be said of this in connection with the work of Hackett and
Evans (1971) and others.

Moore also notes that the Euler integration results in a cumulative
error and cannot possibly be valid for large times. He finds two additional
difficulties with the finite array of vortices. If the distance between

w turns is much less than the typical distance between neighboring vortices
on Lhe sheet, then there will be instances when vortices on neiqhboring g
turns will come close together and one can hardly expect such a representation i
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<2 ~3del a continuous sheet. He suggests that this problem had been
siporessed by various methods of introducing pseudo-.iscosity. For exa—zle,
one can lump vortices together if they become closer than a certain distarce.
~ second method is to employ a nonsingular velocity field for each discrete
vortex. The second difficulty noted is that since the spiral of Kaden is
infinite, any attempt to replace the sheet by a finite number of point
vortices will cease to be adequate sufficiently near the center of the
spiral.

Thus, he suggests replacing the spiral center by a more orderly
arrangement in terms of a discrete vortex array than the chaotic distribution
obtained by earlier researchers. Thus, he uses the condition that each turn
of the spiral must be determined by a sufficient number of vortices to
determine the non-chaotic motion. Starting with the vortices near the tip
of the sheet, the vortices are amalgamated if there is insufficient descrip-
tion of the spiral turn, where Moore concludes that four per turn were
sufficient. He notes that for the discrete array, that the energy invariant
is not preserved in his amalgamation of the tip vortices.

In this second paper, he starts with an equi-distant array, since
this gives him a better description of the inner part of the sheet and allows
longer step sizes to be used since the scale of the smallest time is notably
increased. MWith these changes, he is able to obtain 2 1/2 turns of what
appears to be a reasonably well-defined spiral for t* = 7. From his Figure
4, it can be seen that the distance between spirals is less than the arc
lengths between neighboring vortices and this may cause difficulty. However,
Moore notes that this did not cause trouble, and suggests that this could
be due to the fact that the tip vortex provides the dominant contribution to
the velocities of the individual vortices. From Kaden's similarity analytic
sclution, one would expect the fraction of vorticity to be rolled up as a
function of time to be proportional to the one-third power of time. This is
approximately true for Moore's example when t* < .1.

Another early work on the discrete vortex model is by Hama and
Burke (1960). They primarily study the Helmholtz instability problem,

Hama, F. R. and Burke, £. R., "On the Palling-Up of a Yortex Sheet,"” Maryland
U., BN-220, 1960.
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originally studied by Rosenhead using a distribution of discrete vortices.
Following the criticisms of Birkhoff and Fisher (1959), they
jecide to study the problem in detail. By using smaller time steps, tney
a0 not get Rosenhead's smooth roll ub. Since vortex sheets actually 4o
roll up, they suggest several possible explanations for the discrepancy
between experiment and the inviscid theory. First, the viscosity reduices
the high velocities and prevents the existence of infinitely thin sheets, %
Secondly, the substitution of discrete vortices itself may be inappropriate.
From the enerjy invariant, Birkhoff and Fisher conclude that any decrease
between certain pairs of vortices must be accompanied by an increase of
other distances. For vortices which have equal strength as is used in the
Rosenhead problem, this theorem is determined by the product of all mutual
distances. In consequence, no two vortex lines can approach each other
indefinitely, and if the possibility of a lost vortex is disregarded,
coalescense in terms of concentration of the vorticity in a point cannot
occur. However, they do not agree with Birkhoff and Fisher, who believe
that randomization has to occur; they hypothesize the possibility of smooth

roll up for some intermediate time. They then note that the vortex sheet 4
will deform due to the Helmholtz instability. They represent the deformed
sheet by unequal strength vortices and they then obtain smooth roll up. 1

This reinforces their belief that the results of the calculation are sensi-
tive to the initial condition assumed. Thus, although they are unable to
obtain smooth roll up with Rosenhead's method and small time step, they are
able to obtair smooth roll up by changing the initial distribution slightly.
It is apparent by now that this area of research has caused a great deal of
concern.

Kawahara and Takami (1973) cite several examples of discrete array
computations and note that such calculations appear to give the solution qual-
itatively. They note that in many cases irregularity appeared in the solu-
tion so they introduced an "artificial viscosity” to suppress such irregular-
ity. Instead of assuming a velocity field of a point vortex for their

S discrete vortex elements,

Kuwahara, K. and Takami, H., "Numerical Studies of Two-Dimensional Vartex
Motion by a System of Point Vortices," Journ. of Phys. Soc. of Japan, 34,
No. 1, pp. 247-253, Jan. 1973,
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which is the result given in Lamb (1945) by means of the analogy with the
heat equation for a special form of the Navier-Stokes equation. However,
they mention that a superposition of vortices of this type no longer satis-
fies the governing Laplace's equation in two dimensions. However, they
consider this simply as an artifice to obtain a more regular solution, and
they do not provide additional justification for its use. In order to test
the validity of -uch an approximation, it is necessary to have a problem for
which an exact solution is known. The case considered here is a vortex tube
of inviscid, incompressible fluid whose cross section is an ellipse and with
uniform vorticity while the outer flow field is irrotational. It is known
that such a tube rotates with a constant angular velocity and without chang-
ing its external shape [Lamb (1945), p. 232].

They model this continuous vortex distribution by uniformly
distributed vortices of unequal strength and obtained fairly good agreement
with theory. They note that the vortices near the boundary deviated slightly
due to the fact that the discrete grid did not accurately model the curves ]
of the boundary. The approximation becomes more accurate as the number of
vortices increases. They also allow the minor axis to go to zero and obtain
a Helmholtz instability problem. They then consider the wake roll-up problem
using equi-strength vortices and they show a progression of regularity as
the artificial viscosity s increased. This only affects those vortices
near the tip. They thus state that the use of discrete vortices as an
approximation to a continuous distribution could provide quantitative as well
as qualitative solutions if the artificial viscosity is used to force the

solution to remain regular.
Others have attempted to use similar artifices to promote
regularity, but do not attempt to elaborate on their justification. For

Lasb, Ho, Hydrodynamic o, Dover Publications, 6th edition, 1945,
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exariple, Clenents and Maull (1973) in consizering the rolling up of a trail-
ing vortex sheet in an effort to study methods of reducina the tiz vorter
strength basically use Westwater's method, but if the induced velacity
becones too large, they combine the two tip vortices at the centroid of
vorticity. Thus, from the work of Moore, caution must be used in order to
model discrete vortex flows, especially when vortices become close together.
However, the work of Kuwahara and Takami suggests that quantitative results
can be obtained. Thus, combined flow will next be studied using dicscrete
vortex models.

Method of Sacks

For slender bodies, Sacks (1954) employs the extension of the
Blasius formula developed by Milne-Thomson (1950) for unsteady flow to
calculate the forces and moments in a steady 3-dimensional incompressible
flow. He finds that the forces and moments (except drag) are linear in the
velocity potential and thus is later able to extend these results to include
free vortices.

