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INTRODUCTION 

The low speed performance, safety and handling qualities of high 

span loading aircraft depend on the structure and stability of the vortex 

flow created by the wing. The development of a unified theory of vortex 

flow phenomena near the wing would permit one to predict the lift distrib- 

ution on such a wing as well as the structure and stability of the free 

vortex flow field. In principle, such knowledge would allow one to tailor 

the wing-vortex interaction to achieve good handling qualities and a stable 

flow over the wing. At least, detailed knowledge of the vortex ohenomena 

might enable the designer to reduce their possible detrimental effect on 

the aerodynamic characteristics of the aircraft. For example, consider the 

adverse effects of breakdown of the leadinq-edne vortices, studied by Hummel 

and Redeker (1967). Another example is the effect of vortex filaments on 

yawed aircraft, as examined by Landahl and Widnall (1971). 

The flow field of high aspect ratio winas have been handled fairly 

well by existing lifting-surface theories. [For more detail, see the recent 

surveys by Landahl and Stark (1968) and Ashley and Rodden (1972).] Linear 

lifting surface theories fail, however, when strong vortex flows are created 

near the wing. This failure is particularly evident for the case of the 

small aspect ratio wing, where the pressure distribution is strongly effected 

by the near flow field. 

Hummel, D., and Redeker, G., "Über den Einfluss..des Aiifplatzens der Wirbel 
auf die aerodynamischen Beiwerte von Deltaflügeln mit kleinem 
Seitenverhältnis beim Schiebeflus," Jahrbuch 1967 of W6LR, pp. 232-240. 

Landahl, M. T. and Widnall, S. E., "Vortex Control," M.I.T., Supported by the 
Air Force Office of Scientific Research under Contract Nos. AF49(638)-1622 
and F44620-69-C-0900, in Olsen, Goldburg & Rogers, 1971. 

Landahl, M. and Stark, V., "Numerical Lifting Surface Theory-Problems and 
Progress,""AIAA J., 6, No. 11, pp. 2049-2060, Nov. 1968. 

Ashley, H. and Rodden, W., "Wing-Body Aerodynamic Interaction," Annual Review 
of Fluid Mechanics. Vol. 4, pp. 431-472. 



The delta winq of low aspect ratio is of primary interest in modern 

aerodynamics for transonic and low supersonic speed fliqht, because of its 

flight properties which include a fairly smooth transition from the subsonic 

to the sunersonic flight regime.    Furthermore, the flat plate delta wing has 

been more amenable to theoretical consideration and consequently much of the 

recent research on low-asptct-ratio wings with regions of concentrated vor- 

tlcity has been restricted to delta-wing-tyoe geometries.    The delta wing 

configuration also demonstrates most of the characteristics of vortex flow 

phenomena near the wing and it is hoped that eventually the results for the 

delta wing will  lead to extensions to more oenera"  olanforms.    Thus, because 

of its role as a practical wing nlanform and its simplicity, this planform 

will be the primary subject in the following report. 

The following general  procedure will be used to accomplish this 

background study for a unified vv.heory of vortex flow phenomena. 

1) Review existing theories and mathematical models for the individual 

elements In the vortex-wing flow field.    This will  Include models for the 

roll-up of a vortex sheet, the development of axial gradients, and the 

occurrence of vortex breakdown. 

2) Review existing models for their ability to predict the response of the 

flow field elements to external   Influences, which is necessary to construct 

a theory involving Interactions between wings and free vortices.    This would 

Include a discussion of evistina models for winqs with free vortices based 

on slender-body theory as well as existing models for their ability to predict 

response of a vortex to external  pressure gradients. 

3) Identify areas where further research is necessary to complete the theory 

and to suggest methods of approach to these problems. 



Historical Developmert 

When attenoting to devise a unified theory of vortex flow nheno^ena, 

one realizes that the actual flow is governed by the Navier-Stokes ecjations 

of motion, which are both nonlinear and elliptic. Their solution oroves to 

be an impossible task except in the simplest of flows. Thus, one is forced 

to search for a simolified form for the governing equations and one resorts 

to experiment to discover the important parameters governing the flow. Early 

experiments demonstrated the need for a theory which applied to low aspect 

ratio wings with strong vortex flows, in place of the linear liftina surface 

theory for high aspect ratio winqs. 

Winter (1936) conducted an extensive series of tests on low aspect 

ratio wings, including the delta wina, and noted the appearance of leadinq- 

edge vortices and the nonlinear character of the lift. Wilson and Lovell 

(1947) gave a more detailed picture of the flow field over a triangular 

wing and compared this flow to that over the standard attached flow model of 

linear lifting surface theory, which only occurs at relatively low angles 

and with rounded leading edges, while the separated flow field occurs at 

higher angles of attack and sharp leading edges. [See Figure 1.] However, 

their primary concern were the forces on the wing, rather than a detailed 

flow description. 

A fairly complete physical description of the flow field was given 

by Örnberg (1954). [See Figure 2.] He considered the separation at the 

leading edge and Included the form of both the primary separated vortices 

(d) and of the secondary vortices (e) In a schematic sketch of the flow over 

a flat plate delta wing. 

X 

Winter, H., "Flow Phenomena on Plates and Airfoils of Short Span," NACA TM 
No. 798, 1936. 

Wilson, H. and Lovell, J., "Full-Scale Investigation of the Maximum Lift 
and Flow Characteristics of an Airplane Having Approximate Triangular 
Planform," NACA RM No. L6K20, 1947. 

Örnberg, T., "A Note on the Flow around Delta Wings," KTH Aero TN 38, R.I.T., 
1954. 
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G. H. Lee (1958) conducted oil flow tests on the uoper surface 

to study the boundary layer flow picture, Including secondary seoaration 

and ••eattachment. 

Elle (1958) conducted extensive flow visualization studies involving 

air-bubble suspension in a water tank and smoke in a wind tunnel. For the 

water tunnel results, slender delta wings were tested and showed a "nearly 

linear vortex center-line from the aoex downstream to somewhere near the 

trailing edge, at which point it bent off rather sharply" in the direction of 

the free stream, which indicated that trailing-edge effects might be limited 

to a small region. However, these early results are qualitative rather than 

quantitative. 

Early attempts to define the flow field were made by Fink and Taylor 

(1967) who carried out some total head traverses to describe the vortex core 

position and the nature of the leading-edge separation at low speeds. For 

a 20° angle delta wing with sharp leading edges, they obtained unseparated 

flow for an angle of attack of 3°; for angles of attack greater than 5°, the 

flow was clearly separated. According to Fink and Taylor, the principal 

features of the cross flow (viewed at a constant chordwlse station on the 

wing), are: 

1) Separation of the boundary-layer flow from the pressure side at the 

leading edges. 

2) Formation of vortex cores In the stream from the boundary-layer fluid 

which has left both surfaces of the wing upstream of the transversed station. 

3) Secondary separation of suction-side boundary-layer a little outboard 

of the main vortex position. 

4) Reattachment of the cross-flow outboard of the secondary seoaration 

points. 

Lee, G. H., "Note on the Flow around Delta Wings with Sharp Leading Edges," 
ARC R&M 3070, Sept. 1958. 

Elle, B. J., "An Investigation at Low Speed of Flow Near the Apex of Thin 
Delta Wings with Sharp Leading Edqes," ARC R&M 3176, 1958. 

Fink, F. T. and Taylor. J., "Some Early Experiments on Vortex Separation," 
ARC HSM 3489, 1967. 
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They found that increasing the angle of attack led to: 

1) A movement of the main vortex cores away from the leading edges. 

2) A progressive reduction of the total pressure in the vortex cores. 

3) An increased intensity of the vortex sheets which spring from the 

primary separation points. 

4) Progressive reduction of the boundary layer thickness on the central 

portion of the suction side of the wing. 

They also investigated the static pressure along seven rays passing 

through the apex to determine whether there were stations at which the 

pressure distribution might be taken to be approximately conical. However, 

their results indicate that even for an 80° sweeo wing, the flow cannot be 

described as conical, although the pressure did change slowly over the middle 

third of the wing. The trailing edge was found to have a considerable effect 

on the upstream flow. The lift was shown to be greater by Fink and Taylor 

for the delta wing with separated flow than would have been predicted by 

linear theory. 

In 1957, Peckham and Atkinson (1957) noted that when the incidence 

was increased above 25° for a gothic wing of aspect ratio one, the "conden- 

sation trail representing the vortex core appeared to 'bell-out' before 

disappearing — as though the core was becoming more diffuse." 

Elle (1958) noticed the same phenomena and described it more 

completely. He coined the term "breakdown" since the pattern broke down. 

The centerline became "wavy in front of the breakdown point (Figure 3). 

This slight waviness very soon becomes unstable with the result that the 

vortex center-line changes shape into a low pitched spiral." After this, 

the fluid appeared to spread out rapidly. 

He noted that the breakdown occurred at higher incidences the 

higher the leading-edge sweep and that it first occurred far downstream of 

the trailing edge and moved upstream as the angle of attack was increased. 

Peckham, D. H. and Atkinson, S. A., "Preliminary Results of Low Speed Wind 
Tunnel Tests on a Gothic Wing of Aspect Ratio 1.0," ARC CP No. 508, 
1957. 
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Again, early descriptions were fairly qualitative and only later were 

quantitative descriptions of the vortex core obtained. 

Earnshaw (1961) attempted to obtain the small-scale structure of 

the velocity field of the vortex layer spiraling into the core. He obtained 

his results with a five-tube yawmeter for a delta wing of unit aspect ratio. 

He concluded from his experiments that the leading-edge vortex can be divided 

Into three regions; 

1) A vortex core of approximately 30% of the local semispan in diameter 

wherein traces of the vortex sheet are small. The flow here was essentially 

conical except for a slender region along the axis. 

2} A viscous sub-core of approximately 5% semispan In diameter in which the 

gradients of total head, static pressure and velocity are high, and conse- 

quently viscosity cannot be neglected. Within the sub-core, circumferential 

velocities were found to be almost equal to the free stream velocity and 

axial velocities of 2.3 times the uniform velocity were recorded at 15° angle 

of attack. 

3) A region where the trace of the vortex sheet is still clear, between the 

leading edge and the vortex core. 

Lambourne and Bryer (1961) described the vortex breakdown in detail. 

When vortex bursting occurred, there was an expansion of the fluid flow along 

the axis cf the laminav vortex which resulted in the formation of a large 

turbulent core. [See Figure 3,] 

They found two oossible ways in which the vortex could burst. One 

was an asymnetrical spiral arrangement in which the dye remained in a discrete 

filament after the expansion of the core. The other possibility was an 

axisymmetrical arrangement in which the Jye is diffused over a bell-shaped 

region; this latter form was only occasionally observed according to 

Lambour'c u;id Bryer, 

Earnshaw, P. B., "An Experimental Investigation of the Structure of a Leading- 
Edge Vortex," ARC R4M 3281, 1961. 

Lambourne, N. C. and Bryer, D. W., "The Bursting of Leading-Edge Vortices- 
Some Observations and Discussion of the Phenomena," ARC R&M 3282, 1961. 
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They considered the more conmon asymmetric breakdown to occur in 

three successive stages [See Figure 4]: 

1) A sudden deceleration o^ the fluid along the axial filament. 

2) An abrupt kink where the axial filament was deflected into a solral 

configuration, which persisted for a few turns. 

3) A breakdown to large-scale turbulence. 

Their exoeriments showed that the burst position was sensitive to the 

pressure distribution along the vortex.    They concluded that: 

1) An essential feature for bursting to occur was believed to be a low 

total pressure region at the axis of the laminar vortex. 

2) A positive pressure gradient was required which could, for example, be 

furnished by viscous action within the core of the vortex or the deceleration 

of the flow external to the core due to the presence of the trailing edge. 

They also found that the bursting caused a loss of suction locally 

at the surface. 

These are the basic phenomena observed over the delta wing at 

moderate angles of attack when the flow separates at the leading edge.    Some 

of the phenomena still require some clarification.    For example, Bergeson 

and Porter (1960) conceded that opinion on the effect of secondary vortices 

was quite diverse.   This Is because of their small scale which makes accu- 

rate measurement of the flow properties difficult.    Also, experimental evi- 

dence of the effect of viscosity on bursting of the vortex Is small.    A 

qualitative indication from comparison of water tunnel [Elle (1958)] and 

wind tunnel experiments suggest the bursting phenomena is not strongly 

Reynolds number dependent.    However, It Is difficult to separate out the 

other effects which might have caused the differences between experiments 

with delta wings of similar aspect ratio.   These other effects Include the 

thickness and roughness of the planform.    More will be said on this later 

when experimental results are compared with theory. 

Bergesen, A. J. and Porter, J. D., "An Investigation of the Flow around 
Slender Delta Wings with Leading Edge Separation," Princeton Rep. 510, 
1960. 

11 
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VORTEX FLOW ELEMENTS 

As described 1P the introduction, an attempt will be made to study 

the Individual elements In the vortex flow field. The first element to be 

considered are the spiral sheets from the leading edges which terminate 

in a core region of rotational flow. Recently, Smith (1966b) oublished an 

article on the formation of vortex sheets which includes historical as well 

as fairly recent contributions. As is seen from the experiments on delta 

wings with sharp leading edges, the primary separation occurs along them at 

relatively small angles of attack. The separated flow forms a spiral vortex 

on each wing half under the Influence of its own vorticlty. In such a 

flow, viscosity is important only in regions of large velocity gradients, 

i.e.. In the boundary layer, at the point of separation and in a small viscous 

sub-core at the center of the spiral. Since the primary vortex creates a 

suction peak on the wing below It, the boundary-layer flow after passing 

under it towards the leading edge encounters an adverse pressure gradient 

and separates to form the secondary vortex. Smith reports that outside of 

those regions, the effect of Reynolds number appears small. 

This implies that one can construct an inviscid model to describe 

the large-scale features of the flow. Although the model would have to 

Include rotational regions, the vorticlty is negligible in most of the flow 

field, and he argues that it is attractive to regard the vorticlty to be 

concentrated on vortex sheets. Thus, the entire flow field, outside of the 

sheets is considered Irrotational and consequently, a velocity potential 

exists. 

Due to the difficulty in handling the remaining nonlinear problem, 

further assumptions are often made. First, the flow can be considered 

conical. This is strictly true over a supersonic flat plate delta wing and 

has been seen to be approximately true away from the trailing edge for 

subsonic flow. To further simplify the problem, Legendre (1956) attempted 

Smith, J. H. B., "Theoretical Work on the Formation cf Vortex Sheets," in 
Progress in Aeronautical Sciences. Vol. 7, D. Küchemann, ed., pp. 35-51, 
1966b. 

Legendre, R., "Ecoulement subsonique transversal a un secteur angulaire 
plan," C. R. Acad. Sei., 243, p. 1716, Nov. 1956. 

12 
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to construct conical incompressible models of the flow and discovered that 

this led to the appearance of singularities in the flow field. In view of 

this difficulty of constructing a conical, incompressible, flow model, the 

nonlinear character of the governing equations without the compressibility 

assumption, and the occurrence of leading-edge separation only for slender 

delta wings. Smith argues It Is reasonable to employ the slender body theory 

of Munk (1924), Jones (1946), and Ward (1949), to calculate the properties 

of the model. Unfortunately, slender-body theory only applies to flow in 

which the streamwise gradient of the streamwise velocity component is small 

compared to transverse gradients. However, In the slender conical vortex 

sheet, wound Into the appropriate spiral, the velocity component along the 

axis will later be shown to tend to infinity logarithmically. Thus, the 

slender body theory Is violated. 

Some of the objections to the use of an indefinitely rolled-up 

vortex sheet as a model of the flow and to the use of slender-body theory 

to describe an Incompressible flow are made by Roy (1966). 

Munk, M. M., "The Aerodynamic Forces on Airship Hulls," NACA Rep. 184, 1924. 

Jones, R. T., "Properties of Low Aspect Ratio Pointed Wings at Speeds Below 
and Above the Speed of Sound," NACA Rep. 835, 1946. 

Ward, G. N., "Supersonic Flow Past Slender Pointed Bodies," Quart. Journ. 
Mech. and Appld. Math., 2, p. 75, 1949. 

Roy, M., "On the Rolling-Up of the Conical Vortex Sheet Above a Delta Wing," 
in Progress in Aeronautical Sciences. Vol. 7, D. Küchemann, ed., pp. 1-5, 
196^ 

13 
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Vortex Sheets 

Some of the works on the form of the rolled-up sheet will now be 

considered. Küchemann and Weber (1965) published a review of the available 

models. Following Mangier and Weber (1966), they consider two methods of 

analysis. The sheet can be assumed to be shed and then roll uo as a function 

of time; or the sheet can be assumed to be rolled up from the start of the 

analysis. The first method of analysis will be considered further In the 

section on the vortex models using discrete elements of vortlclty. The 

second method has been used to develop theories for continuous spiral sheets. 

The following development of the problem can be found In Mangier 

and Weber. They consider a steady three-dimensional flow past a body which 

sheds a thin vortex sheet. Two conditions must be satisfied by the vortex 

sheet. It must be a stream surface and it cannot sustain a pressure differ- 

ence across It. Thus, the velocity vector on either side of the sheet must 

lie In the sheet. For zero total pressure difference, the vortlclty vector 

must lie along the mean flow direction. 

For the two dimensional case, they obtain the result that the flow 

must be unsteady to satisfy the pressure condition. Then the vortlclty Is 

along the generators of the cylinder and the sheet grows to satisfy the 

pressure condition. 

For the delta wing leading-edge core problem, one Is primarily 

interested in a three-dimensional growing vortex with axial velocity. Mangier 

and Weber model this phenomenon by assuming that the flow is steady. Incom- 

pressible, conical and homentropic. The governing equation becomes the 

continuity equation. They use a change of variables to simplify the boundary 

conditions by mapping the region between turns of the spiral onto a strip. 

They then assume an asymptotic expansion In the new variables for the Inner 

part of the core to avoid the singularities mentioned earlier for conical. 

Küchemann, D. and Weber, J., "Vortex Kotions," ZAMM, «, No. 7-8, pp. 457- 
474, Dec. 1965. 

Mangier, K. W. and Weber, J., "Flow Field near Centre of a Rolled-Up Vortex 
Sheet," RAE TR No. 66324, 1966. 
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incompressible flow. They obtain an asymptotic solution by using terms of 
equal order in the differential equation. However, they note "the present 
approach of term by term evaluation of the asymptotic expansion cannot 
provide Information about its convergence." Although convergence cannot be 

proved, additional terms In the approximation can be generated by this scheme. 
Mangier and Weber find for the velocity comoonents in cylindrical coordinates 
(x, r, 6) in the neighborhood of the axis 

w = c(k-lnr) t TTCFO/Z + k - lnr)1/2 + ... = axial velocity (1) 

u = - l/2cr ± Trcr2(l + k - Inr) (1/2 + k - lnr)1/2 + ... = 
radial velocity (2) 

- 1/2 v = c(l/2 + k - Inr) ' ± iTcr{k - Inr) + ... = circumferential 
velocity   (3) 

where c and k are free constants and r = r/x. The shape of the sheet is 
obtained by Integrating 

^r'ZT. ] rT?7 + 0(ln?) (4) 
dr  ^(1/2 + k - Inr)1^ 

They similarly derive the results for the unsteady two-dimensional 
case. As a special case of the unsteady problem, one can derive the conical, 
slender-body result. They obtain for the sheet shape 

■4 - - c/?2 (5) 
dr 

which Mangier and Weber note Is the result obtained by Mangier and Smith 

(1959).    They also find the radial and circumferential velocities 

t 

Mangier, K. W. and Smith, J. H. B., "A Theory of Flow past a Slender Delta 
Wing with Leading Edge Separation," Proc. Roy. Soc. London, Ser. A, 251, 
p. 200, 1959. 
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u - ± f r2 (6) 

v « C i wr (7) 

where C is a constant.     There Is no mean flow for the second result in the 

radial direction since there is no place for the flow to go.   This Is a 

corranon falling of two-dimensional theories.    Furthermore, the azlmuthal 

velocity approaches a constant near the axis.    Since the potential is two- 

dimensional  in the conical sense, It is possible to obtain the axial velocity 

as 

w = C2{1 + k - Inr) + 0(r) (8) 

which blows up at the axis and so the slenderness assumption Is violated by 

the slender, conical solution, while the radial and tangential velocities 

also differ from the nonslender results.    Thus. Küchemann and Weber con- 

cluded, "It is therefore, difficult to see what physical significance it 

(slender core) has." By suitable choosing, the two constants for the non- 

slender core to match the experimental spiral of Earnshaw (unpublished at 

the time of Küchemann and Weber), they obtain fairly good agreement between 

experiment and theory.    [See Figure 5.]   A closer Inspection of the experiment- 

al data of Earnshaw shows the swirl component falls to zero at the axis.    This 

represents the small viscous sub-core.    Also, the axial velocity Is finite 

at the core axis. 

