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SUMMARY

This report describes an investigation into the effect
of fluid additives upon the structure of high speed water
jets, and the resulting change in the cutting ability of
the jets when such additives are used.

A literature review indicates that the effects of
change in jet viscosity and surface tension upon jet struc-
ture are reduced with increase in jet velocity, and that
while increasing jet viscosity improves jet cohesion, it
reduces jet cutting ability. For this reason the study was
directed towards the effect of viscnelastic additives, poly-
merized ethylene oxide and polyacrylamides, the results
from which were compared with results from nonionic soaps
and guar gum. The viscoelastic additives were found to give
improved jet cohesion. Photographic analysis of jet struc-
ture indicated that the most cohesive jet was the poly-
merized ethylene oxide; however, tests on various soil types
suggested that a Nalco polyacrylamide was superior for that
application..

Cutting tests on soils indicated that, for effective
soil removal at a distance of 6 ft. from the nozzle, a noz-
zle diameter in excess of 0.04 in. should be used, and
meaningful results could then be achieved with jet pressures
of 2500 p.s.i.
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CHAPTER 1
Introduction

The use of water to remove natural and artificial
barriers is as o0ld as the earth itself, but its value as a
simple yet effective tool has been demonstrated as recently
as the Yom Kippur War of 1973. Interviewed in Al Akhbar,
the Egyptian Chief of Staff, Lieutenant-General Shazli is
quoted as follows:

Dayan had made his statement (that any
Egyptian attack across the Suez Canal would be
finished in twenty-four hours), I believed on
the basis of calculations that our engineers
would need twenty-four hours to establish bridges
and that heavy equipment (such as a substantial
Egyptian tank force) could not be got across the
canal inside forty-eight hours--allowing enough
time for the arrival at the front of the Israeli
armoured reserves...

The problem was the sand barrier. To
make a single hole about twenty feet across in
this barrier (the minimum to get tanks through
easily) would, we calculated, mean removing
about 1,500 cubic yards of sand. And, we needed
to open sixty such holes, on the east bank--90,000
cubic yards of sand. You must also remember that
we ourselves had built a sand embankment over the
past six years to guard against a surprise enemy
attack. This doubled our problem.

"Our first idea was to use explosives,"”
Shazli said. 1Ismail adds the detail: "In the
course of our experiments for breaking down these
barriers we had tried guns of all calibres but we
did not get what we hoped for." Shazli continued:
"We stuck to explosives until mid-1971, when a
young officer in the engineers suggested that we
use water under pressure. This proved to be a
superior method, making it possible for us to
open holes in a period of three to five hours."
With bulldozers or explosives it would have taken
twice as long. (Ref. 1).

Water has been in use as an excavating tool from the
time of the Ancient Egyptians (Ref. 2), but it has only
been since 1852 that the jets have been produced under an
artificial head, rather than using the force of gravity as
a power source (Ref. 3). Hydraulic mining or "booming"



has been used to extract minerals from surface deposits
since that time and within the last 50 years water jets have
also been used to extract coal and other materials in under-
ground mines (Ref. 4).

Mining operations have, in general, used low pressure
(up to 2,000 p.s.i.), high volume (200 gal./min.) flows
which have allowed the monitor and operator to be located
up to 40 ft. from the coal being mined. This has a parti-
cular advantage in mining where the removal of the
supporting coal will lead to the eventual collapse of the
roof. The remote location of the jet source thus makes
the method inherently much safer.

In surface work where the equipment must be made more
mobile, while at the same time retaining the distance of
throw, flow rates may be lower and pressures may be higher.
In order to improve jet stability and, thus, increase the
effective distance of the jet, chemical additives have been
employed. The addition of 200 P.p.m. of the high polymer,
Polyox (polymerized ethylene oxide), has been successfully
used for example by the New York Fire Department to increase
the performance of fire hoses (Ref. 5). There have been a
number of studies of the variables affecting jet structure
for low pressure jets. Some of these will be reviewed in
the Appendix. The structure and stability of water jets at
higher pressures has been studied in less detail.

The use of water jets to wash away earthen embankments
illustrates one application of military importance. A
second application is as an innovative means of exposing and
potentially neutralizing landmines. A recent development
of the Israeli Army is a device which can lay up to 1,000
mines to depths of 1 to 1.5 ft. in an hour (Ref. 6), re-
quiring that equipment be developed which can match this
in terms of mine exposure if not neutralization.

The need for improved jet coherence is apparent if one
considers that for military use the nozzlemust be held at
some distance from the target surface to provide a measure
of protection from any mine detonation. At the same time
the vehicle must be self contained and must, therefore, use
the minimum amount of fluid necessary. These requirements
led to inclusion of studies of the effects of addition of
polymers and other additives to high pressure water jets in
this work.



CHAPTER 2
Jet Structure Studies

Background

Previous investigators of coherent length of turbulent
liquid jets emerging into stagnant air have generally re-
ported results in the form:

', _ €
D WEl/2 RED

where L, is breakup length of the jet, D is the nozzle
diameter, WE = Weber number =

bv2p

g

(p is density,0 is surface tension and V is jet velocity
at the nozzle), RE = Reynolds number =

DVp
m

(p is jet fluid viscosity), and C and n are constants. Re-
ported values of n are 0 in the plateau region (below 40,000
Reynolds number) (Ref. 7), 3/8 in the intermediate region
(Ref. 8) (between 40,000 and 100,000 or higher Reynolds
number)* and 2 at higher Reynolds numbers, above 80,000
(Ref. 9).

The variables affecting the coherent length are: (1)
nozzle design, (2) nozzle diameter, (3) nozzle pressure
(or fluid velocity), (4) jet fluid properties (density,
viscosity, surface tension and viscoelasticity), (5) prop-
erties of the ambient fluid, (6) the steadiness of the jet
flow, and (7) nozzle velocity.

