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PREFACE 

The Ninth Symposium on Naval Hydrodynamics continues in all aspects the 
precedent, established by previous symposia in this series, of providing an inter- 
national forum for the presentation and exchange of the most recent research re- 
sults in selected fields of naval hydrodynamics. The Symposium was held in Paris, 
France on 20-25 August 1972 under the joint sponsorship of the Office of Naval 
Research, the Ministtre d'Etat charge de la Defense Nationale and the Ass< elation 
Technique Maritime et Aeroanutique. 

The technical program of the Symposium was devoted to three subject areas 
of current naval and maritime interest. These subject areas are covered in the 
Proceedings in two volumes: 

Volume 1 — The Hydrodynamics of Unconventional Ships 
— Hydrodynamic Aspects of Ocean Engineering 

Volume 2 — Frontier Problems in Hydrodynamics. 

The planning, organization and management of a Symposium such as this is 
an undertaking of considerable magnitude, and many people have made invaluable 
contributions to the resolution of the myriad of large and small problems which 
invariably arise. The Office of Naval Research is acutely aware of the fact that the 
success of the Ninth Symposium is directly attributable to these people and wishes 
to take this opportunity to express its heartfelt gratitude to them. We are particu- 
larly indebted to Vice Admiral Raymond THIENNOT, Directeur Technique des 
Constructions Navales, Ministere d'Etat charge de la Defense Nationale, to Professor 
Jean DUBOIS, Directeur des Recherches et Moyens d'Essais, Ministere d'Etat charge 
de la Defense Nationale, and to Monsieur Jean MARIE, President de I' Association 
Technique Maritime et Aeronautique, who provided the formal structure which 
made this joint undertaking possible. The detailed organization and management 
of the Ninth Symposium lay in the capable and competent hands of Vice Admiral 
Roger BRARD, President de la Academie des Sciences, and Rear Admiral Andr^ 
CASTER A, Directeur du Bassin d'Essais des Carenes, who were most ably assisted 
in this endeavor by the charming Madame Jean TATON. Throughout the long days 
of planning and preparation the experienced and practical counsel of Mr. Stanley 
DOROFF of the Office of Naval Research provided continuous guidance which 
contributed in an immeasurable way to the success of the Ninth Symposium on 
Hydrodynamics. 

RALPH D. COOPER 
Fluid Dynamics Program 
Office of Naval Research 
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OPTIMUM SHAPES OF BODIES IN FREE SURFACE 
FLOWS 

Th.   Y.  Wu 
California Institute of Technology 

Pasadena, California, U.S.A. 
and 

Arthur K.  Whitney 
Palo Alto Research Laboratory, Lockheed Aircraft Corp. 

Palo Alto,  California,  U.S.A. 

ABSTRACT 

The general problem of optimum shapes arising in 
a wide variety of free-surface flows can be charac- 
terized mathematically by a new class of variation- 
al problems in which the Euler equation is a set of 
dual integral equations which are generally nonli- 
near, and singular, of the Cauchy type. Several ap- 
proximate methods are discussed, including linear- 
ization of the integral equations, the Rayleigh-Ritz 
method, and the thin-wing type theory. These me- 
thods are applied here to consider the following 
physical problems : 

(i) The optimum shape of a two-dimensional plate 
planing on the water surface, producing the maxi- 
mum hydrodynamic lift ; 

(ii) The two-dimensional body profile of minimum 
pressure drag in symmetric cavity flows ; 

(iii) The cavitating hydrofoil having the minimum 
drag for prescribed lift. 

Approximate solutions of these problems are dis- 
cussed under a set of additional isoperimetric cons- 
traints and some physically desirable end condi- 
tions. 

Preceding page blank 
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Wu and Whitney 

I.    INTRODUCTION 

The general problem of optimum shapes of bodies in free- 
surface flows is of practical as well as theoretical interest.  In ap- 
plications of naval hydrodynamics these problems often arise when 
attempts are made to improve the hydromechanical efficiency and 
performance of lifting and propulsive devices,   or to achieve higher 
speeds of operation of certain vehicles.  Some examples of problems 
that fall under this general class are illustrated in Figure 1.  The 
first example is to evaluate the optimum profile of a two-dimensional 
plate planing on a water surface without spray formation, and produc- 
ing the maximum hydrodynamic lift under the isoperimetric cons- 
traints of fixed chord length   c    and fixed wetted arc-length   S   of the 
plate.   The second example depicts the problem of determining the 
shape of a symmetric two-dimensional plate so that the pressure drag 
of this plate in an infinite cavity flow is a minimum,  again with fixed 
base-chord   c    and wetted a re-length   S .   The third is an example 
concerning the general lifting cavity flow past an optimum hydrofoil 
having the minimum drag for prescribed lift,  incidence angle   a    , 
chord length   c   and the wetted arc-length   S.  In these problems the 
gravitational and viscous effects may be neglected as a first appro- 
ximation for operations at high Froude numbers.  Physically, there is 
no definite rule for choosing the side constraints and isoperimetric 
conditions,  but the existence and the characteristic behavior of the 
solution can depend decisively on what constraints and conditions are 
chosen.  Mathematically, it has been observed in a series of recent 
studies that the determination of the optimum hydromechanical shape 
of a body in these free-surface flows invariably results in a new class 
of variational problems.  Only a very few special cases from this 
general class of problems have been solved, the optimum-lifting-line 
solution of Prandtl being an outstanding example. 

There are several essential differences between the classic- 
al theory and this new class of variational problems.  First of all,  the 
unknown argument functions of the functional under extremization are 
related, not by differential equations as in the classical calculus of 
variations, but by a singular integral equation of the Cauchy type. 
Consequently,  the "Euler equation" which results from the consider- 
ation of the first variation of the functional in this new class is also 
a singular integral equation which is, in general, nonlinear.  This is 
in sharp contrast to the Euler differential equation in classical theory. 
Another characteristic feature of these new problems is that while 
regular behavior of solution at the limits of the integral equation may 
be required on physical grounds, the mathematical conditions which 
insure such behavior generally involve functional equations which are 
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Optimum Shapes of Bodiee in Free Surface Flows 

difficult, and sometimes just impossible,  to satisfy. 

Because of these difficulties and the fact that no general 
techniques are known for solving nonlinear singular integral equations, 
development of this new class of variational problems seems to require 
a strong effort. Attempts are made here to present some general re- 
sults of the current study.  Some necessary conditions for the existence 
of an optimum solution are derived from a consideration of the first 
and second variations of the functional in question.  To solve the re- 
sulting nonlinear,   singular integral equation several approximate 
methods are discussed. One method  is by linearization of the integral 
equation,  giving a final set of dual singular integral equations of the 
Cauchy type.   When the variable coefficients of this system of integral 
equations satisfy a certain relationship,  this set of dual integral 
equations can be solved analytically in a closed form ; the results of 
this special case provide analytical expressions which can be exten- 
sively investigated to determine the behavior of a solution near the 
end points. Another approximate method is the Rayleigh-Ritz expans- 
ion ; it has the advantages of retaining the nonlinear effects to a certain 
extent,  of incorporating the required behavior of the solution near the 
end points into the discretized expansion of the solution, but the method 
is generally not convergent.  A third approach depends on a thin wing 
type theory to describe the flow at the very beginning, a variational 
calculation is then made on an approximate expression of the physic- 
al quantities of interest.  These mathematical methods will be discuss- 
ed and then applied to three problems described earlier. While the 
results to be presented should be considered as still preliminary, 
since exact solutions to these problems have not yet been found, it is 
hoped that this paper will succeed in stimulating further interest in 
the development of the general theory,  and,  in turn,  aid in the resolu- 
tion    of many hydromechanic problems of great importance. 

II. GENERAL MATHEMATICAL THEORY 

To present a unified discussion of the general class of op- 
timum hydromechanical shapes of bodies in plane free-surface flows, 
including the three examples   (i) - (iii)   depicted in Figure 1,  we as- 
sume the flow to be inviscid, irrotational,  and incompressible, taking 
as known that the physical plane   z = x + iy   and the potential plane 
f = V + i^      correspond conformally to the upper half of the para- 
metric      T = { + i n      plane by the mapping that can be signified  sym- 
bolically as 

i  -ip     + i^- '(   f ; c r Cn)' (1) 
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where    v   is an analytic function of   f   and may involve geometric 
parameters   c, , ...  cn ,    so that the wetted body surface corresponds 
to     *s 0+ ,       |(|   < 1 , and the free surface, to      IJ« 0+, |(| >1 . 
Specific forms of the function   •'(f)  will be given later,  but our pur- 
pose at this time is merely to illustrate the type of nonlinear varia- 
tional problem that arises. 

Description of the flow is effected by giving the parametric 
expressions  f s f(f)    and     w = w ( f ), 

"(f)      =       -10g(df/dz)       = T+i( (2) 

being the logarithmic hodograph.  The boundary conditions for   w   may 
be specified either as a Dirichlet problem, by giving 

Re   w( £   -l- iO)    * o 
(given for   |{| <1) , -,. 

(|«|   >1)   . (3) 

or as a Riemann-Hilbert problem. 

9     =    Im  w({ +i0)    =    |8 ({) (I«I   <1)   . (4a) 

i7    =     Re   w({   + iO) (|{|  >   1)   • (4b) 

The formulation of the   w   problem is completed by specifying a con« 
dition at the point of infinity,  say 

« - 0   . (     |z|^   oo   )   , (5) 

and by prescribing a set of end conditions, which are generally on 
F (f). as 

r(- i)   =   o , (6) 
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or timilar ones.  The end conditions are usually required on physical 
grounds in order that the fluid pressure is w^ll behaved at the end 
points    £   =     i   1, at which the free boundary meets the wetted body 
surface. 

The solution to the Dirichlet problem   (3),  (5), (6), i. e. 

J_        I      r(t)dt r, + 
i»      / j    t-r 

and the solution to the Riemann-Hilbert problem   (4),   (5),  (6),  given 
by 

j 2 1/2        ^ 
«-(f)    =   — (f     -1) f1-^^ (8a) 

Ai (i.t2)I/z(t-f) 

with 

1 

/, i (i-O I/z 

are equivalent to each other, as can be readily shown.  Here, the func- 
tion   ( f    -   1)'*   is one-valued in the   {    -plane cut from   f   = -1   to 

f = 1.    On the body surface, we deduce from   (7) , by applying the 
Plemelj formulas, that 
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where the integral with symbol C signifies its Cauchy principal 
value, and also defines the finite Hilbert transform of F (t) , as 
denoted by    H{[r]   . 

From this parametric desc/iption of the flow we derive the 
physical plane by quadrature 

*(n /V-m«df do) 

With the solution   (7) - (10)   in hand,  we see that the chord   t    , 
wetted arc-length  S , angle of attack a , as well as the drag   D , lift 
L , etc.  can all be expressed as integral functionals with argument 
functions     F ( i )   and     /?({)• which are further related by   (9). 

III.    THE VARIATIONAL CALCULATION 

The general optimum problem considered here is the mini- 
mization of a physical quantity which may be expressed as a function- 
al of the form 

'    f r.   ^c,. r ••• CJ C F0( rU)./J UM :c1..c ) df 
I       n 

(ID 

under   M   isoperimetric constraints 

.1 
liiTtß''ci' ••• SJ   =   ^ F/(r.<j.«;Ci...,Cn 

where   A^'s   are constants.    I   = 1,2,...  M. 
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The original problem is equivalent to the minimization of a new func- 
tional 

M 

i [r.ß-.c^ ... cj   = io-   y^fy  - A
g )   , (13) 

where   \n  's   are undetermined Lagrange multipliers. 

We next seek the necessary conditions of optimality.  Let 
F ( ( )   denote the required optimal function which,  together with its 

conjugate function     ß (t)   given by   (9), minimizes   I [ F, 0J,  We 
further let       5   F ( { )   denote an admissible variation of    F ( { )> 
which is Holder continuous,   satisfies the isoperimetric constraints 
(12)   and the end conditions   (6).   The corresponding variation in 

ß H)   is found from   (9)   as 

60 ( n   =   - H{[«F] (  m <!).     (i4) 

T 
and iß    is 

f the functional   I  due to the variations S F 

M    =    l[F+    «F.    /3+«fl;c    +ic]    -   l[r, /J; c ] 

(15) 

where      *cn's   are variations of parameters   cn.   For sufficiently 
small    |ä r|,     |5ö|and   Ucn    ,    expansion of the above integrand in 
Taylors'series yields 

AI    =     «I   + -~      «2I    +   -V     63I    + ...   , 
C  . 3   , 

(16) 

where the first variation      S I   and the sec 

1 

«I    = /     [Fr    «F   + F^ «0 ]d£ + «cn     / ( 

tion     i   I   are 

dF/ecn)d{,      (17) 
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f1 

m 

/ 
a2F 

'-I        de     dc 
n        in 

d{ (18) 

+   cross product term between   6 c     and   6 For    tß , 

in which the subindices denote partial differei tiation.  The variations 
61,     6   I ... depend on     i F as well as on   F , For   I  to be mini- 

mum, we must have 

«I [  F, «F]       =   0   , 

«ZI  [F, « F]     i    o   , 

(19) 

(20) 

in which ß and 6 ß are understood to be related to F and 6 F by 
(9) and (14). Relation (19) assures I to be extremal, and with the 
inequality   (20), I   is therefore a minimum. 

Wow,   substituting   (14)   in   (17)   reduces it to 

61 =    jfj   lFr     +H
{[^ ]f6F(nd{    +  6cn    fdF/d^ df      (17)' 

after inter-changing the order of integration, which is permissible 
under certain integrability conditions   (see Tricomi 1957,   J 4. 3) 
which will be tacitly assumed to hold. Since the variations    6 F ( ( ) 
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and     4cn  are independent and arbitrary, the last integral in   (17)' 
and the f&ctor in the parenthesis of the first integrand must all vanish, 
hence 

/ 
dF(r({ ). 0(n, {;c. ...  c  )/dc.d{    =0     (j=l,...n), 

1 i n J 

(21) 

Fr (r(n. *J(«);0 = -HJCF^]   = --L / _£ — dt 

(22) 

The nonlinear integral equation   (22)   combines with   (9)   to give a pair 
of singular   itegral equations for the extremal solutions.  This is one 
necessary condition for    I [r] to be extremal ; it is analogous to the 
Euler differential equation in the classical theory. Presumably, cal- 
culation of the extremal solution   T ( ( )   from   (22)  and   (9)   can be 
carried out with     X1 ,  ...    XM   regarded as parameters, which are 
determined in turn by applying the   M   constraint equations   (12). 
While we recognize the lack of a general technique for solving the 
system of nonlinear integral equations   (9)  and   {22}, we also notice 
the difficulty of satisfying the end conditions   (6), as has been expe- 
rienced in many different problems investigated recently. The last 
difficulty may be attributed to the known behavior of a Cauchy integral 
near its end points which severely limits the type of analytic proper- 
ties that can be possessed by an admissible function   F ( { ) and its 
conjugate function   /9 ( ( ) * 

Supposing that these equations can be solved for    F ( { ; c,   , 
Cj ,  ... cn), we proceed to ascertain the condition under which this 
extremal solution actually provides a minimum of    I [r] . From the 
second variation     j   I  we find it is necessary to have 

/; 

i 

( dZF /   dc2)d^0 (23) 
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L [Frr    ( « r)2 + 2Fr/J «ra/J + F    (M)2]   d{ i 0.       (24a) 

By substituting   (14)   in   (24a),  interchanging the order of integration 
according to the Poincar^-Bertrand formula (Muskhelishvili,   1953) 
wherever applicable,  it can be shown that   (24a)   can also be written 
as 

1 

gU)(«rr d« 'T/1   (^ Mil 

(24b) 

«r(t) 6r({)dt 

df   »  0 

where 

«(f)   =   Frr +F
flfl  •   h(«)   =   TTS 

+ H^FrJ «L r<j- 

If we suppose that   Fpp  ,    F-,     , F,-    are Holder continuous, and 
consider a special choice of       ATwhich vanishes for   |(-   f0| >•      , 
bounded   ( | i r|< B)   and is of one sign for    |^ -  ^oj <  « ,    where    4 ( 

is any interior point of   (-1, 1),  then it can be shown that the first 
term on the left side of   (24b)   predominates, hence a necessary con- 
dition for   (24 b)   to hold true is the inequality   g( ( )   >  0 ,  or 

IT ßß (   l«|   <i) (24c) 

This condition is analogous to the Legendre condition in the classical 
theory. 

The preceding illustrates the method of solution of the ex- 
tremum problem by singular integral equations.  We should reiterate 
that the integral equations are nonlinear unless   F   is quadratic in  F 
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and    0   .  No general methods have been developed for the exact so- 
lution of nonlinear singular integral equations.   Further, it may not 
always be possible to satisfy the condition    F ( t 1) - 0, which are 
required on physical grounds.   With these difficulties in mind, we pro- 
ceed to discuss some approximate methods of solution. 

IV.    LINEARIZED SINGULAR INTEGRAL EQUATION 

The least difficult case of the extremal problems in this 
general class is when the fundamental function   F[r, 0]   is quadratic 
in    F  and    ß , that is 

F( F, /3 , f  ;c.)   =   a F Z+ 2b r/3     + c02 + 2p T    + 2q^ ,   (25) 

in which the coefficients   a, b,  ...  q   are known functions of {    and 
may depend on the parameters   c. ,  ...  cn.  It should be stressed that 
the above quadratic form of  F   can generally be used as a first ap- 
proximation of an originally nonlinear problem in which   F   is trans- 
cendental or contains higher order terms than the quadratic.  With this 
approximation the integral equation   (22)   is then linear in P    and 0    , 
and reads 

aF      +   b^     + p   =   - H{  [bF    + c/3   + qj     (   |f|< 1),  (26) 

which combines with   (9)   to provide a set ot two linear integre! 
equations,  both of the Cauchy type.  The necessary condition   (24c), 
obtained from the consideration of the second variation, now becomes 

am +c( n  > (  U| < D (27) 

For the present linear problem (regarding the integral 
equations) two powerful analytical methods become immediately use- 
ful.   First,  the coupled linear integral equations   (9)   and   (26)   can 
always be reduced to a single Fredholm integral equation of the second 
kind.  When the coefficients   a( ( ),  b( ( )   and   c( ( )   of the quadratic 
terms satisfy a certain relationship,  the method of singular integral 
equations can be effected to yield an analytical solution in a closed 
form. 

(i) Fredholm integral equation 
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By substituting   (9)  in   (26), we readily obtain 

a(n rm - bU)H{ [r]+ H{[br]  - H{ [c(t)Ht[r]] = 

=    -H{[q]    -   p(«)   • 

Upon using the Poincar^-Bertrand formula (with appropriate assump- 
tions) for the last term on the left side of the above equation,  there 
results 

)a( U   +   cU ) |   T   ( «)   +     /   K(t. « )  T (t) dt   =   .H{ [q]     - p( «)   . 

(28a) 

where 

K(t. n = - _ i b(t) - b( n 
t -« 

1        (r    c(s) ds (28b) 

This is a Fredholm integral equation of the second kind, with a regul- 
ar symmetric kernel, for which a well-developed theory is available. 

(ii) Singular integral equation method 

When the coefficients   a,b, c,    satisfy the following relation- 
ship 

a(«)   +  c(n   >   0,    b(£)   =   bo   - (ac)1^,   bo = const ,      (29) 

the system of equations   (26)   and   (9)   can be reduced in succession 
to a single integral equation, each time for a single variable, and 
these equations are of the Carleman type, which can be solved by 
known methods (see Muskhelishvili 1953), yielding the final solution 
in a closed form. 

In the first step we multiply   (9)   by   b0, and subtracting it 
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from   (26), giving 

a ♦ + ({)    =    Hf  [t   cl/2*±   3   +    ♦({) 

(    III   <   1)   . 
(30a) 

where 

♦   («)   = .1/2 r 1 c1/2. *(«)= -H,[q] ?(«)   . 
(30b) 

After this Carleman equation for *+     is solved,  a second Carleman 
equation results immediately upon elimination of   ß between the ex- 
pression for <!>+    and   (9). The details of this analysis are given by 
Wu and Whitney (1971). These analytical solutions are of great interest, 
since in their construction there are definite, but generally very li- 
mited degrees of freedom for choosing the strength of the singularity, 
or the order of zero, of the solution     T (() and     ß(k)   at the end 
points     ( =   -   1 . It is in this manner that the analytical behavior of 
the solution     T ( { )  and     ß{i)   can be explicitly and thoroughly 
examined.  This procedure will be demonstrated later by examples. 

V.    THE RAYLEIGH-RITZ METHOD 

The central idea of this method, as in classical theory, con- 
sists in expansion of     r( ( )  and      0( ( )   in a finite Fourier series 

m 

m 

k = 1 

m 

7    sin ktf  ,    (  { = cos »   ,  0  < * < » )      (31 a; 

k = 1 

7kco8k» (31b) 

This expansion is noted to satisfy   (9)   automatically. The functional 
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I [   r , (3   J  is now an ordinary function of the Fourier coefficients 

I    [r, /J ; c,,  ...  c   ]    =     /   F(r      , ß     , cos«; c, ... c )8in«d( 1 nJ I nn       m In 

1(7 r ^m1 Cl' (32) 

For   I   to be extremum, we require that 

dl/   d7k   =   0 (k   =   1,   ...  m)   . (33) 

and 

dl / dc.    =    0 (j   =   1.  ... n) 
J 

(34) 

These   (m + n)   equations together with 
determine the   m   coefficients i  ... 

cn,  and   M   multipliers  X 

M   constraint equations   (12) 
7m, n  parameters   c,,. . . 

j^.  It should be pointed out, 
however,  that the coefficients   Yj^'s   and parameters   Cj's   generally 
appear in the expression for   1(7^, C:)   in a nonlinear or transcendent- 
al form, making their determination, by algebraic, numerical means 
or otherwise,  extremely difficult even when their number is moderate- 
ly small,   such as three or more. 

The preceding general theory will be further discussed and 
clarified with several specific examples in the presentation of this 
study. 
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DISCUSSION 

Ernest O. Tuclc 
University of Adelaide 

Adelaide, Australia 

At a meeting like this it might seem strange to ask about 
existence and uniqueness solutions to mathematical problems but I 
think it is possibly relevant here.  I wondered if the authors know in 
their examples whether they can expect a solution, on either physical 
or mathematical grounds ? 

REPLY TO DISCUSSION 

Arthur K. Whitney 
Palo Alto Research Laboratory, Lockheed Aircraft Corp. 

Palo Alto, California,  U.S.A. 

That is one of the unresolved questions in this minimisation 
technique, we simply do not know the answer at this point. If it   arns 
out that solutions to the exact nonlinear equations do not exist, this 
still does not invalidate solutions by the approximate methods.  It may 
mean, however,  that as we take more and more terms in the appro- 
ximate solutions,  these solutions do not converge. An existence proof, 
especially a constructive existence proof,  would be very much desi- 
rable. 
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DISCUSSION 

William B.  Morgan 
Naval Ship Reeearoh and Development Center 

Betheada, Maryland,  U.S.A. 

In connection with your third examples,  how do you plan to 
determine the point of separation on the suction side of the foil when 
the leading edge is blunt ? 

REPLY TO DISCUSSION 

Arthur K.  Whitney 
Palo Alto Research Laboratory, Lockheed Aircraft Corp. 

Palo Alto, California,  U.S.A. 

These problems are formulated as inverse problems,  so you 
know the point of separation in all cases.   That is,  if P (£)   is given as 
the dependent variable,  the hodograph variable is then determined and 
the physical plane,  including the shape of the wetted foil surface, is 
given by a quadrature. 

REPLY TO DISCUSSION 

Theodore Y.  Wu 
California Institute of Technology 

Pasadena, California,  U.S.A. 

May I add a few comments to   Dr.   Morgan's question ? For 
the lifting problem,  I think we can also impose two conditions as iso- 
perimetric constraints for a fixed chord and a fixed arc-length.   These 
constraints may provide a good method to overcome the difficulty due 
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to unknown position of the separation points. Suppose we start with 
K = 0 (K being defined as the ratio of the wetted arc-length to the chord 
length minus   1,    or   K = S/i   -1),  then we know that at   K = 0 ,  the 
two end points of the cavity boundary would be of the type of fixed de- 
tachment, at which point the curvature of the free streamline is sin- 
gular. As   K   is increased by giving more arc-length to the body pro- 
file, we hope the profile can be expanded in such a way as to arrive 
at the required optimum shape.  When  K   reaches a certain positive 
value, one of the end points of the optimum profile would firts reach 
the state of smooth detachment (in the sense that the local curvature 
of the free streamline will be equal to that of the body at the detach- 
ment).  Near this critical point   (K = Kc   say)   and from then on 
(K>KC)   I think other physical quantities such as the viscous effects 
and the physical condition .that the pressure on the body remain« now- 
here less than the cavity pressure, must be thoroughly examined from 
the final results predicted by the theory.  This proposed procedure is 
to be carried out in the future study.  Would this answer Dr.  Morgan's 
question ? 

DISCUSSION 

Vsevolod V.  Rogdestvensky 
Shipbuilding Institute 

Leningrads U.S.S.R. 

I think you have done very interesting work,  but there are 
many questions in this problem.  In order to decide the problem in ge- 
neral, it is necessary to make good tests.  I should like to ask, have 
you any comparison with experience ? Have you any experimental 
data ? 
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REPLY TO DISCUSSION 

Arthur K. Whitney 
Palo Alto Researah Laboratory, Lockheed Aircraft Corp. 

Palo Alto,  California,  U.S.A. 

1 

mentally. 
No, we have not tested any of these optimum shapes experi- 
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HYDRODYNAMIC CAVITATION 
AND SOME CONSIDERATIONS 

OF THE INFLUENCE OF FREE GAS CONTENT 

Frank B.  Peterson 
Naval Ship Reeearah and Development Center 

Bethesda, Maryland, U.S.A. 

ABSTRACT 

Hydrodynamic cavitation inception on an axisymme- 
tric body with a 5-cm diameter was measured in a 
standard water tunnel. Particulate matter and free- 
gas bubble size distributions were directly measur- 
ed immediately upstream of the bodies with a high- 
speed holographic technique and related to calculat- 
ed bubble trajectories. Discrimination between par- 
ticulate matter and gas bubbles was possible for dia- 
meters larger than 0. 0025 cm. Inception was mea- 
sured acoustically and high-speed movies at 10, 000 
frames per second were taken to verify the type of 
cavitation present. The influence of headform sur- 
face chemistry was studied using plastic, copper, 
and gold-plated bodies with and without various types 
of colloidal silica coatings. Physical surface charac- 
teristics were checked with scanning electron mi- 
croscopy. 

All cavities observed in the water tunnel tests were 
approximately hemispherical in shape and translated 
along the headform surface. When the results were 
compared with previously reported tests in a high- 
speed towing basin, it was concluded that the mea- 
sured free stream gas bubbles in these standard test 
facilities did not significantly contribute to the nu- 
cleation of cavitation when acoustic detection was 
used. Other recent research is summarized that de- 
scribes the de novo production of stable hydrophobic 
particulate in water through the mechanism of aera- 
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tion. These particulate are felt to have a major role 
in the cavity nucleation process. 

INTRODUCTION 

Over the years there has been continued discussion about the 
role of the air content in water on the cavitation inception process. 
Typical recent surveys on the subject have been by Eisenberg    [l]*, 
Holl   [2]   , Knapp   [3]   .  Plesset   [4]   . and van der Walle   [s]   . 
Much of the discussion has been concerned with the determination of 
the nature of the "nuclei" that are attributed to the onset of a vapor 
cavity. At the present time, no conclusive results have been reported 
that fully explain the relative importance of the free stream gas 
bubbles, the unwetted (hydrophobic) solid particles and the gas trap- 
ped in crevices on the test body.  Presumably,  each of these postu- 
lated nuclei sources will contribute to the formation of cavitation, 
with various degrees of relative importance. The actual importance 
of each during any given test will be dependent on the fluid and body 
characteristics and the pressure and velocity fields. 

What   is presently needed is a series of definitive tests that 
would elucidate the role of the various types of nuclei as a function 
of the various controlling parameters. Before this series of tests 
can be performed, an adequate physical understanding mujt be deve- 
loped to recognize and plan a definitive experiment.  It is the aim of 
this paper to assist in extending the presently available knowledge 
on the cavity nucleation process in hydrocynamic cavitation. Since 
the available literature on cavity nucleation has been surveyed by 
many writers,  the contribution of the present paper will be concer- 
ned principally with the recent work performed at the Naval Ship 
Research and Development Center (NSRDC).  The results of other 
investigators will be considered and compared to the extent that their 
work has a bearing on the interpretation of the observed phenomena. 

The recent cavitation research at NSRDC has been concerned 
with developing a better understanding of the role of the free and dis- 
solved gas content on hydrodynamic cavitation.  The emphasis of the 
work reported here will be concerned with the importance of gas bub- 
bles in the free stream for the type of cavitation occurring on one 
headform shape at one velocity in a water tunnel.  By restricting the 
test conditions in this manner,  changes in parameters such as the 

References are listed on page 1156. 
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free stream turbulence, body boundary layer characteristics, and 
body pressure distribution are minimized. Specific studies were 
performed to evaluate the importance of headform surface nuclea- 
tion sources. Surface treatment procedures were designed to reduce 
the surface nucleation capability of the body. In this way the role of 
free stream nuclei could be more clearly defined.  The actual gas bub- 
bles    and solid particles just ahead of the headform were recorded 
by high speed holography.  The path and stability of the bubbles as 
they passed over the body were determined analytically.   These cal- 
culations were necessary to determine through what cross-sectional 
area upstream of the body all bubbles must pass if they are ..o con- 
tribute to the visually observed cavities on the body.  The inception 
condition was measured acoustically and high speed movies were ta- 
ken to verify the type of cavitation present.  The headforms tested 
consisted of several bodies each of plastic (Delrin)#and metal (copper 
and gold plated copper) materials.   Cavitation tests on several bodies 
of the same material gives a check on the surface machining accura- 
cy and the material variety assists in evaluating the role of surface 
originating nuclei.  The results of these water tunnel tests were com- 
pared with previous tests of the same bodies in the üigh speed towing 
basin. The significant aspects of the towing basin are that essential- 
ly  no free gas bubbles are present and the turbulence levels are very 
low.  From all of these studies the importance of free gas bubbles on 
acoustically measured cavitation inception can be evaluated for at 
least the headforms tested. 

In the interest of introducing into the cavitation literature re- 
cent research results from other disciplines pertinent to cavity nu- 
cleation, a review of this work will also be given.  Specifically,  these 
results demonstrate a mechanism by which suable hydrophobic parti- 
cles can be produced in water by the process of aeration. 

EXPERIMENTAL FACILITIES,  INSTRUMENTATION, AND PROCE- 
DURE 

All of the experimental studies were carried out in the standard 
test facilities at NSRDC [6].   The cavitation inception studies to be 
reported here were performed in the 12-inch water tunnel using normal 
tap water filtered to remove particles larger than 25   /urn.  Deaeration 
was accomplished by passing the water through a standard design pac- 

* Delrin, Acetal Resin,  manufactured by E. I. Dupont de Nemours 
and Co., Wilmington,  Delaware. 
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ked column desorber. The test body used throughout the work was 
from the series tested by Rouse and McNown[7j. This is the same 
series from which the headform used for the ITTC comparative tests 
was selected [8]. The bodies tested had a minimum pressure coeffi- 
cient,    Cpm;n , equal to 0. 82, a diameter of 5 cm, and were installed 
in the water tunnel as shown in Figure 1. An axisymmetric headform 
was selected as the test body for several reasons. First, inception 
measurements are relatively straight-forward, because the body is 
stationary and it is easy to manufacture with a high degree of accu- 
racy.  Secondly, vortex cavitation is not present. 

Cavitation inception was detected acoustically for all of the 
results presented here. The measurements were made by locating 
a hydrophone inside the headform on its axis. Details of the equip- 
ment and operational characteristics can be found in references [9] 
and [loj The noise level of the facility was determined for a tunnel 
pressure slightly above that corresponding to a cavitation inception 
number, o.   , equal to   -C Pmin The associated electronics were then 
adjusted so that all cavitation noise exceeding the tunnel background 
level would be indicated, 
defined as 

The cavitation inception number  «rj , is 

iP\ 
where P^  and V^  are the upstream pressure and velocity respecti- 
vely, p    is the density, and   P     the water vapor pressure.  The cri- 
teria for the actual inception was selected to be one acoustic event 
per second. The technique of acoustic detection of inception will be 
considered in more detail later in this paper. 

The test procedure used in the water tunnel studies was to in- 
stall the headform and then deaerate the water to the desired total 
dissolved gas content. This dissolved gas content was measured with 
a standard van Slyke apparatus. All tests were run at a free stream 
velocity of 9. 1 meters per second. The test section pressure was 
adjusted in staget to produce a range of cavitation conditions as mea- 
sured acoustically. When the cavitation inception pressure was rea- 
ched, a series of holograms were made of the bubbles and solid 
particles in the water just upstream of the body. High speed photo- 
graphy at 10,000 frames per second and 20 microsecond exposure 
time were also taken for selected runs at the inception conditions. 
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BUBBLE TRAJECTORY ANALYSIS 

Implicit in all discussions on the role of free stream gas bub- 
bles    in the cavity nucleation process is that they will be transported 
into a sufficiently low pressure region to be available to nucleate the 
cavity.   The mere existence of gas bubbles in water is not in itself 
sufficient to conclude a knowledge of their importance.  For this 
reason the bubble trajectory and its radial dynamics must be evalua- 
ted. When this information is combined with the bubble size and 
population information,  then a better understanding of the importance 
of these bubbles can be developed. 

The trajectory of a bubble in a flow field with large pressure 
gradients has been considered by Johnson and Hsieh   [l l]   , Hsieh 
[l2] ,  and Schräge and Perkins   [l3]    .  The governing equations de- 

rived by these authors can be reduced to essentially the same form 
and contain the following assumptions: 

1. The flow field is axisymmetric. 

2. The bubble remains a sphere throughout its trajectory. 

3. The fluid is assumed to be inviscid for the purpose of the 
flow velocities and pressures 

4. The bubble is assumed to be sufficiently small so that the 
flow field is not affected by the presence of the bubble. 

5. The fluid is not taken to be inviscid with respect to the 
bubble,  i. e., the bubble experiences a drag dependent on 
the relative velocity between bubble and fluid (see ref. 14). 

6. Diffusion of gas and heat transfer through the bubble wall 
are negligible. 

The equation for the dynamics of bubble radius,  r    ,  can be 
shown to be 

d2r. 3    /dr. \2      IT 2S     r*       26 T 

dt2 2   Vdt   /       ' L rbo   rb      rb J 

where 

t    is time, 

P   is the fluid density, 

Pv is the vapor pressure of the fluid, 
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o    a subscript denoting a value at the initial bubble position, 

S    is the surface tension of the fluid, 

P(x, y)   is the external pressure of the fluid at (x, y), 

(x, y)   refers to the location of the bubble in Cartesian coordi- 
nates. 

The vector equation of motion for the bubble moving in an axisymme- 
tric flow field, can be written as 

'T "b "ST = -T"   CD "b ^ ^-"1 (2) 

4 drh —. 
.2irr37P,   - ^. wr^VP     +   2irp r*—-2-(v-u) bf        3bg bdt 

where    "u   is the vector velocity of the bubble 

—»-     dx    ->        dy    - 
u =-dr l +-dr J • 

i,j are unit vectors in the x,y directions,  respectively, 

v is the fluid velocity vector   =   v i + v j , 

C is the drag coefficient,  (see reference [l4j ), 

P is the pressure due to flow,  and 

P is the pressure due to gravity. 

Using these equations, Schräge and Perkins   [l3]   compared their 
analytical prediction of the bubble path with experiments in both 
rotating water and glycerin and obtained excellent agreement. 

A numerical study was carried out at NSRDC where the potential 
flow field around the headform was combined with equations   1 and 2 
to determine the trajectory and radial dynamics of a free stream gas 
bubble.  The description of the pressure and velocity field around the 
body was determined through the use of a computer program for po- 
tential flow around an axisymmetric body   [l5]   . 

The most important aspect of these calculations was the deter- 
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mination of the region upstream of the body in which the bubbles 
would have to be located in order to produce cavitation.  The results 
of the numerical calculations are shown in Figures   2 - 4  as the local 
pressure coefficient,   Cp  , experienced by the bubbles along the 
bubble trajectory.  Figures   2 and 3   show the situation for a typical 
cavitation inception condition experienced in the   12 inch  water 
tunnel with a metallic body.  The bubble screening effect is easily 
seen.  The   25   pm   diameter bubble does not experience as low a 
local pressure as the   50 urn  diameter bubble when they both start 
at the same point upstream.   Correspondingly,  the   25 pm   bubble 
does not pass as close to the body as the   50   Mm   bubble and does 
not strike the body as soon. 

Figures   5 and 6   show the variation in bubble diameter for some 
of the bubble sizes considered.  None of the bubbles experienced ex- 
tremely rapid growth rates.  For the range of bubble trajectories 
considered, all the bubble wall velocities were less than   0. 1 meter 
per second.  Once a bubble touched the body, the numerical method 
is of course not valid. However,  it appears reasonable to assume 
that when the bubble touches the body,  its translational velocity may 
decrease sufficiently to permit further volume increase. On this basis 
it was concluded from Figures   2,  3,  5, and 6, that all bubbles would 
have to be initially within the cross-sectional area of radius 3. 75 mm 
upstream from the   5 cm  diameter headform for them to produce 
cavitation. For the purposes of further discussion,  the bubbles out- 
side this area are assumed not to contribute to the cavitation on the 
body. 