These are the primary results for infinite sheets. In connection 

with more complete models of the flow field, additional representations of 

the vortex sheet will  be presented. 

16 



— ■ .  ■ — — 

Vortex Core 

The core structure shall be treated next. Hall (1966b) oresents 

a summary of the state of the art and also includes a brief description of 

vortex breakdown. [There are a considerable number of works devoted to the 

trailing edge vortex, e.g., Moore and Saffman (1971, 1973), Newman (1959), 

Rott (1958), Batchelor (1964), Widnall and Bliss (1971). Although this is 

a different phenomenon, possibly some of these techniques to handle regions 

of concentrjted vorticity can be extended to the leading edge vortex.] 

One of the first theoretical analyses on the leading-edge vortex 

core was by Hall (1961) and Ludwieg (1962). They both assume an axisymmetric, 

conical, incompressible, inviscid, rotational flow in the core. The flow then 

depends on a single oarameter r = r/x. They obtain the following differential 

equations for the three velocity components (u, v, w) in cylindrical coordi- 

nates (r, 6, x) from the Euler equations of motion 

Hall, M. G., "The Structure of Concentrated Vortex Cores," in Progress In 
Aeronautical Sciences, Vol. 7, D. Klichemann, ed., Peraamon Press, pp. 53- 
110, 1966b. 

Moore, 0. W. and Saffman, P. G., "Axial Flow in Laminar Trailing Vortices," 
Proc. Roy. See, Ser. A., 333, pp. 491-508, 1973. 

Moore, D. W. and Saffman, P. G., "The Motion of a Vortex Filament with Axial 
Flow," Phil. Trans. Proc. Roy. Soc, Ser. A, 272, pp. 403-429, Oct. 1971. 

Newman, B. G., "Flow in a Viscous Trailing Vortex," Aeron. Quart., J£, pp. 
149-162, 1959. 

Rott, N., "On the Viscous Core of a Line Vortex," CR Acad. Sei. pp. 543-553, 
1958. 

Batchelor, G. K., "Axial Flow in Trailing Line Vortices," JFM, 20, pp. 645- 
658, 1964. 

Widnall, S. E. and Bliss. D. B., "Slender-Body Analysis of the Motion and 
Stability of a Vortex Filament Containing an Axial Flow," JFM, 50, pp. 
335-353, 1971. 

Hall, M. G. "A Theory for the Core of a Leading Edge Vortex," JFM, n., pp. 
209-228, 1961. 

Ludwieg, H., "Zur Erklärung der Instabilität der über angestellten Delta- 
flügeln auftretenden freien Wirbelkerne," Z. Flugw., 10, pp. 242-249, 
1962. 
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2-2     1 - 
ruu' - v - r wu ■ - - rp' (9) 

•2 
ruv' ♦ uv - r wv' «0 (10) 

ruw' - ^ww' ' - r2p' (11) 

ru' + u - r2*'  = 0 (12) 

where ( )' represents differentiation with respect to r. They assume a 

slender core r << 1, which implies u << v, u << w. They solve the resulting 

differential equations and after applying the boundary condition that u is 

not infinite at the axis, they obtain 

u = - l/2cr (13) 

v = cA In? + 1/2 + k (14) 

w = c(- Inr + k) (15) 

which is seen to be identical to the lowest order solution qiven by 

Mangier and Weber. The effect of the discrete vortex sheet does not enter 

until the next higher term. 

Hall notes that this solution is not valid near the axis where 

viscosity becomes important to prevent the velocity from becoming infinite. 

By an order of magnitude estimate, Hall finds that for 

r/x = 0 vc ^wcx^ 
(16) 

where the subscript refers to the value at the outer edge of the core, viscous 

effects become important.    For this inner viscous sub-core, the flow is no 

longer conical  since viscous dissipation precludes the existence of a conical 

flow.    He emoloys a fairly involved calculation of the boundary-layer type 

and obtains a solution for the viscous sub-core which is presented in Hall 

(1961).    He matches the two solutions at an intermediate point to obtain a 

18 
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composite solution.    He conoares the results with exoeriment [see Fiaure 6] 

and notes that there is good agreement for the outer solution, but for the 

inner solutions, there is only qualitative aoreement.    The theoretical 

velocity and pressure gradients are too large and the peaks are too pro- 

nounced.    He suggests that a possible error was the fact that the theory is 

laminar while the actual vortex core flow might be turbulent, and notes that 

the use of an eddy viscosity would have imoroved agreement by increasing the 

diffusion of the core. 

Later, Stewartson and Hall  (1963) obtain a more acceptable inner 

solution.    Instead of matching at a finite point,  the new solution can be 

matched asymptotically from the inner solutions.    However, the solution Is 

found by numerical method, and although additional  terms can be obtained 

from the asymptotic expansion,  it is fairly complicated and is not discussed 

here.    The solution is obtained partly in terms of universal  functions which 

are tabulated. 

Brown (1965) considers another possibility.    It is known from the 

theoretical analysis that there is a low pressure region in the core.    Thus, 

the incompressible solution of Hall and others is onen to question.    To allow 

the problem with compressibility to be solved, the core flow Is assumed to 

be invlscid and consequently, conical everywhere.    The flow is still considered 

axiSymmetrie and by assuming slenderness, r « 1, the governing equations 

become 

PY-1(1  .^ß^)=^iMc2{A2.w2) 

dr 

(17) 

(18) 

Stewartson, K. and Hall, M. G., "The Inner Viscous Solution for the Core of 
a Leading-Edge Vortex," JFM, 15. pp. 306-318, 1963. 

Brown, S. N., "The Compressible Inviscid Leading-Edge Vortex," JFM, 22, pp.  17- 
32, 1965. 
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after some nanioulation; where z  1s the density, w is the axial velocity, 

where both have been normalized by their value at the edge o* the core, 

Y = ratio of specific heats, and the other terms are constants. A is related 

to the energy, M is the Mach number at the edge, and .: incoroorates constants 

from the edge of the core. 

The boundary conditions used are similar to Hall for the inviscid 

model and both swirl, v/w, and Mach number M can be specified at the outer 

edge of the core. The equations are solved numerically for a range of 

constants. It is seen that the effect of compressibility is confined to a 

sub-core near the axis. In the compressible case, the circumferential velo- 

city goes to zero while the axial velocity tends to a constant when the axis 

is approached. She remarks on the similarity between her results and the 

solution of Stewartson & Hall (1963) and obtains, usinq a boundary-layer type 

of approximation, a uniform solution for low Mach numbers with an incomoressible 

outer core and a compressible sub-core. It was oreviousl.y mentioned that 

the model of Hall and Ludwieg agreed to lowest order with the irrotational 

model of Mangier and Weber (1965). Similarly, Brown and Mangier (1967) later 

extend the Mangier and Weber solution to include the Brown model of the incom- 

pressible sub-core, as the first approximation for the irrotational flow. 

Brown, S. N. and Mangier, K. W., "An Asymptotic Solution for the Centre of 
a Rolled-up Conical Vortex Sheet in Compressible Flow," Aeron. Quart., 
18^ Part 4. pp. 354-366, Nov. 196/. 
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Vortex Breakdown 

The next element to be coni"dered is the vortex breakdown phenomenon. 

[See Hall (1972) for a criticism of available vortex models.] 

The study of the breakdown of vortex core has been studied in vortex 

tubes as well as over the leading-edge of the delta wing. The reason for this 

is two-fold. First, delta wings are not the only phenomena which incoroorate 

vortex breakdown. Secondly, the breakdown in a tube is much easier to control. 

It is noted by Hall (1966b) that a difference between the observations of 

Harvey in a tube and of Lambourne and Bryer (1961) over a wing, which may be 

important, is that while Harvey's flow in the vicinity of the stagnation 

points appears to be axially symmetric while that of Lambourne and Bryer 

usually shows a spiral disturbance. Also, Jones (1960) believed that "there 

is no great similarity between this (vortex tube) instability and vortex 

breakdown but it is hardly to be expected since the boundary conditions are 

so different. Because of the presence of the walls, viscosity is likely to 

have a much larger effect in disturbances in the tube than in a free vortex." 

Lambourne and Bryer (1961) also commented similarly on the differences and 

similarity of the two phenomena. Although vortex breakdown of the leading- 

edge vortices is of primary concern, the continuous growth of the vortex as 

a function of the distance from the apex increases the complexity of the 

problem. The vortex tube offers a simpler flow field and many theories are 

originally derived for a vortex tube. It is to be hoped that the theory can 

be extended to the leadinq-edge vortex later. An experimental contribution 

to this area was made by Sarpkaya (1970), who found spiral breakdown in a 

vortex tube as well as the axisymmetric breakdown found by earlier investiga- 

tors. Thus, this eliminates one of the primary differences between the two 

flow fields although the difference of the relative effect of viscosity is 

still unclear. 

Hall, M. G., "Vortex Breakdown", in Annual Review of Fluid Mechanics, Vol. 4, 
Annual Reviews, Inc., Palo Alto, pp. 195-218, 197Z. 

Jones, J. P., "The Breakdown of Vortices in Separated Flow," Univ. of 
Southampton, Rep. 140, 1960. 

Sarpkaya, T., "Experimental Investigation of the Vortex-Breakdown Phenomenon," 
NASA Accession No. N71-11955, 1970. 
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Vortex breakdown has elicited a number of plausible explanations. 

They can be divided into attempts to describe vortex breakdown as 

1) A result of hydrodynamic instability 

2) A separation phenomenon 

3}   A standing wave phenomenon 

4)   A finite transition between conjugate flow states 

5}   A trapped wave phenomenon 

6)   A normal development of the flow. 

Instability 

An early explanation of breakdown as an instability phenomenon 

was presented by Jones (1960).    He considers axisymmetric disturbances as 

a function of downstream distance superposed on a cylindrical  base flow 

that is incompressible and Invlscid.   The equations are simplified forms 

of the Navier-Stokes equations.    Assuming a disturbance of the form u = 

u^r) e11 x'a ', he obtains for the radial perturbation equation 

d 
dr 

u. du. 

dr       r 
i2 + _L- . d    fife A    + ^    3? (F dP 

2v(v/r + dv/dr) 

r(W-c)2 '1 (19) 

where w is the axial base flow and v is the tangential  base flow and c = a/X. 

He obtains the following condition for instability, when radial 

gradients of the radial flow are small at the inner and outer boundary values 
r,v and r

n 
and when the radial  velocity Is zero.    For unstable flows, the 

function 

dr 

[1+ dv] 
iL ^L\ £iv '•r drJ 

V dr' -    r     T2       2 (20) 

changes sign between r     and r , where c = a + iß, T = w(r) - %. 

His theory cannot be. In general, simplified and thus has limited 

usefulness. It can only be applied in specific examples. Furthermore, he 

only considers axisymmetric disturbances. 
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Ludwieg (1960, 1961) developed a theory for the study of the 

stability of the helical flow in a narrow cylindrical annulus based on the 

stability criterion of Rayleigh for rotating fluids. Rayleigh showed for 

the flow in an annulus, that the flow is unstable if the circumferential 

velocity falls off more rapidly than 1/r for the inviscid, axisymmetric 

case with zero axial flow. Ludwieg adds axial flow to the model to study 

helical flow. Again he assumes inviscid, axisymmetric flow in a cylindrical 

annulus. He assumes no radial velocity and a circumferential and axial 

velocity which are linear in r. 

v = vo + cv(r - ro) (21) 

w = wo + cw{r " ro) (22) 

where r is the mean radius of the annulus. 

He nondimensionalizes by the average radius and circumferential 

velocity v . 

c r       c r 
^ -. JLO  ^ =JLO (23) 
v  v0    w  v0 

and obtains a necessary and sufficient stability criterion by employing 

perturbation vortices.    Ludwieg finds that the flow is stable to helical 

disturbances for 

0-cv)(l -cv
2)- (f" W>0 W 

For c • 0, the Rayleigh criterion is recovered [see Figure 7]. He notes 

(1960) that the previous results only held for a narrow annulus. He suggests 

Ludwieg, H., "Stabilität der Strömung in einem zylindrischen Ringraum," Z. 
Flugw., 8, No. 5, pp. 135-140, 1960. 

Ludwieg, H., "Ergänzung zu der Arbeit: Stabilität der Strömung in einem 
zylindrischen Ringraum," Z. Flugw., 9, No. 11, pp. 359-361, 1961. 
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that a broader annulus could be considered by dividing It Into many snaller 

rings of small thickness ir. Although not proved, he surmises that the flow 

would be stable If for each radius, the stability criterion is satisfied. 

Hummel (1965) compares the experimental results he obtained over a 

slender delta wing (aspect ratio • .78) with the predictions of Ludwieg for 

a station before the breakdown and notes "a comparison of measurements with 

Ludwieg's stability theory furnishes good agreement." 

Ludwieg (1962) later applies his stability criterion to the Hall- 

Ludwieg vortex model. He finds, for this case, that the flow is most unstable 

at the outer edge, so the fact that this leading-edge model is not applicable 

at the core is of no concern. He obtains the result that the flow is unstable 

for ; = tan" v/w greater than 48°. 

Ludwieg (1965) further argues that his model provides for the asym- 

metric breakdown of the originally axisymmetric leading-edge vortex. He 

supports such a contention by referring to the experimental work of Hummel 

(1965), which shows such asymmetry. 

He explains that the instability theory can predict the violent 

nature of breakdown due to the low velocity and total pressure region which 

accompanies the vortex. Hall (1972) criticizes Ludwieg's explanation on 

the basis It failed to explain the axisymmetric [Ludwieg (1965) considered 

the axisymmetric and asymmetric breakdown distinct, while experiments by 

Sarpkaya (1970) have shown for the vortex tube that they are aspects of the 

same problem]. Finally, Hall argues that the theory is difficult to test 

since there are always velocity gradients of the required magnitude somewhere 

in the flow. Also, Hall questions the explanation of the suddenness of the 

transition and concludes that "the abruptness of the change In core structure 

Is explained by the existence of a critical state." 

Hummel, D,, "Untersuchungen über das Aufplatzen der Wirbel an schlanken 
Deltaflügeln," Z. Flugw., U,  No. 5, pp. 158-168, 1965. 

Ludwieg, H., "Erklärung des Wirbelaufplatzens mit Hilfe der Stabilitäts- 
theorie für Strömungen mit schraubenlinienförmigen Stromlinien," Z. Flugw. 
!3, p. 437-442, 196S. 

:>■*]], ". G., "A New Approach to Vortex Breakdown," in Proc. of 1967 Heat 
Transfer and Fluid Mechanics Institi.'-.e. '.A. Libby, ed., Stanford U. 
Press, pp. 319-340, 1967. 
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Jones (1960) suggests that compressibility may be another factor 

which should not be left out due to the analogy with suoersonic jets. 

Separation Phenomenon 

Hall (1967) drew an analogy with the boundary-layer separation, 

which separates near the value where the boundary-layer approximations fail. 

He observed from experiments involving leading-edge vortices, that the flow 

upstream only varied slowly in the axial direction, the axial gradients were 

small compared to the radial gradients and the stream surfaces were approxi- 

mately cylindrical.    By assumina that the flow is steady, laminar,  incompress- 

ible and axisymmetric, and assuming the flow is quasi-cylindrical, as above, 

he obtains 

3r     r     3x (25) 

r    ~ p 3r 

3v     uv 
3r     r -U- 

"f?*"!?'-^- 

f32v J. 1  3v      v 

+  V 32W  .   1  3w 
k3r               ' 

(26) 

(27) 

(28) 

from the Navier-Stokes equations. 

The boundary conditions are 1) those to be satisfied on the axis 

of symmetry, 2) one condition -- e.g., pressure is supplied at r = r (x) 

of the vortex core, where the shape must then be unprescribed -- and finally 

3) an initial velocity distribution is given at some starting point. Since 

the problem is now parabolic, rather than elliptic, one can calculate the 

solution by proceding step by step In the axial direction. The numerical 

method is outlined in Hall (1967). 

Breakdown is noted whenever the axial gradients become large and 

violate the quasi-cylindrical approximation. He says his results are con- 

sistent with observations concerning breakdown as a function of Reynolds 

numbers and of pressure gradients. He concludes that 1) breakdown depends 

on the stream surface (pressure) and on the swirl in the usual manner, and 
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2) for an Increase In Reynolds number, the breakdown moves upstream, 
although he said this Is a smaller effect than swirl or pressure. He 
compares his results with Benjamin (1962) and Ludwleg (1962) for a vortex 
tube breakdown. Ludwleg's criterion Is not In agreement in predicting this 
breakdown while Benjamin's Is. Hall (1972) criticizes the theory on the 
basis that It can only describe the flow up to the breakdown of the quasi- 
cyllndrlc approximation. It Is of merit though since it Includes the 
effects of Reynolds number and of pressure, although the onset of Hall's 
results (1967) fall to agree with the actual abruptness of the phenomena. 

Standing Wave Phenomena 

An early theory was that of Squire (1960) who developed the theory 
of long standing waves on a cylindrical vortex flow. Although he was 
investigating the breakdown of leading-edge vortices, for simDlicity, he 

considered only cylindrical vortices and symmetrical disturbances. He 
formulates the critical condition as follows: The minimum condition for 

the possible existence of a standing wave is sought. Because if it exists, 
he postulates disturbances which are generally downstream will spread 
upstream and cause the breakdown. He considers an inviscid, steady, 
incompressible flow, which is cylindrical. As a result, the unperturbed 
velocities w and u are functions of r only. It is supposed that this base 
flow has a steady disturbance of small amplitude superposed on it. Then, 
the stream function y satisfies the single equation derived from continuity 
and momentum equations by Squire (1956) 

2   2     ^ 

Ux^  Sr^  r 9rJ 
r2 dH  d(K2) 
 Hi J* a, (29) 

Benjamin, T.B., "Theory of the Vortex Breakdown Phenomenon," JFM, 14, pp. 593- 
629, 1962. ~ 

Squire, H. B., "Analysis of the 'Vortex Breakdown' Phenomenon, Part I," 
Imperial College, Aero. Dept., Rep. 102, 1960. 

Squire, H. B., "Rotating Fluids," in Surveys in Mechanics. Batchelor and 
Davis, ea., 1956. "  "     ""'" 
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where H is the total  head and Z-'K = circulatlo»».    Letting . =  .    + v, where 

v    is the unperturbed stream function and ,,  is the stream fanction of the 

disturbance, ^   satisfies 

Oh.l^.,^1 (30) 
0 o 

For t^, one obtains 

D2.   ^rZ^H   .dliÄ] (31) 

Assuming a periodic disturbance 

il), = f(r) cosa x (32) 

Implies the following form of the differential equation 

,     2«  w.. - rw    , 
V-if^fC^i^^-^-a2]^ (33) 

r w 

The criticality condition is determined by the case when standing waves 

first become possible. 

Squire first considers the simple case of 

r  v r     for r ^ 1 (34) 
v = j 

1 v /r     for r >^ 1 

w = w = constant (35) 

He solves this explicitly and finds that the smallest value of v /w which 

allows standing waves to exist is 

!£.a 1#20 = ^L± (36) 
wc       WC 

\ for which a = 0. Furthermore, he considers two other swirl values for 

constant axial flows also. He obtains from the three cases for a = 0, that 
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1.00 < HüiJi< 1.20 (37) 
-    w    - 

45° < ; = tan'1 [iSäi-^l < 50c (38) 

He concludes that vortex breakdown may occur when the ratio of maximum swirl 

to axial  velocity is slightly greater than one. 

Experimental research was reported by Harvey (1960) over a thin 

delta wing for a 20° apex angle delta winq with breakdown at approximately 

45"'.    He reports a swirl angle of SI0.    He does not state the location of 

breakdown nor the precise angle of attack. 

This theory is criticized by Benjamin (1962) because from a similar 

analysis he obtains the result that the group velocity of the standing wave 

is directed downstream, thus Squire's belief that disturbances would propagate 

upstream breaks down.   Ludwieg (1965) criticizes the theory since the Hall- 

Ludwieg vortex IJ always stable according to It.   Nevertheless, as Hall  (1972) 

noted, the theory does have the advantage of simplicity. 

Finite Transition 

Benjamin (1962, 1967) went on to develop a theory o* vortex break- 

down that was consistent with this observation.    He proposes that breakdown 

is a transition between two conjugate steady states of axisymmetric swirling 

flows being analogous to hydraulic jumps in open-channel  flow. 

The stream function in inviscid cylindrical flow can be described 

by 

d2^     1 # dir ^ r2 dH /,-. 
^7-fa7"-K^ + ra? (39) 

Harvey, J., "Analysis of the Vortex Breakdown Phenomenon, Part II," Aero. 
Dept.,  Imperial College, Rep.  103, 1960. 