In the present study two nozzle designs were used, a
conventional design in the experiments at UMR with pump
pressures of 2,500 to 10,000 p.s.i. as described in
Appendix I and II and a proprietary design in the experiments

*Miesse proposed the value of 5/8 based on data for RE =
104 to 3.3 x 105, but the bulk of it is between 4 x 104
and 10°.



at McCartney* at pump pressures of 20,000 to 45,000 p.s.i.
All jet studies were made with water jets extruding into
ambient air. A number of additives which impart visco-
elastic properties to the fluid were studied (Table I.)
These additives have relatively small effects on water
surface tension or viscosity at the concentrations used and
practically no effect on density. The jets were not pulsed
other than by the variations in pressure induced when the
driving pistons of the pumps changed direction and the
nozzles were clamped stationary.

Thus, in this study the variables examined were nozzle
diameter and pressure and the viscoelastic properties of
the jet fluid.

Measurement Techniques

Previous research on jet structure has mainly been
concerned with studies at lower jet velocities and little
research has been carried out at the higher velocities
associated with jet pressures above 4,000 p.s.i. and especial-
ly above 10,000 p.s.i. The jet disruption at such velocities
is normally brought about by aerodynamic forces which are
initiated at the nozzle exit. The jet is eroded from the
outer surface radially inward and the central core is
generally concealed behind L.e shroud of atomized fluid
already separated from the jet surface.

Previous investigators have tri=d several techniques
in order to penetrate this barrier with the emphasis in
Soviet literature being given to the electrical contact
method which is described in Appendix I. A critique of
this technique is given in this Appendix, based on contem-
pora.y Soviet research and the conclusions drawn are
reinforced by the results of Heubner's work on charged
liquid jet:s (Ref. 10). The major criticism is that jet
stability is reduced with application of a charge to the jet,
an effect induced in part because charging a jet induces
lateral velocity components within the jet structure. For
this reason it was decided that the electrical contact method
would not provide satisfactory results.

Leach and Walker (Ref. 11) have studied jet struc-
ture using high speed photography using spark, flash
tube and x-ray illumination. Of the three methods,
the speed photography with a flash tube gave the
greatest detail. All jet coherence measurements at

*McCartney Manufacturing Company, Baxter Springs, KS.



e

8€909 I ‘obedTyd

S0eTd Y399 "M 9129 6cld
- - - spruwetiAioeifod °0D TedTWIYD OOTEN 0dTeN
zauktodoo
awos 3Jo
aouasaad
03 anp ovosy
dTuoTUe UebTYO TW ‘PUCTPTH 0€ dv
At13ybrtrs 9°61 mca X L°C sprureAxdoeAtod *0D TedTwayd mod uexedag
xawmATodod
2wos 3o
aouasaxd ovosy
o3 anp UebTYOTH ‘PURTPTH €LT av
oTUOTUR 9°G2 woﬂ X L spTuretAxoreitod *0) TeSTWIYD MO(Q uexedssg
£0€ST
AM ‘uo3sataey) °s
- 6 »sg0T X L 9pTXO ¥008 xo0dg °0°4d i
auatiy3zaitod *0) sp1Tqgae) uUOoTUN xo0k104
urexb
/SI9ITTTO9P »3IYbTOM
s3uaumo) A31S0OSTA e TNOSTON uot3T1sodwo) IaaIn3joeINuURK SATITPPY
oTsurIxjul
po93s3al, s9ATITPPY °* I 9T1del




uotjepeaxbap

Te2TURYO U
S3sTsax ‘pT1oT
-Too0apiy 9T00T AN ’‘IO0X MmoN
a1qe3abaa *9AY °PIE 509 aoe-v
Teanjeu - 000°‘02Z2 unbH xenb 0D % TTeH-uTa3s xenbep
9T00T AN ‘3IOX MON
*eAvY “pPIg S09 ¥s9
- 9°ve g0T X S-¥ op TureTAxoeitod *0D 3 TTIeH-ula3ls TTeyLrod
cx93em
JO s3junowe
abaer yaTM
30e3U0D Ut
Ktptdea
S9ATOSSTA
*X93eM UT
posaadsTp
ST YoTym
11O ut
posxadsTp
Iswitod st 8€909 I ‘obeoaTyd
aseyd suo S0eTd Y399 "M 9129 SZ9
tuoTSTNWD - - spTwetTAxoevitod ‘0D TeoTwWay) ODTeN ODTEeN
urexb
S3UsBUMOD \mmwwwwwmww umﬂwwwmwn uot3Tsodwo) Iaanjdoeynuey SATITIPPY
oTSutajur

(*3u02) "1 aTqel



*abexo3s uTt IYHTOM IETNOSTOW IBMOT yonu
e 03 pepeabop pey 3IT eyl BurlPOTPUT LAJTSOOSTA OTSUTIJUT MOT B pey aTdwes oyl x4

3IN3BIS3 [T S,XdINJORINURMW WOIJF 4

(s3aed
Z) epTu
-0xq wnTtuow
deos 0S9%T AN ‘I@3sayooy -ure T Ay au
xa]dwoo - - 2g® (*u0) N1 (%H0) fao *0D Yepoy ueuisegy -1131438D
deos 0S9%T AN ‘I®3sayooy (3xed 1)
X3 uos - - uotu%Ts -0D epoy uew3ses  Toyayden-»
6990L YT ‘oyer3som
juejoeyins 9z 2 sz 21 LZL xog °0°d 09-¥TZT
STuOT-UOU - - HO” (“HD“HO0) *“H®'D 0D 110 TE3IULUTIUOD oTUOITV
sweab
Flusuamo) SEISITTIo=p »3IYbTOoM uot3 1soduo) Iaanjoseznuep SATITPPY
AJTRODETA IRTNOSTOW
STHFUTIJUT

(F3u0d) 1 otqey




McCartney were made using high speed photography with a
single flash stroboscopic source placed to give either front
or back lighting. Details of the experimental technique are
given in Appendix II.