The question still to be resolved is whether the bubbles that 
strike the body will in fact actually produce a vaporous cavity. Be- 
fore discussing this aspect of the problem, the numerical calcula- 
tions of the bubble trajectories over the same body with the same in- 
ception coefficient,   »j   , but at a pressure approximately   3.4   times 
higher,   should be considered.  Figures   4 and 7   represent a typical 
inception condition when the same headform was tested in the high 
speed towing basin   [16]   .  The experimental results from the basin 
were essentially the same as those obtained in the water tunnel and 
therefore the same  ai  was used in the calculations.  The interesting 
result is that for the higher speeds in the banin, the bubble trajector- 
ies are slightly further from the headform and therefore the bubble 
diameters are correspondingly smaller.  If the bubble strikes the 
headform, it strikes further downstream.  From this result it can be 
concluded that if given identical bubble size distributions,  then the 
rate at which bubbles produced cavities   should be directly propor- 
tional to the velocity of the body in the basin or conversely,  the up- 
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stream velocity in the water tunnel.   This conclusion assumes that 
the viscous effects,   such as boundary layer separation, do not in- 
fluence inception.  Further discussion on boundary layer separation 
will be deferred until later.  Following the same reasoning, if the body 
size had been changed,  then the number of freestream bubbles cavita- 
ting per unit time would vary directly with the square of the ratio of 
the body diameters. 

The key to all of the preceding discussion on bubble screening 
is whether in fact the free stream gas bubbles are responsible for 
cavitation.  The remainder of this paper will be concerned with expe- 
riments specifically planned to extend our understanding of the role 
of gas content in water. 

VARIATION OF FREE GAS CONTENT AND BODY SURFACE QUALITY 

A.   Criteria for Cavitation inception 

The commonly accepted criteria for the onset of vaporous ca- 
vitation is when a cavity grows "explosively", with the local pressu- 
re less than or equal to the vapor pressure (e.g.  [17] ) and is ge- 
nerally considered ehe only true cavitation.  On the other hand, gase- 
ous cavitation can occur at pressures either greater or lower than 
vapor pressure,  with gas diffusion into the bubble possibly important 
and the growth rate of the bubble considered something less than 
"explosive".  However,  these definitions are not specific enough for 
the purposes of the discussion here to delineate when in fact a cavity 
is growing "explosively".  This problem was apparent to Hsieh   [12] 
when he calculated bubble dynamics in the bubble trajectory.  None of 
the bubbles he considered had what could be considered "explosive" 
growth,  but in fact had a bounded maximum size.  Therefore Hsieh 
arbitrarily defined a bubble to be cavitating when its diameter reach- 
ed a certain minimum "visible"size. 

On the basis of the trajectory and bubble diameter calculations 
in the previous section for the NSRDC headform,  it is felt that only 
bubbles actually striking the body could nucleate a vaporous cavity. 
This assumption is based on the observation through high speed pho- 
tography that the cavities appeared hemispherical in shape from the 
time of their first observation and translated along the body surface 
during both the growth and collapse.   The "visible" size criteria is 
not applicable here since once a bubble strikes a body, the calcula- 
tions are no longer valid and in fact the visually observed cavity 
growth could correspond to gaseous cavitation. Since all of the cavi- 
ties observed in these studies were observed to be translating along 

1138 

-      " MttdMHIIftMiiMli 



mmtm   mtmm  »|       -™™ »UPII» fiii-^-r-T""   '  ' ""     

Cavitation (fnfluenoe of Free Gae Content) 

the surface, it is particularly important to have some means of di- 
scriminating between vaporous and gaseous cavities. If the cavity is 
truly vaporous, and grows "explosively",  then the collapse should 
also be far from equilibrium with the local pressure field and should 
produce noise.  This definition has been used by innumerable investi- 
gators.  For headform studies. Saint Anthony Falls Hydraulic Labora- 
tory (SAFHL)     [l8]    ,      [l9]    and NSRDC have regularly been using 
the acoustic radiation as the criteria for inception. 

It can be shown that the velocity of cavity collapse for nominal- 
ly hemispherical cavities scales approximately as the square root of 
the pressure difference across the cavity wall   [20]  ,    [2 l]   . Thus,  if 
one assumes that the shape of the cavity daring collapse is essentially 
the same for slight changes in this pressure difference,  then the col- 
lapse velocities also would only experience slight changes.  On this 
basis it will be assumed in this paper that the noise produced by the 
collapsing cavities will not be significantly affected by small changes 
in the pressure of the water tunnel. 

When the acoustic impedence between the water and the head- 
form material is changed, then the amplitude of the noise detected by 
the hydrophone will be affected. As one would expect,  the peak noise 
amplitude will vary over a finite range.  This has been experimentally 
shown by Brockett [lOJ for a headform made of Delrin which is a good 
impedence match to water. When the headform material is a metal, 
such as copper, then there is a poor acoustic impedence match and 
one would expect to detect a lower peak noise amplitude from the col- 
lapsing cavity.  This material influence cannot be entirely cancelled 
out by adjusting the detection threshold of the electronics on the basis 
of background noise.   Therefore, it is expected that the DELRIN head- 
forms will indicate cavitation at a somewhat higher water tunnel pres- 
sure than for a metal headform.  This aspect is not of significant con- 
cern here because direct comparison of the cavitation inception num- 
ber, «TJ, for the two types of materials is not intended.  The most im- 
portant concern is to determine how variations in the free gas bubble 
distributions affect the inception on a headform of the same material. 

B.    Free Stream Bubble Size and Distribution Measurements 

The microscopic gas bubbles immediately upstream of the 
headform at inception conditions have been measured with a high 
speed holographic technique. This technique was selected because 
it appeared to be unique in its ability to   (1)   make direct measure- 
ments with no calibration required,  (2) discriminate between bubbles 
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and solid particles,  and   (3)   record both bubble size and spatial di- 
stribution in a large liquid volume instantaneously.  A mathematical 
analysis of the complete holographic process for bubbles and solid 
particles is given in Appendix A,  The schematic representation of 
the holographic equipment at the water tunnel is shown in Figure 8. 
The resulting holograms obtained in these studies recorded the 
bubbles and solid particles contained within a liquid volume   5 cm in 
diameter and   15 cm   long. A small magnified view of a hologram 
for   2-25   Mm diameter wires and many bubbles and solid particles, 
is shown in Figure 9.  As shown in Figure 10,  typical exposure du- 
ration was 10 nanoseconds.  The hologram is then used to produce 
the 3-dimensional image of the contents of the original volume.  This 
volume was scanned with a traveling microscope and the size and 
location of the bubbles and solid particles recorded.   Figures   II and 
12   show the appearance of a bubble and a solid particle as the micro- 
scope is moved away from the focussed position. For the optics u- 
sed in these studies,  it was determined both analytically and experi- 
mentally that   25 /im   diameter was the smallest bubble size that 
could be reliably distinguished from a solid particle for the optical 
configuration used.  Smaller bubbles could have been distinguished 
if different optics had been used but a sacrifice in the fluid volume 
recorded would have been necessary.  The smallest size possible 
would have been approximately   10 Mm   diameter because of the na- 
ture of this type of holographic process.  Conclusions to be made 
later in this paper will show that the additional effort to measure 
smaller sizes was not merited.  Typical bubble and solid particle 
size distributions are shown in Figure 13. 

A comparison can be made between the number of measured 
bubbles calculated to strike the body and the total dissolved gas con- 
tent of the water.  This is shown in Figure 14 along with the corre- 
sponding ffj and the headform material.  High speed photography has 
shown that for a dissolved gas content referred to test section pres- 
sure,        a/aT   , of   1.45   and   at  =   0.61, approximately   1000 tran- 
sient hemispherical cavities per second were visible on the headform. 
However, when   o/atT_ =   0,22   and   »j  =0.48   and there were only 
on the order of   10   visible hemispherical cavities per second on the 
headform.  These observations are in general agreement with the cal- 
culated number of bubbles that would strike the body.   The most si- 
gnificant result apparent in Figure 14 is that for changes in   a/a TS 

around the saturation condition,  very large changes in free gas con- 
tent will occur with very little change in a,   .It appears that al- 
though c,    is less than     |Cpmin I     '  t*le v^s^e cavities do not produ- 
ce a significant amount of noise when they collapse.   The small diffe- 
rence noted between metallic and plastic bodies is attributed to the 
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large difference in acoustic impedence between the materials as pre- 
viously discussed in Section A.   Brockett  [9]   ,   [10]    has also obser- 
ved, during studies with the same shape headform, that not all visible 
cavities produce noise. It should again be noted that the estimated rate 
at which bubbles struck the headform did not include bubbles less than 
25    win  in diameter. Therefore, the estimates are to be considered 
low. In any event, it certainly appears that there were a sufficient 
number of bubbles available to account for the number of visible cavi- 
ties observed photographically. When the dissolved gas content of the 
water was reduced,  some filtering of the water also occurred. Howe- 
ver, it can be seen from the particle size distributions in Figure 13 
that when the gas bubble content of the water was reduced by over a 
factor of   10, little change occurred in the number of solid particles 
present. At this point no conclusions can be made concerning the 
effect of the presence of the solid particles in the water on the nucle- 
ation process. If they have a density greater thai that of water, then 
they may have a trajectory which tends to direct them away from the 
low pressure region of the body. If their density is approximately that 
of water, then one would expect that these solid particles would have 
trajectories corresponding to the streamlines. In any event, it is 
clear that a large number of solid particles were always present and 
for the sake of completeness their size distributions are presented 
here. 

When the dissolved gas content,     a/a jg , was reduced below 
approximately  0. 6, the number of gas bubbles were so few it became 
impractical to manually scan the image volume with a microscope. 
However, inception measurements were made and these are given in 
Table 1. The results indicate that the addition of new water into the 
tunnel may have had some effect, but the statistics are inadequate to 
verify this point. From the data one can also see that the typical de- 
crease in cavitation inception number, as   ,  occurs as the dissolved 
gas content is reduced. Based on the previous discussion, however, 
it is not readily apparent what type of nuclei are most affected by this 
change and further discussion of this result must also be deferred. 

C.   Modifications to the Surface Characteristics of the Headforms 

Nuclei originating from gas trapped in crevices on the body 
surface have been postulated as one source of cavitation nuclei. There 
is sufficient experimental data available to show that under certain 
circumstances this type of nucleus can be a significant factor in cavity 
formation on a body   [l]   ,   [2]   ,   [22]   .    Therefore, the possibility 
exists that this nucleus source may have been a factor in the experi- 
ments reported here. Studies were carried out to evaluate this factor 
in two ways.  First, headforms were plated with gold to minimize sur- 
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face irregularities and corrosion. Second, an   attempt was made to 
increase the wettability of the solid in order to promote wetting of 
microscopic crevices by the water. 

Electron probe microanalysis of the gold plated copper head- 
forms was carried out.  In the secondary electron mode of operation 
no copper   x-rays   were found that would have indicated a pore in the 
plating. Although resolution was limited to       I tim, experience with 
goM plated materials of this type leads us to suspect that no pores of 
smaller size were present. 

A scanning electron microscope was used to study the surface 
features of both the plastic (DELRIN)   and metallic (gold plated) bo- 
dies.  The most significant surface feature on the gold surface was 
the scratch shown in Figure 15. All surface scratches were less than 
0. 5    /im   across and shallow. All protuberances appeared to be less 
than   0.2    *im.  The plastic surface shown in Figure 16 can best be 
characterized as consisting of a series of shallow scratches, the width 
of which    are  larger    than the typical surface roughness element. 
High speed photography gave no macroscopic indication that cavities 
repetitively occurred from any single location. 

The gold plated bodies were coated with 1% colloidal silica and 
the plastic headform surface coated with a positive sol also of 1% 
concentration.  This procedure is described in detail in Appendix B. 

The results of studies on various surface treatments can be 
summarized as follows : 

a.    Gold plating a copper headform to give a smoother surface 
did not change a^    , 

h.    Colloidal silica coating on the gold plated surface did not 
change  ^   , 

c.    Use of a positive sol on the plastic headform did not 
change  a    , 

It is concluded from these studies that cavity nucleation was 
not significantly affected by roughness elements or from gas trapped 
in hydrophobic crevices on the solid surface of the headform«. 

D.    Boundary Layer Separation 

Separation of the boundary layer could have a strong influence 
on the local velocity and pressure distribution of the headform.  As is 
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well known,   separation can occur in both laminar and turbulent 
boundary layers. In both cases, the separation will fake place down- 
stream of the minimum pressure point on the surface in the region of 
a positive pressure gradient. A relatively crude experiment was per- 
formed using a fluorescent oil film on the headform surface   [9]   , 
[l6]   .  The result indicated that separation occurred at an   X/D - 0.5, 

for velocities below   4.2 meters   per second and a water temperature 
of   lO'C.  This is in agreement with tests performed at the California 
Institute of Technology with a hemispherical nose headform  [23]   . 
There,  laminar boundary layer separation was also found to occur 
downstream from the minimum pressure point.  From the high speed 
movies of the headform in the   12 inch   water tunnel it was found that 
many bubbles were already visible at the minimum pressure point. 
This same result was apparent in the experiments run in the high 
speed basin and reported earlier   [16]   .  On the basis of this discus- 
sion   it is felt thai, boundary layer separation, if present,  occurred 
sufficiently downstream to be of negligible influence on the inception 
observed in the experiments. 

E.    Comparison Between Water Tunnel and High Speed Towing Basin 
Cavitation Studies 

In order to clarify the role of the free stream gas bubble in 
the cavitation nucleation process occumnc in the water tunnel tests, 
it is worth while to compare results with those obtained in the high 
speed towing basin at NSRDC. As previously reported   [l6]  ,  these 
same headforms were mounted on a strut and tested in the towing 
basin.  The prodedure was to wait at the end of the basin for   45 mi- 
nutes prior to each run. In this period of time the basin water became 
very smooth and high speed photography was possible through its sur- 
face.  It was found that the incipient cavitation number varied between 
0. 6   and   0. 8.  The higher values were again typical of the plastic 
(DELRIN) headforms and this is attributed to the difference in acou- 
stic impedence between the metal and plastic.  In the towing basin the 
inception velocity was also determined with a hydrophone inside the 
body.  Unlike the water tunnel tests,  these acoustic results were found 
to agree with the high speed photography. 

From the data on the buoyant rise of bubbles in water   [14]   , 
it can be estimated that a bubble   4   Mm   in diameter will rise   270 mm 
in the   45 minute period.  Larger bubbles will rise correspondingly 
faster.  By any one of a number of theories for gas bubbles in water 
(e.g.,   [24]   ,    [25]    ) it can be shown that bubbles smaller than 4 jum 
in diameter should have dissolved completely in a matter of minutes. 
This is supported by the experimental evidence of Liebermann   [26]   . 
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Thus it appears that the probability of bubbles existing in the towing 
basin water immediately prior to a run,  is extremely remote. 

Now,  if in fact free stream bubbles are necessary for cavita- 
tion inception, then a dichotomy exists between the basin and the wa- 
ter tunnel studies.  The measured free stream bubbles in the water 
tunnel canacccurt for the visually observed cavities but not the acou- 
stic determination of cavitation inception.   The towing basin acoustic 
determination of inception agreed with the basin high speed movies and 
the water tunnel acoustic inception determination. As already pointed 
out,  the probability of free gas bubbles existing in the basin water is 
extremely remote although the dissolved gas content was approximat- 
ely 100 percent saturated. 

On the basis of these studies,  it appears that the free stream 
bubbles contributed to the production of the visibly observed cavities 
on the headforms but were not necessary for the generation of those 
cavities that produced acoustic radiation during collapse. Just as 
numerable investigators have concluded before,  the results of the 
studies reported here can also best be explained by the existence of 
a hydrophobic particle with gas trapped within a crevice (   [27] - [29]). 
There has been a considerable amount of research performed by in- 
vestigators in other research disciplines that has significantly increas- 
ed the plausibility of this postulated nucleation mechanism.  Within the 
cavitation literature available to this writer,  it appears that these 
new related research results have not been discussed.   Therefore, the 
next section will deal specifically with this related research. 

STABLE HYDROPHOBIC PARTICLES IN THE WATER 

The concept of cavity nucleation by a hydrophobic particle in water has 
long been the subject of considerable discussion.   The basic hypothesis 
is that a small quantity of gas is 'rapped in a crevice of a particle and 
stabilized by the surface tension of the water because the particle it- 
self is hydrophobic.   This theory was first advanced by Harvey,  et al 
[27, 28,  29]   and has most recently been reviewed by Apfel   [30]  . A 

number of recent experiments have been carried out that indicate the 
hydrophobic particle may play an important role in the cavity nucle- 
ation process in water [30 - 33]   . In keeping with the nature of this 
paper,  a survey of the literature on this subject will not be attempted 
but rather only those references most pertinent to the discussion will 
be considered.   One of the most detailed experiments was carried out 
by Greenspan and Tschiegg   [32]   with an acoustically excited cylindric- 
al resonator.   They found that the cavitation threshold for unfiltered 
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water increased significantly as the dissolved gas content was reduced. 
However, after filtering the water through an   0.2    urn filter,  the 
threshold was then essentially independent of the air content for un- 
dersaturated water.   For organic liquids, the threshold was high and 
was not affected by filtering.  Hayward  [3l]   used a "tension mat o- 
meter" to produce a tension in the liquid   of   0. 15   bar.  Various li- 
quids were tested by measuring the number of bars prepressuriza- 
tion a sample would have to be subjected before it could withstand the 
0. 15  bar tension in the device. Nine organic fluids, including a 
water-in-oil emulsion, were tested and all were found to withstand 
the test tension with no prepressurization required.   Of the liquids 
tested, only water was affected by the prepressurization and Hayward 
concluded that only water contained cavitation nuclei capable of sta- 
bilization. A further result was that distilled water (of unstated qua- 
lity) and polluted river water both required approximately the same 
level of prepref surization.   These experimental results are consider- 
ed typical of the efforts directed toward understanding the role of the 
particulate in the cavity nucleation process. 

In the case of hydrodynamic cavitation where the body is mo- 
ving in a stationary fluid or conversely, a fluid is moving past a 
stationary body, an important consideration is how these hydrophobic 
particles are produced and why they remain suspended in the water. 
As has been pointed out by Plesset [4]   ,    ' the solid particles have 
densities in the range of   2-3   gm/cm3   , then their radius must be 
on the order of   0. 01    pm to remain suspended in quiescent water.  On 
the other hand, unwetted particles of this size would require a tension 
on the order of approximately   100   bar to nucleate cavities. 

Before this subject of the Harvey Model of cavitation nuclei is 
pursued further,   some recent oceanographic research pertinent to 
this subject should be considered.  Sutcliffe,  et al   [34]   have found 
that aeration of filtered sea water will produce a suspension of inso- 
luble organic particles. Some of these particles eventually settled 
out after aeration but most always remained in suspension. A signifi- 
cant amount of this particulate was larger than the   0. 43   ttm   pore 
size of the filter. It was found that large surface-active organic mo- 
lecules adsorb at the air/water interface of the bubble to produce a 
monomolecular layer.  This layer can be aggregated into insoluble 
organic particles by folding into polymolecular layers to form colloi- 
dal micellae or by collapsing into fibers.  Coalescence of these colloi- 
dal particles then produce a semistable suspension of organic mate- 
rial. Riley  [35]  has confirmed the Sutcliffe, et al, work by also 
producing through aeration insoluble particulates from the dissolved 
organic matter in the sea. He also found that the aggregates will in - 
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crease in size by coalescence or further adsorption and eventually 
become indistinguishable from natural aggregates.   The longest di- 
mension of typical newly formed aggregates was on the order of 
25   tim. 

Wallace and Wilson   [36]   have shown the effectiveness of 
concentrating dissolved organic compounds as particulates through 
aeration.  They found that for their test protein solution of 5 parts per 
billion, aeration gave almost   100 percent   recovery of the compound 
in the form of particulate. 

This is typical of the concentration of dissolved organic com- 
pounds it; seawater.   The sum of these compounds,  however,  can 
reach the part per million range. 

Similar results have been found bv other investigators not 
specifically studying the de novo particulate production in water.  For 
example,  Liebermann   [261  found in the course of studies on the so- 
lubility of air bubbles in water that the contamination at the interfac- 
ial boundary between the air and water had no effect on the diffusion 
of air into the water.  After the addition of many organic compounds 
and surfactants to the water,    he stated that   .. .  "no laboratory con- 
dition could be found in which the rate of bubble diffusion was signifi- 
cantly altered. "   Lieberman also showed that when a bubble in multi- 
ple distilled water collapsed on a chemically clean surface, a micro- 
scopic amount of residue remained.  When the pressure was reduced 
to   1/4 bar,  the residue quite frequently nucleated another bubble. 

In another series of experiments on the diffusion of gas out of 
a bubble,  Manley   [37j   found results similar to Liebermann.  In this 
work, also, bubbles collapsing in distilled water left a small deposit 
of impurity. 

From the above discussion,  it is apparent that in the typical 
cavitation test facilities,  there should be no difficulty in producing 
particulate capable of cavitation nucleation.  These can remain suspen- 
ded in quiescent water and can readily be produced whenever at least 
some degree of aeration of the water takes place. 

CONCLUSIONS 

The general objective of this work was to develop a better un- 
derstanding of the role of the free and dissolved gas content in water 
on the nucleation of hydrodynamic cavitation.  The means by which 
this was accomplished was to use only one type of body,  a headform, 
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in the natural existing environment of standard test facilities with 
emphasis on the measurement of flow conditions and the control of 
headform surface condition,  Thi"- simple body produced only discrete 
cavities translating along the surface.  From these results and a com- 
parison with the pertinent literature certain conclusions can be in- 
ferred. 

The results substantiate what other investigators have found 
in that a very precise definition of inception is necessary.  When noi- 
se is used as an inception criteria,  then it was shown that free gas 
bubbles were not specifically needed for the nucleation of the noise 
producing transient cavities under discussion in this paper.  Hydro- 
phobic particles can function as an adequate source of nuclei. 

The dissolved gas is important because it can affect,  through 
the mechanism of diffusion,  the amount of gas trapped in hydrophobic 
particles for a given pressure history of the water.  Conversely for a 
given dissolved gas content,  changes in the normal pressure history 
of the water will also affect the ability of these hydrophobic particles 
to nucleate cavities.   For the experiments reported here,  body surface 
nucleation of cavitation was not considered a significant influence.  If 
a material such as teflon is used which is hydrophobic and known to 
be porous on a microscopic scale,  then surface nuclei could in fact 
be the controlling source. 

New stable nuclei can be generated in the typical test facility 
water whenever a gas/water interface is produced because of local 
adsorption at the interface of dissolved organic material.  In a water 
tunnel this could occur during the filling process, by the introduction 
of locally supersaturated water or even during the deaeration process. 
In both water tunnels and towing basins this could occur during the 
actual tests where bubbles of one form or another are produced.  In 
any event, the persistance of these hydrophobic particles can be ex- 
pected unless very special water treatment procedures are followed. 

If either   2- or 3- dimensional boundary layer separation 
occurs, (r,    may be affected but the type of cavity nucleus initially 
responsible may not be important if an attached cavity eventually 
forms. 

For flow fields to cavitate when nuclei mobility across stream- 
lines is required - such as a vortex - then the free gas content of the 
water can be expected to be of prime importance. But here again, 
care must be taken to specifically define whether cavitation is based 
on visual or acoustic observations. 
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If scaling of cavitation inception from a model to a prototype 
it required, then the detailed properties of the flow field must be 
considered in conjunction with a consideration of the type of nuclei 
controlling the inception process. 

The essential aspect of these conclusions are of course not 
original in this paper, but it was the attempt of this paper to add addi- 
tional physical basis for their validity. 
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APPENDIX   A 

ANALYTICAL EVALUATION OF THE HOLOGRAPHIC PROCESS FOR 
A BUBBLE 

When   a light beam is incident on a bubble,   some of the light 
is reflected at the first surface. However, a significant amount of 
light is refracted at the first surface and eventually passes out through 
the bubble. In Figure Al,   several rays are shown. As shown by Davis 
[38]   ,  ray 2 gives the largest contribution to the transmitted energy 

for   0* <0< 40*. This information will be used to represent the light 
passing through the bubble in the following calculations. 

In order to differentiate between a bubble image and an opaque 
spherical particle image,  the light transmitted through the bubble 
must be observed. Thus,  the holographic process must be evaluated 
to determine how the transmitted light can be expected to influence 
the holographic reconstruction of the bubble image. The general 
method will be an extension of the method used by DeVelis et al., 
for solid particles   [3 9]  . 

The wave equation in vector form 
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c2        V 
(1A) 

describes the propagation of optical monochromatic radiation,  where 

V(x.t)    =      ♦We"iwt 

and if (x)   is the complex amplitude. 

Physically,  the wave amplitude will vary as 

Re    |*(x)e-iwt}     . 

If the operations on    V(x, t)   are linear and only the long time average 
is required,  then the physical quantity is the real part of the final 
expression.  Thus, for our application,  the wave equation can be 
transformed to the Helmoltz equation 

(7
2     +      k2   )   ♦  (x)    =    0 

2ir 

(2A) 

where the wave number k = —— = -sf- . Here we have applied the 
restriction that the radiation is essentially monochromatic. The so- 
lution of equation (2A) can be written in integral form with G(( :x) 
the appropriate Green's function. 

*<*>   =//s   * ^Tn" [G^ ] d   {      (3A) 

where ¥({)      =     g (I)       on the surface   s , and 
■>*     >^ ♦       .-« ^ f 
t=    <i   +   »>J ,     x  =     xi   +   yj 

with  i   and "J unit normal vectors. 
S   is a plane perpendicular to the   Z   axis and its outer normal is in 
the direction of negative   Z .    The Green's function for this case is 

ikr 
G({ :x) 

4 irr 

where =^2 +ir-x 

1149 

ii   iin       -    '-"-- ■- —      ' 

 ■ ' . .^-„^-^-^A^j^ii—i 



WimHWIppf WI,I|IIUP||IHIIIJll» IIIMIPI nil    -^      ,""111  '    ' ■■'"^ 

Petereon 

Using the paraxial approximations,    Z»    (-x|   .    and the Fraunhofer 
(i. e. ,  far field) approximation    k|{ |2  « 0 ,    then it can be shown 
that 2Z 

.r\        •*■ ikz   ik I*]2 /2Z// /Tv    -i^-T-x.-?    lAK. ♦ (x)   ="47z    e        e //g(<)«   «       dl     (4A) 

The boundary conditions,     g(£) ,  selected to   represent the bubble 
are 

gU)    =   gi   (T)    +    g2U)     +    g3({) 

g(T)    =   l-D(r)    +   n^\Z/U^\2 

where DID = 
i, iiyTo 

o, UNTo 
(5A) 

The first 2 terms of (5A) represent an opaque object andthe3rd term 
is an equivalent to a lens with a negative focal length  f, attenuation 
factor  a , and Gaussian transmittance distribution. The use of a 
negative lens is an approximation to ray   2   of Figure 1A. It is assu- 
med here that a uniform plane wave is incident on the object plane 
(O. 

Substituting       g    (()      inequation   4A gives 

,     ,-♦. ikz 
♦.   (x)    =     e (6A) 

i. e. , a plane wave. 

The second integral gives  ¥2    (x)   when    g2({)   is substitut- 
ed into   4A.  For a circular disc of radius    |(ol=/o        > 

.   r\ i^o      ikz    ikp2/2ZT ,,    A   ,„.     ,_.. 
♦2(x)    =   —p—   e        e J^kp/o/Z)     (7A) 

where P=   |x| 

The third integral      <J»3 (x)   can be shown to be 

7-\ ikz    ikp2/2Z     -CLp2   -ic.   ic o2 /OA. 
^3(x)   =     -ic^        e ez'e      Se«.      (8A) 
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By combining terms, 

♦,(x)   = 
ikz _-c,p2    -ic3   ic^p 

•ic, e       e (9A) 

where 

1 ZZV a2   +    {k/2f)2 

C2    =    a2  /(k/Zf)2     ( k/2Z)2 

c,    =    tan"1   (k/2fa) 

(10A) 

:4    =    2£   [a2  + (k/2f)2J(k/2Z)2 

k 
C5    =  ÜT +     C4 

It should be noted that equation   (8A)   was evaluated with the assi- 
stance of reference   [40]  . Thus the complete wave amplitude di- 
stribution in the   "x    plane, a distance   Z   away from the object 
plane,   { ,  is 

T-\ ikz 
♦ (x)   =   e 

[.   , i/o    ikp2/2Z T /,    /,   .,. -c,^2-ic ic/2 (UA) 
1 +—p—e   K J}(kp£o/Z) -10,6    2   e     Je   5      x       ' 

Since both photographic emulsions and the human eye are square law 
detectors,  the quantity actually measured is    ^ (x) ^(x) * the intensi- 
ty. 

2 I 
♦♦=   1    --^  8in(kp2722)1,  (kpio/Z) + (io/p)2J2(kp/o/Z) 

- 2c,e' 2P   8in(c3   - c^p2) 

~0 c, J,   (kp/o/Z)e-C2',2cos(kp2/2Z + C3 - c^P2) 

+ c?   e-2c2p2 

(12A) 

For photographic emulsions it has been found that after proper ex- 
posure and processing the emulsion density will vary linearly as fol- 
lows, 
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-    61O*10   li 

where 

D = log10 (I. / It). 

* = constant 

I. = incident intensity 
i ' 

I - transmitted intensity 

Now,   since wave amplitude varies as ^(I) 
l 1 

then (I.)2   =    (I./l/      -\/\ 

and for a unit amplitude incident wave,     \|r    =   I. 
- 6/1 

If 3 is positive a photographic   "negative"   is produced. Conversely, 
if 6 is negative a photographic   "positive"   is produced. 

The holographic process has been analytically described for 
the production of the hologram.  If on the hologram a plane wave is 
incident,  then we have the same analytical situation previously de- 
scribed.  The new boundary condition is the variation in amplitude 
of the incident radiation. 

[♦sw m "' /2 

where 4"!' *   is given by equation   (12A)   and   A   is the plane wave 
amplitude outside the hologram diffraction pattern.  (^^ *)~V2     has 
the form   (1-X)q and if    |X|    <    1    and sufficiently small, taking 
only the first 2 terms of a series expansion gives 

A - (♦*•) "'/2 ÄA 1-f   X (14A) 

Thus,  the use of the integral solution to the Helmholtz equation,   (4A) 
with the boundary condition given in   (14A), will result in an image 
of the original object. 
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From equation (4A) it is apparent that the wave amplitude in 
the hologram plane is essentially a Fourier transform of the wave 
amplitude distribution in the object plane.  With appropriate change of 
sign, the process of going from the hologram plane to the image 
plane is just an inverse Fourier transform. 

The evaluation of the image intensity distribution has been 
performed numerically. Thus, by the use of a computer program, 
the influence of hologram size, emulsion signal to noise ratio, and 
many other factors can be studied analytically.  The effects of either 
the holographic process or the test facility can be estimated prior to 
the actual physical measurement.     The following constants were 
used in the calculations for Figures   A2 - A4. 

zl 
s 100.00 mm 

k = 9045/mm 

lo = 0. 03 mm 

a = 1.0 

P s 7 (i.e.,   the limit of integration) 

f £ - 0. 3 mm 

a £ 1080 

( = 4 

A s 4 

As the image focusing distance,     Zj  , is changed from   99.7 mm 
to   100. 0 mm and then to   100. 3 mm, it can be seen in Figures A2 
through A4 respectively, the focusing property of the hologram. 
When   Zg    equals   100.0 mm, then the bubble and opaque sphere shape 
are in focus.  The light passing through the bubble produces an in- 
terference pattern within the bubble outline. For   Z2   equal to 
100. 3 mm, the bubble shape is no longer in focus, but the apparent 
point source of the light passing through the bubble is in focus. This 
is the distinguishing property of a bubble image in contrast to that 
of an opaque sphere. 
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APPENDIX   B 

APPLICATION OF COATINGS TO THE HEADFORM 

As a result of a previous study at NSRDC,   [22]   , it was 
concluded that through the use of the principles of surface chemistry, 
the number of cavity nucleation sites on the solid surface could be 
significantly reduced. In order to assist in evaluating the role of 
free stream originating nuclei,  it was necessary to determine whe- 
ther or not surface nucleation sites were contributing to acousti- 
cally measured cavitation inception on the headform. 

The underlying objective of the surface coating procedure was 
to enhance the wettability of the solid on a microscopic scale.  The 
coating selected was one formed by the application of colloidal silica. 
As is well known,    [4l]   , amorphous silica has a very low interfa- 
cial surface energy in contact with water.  This is basically because 
the atomic structure of water is quite similar to silica.  When silica 
dissolves in water,  the process involves simultaneous hydration of 
the   Si02   surface and depolymerization.  This leads to the formation 
of monosilicic acid. 

(SiOp ) m 2m (H20) m   Si(0H)4 

From monosilicic acid colloidal particles of silica can be produced. 
On the surface of each particle a monolayer of water is chemisorbed 
that can only be removed.by heating a dried surface to   600°C.  It is 
also known that these particles will have a negative charge in an 
alkaline medium. 

The concept of the coating process is to utilize this negative 
charge and the colloidal particle dimensions to microscopically coat 
a solid surface.  The surface selected was gold that was recently 
plated on the headform.  The headform was flushed with spectro- 
scopically pure acetone and then cleaned in a special chamber with 
steam produced from a potassium permanganate solution.  Following 
cleaning, a   1 percent solution of colloidal silica* was put in the 
chamber and a positive potential applied to the headform.  The head- 

* Ludox SM,  Colloidal Silica, manufactured by E.I. Dupont de 
Nemours and Co. ,  Wilmington, Delaware. 
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form was dried in the chamber and then removed.  When a small 
quantity of water was applied to the surface, it immediately spread 
and then appeared to dry as a film. Later applications of water also 
spread over the surface. 

Plastic bodies made of Delrin were also coated with colloidal 
silica.  However,  since the plastic has a weak negative charge na- 
turally occuring on the surface, a special positively charged colloi- 
dal silica* was used. After cleaning the surface and applying the 
positive sol, the water also spread over the solid surface and appear- 
ed to dry as a film. 

Both the plastic and the gold plated bodies were then immersed 
in a container of water distilled from a potassium permanganate 
solution to minimize organic surfactant material from contaminating 
the coatings.  The bodies were installed underwater while still in the 
pure water of the container.  The test results comparing the coated 
with the unroated bodies are given in Table 1. 