Benjamin, T.  B., "Theory of the Vortex Breakdown Phenomenon,"JFM, 14, pp.  593- 
629,  1962. — 

Benjamin,   :,  B.,  "Some Developments  in the Theory of Vortex Breakdown," JFM, 
28,  pp.  65-84,  1967. 
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where H = total head, and <  - vr, where only Squire's (1956) axial derivative 

has been dropped. A pair of  flow stream functions .. and in  are defined as 

conjugates of one another if they satisfy the sane equation and sane boundary 

conditions at the endpoints .(0) = 0, *(r ) = j     and if the two curves do 

not intersect at any points other than their end&oints. Benjamin (1962) 

shows that if one is subcritical, the other is supercritical, where the 

critical condition is the same as Squire's (1960). The transition considered 

is from a supercritical flow which cannot support waves to a subcritical one 

that can. However, he finds that this subcritical flow has a greater momentum 

flux 

r 

2TT   (pw2 + p) rdr (40) 

o 

than the supercritical one. 

To conserve the momentum flux, he hypothesizes the existence of 

small  standing waves on the subcritical flow to balance the momentum flux 

for infinitesimal differences.    For more violent transitions, Benjamin 

proposes that turbulence accomplishes this same purpose.    Hall   (1972) criti- 

cizes Benjamin on the basis of the fact that it is only applicable to small 

perturbations, while actual  breakdown observed by Harvey (1962), for example, 

is marked.    However, in this case, the flow is not turbulent.    Furthermore, 

it says nothing about the structure of the breakdown.    Also, Benjamin, like 

Squire, only considers cylindrical  flows which is appropriate only for certain 

vortex tube flows.    Finally, although he extends the analysis for infinite 

radius, he does not consider the 'nore complicated problem of leading-edge 

vortices. 

Trapped Wave Model 

Due to Hall's criticisms that Benjamin's analysis cannot predict 

the location and mechanism of breakdown, Randall and Leibovich (1973) present 

Harvey, J., "Some Observations of the Vortex Breakdown Phenomenon," JFM, 1_4, 
pp.  585-592,  1962. 

Randall, J. D. and Leibovich, S., "The Critical  State:    A Trapped Wave Model 
of Vortex Breakdown," JFM, 58, pp. 495-515, 1973. 
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a similar theory for vortex tube flows, which eliminates some of these limi- 

tations. Their theory will only be treated briefly since extension to 

leading-edge vortices appears complicated. The node! is centered on a theory 

of long, weakly nonlinear axlsymmetrlc waves In tubes of slowly variable cross 

sections. 

They note the theory Is limited to small amplitude as Benjamin's 

(1962), but suggest that it can possibly be used as a model, rather than as 

a theory of breakdown. They consider a flow at the critical condition and 

obtain the following results: 

1) The flow Is supercritical upstream and subcrltical below. 

2) A stationary wave may occur only If the tube diverges in the direction 

of the flow, i.e., adverse pressure gradient. 

3) They obtain a bubble representing the boundary of the trapped wave. 

4) The calculated wall pressure Is similar to that found by Sarpkaya (1971). 

5) The calculated position of the breakdown depends on Reynolds number and 

is In accord with the experiments of Sarpkaya (1971); the breakdown is driven 

upstream for Increasing Reynolds numbers. 

Bilanln (1973) has considered a similar problem to model vortex 

breakdown in a vortex filament. 

Smooth Development 

Bossel (1967) considers two special cases of the governing differ- 

ential equations for the vortex flow phenomenon with respect to vortex 

breakdown. Starting from the Navier-Stokes equations, he assumes incom- 

pressible, axisymmetric motion. Furthermore, he considers the case of: 

1) slender vortex flows, with swirl approximately one, and viscosity 

important, similar to the quasi-cylindric assumption of Hall; and 2) expand- 

ing (or contracting) flows, with viscosity important, swirl approximately 

Sarpkaya, T., "On Stationary and Travelling Vortex Breakdowns," JFM, 45, pp. 
545-559. 1971. 

Bilanin, A. J., "Wave Mechanics of Line Vortices," Ph.D. Thesis, M.I.T., 1973. 

Bossel, H. H., "Inviscid and Viscous Models of the Vortex Breakdown Pheno- 
menon," Ph.D. Thesis, U. of C, Berkeley, 1967. 
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one, and expansion u/w » order 1. Bossel (1969) clarifies the model of 

breakdown in the vortex tube where he breaks the vortex flow into four 

regions (see Figure 8). He applies his second model involving the expand- 

ing flows to obtain flow shapes of the bubble which appear qualitatively 

similar to the results of Harvey (1962). He concludes "vortex breakdown is 

a necessary feature of symmetric flows having high swirl close to the criti- 

cal and some flow retardation at and near the axis, perhaps caused by the 

exterior pressure gradient or by an object on the axis itself. Vortex 

breakdown is fully explainable and describable by the supercritical solutions 

to the inviscid equations to which the Navier-Stokes equations approximate 

in the breakdown region. Neither the explanation of vortex breakdown as a 

finite transition (analogous to the hydraulic jump) from supercritical to 

the subcritical nor as the result of hydrodynamic instability aopear justi- 

fied." Later, he extends his views on vortex breakdown for higher swirl 

ratios (Bossel, 1972). Considering Bossel's (1967) thesis, Hall agrees 

that Bossel seems to give a representation of the axisymmetric bubble, for 

properly adjusted parameters. Because Bossel's form of the equations are 

elliptic near the breakdown bubble, he has to furnish a downstream boundary 

condition on the bubble. And Hall notes his breakdown "depends very much 

on the form assumed for the downstream distribution of tyir)  (the stream 

function)." Secondly, as with most theories, this is primarily a model for 

the axisymnetric breakdown in a vortex tube. Bossel does not consider the 

problem of the leading-edge vortex. 

Simplified Analysis 

Since vortex breakdown criterion are fairly complicated. It is 

difficult to see that breakdown actually develops from the form of the equa- 

tions. Thus, Bossel (1968) presents a simplified stagnation model to show 

Bossel, H. H., "Vortex Breakdown Flowfield," Physics of Fluids, 12, pp. 498- 
508, 1969. ~ 

Bosse', H. H., "Vortex Equations: Singularities, Numerical Solution, and 
Axisymmetric Vortex Breakdown," NASA CR-2090, July 1972. 

Bossel, H. H., "Stagnation Criterion for Vortex Flows," AIAAJ, 6, pp. 1192- 
1193, 1968. 
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the significance of both the high swirl and the adverse pressure gradient. 
He considers a rigid body rotation from 0 £ r <r in an Invlscld, 

quasi-cylindrical and Incompressible flow. If the Initially constant axial 
velocity w0 is changed by the amount Aw, to first order, by continuity 

rc wo = (rc + Ar)2 (wo + &w) (41) 

By conservation of angular momentum and (42) 

rc vc = (rc + Ar)(vc + Av) {43) 

5 ' \^ <"' 

Centrifugal balance at r. Implies that the pressure changes from r   to r   + 
Ar 

Ap = pv* f (45) 

SuDstituting (42) gives the change of pressure 

Ap = - cv^ Aw/2wo (46) 

Finally, the axial momentum balance for this pressure difference requires 
a new change of the axial velocity Aw at r + Ar 

^ = v2/2w2 (47) AW  V^O K   " 

The initial velocity disturbance is thus amplified at r   + Ar for vr/wrt > C CO 
rf = tan * 
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4> = tan'1  (/2) = 54.8° (48) 

He then combines this with a result given by Hall  (1966b).    For incompress- 

ible, quasi-cylindrical  flow, the centrifugal force balance with Kelvin's 

theorem and Bernoulli's theorem yields 

o   r'w 

with K = vr. Hall thus found that a change in the axial velocity along the 

outside is accompanied by a more pronounced change along the axis. 

Specifically, in a retarded flow, Bossel states that the integrand 
rfwz 

is positive, while _[c is negative and therefore 
dx 

dw2 
ax 

dx |dw2/dx| (50) 

Thus, one finds if the initial axial velocity disturbance at the core is 

decelerating, that stagnation will eventually result if the initial maximum 

swirl parameter v/w > JZ. 

In another effort to illustrate the conjugate flow states in a 

simpler manner, Landahl and Widnall (1971) devise a simplified "one- 

dimensional" model of breakdown similar to the example of Bossel by extending 

the analysis of Barcilon (1967) to include a rotating flow field. They 

obtain transitions similar to those of Benjamin by energy considerations. 

For solid body rotation, they obtain the criticality condition that 

v/w = •?. 

Hall, M. G., "The Structure of Concentrated Vortex Cores," In Progress in 
Aeronautical Sciences. Vol. 7, D. Ku'chemann, ed., Pergamon Press, pp. 53- 
110, 1966b. 

Landahl, M. T. and Widnall, S. E., "Vortex Control," M.I.T., supported by the 
Air Force Office of Scientific Research under Contract Nos. AF 49(638)- 
1622 and F44620-69-C-0009. in Olsen, Goldburg & Rogers, 1971. 

Barcilon, A., "Vortex Decay above a Stationary Boundary," JFM, 27, pp. 155- 
175, 1967. _ 
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CONTINUOUS SLENDER-BODY MODELS 

Method of Leqendre (I) 

One of the earliest works on a mathenatical  formulation of the 

leading-edge vortex sheet problem was proposed by Legendre (1952).    He 

considers the simple case of an infinite, conical flat olate delta wing, 

strongly swept. Mach number near one, at incidences of approximately 10 

degrees.    The- flow outside of the wing and the vortex sheets emanating from 

the leading edges is considered irrotational.    He neglects the effect of 

viscosity except at the leading edge where he applies the Joukowsky 

condition, reasoning that there is only an arbitrary distinction between 

the leading and trailing edges when the edges are sufficiently sharp so 

that the flow separates.    As a result of these simolifications and restric- 

tions, he is able to obtain a rough approximation for the separated flow 

field on a delta wing.    He admits that the restrictions are considerable 

and not particularly applicable to the'real  practical  problem -- sharp 

leading edges, and infinitesimal aspect ratio.    However, it appears to be 

an improvement over R. T. Jones (1946) attached flow model when the flow 

separates at moderate angles of attack.    As a result of the simplifications, 

the velocity can be divided into a uniform free stream and perturbation velo- 

city and the governing equation becomes Lanlace's equation in the cross-flow 

plane.    This is a result of slender body theory (SBT). 

Legendre comments that the SBT assumptions of small  perturbations 

of the velocity are violated near the leading-edqe vortex cores where the 

velocity goes to infinity as 1/r.    He cites justifications for proceeding 

in light of this violation to the basic assumption.    First, he claims that 

the error introduced should be local and should not affect global results, 

citing the analogous condition at the leading edge for the attached flow 
1 to 

model of Jones, where the velocity goes to infinity as 1/r '   .    Secondly, he 

also notes that the use of point singularities is only a mathematical 

artifice and in reality the velocity does not approach infinity, although 

it does become several  factors  larger than the free s  ream near the core. 

He suggests i.hat the point singularities could be replaced by viscous regions 

.egendre, R.,  "Ecoulement au voisinage de  la pointe avant d'une alle a  'orte 
fleche   IUX incidences moyennes," Recherche Aeronnutique, Ho.  30, j-3, 
ID',:.'. 
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of finite dimensions to alleviate this violation of the assumptions, if 
necessary. These regions, of course, would not satisfy Laplace's equation. 
Only the region outside of the vortices would be considered as the region 
of interest. More inportantly, the confortnal transformation of such shapes 
would further complicate the problem. The actual formulation of Legendre 
follows. 

With the above assumptions, the continuity equation becomes the 
governing equation and for the perturbation velocity potential takes the 
form 

(1 - M2) <, + <}>      + *  = 0 (51) xx   yy *zz K    ' 

For "slender" wings near Mach number ■ 1, 

(1 - M2) 4  «4 ,4) (52) x    ' vxx   ^yy* vzz v ' 

and the governing equation becomes Laplace's equation in two dimensions. 

*yy 
+ *zz = 0 (53) 

Thus ()) is a harmonic function.    For conical flow 

^ = ReCxF^n)] (54) 

where F^ is an analytic function of n = —r-^- , where h = local semispan = 
< rot X. He separates out a free stream component 

F1 = U cosa t U sina cotA F(n) (55) 

For moderate incidences at which leading-edge separation occurs 
and the linearization of the velocity is still valid, he models the flow by 
placing two isolated vortices above the wing [see Figure 9]. Since the 
flow is conical, the strength of the vortices qrows linearly with x, and 
as a result. Heimholte' theorem of conservation of circulation is violated. 
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Thus, the model cannot be rigorously justified, but it does seen to be 

more accurate than the Jones attached flow model. 

The ^-plane is difficult to use since inage vortices are required 

in the slit representing the wing to satisfy the no-flow condition through 

the wing. Therefore, Legendre suggests making a conformal transfornation 

to the S-plane or the ;-plane. 

;2 = 1 + n2 or 2n = S - 1/S (56) 

In the S-pbne, the potential becomes 

iY   (S - SJ(S - 1/SJ 
2F = S + 1/S + ^ In  2 o_ (57) 

(S - s0)(s - i/so) 

where S Is the location of the point vortex In the upper right hand quadrant 

and Y is the Intensity of that vortex. The (") stands for the complex 

conjugate of the quantity In question. The Joukowsky condition of finite 

velocity at the wing tips furnishes one equation for the three unknowns, 

Y and the real and imaginary parts of S . The remaining two equations used 

by Legendre are that the cross-flow velocity Is zero at S so that there 

are no forces on the point vortices, in the y and z directions. With these 

three equations, Legendre obtains a C. curve after calculating the pressure 

distribution on the wing [See Figure 10]. The lift Is a fairly complicated 

function of X and a. For small angles of attack, the lift 1s negative and 

remains less than the attached flow lift (C. = |- /R sin a) for angles of 

attack less than about 10°. Eventually, the lift for the Legendre model 

exceeds that for the attached flow model; this occurs at lower angles of 

attack for the lower aspect ratios. Legendre concludes that this model 

Is not valid at low angles of attack where the flow remains attached. 

This model is primarily of historical interest and it has since been 

supplanted. 

Later, Legendre (1953b) revises this method upon the instigation 

Legendre, ;,., "Ecoulement au  voisinage de la pointe avant d'une ail'"- a forte 
fleche aux incidences moyennes," Recherche Aeronautique, No. 3b, pp. 7-8, 
1957» 
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of Mac C. Adams (1953).  In his first work, he notes that he had implicitly 

assumed a cut joining the two vortices. However, Adams noted that as a 

result the lift was multivalued, since the region was no longer simply 

connected. In the second form, Legendre includes a cut between the vortices 

and their respective leading edges to roughly account for the feeding sheets. 

However, this formulation allows a pressure difference across the sheet, and 

the force on the wing depends on whether or not one calculates the pressure 

force on the wing, or whether one takes a contour integral around the wing- 

vortex combination. 

Method of Brown and Michael 

Edwards (1954) and later Brown and Michael (1954, 1955) further 

pursue this slender body model of conical flow for the delta wina. Edwards 

and Brown and Michael both include a no-force condition on the vortex-cut 

combination so that the lift is single-valued and the pressure distribution 

on the wing gives the same result as the contour integration for the momentum 

flux. Edwards furnishes the small angle of attack result 

CL =| /R a + Tr(/R)
1/3 a5/3 (58) 

where the first term Is identical to that of the slender body theory of 

Jones and the second term is the additional term due to the leading-edge 

vortices. Brown and Michael (1954) note that Jones' result was obtained 

using a special irrotatlonal flow pattern; since, by Kelvin's theorem, the 

irrotational flow yields the least kinetic energy and hence the least appa- 

rent mass, where L = all m' (m1 = apparent mass of the two-dimensional flow 

at the trailing edge), they conclude that the lift in all other cases must 

always be greater than that computed by Jones. Since Brown and Michael 

formulated it in much more detail in their publications, their derivation 

Edwards, R. H., "Leading-Edge Separation from Delta Wings," JAS, 21^, pp. 134- 
135, Feb. 1954. 

Brown, C. E. and Michael, W. H., "Effect of Leading-Edge Sepa-'Jtion on the 
Lift of a Delta Wing," JAS, 21_, No. 10, pp. 690-694, Oct. 1954. 

Brown. C. E. and Michael, W. H., "On Slender Delta Winqs with Leadinq-Edge 
Separation," NACA TN 3430, 1955. 
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shall be followed here, although the results of Edwards are Identical to 

those of Brown and Michael. 

They make the standard slender body assumption of Jones and 

obtain 

*yy * ^z ' 0 (59) 

as the governing equation. They use the coordinate system shown in Figure 

11, where they approximate the flow by two point vortices above a flat plate. 

As with Legendre (1952), there are three unknowns here, the loca- 

tion of the vortices and their strength. The three equations used by Brown 

and Michael are the no-force condition on the vortex-cut combination on 

each side and the Joukowsky condition at the leading edge. 

The vortices are connected to the leading edges by cuts across 

which a pressure jump exists. The vector force on the sheet due to this 

pressure discontinuity is given by 

ipu(^)(a0 - b) (60) 

The force on the vortex Is -PV*Y where v* is the net velocity at a . Since 
o 

the flow is assumed conical, the vortex strength increases linearly and thus 

the circulation is given by 

v-^x (61) 

The zero net-force condition requires that 

v* = 
U(jo - b) (62) 

x 

By using the transformation 9 = / 2     .2 , it is easy to satisfy the no-flow 

consideration on the plate and obtain in the e-plane [see Figure 11] the 

potential 
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In the j-plane, a stagnation point at 6 = 0 corresponds to the Joukowsky 

condition since this is a singular point of the transformation. This gives 

the third relation and one obtains 

■iol-^,Wol-^    & - b2 

0o      ,  1          b2 

= U 

<■*>'      ^oK-b2) 

^ - t'H 

ulCZr^- 1] 

b^) 

(64) 

where the real and Imaginary parts furnish two equations for the real and 

imaginary parts of o   which give the locations of the vortices,    •y may be 

eliminated by the Joukowsky condition, to get the solution in terms of the 

aspect ratio and angle of attack. 

Y = 2TTUa/ 
1 1 

^T- 
(65) 

Brown and Michael calculate the lift by computing the flow of momentum at 

the trailing edge through a contour including the wing.   Thus, 

pUj/to, - U«) dzdy 

= - pU       * dy 

9+6 
r        Zyz     o 

+ 2iTaG 

(66) 

(67) 

where e = semiapex angle,    M = 4E, and to the lowest 2 orders, this 

corresponds to the result of Edwards. 

Several problems occur with this type of formulation.    First, 

even at relatively low Mach numbers. Brown and Michael  note that the 

absolute pressure can be negative (unphysical) at moderate angles of attack 

[see Figure 12].    For example,  the pressure becomes negative for 75'   sweep 

at approximately 12° angle of attack for a Mach number of 1.     I his is due 
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to the fact that the velocity becomes Infinite at the point vortices. As 

a result, this violates the condition of linearized velocity. Secondly, 

Brom  and Michael conment that they did not consider the possibility of ^ore 

than one pair of stationary vortices. That Is, they neglect to consider the 

possibility of secondary vortices. The basic model also allows a oressure 

discontinuity across the model of the sheet as well as allowing normal 

velocities across the sheet. As a result, Bryson (1959) argues there is a 

resulting moment even though the force Is zero on each vortex sheet, although 

over the entire flow, the left and right symmetry causes this to vanish. 
2 

Furthermore, the assumption that (1 - M U  Is small Is violated by experi- 

mental results, where there are large axial velocities. Thus, the flow near 

the point vortices cannot hope to be well-represented. Finally, in the real 

flow, both the vortex sheet and the end of the spiral should be located on 

stream surfaces, and they should be force-free at every point Instead of 

being globally so. 

Thus, comparison with experiment cannot be perfect. Elle (1958) 

compares the theory with his experimental results and finds the vortex cores 

are actually farther inboard than predicted by Brown and Michael. Also, 

the experimental lift is always less than the theoretical prediction. He 

concludes that from his analysis that the "concept of a discrete vortex with 

a feeding sheet Is basically sound," but the assumed model of the flow pattern 

is not suitable and must be replaced by another one. 

The primary value of this theory of Brown and Michael Is not its 

correctness or completeness, but Its simplicity. For example, one can 

consider the case of secondary separation. Even early experiments, Peckham 

(1958) and Earnshaw and Lawford (1966), indicate the presence of secondary 

vortices as well as the primary vortices. Bergeson and Porter (1960) report 

Bryson, A. E., "Symmetric Vortex Separation on Circular Cylinders and Cones," 
Journ. of Applied Mech., pp. 643-648, Dec. 1959. 