In addition, pressure profile measurements were made
at UMR at fixed locations down the jet axis. Details of
this method are given in Appendix II.

In the following section selected pressure profile
results and photographic results are shown to i.lustrate
the trends observed with variations in nozzle diameter,
pressure and jet fluid additives.

Results and Discussion

1. Pressure Profile Measurements
a. Pure Water Jets.* Figures 1l to 6 show
pressure profile measurements of water jets at various
standoff distances. Ordinate lengths equivalent to 1,000
p.s.i. and (jet profile) distances of 0.1 in. are shown
on the figures.

Examination of Figures 4 to 6 obtained with a 0.06-in.
diameter nozzle shows that increased nozzle pressure caused
a significant increase in impact pressure at all standoff
positions. In general jet coherency was good, with pro-
files generally less than 0.1 in. in diameter. Similar
measurements on the 0.04-in. jet show much lower impact
prassures at all standoff positions. In fact, no signifi-
cant readings could be obtained at distances greater than
18 in., even at 10,000 p.s.i. jet pressure. At 18 in.
there is little effect of nozzle pressure on impact pres-
sure indicating jet disruption.

From these results we can conclude that for these jet
diameters and high jet Reynolds numbers (about 260,000 to
450,000), pressure and especially nozzle diameter have
significant effects on jet impact pressure and presumably
on jet coherent length. The implications of this in terms
of Equation 1 will be discussed at the end of this chapter.

The maximum impact pressure value decayed with distance.
The gata were fit with equations of the form x=axP and
y=ae®* where y is maximum impactpressure in k.s.i. and
X is standoff distance from the nozzle in inches. The

*A11l jet fluid used at UMR also contained 8 percent Dromus
B soluble o0il, recommended by the pump manufacturer as a
lubricant.
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latter equation gave a better fit for the data. Values of
the constants "a" and "b" for the second equation are list-
ed in TableII along with correlation coefficients. Both

"a" and "b" vary with nozzle diameter. Values of "b"

appear to be relatively independent of pressure as are
values of "a" for the 0.06-in. nozzle. The latter may
reflect the fact that the 0.06-in. jet was coherent through-
out the range of standoff distances whereas the others were
not.

If the analysis is carried a stage further, then a
pressure effect does become apparent at points where jet
disruption is postulated. The same regression function
was calculated based on only three adjacent readings for
each pressure and nozzle diameter set. By comparing the
6-, 12-, and 18-in., the 12-, 18-, and 24-in. and the 18-,
24-, and 30-in. data, an indication of change in the
relationship with distance could be obtained (Table 2b).
For data from the 0.06-in. diameter nozzle the changes are
not great and no firm conclusions can be drawn, presumably
because the jets are coherent throughout the standoff ranges
studied. However, for the 0.04-in. nozzle diameter where
jet disruption is postulated at the 18-in. station, it can
be seen that the higher pressure jets decay more rapidly
than those of smaller pressure. The same is true at the
larger standoff distances for the 0.05-in. nozzle.

b. Jets with Viscoelastic Additives. In these
early experiments, two high polymer additives were added
to the jet fluid to determine their effect on the pressure
profiles. The characteristics of the two additives, Stein
Hall Jaguar AD 200 and Dow Separan AP 30 are listed in
Table I. Their effect on the pressure profiles are shown
in Figures 7 to 18.

The 0.04-in. -diameter jet was used for these measure-
ments since jet coherence with this diameter was poor at
18 in. with water alone as the fluid, thus allowing improve-
ments in jet coherence to be readily observed. No
significant improvement was observed for the 100 p.p.m.
Jaguar solutions at 6,000, 8,000, or 10,000 p.s.i. However,
at a concentration of 500 p.p.m. Jaguar pressures attainable
at 24 in. exceeded those at 18 in. at 100 p.p.m. at all
three nozzle pressures. Some further improvement was ob-
served with 2,500 p.p.m. Jaguar solutions but the changes
were not marked. Solutions of 50 p.p.m. Dow Separan AP 30
gave impact pressures up to 24 in. which were a little
lower than the 500 p.p.m. Jaguar solutions but which were
far larger than the 100 p.p.m. Jaguar solutions. The AP 30
is a much higher molecular weight polymer than the Jaguar,

15
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and its (polyacrylamide) molecular structure is much more
flexible than the Jaguar (guar gum-cellulose type chain)
and, thus, imparts a greater viscoelastic character to the
water solution at much lower concentrations than the Jaguar.

2. Photographic Studies
a. Pure Water Jets.* Figures 19 to 21 show back-
lighted photographs of water jets using the McCartney 0.005-
and 0.010-in. nozzles at 20,000 and 45,000 p.s.i. Other
photographs with these nozzles were taken at 30,000 p.s.i.
and with a 0.012-in. nozzle at all three pressures, but
are not shown.

In rating the jet photographs for jet coherency, the
back-lighted photographs were used wherever possible as
these showed more detail of the jet structure and the
coherence length could be more easily observed than with the
front-lighted photographs where the atomized shroud made
estimation of jet diameter and location of the end of the
coherent jet difficult.