Sacks (1955) extends the analysis of his earlier work to include
the effect of vorticity shed from a wing on a tail. Due to the linearity
of the calculations from the previous work, one need only add the effect
of the shed vortices. He finds that the potential of the point vortices
in the cross flow plane is

i 0 i ¢ '”czn
F(o) = - ?sz] ren (o - ok) + §?'kz1 Fk]n (0 - =) (106)
= = Oy
where g is the complex plane where the airplane cross-section has been
transformed to a circle of radius o
Now, it remains to find the distribution of Fk' Oy to completely
determine the problem. Enroute to his solution, he notes the following

Clements, R. R. and Maull, D. J., "The Rolling Up of a Trailing Vortex
Sheet," Aeron. Journ., 77, No. 745, pp. 46-51, Jan. 1973.

Sacks, A. H., "Aerodynamic Forces, Moments & Stability Derivatives for
Slender Bodies of General Cross Section," NACA TN 3283, 1954,

Sacks, A. H., "Vortex Interference on Slender Airplanes,” NAC! il 3525, 1955,
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theorem for calculating the force due to such vortices.

Theorem: The lateral force Y + iL due to each vortex of strength
T shed from a forward wing of a slender wing-body-tail combination in steady
straight flight is equal to the change, from the wing trailina edge to the
base of the airplane, of the quantity ip UI‘cr where 3,18 the (complex)
distance between the vortex and its image in the plane in which the body
cross section is mapped onto a circle while leaving the flow field at
infinity unchanged.

In his first calculation, he assumes the sheet of the wing to be
completely rolled up at the tail and replaces the wake by two point vortices
of unknown strength and location. He obtains the strength and the location
of the vortices from Rogers (1954), where Rogers obtains the circulation
distribution at the trailing edge from the span loading,

riy) = 3 Jc 4 gy (107)
7] q
)

and then replaces the circulation by point vortices in the manner of Westwater,
(Rogers (1654) contains a list of references on attempts to model the wake
structure.] In addition, if there is a body extending beyond the trailing
edge, he simply adds the velocity inauced by the body to the velocity induced
by the vortices before applying the Euler integration method to discover the
new location of the vortices in the streamwise direction.

As it became apparent that leading-edge separation was important,
Sacks, Lundberg and Hanson (1967) finally included leading-edge vortices.
Many of the early representations of shed vorticity, even from the leading
edge, fail to allow the free vortex sheets to roll up and assumed that they
are planar. The authors aimed at removing this restriction and extending
the theory to nonconical flows. Also, the models of Mangler and Smith (1959)

Rogers, A., "Application of Two-Uimensioral Vortex Theory to the Prediction
of Flow Fields behind Wings of Wing-Body Combinations at Subsonic and
Supersonic Speeds," NASA TN 3227, 1954.

Sacks, A. H., Lundberg, R. and Hanson, C., "A Theoretical Investigation of

the Aerodynamics of Slender Wing-Body Combinations Exhibiting leading-
Edge Separation,” NASA CR-719, 1967.
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and Brown and Michael (1954) allow the fluid to support non-zero forces,
and are only force-free in the mean.
Sacks et al extend the earlier work of Sacks (1955) to include lead-
ing-edge separation. They assume that the two contributions, linear 1ift
and separated 1ift, are separable and additive. Although they use slender
body theory to calculate the nonlinear portion of the 1ift, they use the
Tifting surface results of Lawrence (1951) to obtain the linear portion of i
the 1ift for a low aspect ratio wing, since they note that Jones' approxima- 1
tion is only valid as the aspect ratio goes to zero. i
For the separated flow contribution, they utilize slender body .
theory and assume that a pair of discrete vortices are shed at chord-wise !
stations just outside of the Teading-edge. The strengths and positions are ]
fixed by the following boundary conditions. The normal velocity condition {
requires that the vortex leaves the wing edge tangentially. Hence, the !
|

initial position is described by only a lateral coordinate. The Kutta
condition furnishes a second condition and the third condition is obtained
from the shedding rate. Although they obtain an empirical shedding rate from
water tank experiments, which give better experimental agreement for the

1ift calculations, the theoretical derivation will be of interest here since
it has more general applicability.

The lateral velocity at the edge of the wing is calculated. This
velocity is used to calculate the lateral growth of the flat vortex sheet
being shed in the plane of the wing, whose strength must satisfy the Kutta 4
condition. The sheet is then replaced by a vortex of the same strength which
is located to satisfy the Joukowsky condition. From an upstream location,
one knows the complex potential for a wing and the shed vorticity [see Sacks
(1954), for example]. To obtain the potential at the station in question,
one ca'culates the new locations as previously described in the discrete
line-vortex methods and adds a term to account for the vorticity shed in the
sheet.

Y Lawrence, H. R., "The Lift Distribution of Low Aspect Ratio ¥Winas at
Subsonic Speeds," JAS, 18, No. 12, pp. 683-695, 1951.

73




j ¢

-~
o N

|
Je

ﬁ

Q
-
"

vdy In (108)

L]

i (0 +5;)0 -

lo
2 U

ol

Tne length ¥ is found by the Euler method of integration. To reduce Equation
(108) to a form that can be easily handled, v is assumed to be constant. Then
the vortex strength becomes rn = yv4s, where 4s is its length in the physical
plane. Now the vorticity is replaced by a point vortex of strength Fn and

of unknown lateral displacement and the Joukowsky condition is again used

to determine the location of the newly shed vortex. This process can be
continued downstream for small step sizes to obtain a representation of

the leading-edge separation. Since they use slender body theory, they ter-
minate their calculations at the "trailing edge" of the body; however, it is
to be noted that the load in general will not be zero there. This initial
work only allows monotonically increasing span in the chord-wise direction.
[Fink and Soh (1974) say that Sacks et al do not account for the chord-wise
variation in span, but Finkleman (1972) later includes the increase in span

in his formulation.] The problem would also be complicated by the appearance
of a vortex wake from the trailing edge.

As developed in Sacks (1954), they use the change in impulse to
calculate the force on the wing. Since they know the pressure distribution
for every chord-wise station, they are also able to obtain the pitching
moment and the center of pressure. In their discussion, they note several
areas of concern. First, to obtain the location of the sheet vortex requires
an induced velocity at the leading-edge from other vortices. For the first
shedding station, there are no vortices to induce the required field, so
they assume that the first vortex is shed with a downwash velocity Ua/2

Fink, P. T. and Soh, W. K., “"Calculation of Vortex Sheets in Unsteady Flow
and Applications in Ship Hydrodynamics," for Tenth Symposium in Naval
Hydrodynamics, July 1974.

Finkleman, D., "Nonlinear Vortex Interactions on Wing-Canard Confiqurations,"
JA, 9, No. 6, pp. 399-406, dJune 1972.
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following Gersten (1961) and Bollay (1939). More will be said about this
later.