Positive Sol 130M, manufactured by E.I. 
Co., Wilmington, Delaware. 
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TABLE 1. ACOUSTIC INCEPTION ON HEADFORMS 
(V ■ 9.1 mattn par Mcond; Acoustic mnt ratt - 1 pw Mcond) 

RUN HEAOFOMN COATED »$» «I REMARKS 

CU NO 132 .66 MEW TUNNEL WATER 

CU NO 63 .62 SAME TUNNEL WATER AS RUN 1 

CU NO 34 «1 SAME TUNNEL WATER AS RUN 1 

CU NO 34 .87 SAME TUNNEL WATER AS RUN 1 

CU NO S.S .64 SAME TUNNEL WATER AS RUN 1 

CU NO 22 .46 NEW TUNNEL WATER 

AU NO 149 .66 NEW TUNNEL WATER 

AU VE8 14« .84 SAME TUNNEL WATER AS RUN 7 

AU VES 220 .60 NEW TUNNEL WATER 

AU YES 49 .66 SAME TUNNEL WATER AS RUN 9 

AU YES 146 .61 SAME TUNNEL WATER AS RUN 9 

AU NO 169 .69 NEW TUNNEL WATER 

DELRIN NO 166 .70 NEW TUNNEL WATER 

DELRIN NO 86 .69 SAME TUNNEL WATER AS RUN 13 

DELRIN NO 162 .71 SAME TUNNfi. WATER AS RUN 13 

DELRIN NO 21 M NEW TU«-NFL WATER 

DELRIN NO 44 .64 SAtr  . ■ ;<iNEL WATER AS RUN 16 

DELRIN NO 162 .73 SAME ru. NEL WATER AS RUN 16 

DELRIN NO 61 .68 S*"t   '  JNEL WATER AS RUN 16 

DELRIN YES 118 .72 SAME r .NNEL WATER AS RUN 16 

DELRIN YES 91 .70 SAME '   NNEL WATER AS RUN 16 

22 DELRIN YES 42 .68 SAME TUNNEL WATER AS RUN 16 

23 DELRIN YES 34 .«6 SAME TUNNEL WATER AS RUN 16 

'.: o 
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CAMERA 
KMT 

CONTRACTION 

FLAT 
OPTICAL 
PORT 

LONGITUDINAL i 

KALE: 3/4" - V-0" 

FIGURE 1.   MODIFIED 12" WATER TUNNa 
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AXIAL DISTANCE FROM FACE OF HEAOFORM (mm) 
-6.0 

FI6URE 2.   BUBBLE DIAMETER ALONG BUBBLE TRAJECTORY: 
INITIAL UPSTREAM LOCATION OF 3.75 MM OFF AXIS; 

Vü«nWM-9.1M/SEC 
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FIGURE 3.   PRESSURE COEFFICIENT VARIATION ALONG 
BUBBLE TRAJECTORY: INITIAL UPSTREAM LOCATION 

OF 5.0 MM, 625 MM; V^TKAM - 9.1 M/SEC 
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AXIAL MtTANCE FROM FACE OF HEAOFOMW (mm) 

FIGURE 4.   PRESSURE COEFFICIENT VARIATION ALONG 
BUBBLE TRAJECTORY: INITIAL UPSTREAM LOCATION 

OF 5.0 MM. 6.25 MM; VUpSTREAM - 18 M/SEC 
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FIGURE 8.   BASIC SCHEMATIC FOR BUBBLE MEASUREMENT 
WITH FRAUNHOFER HOLOGRAPHY 
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FIGURE 9 
MAGNIFIED VIEW OF A HOLOGRAM FOR 

TWO Ihm* WIRK, BUBBLES, AND 
PARTICULATE 

! ■ 
■■SH ■ 

FIGURE 10 
RUBY LASER PULSE SHAPE 

NSRDC 
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60 M m Diameter       Def ocuned 0.3 mm. 
Focuued 

FIGURE 11 - BUBBLE IMAGE 

% 

70 um Diameter       Defocuned 0.3 mm 
Focuued 

FIGURE 12-SOLID PARTICLE IMAGE 
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I i 
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Typical Sem Photograph of Gold Platad Body 
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FIGURE 15 
TYPICAL SEM PHOTOGRAPH OF GOLD PLATED BODY 
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FIGURE 16 
TYPICAL SEM PHOTOGRAPH OF DELRIN HEADFORM 
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FIGURE A-1.   LIGHT THROUGH A BUBBLE - 

TWO MOST IMPORTANT CASES 

1175 

i^MM 



Petereon 

12 

10 
 OPAQUE SPHERE 

— BUBBLE 

OBJECT RADIUS-0.03 

0.01 0.02 0.03 

IMAGE RADIUS W mm 

FIGURE A-2. LIGHT INTENSITY VS IMAGE RADIUS 
Z, • 99.7 MM 

0.04 

1176 

 , ,  - -  ■■ MMMHaHMSaaHM 



Cavitatton (Influence of Free Gas Content) 

3 
3 

ui 

(9 < 

 OPAQUE SPHERE 

—»BUBBLE 

OBJECT RADIUS • 0.03 mm 

0.01 0.02 0.03 

IMAGE RADIUS It) mm 

0.04 0.06 

FIGURE A-3.  LIGHT INTENSITY VS IMAGE RADIUS 
Z 2 =100.00 MM 

1177 

-■    ■■ "-——-—— ■—^—J ^ummimm 



".■■   ''■ I"—>• ■ l-1 '      —■ "'"■ '"rr   """■'■ ■ ■• —"••• MlliJIIJ II/-.-■»-».■»"^■- 

£   12 

4 - 

2 «-. 

Peterson 

 OPAQUE SPHERE 

— BUBBLE 

OBJECT RADIUS - 0.03 mm 

0.01 0.02        0.03        004 

IMAGE RADIUS W mm 

0.06 

FIGURE A-4.  LIGHT INTENSITY VS IMAGE RADIUS 
Z; « 100.3 MM 

1178 

  - - ■^^ 



Cavitation (Influence of Free Gas Content) 

DISCUSSION 

Carl-Anders Johnsson 
Statena Skeppsprovningsanstatt 

Göteborg, Sweden 

In this very interesting paper the author discusses the diffe- 
rent mechanisms proposed throughout the years as responsible for 
cavitation inception.   One of   his conclusions seems to be that,  for the 
type of experiments referred to,  nuclei trapped in crevices of hydro- 
phobic particles could play the main role in the nucleation process 
leading to cavitation inception. 

A consequence of this reasoning would be that the role of free 
stream nuclei is not so important as has been assumed during the last 
years.   The dissolved gas content is important however as it can af- 
fect the amount of gas trapped in the hydrophobic particles. 

I will show a slide,  which may give some support to this con- 
clusion.   The slide shows photographs of the free bubbles in the test 
sections of the two tunnels at SSPA during tests similar to those de- 
scribed in the paper. 

The same body was tested in the two cases and can be used 
for estimating the bubbles sizes.   The test conditions are the same in 
the two cases : 

water speed   7. 5 m/s , ff=   0.3, a/a
s =   0.1 

and the water taken from the same storage tank.   The upper photograph 
shows the test section of the new large tunnel ; the lower that of the 
smaller tunnel.   The difference in bubble spectrum is quite large and is 
of course due to the large difference in the pressure history for the 
water entering the test section in the two cases. 

The point is that the same inception cavitation number of 
»j     ~   0.45   was observed visually in the two cases.   This might 

indicate that the influence of the free bubbles is not important. 

1 179 
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a)   test in the large tunnel 

" *■•   -. x>iS ■•-      ■. 

b)   test in the small tunnel 

Comparative tests of the same body at the same a 
in the two tunnels of SSPA 
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DISCUSSION 

Edward Silber man 
St. Anthony Fails Hydraulia Laboratory 

Minneapolis,  Minnesota,   U.S.A. 

I want to comment on two points.   I would agree that the free 
stream nuclei,  which are very important,  need not be gas bubbles in 
the usual sense that we may think of them as having uncontaminated 
interfaces between gas and water.   I made observations about 25 years 
ago (1),  using a microscope,  of bubbles being dissolved under pressure 
in a rotating apparatus.   This was in connection with resorption pro- 
blems that we were working on at that time to get rid of bubbles in 
water tunnels.  I was measuring time rate of change of diameter of 
single bubbles generated by cavitation.   In watching these bubbles I 
found that a relatively small number of those generated would not 
disappear but instead would collapse on a thin,  wrinkled,  opaque skin. 
I recorded this fact in the reference paper,   although at that time it did 
not seem important.  When the pressure was reduced again these 
bubbles would jxpand just like normal gas bubbles.   I think this is per- 
tinent to what Peterson said,  and enables us to treat nuclei as though 
they are gas bubbles,  I believe that what is left in the water could be 
these bubbles with skins on them. 

It should be mentioned that these bubbles in the rotating appa- 
ratus,  when they appeared to be pure gas bubbles would be near the 
center of rotation,   but when they collapsed on a skin,  their diameters 
remained constant,  and they would wander around in the centrifugal 
pressure field without regard to the pressures indicating mean bubble 
densities near that of water.  Such bubbles could sustain themselves in 
a towing tank for a long time - maybe indefinitely. 

My second point refers to the implications in the paper that it 
is necessary for the nuclei to touch the body in order to produce ca- 
vitation.  I do not believe that this is correct.  If you think about what I 

(1)   SILBERMAN,   E. ,  "Air Bubble Resorption",   Tech.  Paper No.   1, 
Series B,  St.  Anthony Falls Hydraulic Laboratory,   1949. 
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said avout the possibility of the bubbles being of almost neutral densi- 
ty,   perhaps it is then very likely that such nuclei follow the stream- 
lines ur very close to them.   It is our belief from work that we have 
done more recently at our laboratory that bubbles following these 
streamlines merely have to enter the low-pressure field of the head- 
form in order to produce cavitation (1).   Of course,   more bubbles will 
cavitatc near the body than farther from it. 

DISCUSSION 

Serge  Bindel 
Diligation Ginirale a la Reaherake Scientifique et Technique 

Paris,  France 

( Translated from French) 

I read with a great interest the paper presented by 
Dr.   Peterson and I must say firstly that I do not agree completely 
with its last conclusion.  When Dr.   Peterson tells us that his paper is 
a contribution among others about cavitation and that there is nothing 
original in its conclusion,  I frankly believe that he is too modest.  In 
fact this contribution seems to be very important in several respects. 
First due to the nature itself of program,  and to the quality of the 
measurements.   In particular,  it seems to me that for the first time 
the bubble spectrum in front of the test body has been measured,  not 
only the spectrum of free bubbles but also that of the solid particles 
by means of an unquestionable method,  here the holographic one.  That 
leads to estimate that the author's conclusions are based on serious 
data and consequently that this paper is by no means negligible. 

This point being reminded,   I would like to make for my part 
two series of remarks ; first on the analytical calculation of the tra- 
jectories.   It has to be pointed out what are the limits of such a cal- 
culation ; it is based on some simplifying hypotheses,  which are not 
original,   but these hypotheses are not completely valid,   even far from 
the body.   As was shown for exa»..ple by Foissey in a recent paper 

'1)   SCHIEBE,   F. R. ,   "Measurement of the Cavitation Susceptibility 
of Water Using SUndard Bodies",   Proj.   Rpt.   No.   118, 
St.  Anthony Falls Hydraulic Laboratory,   1971. 

1182 

m—^utoa. -MatMMMMMMHMIHMH 



^mm 

Cavitation {Influenae of Free Gas Content) 

presented to Association Technique Maritime et Aeronautique (x), 
using a singular perturbation method,   the solution of the problem 
cannot be reduced at not order to Stokes solution.   Foisscy showed in 
particular that some terms, which are currently put in the equations 
are not in fact correct,  even far from the walls ; a fortiori close to 
the body,  in particular inside the boundary layer,   since it would be 
necessary to take into account the rotation of the bubbles and their 
deformation.   But the analytical calculation may have a qualitative 
interest,   namely to show the screening effect.   Concerning this effect 
it seems that there exists some discrepancy between the present re- 
sults and those obtained by Johnson and Hsieh from the same hypo- 
theses.   For Johnsson and Hsieh,  if my memory is good,  the bubbles 
are kept away from the solid body and only the smallest ones starting 
from the axis of the body can reach it.   On the contrary. Dr.  Peterson 
tells us that bubbles starting away from the axis can reach the body 
and cavitate on it.  I would like this point to be cleared. 

My second series of remarks are relative to the respective 
influence of the stream free bubbles and of the hydrop! jbic particles 
as cavitation nuclei.  When the air content in the water of the tunnel 
is decreased,   it is noted that the free bubbles are decreased in num- 
ber and diameter but that the noise remains constant,  and from this 
it is concluded that hydrophobic particles are responsible for cavi- 
tation,  at least for cavitation noise.   I believe that this conclusion may 
be true but that it is perhaps premature.  It is indeed possible that the 
bubbles which can be observed when the air content is high are not 
cavitation bubbles but gaseous bubbles or pseudo-cavitation bubbles, 
that is bubbles filled with a great quantity of air,  and leading to visual 
but not noisy phenomena.   The noise could be perhaps produced by 
smaller free bubbles i. e.  by true cavitation bubbles and not necessa- 
rily by hydrophobic particles. 

I believe that these considerations bring us back, as ever,  to 
that difficulty of defining incipient cavitation.   This can be only defined 
by its effects,   either bubble growth,   that is a visible phenomenon, with 
the difficulty of making the distinction between cavitation and gaseous 
bubbles,   or an acoustical phenomenon that presents difficulty for an 
analytical treatment.  In the ITTC Cavitation Committee,  we have had 
serious discussion before reaching an agreement on the definition of 

(x)   FOISSEY,   C. ,   "Application d'une methode de perturbation singu- 
liere a l'etude de la cavitation naissante. "   Association Technique 
Maritime et Aeronautique,   session 1972. 
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the term "cavitation" itself, and now Dr.   Peterson seems to question 
it in his paper.   That means that there is yet much work to be done. 
For my part I am convinced that studies like that which was presented 
here can bring a new light on this problem,  and I hope that they will 
pursued. 

DISCUSSION 

Luis MazaTedo 
Esauela T.S. de Ingenieroe Navales 

Assoaiaaion de Injestigaaion de  la Construoaion Naval 
Madrid,  Spain 

I want to thank Dr.   Peterson for showing the results of his 
very accurate experiments.  Tests like these may give a real expe- 
rimental basis and avoid the contradictory results we sometimes 
found.   This is for instance the case with the no influence of the sur- 
face state which has been shown.   Though this might be predicted, 
since conditions in its crevices are permanent and ther'  is no input 
(which would not be the case in a central propeller or in boiling) such 
a confirmation is wellcomed.    Since positive results are still more 
interesting,    may I ask Mr.   Peterson wether he intendb to perform 
tests,   in the future,   to check the magnitude of the influence of speed 
on this transient phenomenon ? 

REPLY TO DISCUSSION 

Frank B.   Peterson 
Naval Ship Research and Development Center 

Bethesda, Maryland,  U.S.A. 

In response to Mr.  Johnsson's comments about his photogra- 
phic bubble measurements,  all I can say is that in uur work we tried 
to differentiate between the visual and the acoustic measurements.  If 
we had in fact used the observations taken in high-speed photography 
then we would have said that inception had occurred earlier when there 
were more bubbles in the water.  I think that might have been shown 
on one of the slides I presented.  But in spite of that we still,  appa- 
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rently,   came up with the same general conclusion as to the bubble di- 
stribution importance. 

I should like to thank Professor Silberxnan for pointing out a 
paper of his which was unknown to me.  It it unfortunate since the 
Navy Department apparently funded that work and I was remiss in not 
seeing it in the literature. 

I would like to say that all of this work can be considered a 
conservative estimate in that I emphasised free gas bubbles must 
touch the surface.  If I gave looser bounds to the calculations and said 
that the bubbles did not have to touch the surface but only had to reach 
within a certain distance from the surface, in fact it would make the 
case I was presenting even stronger. As you may have noticed,  the 
actual bubble distribution was not even used in this work. All we took 
were the total number of bubbles observed.  We did not even discrimi- 
nate between bubbles that had an order of magnitude difference in size 
because we felt it was not necessary to make the point. 

On Mr.  Bindel's comments, I should like to point out that we 
could only discriminate between bubbles and solid particles larger 
than 25 micrometres and the conclusion that bubbles were not impor- 
tant at all was drawn by inference from the studies that we made in 
the high-speed basin.  The analytical calculations of the trajectory by 
Foissey are not familiar to me but I think a comparison would be in- 
teresting between the methods of calculation.  I might say that the 
paper pointed out that the calculations that I have used were compar- 
ed with experimental measurements of bubbles in pressure gradients 
in water and in glycerine and there was quite good agreement,   so I 
suspect that there may be a close agreement between the work of 
Foissey and the calculation methods that we used.   This work does 
agree with the work of Hsieh.  The equations used were essentially 
the same.  Perhaps it is unfortunate, but in the slide that I showed I 
did not show that some bubbles would be drawn away from the body, 
but given a pressure distribution on the surface - and in my case it 
was different from that of Hsieh and Johnson   -   and givt..i different 
bubble sizes,   some bubbles would by the pressure gradients be forced 
away from the surface. I should like to reference the work of 
Dr.  Brockett at the Naval Ship Research and Development Center.  He 
has in a report correlated the noise produced by the collapse of the 
cavity and the visual observation through high-speed photography of 
the collapse of the cavity on the surface.   It has been shown that ba- 
sically in the work on this body the cavitation that occurred on the 
surface produced the noise and to the best of our information the 
cavities that were further from the surface and did not touch the sur- 
face,  did not produce noise within the significant range of this work. 
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It is very possible that for the pressures that we had in these tests, 
the bubbles that were off the surface never really reached, or very 
few of them reached,  the region at the vapour pressure of the water. 

I am not sure of the extenc of the work that will be carried 
out,   Professor Mazarredo,  as far as the influence of speed is con- 
cerned.   The work requires a lot of effort and making detailed mea- 
surements at various speeds in water tunnels could be significant, 
but it is possible that the towing basin work which was done at a 
speed twice as high may, at least for the time being,   serve our pur- 
poses of analysis. 

I appreciate all of discussion and I'd like to thank all of you 
for giving the pertinent and valuable comments. 
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VORTEX THEORY 
FOR 

BODIES MOVING IN WATER 

Roger BRARD 
Bnpsin d'Esaaia des Cav&nes 

Paris, France 

ABSTRACT 

This paper presents in a synthesized form old and 
new results about the vortex theory for bodies mo- 
ving in water. It is shown that the hydrodynamic 
forces exerted on such a body can be derived from 
the knowledge of a vortex distribution kinematical- 
ly equivalent to the body. A method is proposed for 
determining both the bound vortices and the free 
vortices when the bound vortex distribution is cho- 
sen to be adherent to the hull surface. The total 
vortex distribution is divided into two parts. The 
first one consists of a volume distribution inside 
the hull and of a vortex sheet on the hull surface. 
The volume distribution is identical with the vor- 
tex distribution due to the angular velocity of the 
body. The sheet is determined by the condition that 
this first part of the total distribution induces out- 
side the hull a velocity null everywhere at every 
time. This first part may be calculated once for 
all. The second part consists of the free vortex 
sheets shed by the body and of a bound vortex sheet 
on the hull. It is equivalent to a normal dipole dis- 
tribution whose density is the solution of a Volterra 
equation. The determination of the hydrodynamic 
forces exerted on the body is derived from the dy- 
namical equilibrium of the fluid outside the body, 
of the fluid inside the body and of the total bound 
vortex on the hull. This system can be subdivided 
into three systems : the quasi-steady system, the 
system due to the added masses and the system de- 
pending on the history of the motion. 
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This paper haa been written to suacitate new re- 
searches in the Held of the maneuverability and 
control of marine vehicles. 

INTRODUCTION 

The vortex theory in incompressible, in viscid and homogene- 
ous fluids plays a role of importance in many chapters ol Ship Hydro- 
dynamics.  However it is not systematically applied to all the problems 
where it should be especially useful.  This is the case of those relat- 
ed to maneuverability and control of bodies which behave as rather 
poor lifting surfaces because of their large displacement/length 
ratios.   The research reported in the present paper has thus been un- 
dertaken with the purpose of determining how much help one can ex- 
pect from the theory when dealing with such bodies in any given steady 
or unsteady motion. 

Indeed the question was not to draw up a new vortex theory, 
but rather to extend known results relevant to fluid kinematics and 
dynamics and to increase their generality and effectiveness. 

The joined table of contents suffices to show the writer's 
line of thought. 

The startpoint is Poincare's formula which oermits to deter- 
mine the velocity in a closed domain when the vorticity inside that 
domain and the velocity on its boundary are known.   This leads to a 
mathematical model where the hull surface is replaced by a fluid 
surface moving without alteration of its shape.  There exists an in- 
finite class of vortex distributions kinematically equivalent to the 
body.  They only depend on the choice of the vorticity distribution in- 
side the hull.   The most interesting one is that which permits the ex- 
terior fluid to be adherent to the hull.  Inside the hull the absolute 
fictitious fluid motion coincides with that of the body.   From the point 
of view of kinematics,   one of the features of the theory is that the 
total vortex distribution can be divided into two families almost inde- 
pendent    of each other.   One consists of a volume distribution inside 
the hull and of a vortex sheet over the hull,  it is so calculated as to 
induce outside the body a velocity which is null everywhere.   It only 
depends on the angular velocity of the body and can be determined 
once for all for any given hull.   The second family is the union of a 
vortex sheet distributed over the hull and of the free vortices shed 
by the hull.  It is determined by the condition that the fluid inside the 
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hull be at rest with respect to the body and by a complementary con- 
dition expressing that the pressure is continuous through the line of 
shedding of the free vortices. 

Only the second vortex family has a physical meaning.  But 
both are necessary for determining the hydrodynamic pressure on 
the hull.  This is not really surprising since both the fluid inside the 
hull and the bound vortex sheet over the hull must be in dynamical 
equilibrium. A consequence is that the classical expression for the 
force exerted by the flow on an arc of vortex filament which does not 
move with the fluid cannot be readily extended to the case when this 
arc belongs to the bound vortex sheet adherent to the hull.  The 
hydrodynamic pressure on the hull is expressed in terms which only 
depend on the total vortex distribution.  The dynamical problem is 
thus completely solved for any given hull in any given motion what- 
ever the incident flow may be. 

The theory developed in the present paper is quite general. 
Its application to practical ends does not seem to lead to insuperable 
difficulties provided that reasonable assumptions can be made con- 
cerning the position of the free vortex sheets with respect to the 
body and the possible variation of that position with time.  In any case, 
it is shown in the last section that an older and less complete vortex 
theory is still useful in maneuvering.  Thus it is hoped that the pre- 
sent one can guide the experimental and theoretical researches 
which are to-day urgently needed. 

I.    A BRIEF SURVEY ON VORTEX THEORY 

The vortex theory can be divided into four parts. 

(i) The first part is,  in fact,  a chapter of Vectorial Analysis. 
The vector   V   is the velocity of the fluid points in a certain fluid 
motion at a fixed instant   t   and the vorticity   u   is defined as 

w =   curl   V   =       7AV. (1.1) 

The starting point is the Stokes Theorem, according to which 
the flux of  u   through an open surface is equal to the circulation of 
V   in the closed circuit consisting of the edge of the surface.  A con- 
sequence is that no vortex filament can begin or end in the fluid. A 
vortex filament is therefore a closed ring or its ends are located on 
the boundary of the fluid domain,  or at infinity. A consequence is 
that the intensity of a vortex tube is a constant along the tube.  The 
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intensity of a flat tube or of a tube whose all transverse dimensions 
are null can be finite.   This is the case of the vortex tubes on a vortex 
sheet and of the isolated concentrated vortex filaments. 

Equation   (1.1)   can be solved with respect to   V.    Poincar^'s 
formula give?   V   when the vorticity is known. A particular case is 
the Biot and Savart formula which expresses the velocity "induced" 
by an isolated vortex filament.  A consequence of Poincare's formula 
is that the perturbation flow due to a body moving in an inviscid fluid 
can be regarded as generated by a vortex sheet distributed over the 
hull of the body and fulfilling the condition that the fluid adheres to 
the hull.  There is a kinematical equivalence between the body and 
the vortex sheet. 

(ii) The second part deals with the evolution of the vorticity with 
time under the assumptions that the fluid is inviscid and that the 
exterior force per unit mass is the gradient of a certain potential. 
The basic theorems are due to Cauchy and Helmholtz.   The intensity 
of every vortex filament is independent of time and the vortex fila- 
ments move with the fluid.   This means that every vortex filament is 
composed of an invariable set of fluid points.  Lagrange's theorem 
follows according to which the fluid motion is irrotational if its 
starts from rest under the  effect of forces continuous with respect 
to time (shock-free motions).   This theorem seems to be contradict- 
ed by the possible existence of vorticity in the motion of an inviscid 
fluid,  but the difficulty can be overcome by considering such a motion 
as the limit of the motion of a real fluid when the viscosity goes to 
zero.  Although the second part of the theory is based on the Euler 
equation, it only deals with fluid kinematics. 

(iii)       The third part of the theory concerns the dynamical interaction 
between flow and vorticity.   If the set of fluid points belonging to an 
arc of vortex filament does not move with the fluid, this interaction 
cannot be null.  The concept of force ex  ^ted by the flow on every 
bound arc of a vortex filament is now classical.  Conversely,  the set 
of fluid points belonging to this arc exerts a force equal and opposite 
on the adjacent sets of fluid points which proceed with the general 
flow. 

As it has been shown by Maurice Roy   [l]   , the system of 
forces exerted by a steady flow on a body in a uniform motion can be 
obtained in this way.   This led to an important generalization of the 
Kutta-Joukowski theorem.   Later von Karman and Sears have success- 
fully solved the problem for wing profiles in a quasi-rectilinear non 
uniform motion  [z]  .   The pressure distribution on such profiles 
has been calculated by the present writer   [3]   .  There exist now 
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powerful methods  of   computing the pressure distribution on a wing 
of finite aspect ratio in the same kind of motion (see,   for instance 
[4]   )• 

The case of bodies of high displacement, length ratio in an 
unsteady motion is sensibly more intricate than the case of the usual 
lifting surfaces and there was a need for a general theory.   Poincare's 
formula gives means for determining such a vortex distribution on 
the hull and inside the hull that the fluid adhere to the hull.   This 
vortex distribution is kinematically equivalent to the body.   But it is 
not the only vortex distribution with this property.   Furthermore if 
the motion of the fluid about the body is unsteady,  any vortex distri- 
bution kinematically equivalent to the body varies with time.   Lastly 
the theory would be without practical interest if it were not capable 
to take into account the effect of the free vortices shed by the body 
and that of an arbitrarily given incident flow.  This paper gives an 
answer to the problems arising from the afure-mentioned needs. 

(iv) The fourth part of the theory concerns vorticity in viscous 
fluid motions,  but it dues not fall within the scope of the paper. 

II.    POINCARK'S FORMULA 

VORTKX SIIKKT 

Let   2-i •><■ •! p-irl ol a certain  surface.   The two sides   2-t :  , 
/1,.   <>|   2_, ■" ■ distinguishrd from each other.   The unit vector        rT 
normal to 2_,   is uniquely defined at i'very point   F   of 7^   and in the 
direction from   ^ ,   towards ^Jj  .     Wt- put    PP-  =   n*p(0() , 
PP,,       - n'plOi) ,     p.   and    Pc    beginn the intersections of   ifp   with 
V* I   ami    VV,   respectively.     (Figure I  and <i). 

Let 2^ >    2^/.   denote the surfaces described by the points 
P{ ,    P^   suchthat     PP-        -|-np.    PP^.      -  *-n'p ,    respectively. 
We suppose that a vortex   ui     is continuously distributed between 
2^:    and 2J , .     w'(M) is normal to   t*     at every point   M   of each 
segment P.' P'   .     When      « JO ,       «J(M)  has a finite limit 
T (P)   tangent to  V\    Let  9 p ,     r*p   denote two unit vectors tangent 
to ^   at   P ,   such that the directions (n*p ,    öp ,     ^p)   make a right- 
handed system,   with    r'p   in the direction of       Tp.     A line  ^    tan- 
gent to   r*  at each of its points is a vortex filament of the limiting 
distribution.   Let   if ,   .f,    be two lines  tf   close to each other.   Let 
^ be a line orthogonal to the  'if    's   and containing   P.    It intersects 
j^at   P,    .    We may put   P?,    =dae.     For the limiting distribution, 
T   r'p da     is the flux of the vortex through the area of the infinitely 

1 191 



.i.JJIF«" i '—. ■! i^    ,i ■ 

Brard 

flat rectangle   Pj P    P . P^.   and is therefore equal to the circula- 
tion   d P   of the velocity   V   in the closed contour of this rectangle. 

Consequently 

|V (P.) - V (Pjl     .    ?pda     =   f(P).   rpdff      =   df    (2. 1) 

or equivalently : 

V (P ) - V (P  )   =   T (P)  A   n 
i e f 

(2.2) 

Conversely,  if the velocity   V   is discontinuous through a 
surface 2^   ,    and if the jump  is  tangent to    J^   , then the above 
formula defines a vortex sheet ( V , JL )   with   Tp = n"p AfviPi) - 
-V(Pe)j    . ' • L 

The expression   (2. 1)   is the local intensity of the "vortex 
ribbon" located between •£   and  of,   .    It is a constant along the rib- 
bon if no vort^city  J"' coming from the regions outside J^   joins the 
distribution _2L  over  T"   .    We will see in the next Section that the 
opposite case is frequent. 

POINCARE'S FORMULA 

We consider in the fluid a closed surface   S   with a tangent 
plane at every point.   Let   Dj ,    D     be the interior and the exterior 
of   S.    The unit vector   n   normal to   S   is in the inward direction. 
The interior side   Sj 
the exterior side   SP 

of   S   is considered as included in 
as included in   D0  . 

'I» and 

The time   t   is fixed. 

The velocity   V   is supposed continuous and twice continuously 
differentiable within 
M   and defined by 

Let   A   be a vector function of its origin 

A (M)   = dD. (M') 
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We use the classical formula 

curl curl A    =    V div A  -    A A , 

2        V       c*2 

where   A    is the Laplace operator :   A     -   V   -     ^-'\~%—2" •  an^ ^ 
the operator    ^ *   , -J"     , •- "■-   ,    the system of rectangular axei 

ox.       dx,,        dx3 
0(x1 ,   x   ,  x   )   being right-handed.   By Poisson's formula : 

V (M)   if   M   « D. , 

AA (M)   = ' 
0 if   M   « D 

e 

Furthermore it is easily seen that 

's        -"JJJD. 
1 

Consequently ; 

-[^-^^-Vf^-.H 
/ 

'D. 

U.3) 

+ -adUi/s~^'      dS(M,) +^fD. -Ml^dDi(M,)] = 

V   (M) if   M   t D 
1 

0 if   M   t De 

1193 

 .- ■- -—      ■■       .^^„.—^^^^ 



—— —T. « --"—■-"' ■'■■■■""■' — —w„ ^r^-r.. ^r^^^^.- --^—^^ 

Brard 

This it the Poinor^ formula . 

Let us suppose that the fluid is incompressible. The triple 
integral in the second term is not necessarily null for sources with 
a density   o   - div AT  could be distributed through   Dj.    The double 
integral in the second term represents a source distribution over  S 
with the density   *   = (n . V)       .  There is a jump of NT through  S. 
Its normal component  n-(\re - Vj) = - (n ^)M     .    According to   (2.2) 
its tangential jump from ^e   to V;  is that due to a vortex sheet 
over   S, with the vorticity  =J-   (HA ^)Mi 

Poincar^'s formula solves the equation 

« =    V A V 

with respect to   V, when the vorticity  w" and   div V  are known 
inside   Di ,   if, furthermore,    V   is known on £} . 

Blot's and Savart's formula - (Figure 3) 

Let us suppose that all the points of  S   are at infinity, that 
div V = 0  and that   «" is null everywhere except in a very thin tube 
^ with a transverse area   jJC ■    Let us suppose that the measure of 
a 2Z goe8 t0 *%'$?' while wj^—>f   .  The vorticity reduces to a vor- 
tex filament J^wM the intensity   I*" tangent to Jyr.   Let ds denote 
the element of arc of^y^. 

Then Poincar^'s formula gives 

This is the Biet and Savart formula which gives the velocity induced 
at   M   by the vortex filament J^the intensity of which is   p"  . 

AB ^jjT s 0  except on Ji , there is a velocity potential <t> 
except onj^.   Let ^   be an open surface whose edge coincides 
withi>^^and   if the unit vector normal ^o J^   » oriented in the posi- 
tive direction with respect to the arc  ds   of J^.  One has 

V=    V<I>with*    *~±jj    ^—-^dEtM'),      (2.5) 
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<t> is therefore generated by a distribution of normal dipoles over]P , 
with the constant density    F  .    Of course,  (J)    is not single-valued. 
If   C   is a closed circuit intersecting ^   at   P   and surrounding i£ 
one time,   then the circulation of   V   in that circuit is 

/. 

V   ds r (c) =  * (p.) - <t>(P ) 
1 e 

(2.6) 

Application to vortex sheets 

Let us consider the part j J*   0f a vortex sheet.   The contri- 

bution of ä 2J   to the velocity   V   is given by 

6 V curl 
4   IT i: T(M') 

MM' 
(M1) (2.7) 

III.    VORTEX DISTRIBUTIONS KINEMATICALLY EQUIVALENT TO 
A HULL SURFACE 

Let  2-( denote the hull surface of a solid body completely 
submerged in an unbounded,   incompressible fluid at rest at infinity. 
Let   Vg   denote the velocity of the body and   fi £   its angular velocity. 
One has 

curl   V. 2  fi 

Let   Dj- resp  De - be the interior - resp.   the exterior - of ^   ,  and 
J^i .  JTg   the two sides of J^   .    For convenience,   ^ •   CD-   and 
Vg C De-   The unit vector normal to ^T  is in the inward direction. 

Let   V   denote the velocity of the fluid inside D  .    One has 

n V„     =    n V on V" (3.1) 

Poincare's formula applied to   Vjr   inside   De   gives : 
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~ui:- 
/ 

MM v      '      4 B- -MNT-^i^') 
D. 

—     _1    /7(n-   VE,M1-       K- 1 V      ifM.D. , 
+   grad   ^—//  J^.   ^   dE(M')       . E 

L4
 ^v,        MM' v      'J o       if M f D   . 

The same formula applied to   V   inside   De   gives : 

KW/^'H . ^j^* W) -- 

0   if MCD. 

V (M)   if MCD 

Adding these two equations and taking into account the bounda 
dition   (3. 1),   we get 

ry con- 

^-4V7fe^^|^^DiH 
V^ (M)   if   MCD 

E e 

V(M)   if   MCD. , 

V2) 

whei 

T (M')   =    -nM1    A   V(M^) - ^(M')     on ^  . 

Thit.  shows that the vorticity distribution 

(3.3) 
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(E .-f, + (Di'  "E^ 
( o +) . (3.4) 

is kinematically equivalent to the body inside De   and generates 
inside   Dj   a fictitious motion identical with the motion of the body. 
The relative velocity   V^   =   V - V   fulfils the condition 

V,,   =  0   on   L. 
R i 

(3.5) 

Therefore,  the vortex sheet   (£,—)   allows the fluid to be 
adherent to the solid wall   Y\i   of the body.   This gives the image of 
a very thin boundary layer which the real boundary layer would reduce 
to if the fluid viscosity   M   were going to zero. 

It is easily seen that curl   V = 0   inside   D    ,   so that 

V   =   ^   .     <t> inside   De , 

^     being the unique solution of the Neumann problem with the boun- 
dary condition 

¥--   n.vL   on E an E 

For the sake of brevity,  let us put : 

J(M) -I JT-M-i.i» • AJT'S dD^M'). 

(3.6) 

The components of   j£   are continuous and continuously dif- 
ferentiable inside   D; + D     (and harmonic within   D„).  Those of  J —♦ • e ^-% c 
and of curl   J   are discontinuous through 2_,   because 
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^-J*(M. 

//    f(M')    -1- 

It follows that 

curl   J{M.,   . 
1    (-    I    1    /_-.^ 1   // f/MM       „ (3-7) 

curl   J (M  ) 

Equation   (3.2)   expresses that 

curl   J-(M)   =   VE(M).curl   ^ (M)   when   M describes   D. .       (3.8) 

and therefore entails 

4{M)M ^ir//C"rl
M-%^ ^ ECM') . VF:(M)-curl j;(M). MCL 

^ (3.9) 

As 

curl     V     (M) - curl   J_ (M)      =   0   within   D.   , 
it* ji* i 

div       V^ (M) - curl   jT    (M)       H   0   within   D.   , 
E E i 

the difference   Vg - curl   J^   is within   D^   the gradient of a harmonic 
potential,  and,   for   (3. 8)   to be satisfied everywhere inside   Dj,  it 
suffices that it be satisfied on   zl, .    Thus 

(3.8X >(3.9) 
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Consequently,    T   has to be determined by   (3. 9) and the 
complementary condition 

n T  = 0    on (3.9') 

Equation (3. 9) is a vectorial Fredholm equation of the 2nd kind. It 
is singular since T - \ n , \ being a constant, is a solution of the 
homogeneous equation 

T^ f)M 4 » i- rl T(M': 
M     MM' dBW)   =   0 

For   (3. 9)   to have solutions,  it is necessary and sufficient 
that its right side - say   B (M) - be orthogonal to  n"  on^ 

I iT.S   dZ =     0 (3. 10) 

This requirement is fulfilled because V£ and curl j£ are divergen- 
celess inside Dj. Hence, if T' is a particular solution of the com- 
plete equation   (3. 9),  the general solution is 

T'   +   X   n. 

But   n T' = const.   = m   on Z^   ,  and therefor« 

T   =   T'   -   m n (3.11) 

is the only solution which fulfils both   (3. 9)   and   (3. 9') (1) 

(1)   The proof that (3. 10) is sufficient and that   n! T'= const. onH 
has been omitted because it is possible to substitute for (3. 9) a scalar 
equation which does give rise to no difficulty (see Ch.   VI,  eq. (6. 6'). 
An equation similar to (3.9) has been considered by J.  Delsarte [s] in 
the case of a fluid motion inside a closed vessel.  In Ch.   V,  we will 
deal with an equation (5. 7) analogous to (3. 9) and (6. 6'), 
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T   being determined in that manner,   the velocity   V   gene 
rated by the vortex distribution J-  on ^J  and   w 

Vg;   v.ithin   Dj 
it) r-   inside   Dj 

is equal to   Vg   v.ithin   Dj .    Therefore,  as the jump of   V   through 
2^   is purely tangential,   one has   n V'_= n Vg-   on 2^ e   and   V1 

evidently coincides with the velocity   V   of the irrotational fluid mo- 
tion inside   D„, . 

The above results can be extended to the case when there 
exists inside   De   some incident flow of velocity   V0  .     It suffices to 
replace   Vp-   by   Vp. 
velocity is 

V0   into the right side of (3. 9).   The resulting 

V + V 
V_    inside     D.   , 

E 1 

V        inside     D 
e 

If   De   were bounded by solid walls and (or) a free surface, 
one would have to add singularities distributed beyond the boundaries 
These singularities would be linear functionals of   T   and therefore 
T   would be found on the right side of   (3. 9)   too. 

Furthermore,   it is seen that the incident flow   V      could be 
due totally or partly to free vortices shed by the hull itself.   In such 
cases,  the right side of   (5. 9)   would depend upon the history of the 
motion of the body. 

Various remarks 

(i) It is to be noted that the vorticity inside   Dj   could be chosen 

arbitrarily.     J*E   should be replaced by T^  =-^-A7      TTTTT  dDi (M') 

The possibility condition   (3. 10)   would still be fulfilled. And,  for the 
same reasons as above,    T   would still be determined uniquely by 
(3. 9)   and   (3. 91).   But,   inside   D-  ,  the resulting velocity could no 
longer be identical with   Vjr . 