Peckham, D. H., "Low Speed Wind Tunnel Tests on a Series of Uncambered 
Slender Pointed Wings with Sharp Edges," ARC R&M 3186, 1958. 

Earnshaw, P. B. and Lawford, J. A., "Low-Speed Wind-Tunnel Experiments on 
a Series of Sharp-Edged Delta Wings," ARC R&M 3424, 1966. 
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that the strength of the secondary vortices relative to that of the primary 

vortices is not negligible. Hence, they conclude, no mathematical treatment 

which fails to include the effect of secondary vortices on the flow field 

can accurately predict the lift curve. Smith (1966a) says he tried unsuccess- 

fully to include the presence of the secondary vortices in a Brown-and- 

Michael-type model. He does not present details of his attempt there. The 

governing equations would seem to be the same as before. One would have 

three additional unknowns which determine the location and strength of the 

secondary vortices. One needs to specify three additional boundary conditions, 

as a result, to determine these unknowns. One would probably have to resort 

to a boundary layer argument to find the separation point induced on the wing 

for the pressure distribution given by the primary vortex, using the Brown 

and Michael model for simolicity. The no-force condition on the secondary 

vortex-cut configuration would be similar to the one for the primary vortex. 

Now, one would have six equations for six unknowns. It would help to perform 

such a calculation as it would help answer the question concerning the 

importance of secondary separation on the entire flow field. 

Nangia and Hancock (1968) attempt to include the trailing edge 

effect by incorporating the shed vorticity into the Brown and Michael model 

with the more standard lifting surface theory using bound and trailing vorti- 

city to describe the planform and two isolated vortices to describe the 

leading-edge vortices, which are joined to the leading edges by cuts. The 

model is no longer conical. The Joukowsky condition at the trailing edge 

is satisfied by a collocation method, and the problem is solved by an 

iterative procedure. 

This model no longer requires a center of pressure at the 2/3 

chord point, and for the delta wing considered (angle of attack = .25 radians, 

aspect ratio =1), they obtain the center of pressure at ,6 chord, compared 

to then unpublished experimental results which placed it at .61 chord. They 

Smith, J. H. B., "Improved Calculations of Leading-Edge Separation from 
Slender Delta Wings," RAE TR 66070, March 1966a. 

Nangia, R. and Hancock, G. J., "A Theoretical Investigation for Delta Wings 
with Leading-Edge Separation at Low Speeds," ARC CP No. 10H6, 1968. 
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do nenticn that the question which needs recognizing before proceeding 

further is whether it is worthwhile to incorporate large expenses In utiliz- 

ing large amounts of computer time when the results will still contain the 

inherent faults of the Brown and Michael method. 

Portnoy and Russell (1971) consider another extension and add 

rhombic thickness to the Brown and Michael model using a conformal trans- 

formation. Their results show a decrease in lift and the outboard trend 

as the thickness increases, but their results for the vertical displacement 

are inconclusive. 

A final example is provided by Smith (1957), who considers curved 

leading edges. Applying the conical model at the apex and then using slender 

body theory to march from the apex downstream, he applies the Brown and 

Michael no-force condition to each vortex location and obtains vortex core 

locations which follow the leading edge fairly well. 

Another important use of the Brown and Michael method is for 

initial approximations for iterative procedures. For example, PulUn (1973) 

uses the Brown and Michael scheme to provide the initial configuration for 

a more sophisticated model considered later. 

Method of Mangier and Smith 

In an effort to improve the agreement between experiment and theory, 

Mangier and Smith (1957) propose a slightly different model. They consider 

a rough approximation of the vortex shppt in the cross-flow plane, as well 

as the concentrated vortex core. Again they assume a conical, slender flow 

Portnoy, H. and Russell, S. C, "The Effect of Small Conical Thickness 
Distributions on the Separated Flow past Slender Delta Wings," ARC 
CP1189, 1971. 

Smith, J. H. B., "A Theory of the Separated Flow from the Curved Leading Edge 
of a Slender Wing," ARC R&M No. 3116, Nov. 1957. 

Pullin, Ü. I., "A Method for Calculating Inviscid Separated Flow about Conical 
Slender Bodies," ARL/A14, Australian Defense Scientific Service, Rep. 140, 
May 1973. 

Mangier, K. W. and Smith, J. H. B., "Calculation of the Flow past Slender 
Delta Wings with Leading Edge SeDaration," RAE Rep. Aero. 2593, flay 1957. 
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and obtain the two-dimensional Laplacian as the governing equation. 

Since they now attempt to represent the outer part of the sheet, near 

the leading edge, the following notation ^ust be considered [see Figure 

13]. 

The boundary conditions are given as follows. Far from the body 

* = U, * = aU. On the surface of the body or on a vortex sheet, the 

normal velocity vanishes. If the equation of the surface is 

S = r - bF(e) (68) 

where b = IOc = x tan E; c = semiapex angle, the normal velocity condition 

becomes 

*n = -(KU/bjrsin* (69) 

The condition that the vortex sheet cannot support a pressure difference 

becomes 

A* = A*(rf - —22 ) (70) 
KU 

where { ) Indicates differentiation along the arc, a, where A Is tho 

difference of the value across the vortex sheet and $  is the mean value am 
of * across the sheet. a 

Arguing that the vortex sheet nearest the wing will have the 

greatest effect on the wing loading, they approximate the rolled up sheet 

by the approximation shown in Figure 14, where the inner part of the 

spiral has been replaced by an Isolated vortex located at point D which 

contains all of the vorticity inside the circle of radius R. 

The derivation for this is fairly involved and is summarized 

below. By a geometrical asymptotic derivation. Mangier and Smith (1959) 

relate the distance to a point on the spiral to its relative angle and 

Mangier, K. W. and Smith, J. H. B., "A Theory of Flow past a Slender 
Delta Wing with Leading Edge Separation," Proc. Roy. Soc. London, 
Ser. A, 251, P- 200. 1959. 
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the location of its center.   For large angle e,, I.e., many turns of the 

spiral, they obtain the relation for the spiral radius as a function of 

51 as 

r1  » au9^m + higher order terms (m > 0) (71) 

where u, m characterize the spiral.    By applying boundary conditions of the 

fact that the sheet is a stream surface and supports no oressure difference, 

they derive two equations.    By applying various lowest order approximations. 

continuity equation, geometric construction, and equating the coefficients 

of the resulting equalities, they obtain the flow characteristics in the In- 

ner part of the spiral.    The effect of the vorticity in the small circle on 

the remainder of the flow field Is shown to be the same as that from an 

Isolated vortex of strength A* ■ ZuuKU f- R at Its center (see Figure 14 for 

notation), as they produce the same velocity on the boundary and have the 

same total circulation.    Their calculations also specify the strength of 

the vortex sheet where it is tangent to the small circle.   These calcula- 

tions also specify somt of the boundary conditions applied at the point 

vortex to calculate the flow field. 

There is a cut similar to the one employed by Brown and Michael 

between the point C, the point of the sheet tangent to the circle at point 

D, and the point 0.    However, due to the relative shortness of this cut, 

the forces should be reduced. 

To simplify the normal condition on the flat plate, they make 

use of the standard transformation [see Figure 15]. 

Z*2 = Z2 - b2 (72) 

Mangier and Smith assume that R is sufficiently sm.^ll that the circle of 

radius R can be considered to transform Into a circle of radius R*. As 

before, the point Z* = 0 becomes a stagnation ooint to satisfy the Joukowsky 

condition. The other boundary conditions become 

C  --  ^r* sin * (73) 
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where 

Y*= - r^- (W) ;75) 

To find an approximate configuration, they introduce a finite set 

of parameters to define the sheet shape and strength.    Then the boundary 

conditions are satisfied at a finite number of points to find the unknown 

parameters.    The parametrization chosen first is the following.    The curve 

in the Z-plane is assumed to be defined by a circular arc of radius r,  and 

length 2r^  9.    For the function y*, the following is chosen 

Y* = Y0 
+ Yr cos 0 - Y.j  sin 9 (76) 

The system depends on the seven parameters, 6, r,, r* = R*, Y . v , '., and 

u, where u  characterizes the strength of the isolated vortex. The seven 

conditions to determine the unknowns are 

1) By symmetry, Y* = 0 at A*. 

2) Y* must equal -?-=■ R TO- at C* to match the isolated vortex properly. 

3) A* must be a stagnation point. 
KUa 4) The nonsingular part of the velocity at D must be -r2-along OD.    This 

likewise follows from the representation of the tip of the vortex sheet and 

provides two conditions. 

5) The normal  velocity condition is applied at B*, midpoint of A*C*. 

6a)    The pressure condition is applied at A*, or 

6b)    The pressure condition is applied at B*. 

They neglect the forces on the cut from D to C at times and at 

other times,  they use the method of Brown and Michael  to eliminate this force. 

However, this shall  not be considered further as it does not greatly affect 

the form of the solution. 

The actual mathematical  formulation for these boundary conditions 

is given in their Appendix.    The equations are nonlinear and simple expressions 

cannot be written down for the location of the vortex sheets and the vortices 
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as a function of angle of attack and aspect ratio. Because of Ws  non- 

linearity of quadratic equations, they consider the possibility :r aojble 

roots. They note that there is little difficulty in choosing the correct 

root on the basis of the fact that the vortlcity and the angle of attack 

must be positive. They end up solving simultaneously a pair of nonlinear 

equations by an Interpolation method. 

Once these equations are solved, all of the unknowns can be calcu- 

lated for the flow field. The pressure distribution is obtained from 

Bernoulli's equation while the normal force coefficient can be obtained 

in either of two ways. First, they integrate the pressure over the entire 

wing. Alternately, they use a momentum Integral in the plane at the trail- 

ing edge of the wing [see Figure 16]. The results are slightly different 

since the first method only considers the forces on the wing, while the 

latter method includes the forces on the sheet-source system as well. The 

force is not identically equal to zero on the sheet-vortex system, since 

the no-pressure and normal flow condition are only satisfied at one point. 

There are some differences, therefore, between the various methods used to 

calculate the shape of the sheet. These depend on the location of the point 

at which the pressure condition is satisfied and whether a no-net force 

condition is applied to the vortex only or to the vortex-cut combination. 

However, all four results are grouped near a line corresponding to the choice 

of pressure satisfied at the leading edge of the wing and the use of the 

Brown and Michael no-force condition. An attempt is made to curve fit the 

line for moderate values of a/K which turns out to be the crucial parameter 

in their calculations. They obtain 

CN = J /R ct + 4ct2 for ||| < 1.6 (77) 

where the choice of constants Is probably guided by experience, i.e., note 

that the first term gives the slender body limit of Jones. Again, as in the 

case of Brown and Michael, the force is always areater than the R. T. Jones 

case, unlike Legendre's early model. They also give the representation of 

the vortex core and the sheet shape [see Figure 17]. Their result: =ire  in 

better agreement with experiment than those of Brown and Michael, but it 
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still leaves the question of justified assumptions unanswered.    They "ote 

that unlike Jones' attached flow node!, there is vorticity of the :::osite 

sense in the trailing edge vorticity.    See the following Table f'-cr '-"»njler 

and Smith (1957). 

Table 1. Vorticity Origin 

Origin and Sense 
of Vorticity 2J LO Jj .25    Jones 

Leading Edge 

T. E. Normal Sense 

T. E. Opposite Sense 

After Mangier and Smith complete their calculations, they check 

their assumptions. They check the error In the normal velocity and pressure 

on the sheet due to the different treatments for the circle containing the 

core region and the circular arc representing the sheet; there is a loga- 

rithmic singularity In the normal velocity at the junction of the two models, 

no matter how far the model of the sheet Is extended. This occurs wherever 

the sheet Is terminated. Roy (1957) has suggested in a similar problem that 

a finite core of vorticity be used to replace the end ot the spiral sheet 

In order to limit the velocity. Mangier and Smith suggest that this singu- 

larity may be acceptable, so they do not suggest any means of alleviating 

this problem, although they do attempt to justify Its existence. The 

pressure difference on the sheet 1s also given and Is always less than .8 

of the wing center line pressure difference. The difference Is far less than 

this on the average. 

They state that the similarity of the lift forces for the various 

calculations Indicate that representing the core by an Isolated vortex is 

not a serious modification. Although the proportion of total vorticity on 

the sheet is small for small ratios of a/K and only rises to about 20% for 

a/K = 1, it is Important because it occurs closer to the leading edge than 

Roy, M., "Sur la Theorie de Taile en delta: Tourbillons d'apex et nappes 
en cornet," Recherche Aeronautique, No. 56, pp. 3-12, Feb. 1957. 
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that of tne isolated vortex. This is borne out by their better agreenent 

with experinent than Brown and Michael. At large a/K, there is increasing 

divergence between theory and experiment. At the same time, there is 

considerable scatter in the data. Part of the scatter in the data can be 

explained by the fact that different methods were used to calculate the 

normal force and different cross-sectional models were employed, different 

amounts of wind tunnel wall effects were included, and different Reynolds 

numbers were encountered in the experiments. Mangier and Smith suggest 

that the discrepancy between experiment and theory can be possibly explained 

by the presence of secondary vortices. This would reduce the pressure 

peaks and consequently, the lift, giving better agreement with experiment. 

They do not consider viscous effects as a possible culprit and do not 

include Reynolds numbers with the experimental data that they present. 

Method of Smith 

Due to the limitations of the preceding model and the advent of 

greater computing power. Smith (1966a, 1968) later proposed a better repre- 

sentation of the leading-edge vortex sheet. The problem is formulated 1n 

the same manner as the earlier Mangier and Smith problem except when it comes 

to representing the outer part of the spiral sheet [see Figure 18], The 

unknowns chosen are the polar distances of the sheet segments, the values 

representing the sheet strength, and the strength of the isolated vortex and 

its two coordinates which furnishes 2n + 3 unknowns. 

To solve for these unknowns, he chooses the following set of equa- 

tions. The Kutta-Joukowsky condition of finite velocity at the leading edge, 

the no-force condition for the vortex-cut combination, the no-pressure dif- 

ference condition across the sheet, and the conical normal velocity condi- 

tion on the sheet, which is equivalent to the stream surface condition of 

the three-dimensional flow, are employed. Since the pressure condition 

is nonlinear, Smith does not try to solve the equations explicitly for the 

Smith, J. H. B., "Improved Calculations of Leading-Edge Separation from 
Slender Delta Winns," RAE TR 66070, March 1966a. 

Smith, J. H. ß., "IniDroved Calculations of Leading-Edge Separation from 
Slender, Thin Delta Wings," Proc. Roy. Soc, Ser. A, 306, pp. 67-90, 
1968. 
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shape and strength of the sheet. Rather he uses an iterative aDoroach. 

From a known solution, either from a sinoler model or a nearby condition, 

he adjusts the shape and the strength of the vortex sheet to sa-isfy the 

governing equations. The nonlinear pressure condition is hand.ed by the 

method of steepest descent, which has the difficulty, that the mathenatical 

region near the solution is fairly oblate and convergence is consequently 

slow. From the dimensionless form of the equations, it is found that the 

quantity characterizing the flow field is a = a/K. Also, one must specify 

the extent of the sheet shape, since this cutoff is arbitrary. Also, one 

has to furnish tolerances of what constitutes a satisfactory solution and 

one must finally furnish that initial guess to represent the leading-edge 

sheet. In order to justify the different treatment of the inner and outer 

regions of the spiral sheet. Smith (1968) examines the effect of changing the 

extent of the sheet. 

Table 2. Effect of Sheet 

Source e meix y/b z/b Total 

rculation 
Sheet 

Fraction Lift 

Brown & Michael  (1954) 0 .871 .220 4.45 0 11.22 

Smith (1968) 157° .722 .225 4.22 .23 9.93 

Smith (1968) 517° .744 .215 4.22 .47 9.88 

Smith (1968) 877° .738 .227 4.22 .60 9.87 

Hangler & Smith (1959) 157° .803 .171 3.77 .19 9.12 

Thus, the importance of correctly representing the outer sheet is seen. 

Compared to the Brown and Michael model, the new vortex position is 13% of 

the semispan further inboard, the overall circulation is 5% lower and the 

lift is 12% lower. There are also discrepancies with the Mangier and Smith 

model even when identical sheet extents {Qm,v = 157°) are compared. This 

may either be due to the application of the pressure and the normal velocity 

conditions at only one point or may be due to the fact that the sheet was 

poorly approximated by a circular arc in the transformed plane, or that the 

sheet strength was inadequately specified by three constants. For the 

different extents, the sheet shapes are compared [see Figure 19] and there 
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is little discrepancy between the results and he suggests that even the 

shortest sheet extent is probably adequate while there is little justifica- 

tion for carrying the calculation further than the intermediate value. 

Noting that there is an infinite singularity at the end of the 

sheet, he says that the shape of the sheet is relatively independent of the 

extent of the sheet, since even when this singularity is not alleviated, 

the sheet shapes for the various extents are closely similar. This inolies 

that although there was some question earlier about the singularity, it 

does not appear to be responsible for the difficulty. 

Smith compares his sheet shape with the asymptotic results of 

Mangier and Weber (1965) [see Figure 20]. He also plots the sheet strength 

—r- versus the arc length and obtains the following solution in the physical 

plane which shows remarkable agreement to the asymptotic solution of Mangier 

and Weber for large 0 [see Figure 20]. Although the analysis would seem to 

be most valid as a = a/K tends towards zero, as it is a perturbation solution, 

Smith does not carry out the problem for a less than .20. This is due to a 

variety of reasons which he considers. 

1) The calculations took longer as a was reduced. 

2) The sheet shape developed an inflection point suggesting a larger value 

of 6 max* 
3) The agreement between theory and experiment was poor. 

The first conditior may be the result of the closeness of the isolated vortex 

to the wing for small a. Smith tried to alleviate the second problem by 

extending the sheet, but the sheet caire close to crossing itself near the 

end, which would have been unphysical, so he discontinued that approach. 

Finally, the third problem could be due to the failure of the physical model. 

For small a, the curvature at the leading edge may become important and the 

flow may not be fully separated, or may not separate at exactly the leading 

edge. Also, the boundary layer thickness becomes larger with respect to the 

height of the isolated vortex above the wing, and here the model would be 

inadequate. 

As before, the lift may oe  calculated by two different methods. 

EithL•t, the pressure on the winq may be integrated over the surface or a 

momentuiii analysis can he used at the "trailing edge". Since the pressure 
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condition is satisfied at only a finite number of points, there are discre- 

pancies between the two methods, which should disappear as the number of 

points per arc length are increased. After plotting the curve of the normal 

force coefficient versus the parameter a. Smith obtains the curve fit for 

.25 < a < 2.5 

CN = J- Ma*  3.2o1,7 ( A)-3 (78) 

which may be compared to the Brown and Michael solution of 

CN = f /R a + 7r(/R)
1/3 o.5'3 (79) 

Finally, one must compare this result with experiment to discover if it can 

be Justified. Before this can be done, a few notes must be made to partially 

explain the discrepancy between experimental models. 

1) Wind tunnel corrections should be considered; at high angles of attack 

and for larger aspect ratios, wind tunnel effects become Important but are 

often neglected. 

2) Reynolds number affects the boundary layer transition. For example, 

when Earnshaw (1961) induced turbulence by roughening the wing, this resulted 

in the vortex core moving outward and upward. Also, Smith notes an intensi- 

fication of the suction peak after the transition. 

3) Furthermore, Smith considers the effect of wing thickness, since it is 

Impossible to build a flat plate delta wing without thickness, due to struc- 

tural reasons. On a thick wing, the vortex tends to be higher up and further 

outboard than on a thin wing. 

4) One must consider the effect of the trailing edge on the nonconicallty 

of the subsonic flow which Is often used for these experiments. Experimental 

agreement would probably be most satisfying if the lift were obtained by 

integrating the pressure (assumed conical) at a chordwlse station sufficiently 

far from the trailing edge. As the trailing edge Is approached, the vortex 

moves higher and further inboard, while the pressure difference falls to zero. 

5) The Reynolds number also affects the boundary layer thickness. Smith 

suggests the possibility that at low Reynolds numbers, the vortex would be 
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•ur-ther inboard and higher due to the boundary layer displacement effect. 
Thus, it was concluded that the size of the vortex "lode! was well 

Jescribed by the theoretical model of Smith and that Its shaoe differs in 

a manner closely related to the lateral displacement o* its core fron the 

calculated position of the isolated vortex. This is confirmed by plots of 

the low pressure region and by flow visualization techniques. Due to the 

displacement of the isolated vortices due to the boundary layer effects, the 

model is less successful In predicting the size and shape of the suction 

peak beneath the vortex on the wing. There is a definite difference between 

experimental results for laminar and turbulent secondary separation and it 

is impossible for an inviscid theory to adequately model both phenomena. 