The solution is obtained by using a fourth order Runge-Kutta 3
numerical integration technique with the Gill variation. The method is
approximate in that it only satisfies the Joukowsky condition at the lead-
ing edge at only a finite number of stations. Other approximations are appa-
rent in the derivation of this method. They hypothesize that as the number
of vortices increases, the discrete vortex model would converge to the
continuous sheet. For their program, the convergence is slowest at high
aspect ratios and low angies of attack. For lift, a rough rule of thumb y
for convergence is n = 30 + 30 R for .5 < R < 2.0.

A comparison between Mangler and Smith (1957) and Sacks et al
for R = 1.0 and 1.5, shows that both 1ift predictions are higher than
the experimental results of Bartlett and Vidal (1955); Sacks' method
starts out lower, but surpasses Mangler and Smith at high angles of attack.
It is noted by the authors that they modified Mangler and Smith results by
using the same attached flow 1ift of Lawrence after subtracting the Jones'
slender body 1ift for the attached flow model. As a further check on the
present analysis, the vortex position above a delta wing is compared with
experiment. They represent the vortex position by its center of gravity,
but fail to mention which vorticity they consider to be relevant in their
calculations.

Finally, in their conclusion, Sacks et al (1967) say that "it
appears that the overprediction of the normal force due to separation stems :
from an overprediction of the shedding rate (theoretical result is greater
than experimental result) and is largely due to three-dimensional effects
as in the case for the attached flow," i.e., the discrepancy grows for

Gersten, K., "Calculation of Non-linear Aerodynamic Stability Derivatives
of Aeroplanes," AGARD Rep. 342, April 1961.

Bollay, W., "A Non-Linear Wing Theory and Its Application to Rectangular
Wings of Small Aspect Ratio," ZAMM, 19, pp. 21-35, Feb. 1939.

Bartlett, G. E., and Vidal, R. J., "Experimental Investigation of Influence

of tdge Shape on the Aerodynamic Characteristics of Low Aspect Patio Wings
at Low Speed," JAS, 22, pp. 517-533, 1955.
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increasing aspect ratio as the difference between Lawrence and Jones.

They note that the Lawrence method is not really anplicable to
tne separated-flow problem since it is tased upon a linear relationship
between the local pressure and the velocity potential. The pressure due
to ~he separated flow, however, contains quadratic terms which do not
cancel. Thus, this is only considered to be a correction term rather than
a universally valid theory.

The development of the feeding rate appears to be one of the mest
important concerns for the unsteady finite element method. An alternate
method is presented next.

Following the development of Sacks, Angelucci (1971, 1973) des-
cribes a slender-body model using discrete vortices. WNotably, he differs
from Sacks et al {1967) in the mathematical definition of the elementary
vortex sheet at the point of separation. He applies the approximation for
the streamline condition as: 1) the vortex sheet is oriented in the direc-
tion of the total velocity induced at a specific point of interest and, 2)
the vorticity distribution is such that the average velocity normal to the
sheet and induced by the sheet itself is zero.

He states the simplest distribution that satisfies these conditions
is kIca - °1||°1 - osl, where o, is a point on the sheet (e.g., the center
of vorticity) and ag and g, are the end points of the sheet in the trans-
formed plane where the body is represented by a circle [see Figure 23]. He
then makes the final assumption that due to the local conical nature of the
slender problem, the segment length should be linear as a function of the
x-direction. The circulation then becomes
2¢

v(s) = k(oa - Oi)(oi - os)e'i 5 (109)

where ¢s represents the orientation of the sheet at the point of separation

with respect to the real axis, and s denotes the arc parameter on the sheet.

Angelucci, S. B., "A Multivortex Method for Axisymmetric Bodies at Angles
of Attack," JA, 8, pp. 959-966, Dec. 1971.

Angelucci, S. B., "Multivortex Model for Bodies of Arbitrary Cross-Sectional
Shapes," AIAA Paper No. 73-104, Jan. 1973.
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The sheet is then replaced by a concentrated vortex of equivalent
strength in the manner of Sacks at al. Similarly, the rest of the proble~
is derived according to Sacks et al. He does consider axisymmatric bodies
without strakes for the case where the location of the viscous separation
is considered as given. He also calculates the nonlinear and linear 1i¢t
separately. He obtains the nonlinear 1ift contribution from the change of
impulse and suggests obtaining the linear portion of the 1ift from the best
possible source available, while he obtains it by extrapolating the exoeri-
mental 1ift for small angles of attack.

A more recent development along the same lines is included in a
paper by Fink and Soh (1974). Fink and Soh start with a critical survey
of some of the papers published using the discrete two-dimensional vortex
arrays. They agree in principal with the findings of Moore (1971) and others
that the tip vortices become random, but they then go on to demonstrate how
such randomness can be avoided.

To discover such a scheme, they start with the governing integral
equation for the continuous sheet and then formulate a finite difference
scheme to approximate this equation. As a result, they are also able to
formulate the errors involved.

The complex conjugate velocity induced by a segment of a sheet from
5, to sy of strength v(s) is

s
§) = i = 9l = T‘T wa
-1

sa 1

(1o)

where the Cauchy Principal Value must be applied to evaluate the singular
integral.
In transforming the integral to a complex one, they use the identity

_ ie
dz, = e'’ds, (111)

Fink, P. T. and Soh, W. K., "Calculation of Vortex Steets in Unsteady Flow
and Applications in Ship Hydrodynamics," for Tent: “,uposium in Naval
Hydrodynamics, July 1974,
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whar= = is the angle between the tangent of the sheet at the point Z(s) and
tne real axis. Then, they are able to develop the complex potential for
tre flow field. From the time derivative of the complex potential, they
obt2in the rate of change of circulation T related to the vorticity density

v and the velocity at the shedding point
2 i’ -i5
I = Re[(q, - V) ve ]edge Mme)

where V denotes the velocity of the point and s denotes the average complex
velocity across the sheet, while 8 has been defined previously. They then
develop a numerical method to follow the sheddino vorticity. The integral
becomes

Ske1/2 v(sy)ds; , n Ty

. (113)
- T -y

. 1 n
a(Z) = 57 1 J
k=1 .
k-1/2
where the sum is well behaved for a point off the sheet. For a point on the

sheet, Zj, by assuming that the segment is straight and the vorticity may be
taken as a constant, they obtain approximately

- 1 Ty 1 E}fe-iei i - Linge
Q(Zj)gﬁkEZJk-ml . |l"z-z
J i 4172 = 55-1/2 i~ 45172
(118)

It is noted that for Zj located at the midpoint of the segment, the last term
vanishes and one obtains the result that is normally used in discrete approxi-
mations by ignoring the singularity in the first place.

However, they note that the vortex has to be placed at the midpoint
for this to be valid at all times during the process of roll up. On the
other hand, they state that the original sheet segments are deformed and
thus the discrete vortices will no longer be located at the midpoints. Thus,
they expiain that as the number of vortices is increased, the number of
logarithmic terms which were formerly neglected increases and consequently
it is not surprising that increasing the number of vortices does not lead
to improved roll up.
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Instead of retaining the logarithmic term for calculations as
a function of time, they suggest an alternate possibility. Instead, at
each step, they "represent the vorticity by an entirely new set of equi-
distant discrete vortices whose strengths are adjusted to give a good
representation of that density."