In the evaluation of the photographs taken of the jets
in this aspect of the program two criteria of judgment,
axial length and radial dispersion, were considered. These
criteria were not always complementary and, as a result,
an average rating, based on both results, was used. Al-
though the criteria of judgment were somewhat subjective,
due to variations in the quality of the photographs ob-
tained, independent rankings by the two authors were in
sufficient agreement that the conclusions described below
could be drawn.

The relative ratings of the jet coherencies for water
are listed in Table IIL A rating of 1 was given to the
most coherent and a rating of 9 to the least coherent jet.
Also listed are the nominal Reynolds Numbers of the jet at
the nozzle based on water density and viscosity.

Comparisons between the pure water photographs showed
clear differences between the 0.005-in. jet and the two
larger diameter jets. The structures of the 0.010- and
0.012-in. jets were more alike. The 0.010- and 0.012-in.
jets were always colerent for a greater length than the
0.005-in. jets. The effect of pressure was not as obvious.
Only small differences were observed as pressure was raised

*For the work at McCartney the water contained no other
additives unless so stated.
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a) water at 20 k.s.i. 0.005-inch nozzle

b) water at 45 k.s.i. 0.005-inch nozzle

Figure 19. Backlit photographs of fluid jets.
(The scale indicates a l-inch length)
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c) 500 p.p.m. Polyox 20 k.s.i. 0.005-inch nozzle

d 500 p.p.m. Polyox 45 k.s.i. 0.005-inch 19ozzle

Figure 19. Backlit photographs of fluid jets
(the scale indicates a l-inch length)
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a) from the nozzle 20 k.s.i. jet, 0.0l-inch nozzle

b) from 15 inches 20 k.s.i. jet, 0.0l-inch nozzle

Figure 20.

Backlit pictures of a water jet at
pressure. (The scale indicates a 1-
inch length)
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c) from the nozzle 45 k.s.i. jet, 0.0l-in. nozzle

d) from 15 in., 45 k.s.i. jet, 0.0l1-in. nozzle

Figure 20. Backlit pictures of a water jet at pressure.
(The scale indicates a l-in. length).
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a) from the nozzle 20 k.s.i. jet, 0.01-in.

nozzle

b) from 15 in. 20 k.s.i. jet, 0.0l1-in. noz

Figure 21.

Backlit pictures of a 500 p.p.m.

zle

Polyox con-

tent fluid jet. (The scale indicates a l-in.

length).

36

e



c) from the nozzle 45 k.s.i. jet, 0.01-in. nozzle

P SNV g

d) from 15 in. 45 k.s.i. jet, 0.0l1-in. nozzle

Figure 21. Backlit pictures of a 500 p.p.m. Polyox con-
tent fluid jet. (The scale indicates a 1l-in.
length).
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from 20,000 to 45,000 p.s.i. The two larger nozzles had
slightly better coherence at the higher pressures, but the
trend was reversed for the smaller nozzle.

Jets With Viscoelastic Additives

Similar photographs at each of the nine test conditions
were taken with water to which viscoelastic additives had
been added. The additives used and the concentration levels
are listed in Table IV. The additives chosen were high
polymers and soaps or surfactants which are known to be
effective drag reducers in aqueous solutions.

Photographs of the jet obtained at each test condition
(pressure and nozzle diameter) for all solutions and water
were rated relative to each other on a scale of 1 to 28,

A rating of 1 was for the best jet and 28 was worst. These
ratings are listed in Table V along with an average rating
for each solution. From these ratings the most effective
additives and their optimum concentrations could be selected
for earth moving or other studies.

The most effective additive from the combined results
of all nozzles and pressures was Polyox FRA at a concentra-
tion of 500 p.p.m. Polyox FRA at a concentration of 1,500
P.p.m. was only slightly less effective. The next most
effective additives were Polyhall 654, at a concentration
of 500 p.p.m., Dow Separan AP 273, at a concentration of
150 p.p.m., and Nalco B129 at concentrations of 150 and
500 p.p.m. These polyacrylamide polymers have very high
molecular weights and are more resistant to mechanical
degradation than the Polyox. Separan AP 30, a similar
polymer from Dow, was less effective probably because it
has a lower molecular weight. Presumably, it would be more
effective at concentrations well above 500 p.p.m.

The Nalco 625 contains a polyacrylamide similar to
B129 which is dispersed in o0il which is then emulsified
in water (about 1/3 polymer). It was a little less ef-
fective than B129 at equal solid concentrations. This may
have been due to mechanical degradation of the polymer in
forming the emulsion or it may have been due to incomplete
solution of the polymer after the emulsion was dispersed in
water. In subsequent discussion with the manufacturer, it
was determined that the emulsified batch obtained was
below the normal standard for this product. The convenience
of using this type of product in field situations warrants
further studies with it.
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In general, high molecular weight polymers are more
effective in causing drag reduction than low molecular
weight polymers. The molecular weight of a high polymer
is related to its intrinsic viscosity, (n], by the Mark
Houwink relationship

(n] = kM® (2)

where [n] is intrinsic viscosity in deciliters/gram, M is
molecular weight in grams/gram mole and K and a are con-
stants for a particular polymer solvent system. Exact
values of K and a for the polyacrylamides studied are not
known because the polymer compositions are not given
exactly. However, the measured values of intrinsic viscosity
listed in Table I give a rough indication of the relative
molecular weights of the polyacrylamides. These measured
intrinsic viscosities suggest that the molecular weights
obtained from the manufacturers listed in Table I are only
nominal.

Polyox (polyethylene oxide) polymers have very flexible
molecular structures and are probably the most effective
drag reducing agents known but are very sensitive to chemi-
cal or mechanical degradation. The FRA sample tested here
degraded a great deal in storage as shown by the low measured
intrinsic viscosity. Nevertheless, at 500 and 1500 p.p.m.
it gave the best jet coherence. Higher molecular weight
polyethylene oxide polymers would probably be effective at
concentrations of 100 p.p.m. or even lower.