The disagreement between experiment and theory is especially severe at low 

a, where the boundary layer displacement thickness becomes noticeable with 

respect to the height of the isolated vortex above the wing. The measure- 

ments of the integrated pressure -- sectional lift -- appear adequate for the 

approximately conical flow. The agreement between theory and experiment 1s 

everywhere reasonable and seems to justify the use of slender body theory. 

Most of the remaining discrepancy seems to be explained in terms of Reynolds 

number effects rather than in terms of high axial velocity gradients that 

would invalidate the theory. 

Pullin (1973) formulates the problem for the flat plate delta wing 

in a manner similar to Smith. However, he departs in the method of numerical 

treatment of the governing integro-dlfferential equation. While Smith uses 

a more or less trial and error procedure for finding the solution, Pullin 

obtains a gradient matrix with respect to the 2N + 3 variables describing 

the outer sheet and the isolated vortex in terms of the governing equations. 

The formulation is slightly different and one must specify the per cent of 

vorticlty in the sheet, instead of the extent of the sheet. 

Pullin, D. I., "A Method for Calculating Invisdc Separated Flow about 
Conical Slender Bodies," ARL/A14, Australian Defense Scientific Service, 
Rep. 140, May 1973. 
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The problem becomes one of the following 2N + 3 unknowns 

Position of the vortex sheet 2N 

Position of the Isolated vortex 2 

Overall Vorticity 1 

The 2N + 3 equations are 

Joukowsky condition 1 

The no-force condition on the cut-vortex    2 

The tangency condition on the sheet        N 

The pressure condition on the sheet        N 

Instead of considering the strength of the sheet at Isolated points as 

unknowns, he allows the vortex sheet two degrees of freedom and allows the 

vorticity to be distributed according to an Initial guess. Smith, on the 

other hand, assumes an angular distribution and left the radial distance of 

the sheet and the strength at those points as the 2N unknowns. Instead, 

following the early work of Legendre (1953a), Pull in assumes that the 

sheet strength to be a dummy variable of integration. Smith had previously 

shown that the sheet strength A<J> was a monotonic function of the angular 

extent of arc length, so this is justified. 

One other comment is noteworthy. Using the Biot-Savart Law for 

calculating the Induced velocity, one obtains an Integral of the form of a 

Cauchy-Prlnclpal Value. Both Smith and Pull in linearize the Integrand near 

that point and consequently simply neglect the singularity. 

Since Pullin's analysis is based on an Iterative method, albeit 

more rational than Smith's, it requires an initial approximation. Pull in 

obtains an initial approximation by using Brown and Michael's no sheet solu- 

tion for one control point. Then, this solution is used to furnish an Initial 

approximation for the two-control point problem, etc., until the desired 

number of control points is obtained. Since this method will produce an 

approximate solution and not an exact one, it is necessary to determine when 

Legendre, R., "Ecoulement au voisinage de la pointe avant d'une alle a forte 
fleche aux Incidences moyennes," Recherche Aeronautlque, No. 31, pp. 3-6, 
1953a. 
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wnen a sufficiently accurate solution is found. Pullin uses two parameters 
~o describe the conve rgence of the method. First, ~~ uses the mean er ror of 
tne unknowns in satisfying the governing difference equations, and secondly , 
t he modulus of the total force acting on the cut-vortex system for that 
app roximation. After formulating the problem, Pullin goes on to calculate 
some examples for both the flat plate and the flat plate-circular cone 
problem. For 45°' of the vorticity in the outer sheet, the Newton-Raphson 
scheme for N = 20 breaks down (fails t0 converge) for a = .5. For only 20k 

of the vorticity in the sheet and t' = 10, Pullin was able to obtain solutions 
for a down to .2. This is similar to the difficulty encountered by Smith. 

Pullin suggests that the problem may be due to thr behavior of the strongly 
nonlinear finit e difference equations, since the onset of divergence occurs 
quite suddenly; near the point of breakdown, there is no appreciable increase 
in the time required for the computation. Physically, t"Jis is no explanation; 

however, as previously noted, this type of formulation is not very applicable 
for small a, and, consequently, it is probably not worth too much additional 

effort to clarify this difficulty. However, if it were to turn out to be a 
manifestation of the nonlinear behavior of the equation, this may indicate 
the need for a greater understanding of the governing equation. The question 
of existence, uniqueness and stability of the solution are of primary considera­

tion if one is to have faith in the results. He compares his solutions with 
Smith for a comparable number of points and the agreement between the two is 
reasonable as it should be. He furthermore compares his method with Sacks' 
(1967) method employing finite elementary vortices [see Figure 21]. The outer 
sheet shape is approximately given and the overall lift is in good agreement. 
The vortex sheet is further outboard for Sacks' representation. However, 
the position of the vortex core is outboard and lower for Sacks' method. 
This can possibly be attributable to the fact that different criteria have 
been used to determine the vortex core position. Smith and Pullin use the 

Sacks, A. H., Lundberg, R. and Hanson, C., "A Theoret ical Investigation of 
the Aerodynamics of Slender Wing-Body Combinations Exhibitinq Leading­
Edge Seoa ration," NASA CR-71 9, 1967. 
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the position of the isolated vortex to mark the vortex core location. This 

is justified since this position appears to be relatively independent of 

the sheet extent for the extent of 517' of the rolled-up sheet. 

Sacks et al, on the other hand, use a center of gravity [see 

Figure 21] calculation to calculate the location of the vortex center. 

Although they do not go into detail of how they calculate the vortex center, 

its location would differ depending on what extent of the outer sheet they 

include in the center of gravity calculation. Inclusion of the outer oart 

of the sheet near the leading edge would mean that one would obtain a 

center of gravity position which is lower and farther outboard. Possibly, 

a more reasonable way to locate the vortex core usinq the discrete vortex 

model would be to search for some type of convergence by just using the 

vortices outside the first 90° to 180° of the sheet. Since the shift of 

the entire sheet and the core are in the same direction for the comparison 

between the two methods, it is probable that they have already used such a 

method. Also notable is the outboard displacement of Sacks' sheet shape. 

This could possibly be accounted for by the suppression of vertical velo- 

cities near the leading edge in Sacks' model or the handling of the Cauchy 

Principal Value in Smith and Pullin models. 

Included in Pullin's report is much of the computer program 

necessary to obtain the solution for the problem. However, he leaves 

several subroutines unspecified and not even all of the parameters are 

defined. 

Pullin (1973) says in lieu of the representation of the core by 

an isolated vortex, he tried to incorporate one of the available asymptotic 

solutions for the sheet structure in the core region into the vortex sheet 

model in order to construct the sheet shape from an "inner" and "outer" 

solution. This attempt failed due to the difficulty in properly formulating 

the problem. He gives no additional details on this attempt. 

Smith (1971) later extends his method to a body with a rhombic 

cross-section by using a Schwarz-Christoffel transformation. With increasing 

Smith, J. H. B., "Calculations of the Flow over Thick, Conical, Slender Wings 
with Leading-Edge Separation," ARC R&M 3694, March 1971. 
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thickness, the vortex cores nove upwards and outwards and the circulation 

falls off accordingly. Experimental agreement decreases with increasing 

thickness, possibly due to secondary separation, according to Smith, 

Levinsky and Wei (1968) extend the results of Smith by using a 

more general conformal transformation to study conical wing-body combina- 

tions, where strakes are used to fix the separation point. The basic 

difference in their numerical approach is that of satisfying the force 

balance condition on the vortex-cut; Smith uses a steepest descent method, 

while Levinsky uses a procedure devised by Warner (1957). 

For the problem of the cone with strakes, they find a multi- 

valued lift for intermediate values of a/c. They suggest that the multi- 

valued lift may be a result of their assumptions, such as neglecting second- 

ary vortices, etc. Later, they publish with Maki [Levinsky, We1, Makl 

(1969)] a further development of this theory. They use the same system of 

2N + 3 unknowns and governing equations as did Smith. 

In the multi-valued region, three possible theoretical solutions 

exist for the same a/c. A "weak" solution gives a weak vortex near the wing 

tip, and progressively stronger solutions locate vortices farther from the 

wing. In an accompanying discussion, Levinsky notes that for the case of the 

conical body with small strakes, three different solutions appear to satisfy 

all of the boundary conditions. In order to check this method, they used 

the Brown and Michael approach and obtained the same result. They consider 

it to be the consequence of the fact that there may be more than a single 

solution to a set of nonlinear equations. An alternate possibility is the 

location of a false solution due to the nature of the problem and error 

limit which "determines a solution." Examples of this type are often given 

Levinsky, E. S. and Wei, M. H., "Nonlinear Lift and Pressure Distribution 
of Slender Conical Bodies with Strakes at Low Speeds," NASA CR-1202, 1968. 

Warner, F. J., "On the Solution of'Jury'Problems with Many Degrees of Free- 
dom," Math. Tables and Other Aids to Computation, 1J., pp. 268-271, 1957. 

Levinsky, E. S., Wei, M. H. and Maki, R. L., "Theoretical Studies of Vortex 
Flow on Slender Wing-Body Combinations," NASA Accession No. N70-21358, 
also in NASA SP-228, pp. 113-129. 1969. 
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in books on computing techniques as possible pitfalls of numeri'.il -ethods. 

The nonlinear theory is also extended by Levinsky, et si, to non- 

conical transformations. The Joukowsky and the tangential flow conditions 

remain unaltered while the renaining boundary conditions are no longer 

algebraic as for the conical flow case. The same boundary conditions are 

used, but their form is considerably more complex and is listed in this 

reference. 

Method of Legendre (II) 

Soon after Legendre proposed his original simplified model with 

two isolated vortices, he (1953a) also formulated the problem for the 

leading-edge vortex sheets. Again, making the same assumption about the 

flow field, Legendre obtains the governing equation 

V2D* = 0 (80) 

Instead of just point vortices, he now formulates the problem for sheets of 

distributed vorticity. As before, 

4) = Re[x(U cosa + U sina cotX F(n))] (81) 

where 

2 + iy 
  (82) 
X COtA 

2     2 
Using the transformation c = 1 + n 

F = ^ -  in dc/   dc (83) 

Legendre, R., "Ecoulement au voisinage de la pointe avant d'une aile a forte 
fleche aux incidences moyennes," Recherche Aeronautique, No. 21, pp. 3-6, 
1953a. 
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wnere (c) determines the shape of the sheet and c is proportional to the 

Intensity cf the shed vorticity, which varies from 1 at the leading edge 

to zero at the free end, where the Joukowsky condition has already been 

applied to eliminate the vorticity constant. 

To determine the location of the sheet, two additional conditions 

are required. First, there is the condition that the pressure difference 

across the sheet is zero. 

2c - -11 - -^ + tana tan> 
nc  nc ^c  ^ 

(84) 

where subscripts refer to partial differentiation.  Secondly, there is the 

condition that the sheet is convected by the fluid, the so-called normal 

velocity condition. 

x^=.n + tan2_tanXF_HA(c) (85) 

c c 

After these conditions are applied, the governing equation becomes 

en f-J l_dc 
Jo C(S ■ S. -    tana tanx   Jo ^ ' ^     ^ ' & (86) 

Jo d 

Legendre suggests the following method for solving this equation.    An initial 

form for the sheet is chosen.   This can, for example, be based on the flow 

field for the model with two Isolated vortices.    The integral on the right 

hand side is performed to give a first approximation for n .    Once this Is 

known, it can be integrated as a function of c to obtain a second approxima- 

tion for the shape of the sheet.     This process can be iterated until the 

solution converges to an acceptable degree.    Legendre notes in 1953 that the 

application of this method and its theoretical justification have yet to be 

accomplished.    In a later report, Legendre (1963) considered a slightly 

different formulation of the same problem. 

Legendre, R.,  "Tourbillons en cornet des öiles delta," C.  R. Acad.  Sei., 257, 
pp.  3814-3817, Dec.   1963. 
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Due to the violation of slender body theory at the core of  the 
axis for all flows ana SDecifically for the case of the finite aspect ratio 
wing, Roy (1966) and Legendre (1959, 1964, 1966) have considered the oossi- 
bility and form of a conical, incompressible, nonslender flow field. 

According to Mangier and Weber (1966), it was proven by Germain 
that "the assumption of a wholly conical incompressible flow must lead to 
the existence of singularities outside the wing and the vortex sheet origin- 
ating at the wing; as a consequence, the solution is not uniauely defined." 
Legendre (1959) has explicitly demonstrated this. However, to obtain some 
type of nonslender conical solution, Legendre (1966) assumes the potential 

of the form 

Re(xf - iRf ) (87) 

where 

? = e
1u = ^— ; R2 = x2 + / + z

2 (88) 
R + x 

He attempts a derivation for the conical flow over a plane angular 
sector, determined by its edges at + c . By assuming no singularities up- 
stream, the singularities of f are at the location of the point vortices 
and their images. Also, the imaginary part of f must be the imaginary part 

of an eigensolution for the conical flow. 
The elgensolutions are i, cos w = 1/2(5 + -), sin w = - j (r, - —). 

Roy, M., "On the Rolling-Up of the Conical Vortex Sheet above a Delta Wing," 
in Progress in Aeronautical Sciences, Vol. 7, D. Küchemarin, ed., DP. 1-5, 
19657"^ 

Legendre, R., "Nappes en cornets aux bords d'attaque d'une aile en delta," 
Recherche Aeronautique, No. 70, pp. 3-10, May 1959. 

Legendre, R., "Nappes de tourbillons en cornets," C. R. Acad. Sei., 258, 
pp. 429-432, Jan. 1964. 

Legendre, R., "Vortex Sheets Rolling-Up along Leading-Edges of Delta Wings," 
in Progress in Aeronautical Sciences, Vol. 7, D. Kuchemann, ed., pp. 7-33, 
i gerr^  
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Finally, G   = g- - ig   must be tangent to the plate and to the axis of 
symnetry, where ■,:=? + IT, and G = ftanhT - ff . 

He builds the following set of functions which satisfy the above 
restrictions. 

fl ■! 

f2 = n 

It - t,     tt, - 1\ 
f   s lln Lx _J  

t - t1      tt1 - 1 

^4 = K? + 1/C) In 
tt, - 1     t!, - r 

x —!  t - t 1      t - t 

/t - t,      tt,  - ll 
f   = (; - 1/;) In    Ix-J  (89) 

where t-j, t,, 1/t,, 1/t, represent the locations of the vortex singularities 
and 

K=l+n2 
o 

n = } (t + l/t) 

(90) 

(91) 

Due to the condition that the coefficient of ln(t - t,) must be zero for 

t » t|i he obtains the linear combination for the solution 

f = c + on + id - ^jf. - ^-lii f. . iLlii f 
l l J    2   4    2i   5 

(92) 

where U is determined by the condition that f and f are finite for ^ = ± ; 

or n = 0 

ü = i(n1 - r"^) (93) 
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He then attempts to satisfy the Joukowsky condition at the leading edges, 

f    , finite for t = + i.    This cannot be done for this exanple.    He then 

applies a global condition for the forces on the axis of the core, g, = g, 

0 for ; = ;,.    He obtains for the position of the isolated vortices, with 
2 ' 

Vi 

hi - ni 
2i J 

2    l0
20+c

2) 
" 4 1  + 2p2 + 2p4 

'1  + '1 2      !    2  (3 + 7;
2 + 8c4) 

4 D    (1 + 2c2 I 2D4) 

(94) 

He plots the solution for this in Progress in Aeronautical Sciences [see 
Figure 22]. 
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DISCRETE SLENDER-BODY MODELS 

Fjnda^entals 

In this investigation of vortex sheet roll-uD fro^ the leading 

edge and its effect on the near field, occasional  reference will be -ade to 

wake roll-up analysis.    However,  this is not the ori-ary concern of the 

paper.    For more detailed information on the wake roll-up, see Spreiter 

and Sacks (1951) and McMahon (1967). 

Due to the difficulty in handling the general  problem as described 

in the preceding section, an alternate development has been followed by 

others.    This development concerns the replacement of the continuous vortex 

sheet by discrete arrays of two-dimensional vortices.    To put this method 

in proper perspective, a little history will be presented before the actual 

application is made to leading-edge separation. 

Fundamental  to the theory of discrete arrays is the list of the 

invariants of the discrete vortex flow phenomena in an infinite medium where 

there are no external  forces and where the velocities go to zero at infinity 

[e.g., see Batchelor (1967) for details]. 

The Center of Gravity    nvariant: 

IVi = I lri (95) 

[r.x. = x [r. (96) 

The Moment of Inertia Invariant: 

Spreiter, J. R. and Sacks, A. H., "The Rolling Up of the Trailing Vortex 
Sheet and Its Effect on Downwash behind Wings," JAS, TjJ, p. 21-32, 1951. 

McMahon, T. A., "Review of the Vortex Wake Rollup Problem," M.I.T. ASRL TR 
145-1, June 1967. 

Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge University 
Press, 1967. 
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IT.{x.  - I)2 +  (y.   -  Y)2 (97) 

The Energy Invariant: 

"4^ X. rirj lo9 rij   where rij = / (xi - xj^ + ^T - V2 (98) 
i ij 

These can also be given in integral  form for continuous distributions of 

vorticity.   All methods considered are open to question, if these invariants 

are not preserved. 

Rosenhead (1931) was one of the first to use the discrete vortex 

model; he studied the stability of an infinite two-dimensional vortex sheet. 

Westwater (1935) used an array of two-dimensional  line vortices to study the 

deformation of the vortex sheet behind an elliptic wing.    This was the first 

attempt found to analytically describe the roll-up of the vortex sheet behind 

a wing of finite span.    Earlier, Kaden (1931) had considered the rolling up 

of a semi-infinite wake, but his similarity solution was based on the fact 

that there was no reference length.    However, it is felt that the Kaden model 

can model the initial roll-up when the radius of curvature of the sheet is 

small compared to the span.    Westwater suggests the use of the Kaden model 

for the tip of his sheet even for large times. 

To handle the three-dimensional problem, Westwater uses the simpli- 

fication of treating the vortex sheet as consisting of an array of two- 

dimensional vortices lying in a plane.    This consists of neglecting the bound 

vorticity and of considering the additional effect of the semi-infinite array 

in the direction of upstream infinity to be negligible.    Since the array has 

been assumed flat initially, while the bound vorticity is being neglected 

at the same time, i.e., far away, this implies that this procedure is 

Rosenhead, L., "The Formation of Vortices from a Surface of Discontinuity," 
Proc. of Roy. Soc, A, 134, pp.  170-192, 1931. 

Westwater, F. L., "The Rolling Up of the Surface of Discontinuity behind an 
Airfoil of Finite Span," ARC R&M 1692, Aug. 1935. 

Kaden, H., "Augwicklung einer unstabilen Unstetigskeitsflache," Inqenieur- 
Archiv, 2. pp.  140-168,  1931. 
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applicable only to cases where the wake roll-up procedes slowly,  i.e., light 

wing loading. 

Instead of calculating the three-dirensional  roll-uo, he calculates 

the unsteady problem (where the x-axis becomes the pseudo-time in the standard 

unsteady cross-flow analysis) of two-dimensional roll-up.    He calculates the 

velocities induced by the vortex field of discrete vortices and then uses 

the Euler method of integration to obtain the new vortex locations.    He 

continues this process until  the vortex roll-up becomes pronounced.    In 

employing such a scheme, he neglects the self-induced velocities which occur 

for curved vortices. 

An easy check of the validity of such a discrete vortex array is 

the vorticity theorems in Batchelor (1967) and Betz (1933).    The easitst 

condition to apply is that with the absence of external  forces the center of 

gravity of the vortex system must remain constant.    Since there are no 

external  forces in the lateral  direction, the lateral  position of the center 

of gravity for each half of the sheet must remain constant.    This is satisfied 

approximately by the model, but Westwater notes that it would be satisfied 

approximately even if the entire sheet strength were placed in two vortices. 

The discrepancy as a function of time is explained by Westwater, "The errors 

are due solely to the finite time intervals.    It is certain that the source 

of error in this connection is the set of vortices whose velocities undergo 

rapid changes, i.e., those at the end of the sheet." 

He argues that the photographs taken by Kaden give confirmatirn to 

the view that the numerical method gives a good approximation to the motion. 

He finds that for flat wakes several  spans behind the wing, the error ignored 

by the two-dimensional approximation is negligible.    However, he assumes the 

effect of self-induced velocity due to the curvature to be small and does 

not discuss it further.    From this analysis, it would be assumed that the 

sheet would be better represented for smaller step sizes and equi-strenqth 

vortices.    Contrary to this supposition, Hackett and Evans  (1971)  note that 

Betz, A.,  "Behavior of Vortex  Systems," NACA TM 713,  1933. 

Hackett,  J.   E.  and  Evans,  M.   R. ,   "Vortex Wakes behind  Hiqh-Lift WüIMS," JA, 
8,  No.   5,  pp.   334-340,   1971 . 
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one obtains a more uniform spiral if one uses longer time steos for equal 

strength vortices in the case of the elliptic distribution of two-dimension- 

al vortices. Also, one obtains a smoother spiral if one uses equally-spaced 

vortices. 