In all the cases,   the resulting velocity   V   on 2^    -i.e. 
between   2^^   and   S^      - is given by 

V (M) -H V (M  ) 
e 

V (M .'] (3. 12) 
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(ii) When   T   is determined so that   V(Mi) = VE (Mj) ,    the jump 
of   V - V^-   through JI  is equal to   V|^(Me) ,    and 

VR (M)     = -y- VR (Me)   on L 

T   is perpendicular to   Vn   on 2-i   and the edges of the vortex-ribbons 
on 2j   are orthogonal to the streamlines  X,    of the relative motion 
over ^ e , 

If,   furthermore,  no free vortices are shed by the hull, 
thtse edges make closed rings öc    on  T]  •   (Figure 4).   Let   dc    be 
the element of arc of a particular streamline    t   .    The intensity of 
the vortex ribbon between two rings oC    , £c    close to each other is 

dr(M) VD (M  ) da (M  ) 
Re c 

(3.13) 

(iii) If     üJHO   inside   Dj ,    then   dl'   is a constant when   M 
describes i?   ,  and the fluid motion inside   D     and inside   D- 
depends on the velocity potential 

*(M) ^h"' 4 ^ dI:,M■,•<R = MM') 

This potential is generated by a normal dipole distributions.      P is 
determined up to an additive constant. 

If    üT^O   inside   Dj ,    then,    d F     is no longer a constant 
between it    and ^£   ;   ds   being the element of arc of ^£  ,  one has 

dc    ds u'    n   d a    d s 

The same phenomenon happens in the case of the vortex distributions 
{Di ,    2 JE)   +   (^ .J?) - see Section   V,   Fig.ire   5.1. 
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IV.    FREE AND BOUND PARTS OF A VORTEX SHEET 

EULER'S EQUATION IN A MOVING SYSTEM OF AXES 

The fluid is assumed to be inviscid,  incompressible and 
homogeneous.   Con?equently,  its mass density   p    is independent of 
position and time. 

Let  2^  be the hull surface of a body moving in the fluid. 

Let   c' ,    S   denote two right-handed systems of axes.    S' 
is at rest and the fluid motion with respect to   S'   is said the "abso- 
lute"   motion of the fluid.    S   moves with the body and the motion 
with reöpect to   S   is said the "relative" motion.   The subscript   R 
refers to the relative motion.    F   is the absolute exterior force ; 
V ,   u)    - curl V   and >    ''SiT are t^e absolute velocity,   vorticity 
and acceleration.   The instantaneous motion of   S   with respect to   S1 

ia termed the"entrainment'lTiotion.  It consists of the addition of a 
rotation about a certain axis   A    and of a translation parallel to -i 
If   O   and   M   are two points of   S ,    the entrainment velocity   V^{M) 
of   M   can be expressed as 

VE (M)   z   VE (O)   +     0E A     OM ' 

where    9.  jp   is the angular entrainment velocity. 

The relative velocity of a fluid point   P   located at M at the 
instant   t   is 

VR (P)   =   V (P)   -   VE (M) . 

One has 

y(P)  -   (yR + yE  +  2nEAVR)p 

curl   V      =   w   - 2 Q _ 
R E 

and the exterior force   FR    per unit mass in the relative motion is 
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given by 

FR     =     F-    7E   -   2n
E^   VR 

Let   p   be the pressure.   The Euler equation in the system   S   can be 
written in the form : 

dV. 
-L-   Vp   .    F (F-7E-2n  E   AV R      dt 

^ t R R V 2 '■'] 
?-|f -   JA^R   -    V(fVR)   ^^«E   r2)'(41) 

where   r   is the distance from the axis A 

We suppose that   F =     v7!c, and put 

P.     =     P -P t/   ,    P„   = P// (4.2) 

ps   and   pj   are the hydrostatic pressure and the hydrodynamic pres- 
sure respectively.   Equation   (4.1)   becomes 

—- ^P.1 P        Kd 
|f-    jAVR.r    (fv2

R)+    V(f^r2).      (4.1-) 

FREE AND BOUND VORTICES 

From the Euler equation in the system   S'   of axes,  namely 

1    V dV 
dt 

^JL . "3 A V - V     (i-V2) 
r> t *Z ' 
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it follows that 

curl   ( 
av 
a t 

+    UA V)    =   0 . 

Taking into account the continuity equation,  one obtains the 
basic Heimholte equation 

This equation entails the following consequences 

(4. 3.) 

(i) If   F   and the boundary conditions are continuous with res- 
pect to time,  and if the fluid starts from rest,   then 

w =0   everywhere at every   t . 

(ii) Every vortex filament is made of an invariable set of fluid 
points. 

(iii) The circulation of the velocity in any closed fluid circuit is 
time-invariant. 

According to consequence (i),  the absolute fluid motion should 
be irrotational everywhere.  This explains why the concept of velocity 
potential is of importance in the motions of inviscid fluids.  However, 
this consequence does not hold if there exist regions where   ? is not 
the gradient of a potential Jc   .    This is obviously the case when the 
fluid is submitted to the condition of adherence to solid walls. 

For this reason,  the vortices existing in the motion of an 
inviscid fluid about a set of solid bodies have to be considered as ori- 
ginating on the surfaces of these bodies.  Thus every vortex filament 
is made of two sets of fluid points : one of these two sets is at rest 
with respect to the surface of a solid body,  the second one is free and 
moves with the fluid. 

(1)   This equation holds if the fluid is not incompressible,  provided 
that 

h{p) 
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BEHAVIOR OF THE FREE PART OF A VORTEX SHEET 

Let   dE   be the set of fluid points belonging to an element 
d £, of a vortex sheet.   The sheet begins or ends on the surface £   of 
a body moving in the fluid.  Its bound part is located between the in- 
terior side J^j   and the exterior side J^e   0^ £ ant* t^16 relative 
velocity  V^   of every fluid set belonging to this bound part is null. 
On the contrary if dE   belongs to the free part £ f   of the vortex 
sheet,  it moves with the relative velocity  V^  inside the sheet.  Let 
S fi*   Sfe   ^enote t'ie two sides of  ^£ , n" be the unit vector normal 

to     y^£  in the direction from   53 fe   towards ^ fi , and let « be the 
infinitely small thickness of the sheet.   The vorticity inside the sheet 
is  I? f   =   Tt   with 

f 

f£(M)   = ■irMA   [^R^ " % (Mi^        ' 

M€Ef  . MMi   ^   "M •      2 
1   MeM   =   VT 

and the relative velocity of the fluid point located at   M   is 

VM) -T PVV ! [% <Me>   +   ^R ^i^] 

Since there is no exchange of matter between the sheet and the adjacent 
fluid sets 

"M •  W   =   "M •  ^^i)   =   "M • VR(M)   =   0 •     (4- 4) 

Let   I|^(dE)   be the momentum of   dE   in the relative motion.  We have 

sV» 

^ 
(4.5) 
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Furthermore, as the pressure does not depend on the axes,  we have, 
by the momentum theorem 

^rR(dE)   =   nM[Pd(Me).pd(Mi)jdLf (M) 

This quantity is null because of   (4.4)   and    t   = + 0. 
Consequently 

Pd (Me)   =   Pd (M.) . (4. 6) 

Hence the pressure is continuous through the free vortex sheet. 

For the sake of simplicity, let us suppose that we deal with 
only one moving body. 

We also assume that we deal with one vortex sheet only. The 
vorticity generated by the body is thus concentrated inside that vortex 
sheet. 

The absolute velocity   V   in the domain  D1    really occupied 
by the fluid can be divided into three components: 

- the velocity   VJ   induced by the vortex distribution 
{Di ,    2 0 E)   +   ( £ ."7T ) which permits the fluid located 
between^   and ]£e   to be at rest with respect to the hull; 

- the velocity   V0   of some incident flow, 

- the velocity   Vf  due to the free vortex sheet shed by the 
body. 

According to Section III, we have 

vf = curir-l-fe.dE(M, .-if 2y'«, (M. f L4 *JJyMM' v     '     ^IJJJD      MM * 

1     if     ff(M,)    v 1 
(4.7) 
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with the boundary conditions 

V, (M.)   =  VE (M.)    .   Vo (M.)    -   Vf (M.)   on  L. 

nM.  T (M)     = 0   on    E 
(4.8) 

V0   is due to causes located outside  2~> e   and one may consider that 
there exists a velocity potential  <t>0   such that 

V <t> 

at least in the region of   D'e   close to 2-e   and inside   Dj   + 51    . 

Vjj + Vf   is irrotational outside    ^ + 2-f .   Therefore,    Me 

and   Mi   being given on   X/f     and   *"«fi    »   respectively - with 
MgMj = nj^j (0+),^one can find a path starting from   M^   and arriving 
at   Me   so that   V   be irrotational everywhere along this path.   Putting 

V   =   V<t>, 

we obtain,  by integrating   (4. 1)   along the path : 

M 
Pd (MJ - Pd (M.)   =    .   p(-|$)^e.^p(v^ 

Hence   (4. 6)   gives : 

M. 

M 

M. 

One has 

Tf (M) =   - nM  A 
> ^e^    -   ^R ^i) 

(4.9) 

(4. 10) 
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Consequently 

Tf(M) A  VR(M)   =   VR(M)  A 

= i^K (4.11) 

Thus,  when the relative motion is steady,    T£(M)   and   VR(M)   are 
colinear, and both are in the direction of the bissectrix of the angle 
(VR (Me) .    VR (Mi)). 

If the relative motion is unsteady, JV^ (Me) and VR (MJ) 

are no longer equal to each other and therefore the direction of T(M 
is no longer that of the bissectrix. 

Equation   (4. 10)   expresses the dynamical equilibrium of any 
part of a free vortex sheet. 

DEFINITION OF THE FORCE EXERTED BY THE FLOW ON AN 
ELEMENT OF THE BOUND VORTEX SHEET ADHERING TO A 
MOVING BODY 

Let us consider now a set   dE   of fluid points belonging to the 
element   d Jj    of the bound vortex sheet. 

We have 

R v    i' 0 , and       -f-t (dE)   =   0 
dt 

But the expression for-gj-     I (dE)   does not reduce to   Pd(Me) - p^Mj)] 
"M ^ 23   '  ^0^,  because of the adherence of the fluid to  Vj ,  a force -' 
-   d^T   " exerted by the element   d Z.  of the hull surface on   dE. 
The equilibrium of  dE   requires : 

0   = 
_d_- 
dt UdE)   =   - d«^   +    ^ (Me) - pd (M.)!    nM dE   (4. 12) 

1208 

  M^MMMflUMfelilMMM   mm mm 



mmmm m^m "■■    11 nwppwir"' '■' ' 
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Conversely,  the equation 

d^r - rpd(
M

e) - pd ^i)] "M
d^(M)      (4-13) 

shows that the fluid sets adjacent to   dE   exert the force    dt^j   on 
the set   dE. 

V.    THE STRUCTURE OF THE VORTEX SHEETS GENERATED BY 
A MOVING BODY 

Two cases will be studied in the present Section. 

(i) One free vortex sheet only is shed by the body, 

(ii) Two vortex sheets are shed by the body. 

In the first case the fluid motion is irrotational everywhere 
outside the body,   except through the free vortex sheet   2^£ .    In the 
second case,  if the fluid motion is unsteady,  vorticity is necessarily 
distributed in a certain volume downstream from the body. 

A - STEADY MOTION IN THE CASE OF A UNIQUE FREE VORTEX 
SHEET 

We can define on 2-«   such a vortex -I-' that each of the two 
vortex distributions * 

(Di .    2Q      ) + {L,1L) (5. 1) 

(i;.-1^ <£f-r)      (5-2) 

be complete and that   they sum up to the total vortex distribution 

(D.. zn E) + (E. -7) + (^f--r)      (5-3) 
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The vortex family   (D. ,   2Ü  )   +   (2   ,—) 
 1 tj *  

The new vortex distribution   (5. i)   will be chosen so that the 
velocity 

V'(M)    =   cu 

(5.4) 

be identically null inside De . Inside Dj , V' is the velocity of a 
fictitious fluid motion due to a certain force F + F' per unit mass 
(determined in Section VI).   One has : 

curl   V   =      2« inside     D. . (5.5) 

The condition 

V (M)    E      0     if    M C   D (5. 6) 
e 

is obviously equivalent to the condition 

V1 (M  )   =     0     on   E (5. 6') 

The fictitious fluid motion defined by V is one of the fluid 
motions which could exist inside the vessel bounded by E j if the 
body were at rest. 

(5. 6')   means that 

- Tv/te ^(M... . -^ ^ -.<«■)« 2 cu 

T 
e e 

i 
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Because of the diicontinuity of the left-hand side through L,   ,  thii 
equation can be written in the form ; 

-LnM   Af-(M) + curl^|^dE(M-) = 

fzo"  (MI; 
—^-^(W). (5.7) 

i 

where   M   is located on 2-   . 

This is a Fredholm vectorial equation of the 2nd kind which 
is quite analogous to (3. 9) in spite of the fact that the condition to 
be verified concerns the side £* e   of ^ instead of the side   Z^ i. 

First one observes tluU this equation is singular, since the 
left hand side vanishes when T'(M) = X nj^ , A being a constant. 
The right-hand side must therefore satisfy a possibility condition. 

As 

£n(Me).     [curl ^ij 1^1 dE(M-)]    dE (MJ 

one must have 

•4') 
)   =    0.    (5.8) if   n(Me) . fcuri ji-/// - dD.(M')j  dL (M 

This condition is obviously fulfilled since the latter expression is 
equal to 
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llhr^L 2nE(Mi) 

MM' iSCM')] dD (M)   =   0 . 
e 

It follows,  as in the case of   (3.9),  that the solutions of   (5.7)   are 

T' (M)   =   f'   (M) + Xn. 

with 
1 '    ' M 

n   T'       -   constant on 2L 
(5.9) 

and therefore that there exists one, and only one,  vortex    which 
is tangent to ^   and satisfies   (5. 7). ' 

One has 

T' (M) =   - nw   A V^M  ) - V^M.)     - nw AV^M.)   on E     . (5.10) M       L e i J M l    ^"^_^"~ 

At each point   M   on 2-. ,  (nw ,   0*^ , 'r^)   are three unit vec- 
tors making a right-handed system ;   n   is normal to 2L,   in the inward 
direction,  and   r   is in the direction of   T'.   The lines TC     tangent to 
d'   and the lines «C      tangent to "r*1   determine on 2-t   tw0 systems of 
orthogonal curvilinear coordinates,  the arcs a'   on x?    and   s1   oneo 
being oriented in the direction of  8     and   r'    respectively. 

Let us consider   (Figure 5. 1)   two lines dC  (a.)   and 
cß\o'7) close to each othjy and two lines &   (s',) , ^f (s'j + ds1).   The 
flux dl'     of the vortex-L through the area   M_    M_    M:    M:      it 

t el      c2     '2       1 
equal to   V^M^Swd»1   (where   d«^«^'  -»i').   Through the area 
ML    Mi    M'    M'    ,  it is equal to   V^M!) «V,, d^' = dr'-wiTd^   ds' 
1^21 A2      i __ -•     -• 

with   ds' = s', - s',.  Hence   -   "      T (s,fl) = - w. n = - 2fi_ .n.   This 
« « r> s' 0(7 a ' 

results from the fact that the vortex ribbon whose edges areic («^j) 
and^'^^) loses, between & (s1.) and l? (»'2) > vortex filaments 
entering   Dj . 

The jß       are closed rings,  since the ends of any segment of 
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a vortex filament   211   £   interior to   D;   necessarily belong to the 
same line t£   ' . 

The vortex family            ( £ .  T ' 'I")   +   (F f .   Zl )   . 
 « ^ t 

The-velocity   V"   induced by this vortex distribution is given 
by 

^ ^f (5.11) 

V"   is irrotational everywhere except on 2^   and on 2-,£ .    On  2-e . 
one has   V"{Me) = (V - V0) Me   and.  on  Ei« ^(MJ = (VE-\f'-\f0)Mi 

Accordingly : 

V"(M  ) - V"(M.)   =   VD(M )   +   V^M.) . (5. 12) 
e i R     e i 

,    d  jlenote two unit vectors on Z-   , ~r  (M) being in^the di- 
of   (T - T')Mi ,    so that the three directions   (-n,  «T , ^ ) 
right-handed system.  It follows that    6 (M)   is in the direc- 
VR(Me) + ^"'(Mi).    The curves *<? tangent everywhere at ^ 

. ihe vortex filaments oCon  2^ define a system of orthogonal co- 
urdinates   ( <r ,   s)   increasing in the directions of   d   and   T  ,  respec- 
tively. 

We may consider V" as generated by a normal dipole distri- 
bution on E + 22( • Let ** and M f denote the density of the distri- 
butions onj^ and   JV, respectively.    We have : 

r«.". 4>"=    4>d+   $r   Vd   =     VQd. Vf =• V(Df  . 

"^jL' 

< 

V^    ^-J    "^ lM. TO dS^ (5-13) 
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with     d F 

bar        off 
with     d r 

Let  ^f i   J^f,   >  denote the two sides ot 2^ { ,   Sf   on   2-« f 
being in the direction from   Tj f   towards    2-f •    O"6 ha8 

M(M)   = *d(Me)   -   *d(M.)   ,   Mf(Mf)   =    4>f(Mf )   -   (J>f(Mfi)   ; 

VD(M ) + V'IM.)     .   T(M) d ff   ; 
K     e i 

£   =    V(Mf ) -V(Mfi)     . T {iM)dal    = 

=   VR(Mf2) - VR(Mfi)   T£(M) d  af        (5. 14) 

Let 3   denote (Figure 5.2)   the intersection of 5Z  with £ f. 
Two partsV   and £   of £  are adjacent to each other along 3   • 
The part ^jTcorresponds to ^£    and the part 53, to £f2 .  Let ^ , 

M      be the determination of p    on JT and ^    respectively.    Let 
^f   > t£0'   ^2be three vortex filament i intersecting ^ at the same 
point    B°   ancTlocated on /L, f ,   ^   , ^   ,   respectively. 

Similarly, «t  f .   {£. , s^, intersect ^  at the same point   B 
and^f,   ^, Ü?2  intersect ^ at   B'.  The points   B   and   B'   are 
chosen in opposite directions with respect to   B°.   Thus of £   belongs 
to the vortex ribbon   L£ ,   the edges of which are tC f t *£ { . Simi- 
larly f£°  belongs to the vortex ribbon   L,    and su^   to the vortex 
ribbon   L    ,   the edges of   L,   being of, ,   )£.',  while those of   L2 

are £2 ,    ^^ •    Let   Mf >    M/  be the intersection points with J^ f , 
z£'l   of tlu   jurve   <£.    intersecting ^£  at   M* .    Let us define in a 
similar manner the points   M,   and   M'    on £    and  vC    > and the 
points   M, ,   M^   on   i£2 and äßy   . 

We now suppose that   Mf ,    M" and   M°     are chosen so that 

Mf
0B°   =   0(0 .    MJB'   =   Od) ,    MIB 

2~2  =  0(n), 

(5.15) 

1   being a small length that we shall finally equate to zero. 
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Vortex Theory for Bodiee Moving in Water 

Let F   " (C)   be the circulation of   V"   in some closed ci circuit 

We consider the following circuits 

C M° u' M; M
0 M;    M;    M' 

e2 f2 ii ej i!         !£        « 

M M' ML M, M 
e, ej fj fj ej 

M' M M. ML M1 

e2 e2 f2 f2 e7 

z. :   M. M: M: M. M. 
1            h i] l2 ll x\ 

Z. :     M, V; Ml M^ M. 
f             fj ij f2 f2 , 

M M'       M'       M M 
e, ej        e2        e2 ej 

We have 

r"{c-) = o.   r-MCj) = o,  r"(c ) = o.   r-(c) 
2' •   i- 

(5. 16) 

The first equality gives 

*d(M;2) - ^(M^J + ^(M;^ - *f(M;2)] .[^(M.M . <i.d(M; )" 

0(0 
or,  equivalently 

^(Mp   =   M2(M|)   -  Mi(Mp   +   0(0 (5. 17) 
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The other three equalities   (5. 16)   give : 

V"(M0   )   M,M'    +   V" (M; )   M>r     =     O(n), 
eI 1     1 fl        f    f 

V"{M-   )   MlM,   +   V"(M; )   MM'     -     0(i?) 
e2 2    2 f2        f    f 

V"(M°   )   MM;   -   V"(M.0 )   M'M       =     0(1)   . 

l>y adding these new equalities,  we obtain after    (5. 12) : 

> (M
0   )   +   V'(M 
el 

." )1   .     MM;   +   VD(M0   ) + V'(M.0 ) 
lJ J l     '       L   R      e2 12. 

MIM 

r"(cf) + o (»,) 

The left member is equal to     F   "(C   )   +   O ( 7 ) ; we have thus 

r"(ce)  --    r "(c{) + o (>»). (5.18) 

T - T' But   I"  "(Ce) is equal to the flux of —    through any open surface 
Se   the edge of which  is   Ce.   We may take 

S      =    rectangle   M      M1     M'    M       +   S 
el      el      \      ll ' 

+   rectangle   M'^    M^    M.    M.' 
e2     e2     Xl     h 

(5.19) 

where   S,     is any open surface the edge of which  is the contour 
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Vortex Theory for Bodies Moving in Vater 

c.       M:    M!   M.   M.   M: 
X\       lZ       l2       \       'l 

We can take for   S,     a surface entirely located within   Di .   Therefore 
Irpf 1 —• 

^-i—   through   S.     is null.    Let   »^      be the unit vector 
normal to the first rectangle so that the three directions   Me. M^.n",, 
»l   make a right-handed system and let   r, be  the unit vector normal 
to the second rectangle such that the three directions   Ml   M     ,  rT 

r   V f 2   also make a right-handed system.  The vectors  "i    »    f? 
tangent to oC, °    at   M",     and to ^2 °   at   M°2  ,    respectively,   and 
both are in the direction towards   B° .    Hence : 

are 

"(C  )   =     area   M        M'      M!      M.   1  .    T,    .      ( e L el       el       ^       .J 1 

[■ -I-     area   M1       M       M.      M 
e2       e2       '2      1 Q 

; T - T1 

«       ) M: 

T - T 
•   (-r-)M. 

The intensities   d P.     of the vortex ribbon   L.     and   dF        of 
the vortex ribbon   L?    are given by 

dP. [area    M^    M^    M^    M. J .      ^(1^')^   . 

dr. [" ea    M'       M        M.      M 
e,        e^       i^       i 2 2 2 '<]•   ? 2 ^        i      ' M°    ' 

respectively. 

Hence 

r"(ce) = dr,  .   (TTj. TJ + dr2 ( 72 • r2) 

Similarly,   T^  being the unit vector normal to the rectangle 
Mf     M-     M|     Mf     and such that the three directions   Mf     Mj 
nf ,    ?*£  make a right-handed system,  we have : 
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"(C)   =      area   M,     M.     ML     Ml 1    .    T   .    (^-H) 
f L fl       f2       f2      fl i        [     *      ;M- 

We have thus 

r"(c£) = drf.( Tf. rf) 

where   dFr   is the intensity of the vortex ribbon   Lf 

According to   (5. 18),   it is seen that 

dri-( V r 
,) + dr2. ( ^.   T) = drf. ( r

f. ^f). (5.20) 

Let   Bf       ,    B£°    be the points derived from   B,  B1   by the trans- 
lation   U-i-   n"f (B)   and   B/      ,    B^°       those derived from   B,  B' 
by the translation     - -|- n^   (B).    Let 2^    denote the surface whose 
edge is the contour   Bf     Mj     M^     Bi"   and 2J      the surface whose 
edge is the contour   B^1    Bi"1   M}     Mf    .  Similarly let £'„       be the 

B' 

edge is the contour   Bf      Bra    ivi£      ^f^ • 
surface bounded by the contour M„ Ml E'/ Br and 'V' the 
surface bounded by the contour Me M^, 3| B£ , Sj the surface 
bounded by the contour    Cf   and   Se   the surface bounded by the contour 

The surface 

'Kt'z:**t*r^z,_ 
is closed and the flux of 

t through this surface is null. As it 
is equal to+ (dP,+dr2-drf) if    Tj   ff   =   + 1   and to     - (dF   + dT    - 
- dTf)   if   ITi   T£   =    - 1 ,    we have 

dri     +    dr2 dT, (5.21) 

By comparing with   (5. 20),  we obtain 

V'l   "       "2'    T2 *f.    Tf    (5.22) 
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Vortex Theow for Bodiee Moving in Water 

This shows that : 

If    L     starts from   BB' ,    then both   L     and   L     end at   BB1 ; 
X i. Ct 

If   L    ends at   BB1 ,    then both   L     and   L     start from   BB1 . 

Consequently,   every vortex filament ■&£   can be considered as the 
union of two free vortex filaments rf £       and  iff j    >   ^i"    and eß f. 
being two complementary arcs of the same vortex filament a£.     ; 
similarly t^*     an^ *ß f     belong to the same vortex filament  062 ■ 
$£   and   s£    are closed. 

When   y\    goes to zero,    (5, 17)   becomes 

Mf(B*)     =    M2{B')   -    M^B») . (5.23) 

According to (5.22), if V^ . I'- = + 1 , then # is in 
the direction from SC^ ' towards & , ~% in the direction from i£y 
towards ä^p'      and % ^   in the direction from *s£ f   towards ^ \ .     If 

;,♦,   .    T'r   =    - '1 the directions of IT   , X   and ft,   are opposite to the 
preceding ones.   Thus,   from   B to B',    the variations of V , V   and P 
are 

dP. 

dF, 

^^\)-y^t^-    'AtW-^^Ä-   +dM1J(upper 
L J /sign if 

r2(^)-r2(rf2) ^i)-V<']= ;^2^
r' =  +1 

lower 
sign if r on 1818n 11 

As it was to be expected,    (5.21)   and   (5.23)   are therefore equi- 
valent. 

Fig.  5. 3   sketches the configuration of a vortex ribbon when 
there exists only one free vortex sheet. 

This case is that of a wing with a finite aspect ratio. "TJ) is 
the trailing edge of the wing. 
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Let us suppose that the wing is in a uniform motion of trans- 
lation and that the relative motion is steady.  Figure 5. 3 shows the 
general configuration of the vortex distribution.  The free parts of 
the vortices are closed at infinity downstream from the wing.   (In the 
figure the concentration of the free vortices around the edges of the 
free vortex sheet is neglected).   The second frontier between^      and 
y\ consists of the bound part of the vortex filament shed at the junc- 

tion of the leading edge with the trailing edge.  The sumj^ + T*. 
does not cover entirely the wing surface^    .  The vortices located 
on   iJ^^   H   "( S 1

+S? ^ contain no free arc ; they make closed 
rings entirely located on  JJ v 

£ ,„   denote the intersection of /I r     with 2_.        and)]?- 
ei 11 e1 e? 

with  2 i „      .   These two curves a^e infinitively close to 
Let 

that of £ f 

iB .   The relative velocity   Vj^   is tangent to j^ e     at every point 
° jjp,   at every point   B°^ .   These two points can be B and to e.2 considered as belonging to Jj £.    and to ]>£ £     respectively.  Thus 

VR (B°   ) - VR (B') and VR (B^) - VR (B|  ) 2are equal and orthogonal 
to ^7. 1  But £.     Dui    I VR (Bg   ) I   -  I VR (Bg   ) I because the pressure is con- 
tinuous through the free vortex sheet as shown in Section 4.   Con- 
sequently   VR (B0)   =   0 .    Hence  k£{  is orthogonal to ft  . ^/     and 
^£'   also are orthogonal to J^   since they are orthogonal to   Vj^   on 
V* and on   2^2  respectively.   Furthermore the intensities   dl^   = 

"VR (B'J) .    BB'   and   dFj = - VR (Be   )   BB'   are equal.  Hence,  as 
shown by Maurice Roy. 

dr, df. dT, (5.24) 

Of course,   this relationship does no longer hold when the motion is 
unsteady. 

B - STEADY MOTION IN THE CASE OF SEVERAL SHEDDING 
VORTEX LINES 

One case of several free vortex sheets is sketched in Fig.   5. 
which represents the lower half of a double model the two halves of 
which are the images of each other with respect to the   (X,   Y) - 
plane.   The   (Z,  X) - plane is the longitudinal plane of symmetry of 
the hull.   The fluid is unbounded.   The body is in a uniform motion of 
translation in the positive   x-direction   and the fluid motion is sup- 
posed to be steady.   The drift angle a   - (Ox,   OX)   is positive,   so 
that the starboard side is the pressure side and the port side is the 
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Vortex Theory for Bodies Moving in Water 

suction side.   The transverse cuts of the hull are   V   or   U - shaped, 
the radius of curvature of the   U's   is small. 

Experiments show that,   if   a   is not too great,  then the re- 
lative streamlines on the port side 52.   are less inclined on the 
(X,   Y) plane than those located on the starboard side £- .   Let   E.    , 
E2 be a sequence of points on the lower half-stem.   On V     , 
the relative streamlines coming from the   En's   leave the hull at 
points   Sä   located either on the lower half-stern-post or on the keel, 
in the   (Z,  X) - plane.   OnJ^j   ,   the relative streamlines leave the 
hull at points   Sji   also located either on the lower half-stern-post or 
on the keel.   But the points   S^   located on the stern-post are below 
the points   S^   ,  and the points   S^   located on the keel are upstream 
of the points   S^ .    Consequently,  the two streamlines arriving at a 
point   B   on the keel (or on the stern-post) come from two different 
points   E.   The relative velocities on these two streamlines are equal 
at   B,  but their directions differ.   This entails the shedding of a free 
vortex filament from B . 

Thus there exist three surfaces   zLi •   O116!  denoted  2^f0   .   is 
generated by the free vortices shed along the keel ; the second one, 
denoted  2j£     is the mirror image of  2j£   ; the third surface,  denoted 
/.£   is generated by the free vortices shed along the stern-post   £, r 
is its own image (Figure 5. 5). 

Let  "J '   denote the complete stern-post   S0 SS.    and J^ 0 ,tJ3 
the keel and its image,   respectively.   Every free vortex filament 

«J   £   starts either from the upper half of  Jjo'   or from  JJ and goes 
at infinity downstream from the body.   Because of the steadiness of 
the rno'-on.ic  f   coincides with a relative streamline.   Consequently, 
/.£,    is nearly parallel to the   (X,   Y) - plane.   So does the upper 

edge of 2^ i .   The said vortex filament o£ £ comes back from infinity 
towards the body and reaches it either on the lower half of  9i '   or on 

JOo- 

The start point   B,    of St £   and its end   B0   are mirror images. 
Let $6.   be the bound vortex   B0 B.    on £\   and   if. the bound vortex 
B   B0   on  2^ 2 •  ^8 t'le relative velocity on £e     is greater than on 

V] e2 ,  the intensity   dFf   of the free vortex ribbon starting from the 
body between two points   D1   ,   B j  and arriving on   B0BÖ   is equal to 
the difference   dF,   - dl,   ,  dP.    being the intensity of the bound 
vortex ribbon   L1    onj^.    starting from   B0BQ   and arriving at 
B1 B'    ,  while   dl",   is that of the bound vortex ribbon   Lj   on2J2 

starting from   BQEQ   and arriving at   B. B' 

dl\ dr1-dr2 (5.25) 
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Hence   (5.24)   does not hold. 

_•        Let   C   denote a closed contour around the stern post.  Let 
2-(f     denote the port side of 5^£  and   Sf?  i*8 starboard side.   C 
intersects   SZf  at   Mf , S,    at   M,   and V    at   M, .    The circula- 
tion of the fluid velocity 'V   in that circuit id null. Hence,  if all the 
points of   C   are closn to the stern-post 

L ^ 2 J     L 1 1  J 2 '2 

where 

*,,^t^^M,,^^d^(M, 
i

l fo 

*-±L VM'' (>      I 
4'i ^nMI    MM ,  dE(M') 

■€. "(M1) Ü I 

£/£2 
^M'     MM' 

dLlM1) (5.26) 

If the normal to 2^ f   is in the direction from Z^ f   to  2-if   •  we obtain 

M^(B)   =    M2 (B)   -  M,   (B) , (5.27) 

M.    being the determination of M   on i^j , while   ^  is its determi- 
nation on 2^u, • 

Similarly, by toking   n .    onEf     .    in the positive     z -di- 
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Vortex Theory for Bodies Moving in Water 

rection and,   on    2-. f     in the negative   z-direction,   it is easily found 
that 

*if (B)   =     M2 (B) -   Pj  (B) 
for   B   onjif 

for   B   on 
(5.28) 

Equation   (5.23)   holds in all the cases. 

Let us consider two values   a of with i^et us consider two values   a    ,    a.   oi    a   ,   witn   a >a 
The dissymmetry of the flow is more strongly marked foro>a 1 

The part of free vortices coming from  JQ.   and arriving on  «^        is 
greater in the second case than in the first one,  while the part of 
those coming from the upper part of ^Jj'   and arriving on the lower 
part is smaller.  This entails a rapid variation with   a    of the posi- 
tion of the lift,  that is of the   y-component of the hydrodynamic force 
exerted on the body. 

It has been assumed that the line   JQ is in the   (Z,  X)   plane. 
In fact,  if the bottom is flat,   the line ^   becomes a curve with posi- 
tive values of   Y .    However this phenomenon cannot alter seriously 
the velocity induced on the hull by the vortex distribution. 

One among the advantages due to the substitution of a normal 
dipole distribution for the vortex distribution is that one needs not 
know exactly the direction of the free vortex filaments. 

When  a   is too large,   the relative streamlines on 2^ ?   tend to 
pass from   2-t? 

to  2J.   an<i separation occurs on the suction side.   In 
such case,   the above considerations do not hold. 

C - UNSTEADY MOTIONS IN THE CASE OF A UNIQUE FREE VORTEX 
SHEET 

Let us consider a point   Mf   on   2- £   at time   t ,    and let ^ t1 

denote the position of $) at   t' <   t.   Let   P   be the fluid point located 
at   Mf   at   t .    The condition 

B (f) Mf     =    / VR (P, r   ) (5.29) 
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with   Bf (f)   infinitely close to a point   B  « 1^ ,   determines the time 
t'   at which   P   has left   TJ .   It may happen that the position of   B 
J5 depends on   t'.   In that case,   B   can be defined by its abscissa 

^B on   JO •   During the time interval (t*.   t' + dt')   a free vortex 
filament of density   dti d^ F     is lying on a closed contour   Bf Bf Cf 
Cf Bf ,  with   Bf B| = d,,    (B)   and   BfCf = VR (Bf .  t')   dt'.    At   t, 
this vortex filament is lying on the closed contour   M| Mf Nf Nf Mf , 
where 

on 

t 

»JM- -f    v R(P'. r   ) d r   ,    Mf Nf   -   VR(Mf .  t)   df. 

We have therefore 

drf(Mf.t)    =        -2-    d(,If(aB(r),r)dr (5.30) 

or equivalently, 

If   B   is independent of   l',   then we obtain by integrating from one of 
the edges uf  /,r 

nAM   . t) = (M    -u )       - (M    -M ) 
B.t i       ' B(t') 

with 6(1') M 
i 

■"t 

7    =  / VP.r)   d. 
(5.32) 

In the latter case,   the support of the vortex sheet is generated by the 
relative trajectories of the fluid points leaving   j^) at   t' <  t. 
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Vortex Theory for Bodies Moving in Water 

D - UNSTEADY MOTIONS WITH SEVERAL VORTEX SHEETS 

As shown in Subsection   B,  a double model in a uniform 
motion of translation in a direction   Vg   parallel to the   (X,   Y) - 
plane of symmetry,   sheds three free vortex sheets starting from the 
keel^57o >    from its image   Qn   ,  and from the stern-post,   respec- 
tively. 

double model.   Its stern-post is denoted   St S S0 

E,EE0 the segments   E.S. 

We consider below a body which could not be necessarily a 
its stem is the arc 

and   E0S0   are parts of straight-lines. 
The origin   O   of the axes   Ö X Y Z   moving with the body is in the 
middle section,  the   X-axis containing the points   S   and   E ,    and 
the   Z-axis   being in the longitudinal plane of symmetry of the body 
(See   Fig.   5. 6). 

At a given instant   t' ,  there are between two points   B0BQ 

on the keel   EQSQ   (or on the lower stern-post),   two bound vortex 
ribbons,   one on the port side 2^1   •  with the intensity   dX •§^- (B0, t') 
and the other one on the starboard 8ide2J2 .  with the intensity 
dX -4p-2(B0 ,  t'). These two vortex ribbons end along the same arc 
B^ji   B'.j    ,   on the upper keel   E1 S     (or on the stern).  The posi- 
tion of B^ ' ,   depends on   B0 ,    hence on the abscissa   X   of  B0 , 
and possifcly on   t'. 