Because of the fact that the centroid and the midpoint will rarely
fall together, this scheme can only be considered to be reasonable in conserv-
ing the invariants if the step size is small,

To reduce the computer time needed by the small steps, they use
the simpler Euler method of integration. To calculate the pressure distrib-
ution over a body with vorticity being shed accordina to the previously
derived result for [, the discrete approximation will misrepresent the
actual flow near the shedding point. They thus approximate the vorticity
near the edge by a straight segment attached to the edae with constant
vorticity density and assume that the mean velocity of the sheet is the mean
velocity at the edge. They suggest calculating the force both from Blasius'
theorem for unsteady motion and from the pressure distribution tc check for
consistency. [t is to be noted that they only resorted to the :pacial treat-
ment at the shedding point, after their original calculations failed to
provide good agreement with experiment.

They then do a partial error analysis for their discretization
of the vortex sheet integral for the induced velocity. They consider the
effect of approximating the vorticity density as constant for a summation
term and the deviation of the sheet from the assumed straight segment. The
vortices adjacent to the point on the sheet are shown to have the greatest
contribution to the error, and it can be reduced by considering additional
terms in the approximation.

They suggest that in the timewise integration it may be advanta-
geous to consider simpler schemes like the Euler method they use rather than
the Runge-Kutta method, since each additional point at which the flow field
must oe evaluated allows the creation of further logarithmic terms. They end
up performing the calculations using the cruder Euler method of integration
and using equi-spaced vortices, which two methods have both resulted in
improved regqularity of the wake roll up. Thus, although their crror analysis
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of the Cauchy Principal Value is laudable, their actual application i3
reminiscent of other earlier methods. They repeat the calculations o¢
Rosenhead and Westwater and obtain much more regular behavior.

They also consider other unsteady problems including the ~odel
essentially developed by Sacks et al. They compare their results with Smith
and Sacks et al for a/K = 1.0 for a delta wing [see Figure 24]. The vortex
spiral of Fink and Soh is more uniform than Sacks', while Smith's result is
considerably rounder than that of Fink and Soh although Smith's curve is
slightly higher by the nature of its greater eccentricity. Fink and Soh and
Smith give almost identical results for the pressure distribution while their
1ift results are lower than Smith's and agree more closely with the results
of Sacks et al. In general, they seem to have developed a general method
for calculating vortex sheet shapes in the unsteady two-dimensional problem
using a discrete vortex model which does not suffer from the irregularities
which plagued early workers.

A further outgrowth of the discrete vortex method is the treatment
of trailing vorticity. Finkleman (1972) considers the canard-wing configura-
tion using Sacks' method. He includes the vorticity from the trailing edge
in the leading-edge vortex system of Sacks et al. The trailing edge vortices
correspond to a spanwise loading which maintains the discontinuity in potential
across the surface.

At the trailing edge, the Joukowsky condition is violated due to
the violation of slender body theory. That is, slender body theory does not
allow the pressure difference at the trailing edge to go to zeroc for a sharp
change in span, since it is basically a theory in which all of the information
is transmitted only in the rearward direction. As noted by Sacks et al, the
method is not self-starting. Finkleman tries several methods including using
conical flow models near the apex and notes that the starting process is
rapidly forgotten. Also, he notes that if the vortex is even an infinitesimal

Finkleman, D., “"Nonlinear Vortex Interactions on Wing-Canard Confiqurations,"
JA, 9, No. 6, pp. 399-406, June 1972.
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distance away from the edge of the wing, it will experience a velocity
component normal to the plane of the wing.

To expedite computations, the canard leading-edge vortices are
combined in pairs as soon as the trailing edge is reached. Also, ne comments
that he encountered difficulties on the trailing wing of the canard-wing
combination. The first Jifficulty is the tendency of the vortices to nierce
the wing surface at high angles of attack. To prevent this, when the vortices
are sufficiently close to the wina, their normal velocity is suppressed.
However, this appears to be just a stopgap measure, and it would be prefer-
able to be able to understand this problem in greater detail.

The second problem encountered is the one studied by Moore (1971),
of vortices close together creating unphysical flow patterns, so he simply
lumps the two vortices together when they come within a "small fraction of
the local span" to each other. These results are one of the first to consider
the combined effect of leading-edge and trailing-edge separation.
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JIFTING SURFACE THEORY
Jethod of Belotserkovskii
The previous discrete models were applied to slender bodies. Tne

next step will be to look at discrete lifting-surface theories, nc* restricted
to slender bodies. First, the lifting-surface theor, developed by
Belotserkovskii (1968) will be considered. Although he only considers
vortices from the side edges and trailing edge in the nresentation, he
suggests that the method could be used to solve the leading-edge problem.
The theory is a three-dimensional 1ifting surface theory where the wing is
replaced by a bound-vortex network and the wake and other shed vorticity is
replaced by free vortex lines. Earlier theories based on discrete vortex
elements also had similar bound and trailing vortices. A notable difference
employed by Belotserkovskii is the fact that he allows his free vortex ele-
ments to become nonplanar and roll un., He accomnlishes this by segmenting
the trailing vortices a finite number of times downstream of the shedding
point. He then calculates the induced velocities according to the Biot-
Savart law from the vortex network and satisfies the no-flow condition at
a finite number of points to find the strengths of the bound vortices in the
normal manner. With the extra degree of freedom provided by the unknown
orientation of the tree vortex segments, he satisfies the convection condi-
tion at a point on each segment and thus assures that they would be force
free. Once the entire flow is determined, the 1ift is calculated using the
Kutta-Joukowsky theorem. Also, more detailed information, about the flow
everywhere, can be calculated if desired as with a normal lifting-surface
model.

There are several problems with this method that should be noted.
First, he divides the wing into a network of boxes and the vortex element
is placed at the quarter chord point and he satisfies the normal flow condi-
tion at the 3/4 chord point. This method follows from the flat plate result
and was developed extensively by Weissinger. However, there has been some

Lelotserkovskii, S. M., "Calculation of the Flaow Around Wina«w of fabtitrary
Plar sore over o Wide Pange of Angles of Attack,” Mebhonihy JEdbe ot
Gazay Vol 3, Hao 4, np. 22-440 1908, translted din blaid ©oa :
Conoultarte, Bureva, np, 20-77.




debate on its validity [Thwaites (1960, p. 341)].