Hany people accepted the calculations using discrete vortex models 

of Rosenhead and of Westwater for 30 years, before the advent of greater 

computing capacity encouraged investigators to recalculate the results 

obtained. After an analysis of this approximation, Birkhoff and Fisher 

(1959) say, "Our view is that continuous vortex sheets in inviscid fluids 

are extremely unstable and will soon break up. Viscosity is essential to 

stabilize the rolling up of real vortex sheets, which will only roll up 

smoothly by diffusion for one or two complete turns at ;nost." However, 

they realize that investigators resorted to the discrete array representation 

because of the difficulty in handling the actual continuous problem. They 

concentrate on the Helmholtz instability problem of the sinusoidally perturbed 

infinite vortex sheet, which was treated originally by Rosenhead. Since then 

many people have considered the use of the discrete vortex approximation. 

However, almost all encountered some sort of difficulty and an attempt will 

be made to discuss the difficulties as well as to describe the application 

of the method. 

Extensive numerical work has been done by Moore (1971, 1974) in 

this area. In 1971, Moore states, "It must be emphasized that the purpose 

of this work is not to deny that the vortex sheets roll-up -- the analytical 

work of Kaden (1931) and Stern (1956) on the semi-infinite sheet suggest very 

strongly that roll-up will occur in the finite case also -- but is to assert 

Birkhoff, G. and Fisher, J., "Do Vortex Sheets Roll Up?" Circolo Matematico 
Di Palermo Reconditi, 8, Series 2, pp. 77-89, 1959. 

Moore, D. W., "The Discrete Vortex Approximation of a Finite Vortex Sheet," 
NASA Accession No. N72-24005, 1971. 

Moore, ü. W., "A Numerical Study of the Roll Up of a Finite Vortex Sheet," 
JFM, 63, Part 2, pp. 225-235, 1974. 

Stern, M., "The Rolling-Up of a Vortex Sheet," ZAMP, 7, pp. 326-342, 1956. 
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that jseful  quantitive information about the process cannot be foun-i tj 

tne type of numerical  orocedure orooosed by Westwater."    He for^jlete:  t'-e 

Droblem as Westwater had done for the elliotic distribution and e^slc/s 

vortices of equal  strength placed at the vorticity centroid of eacn se"~ent. 

Instead of using the Euler  integration scheme for the timewise integration 

of velocity as did Westwater, Moore uses the mathematically more acetate 

fourth-order Runge-Kutta method with double precision arithmetic. 

Moore considers the shortest time scale as the orbital period of 

the two closest vortices (the tip vortices) and obtains the characteristic 
2  3 

time as t = TT b/M v, where M = number of segments on each half of the 

sheet, v is the downward velocity at the time t = 0 and b = serni-soan. 

Westwater fails to discuss the nondimensional time he used, 

stating simply that his "t is a factor proportional to the time that has 

elapsed since the sheet was straight." Using his notation where his initial 

sheet strength is described by 

roy/b
2/ 1 - y2/b2 (99) 

where v = ro/2b1 relating this to the velocity used by Moore, the obvious 

choice for a time would be 

h2 
—-   = 10 sec (100) 
Ü 

Hi: initial time step is given as .008, corresponding then to 

At = r .008 (101) 

where Moore has said that the time step should be for Westwater's choice of 

parameters 

dt(v/b) = dt* < < .01 (102) 

In terms uf Moore's nondimensional time step, Westwjtpr's result t.':r,v-es 
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it* = .004 (103) 

If the time given by Westwater is actually .008 seconds, then the 

initial step size would be smaller by a factor of 10 and it would be well 

within the criterior of Moore. However, this can probably be easily clari- 

fied by examining the work of authors who have reproduced the results of 

Westwater. 

Although .004 is less than .01, Moore decreases dt* to ,00001 for 

his finest mesh. The tip vortices are shown by him to orbit each other as 

an almost linear function of time. Westwater stated that although the tip 

vortices would not represent the sheet properly, the central portion of the 

sheet would be little affected by approximating the infinite spiral by a 

handful of vortices. He also contended that the main source of error would 

be from the large step size in time. Even with Moore's smaller step size, 

Moore (1971) notes, "This orbiting motion of the tip vortices raoidly 

affects the neighboring vortices and ruins the whole calculation." He then 

increases the number of vortices to 40 and 60 vortices, but no smooth spiral 

structure emerges, while the "vortices originally near the tip tend to collect 

into a roughly circular patch." Since decreasing the time and increasing 

the number of vortices fails to result in any improvement, this suggests to 

Moore that the method of discretization is responsible for the problems. 

In a later paper (1974), Moore elaborates on this discussion. 

He notes that a possible reason for the "success" of Westwater's calculation 

may be that the large step size increases the separation between vortices 

near the tip beyond their true value. This would suppress problems asso- 

ciated with the singular nature of the flow field as the separation distance 

goes to zero, and would prevent the outer vortices from orbiting about each 

other. More will be said of this In connection with the work of Hackett and 

Evans (1971) and others. 

Moore also notes that the Euler Integration results in a cumulative 

error and cannot possibly be valid for large times. He finds two additional 

difficulties with the finite array of vortices. If the distance between 

turno is much less than the typical distance between nelghborinq vortices 

on Lin' .heet, then there will be instances when vortices on neighboring 

turrr. will come close together and one can hardly expect such a representation 
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*.: • jdel a continuous sheet. He suggests that this problem had been 

S-oc'-essed by various methods of introducing pseudo-'. iscosity. For exa-^le, 

one can lump vortices together if they become closer than a certain distance. 

A second method is to employ a nonsingular velocity field for each discrete 

vc-tex. The second difficulty noted is that since the spiral of Kaden is 

infinite, any attempt to replace the sheet by a finite number of point 

vortices will cease to be adequate sufficiently near the center of the 

spiral. 

Thus, he suggests replacing the sniral center by a more orderly 

arrangement in terms of a discrete vortex array than the chaotic distribution 

obtained by earlier researchers. Thus, he uses the condition that each turn 

of the spiral must be determined by a sufficient number of vortices to 

determine the non-chaotic motion. Starting with the vortices near the tip 

of the sheet, the vortices are amalgamated if there is insufficient descrip- 

tion of the spiral turn, where Moore concludes that four per turn were 

sufficient. He notes that for the discrete array, that the energy invariant 

is not preserved in his amalgamation of the tip vortices. 

In this second paper, he starts with an equi-distant array, since 

this gives him a better description of the inner part of the sheet and allows 

longer step sizes to be used since the scale of the smallest time is notably 

increased. With these changes, he is able to obtain 2 1/2 turns of what 

appears to be a reasonably well-defined spiral for t* = 7. From his Figure 

4, it can be seen that the distance between spirals is less than the arc 

lengths between neighboring vortices and this may cause difficulty. However, 

Moore notes that this did not cause trouble, and suggests that this could 

be due to the fact that the tip vortex provides the dominant contribution to 

the velocities of the individual vortices. From Kaden's similarity analytic 

solution, one would expect the fraction of vorticity to be rolled up as a 

function of time to be proportional to the one-third power of time. This is 

approximately true for Moore's example when t* < ,1. 

Another early work on the discretp vortex model is by Mama ind 

Burke (1950). They priinarily study the Helmholtz instability problem, 

llama, F. R. and Burke, E. R., "On the Rollinq-Up of a Vortex Sheet.," Maryland 
U. , BfJ-220, 1960. 
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originally studied by Rosenhead using a distribution of discrete vortices. 

Following the criticisms of Birkhoff and Fisher (1959), they 

decide to study the problem in detail.    By using smaller time steps,  they 

do not get Rosenhead's smooth roll   uo,    Since vortex sheets actually do 

roll   up,  they suggest several  possible explanations for the discrepancy 

between experiment and the inviscid theory.    First, the viscosity reduces 

the high velocities and prevents the existence of infinitely thin sheets. 

Secondly,  the substitution of discrete vortices itself may be inappropriate. 

From the energy invariant, Birkhoff and Fisher conclude that any decrease 

between certain pairs of vortices must be accompanied by an increase of 

other distances.    For vortices which have equal  strength as is used in the 

Rosenhead problem, this theorem is determined by the product of all mutual 

distances.    In consequence, no two vortex lines can approach each other 

indefinitely, and if the possibility of a lost vortex is disregarded, 

coalescense in terms of concentration of the vorticity in a point cannot 

occur.    However, they do not agree with Birkhoff and Fisher, who believe 

that randomization has to occur; they hypothesize the possibility of smooth 

roll up for some intermediate time.    They then note that the vortex sheet 

will deform due to the Helmholtz instability.    They represent the deformed 

sheet by unequal strength vortices and they then obtain smooth roll UD. 

This reinforces their belief that the results of the calculation are sensi- 

tive to the initial condition assumed.    Thus, although they are unable to 

obtain smooth roll up with Rosenhead's method and small time step, they are 

able to obtain smooth roll up by changing the initial distribution slightly. 

It is apparent by now that this area of research has caused a great deal of 

concern. 

Kawahara and Takami (1973) cite several examples of discrete array 

computations and note that such calculations appear to give the solution qua'\' 

itatively.    They note that in many cases irregularity appeared in the solu- 

tion so they introduced an "artificial viscosity" to suppress such irregular- 

ity.    Instead of assuming a velocity field of a point vortex for their 

discrete vortex elements. 

Kuwahara,  K. and Takami, H., "Numerical  Studies of Two-Dimensional Vortex 
Motion by a System of Point Vortices," Journ. of Phys. Soc.  of Japan, 34, 
No.   1,  pp.  247-253, Jan.  1973. 
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v = FF (105) 

they assume 

v = ^7 (1 - e-r2/4vt) (105) 

which is the result given in Lamb (1945) by means of the analogy with the 

heat equation for a special form of the Navier-Stokes equation. However, 

they mention that a superposition of vortices of this type no lonqer satis- 

fies the governing Laplace's equation in two dimensions. However, they 

consider this simply as an artifice to obtain a more regular solution, and 

they do not provide additional justification for its use. In order to test 

the validity of :uch an approximation, it is necessary to have a problem for 

which an exact solution is known. The case considered here is a vortex tube 

of inviscid, incompressible fluid whose cross section is an ellipse and with 

uniform vorticity while the outer flow field is irrotational. It is known 

that such a tube rotates with a constant angular velocity and without chang- 

ing its external shape [Lamb (1945), p. 232]. 

They model this continuous vortex distribution by uniformly 

distributed vortices of unequal strength and obtained fairly good agreement 

with theory. They note that the vortices near the boundary deviated slightly 

due to the fact that the discrete grid did not accurately model the curves 

of the boundary. The approximation becomes more accurate as the number of 

vortices increases. They also allow the minor axis to go to zero and obtain 

a Helmholtz instability problem. They then consider the wake roll-up problem 

using equi-strength vortices and they show a progression of regularity as 

the artificial viscosKy is increased. This only affects those vortices 

near the tip. They thus state that the use of discrete vortices as an 

approximation to a continuous distribution could provide quantitative as well 

as qualitative solutions if the artificial viscosity is used to force the 

solution to remain regular. 

Others have attempted to use similar artifices to promote 

regularity, but do not attempt to elaborate on their justification. Tor 

Ldiiib, H., Hydrodynain_ks, 'JOVIT Puhl icfltions, 6th edition, 1945. 
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example, Clement;, and Maull (1973) in considering the rolling no of  a trail- 

ing vortex sheet in an effort to study methods of reducim the ti: vertex 

strength basically use Westwater's method, but if the induced velocity 

becomes too large, they combine the two tip vortices at the centroid of 

rticity. Thus, from the work of Moore, caution must be used in order to 

del discrete vortex flows, especially when vortices become close together. 

However, the work of Kuwahara and Takami suggests that quantitative results 

can be obtained. Thus, combined flow will next be studied usinq discrete 

vortex models. 

Method of Sacks 

For slender bodies. Sacks (1954) employs the extension of the 

Blasius formula developed by Milne-Thonson (1950) for unsteady flow to 

calculate the forces and moments In a steady 3-dimensional incompressible 

flow. He finds that the forces and moments (except drag) are linear in the 

velocity potential and thus is later able to extend these results to include 

free vortices. 

Sacks (1955) extends the analysis of his earlier work to include 

the effect of vorticity shed from a wing on a tail. Due to the linearity 

of the calculations from the previous work, one need only add the effect 

of the shed vortices. He finds that the potential of the point vortices 

in the cross flow plane is 

2 . m .  m r 
F(a) = - £7 I Mn (a - a, ) + ^- [ r. In (a - -2-) (106) 

CTk=l K      K   ^ k=l K     ak 

where a is the complex plane where the airplane cross-section has been 

transformed to a circle of radius r . o 
Now,  it remains to find the distribution of r., o.   to completely 

determine the problem.    Enroute to his solution, he notes the following 

Clements, R. R. and Maull, D. J., "The Rolling Up of a Trailing Vortex 
Sheet," Aeron. Journ.,  /7, No.  745, pp. 46-51, Jan.  1973. 

Sacks, A.  H.,  "Aerodynamic Forces, Moments & Stability Derivatives for 
Slender Bodies of General Cross Section," NACA TN 3283, 1954. 

Sacks, A.  H.,  "Vortex  Interference on Slender Airplanes," HhU   ill 3525,  1955. 
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theorem for calculating the force due to such vortices. 

Theoren:    The lateral force Y + iL due to each vortex of strength 

7 shed from a forward wing of a slender wing-body-tail combination in steady 

straight flight is equal to the change, from the wing trailino edge to the 

base of the airplane, of the quantity ip UTa   where a    is the (complex) 

distance between the vortex and its image in the plane in which the body 

cross section is mapped onto a circle while leaving the flow field at 

infinity unchanged. 

In his first calculation, he assumes the sheet of the wing to be 

completely rolled up at the tail and replaces the wake by two point vortices 

of unknown strength and location.    He obtains the strength and the location 

of the vortices from Rogers (1954), where Rogers obtains the circulation 

distribution at the trailing edge from the span loading. 

r(y) = | '^dx (107) 

o 

and then replaces the circulation by point vortices in the manner of Westwater, 

[Rogers (1S54) contains a list of references on attempts to model  the wake 

structure.]    In addition,  if there is a body extending beyond the trailing 

edge, he simply adds the velocity inouced by the body to the velocity induced 

by the vortices before applying the Euler integration method to discover the 

new location of the vortices in the streamwise direction. 

As it became apparent that leading-edge separation was important, 

Sacks, Lundberg and Hanson (1967) finally included leading-edge vortices. 

Many of the early representations of shed vorticity, even from the leading 

edge, fail  to allow the free vortex sheets to roll up and assumed that they 

are planar.    The authors aimed at removing this restriction and extending 

the theory to nonconical  flows.    Also, the models of Mangier and Smith (1959) 

Rogers, A.,  "Application of Two-Uimensio^al Vortex Theory to the Prediction 
of Flow Fields behind Wings of Wing-Body Combinations at Subsonic and 
Supersonic Speeds," NASA TN 3227. 1954. 

Sacks, A.  H.,  Lundberg, R.  and Hanson, C,  "A Theoretical   Investigation of 
the Aerodynamics of Slender Winq-Body Combinations Exhibiting Loadinq- 
Edge Separation,"  NASA CR-719,  1967. 
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and Brown and Michael   (1954) allow the fluid to support non-zero forces, 

and are only force-free in the nean. 

Sacks et al  extend the earlier work of Sacks  (1955) to include lead- 

ing-edge separation.    They assume that the two contributions, linear lift 

and separated lift, are separable and additive.    Although they use slender 

body theory to calculate the nonlinear portion of the lift, they use the 

lifting surface results of Lawrence  (1951)  to obtain the linear portion of 

the lift for a low aspect ratio wing, since they note that Jones' approxima- 

tion is only valid as the aspect ratio goes to zero. 

For the separated flow contribution, they utilize slender body 

theory and assume that a pair of discrete vortices are shed at chord-wise 

stations just outside of the leading-edge.    The strengths and positions are 

fixed by the following boundary conditions.    The normal  velocity condition 

requires that the vortex leaves the wing edqe tangentially.    Hence, the 

initial position is described by only a lateral coordinate.    The Kutta 

condition furnishes a second condition and the third condition is obtained 

from the shedding rate.    Although they obtain an empirical  shedding rate from 

water tank experiments, which give better experimental agreement for the 

lift calculations, the theoretical derivation will be of Interest here since 

it has more general applicability. 

The lateral velocity at the edge of the wing Is calculated.    This 

velocity is used to calculate the lateral growth of the flat vortex sheet 

being shed in the plane of the wing, whose strength must   satisfy the Kutta 

condition.    The sheet Is then replaced by a vortex of the same strength which 

Is located to satisfy the Joukowsky condition.    From an upstream location, 

one knows the complex potential for a wing and the shed vorticity [see Sacks 

(1954), for example].    To obtain the potential at the station in question, 

one ca1culates the new locations as previously described In the discrete 

line-vortex methods and adds a term to account for the vorticity shed in the 

sheet. 

Lawrence, H. R., "The Lift Distribution of Low Aspect Ratio Wings at 
Subsonic Speeds," JAS, ]8, No. 12, pp. 683-695, 1951. 
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(a - ajHa + r^) 
rdy In  ^- (108) 

(a + SJIa - ^) ...•.<    r
s 

T/,e length ■.  is found by the Euler method of integration.    To reduce Equation 

(lOa) to a ^orn that can be easily handled, y is assumed to be constant.    Then 

the vortex strength becomes V   - yAs, where As is its length in the physical 

plane.    Now the vorticity is replaced by a point vortex of strength r and 

of unknown lateral displacement and the Joukowsky condition is again used 

to determine the location of the newly shed vortex.    This process can be 

continued downstream for snail step sizes to obtain a representation of 

the leading-edge separation.    Since they use slender body theory, they ter- 

minate their calculations at the "trailing edge" of the body; however, it is 

to be noted that the load in general will not be zero there.    This initial 

work only allows monotonically increasing span in the chord-wise direction. 

[Fink and Soh (1974) say that Sacks et al do not account for the chord-wise 

variation in span, but Finkleman (1972) later includes the increase in span 

in his formulation.]   The problem would also be complicated by the appearance 

of a vortex wake from the trailing edge. 

As developed in Sacks (1954), they use the change in impulse to 

calculate the force on the wing.    Since they know the pressure distribution 

for every chord-wise station, they are also able to obtain the pitching 

moment and the center of pressure.    In their discussion, they note several 

areas of concern.    First, to obtain the location of the sheet vortex requires 

an induced velocity at the leading-edge from other vortices.    For the first 

shedding station, there are no vortices to induce the required field, so 

they assume that the first vortex is shed with a downwash velocity Ua/2 

Fink, P. T. and Soh, W. K., "Calculation of Vortex Sheets in Unsteady Flow 
and Applications in Ship Hydrodynamics," for Tenth Symposium in Naval 
Hydrodynamics, July 1974. 

Finkleman, D.,  "Nonlinear Vortex  Interactions on Wing-Canard Configurations," 
JA, 9, No. 6,  pp.   399-406, June 1972. 

74 



^^mm^^m^^~ 

following Gersten (1961) and Bollay (1939).    More will be said about this 

later. 

The solution  is obtained by using a fourth o^der Runqe-Kutta 

numerical integration technique with the Gill  variation.    The method is 

approximate in that  it only satisfies the Joukowsky condition at the lead- 

ing edge at only a  finite number of stations.    Other aporoximations are appa- 

rent in the derivation of this method.    They hypothesize that as the number 

of vortices increases, the discrete vortex model would converge to the 

continuous sheet.    For their program, the convergence is slowest at high 

aspect ratios and low angles of attack.    For lift, a rough rule of thumb 

for convergence is n = 30+30 M for .5 <  M < 2.0. 

A comparison between Mangier and Smith (1957) and Sacks et al 

for /R = 1.0 and 1.5,  shows that both lift predictions are higher than 

the experimental results of Bartlett and Vidal  (1955); Sacks' method 

starts out lower, but surpasses Mangier and Smith at high angles of attack. 

It is noted by the authors that they modified Mangier and Smith results by 

using the same attached flow lift of Lawrence after subtracting the Jones' 

slender body lift for the attached flow model.    As a further check on the 

present analysis, the vortex position above a delta wing is compared with 

experiment.    They represent the vortex position by its center of gravity, 

but fail to mention which vortlcity they consider to be relevant in their 

calculations. 

Finally, in their conclusion. Sacks et al   (1967) say that "it 

appears that the overprediction of the normal force due to separation stems 

from an overprediction of the shedding rate (theoretical result is greater 

than experimental result) and is largely due to three-dimensional effects 

as in the case for the attached flow," i.e., the discrepancy grows for 

Gersten, K., "Calculation of Non-linear Aerodynamic Stability Derivatives 
of Aeroplanes," AGARD Rep.  342, April  1961. 