In the interval   (t1,   t' + dt'),  the increments of the intensities 
of the two bound vortex ribbons are   dt' dX ( § /V JEtt'   • 
dt' dX   ( SHAX/B^1       '  ^ ^ey are not equal to each other a free 
vortex ribbon is shed.   It begins on the segment   Bie  ti   Bje ti   and 
ends at   Boe B'     ; the points with subscript   e   are infinitely close 
to   B„    n   ,    B'A *t   ,    B„   ,    B^ .   For the sake of brevity,  we con- 

Boe B'     ; the points with subscript   e 
Bl , t'   '    B'l, t'   •    Bo   •    Bo 

sider this free vortex ribbon as an arc of free vortex filament 
B le, t' B. oe' with the intensity 

dt' dX dt'  dx (ri 'V B  ,t' 
o 

The fluid point   P   which was at   Bje t,   at time   t' ,    is a time   t 
at a position   Jj^ »i.    In the system of axes moving with the body 

Ble,t'   JX.t'      J, VR (P,  t") dt" . (5.33) 
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Similarly, the fluid point   P   which was at   B0     at   t'   is at   t  at a 
point   ly  ti ,  and 

Vx.f   ^  VR(P.f)df (5. 34) 

The fluid points which were at   t'   on the arc   B0       Bj     ti   infinitely 
close to   B0D|   ti   are at   t   on an arc   J^  ti l^ t, .  Let   t0   be the 
time of the beginning on the unsteady motion.   We suppose that the 
y-component of   V^   has on the arc   B0    Bj     ti   

a constant sign (po- 
sitive) during the time interval [t0, t) (Fig. 5. h).  But it might occur 
that this sign changes at times   t|  ,  t? ,.. .   We also suppose that this 
sign does not depend on the abscissa   X   of   B0 .   The most general 
case is still more complicated and will not be examined in this paper. 

The points   !■, describe a line starting from   I« and ly   .1     uitn-riui- a  line   siai ling   irum    ly   . 

ending at   B0    .  Similarly the points   Jj^ ti   describe a line starting 

from   Jy  t     and ending at   Bi        .   These lines generate a surface A,t0 » ie|t 8 

2^£     and a surface 2-«f    ,  respectively.   The arc   Jj^ .i ly    ,   gene- 

rates a surface   S^  'beginning at   J^ t   ^X t     an^ ending on the arc 

Bn    B 1 .   The arc   l.l±t   S0     is one of the edges of 2*f    and the 0e      'e.t 2'°      e 0 

J-ii.t    S0     is one of the edges of 2^{.  ■   The fluid points which 

Si      describe a surface 2. r   when   t1   varies from 

arc 

were at   t'   on   S, o. M, 

t0   to t . On 2- ,  at   t' ,  we had on the port side 2-.   a bound vortex 

filament of intensity   d^PjIX, t')   on the arc   B0Bj   ^^ and on the 

starboard side Z-o   a bound vortex filament of intensity   dy 1^ (X, t1) 

with the support   B.      t' Bo •  During the interval   (t' ,  t' + dt')   the 

variations of these two intensities are   dji dy l\ (X.t1)   and 

dti dj^ P, (X, t').    It is because they are not equal to each other that a 

free vortex is shed. At   t1   the support of this free vortex is   B)     fi ^j 
e, t      e 

and  its  intensity in the direction from B; e.f 
to   B0     is equal 

Tj (X, t') - F^ (X, t') . Because the intensity of a free vortex 

is time-invariant, the intensity of the free vortex filament whose sup- 

port is   JJJ  t' ^X  t'   *8 at   t   also equal to   dti dy jr. (X, t1) - ^(X, t')! . 

The closed contour   B,,    B oe 
Ble>t 

3X,t' lX.t' BOe   i8 thu8 the 8UPPort 

of a free vortex filament of intensity   dtl dx Trj (X, t') -^2(X,t,) 
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Let Xw )   denote this free vortex filament.  On the arc Ble.f JX.t' 
we find the union of the vortex filaments—^0 ( T)   shed during the in 

terval     t0 ,  t') ,   The total intensity ofthat union on i Jx t    Bj 

thus varies with   Jy ti .  At   J^ ,1   it is equal to/     dti dylPi (X, t') 

- ^2(X,t,)   - dx \ri (X.f) - ^(X.f)   and it is in the direction towards 

Jv t    • Similarly we have a union of vortex filaments on the arc X.t0 

Ix,t    Bo   ; its intensity at   Ix ti   is equal to   dx   T, (X, t1) - I^ (X, t'H 

and it is in the direction towards   B, 

2-if    .  It is one of the points 
Ix  .1 .   It belongs to the trajectory of a fluid point   P   which was at an 

Let us consider a point   Mf     on 

'X. t 
anterior time 
B 

t1   at a certain point   B< Hence, Mf     being given, 
. ,,   and   t1   may be considered as determined functions of   Mf     and e V* 1o 

t .   The same is true for any point   Mf.    on 2L( f ■    and any point   Me   on 
}.f , and also for any point   M   which is at   t   on a vortex filament 

&. if) 
We have supposed that the arc   B0    Bj     t   is infinitely close 

to the arc   BQB j   t   on port side JJ.    and nevertheless that   Vp   on the 
arc   B0    B|     t   i

8 not tangent to ^ 1   •   This implies a contradiction of 
the same nature as that encountered in the scheme relative to a steady 
flow about a wing of finite thickness.  We have seen in the latter case 
that the relative velocity on the wing is tangent to its trailing edge and 
we however assumed that the free vortices leave the wing in a direc- 
tion orthogonal to this edge.  In the present case,  the distance of the 
arc   B0    Bj from the arc B0 Bj   t   is not really null,  for the boun- 
dary layer is'not infinitely thin.   The contradiction seems to be an in- 
eluctable consequence from the assumption that the fluid is almost 
inviscid. 

We now drop the subscript   e   and consider that the support 
of the vortex filament^^Y (t1)   at time   t   is the closed contour   BQBJ   t 

Jx.t1 ^X t' Bo •   ^e arc   B0Bj   t   is bound while the three others are 
free.   The intensity of this vortex filament previously determined is 
dt, dx (T, (X, f) - r2 (X. t')] .  The quantity   d^P, (X, t1) - ^ (x, t')] is 
positive for the free vortex to be shed from port,  but its variation 
with   t1   may be positive or negative. 

To make easier the drawing,  the angles between   B0 Jx ti 
and the longitudinal plane of symmetry has been considerably magnifi- 
ed in   Fig.   5.6.   Furthermore, one observes that,  if the minimum 
value of   X   on the keel is necessarily equal to   —j-(for   S0Sj   plays 
the role of the ordinary trailing edge of a wing),  its maximum value 
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can be lest than 

At time   t ,  the surface   S^   generates a volume   W,   when 
X   increases from   -t- to its maximum value.  We therefore deal with 
a three-dimension." 1 wake   Wt,   <vhich was not the case in the preceding 
sections   A,B or C.  Within   Wt   a vorticity w^   is continuously distri- 
buted.   The vector ä?|-(M)   is tangent to the arc   J^ t* ^X t'   ^ich pas- 
ses through   M. 

The total velocity   Vf  induced by the vortex filamentsJ^y^') 
at a point   M   located inside or outside   Wt  is given by Poincare's or 
Biot-Savart's formula,: 

(p) _.      . rr?fjp) v 

(5. 35) PM dWt W 

The velocity   Vj-   is irrotational outside (W, + its boundaries). It is, in 
particular,  irrotational within   Dj .   The other vortex distributions to 
be considered art- the distributions 

fv (L-t) + (^ 20E) . 

The velocity   V'   induct-d by.J^j    is null outside the hull,  and 

curl   V Zil^   within   D. 

(5.36) 

(5. 37) 

The vortex distribution,»^   consists of ring vortices on 2^.  Each 
ring is made of two arcs B0B|   . on and on The i     ajiu    B |    j B_    un    ^r, f 

intensity of the ring is a constant   d^ '^(X,^   along the ring. On an 
arc   B0B)>t   located on the part2-»i    0^   ^1  ' t*lere exists the vortex 
filament of intensity   dy I, (X, t)   already considered in formula (5. 35) 
- see integral extended to J^   .   The vortex distributionQ^   is equiva- 
lent to a normal dipole distribution (Z,^"')- I* generates a velocity 

and one has 

- (ve vv? within    Q (5. 38) 

where   V0   is due to some incident flow on the body. Outside the body, 
the total velocity is 

V(M)   =   V.(M) + V,(M) + V (M) 
1 2 o 

Let us put V     = V*   (outside   W  + its boundaries) 

(5. 39) 

(5.40) 
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rs? To calculate <t)f , one can observe that a vortex filament 
^Zv(t') is equivalent to a uniform di^ole distribution on any open sur- 

face the edge of which coincides v/ithJ^Mt'). For that surface we may 
take the surface   Sy .■   consisting of the five following parts : 

(i)      The partS   (X)   of 2^     behind the arc   B B ; 

(ii)     The part of £)       interior to the contour SI I B 
fo 0 -if X.f    < 

(iii)   The part of Jj,     interior to the contour  S J J        B 
ll '   -t  t1  X.t'   '»* 
i 2 

(iv)     The part of 2_],   interior to the contour  I S S, J I / 
f -L t'  0^      J- t' -4- t'l 

(v)      The part of the surface   &'   generated by the arc   Jv ti Iv ti 
when   X   varies from   -r to the value   X   denning the vortex 
filament^^lt'). 

S 
o o 

(5.41) 

On this surface let us select a unit vector If normal to it ; for instance, 
v is on  2 |    in the outward direction with respect to the hull. On the 
fifth part of   S^  ti    K is thus directed toward   2 j ,  etc.   Let   M+,  M" 
be two points infinitely close to each other,  M+   being on one side of 

M~M     is in the dire» 
jyJ^Y^')   in a circuit 

the surface and   M~ on the other one so that   M~M     is in the direction 
of 7.   The circulation of the velocity induced byj/y^')   in a circuit 
starting from   M+.,  turning around^^/jWt')   and ending at   M"   is equal 
to the intensity of^/y    ,   and equal to the density of the normal dipole 
distribution on the surface.  Hence the velocit 
dipole distribution is 

:ity potential due to the 

Vx'x.t.<M) = rl Vx^') -h^VL  •Ä-.^M^^'M5-«) 
■^ X.t' 

The total potential outside   Wt   and its boundary is 

<WM)      l     I d .d.. ?' 
f t /»max X >f(M)=yjL v X    x,f(M> (5.43) 

According to (5.41) the contribution from S     is 

(5.44) 
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this notation recalls that any point   M'   on X<.    belongs to an arc 
B0Bj   t ,  the abscissa   X   of  B0   being at   t    a function of   M . 

Let us consider a point   Mf   ,  Mf,    or   MJ  on J^f   »Z-fi  or 

2rf£ .   For instance   Mf     determines a pairfX, t') and it belongs only to 

the vortex filaments J^^ ( T)   for T ^t' (Mf ) .   The contribution from 
Ef0   i» thus : 

I (r.-rJ "57 r—TdSfM   ).   (5.45) 
Zl      X       2X(Mf ).f(Mf )      Mf     Mf0

M fo 

The contributions from Z^f.   and 2^£  have analogous expressions. 
Lastly the contribution from the fifth part of   S^ »i   is given by 

/; •■//.,- 
-, (r.-rJ -^_-1-nLrds(M')    (5.46) 

1      ZX(Wti')*vW   MM 

Remark - 

- The considerations (if the present Subsection involve the im- 
plicit assumption that the positions of the lines j$• ^jiyo   on t*16 hull 
are independent of time.   This may be untrue if the amplitude of the 
unsteady motions is great,  and also if a strong separation occurs. 

- It is also to be pointed out that several free vortex sheets 
can exist without a rotational wake   Wt .   This is,  for instance,  the 
case of biplanes.   Each of the two wings gives rise to one vortex sheet 
and one deals with  horseshoe free vortex filaments on each vortex 
sheet. 

VI    - EQUATIONS DETERMINING THE TWO VORTEX FAMILIES (l) 

The fluid motion about the given body depends on the hull geo- 
metry, on the own motion of the body and on the incident flow on the 
body.   The hull geometry is referred to a system   S   of axes moving 
with the body.   The fluid motion is referred to a system   S'   of axes 
fixed in space. 

(1) See foot note on the following page. 
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S'   is chosen as to coincide with   S   at a certain . K.e   t0 . As 
is arbitrary,  it is possible to express the fluid motion in term of 

the hull geometry 

.elocitv ^ thHe0
f
ry 0/Cha

i
pter   V- A' aPPlie8 * any time   t. The fluid velocity   V xs defined in the whole space.  We have : 

VfcjfM'.tHtyM'.O+l^M'.t)   if   M€D 

V *d(M'. t)+^(M'. t)j+'Vo(M1. t)+?'(M'. t) 

(6. 1) 

V(M'.t) = 

= V_(M,.t)   if   MtD. 

In this formula   v      is the velocity of the incident flow.  We have : 

V      = r*        on   Z)       and inside    £ (6,2) 
O O t- "  e 

V'iM'.t) = curl 2TfE(t) 

[•">'•      V'(M'.t)     u   ,1    M'.n    , -.7.   =   0   „„E.    : (6.3) 

'^(M'.O.^M.,,),    Vf(MM)   =V*r(M.,t), 

(6.4) 

(1)   For the sake of simplicity, it will be assumed in this Section and 
also in   Section VII   either that there exists only one free vortex 
sheet. 

1231 

i mill—HI——MHiMiiiMiM ii im        ii — 



""^^■^ mmmmmmi^^^**^   pum n »■»■•(■■"n " ..■..-■■..M ..,..-,,.■. -^" —T™-—, -■ 

Brard 

Within   Di ,  curl   V = curl V£ . There exists therefore a velocity 
potential4>] ,   suchthat 

V     -V   = V*,    .    with —•  =   n.V_   onL. 6.5 
t, l QTl lid l 

since 
' = -"nA V'(M') - V^M!)   = (". V'^ "7.7'   =   0   and   T' = -"nA V'fM') -V^M:)   = (n. "V').-   on E 

This potential is then the solution of a Neumann interior problem. * 
We can put 

with 

-L,{u'.t).~LrL(P'.t)    *    ^d2:(P..t) = {7.v^)    (6.6.) 
JJ^r M' M't 

ff-. ^ 
Eq. (6. 6')   is singular, but the  condition // "n, VE d£*,= 0 is satisfied 

at every t and (Jjjis determined up to an additive constant within   Dj . 
Eq.  (6. 6')   replaces Eq.   (5.7), and it is much simpler. 

Let   u1   ,   u-   ,  Uj    denote the components on the moving axes 
S   of the velocity   Vg (0)   of their origin   O  and   u^  ,  u^ ,  u6    those 
of their angular velocity     Ü £ .    According to   (6. 6)   and   (6. 6'),  we 
may write : 

6 

*, (M1,   t   )   - £ * . (M)u. (t  ) . (6.7) 
I o J = ' U jo 

In this formula,    M   is the point moving with the body which coincides 
with   M'   at   t = t0 .    The   4> j; 's   only depend on the hull geometry 
and on the position of the system of axes   S   with respect to the body. 

Furthermore,  it follows from the second equation (6. 1) 
that 

*    (M1 , t )   =     «D   (M: , t )   -     *   (M' . t )   -     «) . (M1 , t ) , a       i      o iio o o f o 

with      M'eE and   M'M*!   = "nw (0+) . (6.8) 
1 M 

Consequently, the density M of the normal dipole distribution on  2-r 
which generates (J)  is the solution of the regular integral equation : 

d 
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S'   is choien as to coincid 
bitrary,  i 

the hull geometry ;^.*'bi— - " PCiMeTo-exp^ L^rl^te^'of8 

locity ty^ZX^?"   V A' aPPlie8 at "y time   ^ ^« A-«! "cny   v   is defined in the whole apace.  We have : 

^*d(M'.t)+<tf(M'.t)+Vo{M'.t)   if  MOD 

' *d(M'. t)+*f(M'. t)l+Vo(M'. t)+V'(M'. t) 

(6.1) 

Vd^'.t) 

= V   (M'.t)   if  MÜ3. 

In this formula   V     is the velocity of the incident flow.  We have : 

Vo   = ^*o      0n   ^ •    and in8id''   51 (6.2) 

iV'{MM) = curl '-J§^^4; ^E(t) 

M pT-dD^P') 

[^''      V-(M-.t)     Ü   il   M'.D.TT'^   =   o   onE 
* i 

'Vd(M-.0.V1,(|(M.(t),    7f(M'.t)   =V(J,f{M..th 

(6.3) 

(6.4) 

(1)   For the sake of simplicity, it will be assumed in this Section and 
also in   Section VII   either that there exists only one free vortex 
sheet. 
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•T'^'V  -TX^'V  d£wd2:^ 

=  <t>   (M; . t )  -   <i>    (M' , t )  -   ♦   (M- , t ) . 
1       1        o o o f o 

Let us consider the following three particular cases : 

Ca8_e_a_ -      V      = 0 ;   no free vortex is shed by the body. 

According to   (6. 7)   and   (6. 9)   we obviously obtain : 

(6.9) 

MM1 .   t  ) 
o 

?   ß. (M)u. (t ). 
J        J J0 

(6. 10), 

Casp b -      V     =   0 ;      il At)   -   0 ,    VT     (0)   =   constant ;   o E E 

the fluid motion is steady with respect to the body.   Hence,  the support 
of the free vortex sheet is close to the surface generated by half 
straight lines starting from the curve J^T   in the direction of   -V^.(0). 
At   P   fixed with respect to the body and located on the generatrix 
starting from   B , we have 

Mf (P) (M. "iV (6. 10)v 

M1  and   ^2    being the values of n    in the vicinitvofjjgr on the parts 
53     > Zo      of £ adjacent to each other along   4^.  To determine 

M on   V a complementary condition is needed.  Since the pressure 
p   is necessarily continuous through the free vortex sheet  £ c ,  this 
condition expresses that   p   is continuous cm  2l e   through« 
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Ca£e_c_-    V    =   0 ;   the motion of the body consists of a 

translation nearly uniform with small variations 
of    VE(0)   and     TfE   . 

In that case, the support of the free vortex sheet   2^ f   is 
practically the same as in case b.  This case will be studied in some 
details in the next Section. 

VII - HYDRODYNAMIC FORCES EXERTED ON THE BODY 

The case a previously defined   (Section VI)   can be subdivided 
into two cases,    a1    ,  a     according as the motion of the body is uni- 
form or not. 

Case a    - The body is in uniform motion 

Since   V0   is null inside   De   and no free vortex is shed by 
the body,  the fluidjnotion is steady with respect to the system of 
axes   S.   Hence i~~  =0   inside   D(. ,    and in this domain,   Euler's 
equation ^t 

R dt 

reduces to 

-4- v, -^R   -V   (TVR) 

=   v^*l   **   -W^ inside   D 

We have therefore 

~r P,|(MJ   = 4" " F   
r2(M ) -T V

R(
M
J 

+ "nstant on E      (7. I). r     a     e c       t, e^Re e al 

The system ^7     of hydrodynamic forces exerted on the body consists 
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of the elementary forces      Pd(Me) irM d £(M) I 
ten in the form : L -I 

This may be writ- 

3d   =   L(TpnE   r2(Me)irM"   PT(M) AVR(M))dE(M)J       (7.2)^ 

where 

VR(M) T fcW + ^R<Mi>]    C  T \(Me)   ' (7- ^ 

This relative velocity is calculated inside the bound vortex sheet by 
using the vortex distribution ; it can be considered as the incident 
velocity on the element of bound vortex filament ——(  f d ^)   which 
is at rest with respect to the body. 

The equilibrium of the set   £   of fluid points located inside 
Dj   requires 

_LV f    =   r    (_L   A2        r
2) . 

E v 2        E ' (7.4) al 

This gives 

P^M.)     = 1 n   z 2 V 
T   "  _    r    (M)   +   constant on Z-», 2 E i i (7.4^ 

The system of forces exerted on the set   E'   of fluid points 
belonging to the bound vortex sheet is thus 

^   =   [(p(Me) irM - p(M.) nM) dE(M)l  = T- pT(M) AVR(M) dL(M)l 

(7.5) al 

Finally we have : 

l-x d *-' T C (7.6) al 
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where 

Fc   -   m    fi ^    7   (C) ; (7.7) 

m   being the mass of   E,  and   7(C)   the vector orthogonal to the axis 
■^      of the helicoidal motion of the body with its origin on A     and its 

end at the center   C   of the domain   Dj .    FQ   is thus the centrifugal 
force exerted on the set   E   of (luid points,  i. e.  the centrifugal force 
acting on the fluid mass "displaced" by the body. 

Case a,- 

This case differs from case a1   in that   Vj-fO)   and (or)   Ü   £ 
may depend on time. 

/ \ d   •* IT y (7. 4)a    does no longer apply if   —-j-£-      / 0   for 

curl     7, 
dfi 
 I 

dt (7. 8). 

and      -  '''E   canno1 ')e identified with-^—Vpj .   The equilibrium of the 
set   E    of fluid points therefore requires that the expressions for the 
absolute force per unit mass be different inside   De   and inside   Dj . 
If   F -   V   JY denotes the expression of that force inside   De ,   its 
expression inside   Dj    is   F + F' ,    and we must have 

■J-^p (M'.t  ) -- F'(M'.t  ) --l-V   (M'.t  ),    with ♦^ d o o       dt     c. o 

dQ dV dv 
curl F'(M'.t  ) - 2——^  = curl-—-(M'.t  ) - curl ^-^ (M'.t  ) 

o dt dt o d t o 

inside   D. (7. 9) 

Since 

we have 

V'(M'(t) - V^M'.t)   =    -V   ♦jlM'.t), 

dV 
F'   =  -j-   (M'.t  ) +    V* .(M'.t ) d t o I o 
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and 

d*. 
-T V^ - -^(M'.tJ + (^ -^ vE(M-.to)+ v^iM-.g 

(7. 10) 
or 

o 

(7.10')^ 

The unknown function   ii.     has to be determined by the condition that 

4"   P. (M! , t) reduce to  V ±(^Z  rZ) . 
p a        l        O it, 

when case a. reduces to case a. 

This implies that    ♦,    is harmonic inside   D.. 

Since 

(7.11) 

*! (M; • v = ^ uj (to) ^ij (Mi) • 

the derivative - -jTj- ^(Mi.to) contains two kinds of terms. The 
terms of the first kind are those due to the variations of the UJ 's 
when the rotation of the system   S   of axes is ignored.   Let us dem enote 

^VV  VM) 

the sum of the terms of the first kind. The terms of the second kind 
are due to the fact that Mj is fixed on 2^ i . while IA[ is fixed in 
the space referred to the fixed axes   S'.   Consequently they sum up to 

- v   (M: , t ).    r*. (M: , t ). E       i      o 1       i       o 
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*,^.to) = vE(M'. to).   ^jCMi.g. (7.12) 
a^ a, 

This expression takes the same values in both cases   a? and 
a1   provided that in the uniform motion of the body corresponding to 
case   a,,    Vj^O)   and    jf £   be identical at   t0   with those of the real 
nn-uniform motion.  Since    ♦i     is harmonic within   Dj ,  it is uniquel 
determined in that domain by   (7. 12) .    We have 

^-Pd^-v-?^ vMi,+T "k^Vo^i 
(7.13). 

Now,  let us consider the velocity potential  cj   inside   De . 
Euler's equation gives,  after   (4, 1'), 

(7. 14)., 

By comparing with   (7. IL   .  we obta in 

ät    '"e'V        "     ""   ^e     m ca8e   al 
-^(M1^  )   =   0     on   E 

ot e    o 

In cases   a^   and   s^,  we have 

(7.15) 

*=     * ,     inside   D    , d e 

ind according to   (6. 7)   and   (6. I0)a 
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4).(M'.t ) = <t>.(M:,t ) + M( 
d     e     o d     i    o ^'V =  ^VV [<t,lj(Mi, + Mj(M)] 0n5-e 

(7. 17) 

Hence,  with the above notation, we have 

Tt-W-^ = ^j^o^i/Mi)+ "j^^  " VM;.to).v*d(M;,to) 

The second term on the right side only depends on the instan- 
taneous velocities.   It is the same in cases a? and   a,   for equal velo- 
cities   Vj2(0)   and    f] £ .  But,  in case   a.,   the first term on the right 
side is null ; the term on the left side is null also by virtue of    (7. 15^ 
Hence we obtain 

-^-♦d^-^^jVV [vMi) + Mj(M)] (7.18). 

Lit us put 

dF^ -   pf(M)    AVR(M)dE(M) (7.19) 

The system of forces exerted on the bound vortex sh^et is 
that of the elementary forces 

[dFT]    = [( Pd(Me, to) - Pd(MVto)) nMI dE (M;] 

= [- " j V^ Mj(M, "M 
d2: {U^\ * [dfi] ' 

(7.20). 

The system of forces exerted on the set   E   of fluid points 
is that of the elementary forces 
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+ TnE   r2(M)nM)   d^(M)] (7.21)a 

Putting 

/ < q. 8. 

6 

"Pi?!   :ii
(to) (*ii(Mi)   +   "^M))?    dE(M)l  . 

(7.22). 

we see that the final expression for '.ie system of hydrodynamic 
forces exerted on the body is as follows : 

'A  - Yq.s. \^\ (7.23) 

q   8      is the "quasi-8teady"system   >.' forces and ^^/^   is that due to 
the sc called "added masses". 

Case b - 

This case is a limiting one,  involving the assumption that the 
motion of translation of the body became uniformst a time   t   consi- 
derably anterior to the present time   t0 .    Since   12 £ = 0,  one has 

^  =,^T 
(7. 24). 

y. But -^ (j   cannot reduce to a torque because of the effect of 
the free vortex sheet. 
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Case c - 

The   x'-axis is taken in the direction opposite to the mean 
velocity   V£   of the origin of the system of axes moving with the body. 
Let  u^   be the absolute value of the   x'-component   of   Vt .  The sup- 
port of the vortex sheet may be considered as generated by half 
straight lines starting in the positive   x1-direction   from a certain 
line  l^on  £  .   Let   P'{  and   Bj   denote two points on the same gene- 
ratrix;    B^   being infinitely close toj^  We put  i   =   |B^P^|  .   Let 
6 =   -   oo   be the time of the beginning of the motion of the body and 

t0   the present time. 

If the fluid motion were steady as in case b,  one would have 
^(Pf, t0) =    **£(Bf>t0).  Because it is unsteady,   one has 

t -4- 
r 0   UE 

"f^f-^ =  "f^'V -j it'^i'^*' '     (7-25,c 
- 00 

For reasons which will be elucidated later,  we put 

Mf(P}.to;0+)=   .£(B'.to).   «Mf(p..toiO+) 

M,(P'  t  ;t  -f) = nABLt ) -   ifAP'.t ;t  -f),    with (7.26) 
lioo fto loo c 

»Mf(Pf'Vto"t,) 

0   if {<   u,_(t  -t') 
£    o 

t-f    « 

/ -T-^t-  T)dT    if f >u,
r(t "*') J or     i    i E   o 

One sees that,   if  ^(Br, t) is a constant in the time interval   (t',t ), 
then    M f(Pfi t0 ; t0-t')   is equal to that constant at   t0 ,  provided 

f < u^(t0-t,)■  For{>   u^(t0-t,)I  then   M f   at   P|   still depends at 
time   t0   on the variations of  Mf(B^, t)   for   t<   t1.  In particular,  the 
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fluid motion would be steadv at   t     if /n    ♦» 
the infinitely large interval"(^      J^   f    )   Were con8tant during 

One may write 

■MT».  d2:(Pp.(7.27)c 

This mis expression is the velocity potential due to the normal dipolc 
distribution on      Sf • 

The expression 

«4>f(M 

^f ' (7.28) 

is the difference between the true expression of ^(M'.t- ; 0+)   given 
by   (7, 27)c and that which would be reached at   t0   if the motion of 
the body had been uniform in the interval   (t1, t0),the velocities 
^£(0)   and   if £   during this interval being constant and equal to those 
of the real motion at   t0 . 

Obviously : 

«<X>f (M'.t    ; t   -f) 1 o      o -0   when   t    -  t' 
o + (» ; (7.29) 

*£(M'. to ; + oo )   i8 the limit reached when   f       ,. *,       ThiB 

S     te.rt8)thaend8teady
i
Ca8tbWhen   ^(0)   and    ßE   art conl^t 

and    .5 ?\        ?"'    N0 the velocitie8 ^ich determine  M ABI t ) 
and    M £(PJ, tj = Mf(B^ t0)   for every    f  > o. " f^f'V 

The difference 

6*{{M',tQ;   +oo)   =    ^(M-.t^eo).^..^.^ (7 30) 
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is the deficiency of <t> £,  that is the difference between the  <t £   deter- 
mine d'iirthe—Bteädy case for the present velocities   V£(0, t0) and 
nE(t0)   at   t0   and the true   <J>£   in the real motion at   t0 . 

Let   Bg      and   B^       denote two points infinitely close to   B|( 

but located on X<ei     an^    2^e     '   re8Pectively'  We have 

»Pv ^ ß{B'   ,  t ) 
e2     0 

»•(B'  . t ) ; e1     o (7.31). 

It is the solution of the integral equation 

.T,(M'.,o) -- 

*, (M! ,  t  ) - cfc (M'.t    ; 0 L) ,    M'   being on E.      (7.32) 
1       1 O I o c 

We have 

M(M'.t ) o 

6 

j = l     "j^    ^(M) "^ * f(M', to ; 0+) ) (7.33)c 

Jy being a linear and homogeneous functional the argument of which 
is the function   <I) £ (M', t0 ; 0+) : it may be written in the form 

^(M'.to ; 0+) =//      KIM'.P')  *f{P',to ; 0+) dE(P,).(1)        (7-33')c 

Let us substitute   (7.27)     into   (7.33)     and take into account 
(7.26)   and also the condition 

(l)  K is the resolvent kernel of equation (". 32)   . 
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p (B^ .  g   =   p (B;2 . to) . (7. 34)c 

Then we obtain for determining    ''flB^ , t0 ; 0+)   a Volterra integral 
equation. This shows that the fluid motion at time   t0  does depend 
not only on the present velocities   V£(0,to)   and    ITE^O)'   ',ut al80 on 
the history on the motion during the whole interval   t   <   t0 . 

Let us consider now the system c/j   of hydrodynamic forces 
exerted on the body.   We readily obtain 

^   'K'-K*?:    ^'. (7.35) 
c 

where 

</^ = rdf^i =r. pf(M) A^R(M)dE(M)]. 

-Fc=    [-Pill   TdDi]   =    ^"E^^'^V^H" 

^a   =   [-^ü.(to)(<I,1.(Mi) + ,.(M))nMdE(M)]( 

^a' =    [" p^-|t    ^f^'' 'o ; 0+) ) "M' 
dS' (M,,J •     (7- 36>c 

The definition of    IdFxJ    and oi Jr  ^   are exactly the same 
as in formulas   (7. 20)a   and   (7. Z2)a ,  respectively.   But the system 
of forces    [dF^.]    does not coincide with that defined in case a.   This 
is due to the effect of potential   «t ,   on        potential    <I> J.   On the con- 
trary,   the systems of forces^*-   J   coincide in both cases if the sys- 
tems of the six accelerations   Ujft0)   are identical. 

Let^Tf   denote the system of forcey^j   evaluated at   t 
under^the assumption that   V^O)   and  fi £   coincide with   Vr (0, t0) 
and  fi E(t0)   in the time interval   (t',t0), with   t' «  t0 .  Then the 
difference 
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S^    -Si   -y?    -   [^]   -   [äF'T]        (7.37){ 

is the deficiency of ^/^j    due to the deficiency ^St  defined in 
(7. 30)^ 

For the sake of simplicity, the true system 6(t>d of hydro- 
dynamic forces acting on the body is very often replaced by the esti- 
mate 

forces 

■^1 -:9\. ■ rc*y.- ('•"). 

The system ^y"^ ' ^r   ^8 caHed the quasi-steady system of 

^.s.      -&h     -    ?C- <7'39)c 

The error involved in the substitution of J'   A   ^or c/^d   ^8 

^d   "J^d    =    -6^'+^a- (7-40) c 

Like x_y^ \J7'h.   rePreBent8 an inertial effect, but due to the free 
vortex sheet only. 

Let us assume,  for example,  that a jump of   V£(0)   and  ß E 

occur in the infinitely small interval   (t0 - 0,  t0), and that these two 
velocities remain constant for   t >   t0 .    It follows from the third 
equation   (7.26)c   that 

«Mf (P^ .  t0 : 0+)   =   0   for every   (   . (7.41) 

Hence the free vortex sheet is not immediately altered.  But, 

c 

one has 
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^t 
*i(M'.to-.0+)--±-J]^->ti(B'i,to)  ^ M^T dE^)   (7.42)c 

E 

Jz   T   at   t     has the same components as at   t0 - O.^^r^   i» null at   t0, 
but the system of forces necessary for creating the jump is infinite. 
Furthermore,  at   t0 + 0 ,   'Vs7ä   ^8 generally finite.   Of course,  when 

t  + oo ,  the deficiency _6 C^j   calculated by taking into consi- 
deration the new velocities   V£;(0)   and   JJ £   tends to   zero    ; ^r'^ 
also tends to sero and 

limit J^7  -    J%' .0. (7.43)c 

The effect of ,>/a   may be considerable.  For instance,  it has 
been shown that the jump of the lift of a wing with an infinite aspect 
ratio is at   t0 + 0   equal to half the difference between its final value 
and its value at   t0 - 0   (See   [2]  ,   [3]    ) . 

THE ORIGIN OF THE FORCES EXERTED BY THE FLOW ON A 
BOUND VORTEX DISTRIBUTION 

The above considerations started from the idea that a dyna- 
mical relationship necessarily exists between the hull of a moving 
body and the vortex distribution satisfying the adherence condition on 
the hull surface. 

Another viewpoint is that any vortex filament which does not 
move with the fluid is necessarily submitted to forces exerted by the 
adjacent sets of fluid points. 

The proof is classical.  It is sufficient to summarize it. 

Let JZbe a vortex filament,Ji^     its bound part,    ds.     an 
arc oijg*   .  Let   0   denote the middle of the arc   ds.    ,    Oz   an axis 
in the direction of   ds.,    and    r   ,   Q   ,    z   a system of semi-polar 
coordinates.  Let   D'   denote the domain 

D'   =lr,tf,z:   0<r    ^R, 0 *■   0 < 2 K   AX |< ydsj . 
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Hence   D'   does not include the arc   ds.   .  We consider the relative 
motion of the fluid with respect to the system of axes just defined.   The 
velocity may be written in the form 

V      =   V     +   (V - iV) +  «V   , 
R o 

where   V0   defines some incident flow,    V   is the velocity induced by 
J^and    j V'   that induced by the part ds,    oi J^f.  Let   dE'   be the 
set of fluid points inside   D',  and   dE,    the set of fluid points belonging 
to   ds-   .   One easily sees that the momentum    I (dEj)   is null,  and, 
therefore,   that,    I (dE1)   being the momentum of   dE' , 

± r(dE') = A, (dE. t dEi) IL' 7R (°V"R MS1; 

(TT is in the outward direction , and   S'   is the boundary of 
(D'+ds). 

One readily obtains 

lim  4- MdE') R-»0  dt ' 
^-P f   AV.   ds, , 
2 i        1 

(7.44) 

where    T   is the intensity of —Z:   F  =    f^.    i8     ,    is   being the unit 
vector tangent to   ds,    and   Vj   the finite incident velocity on the arc 
ds. 

'1    ■ 

V.    ^    V     +   v   -    «v 
i o 

On the other hand,   by the momentum theorem,   one has 

~T(dE')   =       clF ',4 - p n dS' , 
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where   - dFJp   ia the force exerted on   dE'   by   dE1   . From Euler't 
equation   (4. 1), we have inside   D' : 

^—L - (curl V  ) A (V. +   5 V<) -V 
d t o i [4<V •7''2] 

Thia gives,  when   R^—0,    Pj = -   p Vj .    JV + constant on   S,    and 

lim    ^-r(dE1) 
R-»0   dt 

dF'   .-±-   P T A    V. da, 
T     2 i      1 

(7.45) 

By comparing   (7.44)   and   (7,45),  one finally obtains 

dF'      =     -  P T A      V. ds, 
T i      1 

(7.46) 

dFJp   is the force exerted on the arc   ds,    of the bound part 
i£ I   ot £   by the adjacent sets of fluid points.  The force vanishes 
with   Vj ,  that is when the arc   ds.    moves with the fluid. 

Formula   (7.46)   is of practical interest when the vortex dis- 
tribution equivalent to the hull is replaced by a unique concentrated 
vortex and a suitable distribution   of sources or normal dipolea on the 
hull surface. 

This formula does not imply that the fluid motion around the 
bound arc of the vortex filament is steady.  If   F   varies with time,  one 
has to consider that another vortex filament i£' ,  oi intensity  d P    , 
appears in the time interval   (t,  t + dt). i6'  is distinct from i?   although 
their supports have a common part ; the free part of *£   does not coin- 
cide with the free part of «c   . 