Furthermore, Ashley and Landahl (1965) note that with the advent
of high speed computers, "there is an element of irrationality in clinjing
to any questionably consistent approximation that embodies the numerical
work inherent in all of the traditional lifting-surface theories." Another
Jifficulty is the proble: of vortex curvature. As is ohvious from the form
of the velocity induced by the vortex element, any time there is a kink in
the vortex element, there is an infinite self-induced velocity and this
cannot possibly be a good representation of the flow, i.e., even as the
number of segments increases, the sinqularities [see Hama (1962), for example

for some repercussions of this line vortex problem] continue to exist. Fipal-

ly, because it is a discrete vortex model with singularities, it can only
approximate the flow field at a distance at best, since singularities are
excluded in the actual flow field; although this is not a serious handicap
when the desired flow field is far from the vortex elements, this method
cannot hope to give information about the flow in the vortex cores, even
discounting the effect of neglecting the viscosity in the sub-core. Of
course, as in the two-dimensional problems, there remains the question of
whether or not it is valid to approximate a continuous vortex sheet by dis-
crete vortex elements.

Despite these objections, the inherent difficulty of handling the
nonlinear lifting surface problems with leading-edge separation made it
inevitable that this method would be extended to the delta wing and other
planforms with leading-edge separation.

This method has also been used by Perrier and Vitte (1971} and

Thwaites, B., Incompressible Aerodynamics, Clarendon Press, 1960.

Ashley, H. and Landahl, M., Aerodynamics of Winas and Bodies, Addison-Wesley
Publishing Co., Inc.. 1965,

Hama, F. R., "Progressive Deformation of a4 Curved Vor ex Pilament by its own
Induction," Phys. of Flds., 5, pp. 1156-1162, 196..

Perrier, P. and Vitte, W., "Calculation Procedures tor Three Dimensional
Aerodynamics in Pervtoct Fluids,” NASA TT +-14, 074, 14871,
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C. Renbach (1973a) for the problem without leading-edge separation. 2ehbach
made sute refinements, whicn are notable. First, instead of startinz at an
incidenze of zero 1ift and gradually increasing the ancle of attack to obtain
tne desired confiquration, using the previous result as the initizl quess

for tne subsequent problem, Rehbach found faster convergence by ising the
sinpler method of Butter and Hancock (1971) who only used a single tound
vortex. He calculates the local tangential velocity to obtain the loading

on the wing, which requires less computational effort than the Kutta-
Joukowsky law, which he also uses to verify the solution and cbtained good
agreement between the two methods. He indicates that he encountered a few
difficulties, yet he seems to have solved all problems that he encountered

as the roll up of the trailing vorticity appears fairly uniform. He notes
that for low angles of attack, the greatest number of problems are found in
trying to calculate the equilibrium position of the sheet, as far as the
numerical applications are concerned. These difficulties are primarily due
to the fact that the shed vortices are close to each other at small incidences
for the rectangular planform. However, he does not clarify how he solved
this problem. He notes that for convergence it is important to have a good
initial approximation for the sheet shape.

Rehbach (1973b) extends the work to include the leading-edge
separation from the delta wing. As he noted in the previous work, he
encountered difficulty in convergence unless a good approximation of the
vract shape of the sheet was available for small aspect ratios. Thus, he
cunb lders the following scheme to provide a good approximation of the leading-
edge sheet for the slender delta winy e starts with a rectangular wing of
aspect ratio AR*. Then, in increments tempered by experience, he decreases
the leading edge of the rectangular wing while leaving the trailing edge

Rehbach, C., "Calculation of Flows around Zero Thickness Winas with Evolutive
Vortex Sheets," NASA TT F-15, 183, 1973a.

Butter, J. J. and Hancock, G. J., "A Numerical !lethod for Calculatina the
Trailing Vortex System behind a Swept Wina at Low Speel,” Aernn. Journ.,
75, pp. 564-568, Aug. 1971.

Fehbach, C., "ftude UumériqU( de nappes tourbillonnaire. issces A'une Ticne
de Decollenent pres du Bord d'attague,” Rech. Aerosp oo oo 6 oo 725230,
1973h.
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constant. This process is shown in the accompanying illustration [see Figure
25].

As a result of this process, he obtains converqgence for the deita
wing problen which might have caused numerical diffizulty due to the concen-
tration of vorticity at the apex. This is especially worrisome since the
modeling of the apex often requires considerable care to produce useful
results.

He compares the theoretical shape of the rolled-up sheet with the
experimental results and seems to obtain reasonable agreement. He also
checks his rolled-up sheet for conicality [see Figure 26]. As one progresses
from the apex to the trailing edge, there is a trend for the sheet to move
downwards and become tighter. This result must be evaluated with caution
since this preliminary result could be the oroduct of the numerical approxi-
tions as well as the actual description of the real flow. He then compares
the results he obtained with those of Smith (1968) and with Sacks et al
(1967), for a = 15°, & = semi-apex angle = 15°. There is considerable
discrepancy between the three results and the experimental center of the
vortex given by Werle [see Figure 27]. The result of Rehbach is more inboard
and higher and tends to agree better with the experimental result. He obtains
a similar result for the normal force [see Figure 27]. Rehbach suggests a
possible reason for the discrepancy is the fact that the apex angle and the
angle of attack considered may be outside the range of validity for the
slender body analysis of both Sacks et al and of Smith. This is, of course,
the advantage of a scheme such as Rehbach's. He also notes a certain vague-
ness of the velocity field near the apex, probably as a result of the calcu-
lation using a fairly concentrated network of discrete singularities in that

region. He suggests that this problem can be alleviated by utilizing the
conicality of the flow in that region.
Probably working at the same time, Mook and Maddox (1974) published
their results using a similar model based on the 1ifting surface theory of

Mook, D. T. and Maddox, S. A., "Extension of a Vortex-Lattice Method to
Include the Effects of Leading-Edge Separation," JA, 11, pp. 127-128,
Feb. 1974,
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Belotserkovskii. They do not furnish many details of their calculation.

‘ney do note difficulty in convergence for angles of attack of less than 5-.
However, in a later paper, Kandil, Mook and Nayfeh (1974 ~lai~

tnat the Mook and Maddox method "is subject to the same limitatiors regard-

ing camber, etc., as the KRG (Kalman, Geising and Rodden) program and cannot

account for wing-tip and trailing vortex sheets being free of forces."

Neither group seems to be aware of the work of Rehbach. They then claim to

follow Belotserkovskii and obtain force free trailing line segments. Their

manner of solution is as follows:

1) They assume an initial orientation of the vortex elements.

2) For the given vortex network, they calculate the circulation distril

tion by satisfying the normal flow condition on the wing.

3) They calculate the local velocity in the wake.

4) They then align the upstream end of each free segment with the velocity.

5) They now iterate between 3) and 4) until the method converges.

6) Now the normal flow condition is no longer satisfied and they iterate

between two and five until the method converges. This furnishes the answer

for the number of elements initially chosen.

They consider convergence in two aspects. The shape of the wake must converge

as a function of iterations. Secondly, the predicted air loads must converge
as the number of elements is increased. They calculate the force on the wing
using the Kutta-Joukowsky theorem and obtain reasonable agreement with the
experiments of Bartlett and Vidal (1955) and of Peckham (1958) for the normal
force and center of pressure calculations. They note that their figures are
similar to those determined by Mook and Maddox for the rolling up of the
leading-edge vortices. They do not seem to have encountered any difficulty
and claim that the method of iteration they use converges. In conclusion,

Kandil, 0. A., Mook, D. T. and Nayfeh, A. H., "Noniinear Prediction of
Aerodynamic Loads on Lifting Surfaces," AIAA Paper No. 74-503, June 1974.