Bollay, W., "A Non-Linear Wing Theory and Its Application to Rectangular 
Wings of Small Aspect Ratio," ZAMM, 19, pp. 21-35, Feb.  1939. 

Bartlett, G. E., and Vidal, R.  J.,  "Experimental   Investigation of Influence 
of Edge Shape on the Aerodynamic Characteristics of Low Aspect Patio Wings 
at Low Speed," JAS.  22,  pp.  517-533, 1955. 
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increasing aspect ratio as the difference between Lawrence and Jones. 

They note that the Lawrence method is not really anplicable to 

tne separated-flow problen since it is based upon a linear relationship 

between the local pressure and the velocity potential. The pressure due 

to *.ne separated flow, however, contains quadratic terms which do not 

cancel. Thus, this is only considered to be a correction term rather than 

a universally valid theory. 

The development of the feeding rate appears to be one of the most 

important concerns for the unsteady finite element method. An alternate 

method is presented next. 

Following the development of Sacks, Angelucci (1971, 1973) des- 

cribes a slender-body model using discrete vortices. Notably, he differs 

from Sacks et al (1967) in the mathematical definition of the elementary 

vortex sheet at the point of separation. He applies the approximation for 

the streamline condition as: 1) the vortex sheet is oriented in the direc- 

tion of the total velocity induced at a specific point of interest and, 2) 

the vorticity distribution is such that the average velocity normal to the 

sheet and induced by the sheet itself is zero. 

He states the simplest distribution that satisfies these conditions 

is k|a - a.11a. - a I, where a, is a point on the sheet (e.g., the center 

of vorticity) and n and o are the end points of the sheet in the trans- 
So 

formed plane where the body is represented by a circle [see Figure 23]. He 

then makes the final assumption that due to the local conical nature of the 

slender problem, the segment length should be linear as a function of the 

x-direction. The circulation then becomes 

Y(s) = k(aa - o.)(a. -  as)e"
i2*s (109) 

where $   represents the orientation of the sheet at the point of separation 

with respect to the real axis, and s denotes the arc parameter on the sheet. 

Angelucci, S. B., "A Multivortex Method for Axisymmetric Bodies at Angles 
of Attack," JA, 8, pp. 959-966, Dec. 1971. 

Ange'ucci, S. B., "Multivortex Model for Bodies of Arbitrary Cross-Sectional 
Shapes," AIAA Paper No. 73-104, Jan. 1973. 
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The sheet is then replaced by a concentrated vortex of equivalent 

strength in the manner of Sacks at al. Similarly, the rest of the problem- 

is derived according to Sacks et al. He does consider axisyrmatric bodies 

without strakes for the case where the location of the viscous separatior 

is considered as given. He also calculates the nonlinear and linear li't 

separately. He obtains the nonlinear lift contribution from the change of 

impulse and suggests obtaining the linear portion of the lift from the best 

possible source available, while he obtains it by extrapolating the exoeri- 

mental lift for small angles of attack. 

A more recent development along the same lines is included in a 

paper by Fink and Soh (1974). Fink and Soh start with a critical survey 

of some of the papers published using the discrete two-dimensional vortex 

arrays. They agree in principal with the findings of Moore (1971) and others 

that the tip vortices become random, but they then go on to demonstrate how 

such randomness can be avoided. 

To discover such a scheme, they start with the governing integral 

equation for the continuous sheet and then formulate a finite difference 

scheme to approximate this equation. As a result, they are also able to 

formulate the errors involved. 

The complex conjugate velocity induced by a segment of a sheet from 

i to SLJ of strength Y(S) is 

s. , f b YUJ ds! 
q(Z) = u-iv = 2i |  -J—l 

7  7 (110) 
1 

where the Cauchy Principal Value must be applied to evaluate the singular 

integral. 

In transforming the integral to a complex one, they use the identity 

dZ1 = eieds1 (111) 

Fink, P. T. and Soh, W. K., "Calculation of Vortex Sheets in Unsteady Flow 
and Applications in Ship Hydrodynamics," for Tentf- r,i,;posiuin in Naval 
Hydrodynamics, July 1974. 
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'ith ~ ·· e : is the angle between the tangent of the sheet at the ooint Z(s) and 
: :~ -= real a ~~ is. Then, they are able to develop the complex potentia l for 
t ne f lo·,.. fi eld. From the time derivative of the complex ootential. t hey 
ob: :: n the rate of change of circulation f related to the vorticity density 
·f and the velocity at the shedding point 

· -1e1 r = Re[(qvs - V) ye edge (112) 

where V denotes the velocity of the noint and qvs denotes the average comolex 
velocity across the sheet, while e has been defined previously. They then 
develop a numerical method to follow the sheddin~ vorticity. The integral 
becomes 

q-(Z) 1 = 2'1Ti (113) 

where the sum is well behaved for a point off the sheet. For a point on ·the 
sheet, Zj' by assuming that the segment is straight and the vorticity May be 
taken as a constant, they obtain approximately 

-ie 
1 rk 1 _.....,..rJ~~..-e __ J __ ln ZJ - ZJ+l/2 

q(Zj) = n y z - z - fir I I 
k~j j k sj+l/2 - sj-1/2 zj - zj-1/2 

(114) 

It is noted that for Zj located at the midpoint of the segment, the last tem 
vanishes and one obtains the result that is nonmally used in discrete approxi­
mations by ignoring the singularity in the first place. 

However, they note that the vortex has to be olaced at the midpoint 
for this to be valid at all times during the process of roll up. On the 
other hand, they state that the original sheet segments are deformed and 
thus the discrete vortices will no longer be located at the midpoints. Thus, 
they explain that as the number of vortices is increased, the number of 
logarithmi c terms which were formerly neglected increases and consequently 
it is not surprising that increasing the number of vortices does not lead 
to i ~oro v ed roll up. 
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Instead of retaining the logarithmic tern for calculations as 

a function of time, they suggest an alternate possibility. Instead, at 

each step, they "represent the vorticity by an entirely new set of equi- 

distant discrete vortices whose strengths are adjusted to give a good 

representation of that density." 

Because of the fact that the centroid and the midpoint will rarely 

fall together, this scheme can only be considered to be reasonable in conserv- 

ing the invariants if the step size is small. 

To reduce the computer time needed by the small steos, they use 

the simpler Euler method of integration. To calculate the pressure distrib- 

ution over a body with vorticity being shed accordMIQ to the previously 

derived result for f, the discrete approximation will misrepresent the 

actual flow near the shedding point. They thus approximate the vorticity 

near the edge by a straight segment attached to the edae with constant 

vorticity density and assume that the mean velocity of the sheet is the mean 

velocity at the edge. They suggest calculating the force both from Blasius' 

theorem for unsteady motion and from the pressure distribution tc check for 

consistency. It is to be noted that they only resorted to the .pecial treat- 

ment at the shedding point, after their original calculations failed to 

provide good agreement with experiment. 

They then do a partial error analysis for their discretization 

of the vortex sheet integral for the induced velocity. They consider the 

effect of approximating the vorticity density as constant for a summation 

term and the deviation of the sheet from the assumed straight segment. The 

vortices adjacent to the point on the sheet are shown to have the greatest 

contribution to the error, and it can be reduced by considering additional 

terms in the approximation. 

They suggest that in the timewise integration it may be advanta- 

geous to consider simpler schemes like the Euler method they use rather than 

the Runge-Kutta method, since each additional point at which the flow field 

must oe evaluated allows the creation of further logarithmic terms. They end 

up performing the calculations using the cruder Euler method of integration 

and using equi-spaced vortices, which two methods have both resulted in 

improved regularity of the wake roll up. Thus, although their vrror  analysis 
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of the Cauchy Principal Value is laudable, their actual application i s 
remi niscent of other earlier methods. They repeat the calculations of 
Rosenhead and Westwater and obtain much more regular behavior. 

They also consider other unsteady problems including the ~odel 
essentially developed by Sacks et al. They compare their results with Smith 
and Sacks et al for ~/K s 1.0 for a delta wing [see Figure 24]. The vortex 
spiral of Fink and Soh is more uniform than Sacks'. while Smith's result is 
considerably rounder than that of Fink and Soh although Smith's curve is 
slightly higher by the nature of its greater eccentricity. Fink and Soh and 
Smith give almost identical results for the oressure distribution while their 
lift results are lower than Smith's and agree more closely with the results 
of Sacks et al. In general, they seem to have developed a general method 
for calculating vortex sheet shapes in the unsteady two-dimensional problem 
using a discrete vortex model which does not suffer from the irregularities 
which plagued early workers. 

A further outgrowth of the discrete vortex method is the treatMent 
of trailing vorticity. Finkle.an (1972) considers the canard-wing configura­
tion using Sacks' method. He includes the vorticity from the trailing edge 
in the leading-edge vortex system of Sacks et al. The trailing edge vortices 
correspond to a spanwise loading which maintains the discontinuity in potential 
across the surface. 

At the trailing edge. the Joukowsky condition is violated due to 
the violation of slender body theory. That is. slender body theory does not 
allow the pressure difference at the trailing edge to go to zero for a sharp 
change in span. since it is basically a theory in which all of the information 
is transmitted only in the rearward direction. As noted by Sacks et al, the 
method is not self-starting. Finkleman tries several methods including using 
conical flow models near the apex and notes that the starting process is 
rapidly forgotten. Also, he notes that if the vor tex is even an infinitesimal 

Fin kleman, 0., "l onlinear Vort ex Interactions on Wing-Ca nard Confi qurat ions ," 
JA, ~. No. 6, pp. 399-406, June 1972. 
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distance away from the edge of the wing, it will experience a velocity 

component normal to the plane of the wing. 

To expedite computations, the canard leading-edge vortices are 

combined in pairs as soon as the trailing edge is reached. Also, he comments 

that he encountered difficulties on the trailing wing of the canard-wing 

combination. The first difficulty is the tendency of the vortices to oierce 

the wing surface at high angles of attack. To prevent this, when the vortices 

are sufficiently close to the wing, their normal velocity is suppressed. 

However, this appears to be just a stopgap measure, and it would be prefer- 

able to be able to understand this problem in greater detail. 

The second problem encountered is the one studied by Moore (1971), 

of vortices close together creating unphysical flow patterns, so he simply 

lumps the two vortices together when they come within a "small fraction of 

the local span" to each other. These results are one of the first to consider 

the combined effect of leading-edge and trailing-edge separation. 
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OPTING SURFACE THEORY 

■lethod of Belotserkovskii 
The previous discrete models were applied to slender bodies. The 

next step will be to look at discrete 1 iftinq-surface theories, not restricted 

to slender bodies. First, the lifting-surface theory developed by 

Belotserkovskii (1968) will be considered. Although he only considers 

vortices from the side edges and trailing edge in the nresentation, he 

suggests that the method could be used to solve the leading-edge problem. 

The theory is a three-dimensional lifting surface theory where the wing is 

replaced by a bound-vortex network and the wake and other shed vorticity is 

replaced by free vortex lines. Earlier theories based on discrete vortex 

elements also had similar bound and trailing vortices. A notable difference 

employed by Belotserkovskii is the fact that he allows his free vortex ele- 

ments to become nonplanar and roll up. He accomnlishes this by segmenting 

the trailing vortices a finite number of times downstream of the shedding 

point. He then calculates the induced velocities accordim to the Biot- 

Savart law from the vortex network and satisfies the no-flow condition at 

a finite number of points to find the strengths of the bound vortices in the 

normal manner. With the extra degree of freedom provided by the unknown 

orientation of the free vortex segments, he satisfies the convection condi- 

tion at a point on each segment and thus assures that they would be force 

free. Once the entire flow is determined, the lift is calculated using the 

Kutla-Joukowsky theorem. Also, more detailed information, about the flow 

everywhere, can be calculated if desired as with a normal lifting-surface 

model. 

There are several problems with this method that should be noted. 

First, he divides the wing into a network of boxes and the vortex element 

is placed at the quarter chord point and he satisfies the normal flow condi- 

tion at the 3/4 chord point. This method follows from the flat plate result 

and was developed extensively by Weissinger. However, there has been some 

Belotserkovskii, S. M., "Calculation of the Flow Around Winn', of Arhitrary 
Plar-'-jri' over a Wide "ango of Angles n*  Attack," MeMKiniLj ;'l, MW •,( i : 
Ga/d, Vol. i,   fin.   4, up. 32-44, 1%:-.. tr.,rrJ ;Vd in tin.] I /i ' :-, 
Conr,ii ]'■:'*■,  [iurf i i, [ip. ?()-['/. 
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debate on its validity [Thwaites (1960, p. 341)]. 

Furtheniiüre, Ashley and Landahl (1965) note that with the advent. 

of  high speed computers, "there is an element of irrationality in clinging 

to any questionably consistent approximation that embodies the numerical 

work inherent in all of the traditional lifting-surface theories." Another 

difficulty is the proble; of vortex curvature. As is obvious from the form 

of the velocity induced by the vortex element, any time there is a kink in 

the vortex element, there is an infinite self-induced velocity and this 

cannot possibly be a good representation of the flow, i.e., even as the 

number of segments increases, the singularities [see Hama (1962), for example 

for some repercussions of this line vortex problem] continue to exist. Final- 

ly, because it is a discrete vortex model with singularities, it can only 

approximate the flow field at a distance at best, since singularities are 

excluded in the actual flow field; although this is not a serious handicap 

when the desired flow field is far from the vortex elements, this method 

cannot hope to give information about the flow in the vortex cores, even 

discounting the effect of neglecting the viscosity in the sub-core. Of 

course, as in the two-dimensional problems, there remains the question of 

whether or not it is valid to approximate a continuous vortex sheet by dis- 

crete vortex elements. 

Despite these objections, the inherent difficulty of handling the 

nonlinear lifting surface problems with leading-edge separation made it 

inevitable that this method would be extended to the delta wing and other 

planforms with leading-edge separation. 

This method has also been used by Perrier and Vitte (1971) and 

Thwaites, B., Incompressible Aerodynamics, Clarendon Press, 1960. 

Ashley, H. and Landahl, M., Aerodynamics of Wings and Bodies, Addison-Wesley 
Publishing Co., Inc.. 196b.* 

Hama, F. R., "Progressive Deformation of a Curved Vor ex ( ilament by its own 
Induction," Phys. of fids.. 5, pp. 1156-1162, 196.1. 

Perrier, P. and Vitte, W., "Calculation Procedures tor Three flimensional 
Aerodynamics in Perfect Fluids," NASA II 1-14. 074, lli/l. 
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C. Renbach (1973a) for the problem without leading-edge seoaration. ^hbach 

inaüc io':e refinements, whicn are notable. First, instead of starting a* an 

inc-der,;e of zero lift and gradually increasing the angle of attach to obtain 

tne desired configuration, using the previous result as the initial guess 

for tne subsequent problen, Rehbach found faster convergence by using the 

simpler method of Butter and Hancock (1971) who only used a single bound 

vortex. He calculates the local tangential velocity to obtain the loading 

on the wing, which requires less comoutational effort than the Kutta- 

Joukowsky law, which he also uses to verify the solution and obtained good 

agreement between the two methods. He indicates that he encountered a few 

difficulties, yet he seems to have solved all problems that he encountered 

as the roll up of the trailing vorticity appears fairly uniform. He notes 

that for low angles of attack, the greatest number of problems are found in 

trying to calculate the equilibrium position of the sheet, as far as the 

numerical applications are concerned. These difficulties are primarily due 

to the fact that the shed vortices are close to each other at small incidences 

for the rectangular planform. However, he does not clarify how he solved 

this problem. He notes that for convergence it is important to have a good 

initial approximation for the sheet shape. 

Rehbach (1973b) extends the work to include the leading-edge 

separation from the delta wing. As he noted in the previous work, he 

encountered difficulty in convergence unless a good approximation of the 

MfCt shape of the sheet was available for small aspect ratios. Thus, he 

cüfiltMörs the following scheme to provide a good approximation of the leading- 

edge sheet for the slender delta win'/  He starts with a rectangular wing of 

aspect ratio M*.    Then, in increments tempered by experience, he decreases 

the leading edge of the rectangular wing while leaving the trailing edge 

Rehbach, C, "Calculation of Flows around Zero Thickness Winns with Evolutive 
Vortex Sheets." NASA TT F-15, 183, 1973a. 

butter, J. J. and Hancock, G. J., "A Numerical ilethod for Calculatina the 
Trailing Vortex System behind a Swept Minq at. Low Speed," Aeron. Journ., 
75_, pp. 564-568, Aug. 1971. 

Rehbach, C, "Etude Numerique de nappes tourbillonnaire'. iss.'f-*. 'I'unp linne 
d>.:  Ducüllement pres du Bord d'attaquo," RLH.I). Aerosp.. Ni . 6, on. ''25-3311, 
1973b. 
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constant. This process is shown in the accompanying illustration [see Figure 

25]. 

As a result of this nrocess, he obtains convergence for the delta 

wing proble-; which might have caused numerical difficulty due to the concen- 

tration of vorticity at the apex. This is especially worrisome since the 

modeling of the apex oft^n requires considerable care to produce useful 

results. 

He compares the theoretical shape of the rolled-up sheet with the 

experimental results and seems to obtain reasonable agreement. He also 

checks his rolled-up sheet for conlcallty [see Figure 26], As one progresses 

from the apex to the trailina edge, there Is a trend for the sheet to move 

downwards and become tighter. This result must be evaluated with caution 

since this preliminary result could be the oroduct of the numerical approxi- 

tions as well as the actual description of the real flow. He then compares 

the results he obtained with those of Smith (1968) and with Sacks et al 

(1967), for a = 15°, 6  = semi-apex angle = 15°. There is considerable 

discrepancy between the three results and the experimental center of the 

vortex given by Werle [see Figure 27], The result of Rehbach is more Inboard 

and higher and tends to agree better with the experimental result. He obtains 

a similar result for the normal force [see Figure 27], Rehbach suggests a 

possible reason for the discrepancy is the fact that the apex angle and the 

angle of attack considered may be outside the range of validity for the 

slender body analysis of both Sacks et al and of Smith. This is, of course, 

the advantage of a scheme such as Rehbach's. He also notes a certain vague- 

ness of the velocity field near the apex, probably as a result of the calcu- 

lation using a fairly concentrated network of discrete singularities in that 

region. He suggests that this problem can be alleviated by utilizing the 

conlcallty of the flow in that region. 

Probably working at the same time, Mook and Maddox (1974) published 

their results using a similar model based on the lifting surface theory of 

Mook, D. T. and Maddox, S. A., "Extension of a Vortex-Lattice Method to 
Include the Effects of Leading-Edge Separation," JA, 11, no. 127-128, 
Feb. 1974. 
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Belotserkovskii. They do not furnish many details of their calculation. 

Tney Jo note difficulty in convergence for angles of attack of less than 5-. 

However, in a later paper, Kandil, Mook and Nayfeh (1974) Jai" 

that the Mook and Maddo* method "is subject to the same limitatiors regard- 

ing camber, etc., as the KRG (Kaiman, Geising and Rodden) program and cannot 

account for wing-tip and trailing vortex sheets being free of forces." 

Neither group ^eems to be aware of the work of Rehbach, They then claim to 

follow Belotserkovskii and obtain force free trailing line segments. Their 

manner of solution is as follows: 

1) They assume an initial orientation of the vortex elements. 

2) For the given vortex network, they calculate the circulation distriUu 

tion by satisfying the normal flow condition on the wing. 

3) They calculate the local velocity in the wake. 

4) They then align the upstream end of each free segment with the velocity. 

5) They now iterate between 3) and 4) until the method converges. 

6) Now the normal flow condition is no longer satisfied and they iterate 

between two and five until the method converges. This furnishes the answer 

for the number of elements initially chosen. 

They consider convergence in two aspects. The shape of the wake must converge 

as a function of iterations. Secondly, the predicted air loads must converge 

as the number of elements is increased. They calculate the force on the wing 

using the Kutta-Joukowsky theorem and obtain reasonable agreement with the 

experiments of Bartlett and Vidal (1955) and of Peckham (1958) for the normal 

force and center of pressure calculations. They note that their figures are 

similar to those determined by Mook and Maddox for the rolling up of the 

leading-edge vortices. They do not seem to have encountered any difficulty 

and claim that the method of iteration they use converges. In conclusion. 

Kandil, 0. A., Mook, D. T. and Nayfeh, A. H., "Nonlinear Prediction of 
Aerodynamic Loads on Lifting Surfaces," AIAA Paper No. 74-503, June 1974, 

Peckham, D. H., "Low Speed Wind Tunnel Tests on a Series of Uncambered 
Slender Pointed Wings with Sharp Edges," ARC R&M 3186, 1958. 
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they admit that the present method has the disadvantage of long computation 

time if a large number of elements are used. They reduce the time for 

convergence by using good initial guesses for the sheet shape and only 

considering a few vortices in the trailing edge sheet. 