Let us consider now a flat vortex tube inside the bound vortex 
sheet over a hull ^   .  This tube has a thickness   *    , a width   da 
Let   da,    be the element of arc of the tube. Applying   (7.46),  we have 
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6F'T   =        -PrAV.d.^^P^KD.d^JAV^da^ 

P  (f A VR)M   dE(M) (7.47) 

because 

VR{M)   =   lim   V. (M) 

d<r i 0 

We know that,  if the motion is unsteady,    dFly   must be re- 
placed by   dFf .    However there exists no contradiction.  The term 
- p-^= -P V*       which appears when tbe vortex tubes belong to a sheet 
comes from the integration of     -P -&j-  through the sheet. When the 
vortex tube is isolated,  there is no discontinuity of   V   on the surface 
S'   and the contribution of the termp -^X- in the integration of pfp 
on   S'   is   0(R' ds| ) ,  thus negligibly small.   This is not the case when 
one deals with a sheet.'1' 

CASE OF A HULL EQUIPPED WITH MOVABLE APPENDAGES 

The treatment of the problem arising from the presence of 
such appendages obviously depends upon their position with respect to 
the hull.  When the axis of the rudder coincides with the edge of the 
stern,  this rudder may be regarded as a part of the hull,  Thie shape of 
the hull varies with time. At each instant   t   there is however a vortex 
sheet adhering to this hull.  The method of Section VI therefore applies 
in principle.   But separation may occur at the leading edge of the rud- 
der because of lack of continuity.   Furthermore the effect of the vis- 
cous boundary layer is never negligible in this region. 

When the rudder (or diving plane) is at some distance from 
the hull,  the rudder behaves as a lifting surface with a small aspect 
ratio.  Because of the thinness of the rudder,  the concept of the "in- 
terior" of the rudder becomes meaningless and the thin wing theory is 
to be used. 

(1)   By using (7.46) one can simplify the expression of the fictitious 
force F' inside Dj when dfiE ^ 0        - See [l3]   Chapter III, B, art. 9. 

dt 
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VIII - THE APPLICATION FIELD OF VORTEX THEORY IN SHIP 
HYDRODYNAMICS 

GENERAL - 

It has been seen in the preceding Sections that the vortex 
theory applies to any body moving in water whatever its motion may 
be.   The methods to be used in practice may considerably vary with 
the shape of the hull,  the motion of the body,  the boundaries of the 
fluid domain.   To perform the calculations,  it may be advantageous to 
substitute normal doublet distributions for vortex distributions because 
a regular scalar Fredholm equation then replaces a vectorial singular 
Fredholm equation.  This is why the vortex distribution kinematically 
equivalent to the body has been divided in Sections   V   and   VI   into 
two parts,  one of them being equivalent to a normal dipole distribu- 
tion.  When the motion of the body cunsists of a pure translatioiv,   the 
vortex theory leads to computations which are not mun   i implicated 
than those involved when source distributions are used ; they are even 
simpler when the distribution of the pressure over the hull is needed. 
This can be of interest when there exists an incident unsteady flow. 
The theory extends to the case when there exists a free surface,  at 
least when the condition on the free surface is linearized.  Neverthe- 
less,   some difficulties are to be expected when the hull pearces the 
free surface.  It is necessary to close the vortex filaments by their 
mirror images with respect to the plane of the free surface at rest. 
This can lead to difficulties analogous to those encountered in the case 
of the Zero-Froude number approximation when the hull is replaced 
by a normal dipole distribution   [6, 7]  . 

One of the main features of the theory developed in the pre- 
sent paper is that it includes the case of bodies which are neither thin, 
flat nor slender.   However,   to the knowledge of the writer,   the vortex 
theory is still used only in cases of thin lifting surfaces.  There is 
thus a need for more general methods and one of the purposes of this 
paper is to give means to extend the field of applications. 

In this Section the present field of application is briefly out- 
lined.   Yet the problem of maneuverability and control of marine vehi- 
cles is examined in a more detailed manner,  for progresses in that 
domain seem to be strongly needed. 

D'ALEMBERT'S PARADOX 

There exist many proofs of this theorem.   The following one 
may be of interest .for it clearly explains the physical meaning of the 
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hypothesis required for its validity. 

The body moves with a constant speed   V£   in an unbounded, 
inviscid fluid at rest at infinity.   One supposes that no separation oc- 
curs  and that no vortex sheet is shed by the body.  Let   ( JZ >     I )   be 
the vortex sheet which allows the fluid to adhere to the side   X] i   0^ 
the hull.   The vortex filaments ^   are closed rings on 2J •   They are 
orthogonal to the relative streamlines Si?   .   Let   i_   be the unit vector 
tangent to a line i£   in the direction of   T ,    and   ia      the unit vector 
tangent to a line  (f   in the direction opposite to the relative velocity 
V^ . A vortex filament •£   is defined by the curvilinear abscissa aQ 

of its intersection with a line ^f 0   chosen once for all.   The intensity 
d F      of the vortex ribbon located between two vortex filaments 
t£ {  90)   ando^ (    <r0   +   d   a0 )   is a constant.   One has : 

dF       -     1 .1   do       =   7   ( a    ) da   =   -yU  )   da  . (8. 1) 
s O o 

and the absolute vulocity of the fluid is 

curl 
I 

4r 

/bow r    > 

,.   „     o     o      /     MM1 x       ' 

The relative velocity is   Vj^   =   V - V£ .   Thus the hydro- 
dynamic force on the part   (d^   i J—)   of the vortex distribution is 

dF*T     =    d5^     +   d^      ,      with 

dyT     =   -   pf (M)   A (- VE)   dZ  (M) . 

dfjr       =   -    pf (M)   A V (M)   dE  (M) 
2 
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The system of forces   d<7x       is that of the forces exerted by 
the vortex distribution on itself and is therefore equivalent to zero. 
Also the systems of forces ^/^   •3'   a   0^ t*le generai theory are 
equivalent to zero.   Consequently the system of the hydrodynamic 
forces exerted on the body reduces to that of the forces   d7~.   .   This 
gives the general resultant 

^d   =   "//T (M)  A  VEdZ   (M) 
JJz 

and the resulting moment with respect to a given point 0 : 

OM    A ~ 

T 
Since   /   d8(M) = 0 ,    one has : 

^ -'Si OM   AmM)   AVE(M)1    dE(M) 

f- ince   I 

•if( 
—» /• bow /• 

^d    ^/ VEy{a)   da dt(M) = 0 (0.3) 
^stern J£{<,0) 

Furthermore  : 

TÜd   =PJjfrM^E  ■   ™]  -V;[ö^.^(M)]|  dZ(M) 

/bow * 

y    (ff
0) d<'0  / ÖU- ds(M) 

Jtern /w „   ) 

bow 

T 
/.bow 

■t- I o        o  I 

bow /•  DOW * 

+  p/       y  (°0)*'QI (V*E •  OM) d*8 (M) . 

•'stern "V U    ) 

/•bow 

p/   >    (Vdtfo/ (^E • ÖÄ) di*(M) . (8.4) 
■' stern y 

E 
('   ) 

This term is not null,  at least in general. 
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Equation   (8. 3)   expresses the d'Alembert paradox. If free 
vortices are shed by the body,  then   (8.3)   is no longer verified. ^J)^ 
has two components ; one of them is a lift and the other one is the 
"induced resistance". 

KUTTA-JOUKOWSKI'S THEOREM - 

The first version of this theorem concerned wing profiles in 
a uniform motion of translation, with   V0 = 0 .  The wing is an infinite 
cylinder and its profile   ^  is its intersection by a plane normal to 
the generatrices.  The problem can be considered as the limiting case 
of that of a wing,  when the aspect ratio of which tends to infinity. 
When the aspect ratio is finite, the relative velocities on the two 
sides  2^ie   •   2-(2e   0^ t*le w*ng near the trailing edge are equal and 
opposite. This follows from the continuity of the flow between 2^1. 
and Z-L and between Z-r?     and  Z^f?     •  Hence, in the case of a wing 
profile,   one must have   VR£ = 0   at the trailing edge   B .  This is the 
Kutta condition which determines the density of the vortex sheet on 

V ,  that is the ratio   **'     on the contour   ^f of the profile. 
*^ Off 

The Kutta condition holds when the motion is unsteady. 

The theory developed in the preceding Sections applies to 
wing profiles.  But because one deals with two-dimensional motions, 
the concept of complex velocity potential can be used and leads to 
considerable simplifications.  In particular,   one can associate a vor- 
tex distribution and a source distribution on the skeletton of the hull 
to obtain the desired profile shape0) . 

(i)   The determination of the exact distribution of the velocity at the 
leading edge requires some care    [s]  . 
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WING PROFILE IN A QUASI-RECTILINEAR.  NON-UNIFORM 
MOTION 

This problem has been considered by many authors and fi- 
nally solved by von Karman and Sears in 1938  [z]  .   These authors 
gave the correct form of the Volterra integral equation for the total 
circulation   T    around the profile.   They showed,   in particular,   how 
the circulation behaves following a perturbation in form of a step 
function occurring at time   t0 .   The response time is long and appro- 
ximately corresponds to a path equal to   15   times the chord,  but the 
effect of the total virtual masses is considerable and the lift at time 
t0 + 0   is half its final value.   In    [3]    the writer has completed the 
calculation in order to obtain the pressure distribution on the profile. 

UNSTEADY THREE-DIMENSIONAL MOTION OF A WING WITH A 
FINITE ASPECT RATIO 

There now exist methods for solving the previous problem 
in the case of a thin wing of finite aspect ratio when the amplitudes 
of the deviations from a uniform motion of translation are small. 
Dat and Malfois   [4]  have given a linearized theory using an accele- 
ration potential   ^    -   ^ e   18t   with 

V    -Ä*. +   is  *    for *   =    ^t
18t 

E     Ö * 

Vg   being here in the negative   x-direction.   The pressure   P   is 
given by 

-P^ .      P   =     pe  18t 

The component in the vertical direction of the velocity is 

wing 

W   =   w e lSt   with   w =   -    '   -—// K(x - *,  y-»)) M^.i) ^^ > 
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Vortex Theory for Bodies Moving in Water 

where 6 p is the pressure difference between the two sides of the 
wing. The difficulties due to the singularity of the kernel have been 
overcome by the authors who obtained a very good agreement between 
calculated and measured values of 

PROPELLER   THEORY 

4  p   for harmonic motions. 

The determination of ;he steady and unsteady forces acting 
on a propeller is a problem of importance (efficiency,   risk of cavita- 
tion,   vibrations,  noise,   etc. . .).  We just mention it for it is beyond 
the purpose of the present paper. 

SHIP MANEUVERABILITY THEOPY 

A first step in the mathematical maneuverability theory con- 
sists of the determination of the b^und vortices when the relative mo- 
tion is steady.   This problem h^ r been considered by P.   Casal in his 
Thesis dissertation for a ship at a constant drift angle in the horizontal 
plane and for a ship in a forced turning motion in the same planed'. 
Several drastic simplifications were made : 

(i) The waves generated by the ship are neglected.   Thus one 
deals with the Zero-Froude-number approximation. 

(ii) The ship is assumed to be infinitely thin ; the heel angle is 
ignored. 

(iii) The free vortex sheets are attached to the hull along the keel 
and its mirror image with respect to the plane of the free 
surface at rest. 

(iv) The free vortex filaments pt-art in the direction of the bis- 
sectrix of the angle between the local velocity of the body on 
the keel and the keel line. 

In fact,   because of the errors due to the first three assump- 
tions,  the fourth one is essentially used for the determination of the 

(l)     Casal's Thesis w. s '"'ritten 20 years ago when the author was 
staying as s-ientist at ' >o Bassin d'Essais des Carenes (Report Bas- 
sin d'Essais des Cannes - 1951)   and published much later    [9]  . 
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behavior of the curves giving the density of the bound vortices in the 
plane of symmetry of the ship   (y = 0).   Let  {     denote the reduced 
abscissa     *    ■ ,  the origin of the moving axes being at the center of 
the plane   y = 0 . 

The integral equation of the problem expresses that the velo- 
city induced by the total vortex distribution is tangent to the plane 
y = 0 .  We give below the density   f ( f  )   of the circulation.  In the 
case of an oblique translation,  one has : 

M   *   )   =    —2    «  tan  a     * j (   {   )       with 

draft/length ratio.        a . drift angle,    and 

^        =      Ml  -n + 0.4e0'4(1-«  ) * = Dirac function 

In the case of a gyration of radius   R   about a 
projectio 
one has : 
projection on the plane   y - 0   is at the abscissa        f j =   -^-B-    sin n   , 

an axis whose orthogonal 
LB 
L 

M i ) ^•^r-m. 

"M ) =   d - f^id -o - i 

Figures   8.2   and   8.3    show the graphs of   "^   in the first 
case and in the second case respectively. 

The force   Y   and the moment   N   with respect to the   z-axis 
(vertical upwards) are 

Y =   -f SV2 " C08 

M _   L       1 2 
W ^-J-—PS\ »   cosajAj  sina-  B 

aAsino + B-— +C —   — C - C It} 2R 2R    ZRJ'    ^      ^ Uj; 

a   A    sin o-  B    —=- . r     — -L        n        r-it \ 
.   ' '    2R      Cl    2R IRJ'  CI  ^(«J) 
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Vortex Theory for Bodies Moving in Water 

A ,    B ,    A.   ,  B,    are constants relatively close to unity, 
and   C ,  Cf    are functions of   {  j . As     {:   is practically invariable, 
C   and   Cj    may also be considered as constants. 

In fact all the coefficients depend on the hull shape and must 
be experimentally determined.   Let     - (J) , -*=-   4»     be the   y-compo- 
nent and the moment of the hydrodynamic force exerted on the rudder, 
M0   the added mass for the double model calculated by neglecting the 
free vortices effect for a non-uniform motion in the   y-direction, 
and   I0   the similar inertial moment in a non-uniform rotation about 
the   z-axis.  We put : 

1 L 
M =—  /> S— T «    k , 1        *. L 

o      2 2 
k   = k + k 

1 o 

I + I    --   (M + M ) (-^)2 

o o       Z 

Furthermore,   because the circulation can never take immediately 
its asymptotic value corresponding to the steady motion defined by 
the present values of  a    and    Je-   .  the present value of   Y   is not 
given by the above expression,  but by   Y - Y,   .   Similarly the hydro- 
dynamic moment is not   N,  but   N - N    .   Y,   and   N     are the defi- 
ciencies due to the history of the motion. 

^ 

Finally the equations of the unsteady motion are as follows : 

* + Y, 

1 
_L_ 
2V 

2V       dt   V 2R; 

=   Aa   +B    — + C   -rrr dt 2R 2R 2R -psv2,. 
N. 

a - B. L - C L 
* +  —f- 

L   ..                L/2 
2R I 2R 2R    IPSV2,, 

Let 
S   =   Aj B   +   ABj    -   A. k 

One sees that in a steady motion,  the ratio     -—r     is given by 

(A +A,) * 
1   4-PSV2,. 

Tk-+ ^^AC,) ^ 2R 
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If   S > 0,  this equation has one and only one.root.   If   S <  0,  there 
exist three roots for small values of  ±oSM*rt ' an^>  ^n particu- 
lar,  for  (t     =0 
three roots with 

Let   (^-) 

(-53 2R     M    :    \2R    '2 
that the steady motion   {-j£r- ),    is unt; 

H 

tabL 

) 2    and   ( 
4 

J^-^     be the 
It is to be expected 

This is confirmed by the study of the equations of the un- 
steady motion when Y, and N. are neglected. After a perturba- 
tion,  the stable steady motion is reached again without oscillation. 

When one takes into account   Yj    and   N.    ,  that is the terms 
depending on the history of the motion,   one sees that,  if   S   > 0 ,  the 
steady motion is still stable,  but,  after a perturbation, it may occur 
that the transient motion be oscillating.  It may even occur that no 
straight motion be possible for {)    equal to zero ; the head is cons- 
tant in the mean,   but it is continuously oscillating. 

Oscillating motions in calm water are t^ irefore a conse- 
quence of the delayed circulation around the s'   p.   They appear when 
the ship has to proceed a long path before the circulation becomes 
close to its asymptotical value. 

In spite of the rather rough assumptions involved in Casal's 
theory,  it appears that this theory is qualitatively in good agreement 
with experiments,   except for what concerns the position of the result- 
ant force in the oblique translations.  According to the above expres- 
sions for   Y   and   N   when   R =       ,  this force should intersect the 
plane of symmetry at a point practically invariable and located inside 
the ship,   Experiments on models show,  on the contrary,  that this 
point can be located ahead of the bow for very small angles of attack. 
Then,when the angle of attack increases,  the { of thi s point rapidly 
decreases and,   finally,  takes a value rather close to that assigned by 
the theory. 

The explanation of that discrepancy seems to be that the 
free vortices are shed along the stern-post and rot along the keel line 
when a is very small.   Because self-sway motions <>re very undesi- 
rable, attention is to be paid to this point.   That is albo for this rea- 
son that we have indicated above the existence near the Sow of a very 
strong vortex represented,  in a first approximation,  by a   j-function. 

In the past,  the wanted maneuvering qualities mainly con- 
cerned the characteristics of the motions at large rudder angles. 
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Some cases of course unstability had been stated, but regarded as 
rather exceptional and the behavior of the ship in transient motions 
was not a prior matter of concern.   The situation became quite a dif- 
ferent one with submarines achieving very high speeds.   A dynamic 
stability in the vertical and horizontal planes of motion are required, 
and an automatic pilot system is used for performing combined ma- 
neuvers in both planes. 

Surface vessels such as big tankers also need remarkable 
maneuvering qualities ant to that end,  they are also equipped with 
automatic steering systems. 

Nevertheless,   the automatic control of the ship does not 
solve all the difficulties involved in maneuvering, One can even say 
that,   from a certain point of view,  it gives rise to new problems. 

The writer has described some years ago some among the 
methods used at the Bassin d'Essais des Carenes for studying ex- 
perimentally the case of submerged bodies,  deterniniug the coef- 
ficients of the equations of the motion and predicting the real motion 
of the full scale vehicle   [lO] .   Ina recent paper  [ll] ,   M. Gertler de- 
veloped analogous vir-ws on the purpose of this type of matched ex- 
perimental and mathematical researches. 

However powerful this way may be,  it leads to the introduc- 
tion in the equations of motion of much too many coefficients and per- 
haps in an unappropriate manner.   This situation does not favour the 
prrgress of the knowledge of the fundamentals in maneuverability.  In 
[l2] ,  the writer drew the attention to the time response to a maneu- 
ver and the risk of erroneous interpretation of «   perimental results. 
The writer is of the opinion that new purely the  retical researches 
are needed.   Casal's ihesis has been given as an example to base this 
opinion.   The present paper has been inspired by the same line of 
thought. 

CONCLUSION 

Although the Vortex Theory plays an important role in many 
Chapters of Ship Hydrodynamics,  it does not seem to be used in all 
the cases where it could really be fruitful.   It is so when one deals 
with the Ship herself. 

Several explanations of the rather reluctant attitude of the 
Naval Architects with respect to the application of vortex theory to 
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■hip hulls could probably be found.  A fact is that an arc of vortex fi- 
lament does not generate a velocity potential and in practice the re- 
presentation of the hull by a source distribution can be simpler than 
its representation by a vortex distribution.  However the vortex theory, 
which allows the tluid to satisfy the physically meaningful condition of 
adherence to the hull,   certainly offers mathematical models closer to 
the reality than those drawn from the other types of hull representa- 
tion.   Furthermore,  it leads more rapidly to the determination of the 
distribution of the pressure and of the velocity on the hull surface. 

The present paper is therefore an attempt to explain the 
fundamentals of the vortex theory and of its application to the kine- 
matics and dynamics of bodies moving in water. 

After a brief survey on the various aspects of the vortex 
theory in inviscid fluids (Section I), one will find in Section II the 
Poincar^ formula which permits the calculation of the velocity in a 
fluid domain when the vorticity inside the domain and the velocity on 
its boundary are known, and in Section III the application of Poincar^'s 
formula to the determination of vortex distributions kinematically 
equivalent to any given ship hull.   The class of these distributions is 
infinite.   Each consists of a volume distribution inside the hull and of 
a surface distribution over the hull.   The volume distribution can be 
chosen arbitrarily.   The surface distribution associated with it is de- 
termined by means of a singular vectorial Fredholm equation of the 
second kind. 

Section IV gathers material to be used later to solve the 
dynamical problem. 

Section V is devoted to the study of the structure of the vor- 
tex distribution which permits the fluid to adhere to the hull surface. 
The surface distribution is the sum of infinitely flat vortex tubes call- 
ed here "vortex ribbons".   The vorticity inside the hull is twice the 
angular velocity of the body.   Thus,  if the angular velocity is not null, 
the intensity of each vortex ribbon is not a constant along its length. 
Furthermore, if free vortices are shed by the hull,  some of the vor- 
tex ribbons do not close on the hull.   To overcome the difficulties aris- 
ing from these circumstances,   the vortex distribution generated by the 
body is divided into two distinct families almost independent of each 
other.  One consists of the volume distribution and of the surface dis- 
tribution associated with it so that the velocity induced by this first 
family outside the hull be null.   The second family consists of a vortex 
sheet entirely located over the hull when no free vortex-sheet is shed 
by the hull.  In the opposite case,  it includes the free vortex-sheets. 
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As ahown in Subtection D,  it may alto include a volume vortex dis- 
tribution in the wake when the motion is unsteady. 

Section VI deals with the integral equations determining 
the two families of the total vortex distribution.   The singular vectorial 
integral equation related to the first family can be replaced by a sin- 
gular scalar Fredholm equation for a Neumann interior problem.   It 
can be solved once for all whatever the body motion may be.   The in- 
tegral equation for the second family reduces to the scalar regular 
Fredholm equation of the second kind for a certain Dirichlet interior 
problem when the fluid is unbounded and at rest at infinity.   In the 
most general case it becomes a Volterra equation expressing the so- 
lution in terms depending on the history of the motion. 

Y* Section VII is devoted to the study of the syatem ^J^d   0^ 
hydrodynamic forces exerted on the body. As stated before the total 
vortex distribution determines inside the hull a fluid fictitious motion 
which coincides with the absolute motion of the body.  For this kine- 
matical condition to be compatible with the dynamical equilibrium of 
the fluid,  it is necessary to introduce a certain system of fictitious 
forces per unit mass inside the hull. 

at   tr 

The system JSA   of hydrodytiamic forces exerted on the body 
can be written in the form 

^yd        '^q. s. *J/f-    !%*X 

where . >q. s.    is the quasi-steady system of forces,  that is the sys- 
tem to which    yd      would reduce    if the motion of the body were 
uniform in a large interval    (t',t0) . L5^a ^s t^e 8ystem due to the so- 
called added masses ; it is independent of the free vortices shed by 
the body.  There exists a difference between the structure of the free 
vortices at   t0   and at   t = + oo ,   the latter being evaluated under the 
assumption that the motion of the body is uniform to   t   >  t0.   This 
difference affects both the bound vortex distribution on the hull and 
thejncident velocity on it.  It entails the term   -  i^/j .   The last term 

at   t0, 

9.    (»O   -0) 
0    and 

.jTa   *8 an inertial effect due to the partial derivative 
of the bound vortex sheet. J^j   reduces at   t0 +   0   to 

1/a (to + 0)   ^ t'1e body motion is uniform for 
for   t  > t0 + 0 but discontinuous between   tn - 0   and   t. 
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Section VIII consists of a brief synopsis of the present appli- 
cations of the vortex theory to ship hydrodynamics with somewhat 
greater emphasis on ship maneuverability. Attention is drawn to 
Casal's thesis about this problem.   Casal's theory certainly involves 
too drastic simplifications and some among the conclusions are unac- 
ceptable.   First,  a ship cannot be considered as infinitely thin,  and 
even if such an assumption could be accepted in a first approximation, 
it would be necessary to satisfy the boundary condition on the whole 
surface of the longitudinal plane of symmetry of the ship.   It is still 
necessary to resort the empirical or semi-empirical methods.   But, 
in the writer's opinion the part devoted to theory is really unsuffi- 
cient. 

The purpose of this paper was to prompt researches in that 
direction. 
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Figure    1 

Figure   2 
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Figure   4 

Figure 5. 1 
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Figure 5. 2 

1266 



•^mmmmmmmmm^——» mm~^*wi^m^m-   ■ ■■l i ■ 11 H    l 

Vortex Theory for Bodies Moving in Water 

v~ 

f- 
( 

{- 
r 

i 

I 
r 
r 

r 

Figure 5. 3 
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Figure 5. 4   -   Half-model in oblique translation (positive drift, 
permanent motion). 

The streamlines of the relative motion are more inclined towards 
starboard than towards port.  The lines ending on a same point of the 
longitudinal contour   SS0E0   do not have the same direction,   hence 
the shedding of free vortices along   SS0E . 

E streamlines starting points on the stem, 

S' end point of the starboard streamlines, n 

S" end point of the port streamlines. 
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Figure 5. 5.  a 

part of      Jf     on the rear of    i^      , 
0 fo 

:1 S^!   •    2f(M   = 
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Figure   5. 5.  b 
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J*V Jx.t'+dt' 
/ 

M 

Jx^'^t' 

Figure 5. 7 
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Figure 8  1 
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NOMENCLATURE 

1. OPERATORS 

V = (v^—  .-^   .-r—).  (the axes x., x   ,  x     make a right- ox dxy        ox i      £       i 

handed system). 

2 
^ = V      Laplacian operator 

A Symbol of vectorial multiplication. 

2. VORTEX FILAMENTS AND VORTEX SHEETS 

Jjr Vortex filament 

d 2^ Element of area of a vortex sheet 

5^  ,^.     The two sides of £ 

C Infinitely small thickness of the vortex sheet 

n Unit vector normal to the sheet in the direction from 2-r 
towards ^- 

V Velocity of a fluid point 

^ Curl of  ^ 

T Limit of t w   when «—»-0 ; "T = (T - T1) + T'   in sections   V, 
VI, VII, 

T Unit vector tangent to 2^ in the direction of   T 

V(P.) - V(P ).  (or   V(M.) - ^(M ) ) : jump of V   through L from 
P eto   P.   (or \rom   Me to   M.),  P   (or M  ),   P. (or M.) be- e    .        1  ^       v, e 1".   e ' e"      1 v i' 
longing to 2^    . 2-( • '   respectively. 

T   =    - n   AW(M ) - ^(M.) 

(^ Line on 2-« orthogonal to theJz's 

P Circulation of   V   in a closed circuit 
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df Intensity of a flat vortex tube on 2-«,  the width of the tube 
being   da . 

dT?= df .7* 

3.    GEOMETRY AND KINEMATICS 

2^ Hull surface 

D.  ,   D   , Interior,  exterior of 2-( respectively 

D' Domain occupied by the real fluide :   D' C D 
e ' e        e 

V Absolute velocity of a fluid point 

—♦ 
V Relative velocity of a fluid point : velocity with respect to 

axes moving with 2^ 

VL Velocity of a point fixed with respect to the moving axes 

0 Angular velocity of the moving axes 

JLr, Surface supporting a free vortex sheet 

V Incident velocity on LJ 
o 

(J) , <t>        Velocity potentials   :   V^ = r<ti if curl   ^7=0,^   = V<t> 
o oo 

u) irl   V* 

"R '' curl \ 

^y (with or without accents) :   line on  ZJ along which 2L j.   is at- 
tached to 53 

V Velocity induced by the bound vortices 
d 

-* 
V Velocity induced by the free vortices 

7 Vector   ■?  on H, 
f f 

drf dP    on Ef 

Density of a normal doublet distribution over the hull surfaced 
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li Density of a normal doublet distribution over the free vortex 
sheet ]£\ 

j£ Vortex filament on 2^- 

(J), , (J)f    Velocity potentials generated by the normal doublet distri- 
bution on 2J,  2^     respectively 

V              Velocity induced inside   D.   by the vortex family   (D. ,  2u_) 

+   (]£.  j-!-)   in Sections V, VI and VII. 

<t>. Velocity potential defined inside   D.    such that  V    - V =V4>- 
1 (Sections VI and VII) 1 1 

4.    DYNAMICS 

p Mass density of the fluid 

F Exterior force per unit mass   :   F =Vtt 

-» d??E dV' F' Additional exterior force inside   D.    if —-—  / 0 ; F' = -c— 
i dt    r ^ t 

p , Hydrodynamic pressure 

d^fl, Hydrodynamic force exerted by the flow on an element   d2^| 
of a bound vortex sheet or on an element of arc of a vortex 
filament which does not move with the fluid 

y Systernflf hydrodynamic forces exerted on the vortex sheet 

'/\ System of hydrodynamic forces exerted on the hull 

•VC System of inertial forces inside   D. 

'y^ System of complementary forces   pF' dD.   inside   D. 
*s   i r 11 

Q? System of forces    -p(|^)        n*dE (M)   on E 
^ ' Me 

{f' System of forces    -pT{M)    V    (M)dL(M) 

ff System of forces due to the added masses when there exists 
0 no vortex sheet 
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^X Estimate of «•'   when the deficiency affecting *     is neglect- 

J/J     =«X       +iS' Estimate of ^y/     when the deficiencies affecting 

<l>     and   Q    are neglected 
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DISCUSSION 

Peter T.   Fink 
University of New South Wales 

Kensington, Australia 

The principal message of Admiral Brard's paper is that we 
should take bound vorticity more seriously,  and although I like the vor- 
tex ribbons I cannot make up my mind about them before trying some 
examples.   I want to make a contribution concerned with the problem 
of modelling shed vorticity,  particularly when there are sharp edges 
fixing separation at known positions.   Figure 1 is an example of a la- 
boratory simulation of a section of a ship heaving at its moorings, 
with no forward speed.  A student,  Mr.  W.  K.  Soh, and myself are de- 
voting ourselves to potential flow modelling of (in this case) bilge keel 
separations and I think there is something of more general interest in 
this which I should like to speak about. 

In two-dimensional flow   such problems can,  of course,  be 
transformed to the case of a flat plate moving normal to itself in ar- 
bitrary unsteady motion.   For practical calculations it is usually ne- 
cessary to replace the vortex sheet by discrete vortices and one might 
expect the calculation to be straightforward, using Kutta conditions at 
the edges,  the Kelvin Theorem to ensure that the total circulation re- 
mains constant and the condition of zero force on each vortex in the 
standard classical vay.   This certainly works quite satisfactorily for 
lifting aerofoils with unsteady motion in two dimensions.  However,  for 
a blade moving normal to itself the circulation is always zero,   so that 
the Kelvin theorem does   not help and a degree of arbitrariness has to 
be injected.   The arbitrariness is required because the Kutta condition 
will not give both the strength and the position of the first of the vorti- 
ces one is going to put in.   Figure 2 is an example which shows a plate 
of unit length moving towards  the  left,   in this  case five   seconds 
after an implusivc start,  that is,  when the motion is still largely iner- 
tial.   Fresh discrete vortices have to be added to give the picture shown 
here   and in one of the earlier attempts they wert added at constant 
intervals of time ; and not long after a degree of zigzagging developed, 
as shown.  My attention was drawn to the fact that Professor Birkhoff 
had issued a warning about this sort of procedure over ten years ago. 

Figure 3 shows the improvement when the time intervals are 
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not equal but   are chosen so as to make the distance travelled by the 
nth shed vortex equal to the separation of the first vortex from the 
edge,  but there is still some zigzagging.   The real problem of this 
kind of discretisation is that when the discrete vortices are spaced too 
closely,  when they get close to each other,  they indulge in a planetary 
motion about each   other ; and if they are spaced too far apart you will 
not get the velocity field right and the shape of the sheet will not deve- 
lop properly. 

Figure 4  shows our current recipe for this sort of situation, 
and that is that after each step of the calculation one moves the vor- 
tices to approximately equidistant positions while maintaining the 
centre of vorticity of the whole lot in the correct position. 

Figure 5 shows a coi .parison with the only exact solution 
known to myself,   von Wedemayer's.   The circles on that graph, using 
the equispacing recipe,   seem to give excellent agreement for the de- 
velopment of circulation with time for the vorticity shed from one of 
the edges.   The total circulation shed into the stream is,  of course, 
zero,  and that is one of the big troubles in this game. 

Figure 6 shows what can be done with this method.  Here a 
plate has completed one half cycle of oscillatory motion no "mal to it- 
self and Figure 7 shows the disposition of the vorticity after a com- 
plete cycle.   I will not bother you with estimates of force associated 
with this kind of thing or conformal transformations,  but I would like 
to pass to the last example. 

This shows the cast of a plate.   Figure 8,  a bit like the earlier 
one, growing in length vertically while moving normal to itself.  We 
have applied that solution to slender lifting surfaces of arbitrary plat- 
form (arbitrary,  that is,  while still remaining slender)   and camber and 
we seem to get rather better results for that type of lift surfaces with 
leading edge vortex separation than the results obtained over the years, 
first by Leg enure here and then by Brov/n and Michael and others.  So 
we are not completely put off by Birkhoff's warning and 1 would recom- 
mend our particular recipe for calculating the development of vortex 
sheets,  although we have not,  naturally,  got anything on uniqueness 
for the results. 

We are now working on a number of configurations of interest 
where there are sharp edges to fix the separation,   such as that shown 
in the first picture,   and also on others,  where non-linear lift pheno- 
mena occur. 
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REPLY TO DISCUSSION 

Roger Brard 
hassin d'Essais des Carines 

Paris,  Fvanae 

Professor Fink has presented a number of examples of great 
interest,  but,  in general, not connected at least directly with ship 
manoeuvrability problems,  that is with the main purpose of my paper. 
For instance,  the first case mentioned by Professor Fink is essential- 
ly related to the damping effect of a bilge keel on the rolling motion of 
a ship at zero speed. 

The concept of vortex sheet does not apply in two-dimensional 
motions except in some cases like that of a flat wing in an unsteady 
motion of small amplitude in the direction perpendicular to the veloci- 
ty of the incident flow at infinity {K4rm4n-Sears problem).   Vortex 
theory in inviscid fluid does not permit to predict the growing and the 
shedding of vortices in the vicinity of the edge of a flat plat moving in 
a direction perpendicular to its plane.   This phenomenon is dependent 
on  the  viscosity.   The theory  however applies provided comple- 
mentary conditions be added to precise the mathematical model.   The 
considerations developed by Professor Fink could have been the sub- 
ject of a separated paper to this Symposium. 

Tht case of a lifting surface with separation at the leading 
edge seems lo be similar to that of the A  wings.   I suggest to Pro- 
fessor Fink to compare his method to those used at present by the 
Office National d'Etudes et de Rechcrches Aerospatiales (ONERA). 
An ONERA-report is quoted in the list of references   oint to my paper. 

1280 



^.■fc-V'"" imm'im ,,Vmmim im       . ^-f ■ ■■w^i i|»i ■ ]   I I 

Vortex Theory for Bodies Moving in Water 

DISCUSSION 

V. N.   Treshchevsky 
Rpyloff Research Institute 

Leningrad,  U.S.S.R. 

Professor Brard has presented a very interesting paper here, 
I think it is very important and relevant,  especially in cases where 
non-stationary hydrodynamic characteristics are discussed for ship 
constructions for instance,  which are very difficult for calculation. 
From the other side the experimental data in this case is connected 
with insticable errors,   so mutual correction with theoretical and ex- 
perimental data seems to be necessary. 

I must say that work in this direction has been carried out in 
the USSR under the connection of professors Fedayevsky and Polyakoff. 
The analysis of investigations shows that the choice of a proper scheme 
for decision ground equations,  is very important because the initial 
equations for vortex density are singular. 

In this connection my first question is,  what methods of prac- 
tical calculations were used and,  particularly,  whether the decision 
corresponds to a definite class of functions,  and if so what kind of 
class is used here ? 

Another question concerns the structure of the vortex sheet 
behind and near the body,   I want to ask whether in case of a wing the 
mentioned structure supposed in the sheet will correspond to Sears or 
Birnbaum representations or is it an original one ? 
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REPLY TO DISCUSSION 

Roger Brard 
Basein d'Essaia des Carines 

Paris, France 

In reply to Dr.   Treshchevsky's comments, I would like to 
draw his attention to the fact that the equation giving the vortex dis- 
tribution  on the hull  is   not singular when the motion of the body con- 
sists of a pure translation.   If no  free vortices are shed,  the vortex 
distribution on the hull is equivalent to a normal dipole distribution. 
The density of the latter distribution is yielded by a regular Fredholm 
equation expressing that the interior determination of the velocity po- 
tential coincides with ex + constant,  if the body moves in the x-direct- 
ion with the speed c.   Hence one deals with the Fredholm equation for 
the Dirichlet interior problem. 

It the angular velocity of the body is not null,  then the total 
vortex distribution on the hull is the sum of two distributions.   The 
equation j^iviny one ol them is regular.   The other one is singular.   But 
it is possible tu show that the irregular vectorial equation is equi- 
valent to <i seal.tr Kredlolm equation for an interior Neumann problem. 
The solution ul this equation is imuli simpler.   This point has bteii 
omitted in Jhc preprint of my paper,   but it will be included in its final 
ver sion. 

When iret- vortices are shed,  a point of importance is to de- 
termine the position of the shedding line.   It may occur that several 
shedding lines exist simultaneously.   The problem would be under- 
determined if no account were taken for the condition concerning the 
continuity of the pressure on the hull through each of the shedding 
lines. 

It is also to be pointed out that,   if the shedding line is unique, 
then the vortex distribution on the hull given by the regular Fredholm 
equation and the free vortex distribution can be combined in such a 
way that they can be replaced by normal dipole distributions.   This 
probably leads to important simplifications. 

When une deals with a wing of finite thickness, the method 
using the acceleration potential does not apply in a simple manner, 
except,  perhaps,   it one can combine source and vortex distribution. 
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DISCUSSION 

John P,  Breslin 
Stevens Institute of Technology 

Hoboken, New Jersey,   U,*S,A. 