Peckham, D. H., "Low Speed Wind Tunnel Tests on a Series of Uncambered
Slender Pointed Wings with Sharp Edges," ARC R&M 3186, 1958.
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they admit that the present method has the disadvantage of long computatisn
time if a large number of elements are used. They reduce the time for
convergence by using good initial guesses for the sheet shape and only
considering a few vortices in the trailing edge sheet.

Method of Polhamus

Finally, one arrives at the leading-edge-suction analogy of
Polhamus. Polhamus (1966, 1971) was dissatisfied with the usual means
of treating the problem for they failed to consider the trailing-edge Kutta
condition. The method that he developed does not give the local distribu-
tion of the 1ift on the wing and consequently cannot give pitching moments
in its originally derived form.

The approach assumes that if the flow reattachment occurs on the
upper surface, the total 1ift can be calculated as the sum of a vortex 1ift
associated with the existence of the leading-edge vortices and of a potential
flow 1ift for attached flow. The potential 1ift is considered to be that
lift obtained from the wing in the normal manner using a 1ifting surface
theory, but subtracting out the contribution of the leading-edge suction,
since with separation, there is no longer a leading-edge suction force.

This is accomplished by modifying a 1ifting surface program by
applying a Joukowsky condition to the leading edge. He uses a modification

of the Multhopp 1ifting surface theory to accomnlish this. He finds for
this potential 1lift

C, =K sina cosln (Ms)
p P

where Kp is only a function of aspect ratio for delta wings and this is
plotted in Figure 28.

For the nonlinear vortex 1ift, he assumes that the total force on

Polhamus, E. C., "A Concept of the Vortex Lift of Sharp-Edge Delta Wings
Based on a Leading-Edge-Suction Analogy," NASA TN D-3767, 1966.

Polhamus, E. C., "Predictions of Vortex-Lift Characteristics bv + !eading-
Edge-Suction Analogy," JA, 8, pp. 193-199, Anril 1971.
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the wing, associated with the pressure required to maintain equilibrium of
tne flow over the separated spiral vortex sheet, is essentially the same
as the leading-edge suction force associated with the leading-edge pressure
required to maintain attached flow around a large leading-edge radius.

For the delta wing, the component of leading-edge suction force
which is pertinent is the force normal to the leading edge. He obtains
the suction contribution as

¢ = (K - KoK,) S22 syl (116)
v

where X = sweep and

K, = —st (117)

which he rewrit erms of a suction 1ift coefficient
- o2
CL = K cosx sin"a
v v

For the delta wing, Kv is again only a function of aspect ratio having been
calculated from lifting surface theory [see Figure 28]. He compares his

results with experiments and obtains good agreement for 1ift [see Figure 29].

He concedes that a rigorous proof of the concept has yet to be established;
and that it does not appear to have been published yet at the time of this
writing.

Later this method is applied by Bradley, Smith and Bhately (1973)
to more complex planforms of a general nature, while Snyder and Lamar (1972)
extend the method to give chordwise load distributions and consequently
pitching moment variations.

This concludes the discussion on existing models for vortex flow
phenomena. A chronological listing of the models is included in Table 3 for
the reader's convenience.

Bradley, ». G., Smith, C. W., Bhateley, [. C., “Vortex-Lift Prediction for
Comples Wing Planforms," JA, 10, No. 6, pp. 379-381, June 1973.

Ungder, Mooand Lamar, 0., "Application of the Leadinag-Edqe-Suctior Analoqy
to feedio tion ot Langitudinagl Load Distribution and Pitching Moments
tor Shoo-Ldged Delte Wings," HASA TN D-6994, 1972.
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Autnar

Type of Model

Assumptions

Results

Remarks

Author

Type of Model

Assumptions

Results

Remarks

TABLE 3
TABLE OF MODELS

Legendre (1952)

Slender Body;
Vortex Pair

Conical Flow;
Kutta Condition;
no force on vortices

Numerical (See Figure 10)

Lift negative for small qa;

Violates Helmholtz Conserva-

tion Theorem

Edwards (1954)
Brown and Michael (1954)

Slender Body; Vortex Paii,
Feeding Cut

Conical Flow; Kutta
Condition; no net force on
vortex-cut

L 2

cC =% /Ra+7r(/R)]/3a5/3
(See Figure 16)

Pressure discontinuity
across cut; net moment on
vortex-cut; overpredicts
Tift

Legendre (1953a)

Slender Body Theory;
Vortex Sheets

Conical; Normal Velocity
Condition and No-Pressure
Condition on Sheet; Kutta
Condition

None

Formulates problem for
continuous vortex sheet;
does not solve

Smith (1957)

Slender Body Theory; Vortex
Pair; Feeding Cut

Kutta Condition; no net
force on vortex-cut

Numerical

Extends Brown & Michael to
planform with cu:ved leading
edges




Author

Type of Model

Assumptions

Results

Remarks

Author

Type of Model

Assumptions

Results

Remarks

Mangler & Smith (1957)

..ender Body Theory;
Vortex Pair; Feeding Sheet;
Feeding Cut

Conical; Kutta Condition;
approximate sheet shape &
strength near leading edge;
apply boundary condition for
vortex sheet at single point

Numerical
(See Figure 16)

Formulates general boundary
conditions on feeding vortex
sheet, wing, and at infinity;
better agreement with experi-
ment than Brown and Michael

Polhamus (1966)

Lifting Surface Theory;
Leading-Edge Suction Analogy

Incompressible; leading-edge
suction force becomes lead-
ing-edge vortex force

- 2
CL Kv cosa sina

(Figures 28 & 29)

Modifies linear lifting
surface theory to calculate
both linear & nonlinear lift;
obtains good agreement with
experiment
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Smith (1966a)

Slender Body Theory;
Vortex Pair; Feeding Sheet;
Feeding Cut

Conical; Kutta Condition;
approximate sheet by n
segments; apply boundary
conditions for sheet at n
points

Numerical; curve fit
Cy = § Aa+3.2(R)3 o
(Figure 27)

7

Extends Mangler and Smith;
solved using 3 nested
iterations; better agreement
with experiment than simpler
models.

Legendre (1966)

Vortex Pair; Nonslender

Conical; incompressible;
singularities at vortex
locations & images only;
global force condition

Analytical; only vortex
location given

Formulates nonslender prob-
lem to remove contradiction
at vortex axis; unable to
satisfy Kutta condition at
leading edge.