Comparison of the average effectiveness ratings of the
polyacrylamides indicate that high molecular weight polymer,
sometimes even at lower concentrations (Separan AP 273),
favors better jet coherence and that in many cases an
optimum concentration was observed. However, the rating
scale was not precise enough to draw detailed conclusions
and is primarily useful for selection of additive systems
for further study and for screening out ineffective
additives.

The much lower molecular weight Jaguar AD 20, which
also has a less flexible molecular structure, was the
least effective of the polymers studied. It is also far
less effective as a drag reducing agent than any of the
other polymers.

The lowest concentration of Alfonic 1214 (1000 p.p.m.)
was comparable in average effectiveness to the least
effective of the polyacrylamides. Higher concentrations
of Alfonic 1214 were still less effective and it is possible

42



that greater effectiveness could be obtained at a lower
concentration of the additive.

Alfonic 1214 is effective as a drag reducer at tempera-
tures above 35°C (Ref. 12). It forms agglomerates when its
solutions are heated to a temperature near their cloud point,
about 420C. The exit temperatures of jets in the McCartney
and Rolla experiments were 35-450C. These agglomerates have
very high molecular weights, probably in the millions, which
impart viscoelastic character to the solutions making them
effective drag reducers. The solutions are quite stable
for more than five days.

The complex soap formed from combinations of o Naphthol
and cetyl trimethyl-ammonium bromide (1:2 ratio) also forms
large agglomerates in solution which are effective as drag
reducers (Ref. 13). These chemicals are expensive, however,
and they lose their effectiveness at temperatures above
40°C or after three days storage in solution at room
temperature. This system was ineffective at all three con-
centrations tested probably because of the high temperature
of the jet leaving the nozzle (35-45°C).

The results of both the pressure profile and the
photographic studies show that polymer additives can have a
significant effect on jet coherence of high pressure jets.
Photographic studies of low pressure, large diameter (fire
hose) jets (Ref. 14) show that small scale turbulent eddies
on the jet surface are dampened when polymer additives are
present. These eddies give rise to surface disturbances
which promote atomization and the effect of the dampening
is, thus, to reduce atomization. The mechanism by which
they dampen these high firequency disturbances is not clear,
but one hypothesis offered to explain the drag reduction
effects of these same polymer solutions may be germane. It
has been suggested that the high extensional viscosity of
these high polymer solutions hinders the growth of high
frequency, small scale eddies as well as their movement away
franthe turbulence generation region. A similar dampening
effect may occur in turbulent jets of high solutions.

For some of the more effective polymer solutions, the
effects of nozzle size and pressure on jet coherence were
examined. Photographs were rated in order as for the water
jets and the results listed in Table III.

The trends observed are similar to those found for pure
water jets. 1In all cases the 0.010- and 0.012-in. diameter
jets were more coherent than the 0.005-in. jets. The effect
of pressure was not large and there was no consistent trend
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to the small variations observed, i.e., in some cases higher
pressure gave better jet coherence, in others it was poorer.

Thus, in this range of Reynolds Numbers (about 60,000
to 210,000) there is an effect of jet diameter on jet
coherence but little apparent effect of change in jet
pressure.

Rewriting Equaticn 1 in terms of the variables LB' D
and V, we obtain:

Case 1: For n = O or no Reynolds number dependency
(plateau region)

L. a D1.5 yi-0 (3)

B

Case 2: For n = 5/8 (Ref. 8)

Ly o p’/8 y3/8 (4)

Case 3: For n = 2 (Ref. 9)

Ly o p~0:5 y~1.0 (5)
Case 4: For n =1

a D v0 (6)

The results of Lienhard and Day (Ref. 9) shown in
Figure 22 suggest a plateau region up to about 35 to 40,000
Reynolds Number followed by a transition region to about
60,000 or even 100,000 Reynolds Number. Miesse (Ref. 8)
reported an n value of 5/8 for data ranging from 10,000 to
340,000 but mostly below 100,000. A value of 5/8 below
100,000 is consistent with the results in this figure.
Lienhard and Day claimed n=2 for their results in the
Reynolds Number range of 80,000-160,000.

The results described herein for the photographic
studies, which are in the range of Reynolds numbers from
60,000 to 210,000, show a defiyite diameter effect but little
effect of jet pressure (V a P ). This suggests an n value
near unity as in Case 4. However, the pressure profile
studies where Reynolds Number ranged from about 260,000 to
450,000 indicated that both pressure anl jet diameter were
affecting jet coherence. It follows then that in this high
Reyrnolds Number region n must be less than unity and may
well be approaching zero giving a second plateau region.
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This conclusion has also been suggested by Phinney (Ref. 15).

We can conclude that the relative importance of
pressure effects or nozzle diameter effects on jet coherence
depends on the Reynolds Number range of interest and optimum
design of systems for practical use must take this into
account.

There is a need for more precise measurements covering

a wide range of Reynolds Numbers to establish the form of
Equation 1 (value of n) in the various regions.
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CHAPTER 3
Jet Cutting of Various Soils and Materials

Background

The previous use of water jets for moving earth and
for cutting various materials is described in Appendix I.
An important part of the present research was a study of
the effect of polymer additives on soil cutting and the
effect of nozzle size, nozzle pressure, and traverse speed
on the cutting of wood and plexiglass.

Soil Cutting

Three differing soil types were tested in this program
which was carried out at McCartney and at UMR: a sand, a
loam, and a Missouri red clay. The soils were obtained from
a contractor in the Rolla area.