Admiral Brard has certainly given us an exhaustive treat- 
ment of vortex representations, and I think he has made an excellent 
point that this approach to ship problems has been largely neglected. 
I just wanted to make a point here of an intuitive character. 

He points out on page   1255,   regarding Casal's theory - which, 
as I recall,  is a vortex theory for the lateral force and moment on a 
ship,  which is considered to be quite thin,  that while the lift force ob- 
tained from this theory is quite reasonable,   (and I believe was in agree- 
ment with low aspect ratio theory if one takes twice the draft divided 
by   the length as the aspect ratio of an equivalent wing) there is a dis- 
appointment in that the position of this lateral force does not coincide 
with the observations obtained when one measures the lateral force 
and static yawing   moments on ship models.   In that case,  when one 
divides the moment by the force the result is a lever arm which is 
greater than the half length of the ship.  In any event,  this so-called 
point of application of the lateral forces is often off the ship.  It seems 
to me, most of us are av/are that if you take a body revolution - the 
spheroid is the classic example - it has a zero lateral force in an in- 
viscid fluid but it has a very definite moment,   say, about its mid- 
length called the Munk moment.  It is my feeling that ships may be 
neither fish nor fowl,   they are neither bodies of revolution,  nor are 
they flat lifting surfaces to which the lifting vortex theory could be ex- 
pected to apply in all respects.  In particular,  if we think of the ship 
as a modification of a body revolution,  that is that the central portion 
looking at it side on,  together with its zero Froude number reflection 
on the water plane,  can   be described as a body of revolution plus flat 
surfaces fitted into the bow and stern representing the sharp bow and 
the sky in the region of the stern,  then wc should expect that it would 
be necessary to account for the combined effect of these fin areas or 
to treat the body as a body revolution with fins fore and aft.   This pro- 
blem,  then,   has to be solved theoretically.   This, I should think,  would 
then exhibit some of the body revolution characteristics in its moment 
and without disturbing particularly the rather excellent agreement that 
one obtains from small angles with the vortex theory. 
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REPLY TO DISCUSSION 

Roger Brard 
Hassin d'Essais des Carines 

Paris,  Frame 

I agree with Dr.  Broslin that a real ship is not reducible to 
part of a vertical plane and that,  for this reason,  Casal's model does 
not give the exact features of the flow about a ship. 

I think,  however,  that many points of Casal's approximate 
solution are of interest.   The existence of a concentrated bound vortex 
near the stem seems to me in qualitative agreement with experiments. 
The fact that,  in the case of a ship in translatory motion at small 
angle of attack,  the lateral force is often   located ahead of the stem 
could be explained by the velocity induced on the stern by the strong 
vortex filament to which the said concentrated bound vortex belongs. 

One of the drawbacks of Casal's model is that the boundary 
condition on the hull is satisfied only on a horizontal segment at equal 
distance from the two horizontal edges of the longitudinal plane of 
symmetry.   Furthermore the solution does not fulfill the pressure 
continuity condition through the free vortex sheets in the vicinity of 
the shedding lines. 

I am not   so  optimistic as Dr.   Breslin about thin wing theory 
with an aspect ratio of . I. One of the advantages of Casal's theory is 
that it is an approach for taking into account the fact that the so-called 
trailing edge is a very short part of the true shedding line (often less 
than 20%). 

In conclusion I would like to thank warmly the discussors. 
Their valuable remarks will give me the opportunity to improve in 
some places the initial version of my paper. 
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ON THE VALIDITY OF A GENERAL SIMILARITY 
HYPOTHESIS FOR JET AND WAKE FLOWS' 

LLJ Fink and Eduard Naudascher 
Univereitu of Karlsruhe 

Karlsruhe, Gemany 

ABSTRACT 

The validity of a new analytical approach by which 
the development of any free-turbulence shear flow 
in an incompressible fluid is predicted through the 
use of a general similarity hypothesis, has been 
tested by applying it to laminar jets in uniform un- 
confined streams. Because of the lack of experi- 
mental data, the analytical solutions derived for 
plane and axisymuetric jets in coaxial parallel flow 
were compa red to corresponding solutions based on 
coordinate-type perturbation expansions. The sa- 
tisfactory agreement obtained in all cases suggests 
strongly that the new similarity analysis is a valid 
approach which, if used with suitable turbulence 
hypotheses, will also predict successfully the cha- 
racteristics of any turbulent jet and wake flows. 

INTRODUCTION 

Jets and wakes are the moot common examples of free shear 
flows.   Since the foundation of the boundary-layer theory by Prandtl 
in 1904,   they have been the subject of numerous investigations both 
analytical and experimental.   Nevertheless,   reliable solutions are 
restricted so far to simple cases like free jets in stagnant fluids or 
small-deficit wakes.   On the other hand,  it is just the more complex 
flows like jets in external streams which are of special interest with 
respect to applications in fields ranging from Aerodynamics to Civil 
and Chemical Engineering.   The reasons why there are no common 
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solutiuns are twofold.   First,   there is the closure problem in the 
equations of motion,   if the flow is turbulent.  And second,   even if ore 
of the widespread effective-viscosity assumptions has been introduc- 
ed to describe the structure of turbulence,   there is the difficulty in 
handling the partial differential equations. 

In the following,   we shall deal solely with methods designed 
to overcome the latter difficulty.   There are several well-established 
methods to solve the parabolic partial differential equations of the 
boundary-layer type.   In the last decade,   some powerful methods for 
numerical treatment of the governing equations were put forward 
(e.g. ,   see Ref.    [lj ).   Further,   the application of the generalized 
Galerkin-Ritz Method (i. e. ,   the G-K-D method) has proven to be very 
useful  [2]   ,  although this method has not yet reached perfection. 

In this paper,   we shall use the well-known integral method 
combined with suitable similarity transformations as initially propos- 
ed by von Kirman.   The advantage of this method lies in the relatively 
simple,   closed-form deduction of approximate solutions,  which in 
must cases are good enough for engineering purposes.   Moreover,   the 
method is very helpful when applying numerical procedures to fluw 
situations complicated by special boundary conditions or by density 
stratification etc.,   because it allows to predetermine special features 
of the solutions like e.g. ,  the behavior in the asymptotic ranges. 

A disadvantage of integral methods,  if used in combination with 
the conventional  similarity assumptions and the corresponding sim- 
plifications,   is the fact that they can rarely be extended to flow confi- 
gurations which differ from those for which the assumptions and sim- 
plifications were designed.   This may partly explain why not much 
progress has been achieved in this field  since the classical works  of 
Tollmien (1931,   small deficit wake   [3]   ) and Schlichting (1933,  free 
jet in stagnant surrounding   [4 J  ). 

There exists a close relationship between the flows treated by 
Tullinien and Schlichting and the laminar free jet in a uniform stream 
to be treated in this paper : in that part of the field where the velocity 
in the jet is an order of magnitude larger than the free stream velo- 
city,   the flow can be treated approximately like a free jet in other- 
wise quiescent fluid.   On the other hand,   at some distance downstream 
from the flow ungin,   the excess ve'ocity along the center-line becomes 
small in cunii>arison with the velocity of the external flow,   irrespec- 
tive of the initial strength of the jet,   because the excess-momentum 
flux is distributed over an ever-increasing diffusion zone ; in this re- 
gion the same approximations as in wake flows should hold true. 
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General Similarity Hypothesis for Jet and Wake Flows 

Since with the classical similarity assumptions,  these approximations 
lead to different equations,  predictions for general free-jet problems 
can be obtained in the asymptotic ranges at best.   To overcome these 
deficiencies,  different suggestions have been made.   For example, 
Wygnanski and Fiedler   [5]  succeeded in solving the equation of motion 
with the help of the conventional similarity assumptions for the special 
case of a general laminar free jet with tailored pressure gradient in 
the outer stream.   Unfortunately,  the solutions are mainly of academic 
interest,   because such special cases are seldom realized in practice. 

To obtain solutions for the development of any free-turbulence 
shear flow in an incompressible fluid,   the senior author has derived a 
new,   more general similarity analysis   [6j   .   Through the formulation 
of similarity functions based on three lynamic scales,  mean flow as 
well as turbulence characteristics were    hown to have a strong ten- 
dency toward self-preserving profiles even for such flows as the tur- 
bulent wake of a self-propelled body and turbulent jets in moving 
coaxial and cross streams. All solutions were satisfactorily verified 
by comparison with experimental data   [7, 8 ] . 

The key part of the new similarity analysis is the replacement 
of the conventional velocity-type representation of the mean flow field 
by a momentum-type description.  It is the main purpose of this paper 
to provide further evidence of the validity of this assumption.  In order 
to achieve this,  the new approach is applied to flows,  for which the 
similarity assumption suffices to produce solutions without the intro- 
duction of unreliable hypotheses concerning the structure of turbulence. 
As flows to be described we have chosen laminar jets in uniform un- 
confined streams.   In this way,  we are not only able to perform a cru- 
cial test of the key assumption of the new theory ; at the same time, 
we can obtain more reliable predictions for the case of unconfined la- 
minar free-jet flow,  and this not only in the asymptotic ranges but in 
the transition region as well, which is of most practical interest. 

THEORETICAL ANALYSIS 

From the observation of a jet developing in a uniform coflowing 
stream,  one is led to accept that the flow can be separated in an irro- 
tational outer flow (potential flow) and a shear zone extending only 
slowly in the lateral direction.  Since this narrow zone,  which is domi- 
nated by large lateral velocity gradients,  is characterized by a boundary- 
layer type of flow,   the governing Navier-Stokes equations can be appro- 
ximat ri for large Reynolds numbers by the boundary-layer equations 
given by Prandtl.   The same simplifications hold also for all other per- 
tinent transport equations.   This procedure has been repeatedly verified 
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by experiments for related flow configurations,   so that it can be as- 
sumed valid in this case as well. 

If the local Reynolds number   IR = is large     , but not 
exceeding the critical one,  the stationary flow of an incompressible, 
isothermal fluid which is not affected by external forces is represent- 
ed by following set of equations : 

^yj)  ,  aV)  = o 
^x dy 

U N T       V N -  «, T      V >■ 
nx dy "^r "57 with     r/p   -VTT— 

dy 
^u_ 

(1) 

(2a) 

_l_dp_ 
p äy 

=  0 (2b) 

T=0,    v = Oaty = 0      and 

dU^, 1   dp 
T  = 0 ,    u = U,^ ,  U.D- 

dx 
for    y > y„ 

P   dx y   - '0 

where   x   and   y   are Cartesian coordinates   (x   in the direction of 
flow,   measured from the geometrical origin of the flow)   and   u   and 
v   are the velocity components in the   x   and   y   directions,  respecti- 
vely.   For plane symmetry,    j = 0 ,    and for axisymmetric conditions, 
j =  1. 0   (see Figure 1). 

Integration of Eq. 2a  first over a lateral distance   yn   and 
then with respect to   x   between the boundaries   x1   and   x   in conjunc- 
tion with the boundary conditions 

T^O,    v = 0     at    y=0      and 

^U»   _        1   dp 
T = 0 .    u = U,,,,    U, 

dx P   dx 
for       y   > y 

For definition of symbols,   see Nomenclature. 
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and the continuity equation yields 

Vr 

/ (u2  -Ueou)vJdy    +    /   ÄUuyJdy - U«, / yJdy j dx = H const     (3) 

provided the flow origin is excluded from this control volume.   With 
vi = L'oo  + u.   one obtains for unconfined tlow     (dU—   dx = 0) 

/ 

'0 

(ud + "d1-* ) yJdy   =   H (4) 

This partial differential equation can be reduced to an ordinary dif- 
ferential equation by substituting the following similarity transfor- 
mation 

ud - "d^) 'W (*)   +U (x)Uj      l(r,) . with ^ -- y//(x) 
u#= U#(x) (5) 

which was introduced by Naudascher   [6], 

Some algebraic manipulations yield the condition 

(U 
H tC TT#I.      \0i-1 M 

ith    I, / fr»jdrr const (6) 

It should be remarked  that  in deriving  Eq. 6,   the  momentum   equa- 
tion  does   not   require   further   simplifications  or   restrictions  as 
long as   the  special   form  of  similarity   expressed  by   Eq. 5  is adopt- 
ed. 

To solve for the velocity and length scales   U*(x)   and/ (x) 
one must look for an additional information.   The energy equation is 
chosen here,   following the example of Wieghardt [9] and Liepmann 
and Laufer  [lO] .  After substituting the same boundary-layer appro- 
ximations as in the equation of motion,  the energy equation becomes 

2 ^u äu 
U     T    +     UV-r  

^X rly 
1   OP 

-u—  N— +   uy 
P   Ax y 

dy 
(7) 
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Integration over a lateral distance   y0    yields with   u = U^f ud 

"^l i0 ^^ udU-)yJdy+T / u
d(ud

2^du«)yjdy +.|(~i) J. y'dy = 0 

0 (8) 

As was done with  Eq. 4,  this integral relationship can be reduced by 
substituting the similarity transformation  (Eq. 5).   In regard to the 
integration to follow,  it is useful to rewrite the governing differential 
equations in dimensionless form : 

from momentum equation : 

'   ,.      v2 

(4)    'I  ~ (91 

from energy equation : 

0 

0 v2 

with      V =—   and 
u- '   Vu.2/ 

Combining   Eq. 9  with  Eq. 10  leads to the ordinary differential equa- 
tion 

vz        (11) 
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which,  because of the structure 

dV dix'B.)    --   fkt       V  ,    /  fj (v) F(V) 

0 

dr, 

involves elliptical integrals and therefore cannot be solved in closed 
form.   The main difficulties arise from the substituted terms for   UJ 

and   i^Ujj dy    in  Eq. 8.   In order to get at least an approximate solution 
of the problem,   it  seems reasonable to replace these terms by  some 
less complicated expressions.' 

By inspecting   Eq. 5 ,   one can easily  realize that there are 
tvo asymptotic cases included in the new similarity transformation, 
namely c^U^   U*« 1. 0   (strong jet flow)   and   UVU,,-«!. 0   (weak jet flow 
of the wake type).    For these asymptotic cases,   the postulated simi- 
larity of momentum reduces to mere similarity of defect velocity. 

—  -    g(n) with      i) =    y/i (12) 

which is equivalent to the conventional similarity assumption.   If this 
expression is used along with   Eq. 5 ,    Eq. 8   becomes 

Wi 

^U-^j-l 
dV       _j_7-L\ 

d(x/0.)   "     H    lo. I 
} N J7 

with* 

I. 

•'o 
;n) 

If solved simultaneously with   Eq. 9 ,   this equation yields the general 
solutions 

While this paper was prepared,   Eq. 11   was solved by a Runge- 
Kutta-procedure for various forms of the similarity  function   f('j). 
It was found that no inconsistencies arise from the introduction of 
the new similariu   transformation  (Eq. 5 in the integral form of the 
energy equation.    Tims it can be concluded that  Eq. 5  is fully compa- 
tible with the governing equations.    The numerical solutions display 
the same features as do the closed-form solutions,   which  are  des- 
cribed in this paper.    Full details will be given in a  subsequent re- 
port. 
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and 

U. I-  •   I. x  - x. 

H  ' ei 
;i5) 

for plane flow   ( j   - 0 )   and axisymmetric fluw    ( j   -   '  }    respectively. 
The constant of integration was obtained from the boundary condi- 

U.o  /U*—-► 0,    which defines the virtual kine- 
0 '6:     must be determined from expe- 

tion   x/Oj x0^j 
matic origin.   The value ui   xn  ft 
nmenta. 

Now the growth of the length scale X (x) can be determined 
from the munientum equation (Eq. 9) and Eqs. 14 and 15 after eli- 
mination of the parameter     V     []„ /U* . 

All analytical solutions are presented graphically in Figures 
2 to 7.   They show the following general characteristics; 

a)   For small distances from the flow origin,   one obtains the verified 
asymptotic laws for the free jet in otherwise stagnant fluid,   that is 

O 

v I 
B 

H 

2/3 
f^r  j       0    and 

U, •i'') 
a 'ir) 

forj   =  1 

b)   Far downstream,   the solutions converge toward the well-known 
power laws of the respective wake flows,   that is 
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This twofold asymptotic behavior suggests the conclusion that the 
presented solutions render also reliable predictions in the transition 
region.   In any case they are superior to the conventional similarity 
solutions,   which display correct behavior only at one limit. 

Unfortunately,   there are no data available to check the va- 
lidity of the derived solutions by experiments.   However,   a compa- 
rison is possible with the analytical investigation of laminar coaxial 
jet flows by Wygnanski    [10, 11]   .   Wygnanski starts with the same 
governing equations    (Eqs.   1 and 2).   But instead of a similarity as- 
sumption,  he uses a coordinate-type perturbation expansion for the 
plane- and axisymmetric jets in still surroundings (Figures 6 and 7). 
A comparison of Figures 2 and 6 reveals that the two solutions can 
be made identical by mere translation.   This fact allows one to es- 
tablish a correlation between the definitions of streamwise coordi- 
nates used in this paper and by Wygnanski.   The difference for in- 
termediate distances   x   between the solutions in Figures 4 and 7 
arise mainly because of the fact that the integrals   I.   ,   I, ,   I,     are 
not constants but take different values at the two asymptotes "free 
jet in stagnant fluid"   and    "small-deficit wake". 

CONCLUSIONS 

Approximate  solutions have been derived for the decay of the 
maximum axial excess velocity and the growth of the characteristic 
length scale of laminar plane- and axisymmetric jets in uniform 
infinite streams.   In contrast to the conventional notion that there 
exist no similarity solutions for free shear flows with more com- 
plicated boundary conditions,  the laminar coaxial jet was successful- 
ly treated by a new similarity assumption,   for which the conventional 
velocity-type representation of the flow-field is replaced by a mo- 
mentum-type description.    The solutions derived with the  aid  of the 
momentum and energy equations,   both simplified by the boundary- 
layer approximations,   were found to apply over practically the whole 
range of axial distances,   excluding only the immediate proximity of 
the flow origin. 
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This satisfactory agreement suggests strongly that the phy- 
sical approach involved is sound.   One is thus led to the conclusion 
that the momentum-type similarity characteristic is a more signifi- 
cant parameter for flow description than the classical mean-velocity 
types,  and that the corresponding new approach should prove promis- 
ing in the analysis of turbulent flows as well.  There is no reason to 
abandon the powerful tool of integral methods as long   as they are 
combined with suitable similarity assumptions.  Indeed,   as was shown 
in Refs.    [6] and   [8]   ,   this method yields satisfactory results for 
a variety of non-elementary free-turbulence shear flows even though 
the turbulence hypotheses used in these cases were far from being 
elaborate. 

NOMENCLATURE 

i.g 

H 

\'h'h 

similarity functions 

value of excess momentum flux 

definite integrals of the similarity functions 

exponent (equal to zero for plane flows and equal to 
unity for axisymmetric flows) 

length scale characteristic of the width of the shear 
zone 

IR 

pressure 

U^ local Reynolds number      IR   - —j— 

u,   v 

U„ 

Ud 

u# 

V 

x. y 

axial,   lateral velocity 

velocity in the outer stream 

excess velocity    u      =   u - U» 

velocity scale,   chosen as maximum excess velocity 

ratio   U«  /U# 

Cartesian coordinates 
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"0 

e. 
J 

virtual kinematic origin 

lateral distance,  greater or equal to the width of the 
shear zone 

small perturbation parameter 

transformed lateral distance     f   = yn/£ 

momentum thickness 

kinematic viscosity 

density of fluid 

shear stress 

v^r 

REFERENCES 

[l ]      PATANKAR, S. V. ,  and SPALDING, D. B.  , "Heat and Mass 
Transfer in Boundary Layers, A General Calculation Pro- 
cedure",  Intertext Books,   London,  2nd Edition,   1970. 

[2]     ABBOTT,  D.E.,  and BETHEL,  H. E. ,   "Application of the 
Galerkin-Kantorovich-Dorodnitsyn Method of Integral Rela- 
tions to the Solution of Steady Laminar Boundary Layers", 
Ingenieur-Archiv.   XXXVII,   Band,   1968. 

[3]      TOLLMIEN,   W. ,   "Grenzschichten", Handbuch der Experi- 
menUlphysik IV.   Teil I,   p.   241-287,   1931. 

[4]      SCHLITING,   H. ,   "Laminare Strahlausbreitung",  Zeitschrift 
für Angewandte Mathematik und Mechanik,   13,   p.  260-263, 
1933. 

[5]      WYGNANSKI.   I.   and FIEDLER,   H. E. ,   "Jets and Wakes in 
Tailored Pressure Gradient",  The Physics of Fluids,  Vol. 11, 
No. 12,   1968. 

1295 

     iumm ^—— ■M*|-HllllHi 
^l—■ - '   ■^tiiiniiiin; 



■w^wr^upw^^w^ rmm'■^"'■■'■■■" '"^* 

Fink an I Nau uJascle} 

[b]       NAL'DASCHER,   E. ,   "On a Genoral Similarity Analysis for 
Turbulent Jet and Wake Flows",   Iowa Institute of Hydraulic 
Research,   Rep.   No.   106,   1967. 

[?]       NAUDASCHER,   E. ,   "Flow in the Wake of Self-Propelled 
Bodies and Related Sources of Turbulence",   Journal of Fluid 
Mechanics,  Vol.   22,   part 4,   1965. 

[8]       NAUDASCHER,   E. ,   "On the Distribution and Development of 
Mean-Flow and Turbulence Characteristics in Jet and Wake 
Flows",   Iowa Institute of Hydraulic Research,   Rep.   No.   110, 
1968. 

[9]       W1EGHARDT,   K. ,   "über einen Energiesatz zur Berechnung 
laminarer Grenzschichten",   Ingenieur-Archiv  16,   p.   231-242, 
1C)4H. 

[l0]     LIEPMAN,   H.W.   and Laufer,   J. ,   "Investigations on Free 
Turbulent Mixing",   NACA Techn.   Note No.   I'i27,   1947. 

[ll]    WYGNANSKI,   I.,   "The Two-Dimensional Laminar Jet in 
Parallel Streaming Flow",   Journal of Fluid Mechanics, 
Vol.   27,   part 3,   1967. 

[l2j     WYGNANSKI,   I. ,   "The Axisymmetric Laminar Jet in an 
Infinite Stream",   Chemical Engineering Science,   Vol.   24, 
1969. 

[n] ANDRADE, E. N. and TSIEN, L. C . "The Velocity-Distri- 
bution in a Liquid-Into-Liquid Jet", Proceedings, Physical 
Society,   Vol.   49,   pt.   4,    Tuly  1937. 

[14]    SYMONS,  E.P.   and LABUS,   Th.   L. ,  "Experimental Investi- 
gation of an Axisymmetric Fully Developed Laminar Free 
Jet",   NASA Techn.   Note   D-6304,  April 1971. 

1296 

^^■MM MHi MM 
J 



F—WW ■■ '■'■-!   i» i.wn»»,.if*.i     n ■ I'"   ■ 
/5'"" -)~-'»TT»l""'l",",f,P 

Genera:   Similarity Hypotheaie for Jet and Uake Flouo 

?       t 

(i ;r ^; 
^5^ 

3 

it   .i   n   n   , , 

il 
\ 

■"i 

\ 

o, 
w 

K 

// 

nrtf 

/ 41 

in 

f—1 
 I 

o 

01 
Q 

3 

ann rm 

1297 

,1        - -  -  -■ 
■   ■■ n n--          -■ i -■ ■  -   - ■ - 



"      
••^^^^^»l^^wpp^ww^^ii i    •■ »     ■" 

Fink and Naudaeaher 

4) 
c 

a 
n) 
0 
>• 

--« 
u 
o 

> 
« 

<u 
u 
x 
01 

> 
13 
* 
< 

D 

3 
00 

1298 

■ 



r7 u.pji.^iimii       UM i.     '   
ipmmi—«».WII pi» i W'>^T*W wmuw.l. 

r-i>^'i,"lAtT,"l"-,'W|ll'   r" 

General Similarity Hypothesis for Jet and Wake Flows 

i 

v 
v 
a 

S 

<u 
a 

c 
o 

k 
« 

JS 
a 

i) 

0 

4) 
> 

y 

0) 

§ 

X 
< 

3 

1299 

L i-  
. ._. .-.—^ ........ I,. ■ . - ■■--- . n     in» 



m^ «■"i.' 
iiiiiwiii, i, PI imWWP^WWWW W     ■ l II I  ■  I     I ■ I^H   .1   *    I.J..II»!   I!'     ■!  " I   "IP 

Fink and Naudaeeher 

£ 
n) 

■0 
C 
3 
0 
u 

o 
>- 

4-1 ••* 
u 
o 

> 
10 

CO 

0) 
u 
X 
c 

J: 

> 
i—i 

< 

u 
3 
00 

1300 

■  ■ --■- ii i - 
■    — 

■ 

m^m 



UII.PI.W  IWIIIBI.  |l«l  IWIPi«        ! MK ■I" ^WMII .   i "mi mi ^™-—^ .—,- —-T~-—r—n—re-^™-^- 

General Similarity Hypothesis for Jet and Wake Flows 

H* 

41 
4) 

U 

£ 
JS 

O 

c 
0 
N 

u 

a 

o 
XI 
•o 

> 

u 

k> 
n) > 

"it 

< 

u 
3 
00 

1301 

i.. ■ i.-ii.i i   imvi^^^tmmmmmimmmmammm^^^^mtm^m^^m. MMM^MiMMMMB 



"..VJÄ"^"'-      II I    »I""   •»-■-'"■I»    '     J»  I «11    IF    ,■!   .IILWII    11,11 i   •-"     '   "'*i  -'I'   ■   li  i ■• !   i r^r^twn.,,,.  i.ti,i,,.-  i,,  i„m„„,.  i      ip,,,,,.  .^JI.I.^,    ,,ji:W.aw, 
 I™ '—-—I1" 

Fink and Naudaeaher 

i 

4) 

£ 

c 
IS 

a 
n) 
v. 
0 

rr 
•K 
u 
o 

> 
(a 
n 
4) 
U 
X u 

V 
J3 

C 
0 

n) 
> 

i—« 

X 

3 

1302 

     '■   ' ■■      ^      --.-—.... — --^..—  

  -■ '    ■ — — 



Genera!- Similarity Hypothesis for Jet and Wake Flows 

o 
i- 

u 

s 

T) 
c 

o 

u 
o 

(0 
to 

<J 
X 
0) 

> 

x 
< 

3 
00 

1303 

  



■^•^"•■—' r^——r»—^T. 

TS5" 

F-'nk and Waudaaoher' 

DISCUSSION 

Paul Lieber 
University of California 

Berkeley,  California 

How do you account physically for the superiority of the 
momentum similarity law as compared to the velocity similarity law, 
if I understood your statement ? 

REPLY TO DISCUSSION 

Leo Fink 
University . f Karlsruhe 

Karlsruhe, Germany 

If you substitute the conventional hypothesis in the diffe- 
rential form of the boundary-layer equation,  you obtain a contradic- 
tion,  and if you substitute the new hypothesis into this equation,  you 
will not find any incompatibilities.  This is perhaps the explanation 
why this new hypothesis works better than the old one.  One other rea- 
son you can put forward is that these types of flow are mainly govern- 
ed by the momentum equation because the momentum flux is a cons- 
tant 1:1 these cases.   Therefore,  if the momentum equation is not 
violated by any of your assumptions,  you have described the flow bet- 
ter than if you used the conventional hypothesis. 
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VELOCITY DISTRIBUTION AND FRICTION FACTORS 
IN FLOWS WITH DRAG REDUCTION 

Michael Poreh and Yona Dimant 
Teahnion - Israel Institute of Technology 

Haifa, Israel 

ABSTRACT 

A simple descriptive model, based on van Driest's 
mixing length £ - ky [l - exp (-y+/A + )J with a va- 
riable damping parameter A + , is proposed to re- 
present the effect of linear macromolecules in di- 
lute solutions on the wall region in boundary layer 
flows. Measurements used to support an elastic 
sublayer model for drag reduction are shown to be 
in better agreement with the proposed model. A 
relation between A+ and parameters of the poly- 
mer solution and the flow identified by Virk(l971), 
is derived for the range where Virk's correlations 
are valid. The maximum drag reduction appears 
to be associated with an asymptotic value of   A+. 

INTRODUCTION 

The ability of minute quantities of high molecular weight poly- 
mers to reduce the turbulent skin friction and thus to decrease the drag 
of underwater bodies,   has excited many investigations of the phenome- 
non of drag reduction.   Theoretical efforts to explain the mechanism of 
drag reduction have not been vtry successful,   probably because drag 
reduction is affected by an interaction between the molecules and the 
time-dependent,  non-linear turbulent flow near the edge of the viscous 
sublayer.   On the other-hand,  experimental and semi-empirical studies 
have succeeded in documenting many features of simple drag reduction 
flows and describing them in approximate phenomenological models. 

The earlier descriptions of such flows employed a two-layer 
model to describe the mean velocity profile (Meyer 1966,  Elata et al 
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1966); a viscous sublayer where u+ = y+ ( 1) 

and a log region where 
+ + + 

u = A logy + B + ~u 
n n 

(Z) 

+ • + • • 
where An ~ 5. 75, Bn ~ 5. 5., u = u/V , y = yV /" and V 
is the shear velocity. The term ~u + , which describes the upward shift 
of the log proti le in the conventional law of the wall representation, 
was empirically related to the shear velocity and polymer characterist
ics by the equations 

+ *J • • • 
~u = or log (V 1 V ) ; V > V 

cr cr (3a) 

= 0 
(3b) 

where V; is the shear velocity at the onset of drag reduction and or 
is a concentration dependent parameter. 

Virk and Merril (1969) correlated measurements of the onset 
of drag reduction in "thin" solvents by the semi-empirical relation 

(Re£112 ) = zvzn. (R/R) 
cr g 

(4) 

wher e Rg is the polymer radius of gyration in dilute solutions, U a 
non-dimensional constant characteristic to the polymer apecies
solv~nt combination, R is the radius of the pipe, Re the Reynolds 
number based on the mean velocity and diameter, and f Fanning's 
fr iction coefficient. 

In tegration of u + over the area of the pipe yields an exprea
son for the friction coefficient f. At high Reynolds numbers and small 
to moderate values of ~u+, the contribution of the aublayer to the 
integral of u+ is negligible, yielding for V •>v• the equation 

cr 

a log (Ref 1' 2 ) - b + or log (V •/v • ) ~...r;-
n n cr "' 

(5) 

Where an ~ 4. 0 and bn ~ 0. 4. Plotted on Prandtl coordinates, 
f·'/2 versus Ref f2, Eq. (5) gives straight linea which intersect the 
Newtonian line (or= 0) at (RefV2) cr , where v• = v;,_. This result 
has been supported by numerous independent pressure-loss measure
menta at large Reynoida numbers for small values of 4 u +. The data 
deviates from Eq. (5) at large values of 4u+, where 4u• seems to 
reach a maximum vahe (Seyer and Metzner 1969, Whittiat et al 1968) 
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as well as near   (Ref V2) cp   ,   where a smooth transition from the 
Newtonian curve to the polymer solution curve is observed. 

The effect of the transition region between the viscous sub- 
layer and the log region,  was first considered by Poreh and Paz(1968) 
The velocity in this zone was approximated by the following log law 

"     =   Yj      In (y /YX  ) + yj (6) 

where   y.    ,   the "thickness" of the viscous sublayer,  was assumed to 
be proportional to the "thickness"   yj+ in the two-layer model 

y/   =   0.43y.+ W 

and the value of   v    was determined by the intersection of Eqs.   (1) 
and   (2).    When   Au','=   0   and   y-+=   11.6 Eq.   (6)   reduces to 

u+     =5.0   In   y+ -   3.05 (8) 

which had been used by von Karman to describe the buffer zone in 
Newtonian flows.   The model has been used successfully to relate heat 
transfer characteristics to friction losses in dilute polymer solutions. 
The effect of the buffer zone on the friction coefficient was found, 
however,   to be negligible. 

Recently,   Virk (1971) proposed a new 3-layer model to de- 
scribe the velocity distribution in drag reducing fluids.  He termed the 
transition between the viscous sublayer and the log region - elastic 
sublayer and proposed to describe it by a universal logarithmic law 

+ + 
u    = A    In  y    + B (9) m m 

where   Ara =: 11. 7   and   Bm a - 17.0.    The "edge" of the viscous sub- 
layer   yv

+ is given by the intersection of Eqs. (1)   and   (9).   The "edge" 
of the elastic sublayer,  is given by the intersection of Eqs. (9)   and 
(2).    The relation between   Au      and the thickness of the elastic layer 
is given by 

AU+   =   (Am-T^   '"(CO (10) 
Thus, when Au      becomes small the elastic sublayer deminishes. 
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Except for small values of R+{R+ = RV•I .,) and large values of 
.iu+ , the contribution s of both the viscous and elastic layers to the 

integral of u+ are small (see table 3, Virk (1971) ). In these cases, 
the details of the sublayer are insignificant and Virk ' s model gives 
the same friction coefficient as the model of Meyer and Elata. Virk 
termed this case - the polymeric regime. (Note that the last term in 
Virk's friction factor relation for this regime, Eq. {12) in Vir~ (19'71~ 
is identical to.iu+in Eq. {10). 

In the other extreme case where the elastic sublayer be
comes large and the copt l"ibution of the log region to the integral of 
u+ is negligibl e , lhe friction coefficient is descrihed by a universal 
law l"btclined by integration of {9), 

l l f 1/2 = 19.0 log (Ref 1/2) -32.4 ( 11) 

Equation (11 ), termed the maximum drag reduction asymptote, de
scribes reasonably well the maximum values of drag reduction ob
tained in many investigations at small values of R+ • 

A very similar, but slightly more complicated 3-layer 
model, has been offered independently by Tomita { 1970). 

Virk's analysis of data in the polymeric regime has yj.elded 
an additional contribution. He has correlated semi-empirically the 
depe ndence of the slope of the straight lines in Prandtl' s coordinates, 
which are described by Eq. {5), to identifiable polymeric parameters. 
Defining a fractional slope increment .1 in Prandtl's coordinate sys
tem, which is proportional to a in Eq. (2), 

-1 = (s - s ) I s = a I · rz52 p s s v ~~s 
Where Sp is the slope with polymers and 5

5 
= An = 4. 0 is the 

Newtonian slope , Virk showed that 

{ 12) 

{13) 

where x · is Avogadro's number 6. oz X lo
23

, c concentration as a 
weight fraction, M molecular weight, N number of backbone chain 
links and K a characteristic constant of the species-solvent com
bination. The parameter .1 appears as well in an expression which 
Virk derived theoretically for the turbulent strain energy of the ma
cromolecules . 
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Virk's correlations describe a large volume of the data in the 
polymeric regime and in the maximum drag reduction regime.  It 
should be noted,   however,   that the correlations proposed for the two 
regimes are not related.   The equations proposed for the polymeric 
regime are unaffected by the details of rhe elastic sublayer,  whereas 
Eqs. (9)   and   (11)   proposed for the maximum drag reduction regime, 
are independent of the polymer propertios.     Thus,   it appears to the 
authors that the correlations do not prove the existence of an elastic 
sublayer,  which is described by a universal law and is fundamentally 
different in character from the corresponding layer in a Newtonian 
fluid.  We shall show that this transitional zone in dilute polymer so- 
lutions is similar to the conventional buffer zone in a Newtonian fluid 
by deriving the entire velocity profile in the wall region for both cases 
using van Driest's mixing length model. 

/=   ky     [l - exp (-y+ / A + )] (14) 

letting A    be a function of the polymer-solvent properties and the shear. 
The model which gives a continuous velocity distribution can be easily 
applied to other boundary layer flows and to problems of heat transfer 
and diffusion. 

A MODEL FOR CALCULATING THE MEAN VELOCITY DISTRIBUTION 

In analogy to the damping of harmonic oscillations near a wall, 
van Driest (1958) proposed that the turbulent mixing length near a 
wall be described by Eq. (14)   where   A+ =26   is a dimensionless uni- 
versal constant for smooth boundaries and   k = 2. 3/An   =   0.4.   There 
is some doubt whether   An    and   Bn    are truly Reynolds number inde- 
pendent.   Coles (1954)   for instance,   suggests that   An    slightly inc- 
reases at low Reynolds numbers.  Accordingly,  the shear stress in a 
turbulent pipe flow,   given by    r  =  p  ( f + £2|du/dy |   ) du/dy,   can be 
described by the equation 

1 + k2y+2 |du+/dy+  | [l - exp(-y+/A+) iW/dy^ (15) 

/here T     ~    T /r    end T =pV      .  Equation (15) may also be written as 

du 2r (16) 
dy 1 +V   l+4kV2[l  - exP(-y+/A + )]2r + 

In order to find the mean velocity profile,  van Driest used the constant 
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shear approximation,   namely T  - T^,   or T     =1.  Denoting the veloci- 
ty obtained in this manner by   u0   ,  one can write that 

dup 

1 +\/l + 4k2y+2[l - exp(.y+/A + )]2 

(17) 

Intonration of Eq. (17) gives for large values of   y     the log law 
u0    -   k"1 In   y   + B   (Eq. 2)   where the value of   B   is a function of 
A+ .    Very close to the wall, where   exp(-y7A+)  ~   1,  the solution 
of Eq. (17)   is   u0    = y   (Eq. 1).    A comparison with measurements in 
Newtonian fluids (van Driest 1958)   shows that the velocity profile 
obtained from Eq. (17)   is in good agreement with measurements in 
the sublayer,   buffer zone and the log region in zero pressure gra- 
dient boundary layers and pipe flows.  A deviation of the data from 
the log law is observed in the outer region of the flows. 