Method of Polhamus 

Finally, one arrives at the leading-edge-suction analogy of 

Polhamus. Polhamus (1966, 1971) was dissatisfied with the usual means 

of treating the problem for they failed to consider the trailing-edqe Kutta 

condition. The method that he developed does not give the local distribu- 

tion of the lift on the winq and consequently cannot give pitching moments 

in its originally derived form. 

The approach assumes that if the flow reattachment occurs on the 

upper surface, the total lift can be calculated as the sum of a vortex lift 

associated with the existence of the leading-edge vortices and of a potential 

flow lift for attached flow. The potential lift is considered to be that 

lift obtained from the wing in the normal manner using a lifting surface 

theory, but subtracting out the contribution of the leading-edqe suction, 

since with separation, there is no longer a leading-edge suction force. 

This is accomplished by modifying a lifting surface program by 

applying a Joukowsky condition to the leading edge. He uses a modification 

of the Multhopp lifting surface theory to accomolish this. He finds for 

this potential lift 

2 
CL = K sina cos a (115) 

where K    is only a function of aspect ratio for delta wings and this is 

plotted in Figure 28. 

For the nonlinear vortex lift, he assumes that the total  force on 

Polhamus, E. C, "A Concept of the Vortex Lift of Sharo-Erine Delta Wings 
Based on a Leading-Edge-Suction Analogy," NASA TN D-3767, 1966. 

Polhamus, E. C, "Predictions of Vortex-Lift Characteristics bv  i teading- 
Edge-Suction Analogy," JA, 8, pp.  193-199, Anril   1971. 
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the wing, associated with the pressure required to maintain equilibriuni of 

tne flow over the separated spiral vortex sheet, is essentially the same 

as the leading-edge suction force associated with the leading-edge pressure 

required to maintain attached flow around a large leading-edge radius. 

For the delta wing, the component of leading-edge suction force 

which is pertinent is the force normal  to the leading edge.    He obtains 

the suction contribution as 

where X = sweep and 

K. = -Y- (117) 

which he rewrit erms of a suction lift coefficient 

2 
C.     = K   cosa sin a 

v 

For the delta wing, K is again only a function of aspect ratio having been 

calculated from lifting surface theory [see Figure 28]. He compares his 

results with experiments and obtains good agreement for lift [see Figure 29], 

He concedes that a rigorous proof of the concept has yet to be established; 

and that it does not appear to have been published yet at the time of this 

writing. 

Later this method is applied by Bradley, Smith and Bhately (1973) 

to more complex planforms of a general nature, while Snyder and Lamar (1972) 

extend the method to give chordwise load distributions and consequently 

pitching moment variations. 

This concludes the discussion on existing models for vortex flow 

phenomena. A chronological listing of the models is included in Table 3 for 

the reader's convenience. 

Bradley, R. G., Smith, C. W., Bhateley, I. C., "Vortex-Lift Prediction for 
Coiiiple- Wing Planforms." JA, 1_0, No. 6, pp. 379-381, June 1973. 

Snyder, M. and Lamar, J., "Application of the Leadinq-Edge-Suction Analogy 
Lo PcJi '.inn of Lonyitudinal Load Distribution and Pitching Moments 
to, Shuv-Ldrjed Delta Wings," NASA IN 0-6994, 197.?. 
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TABLE 3 

TABLE OF MODELS 

Autnor Legendre (1952) Legendre (1953a: 

Type of Model 

Assumptions 

Slender Body; 
Vortex Pair 

Conical Flow; 
Kutta Condition; 
no force on vortices 

Slender Body Theory; 
Vortex Sheets 

Conical; Normal Velocity 
Condition and No-Pressure 
Condition on Sheet; Kutta 
Condition 

Results 

Remarks 

Numerical (See Figure 10)    None 

Lift negative for small a; 
Violates Helmholtz Conserva- 
tion Theorem 

Formulates problem for 
continuous vortex sheet; 
does not solve 

Author Edwards (1954) 
Brown and Michael (1954) 

Smith (1957) 

Type of Model   Slender Body; Vortex Pai, ,   Slender Body Theory; Vortex 
Feeding Cut Pair; Feeding Cut 

Assumptions    Conical Flow; Kutta 
Condition; no net force on 
vortex-cut 

Kutta Condition; no net 
force on vortex-cut 

Results 
12"^' 

(See Figure 16) 

Numerical 

Remarks Pressure discontinuity 
across cut; net moment on 
vortex-cut; overpredicts 
lift 

Extends Brown & Michael to 
planform with curved leading 
edges 
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Author 

Type of Model 

Assumptions 

Results 

Remarks 

Author 

Type of Model 

Assumptfons 

Results 

Remarks 

Mangler & Smith (1957) 

~ : ender Body Theory; 
Vortex Pair; Feeding Sheet; 
Feeding Cut 

Conical; Kutta Condition; 
approximate sheet shape & 
strength near leading edge; 
apply boundary condition for 
vortex sheet at single point 

Numerical 
(See Figure 16) 

Smith (1966a) 

Slender Body Theory; 
Vortex Pair; Feeding Sheet; 
Feeding Cut 

Conical; Kutta Condition; 
approximate sheet by n 
segments; apply boundary 
conditions for sheet at n 
points 

Numerical; curve fit 
CN • l JRa + 3.2(JR)"3 a1.7 
(Figure 27) 

Formulates general boundary Extends Manqler and Smith; 
conditions on feeding vortex solved using 3 nested 
sheet, wing, and at infinity; iterations; better agree.ent 
better agreement with expert- with exoeriment than simpler 
ment than Brown and Michael .adels. 

Polhamus (1966) legendre ( 1966) 

lifting Surface Theory; Vortex Pair; Nonslender 
leading-Edge Suction Analogy 

Incompressible; leading-edge Conical; incompressible; 
suction force becomes lead- singularities at vortex 
i ng.-edge vortex force locations & images only; 

global force condition 

Cl • K cosa sin2a Analytical; only vortex 
v v location given 

(Figures 28 & 29) 

Modifies linear lifting Formulates nonslender prob-
surface theory_ to calculate lem to remove contradiction 
both linear & nonlinear lift; at vortex axis; un~ble to 
obtains good agreement with satisfy Kutta condition at 
experiment leadinq edge. 
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Author 

Type of t4odel 

Assumptions 

Results 

Remarks 

Author 

Type of Model 

Assumptions 

Results 

Remarks 

Sacks, Lundberg & Hanson 
(1967) 

Slender Body Theory; 
Incompressible; Array 
of pt. vortices 

Separated and linear lift 
separable and additive; 
Kutta Condition; vortices 
convected; vortices shed 
tangent to wing 

Numerical 
(See Figure 27) 

Removes restriction of 
conical flow; question of 
discrete vortex representa­
tion of sheet; use impulse 
to calculate forces; results 
compar-able to Smith (1966a) 

Nangia & Hancock (1968) 

lifting Surface Theory; 
Vortex Pair; Feeding Cut; 
Trailing Edge 

Kutta Condition; no net 
force on vortex-cut; 11 fla t" 
wake until roll up 

Numerical 

Numerical collocation method 
to obtain vorticity of wing 
and wake; adds Brown & Michael 
vortex~cut to linear lifting 
surface theory, computations 
lengthy 

Levinsky, Wei & Maki (1969) Portnoy & Russel (1971) 

Same as Smith (1966a) 

Same as Smith; also 
extends to nonconical case 

Numerical 

Extends Smith to conical 
wing-body combinations; 
found multi-valued lift 
for intermediate values 
of a/ ~ . Extends results 
to nonconical problem. 
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Slender Body Theory; Vortex 
Pair; Feeding Cut; Rhombic 
Body 

same as Brown & Michael 

Numerical 

Extends Brown & Michael to 
rhombic body by conformal 
transformation; predicts 
outward movemen t of vortices 
with increased th ickness. 



Author Angelucci (1971) Finkleman (1972) 

Tyc; of Model 

Assumptions 

Same as Sacks et al 

Separated and 1inear 
lift separable & additive; 
Kutta condition; assumes 
sheet strength to be 
quadratic at shedding 

"Slender body theory 

Same as Sacks; 
trailing edge 

Results 

Remarks 

Numerical Numerical 

Results similar to Sacks    Includes effect of trailing 
et al; extends to cylindrical edge by placing vortices 
body by using experimental  corresponding to spanwise 
results to fix shedding    loading at trailing edge; 
point. violates slender body 

assumption. 

Author 

Type of Model 

Assumptions 

Results 

Pullin (1973) 

Same as Smith (1966a) 

Same as Smith 

Numerical 

Rehbach (1973b) 

Lifting Surface Theory; 
bound and trailing vortices 

Incompressible; no flow 
through wing; no force on 
wake; Kutta condition 

Numerical 
(Figure 27) 

Remarks Formulation slightly 
different than Smith; 
similar results. 

Replaces wing, wake & 
leading vortices by vortex 
line segments; obtains lift 
by integrating pressure 
distribution. 
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Author Fink & Soh (1974) 

Type of Model Same as Sacks et al 

Assumptions Same as Sacks et al 

Results Numerical (Figure 24) 

Remarks       Includes error analysis; 
more uniform roll up than 
Sacks et al due to use 
of equi-distant vortices. 
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CQNCLLiSiJ:. 

The present state of the art for small aspect ratio wings with 

external  vortex flow has been described.    Although controversy still exists 

Tver tne yxact nature of the vortex breakdown, it is felt that the fundamen- 

ttv1  behavior of the flow elements are reasonably well understood. 

The slender body theories are well-developed and represent the 

flow within their linitations.    However, the limitations in the existing 

theories suggest that one should consider a more general problem.    First, 

it would be desirable to obtain results for moderate aspect ratio delta winqs 

which are more like the practical aircraft shaoes.    Secondly, considering 

the importance of the adverse pressure gradient near the trailing edge on 

vortex bursting, it would be desirable to include the trailing edge condi- 

tion in a unified theory.    Finally, it would be advantageous to obtain a 

more detailed flow picture near the vortex core than can be provided by 

means of a discrete vortex model. 

Thus, it Is suggested that a lifting surface theory of the kernel- 

function type should be used rather than the discrete vortex type.    Normal 

lifting surface theory [Ashley and Landahl  (1965)] of the kernel-function 

type fails to consider vortex sheet roll-up in obtaining the kernel-function 

formulation.    This is significant, since the study would extend to infinity 

for the steady problem, and it is this simplification that allows the con- 

tribution of the sheet to be neglected. 

Lifting surface theory has generally been applied to attached flow 
3 models where the roll-up of the trailing wake only contributes as a   and 

thus can be ignored, since the theories are linear in lift.   To extend 

existing lifting surface theory to the separated flow problem, however, 

does not appear impossible, although it may be necessary to settle for a 

iolution which is not as rigorous as the original development. 

Two possible approaches immediately suggest themselves.    First, 

one could consider an unsteady lifting-surface theory of the type developed 

by Djojodihardjo and Widnall  (1969) following a suggestion by 

Djojodihardjo, R. H., and Widnall, S. E., "A Numerical Method for the Calcu- 
lation of Nonlinear, Unsteady Lifting Potential Flow Problems," AIAAJ, 7, 
No.   10,  pp.  2001-2009, Oct.  1969. 

94 



Ashley (1966) which allows the consideration of nonlinear lifting problens. 

The assumptions are similar to most lifting surface theories with respect 

to inviscid, irrotational, and incompressible flow outside the wing and wake. 

They are able to consider the wake roll-up because at their initial time, 

they start with no wake and for any finite time, the wake remains finite 

and therefore its effect can be explicitly considered. 

To attack the present problem of a steady vortex sheet, it may be 

possible to study the problem for some finite time and, If the solution 

approaches a constant value, this can possibly be used as a steady-state 

solution. 

Alternatively, one could develop a model based on the Idea of Manqler 

and Smith (1959) that only the flow field near the wing has to be modeled 

exactly, and farther away simplifying assumptions could be made. This sug- 

gests the possibility that the flow field can be constructed of a wing and 

a finite portion of the rolled-up vortex sheet near the leading edge while 

the contribution of the far wake could be considered to be similar to the 

case for the lifting surface problem and It may be possible to eliminate it 

from the evaluation of the Integral if the solution shows convergence as 

the segment of the roll-up sheet which is explicitly represented is increased. 

Also, it may be possible to replace the core of the leading-edge vortex in 

the manner of Mangier and Smith by an asymptotic representation. For a first 

approximation, one might consider the models of Mangier and Weber (1966) or 

that of Hall (1961) and Ludwieg (1962). 

Such a combined flow field should adequately model all of the 

fundamental phenomena of the vortex flow field. Viscosity and compressibil- 

ity has been shown to have negligible effects outside of a small core 

region and the boundary layer. From agreement between linear lifting-surface 

theory and experiment, the neglecting of the boundary layer thickness on 

the wing and the finite thickness of the wake seems justified. 

Once the basic vorticlty elements have been modeled, all the 

aerodynamic characteristics can be obtained and that would provide a unified 

Ashley, H., "Machine Computation of Aerodynamic Loads in Linear and Nonlinear 
Situations," AFOSR 66-1440, M.I.T. FDRL Rept. 66-5, 1966. 
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tneory ''or the vortex flow phenomena on this simplified planform.    The ne>t 

»tea rtould be to extend the model  to include the effects of control  surfaces 

ana of yaw and roll where the vortex flow phenomena are also important. 
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SYMBOLS (commonly used) 

A constant 

* aspect ratio 

a a/K, constant characterizing delta wings 

b local semispan 

CL coefficient of iift 

CN coefficient of normal force 

c constant; phase velocity; chord 

D operator 

F function 

f function 

H total head 

i /T 
K tane » 1/4 >« for delta wings 

Kv 

potential lift factor 

vortex lift factor 

L lift 

M Mach number 

m constant 

m' apparent mass 

0 order 

P pressure 

q dynamic pressure; complex velocity 

R radius 

Re real part of a complex quantity 

r radius 

r r/x 

s complex plane, 2n = S - 1/S; surface function 

s surface coordinate 

t complex plane; time 

U free stream velocity 

u radial velocity in cylindrical coordinates; velocity in 

in rectangular coordinates 

x-direction 

V transverse velocity 
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MaOLS 'cont'd) 

circumferential velocity in cylindrical coordinates; velocity 
in y-direc tion in rectangular coordinates 

W complex potential 
~ axial velocity in cylindrical coordinates; velocity in z-direction 

in rectangular coordinates 
x ax i s of symmetry 
y s~~nwise axis 
Z complex plane, y + iz 
z• complex plane 
z axis perpendicular to wing surface 

a constant; angle of attack 
S constant 
r circulation 
y ratio of specific heats; vortex strength 
~ change; difference 
6 increment of sheet length in transformed plane 
£ s1111iapex angle of delta wing 
P ca.plex plane; l + n2 

n complex plane; z b iX 
e azimuthal angle; complex plane la1- b2 
K vr 
~ ~ve nuMberi s~ angle 
~ constant characterizing spiral 
v kinematic viscosity 
t function deterltining shape of sheet 
p density; vortex location 
a frequency; c0111plex planei arc par~~~eter 
T velocity 
~ velocity potential 
~ swirl angle • tan-1 v/w; velocity potential; angle 
w stream function 
w complex plane, e1w = ~++i! 
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SYMBOLS (cont'd) 

Subscripts (cotnnonly used) 

( )     value at vortex core 

( )     value at axis a A 

(  ) differentiation with respect to x; similarly for y and z 

Superscripts (commonly used) 

(  )' differentiation with respect to independent variable 

(") complex conjugate 
o 

( ) differentiation along arc 

( )* quantity in transformed Z*-plane 
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Element« of  flow over o tnongular 
«ring having a rounded  leading 

edge at high  Reynold» numbers 

Elements of the vertical component of flow 
over   sect Ion  AA 

Elements  of f lo\»  over a triangular 

«ring at low Reynolds numbers or 

over a triangular wing having a 

sharp   leading  edge 

Elements of the vertical component of flow 

over  section  6B 

Figure   1.   Diagrams of the flow ovi»r   triangular   wing«   [after   Wilson  ond  Lovell {1947)]. 
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4, 

Flow  lurfacil 
corrttponding to 
partiell path» 

Figure   2.  Schematic   sketches   showing the (suggested) 
flow on the suction side  of the 70° flat piote 
delta   wing   ot    a ft 15° [otter  Ornberg (I954)J. 
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Figur*   3.    Axial filamtntt  of dy«   [offer  Lombourne and Brytr (I96i)j. 
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Original  axil 
of vorltx 

Turbultnet 

Spiralling 

Dacalaratlon 

Figure  4. Stogt«  in behaviour of axiol filamtnt [after   Lambourn« 
and   Bryor  (1961)]. 
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—^ Experimtnt 0 
 Thtory, eqn. (4) withfgi 

 Th«ory,tfln. (4) wilhfgj 
li = -0.8 

Ltoding «dg* 

I .5 

0.5<L 

Eqn. (14) 

Eqn. (3) 

Outer horizontal travtrt« 'Bl 

0.1 0.2 
r/b 

0.3 0.4 

Figure 5. Vortex sheet »hope (top) and azimuthal  velocity 
(bottom) [after Küchemann and Weber (1969)]. 
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Figure   6.   Experimenfol  and theoretical profiles  of oxial  (top)  and   circumferential 
velocity (bottom) [after Hall  (1961)]. 
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Figure 7.   Stable and unstable regions in the    Cw , Cv Plane 
[after Ludwieg ( 1961 )J. 

118 



01 

S 
00 

«I 

o > 

GO 

119 



Figure 9.   Coordmat« »yjttm« for potential flow problem Paffer Legendre (1952)1. 
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X -- 70° 

0.5 H 

Figure 10.  Lift curve« for various sweep angle»; dashed lines represent Jones result 
[after Legendrc (I9S2)]. 
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Figur« II.   Coordinot«   tytttm  notation  [after Brown and Micha«! (1954)]. 
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Figure   12. Pressure   distributions   [after 
Brown and Michael   ( 1954)]. 
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Figurt I 3. Coordinates   for cross - section [after   Mangier  and 
Smith   (1957)]. 
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figure   14.   Approxi motion   to vorte« sheet    [after Mangier and Smith   (1957)]. 
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Figure   15.   Notation   i n trans formed   plan«    [after   Mangier and   Smith (1957)]. 
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O ♦ M'Chotl (1955) M 5 1.9, 20° delta 

X Lamperf (1964) M = l 46, 15° delta 
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□ Fink   and  Taylor (1967),   low speed, 2 0° delta 

Figure  16.   C^/K      Theory and experiment   [after  Mangier  and Smith   '  357)J. 
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Tiguro 18.    Configuration  in trarsformed   plane,    Z*' /*+iz* 
O, Pivotal prints, X, inttrmediat» pointy,   Fafter   Smitt   (1968!]. 
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z/b 

Figure 19.  Vortex  sheet shapes and isolated vortei positions for a * 091. 
0, Brown a Michael  (1954);  x and —•«——X, Mangier ft Smith (1999); 
D  and "—•—, prtsenl  calculation,   n : 14;  A and —^—present 
calculation, n = 21; v ana , present calculation, n s 39  [otter 
Smith   (1968)]. 
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figure 20.    Sheet   shape (top) and   «heet slreisth (boftom) compared with 
asymptotic »oiutlon«,   a ■ .91,   n = 59 (after   Smith   (I96'£:))], 
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Figure   21   Vortex itieet shape   (top),   horizontal  (middle) and  vertical 
(bottom) position of  vortex center [after   Pullin (I973)J. 
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Figure 22.  Vortex axis locus comparison of theories 
with test result« [after Legendre (1966)]. 
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Figur»   23,  Mathtmotical   modal of vorttx  taporotion on a 
3-0 body [afttr  Angtlucel (1971)]. 
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Figure   24. Vortex  sheet   (top),  pressure coefficient 
(middle) and non-linear  normal   fore t 
mcremer t  (bottom ) [after Fink and Soh 
(1974)], 
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Figur*   25.  Calculation   for a delta  wing  with  Itodlng - tdg«   tiparation by  progressiv» 
dtformotion of a rtctongulor   wing  [after Rehbaeh  (1973b)]. 
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Figur« 26.   Varificgtion of conicality of the flow [öfter Rehbach (i973b)J. 
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Figure 27  Vorfex sheet at the trailing edge   (top) and  normal force   coefficient 
(bottom)   [after   Rehbnch   (19751))] 
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Figure   28. Veriatton   of   Kp(top)   and   Kv    f ho)torn) with 

otptct   ratio   [after   P^lhamus  (1966)]. 
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