Author

Type of Model

Assumptions

Results

Remarks

Author

Type of Model

Assumptions

Results

Remarks

Sacks, Lundberg & Hanson
(1967)

Slender Body Theory;
Incompressible; Array
of pt. vortices

Separated and linear lift
separable and additive;
Kutta Condition; vortices
convected; vortices shed
tangent to wing

Numerical
(See Figure 27)

Removes restriction of
conical flow; question of
discrete vortex representa-
tion of sheet; use impulse
to calculate forces; results
comparable to Smith (1966a)

Levinsky, Wei & Maki (1969)

Same as Smith (1966a)

Same as Smith; also
extends to nonconical case

Numerical

Extends Smith to conical
wing-body combinations;
found multi-valued lift
for intermediate values
of a/c. Extends results
to nonconical problem.
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Nangia & Hancock {1968)

Lifting Surface Theory;
Vortex Pair; Feeding Cut;
Trailing Edge

Kutta Condition; no net
force on vortex-cut; "flat"
wake until roll up

Numerical

Numerical collocation method
to obtain vorticity of wing
and wake; adds Brown & Michael
vortex-cut to linear lifting
surface theory, computations
lengthy

Portnoy & Russel (1971)

Slender Body Theory; Vortex
Pair; Feeding Cut; Rhombic
Body

Same as Brown & Michael

Numerical

Extends Brown & Michael to
rhombic body by conformal
transformation; predicts
outward movement of vortices
with increased thickness.
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of Model

Tye=

Assumptions

Results

Remarks

Author

Type of Model

Assumptions

Results

Remarks

Angelucci (1971)
Samne as Sacks et al

Separated and linear

1ift separable & additive;
Kutta condition; assumes
sheet strength to be
quadratic at shedding

Numerical

Results similar to Sacks

et al; extends to cylindrical
body by using experimental
results to fix shedding
point.

Pullin (1973)

Same as Smith (1966a)

Same as Smith

Numerical

Formulation slightly
different than Smith;
similar results.
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Finkleman (1972)
“Slender Lody theor:"

Same as Sacks;
trailing edqge

Numerical

Includes effect of trailing
edge by placing vortices
corresponding to spanwise
loading at trailing edge;
violates slender body
assumption.

Rehbach (1973b)

Lifting Surface Theory;
bound and trailing vortices

Incompressible; no flow
through wing; no force on
wake; Kutta condition

Numerical
(Figure 27)

Replaces wing, wake &
leading vortices by vortex
line segments; obtains 1ift
by integrating pressure
distribution.




)

Author

Type of Model

Assumptions

Results

Remarks

Fink & Soh (1974)
Same as Sacks et al
Same as Sacks et al
Numerical (Figure 24)

Includes error analysis;
more uniform rollup than
Sacks et al due to use

of equi-distant vortices.
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CONCLUS S J

The present state of the art for small aspect ratio wings with
er-2rnal vortex flow has been described. Although controversy still exists
aver tne uxact nature of the vortex breakdown, it is felt that the fundamen-
t-1 behavior of the flow elements are reasonably well understood.

The slender body theories are well-developed and represent the
flow within their limitations. However, the limitations in the existing
theories suggest that one should consider a more general problem. First,
it would be desirable to obtain results for moderate aspect ratio delta wings
which are more 1ike the practical aircraft shapes. Secondly, considering
the importance of the adverse pressure gradient near the trailing edge on
vortex bursting, it would be desirable to include the trailing edge condi-
tion in a unified theory. Finally, it would be advantageous to obtain a
more detailed flow picture near the vortex core than can be provided by
means of a discrete vortex model,

Thus, it is suggested that a 1ifiing surface theory of the kernel-
function type should be used rather than the discrete vortex type. Normal
lifting surface theory [Ashley and Landah) (1965)] of the kernel-function
type fails to consider vortex sheet roll-up in obtaining the kernel-function
formulation. This is significant, since the study would extend to infinity
for the steady problem, and it is this simplification that allows the con-
tribution of the sheet to be neglected.

Lifting surface theory has generally been applied to attached flow
models where the roll-up of the trailing wake only contributes as a3 and
thus can be ignored, since the theories are linear in 1ift. To extend
existing 1ifting surface theory to the separated flow problem, however,
does not appear impossible, although it may be necessary to settle for a
soiution which is not as rigorous as the original development.

Two possible approaches immediately suggest themselves. First,
one could consider an unsteady 1ifting-surface theory of the type developed
by Djojodihardjo and Widnall (1969) following a suggestion by

Djojodihardjo, R. H., and Widnail, S. E., "A Numerical Method for the Calcu-
lation of Nonlinear, Unsteady Lifting Potential Fiow Problems," AIAAJ, 7,
No. 10, pp. 2001-2009, Oct. 199,
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Ashley {1966) which allows the consideration of nonlinear lifting problems.
The assumptions are similar to most 1ifting surface theories with respect

to inviscid, irrotational, and incompressible flow outside the wing and wake.
They are able to consider the wake roll-up because at their initial time,
they start with no wake and for any finite time, the wake remains finite

and therefore its effect can be explicitly considered.

To attack the present problem of a steady vortex sheet, it may be
possible to study the problem for some finite time and, if the solution
approaches a constant value, this can possibly be used as a steady-state
solution.

Alternatively, one could develop a model based on the idea of Mangler
and Smith (1959) that only the flow field near the wing has to be modeled
exactly, and farther away simplifying assumptions could be made. This sug-
gests the possibility that the flow field can be constructed of a wing and
a finite portion of the rolled-up vortex sheet near the leading edge while
the contribution of the far wake could be considered to be similar to the
case for the 1ifting surface problem and it may be possible to eliminate it
from the evaluation of the integral if the solution shows convergence as
the segment of the roll-up sheet which is explicitly represented is increased.
Also, it may be possible to replace the core of the leading-edge vortex in
the manner of Mangler and Smith by an asymptotic representation. For a first
approximation, one might consider the models of Mangler and Weber (1966) or
that of Hall (1961) and Ludwieg (1962).

Such a combined flow field should adequately model all of the
fundamental phenomena of the vortex flow field. Viscosity and compressibil-
ity has been shown to have negligible effects outside of a small core
region and the boundary layer. From agreement between linear 1ifting-surface
theory and experiment, the neglecting of the boundary layer thickness on
the wing and the finite thickness of the wake seems justified.