Because of the configuration of the test equipment
at McCartney, it was necessary to traverse the soil samples
under the jet nozzle rather than the converse, and for this
purpose a special carriage was constructed. The carriage
was filled with soil and traversed under the jet at a speed
of approximately 60 ft./min. The procedure is described in
Appendix II.

Initial tests indicated that cutting with the jet very
close to the surface (1.25 in.) had little apparent effect
since, while the jet was effectively penetrating the soil,
the narrowness of the cut and the swirling of soil behind
the jet effectively resealed the slot. Two distances for
test, nominally 12 and 22 in. were, therefore, chosen for
the series of tests. In order to account for variations
in soil compactness in the field, two soil conditions were
studied: 1loose and unconsolidated material, and soil packed
and consolidated with a block of wood and a mallet. Nominal
densities of these materials are listed in TableVI. It should
be noted in passing, that where the soil was compacted in
layers, the jet sometimes exploited these layers, peeling back
a single layer of soil up to a distance of 1 in. from the
traverse line. This occurred where the jet found an easier
path between the layers rather than rebounding from the im-
pact zone.

High pressure tests (30,000 p.s.i.) at the two standoff

distances using a 0.012-in. nozzle were carried out on three
soils (clay, loam and sand) in two stages of soil compactness
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with water ind with solutions of 1500 p.p.m. Nalco 625 (500
p.p.m. polymer additive), 500 p.p.m. Polyox FRA, 500 p.p.m.
Polyhall 654 and 450 p.p.m. Dow Separan AP273 as the cutting
fluid,

Results from the test series carried out at 30,000
p.s.i. and 0.012-in., nozzle diameter are shown in Table VI.
In these experiments, the measured slot widths are a more
accurate measure of how the jet performed than the measured
depths because the loosened soil tended to resettle to a
depth of up to 2 in. inthe slot due to the vertical impact
of the jet.

The results of these experiments show that the jets
considered are generally quite effective in removing sand,
compact or loose,and loose clay and loam. They are
generally not as effective in compacted clay or loam. (See
Figure 23 in which the lower part with the narrow slot is
compacted loam and the upper part with the wide trench is
the uncompacted loam.) At the 22-in. standoff distance,
the polymer solutions are generally more effective than
the water. Pure water is generally more effective at the
10-in. standoff distance. These effects are illustrated
in Figures 24 a,b,c and d. The latter results may be due to
a narrower divergence angle of the polymer solutions compared
to water, which lowered the efficiency of soil removal at
the 10-in. position although the instantaneous jet penetra-
tion might be greater with the additives present. At 22 in.
the coherence of the water jet was poor and the energy retain-
ed by the jet was low while the improved coherence provided
by the polymer solutions caused them to be more effective.

While these results clearly show the benefit to be
obtained by the use of polymers in the fluid in maintaining
jet cohesion at large standoff distances, a second conclu-
sion can also be drawn. At the 10-in. standoff the polymer
jet retains more energy than the water jet but is less
effective because the energy is concentrated within a small
area. Thus, for maximum effectiveness in removing soil a
certain degree of jet disruption would appear advantageous.
The amount of jet disruption which is most effective for
soil removal has not previously been investigated although
the phenomenon has been recently discussed (Ref. 16) and
this is, therefore, an important area for further study.

Thus, to sum up for these experiments, the jets most
effectively cut sand and were least effective in clay.
Compacted clay and loam were more difficult to remove than
loose material as the jet cut only a thin slot in the
compacted material. This would be a problem where the jets
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Figure 23.

Loam cut by a 500 p.p.m. Polyhall, 30 k.s.i.
0.012-in. diameter jet at 10-in. standoff,
showing the change where the loam changes
from compacted, nearest the camera, to un-
compacted.
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are to be used for soil clearance over a suspected mine
field. As noted above, in all material, the vertical orient-
ation of the jet reduced the effectiveness of removal since
the channel cut by the jet was then partially filled by
subsequent ejecta.

In a further effort to evaluate the effects of jets
on soil, another experiment was done at the UMR facility
in which a nozzle and a feed pipe were attached to a
rotatable coupling. The feed pipe was bent so that the
nozzle directed the jet at a forward angle to the soil tar-
get held in a metal frame 5-1/2 ft. away (Figure 25). The
test series was carried out in two parts: first, using a
water and soluble oil fluid, and second, with the addition
of 500 and 1000 p.p.m. (solid concentration) of Nalco
BX-254, a similar polymer to the Nalco 625 used at the
McCartney test facility.

Tests were originally planned over a range of nozzle
diameters and a range of jet pressures. Preliminary tests,
however, indicated that the jet would not reach the target
material unless a 0.03-in. or larger nozzle diameter was
used, smaller jets being totally disrupted before impact
on the target. At 0.06-in. nozzle diameter, the plunger
and liner assembly in use provided sufficient flow for a
maximum jet pressure of 2,500 p.s.i. Tests with water
were accordingly carried out with two traverse speeds, 3
ft./sec. and 6 in./sec., traversing the nozzle manually
over the 18-in. wide test frame. The same three soil types
were used (uncompacted) as in the experiments at McCartney.
In these tests, the soil type made much less difference in
the results (Table VII)than had previously been observed.
However, for the polymer solutions the measured depths do
not show the true penetration depth of the jet because,
while the water jet impact generated an ejecta spray in-
cluding soil and water which was thrown beyond the target
area, the polymer solution jet stream did not Create a
large rebound spray which could carry material beyond the
target area. 1Instead, the material resettled filling part
of the slot formed (Figure 26). It is believed that this
difference in fluid behavior is due to the high extensional
viscosity of the polymer solution.