Once the basic vorticity elements have been modeled, all the
aerodynamic characteristics can be obtained and that would provide a unified

Ashley, H., "Machine Computation of Aerodynamic Loads in Linear and Nonlinear
Situations,”" AFOSR 66-1440, M.I1.T. FDRL Rept. 66-5, 1966.
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tneary for the vortex flow phenomena on this simplified planform. The nert
>ten would be to extend the model to inciude the effects of control surfaces
and of yaw and roll where the vortex flow phenomena are also important.
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SYMBOLS (commonly used)

zﬁr_ﬁc'ﬂl)>

R R = X - M O O

>
< ©

:Cﬁmm1|1m=uxnvoaa‘:{r—

constant

aspect ratio

a/K, constant characterizing delta wings
local semispan

coefficient of iift

coefficient of normal force
constant; phase velocity; chord
operator

function

function

total head

/T

tane = 1/4 AR for delta wings
potential lift factor

vortex 1ift factor

Tift

Mach number

constant

apparent mass

order

pressure

dynamic pressure; complex velocity
radius

real part of a complex quantity
radius

r/x

complex plane, 2n = S - 1/S; surface function
surface coordinate

complex plane; time

free stream velocity

radial velocity in cylindrical coordinates; velocity in x-direction
in rectangular coordinates
transverse velocity
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MBOLS (cont'd)

circumferential velocity in cylindrical coordinates; velocity

in y-direction in rectangular coordinates

complex potential

axial velocity in cylindrical coordinates; velocity in z-direction
in rectangular coordinates

axis of symmetry

spanwise axis

complex plane, y + iz

complex plane

axis perpendicular to wing surface

constant; angle of attack

constant

circulation

ratio of specific heats; vortex strength
change; difference

increment of sheet length in transformed plane
semiapex angle of delta wing
complex plane; 1 + n?

complex plane; R B

azimuthal angle; complex plane
vr

wave number; sweep angle
constant characterizing spiral
kinematic viscosity

function determining shape of sheet

density; vortex location

frequency; complex plane; arc parameter

velocity

velocity potential

swirl angle = tan”! v/w; velocity potential; angle
stream function

complex plane, el - lﬁtzif
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SYMBOLS (cont'd)

Subscripts (commonly used)

(). value at vortex core
( Jax value at axis
( )x differentiation with respect to x; similarly for y and 2

Superscripts (commonly used)

() differentiation with respect to independent variable
(") complex conjugate

(o) differentiation along arc

() quantity in transformed Z*-plane
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= — ———
Elements of flow over g triangular Elements of the vertical component of fiow
wing having o rounded leading over section AA
edge ot high Reynolds numbers

B
Elements of fiow over a triongular Stements of the vertical component of flow
wing ot low Reynolds numbers or over section BB
over atriongular wing hoving a
sharp leading edge
Figure |. Diagrams of the fiow over trianguior wings [oHev Wilson ond Lovell (I947)].
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Flow surfaces
corresponding to
particle paths

fe)
(b}
(a)

(g)
(b)

-}

Figure 2. Schemotic sketches showing the (suggested)
flow on the suction side of the 70° tiat plate
delte wing ot a = 15° [oHer Ornberg (I954)J.
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Figure 3. Axial filaments af dye [aﬁor Lambourne and Bryer (|96l)].
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— Experiment (o] Q.l 02
— .~ Theory, eqn. (4) withrg, r/b

~—~= Theory,eqn. (4) withrg3 Leading edge J
k=-0.8

. BI
Quter horizontal troverse
1 1 L
o] 0.1 0.2 0.3 0.4
r/b

Figure 5. Vortex sheet shape {top) and azimuthal velocity
{bottom) [ofter Kichemann and Weber (1965)].
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oz r/b
Theory

Experimant = mutually
perpendicular troverses

Figure 6. Experimental and theoretical profiles of axial (top) and circumferential
velocit; (bottom) [after Hall (1961)],
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neutral

Stable

Unstable

Figure 7. Staoble and unstable regions in the E,,, 'Ev Plane
[after Ludwieg (1961)].

118



.mem: jessog ._o:ou_ $u01091 PIBIMO|} UMOPYDOIQ XJIOA g 8inbi4

(58405 )
(r) sumbBey uoijouboysg

r
{audije pagiAug)
[£) woiBay Dy

T
(1o3ndiie prasau;)
(2) ucebBas umopyoa.g

{31oqoiod snoasip)

(1] wonBas joavipuijiasons

119



Figure 9. Coordinate systems for potentiol flow problem [afnr Legendre (l952)].
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o uo 16° 159 z0° 25° 30° o

Figure 10. Lift curves for various sweep angles; dashed lines represent Jones result
[after Legendre (1952)].
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Figure Il. Coordinate system notation [afm Brown and Michaoel (I954)].
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Figure 12, Pressure distributions [after
Brown and Michael (1954).
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F‘tFixqai

Figure 13. Coordinates for cross -section [ofler Mangler ond
smith (1957)).
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Fiqure 14. Approximation to vortex sheet [after Mangler and Smith (1957)].
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Figure 15, Notation in transformed plane [after Mangier and Smith (l957)].
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Figure 16, CN/K2 Theory and experiment? [ofler Mongier and Simith ’ 3‘57)],
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bdg II|

.
Frgure 18. Configuration in trarsformed plane, Z%: y*+iz*
O, Pivotol poats; X, intermediate ponts. [after Smitt (1968)].
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03

Figure 19. Vortex sheet shapes and isolated vortex positions for a = 0.91.
0, Brown 8 Michoe! (1954), x ond =x=—x,  Mangler 8 Smith (i959);
O ond ===« present calculation, n = 14, A ghd === == present
calculation, n = 21, ¥ ang === present calculation, n= 39 [oﬂer
smith (1968)).
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0.3

—=—— Present colculation
~——-— Mongler and Weber (1966)
—=—=—Mangler and Smith (1959)

A Y Positions of local extrema according to Maskel! (unpublished)

I I I | ! | | |

o

100° 200° 300° 400° 500° 600° 700° 800°
8
|

—

900°

——— Present calcufation
~-— Mangier and Weber {1966)

-=== Mangier and Smith (1959)
ond Maske!l (unpublished)

] 1 | |

0% 1.0
o/b

Figure 20. Sheet shape (top) and sheet strength (bottom) compared with
osymptotic solutions, o= .91, n = 39 [ufmr Smith (lQSSn)].

131

235



5 -
' -T—-chku et ol (IBET) !
—- AR = |0, a = i%® |

|
i |
| o Prggect Nt 20

G‘l‘ o a =107 —
|
|

03 i

/b
02 |||I -~
ol |
|
/
0.0 1 1
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Figure 2i. Vortex sheet shape (top), horizontal (middle) and vertical
{bottom) position of vortex center [after Puitin (1973)].
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Legendre (1964)

r—_Legendre (1952)

Brown 8 Michgel
l— {1954)

Werle
{experimental)

£p 2 03 e

Mangler & Smith (1959)
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Figure 22. Vortex oxis locus comparison of theories
with test resulits [ofter Legendre (1966)].
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Figure 23. Mathemotical model of vortex seporotion ona
3-0 body [after Angefucci (1971)].
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Smith (1968) results
Sock's (1967) results

®Present results

a/K

. Vortex sheet (top), pressure coefficient
(middle) and non -lineor normal force
yncrement (bottom) [afier Fink and Soh
(1974]).
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Figure 25. Calculation for a deltc wing with leading - edge separation by progressive
deformation of o rectaongular wing [oHu Rehbach (|973b)].
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Figure 26. Verification of conicolity of the flow [oﬁer Rehbach ('973b)].
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Figure 27 Vortex sheet at the trailing edge (top) ond normal force coefficient
(bottom) [after Renbach (19730)].
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Figure 28. Variation of K (top) and K, (hottom) with
ospect ratio [after Polhomus (1966)],
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