In the tests where the Nalco chemical was added to the
fluid, the jet cohesion was noticeably improved, jet atomi-
zation not being initiated for a distance of over one foot
with the 0.06-in. diamcter nozzle, and for 9-in. with the
0.05~in. diameter nozzle for the 1,000 p.p.m. solution.
Because the pump was a fixed displacement type producing
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Figure 25.

Experimental arrangement in Rolla (protective
cover removed and pressure reduced for
photograph) .
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Figure 26.

Flow of sand under impact at jet velocity
of 6 in./sec., 0.06-in. diameter nozzle
2,500 p.s.i. at 5-1/2 ft. standoff dis-
tance.
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4 g.p.m., the drag reduction of the polymer reduced jet
pressure below that measured accurately by the gauge to a
level of approximately 2,000 p.s.i. While this was suf-
ficient to cut the target material, as noted above the
cohesion of the fluid kept the material in the slot to a
greater degree than the water alone and subsequent settling
of the soil gave small measured depths of cut although the
initial penetration of the soil was greater.

Smaller nozzles were also used in this phase of the
program with Nalco polymer in order to determine whether
jets from such nozzles could effectively cut at a distance
of 5-1/2 ft. For an 0.035-in. nozzle diameter, the jet
was totally disrupted as it left the nozzle. Examination
of the nozzle showed that the nozzle inlet orifice was
slightly larger than the pipe inner diameter which generated
a turbulent condition at the interface. The importance of
an exact match on this plane was, thus, clearly shown. At
0.03-in. nozzle diameter and 3000 p.s.i. pump pressure the
jet retained sufficient energy at 5-1/2 ft. to move surface
material on the target surface, but the depth of penetratio..
was belowl/2in.As jet pressure was increased to 4,000 P.S.iy
the jet was distrupted to the point that no effect was ob-
served on the target surface.

Because water from the impacting jet was retained
around the impact point fluidizing the material which
flowed back into the cavity, tests were run at higher traverse
speeds. Short test runs, where the water jet was gyrated
over the test surface, were carried out on sand (Figure 27)
and clay (Figure 28). Although the jet rapidly cleared
material to a depth of 4 in., the test frame was too small
for this type of test since the ejecta had very little throw
and was retained by the sidewall of the frame and consequently
flowed back into the excavated hole.

When 500 p.p.m. (solid polymer) of Nalco BX 254 was
added to the water, it was noted that the impacting fluid
was not penetrating into the walls of the trench to as large
an extent after impact and that, in consequence, the walls
of the cut were more stable. Thus, it was found possible
to make three adjacent passes over sand and soil, cutting
to a depth of over 4 in. before the walls collapsed, re-
filling the hole to a depth of 2 in. (Figure 29 shows
results after 6 passes).

In considering the logistics of any field use of water
jets for soil removal over land mines certain limiting
parameters can be assumed. For example, the carrying capa-
city of the vehicle, say 1000 gal. will probably preclude
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Figure 27.

Results of a gyratory jet traversed over sand
(2,500 p.s.i., 0.06-in. diameter, 5-1/2 ft.
standoff distance).
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Figure 28. Results of a gyratory jet traversed over clay
(2,500 p.s.i., 0.06-in. diameter, 5-1/2 ft,.
standoff distance).
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Figure 29.

Result of six adjacent
over sand (500 p.p.m.
0.06-in. jet at 5-1/2

61

passes at 3 ft./sec.
Nalco in a 2,000 p.s.i.,
ft. standoff distance).




use of very high flow rate jets (of the order of 200 g.p.m.).
If continuous operation is required, a flow rate of 10
g.p.m., maximum can be anticipated. If two or three nozzle
systems are used concurrently to allow a reasonable forward
advance speed while the jet sweep runs perpendicular to

the line of advance, this will limit nozzle sizes to a
maximum of 0.03- to 0.06-in. diameter, depending on jet
pressure.* For this size of nozzle at a standoff distance
of 5 to 6 ft., these last experiments suggest that at
operating pressures of 2,000 to 5,000 p.s.i., the jet would
reach the target. While not apparent in the results in
Table VII the use of long-chain polymers assisted the cutting
effect in that it reduced jet breakup and the wetting of the
target material, so that the cavity created was more stable.
An exhaustive study to find optimum polymer types and con-
centrations to give jet coherence sufficient for target
penetration while at the same time having the ability to
carry ejecta away from the impact point needs to be made
utilizing standardized tests.

Of major interest, but not examined in this study,
is the effect of lateral traverse speed on jet stability.
It has been shown (Ref. 17) that the addition of polymers
enhances jet stability under these' conditions but experi-
ments were carried out only at low traverse velocities.
The effect of polymer addition on jet stability at high
traverse speeds in the pressure range from 2,000 to 5,000
pP.s.i. at nozzle diameters from 0.03~to 0.06~in. at standoff
distances up to 6 ft. would, therefcre, be a worthwhile con-
tinuation of this study.

Cutting of Wood and Plexiglas

A sufficient amount of results was available in the
literature (Appendix I) to describe the effects of water
jets in cutting wood and Plexiglas. A small program to
observe the effect of change in test parameters was, however,
carried out. The samples were clamped on a frame and
traversed under the jet nozzle by an hydraulically driven
ram. Feed rate was varied, as were nozzle diameters and
pressure of the jet, but standoff distance was held constant
at zero inches. Previous work by Summers (Ref. 18) demo-
strated the advantages of using polymer additives in jet
cutting.

The results of the tests carried out (Table VII, Figures
30 to 33) show the need to use as large a nozzle diameter

*An 0.03-1in. nozzle will deliver approximately l.2g.pm. at
2000 p.s.i. and 2.0 g.p.m. at 5,000 p.s.i. The 0.06-in.
nozzle delivers four times as much fluid at each pressure.
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Figure 30.
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One-half in. plywood cut at 7-1/2 in./sec.
and 43,000 p.s.i. Three nozzle diameters
(0,005, 0.007, 0.012 in.).
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Figure 31. One-quarter in. Plexiglas cut but not pene-
trated by a 0.005-in. diameter, 43,000 Belsle
jet at 5 ft./min.
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Figure 32. One-quarter in. Plexiglas cut through by a
0.010-in. diameter, 43,000 p.s.i. jet at
S £t./sec.
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Figure 33. One-quarter in. Plexiglas cut through by a
0.012-in. diameter, 43,000 p.s.i. jet at 5
ft./sec.
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as possible in the cutting of these materials in order to
obtain a through cut. For example, in cutting 1/2-in.
plywood at 43,000 p.s.i. nozzle pressure at a feed rate

of 90 in./min. the 0.005-in. nozzle jet penetrated only two
plies, the 0.007-in. nozzle jet penetrated three plies and
the 0.012-in. nozzle jet cut through the five plies

(Figure 30). The greater effectiveness in cutting of larger
diameter jets at constant pressure is due at least in part
to the larger amount of energy available in the cutting
srea.

Results from the test program and from the results of
other investigations suggest that while it is relatively
easy to cut wood (jet pressures as low as 2000 p.s.i. have
been used), a large diameter (0.0l-in. or larger) jet is
most effective as well as a relatively slow traverse speed.
In the cutting of Plexiglas, where the penetration mechanism
is different, it is more important to have a high jet
pressure (above about 30 k.s.i.). Hers, too, a large nozzle
diameter (about 0.0l1-in. diameter) and feed rates below
60-in./min. are most effective. While the jet continued to
cut at higher feed rates, large scale fracturing of the
target occurred. Where the jet was traversed slowly over
the sample, allowing adequate time for jet cutting, the pres-
sure was confined to the cut area and a clean cut resulted.

In the use of fluid jets for mine neutralization,
confinement of the jet impact pressure to the desired area
to be cut would avoid the danger of high pressure being
transmitted beyond this area, which might induce detonation
of the mine contents.

In other words, the jet must retain a high degree of co-
hesion so that it will penetrate the target and material
can be removed without affecting adjacent and possibly
sensitive material. Therefore, in addition to moderate
traversing speeds, the nozzle must be relatively close to
the material surface for cutting materials like Plexiglas.
Close proximity to the cutting surface is not as important
in the cutting of wood since, in this case, the material has
a much lower threshold pressure to initiate penetration.
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CHAPTER 4

Conclusions

1. The presence of viscoelastic additives in the jet
fluid increases the coherency of high pressure turbulent
water jets extruding into stagnant air. Polyethylene oxide
polymer (Polyox FRA at 500 p.p.m.) was the most effective
additive tested in this study. Several commercial polyac-
rylamide polymers were also quite effective.

2. In the high jet Reynolds Numbers range s}gdied,
the effects of jet pressure (velocity o pressure1 ) and
nozzle diameter on jet coherent length varied with Reynolds
Number. In the Reynolds Number range of 60,000 to 210,000,
jet pressure had little effect on coherent length while an
increase in nozzle diameter caused an increase in jet
length. At higher Reynolds Numbers an increase in both
variables caused an apparent increase in jet coherent length.
These results suggest that the quantity

L
D(WE)1/2

reaches a (second) turbulent plateau at high Reynolds Num-
bers. A careful study of coherent jet length as a function
of these two variables at high Reynolds Number is necessary
tc determine the exact relationships between

L
D (WE)

1/2
and Reynolds Number.

3. High pressure turbulent jets with viscoelastic
polymer additives present offer no advantage in cutting
soils at short (10-in.) standoff distances compar2d with
pure water jets. The additives limit disruption of the
jet, some of which are desirable for soil removal. How-
ever, at longer standoff distances (22 in. or more), where
they prevent total disruption of the jet, the viscoelastic
additive solutions are more effective in penetrating soils
than pure water.

4. At a jet pressure of 2,500 p.s.i., a nozzle dia-
meter of 0.06 in. and jet traversing speeds of 3 ft./sec.
and 6 in./sec. with pure water, soil removal was achieved
at a standoff distance of 5-1/2 ft. Using the same nozzle
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at a jet pressure of 2,000 p.s.i. and the same traversing
speeds, solutions of 500 and 1,000 p.p.m. of a polyacryla-
mide polymer (Nalco BX-254) gave more coherent jets which
penetrated the soil well but which did not remove soil from
the target tray as efficiently as pure water. Both the more
coherent jets and the poorer splashing properties giving
poorer soil removal are believed to be due to the high
extensional viscosities of the polymer solutions. A study
to find the optimum polymer types and concentrations for
achieving coherent jets and effective soil removal needs

to be carried out.

5. In high pressure jet cutting of solid materials,
the presence of viscoelastic polymer additives increases
cutting effectiveness.

6. For high pressure jet cutting of wood and Plexi-
glas, the largest nozzle diameter (at a fixed pressure)
gave the best cut.

7. For jet cutting of Plexiglas, jet pressures above
30,000 p.s.i., very small standoff distances, and moderate
traversing speeds (below 60 in./min.) are required for clean
cuts of 1/4-in. material.

8. The interactions of nozzle design and jet traverse
speed with the variables studied, viscoelasticity of the
solution, jet pressure, and nozzle size, are important for
system designs for practical applications. A more complete
study to encompass all of these variables and to study them
in more detail is required.

9. Solutions made with Nalco 625, an emulsion con-
taining about 1/3 polyacrylamide polymer by weight, are
easily prepared. The convenience of using this product
warrants its inclusion in any test program in which the
effect of polymer additives is to be studied for practical
applications.
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