We have already seen that the effect of drag reducing addi- 
tives is to change the value of   B   in the log law. It is therefore na- 
tural to examine the possibility of describing the velocity distribu- 
tion in such ""'ows by the integral of Eq. (17)   with values of  A-*" 
larger than 26.    We have also seen that the contribution of the velo- 
cities in the viscous sublayer and the buffer zone to the calculation 
of the friction or drag coefficient in the polymeric regime is small. 
Thus the proposed model would be useful only if it can describe the 
velocity distribution near and in the maximum drag reduction regime. 
Now,   the maximum drag reduction regime corresponds to large va- 
lues of   A+ and small values of   R+, and one sees from Eq.(17) that its 
asymptotic solution for small values of   R/A   is given by   u+ -   y + . 
Since we do not expect the velocity at any point in the pipe to exceed 
the velocity given by the parabolic distribution in a laminar flow. 

y + (l - yVzR*-), (18) 

one has to disqualify this solution,The reason for the failure of this so- 
lution is of course theassumption   T = r     which is valid only close to 
the wall.   We shall show later that although the error introduced by 
this assumption in Newtonian flows is small, it is large for small 
values of   R /A    .   In view of this difficulty,  we shall modify van 
Driest's solution by taking into account the variation of the shear 
stress in the pipe as well as the different character of the flow near 
the center of the pipe. 

The proposed model for drag reducing flows in pipes assu- 
mes that the velocity distribution is composed of two parts 

1310 

i i — 



lw^<MpWWpW|pHWWyBjH)^iHpyp|^|Wp^1Pf—"■" WWW  ''""   lw  '»I'""11"!' 'iniupmimimnwiiii.,! in ■ IUWII.JLI n , i m*m  n n IL.II ■■ I,, II    ,1 
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u  = Uj  + u2 (19) 

The first part,  describing the law of the wall,  is given by the solution 
of Eq. (16) with     T

+
=   1 - y^R"*"  ,  namely 

dui    . Mi- y+/R+) (20) 

dy+ 1 W 1 + 4k2 y+ 2[l - exp(-y+/A+)]2(l -y+/R+) 

It is easy to see that the limit of Eq. (20) for small values of   R /A 
is 

du * /   dy+    =    1 -y+/R+ (21) 

which describes the parabolic velocity distribution (18).   This result 
implies that    U2      ,  which is zero near the wall,  has to vanish iden- 
tically for small values of   R /A   .In other words,  the deviation from 
the law of the wall has to decrease as the region where the damping is 
effective increases.   This condition is satisfied by the following equa- 
tion proposed for    Uj      . 

U2+   =  "ST ^ " co»('ryVR+)]   [ 1 - exp (-2R+/A+)] (22) 

where 11 =   0. 67   is a universal constant for pipe flows.  The value of 
II    has been determined so that the Newtonian friction factor at 
Re   =   5. 105 would satisfy Eq. (5) with a = 0,    a,,   = 4. 0   and   hn  - 0.4. 
Note that for large values of   R+/A   , which is always the case if 
A     = 26,  the exponential term in Eq. (22) vanishes and    u^     becomes 
identical to Coles' Wake Function. 

Undoubtedly,   many other schemes can be used to describe the 
deviation of the velocity profile near the center of the pipe from    u^ 
and its dependence on   A   .  As we shall see later the relative contri- 
bution of   u+   is very small and thus any consistent model which 
complies with the boundary conditions would be satisfactory. The choice 
of Coles'Wake Function is justified mainly for convenience in future 
applications of the model to boundary layer flows. 

DISCUSSION AND COMPARISON WITH EXPERIMENTAL DATA 

A clear distinction between the new model and the constant 
shear approximation used by van Driest,  is the dependence of the 
velocity profile on   R+.   Both   \x*  and   u^    are functions of   R+   and 
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it is not possible to describe   u+   as a function of  y     and   A     alone. 
We have plotted in Fig. 1 numerically computed distributions of   u.-1"   , 
u+   and   u+     for   A+  = 26   and   A+  =   300*.  We see that the various 
velocity distribution curves for   R     -    10,000 are practically the same 
at small values of   y+/R+,  The maximum difference between   > +   and 
u*    is about   5% for   A = 26   at the center of the pipe and only half of 
it for   A+   =   300.  This indicates of course that the contribution of the 
u^"   is relatively small.  Another interesting observation is that the 
differences at this value of   R+  ,  between   u+ and uj    can be hardl/ 
noticed.   They are better distinguished in Fig. 2 where velocity defects 

u+   and   u+
max- u^    are plotted.  Note that at center max max "j 

of the pipe   duVdy1' =   0   whereas   du0
+/dy    ^   0. 

We have also shown in Fig, 1 the distribution of   u     for 
R     =    1000   and   R+-    100.  We see that the differences between the 
velocity profiles for   R+ -    10.000   and   R+   =    1000   are small.   Prac- 
tically the same profile is also obtained in the Newtonian case for 
R     =    100 ; however,  the velocity distribution for   R+ =   100   and 
A+ = 300   does not coincide any more with the other profiles which 
have larger values of   R^A   .   The velocity distributions according to 
the various models for   R+  -    100   are plotted separately in Fig. 3, We 
see from this figure that the difference between   u    and   u^"    for 
A     =   300,  is large.  Note that the velocity   u+ near the wall merges 
with the parabolic equation   u+ =   y+(l - y+/2R+)   whereas   u^"   is 
tangent to the   u+ =   y+ curve and goes above the paraboli: profile. 
We have also plotted in this figure Virk's ultimate profile   Eq,   9), 
Virk's profile is quite close to   u+ but it also gives at one i   "ion 
slightly larger velocities than in a laminar pipe flow. 

Measured velocity distributions are compared with the calcul- 
ated profiles of   u+ in Figs,   4-7,   The values of   A    were chosen 
arbitrarily (The data is taken from Virk (1971),   Fig, 3,  using the same 
symbols to denote the various entries, ) The agreement with the data 
is very good.   In particular the velocity profiles in the maximum dray 
reduction regime,  Figs,   6   and   7,    describe the measurements much 
better than the velocity profiles proposed by Virk's elastic sublayer 
model. 

*  A computer program for the calculations of   u     and   f   is available 
on request from the authors. 
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FRICTION FACTORS AND RELATION TO POLYMERIC PROPERTIES 

The dependence of the friction factor   f »2 on   Ref »2   as a 
function of  A     , has been obtained numerically and plotted in   Fig.   8. 
One sees that at large values of   Ref^2  the variation of   f*^ for constant 
values of  A    is described by a logarithmic law.   The Newtonian case 
A+ =   26   coincides wiia the line describing the equation   f"1l2=   4.0 
log   Ref^-O. 4.  Integration of the theoretical limit of Eq. (19) for small 
values of   R+/A+  gives the laminar friction law. 

f    =     16 / Re (23) 

Several data points appearing in Fig. 1 of Virk (1971),  near 
Ref ^ -    200(R+-- 70), are quite close to Eq. (23).  However,  the avail- 
able data at larger values of   Ref ^ indicate that the values of  A+ 

obtained so far in dilute polymer solutions are bound by   A+    =   350. 

At the polymeric regime,  as defined by Virk, an approximate 
relation between  A+   and the polymeric properties can be found using 
Virk's correlations. At large values of   Ref ^ , where the friction 
factor curves for different values of  A+ are described by parallel 
lines,    Au+ is uniquely related to   A + .    From Fig.   8   it was found that 
at this range 

Au+ A/T   ~ 40   log (A+/A  + + 4) - 28 (24) n 

At small values of   Ref V2 the relation between   Au     and   A     depends 
on the values of   RefV2   , however,  if   Au+(A+) is measured along 
straight lines originating at   RefV2>1000 and having slopes which do 
not exceed the slopes recorded in actual measurements,  the deviation 
from Eq. (24)   is less than   5%. 

The relation between   A     and the shear stress can now be 
obtained from Eq. (3).  This equation is composed of two expressions ; 
for   V*< Vc*r   and for   V#> V*r.  It is suggested that a better descrip- 
tion of the variation of   Au+   is obtained by the single equation 

Au+   =   (a/4)   log [1 + (V/V^)4]  . (25) 

Equation (25)   deviates from Eq. (3a)   at V*> 2VC*   by less than   3% 
and is practically zero for   V*<   V*r/2.    The values of  V*r according 
to Eq. (25) should be determined by the intersection of the straight 
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line (3a) with the Newtonian profile,  which is exactly the procedure 
used by Virk.  It follows from Eqs.   (24) and (25) that 

A+/A  +   =    5   [l.WV   fTn(>OSz .A n - cr (26) 

where a is related to the polymer properties by Eq. (13). 

We have used Eqs. (26)   and   (12)   to calculate the variation 
of   £ '2 versus   Ref V2   for solutions of the polymers   AP-30   and Guar 
Gum.   (Estimated values of the critical shear and molecular properties 
are given by Whitistt et al (1968) and Virk (1971),   table 5).   The calcul- 
ated curves for the three solutions,  and curves for constant values of 
A+    are compared with the measurements of Whitistt et al (1968) in 
Figs.   9 -   12. At     nail and moderate values of   V*/Vcr ^e agreement 
between the data   .nd the theoretical calculations (solid lines) seems 
to be satisfactory even for small values of Ref V2 .   The agreement is 
not surprising as it merely reflects the adequacy of Virk's correlat- 
ions and the slight improvement due to the use of the continuous 
equation (25) rather than equations (3a)   and   (3b).   The phenomenon of 
maximum drag reduction,  however,  appears now in a different light. 
One sees that when   V'/V*,. becomes large,   the data deviates from 
Eq. (26) and seem to be correlated with curves of constant A+.    The 
measurements in the concentrated polyox solutions and the smaller 
pipe-diameters seem to be bound by the curve   A     =   350,  which is 
close to Virk's maximum drag reduction asymptote in the range 
Ref V2 <  1000.  However,   the deviation from the lines which are calcul- 
ated using Virk's polymeric regime correlations,  and the approach to 
the maximum value of  A+  ,  do not occur only near the maximum drag 
reduction asymptote.  It appears that for each solution,  there exists 
a maximum value of  A+ (or   Au+) approximately independent of the pipe 
diameter.   Only when   R+    is small th'e curves coincide in a limited 
region with Virk's maximum drag reduction asymptote (11).   This 
evidence is not manifested in Virk's model which predicts drag reduc- 
tion values of the order of 90% for very large shear rates.  It is also 
interesting to note that the measurements of drag reduction with alum- 
inium distearate in an organic solvent shown in Fig.   12 (McMillan et 
al,   1971) exceed the maximum drag reduction curve and appear to 
reach values of   A+   =   600. 

In the absence of a theoretical nodel for drag reduction 
mechanism there is no way at present to determine whether the asymp- 
totic value of  A+   is determined by properties of the particular poly- 
mers used,   experimental limitations,  a dependence of drag reduction 
on the existence of a minimum level of turbulence necessary to deform 
the macromolecules in solution,   degradation or other causes. 
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CONCLUSIONS 

It has been shown that the effect of linear macromolecules in 
dilute solutions on the flow in the wall region,   can be described by 
van Driest's mixing length model with a variable damping parameter 
A + .   If the Reynolds number of the flow   R+   is large,  the constant 
shear approximation used by van Driest can be used.   When R+/A+ is 
not large,  it is necessary to take into consideration the variation of 
the shear stress with the distance from the wall.   The velocity distri- 
bution in the outer region is modified in this case using Coles' Wake 
Function multiplied by a factor.   The factor decreases as the damping 
action of the molecules increases.  Although the model does not ex- 
plain the damping mechanism it suggests a similarity between flows 
with and without polymers, which is not present in the elastic sublayer 
model.   The model does not explain the nature of the maximum drag 
reduction asymptote either, however,   it is pointed out that the maximum 
drag reduction curves for a given polymer might be associated with a 
maximum value of the damping parameter   A + . 
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Fig. 4   Velocity distributions for   R+   -2300. 

Fig. 5    Velocity distributions fur   R 1890. 
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Fig. 8   Friction factor curves as a function of   A 
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DISCUSSION 

Thomas T.   Huang 
Naval Ship ftesearah and Development Center 

Betheaaa, Maryland, U.S.A. 

The authors are to be congratulated on providing a most 
detailed velocity-profile model for the turbulent flows with drag re- 
duction.   However,   the empirical fundamental equations (equations 
(3) and (4) are applicable to poor drag reducers,  for example guar 
gum, at certain concentration and shear ranges.  It would be more 
appropriate to put down the limitations of these equations and to indi- 
cate that the results derived here are valid only within these limita- 
tions.  I have three other comments of a minor nature. 

The maximum drag reduction asymptote stated in equation 
(3) and used to compare with the experimental result is not in good 
agreement with our experimentation.  The Virk first formula agrees 
better with our data and if you use the Virk first formula (JFM 1967) 
there is very little difference between the Virk model and the present 
model, i. e.  within the accuracy of experiments. 

Second,   the optimal concentration to reach the maximum drag 
reduction is found by us to be a function of shear stress and thickness 
of boundary layer divided by kinematic viscosity.  The effect of the 
scale does play an important role in this respect.  Once drag reduc- 
tion reaches this maximum value the results arrived at here are no 
longer valid.  This limitation is suggested to be stated in the paper. 

The present model does not offer any advantage for predic- 
ting drag reduction.   Nevertheless,   it may be more suitable for dif- 
fusion and heat transfer prediction,  as authors stated.   In this appli- 
cation,  more definite experimental results would serve the field more 
than empirical calculation based on bold assumptions. 
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DISCUSSION 

Jaroslav J.  Voitkounsky 
Shipbuilding Institute 

Leningrad U.S.S.R. 

The problem being discussed is of great interest,   of course, 
but it is very difficult for us.   It is important to describe the pheno- 
mena in the turbulent flow and in my opinion it is especially useful to 
try to apply for it Prandtl's ideas about the "Mischungsweg" (mixing 
lengths).   Such a method was used by the author and some years ago it 
was used in the Soviet Union too.   In particular the van Driest idea 
about the construction of formulae for the mixing length was used.  I 
think it is a very useful method and the results obtained by the authors 
are also very interesting. 

I should be grateful if the author who presented the paper 
could answer one question.   What,   in his opinion,  is the prospect of 
applying that method to the case of the rough surfaces because from 
the application point of view it is a very interesting problem.   Some 
years ago in England these natural experiments were carried out with 
a natural ship and it is clear that the roughness of the surface of that 
ship was of a high degree,  and it would be very interesting to apply 
this theory to a description of that phenomena. 

DISCUSSION 

Edmund V.   Telfer 
n.i.N.A. 

Euell,   Surrey,  U.K. 

This is quite a fascinating paper and whilst it has many di- 
verse applications I would like to ask the author for his opinion on 
only one point.  We have all been attracted by the possibilities of drag 
reduction,  but I would like to suggest that there are also immense ad- 
vantages to be got by going in the opposite direction so far as ship 
model experiments are concerned.   When one considers the terrific 
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wealth which has been wasted in all the experiment tanks in the world 
by the intrusion of laminar flow affecting the accuracy of their results, 
I wonder whether the question of doping the tank water with something 
which will have entirely the opposite effect from that of the drag re- 
ducing polymers should be considered.  In other words,  is there a 
dope which could go into the tank water which would make the occu- 
rence of drag reduction or laminar flow quite impossible ?  If that 
could be found,  a lot of the quite arbitrary and,   to many people,   unac- 
ceptable devices currently in use to eliminate turbulent flow would be 
avoided.   I offer this thought sincerely to the author of this paper,  and 
would like to congratulate him on the way the paper was delivered and 
on its content. 

REPLY TO DISCUSSION 

Michael Poreh 
Veamion Israel  Institute of Technology 

Haifa,   Israel 

The concern of Pr.   Telfer is well understood.  The presence 
of drag reducing agents in the towing tanks is favorable from the mo- 
d-ling point of view.   Dr.  J. Hoyt has published an excellent review 
papt-r in the Journal of Basic Engineering (June 1972) in which he dis- 
cussed this problem.   The uncertainty of the data which has been ac- 
cumulated in the past is due to the fact that the drag reduction was 
not controlled or recorded.   Pr.   Telfer suggests,  if I have understood 
correctly,   to eliminate the effect altogether.  I believe that this can be 
done by adding chemicals which will inhibit the growth of algae and 
drag reducing bacteria as well as creating unfavorable conditions for 
the stretching of the molecules.   However,   the more difficult task of 
maintaining a controled standard level of drag reduction in towing 
tanks seems more attractive as it enables one to improve the simi- 
iarity in modeling ship motion. 

The interest of Pr.   Voitkounsky in the effect of roughness is 
natural! have published a paper in the Journal of Hydronautics in 
which I proposed an approximate model for describing this effect.   The 
work in the Soviet Union in this area is not known to me and I'll appre- 
ciate if Pr.  Voitkounsky will help me in receiving the papers he has 
mentioned. 

(Jour,  of Hydronautics, 4,4,Oct.   1970) 
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Flous with Drag Reduction  (Velocity and Friation) 

As to the remarks of Dr.  Huang I would like to stress that 
the model proposed is not based on Virk's data.  In particular it is 
not based on Virk's maximum drag reduction curves.   The opposite, 
our model suggests that one should not look for a universal maximum 
drag reduction curve.  Equations (3) and (4) are not the starting point 
of the analysis and have only been used to obtain the correlation bet- 
ween   A+   and the polymer properties at the end of the paper.   If 
Dr,   Huang feels that better correlations exist he can use them in- 
stead,  and the only equation that will have to be modified is Equation 
26.   Thus» his conclusions as to the validity of the model are not ac- 
cepted. 
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OCEAN WAVE  SPECTRA 
AND SHIP APPLICATIONS 

Ming-Shun Chang 
Naval Ship Reeearoh and Development Center 

Bethesda,  Maryland,   U.S.A. 

ABSTRACT 

This paper presents the results of two studies : one 
dealing with the analytical representation of unidi- 
rectional wave spectra, and the other dealing with 
experimental determination of directional wave spec- 
tra. 

(1) A two-parameter wave-spectrum formulation 
for determining the seakeeping qualities of ships was 
evaluated by application to hindcast data for the 
North Atlantic Ocean. Computations indicate that the 
two-parameter representation does not properly dis- 
tribute wave energy over the full range of wave fre- 
quencies. 

(2) An experiment was conducted in a large seakeep- 
ing basin toassess techniques for determining direc- 
tional wave spectra from wave elevation measure- 
ments obtained with sonic probe arrays. The mea- 
surements were found to be sufficiently accurate for 
analysis of the wave directions, when the direction- 
al spectra are approximated by a ninth-order Fourier 
series. 

INTRODUCTION 

In order to describe the properties of ocean waves,  one consi- 
ders the seaway as a random process having a spectral representa- 
tion.  The spectrum of ocean waves is two-dimensional,  and thus it is 
a function of both wave frequency and wave direction.  It is difficult to 
obtain a directional wave spectrum,  and in many applications the 

Preceding page blank 
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spectrum is considered to be a function of wave frequency only 
with its direction arbitrarily specified. A commonly used represen- 
tation of ocean waves is the Pierson-Moskowitz spectrum L J.  This 
spectrum is a special case of a form suggested earlier by Bretschnei- 
der  L2],  The International Towing Tank Conference   (ITTC)   in 1969 

LJrecommended a two-parameter idealized spectrum of the 
Bretschneider form whenever statistical information on the charac- 
teristic wave period and height was available and recommended the 
Pierson-Moskowitz spectrum   whenever such information was not 
available.  Because of the lack of confidence in wave period and height 
data,  the Pierson-Moskowitz spectrum has been widely employed as 
the basis for evaluating ship performance in a seaway and in the de- 
sign of marine structures. 

For the study of long-term ship performance,  Cummins L -I 
suggested the use of the two-parameter idealized spectrum of the 
Bretschneider form.   This spectrum recommended by the   ITTC   has 
been recently applied to North Atlantic hindcast wave data   L J, and 
the results obtained were considered to be less than completely satis- 
factory.   These results showed that in the idealized spectra the wave 
energy was not properly distributed with respect to frequency.  This 
could result in serious errors in the prediction of ship motions.  The 
same conclusion is substantiated by more recent measurements of 
ocean wave spectra    L  J. 

In modern ocean engineering,  the need for knowledge of di- 
rectional wave spectra is especially important.  Several techniques 
have been developed to determine the wave directions in the ocean. 
Examples are the stereo-photographic method developed at New York 
University    L J,  the floating buoy method developed by Longuet - 
Higgins at the National Institute of Oceanography    \?X and the array 
method suggested by Barber and Pier son     L^I.  Despite these efforts 
only a few measured L JX  iL J directional-wave spectra for the ocean 
are available.  Moreover, the accuracies of the measurements are 
not known. 

In an attempt to better assess the problem of determining di- 
rectional wave spectra,  it was decided to measure and analyse wave 
data under controlled conditions. An experiment was conducted in the 
Naval Ship Research and Development Center's seakeeping basin to 
study the angular resolution associated with measured wave spectra. 

References are listed on page  1347 
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The water surface elevation was measured by an array of sonic probes 
and the directions of the waves were then estimated from those mea- 
surements.   The results indicate that the measurements obtained by 
the probes are indeed suitable for analyzing directional spectra. 
However,  the technique used in estimating the cross spectra between 
different probes was not sufficiently accurate for determining the 
wave directions in the case where a regular wave train and an irre- 
gular wave train are propagating at   90   degrees to each other. 

This paper reports on the experimentally determined direc- 
tional wave spectra and a study of the application of the two-parameter 
wave spectrum model. 

UNIDIRECTIONAL WAVE SPECTRA 

One is aware of the variety of the ocean spectra, yet one must 
establish some order in this chaos for practical application. For es- 
timating the seakeeping qualities of ships, Cummins L^J proposed a 
technique which makes use of a two-parameter wave spectrum of the 
general Bretschneider form. This two-parameter spectral formu- 
lation was studied by applying it to North Atlantic hindca^t wave data 
L^J.   The analysis procedure and results are given below. 

Let   x(t; T, ,   H^   )   be the response of a ship in a seaway 
which has avera^o wave period   T|     and significant wave height   H.i- , 
where   t   is time.  If   x   is linear,  its variance   X(T1 .Hw-j  )   is given 
by 

HxpMSp^Tj.Hj^) 

(1.1) 

where   E[a]   represents the average value of a,    Sp(ü))   is the wave 
spectrum,    Hx     is the frequency response function of the ship and w 
is the wave frequency.   By the use of the wave spectrum form recom- 
mended by   ITTCL3] ,   that is 

173 H2. .,        ,„,.„,      ,-4 
SpM   =   S/M   =—r-|^   e-691(V) (1.2) 

Tl    " 

where   Sp(u))   is the idealized two-parameter spectrum.   The statis- 
tics of the response   X(T1 • Hwj )   are completely determined by the 
statistics of   T,    and   H^     if   Hxp  is a deterministic function.  The 
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long-term variance of response is 

E[X(Tl(Hl/3)]   =    j     j     Xdj.Hj^)   p(T1>Hl/3)dT1dHl/3    (1.3) 

where   piT,   H.JL  )   is the joint probability density function of   T.    and 

Substituting equations   (1.1)   and   (1.2)   into   (1.3),  one has 

E^(Tl'Hl/3p    =j      H*P(") SZ(") d" (».*) 

H1/3    ' 

where 

S;(«)   =    /       /'sJ(w;T1.Hl/3)p(T1.Hl/3)dT1dHl/3 
(1.5) 

S*   is the averaged idealized spectrum by definition. 

It is seen from equation   (1.4)   that the long-term averaged 
variance of the response   X(T1 » Hw,   )   is the integral with respect to 
frequency of the product of the frequency response function and the 
averaged idealized spectrum,  Sp#.       The averaged idealized 
spectrum of the environment determines the long-term averaged 
variance of the response for a given frequency response function of a 
ship.  In addition to the convenience in calculating the averaged long- 
term ship responses,   the two-parameter spectrum approach provides 
a rapid method for estimation of the probability of short term average 
ship response and its higher moments.  If a probability diagram of 
T,    and   H.i.      is constructed such that 

z   =   P(T]   4  a) 
and 

y   =   P(Hl/3   ^    bjTj) 

where   z   and   y  are the two coordinates of the diagram and the   P's 
are the probability functions, then from   (1. 1)   the probability distri- 
bution of short-term ship response,    P(X ^ a),  is given by 
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g(TrHl/3) = a 

P(X <:a)   =   /      /       plT^H, .JdH,,, dT 

0 0 

p ^TrHi/3) = a 

j j       P(Hl/3:Tl)P(Tl)dHl/3dTl 
0 0 

1        g(T  (z).H    ,  (z.y)) 

/ /        dy dz 

0 0 

where 

8(TrHi/3) =  /"',Hx'>(ta,)s''I(";T1.
H

1/3)d< 

P(X $ a)   is simply enclosed by the two coordinate axes and the curve 
of 

gCTj.H Z"0 I 
]/3)   =   /      Hxp(w) Sp (w.Tj.Hj^ldu) 

•^0 

The use of this diagram will be illustrated below. 

North Atlantic hindcast wave data which contains spectra hind- 
cast at   519   points  in  the North Atlantic every six hours for a period 
of one year,  was selected to study the two-parameter spectral model. 
Spectra at   16   grid points were selected for this study.  A total of 
16 x 365 x 4 = 23, 360   spectra were analyzed.    T^    and   Hw3     were 
calculated for each spectrum by the use of the following formulas, 
which have been proposed by the   ITTCLJ 
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17    jo 
—S(w)dw 

T      ,   24.17    JO  ,       , 
Tl    "TOT   r~ (1'6) 

S(U!) du 

0 

n: Hi/3 ■ "V    / sMd. ('■7, 

The statistics of   T,    and   H^,   ,  p(T1 iH^u ), are then constructed 
from these calculated values with equal weights.   The averaged idea- 
lized spectrum was calculated from equations   (1. 5),    (1.2), and 
p(T, ,H^3 ). 

The resulting averaged idealized spectrum was compared 
with the averaged hindcast spectrum   S^(w)   of those   23,360   spec- 
tra ; that is 

23,360 
s (w)   = ——•     V*      s  iüi) 

Ay   ' 23,360 2^ Pi' 

where   SpWu)   are the hindcast spectra.  As seen in Figure 1,  the 
comparisons do not agree very well.  In comparison to the averaged 
hindcast spectrum,  the idealized spectrum does not contain enough 
energy over both the high frequency and very low frequency range, 
and is high for the middle frequency band.   Figure 2 shows the pro- 
bability diagram constructed from the statistics of   T1    and HJ-J     of 
the hindcast wave data.  For illustration purposes,   Figures 3 and 4 
show the corresponding purely imaginary family of responses which 
result from assuming that 

*<Ti'Hi^ =-^öH2i/3(Ti/Tr>2 -p(-2VV) 

where   C   and   T,*   are constants.  The curves of response for   a =0. 1C 
and   0. 4C   are shown in the figures.  With   T* = 10 sec   the probabili- 
ty that the response would exceed   0. 4C   and   0. 1C   was estimated as 
1 percent and   17 percent,   respectively,  by measuring the areas.   The 
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probabilities were higher for the case of   T* 
~ 1.5 percent and ~ 21 percent lor   a 
vely. 

1 5 sec.    These were 
0,4C   and   0. (C.   respecti- 

Recently,  Webb Institute analyzed a group of wave records 
measured at weather station I l  J.   Preliminary unpublished results 
from these newly analyzed data indicate that the idealized two-para- 
meter spectral form does nut agree well with the measured spectra. 

Figure 5 illustrates how the wave energy is improperly dis- 
tributed over the frequencies in the idealized spectrum when it is 
compared against the measured wave spectrum.   The solid curve in 
the figure is the average measured spectrum calculated from some of 
the recently analyzed spectral J    .  The other curves are the corres- 
ponding average idealized spectra calculated from three different de- 
finitions of   T,    as follows 

./O 
2*- J      Sp(ui) dui 

T.     '".„ HT(1)   . 

/ 
uSg   (to)    du) 

2* 

Sp(w)d 

»t^= V-) 

=   2* 

rf sp(u>) 
Jo 

•'n 

d at 

a)    S/j(u))dut- 

1/2 

24.171 
22.248 

=   T1(2) 

For an idealized spectrum, ^(1), T(-l), and ^(2) are the same 
by their definition. However, for a measured ocean spectrum the va- 
rious   T, 's   can be different.   The differences reflect the departure of 
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a measured spectrum from an idealized spectrum. By use of the dif- 
ferent definitions of T, one will thus obtain the different correspond 
ing idealized spectra.   The use of   T. (1)   is recommended by   ITTCL J 

Figure 5 indicates that all of the idealized spectra under- 
estimate the wave energy for the high and low frequency band by a 
factor of   1/2   and overpredict the wave energy for the middle fre- 
quency band.  The use of different definitions of   T^    has not altered 
the result significantly ,  calculation base on   T(-l)   is slightly better 
than that of the others,  but is not significantly better.   The probabi- 
lity diagram was not constructed for measured spectra because of 
the small number of the samples. 

These differences in the energy distribution of the idealized 
spectra and that of the measured spectra are consistent with the dif- 
ferences found between the energy distribution of the idealized spec- 
tra and the average hindcast spectrum shown in Figure 1.    In both 
cases the energy in the high and low frequency bands is underestimat- 
ed by the idealized spectra, and in the middle frequency range it is 
overestimated.  This leads one to suspect the usefulness of the two- 
parameter spectrum for approximating tl . ocean environment,  es- 
pecially in studying the motions of platforms and buoys. 

In spite of the bias described above,  the parameterized spec- 
trum approach has simplified the prodedured in calculating the sta- 
tistical properties of the ship responses.   The probability diagram 
representation is a good tool to engineers,  if the idealized spectrum 
form is improved and the statistical bias is tolerable. 

DIRECTIONAL WAVE SPECTRA 

The motion of a ship in a seaway depends not only on the fre- 
quencies of the waves,  but also on the directions of the component 
waves.   The unidirectional spectrum discussed previously has little 
use when the ocean waves do not propagate in a dominant direction. 
Unlike the unidirectional wave spectrum, a directional wave spectrum 
can not be obtained from a continuous record of wave elevation at a 
single location on the sea surface.  It requires knowledge of wave 
elevations over an area of the sea.  Due to this requirement 
few measured directional ocean wave spectra are available m*i 

The rapid growth of techniques for seakeeping analysis re- 
quires a more accurate description of a ship's environment.   In order 
to make meaningful comparisons between the analytic results, basin 
experiments,  and full scale trials one has to establish the capability 
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of measuring the directions of the ocean waves and generating direc- 
tional waves in a seakeeping basin.  In this section the result of pre- 
liminary work on basin-generated directional wave spectra is pre- 
sented. 

The elevation of the sea surface r;     is considered to be a 
stationary and homogeneous random process in time   t   and space 
}? ,   respectively.   In the linear theory the spectral representation of 

f is given by 

'(t.3?) 
■// •"' 

Re 
k .  x -ait) 

d«(k) (2.1) 

where l?(x  , x,)   is the position vector,  with   x.    and x     the two sur- 
face coordinates ;   k = (k cos9, k sin0) = (k.pk-)   is the wave number 
vector, with   k = (k-     + k^ )1/2     and d   = tan'1   ^p/k.    the wave num- 
ber and wave direction,   respectively ; k.   and k,   are respectively 
the wave-number components in the   x.    and   x,   directions ; and 
d{( k )   is the random variable.  According to linear theory the wave 
frequency,   w ,  is given by CD

2
    = g(k1     + k

2 ) '        in deep water. 

In applications,   one assumes that   d{( k )   satisfies the fol- 
lowing expected value condition 

E [diC^dM*)] = 
S(Ic )dic    if   t =V 

if    k/k' 

(2.2) 

where a bar denotes the complex conjugate. 

In the above expression   S( k )   is the directional wave spec- 
trum.    S( k ) dk   can be interpreted as the mean-square value of T; 

arising from wave elements which lie in the infinitesimal range of 
wave number components   (k  ,k    + dk  )   and   (k  , k2 + dk  ).  Knowing 
the directional wave spectrum,    S( k ) ,   of the sea determines the 
composition of waves in all directions. 

In applications it is usually necessary to parameterize   S( k ). 
A general representation of   S( k )   is given by its Fourier series. 
By decomposing the directional wave spectrum   S( k;a)0)   at a given 
frequency   w     into a Fourier series with respect to direction  d , 
Longuet-HigginsL^J     was able to relate the Fourier coefficients to the 
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cross spectra of the surface elevation and its space derivatives.  The 
floating buoy built at the National Institute of Oceanography was de- 
signed for this approach.   BarberL J      related the Fourier coefficients 
to the cross spectra of the surface elevations measured at several 
points in space.   However,   in the latter case the relations become 
more complicated and the lower order harmonic coefficients can not 
be determined without assumptions regarding the higher order har- 
monic coefficients. 

From the Fourier representation of   S{ K;ü)   )   with respect 
to the wave-number component   k1  ,  Barber and PiersonL J     have 
shown that   S( K; u0)   can be aoproximated directly from an array of 
probes which lies in a direction parallel to the   x1    coordinate.  The 
Fourier coefficients obtained from this approach have a one-to-one 
correspondence with the cross spectra of measurements having space 
separations of   r - (nD, 0) ,    n =  1,2,  . . .  N ; where   ? is the separa- 
tion vector and   D   is the fundamental separation of the probes.  Thus, 
from an array of probes which has separations   D,  2D,  .. .  ND,  one 
is able to approximate the directional spectrum up to the   N      har- 
monic.  The derivation of this is given below. 

By multiplying equation   (2. 1)   by the corresponding equation 
for    f (t + T, x + "?)   and taking the expected value,   one has 

E [,(t.*) ,(t+r.*^)] -.±ffjf    e^' x-«t)-ip'.(^).W(t+r)] 

-a* 

(2. 3) 

.  E[d{("it)di(U')]     =     ff e^^-^Sit)^ 

where    r   is the time lag.   Since the wave field is assumed stationary 
as well as homogeneous,   the correlation function   E [»? (t,3?) »j(t+T, x+rj| 
in the above equation is a function of  r    and   "r  only ; it is independent 
of   t   and "j? .  If the correlation function is denoted by   R(T,"?),  equa- 
tion   (2. 3)   can be written as 

R(T, r)   =11       e ' ' S( k ) dk 
// 

(2.4) 
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iir-" SCk^w) dkj 

0)' 

g 

lü)T   , 
e      dw 

(2.4) 

where   S(k1; u )dk d w = S( k ) dl? .    The dependence of 'S   on   k1    and 
k-   is replaced here by dependence on   k.    and u ,   making use of the 
dispersion relation between   k  ,  k  ,  and w .    Equation   (2,4)   relates 
the directional wave spectrum   S (K*)   to the correlation function 
R( T,"?) .  In the above equation 

/ 

*Z/% 

S(k ;w) e"1    "   r dk,        is the 

/g 

Fourier transform of   R(T,"?)   with respect to T    and is called the 
cross spectrum,  which is denoted by   Co(w) - iQ(c»)) .   Thus, 

R(r,-?)   = /    [Co(«r?) - iQ(u,r?)]     e'^7 do, (2.5) 

where 

/ 

"  /g 

S(k   ;ü)) e dk       = Co(ü;fr) - iQ(u,;"l) 

-ü>    /g (2.6) 

Thus,  if one represents the directional wave spectrum   S(k   ,u) )   in a 
Fourier series with respect to   k. D,  where   D   satisfies _«.? D < ff   , 
one can obtain the Fourier coefficients directly from equation   (2. 6) 
by their definitions.   That if 

S(k , w)     =    A    +     /,   (A    cos nk,D + B    sinnk.D) (2,7) 
0        "■"•,       n 1 n 1 

n =  1 

where 

0      2 >r 
Co{a,-?   =   (0,0) ) 
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Co(w;^ =   (nD, 0) ) 

B      =    Q KF =   (nD.O) ) 
n ir 

n = 1,2,   ... 

(2.8) 

By arranging the probes to measure wave elevations such that ono 
can calculate the   Go's   and   Q's   up to  "? = (ND, 0) ,  the coefficients 

BN   can be readily obtained from   (2, 8) .   The n- Bi lN' 
relations in equation   (2. 8)   are simple and they form the basis for 
the experiments described below. 

The accuracy of the approximation of equation   (2. 7)   is de- 
pendent on both the order   N   and the non-dimensional parameter 

u> D/g .   For given   N   and   D   the angular resolution, 0      ,  is defined 
as  0 r - sin   ^^7f»~57%) •   Physically this is a measure of the width of 
the angle over which a narrow band wave-spectrum is spread.   ßr 

increases with decreasing   u   ; that is the angular resolution increases 
with increasing wave length.   On the other hand if   N   and   w   are given, 
then   $     increases with decreasing probe separation,  D.  For a spe- 
cific experimental setup,   D   can be adjusted for optimum results. 

As an example consider a narrow band directional wave spec- 
trum which satisfies 

/ 

k.+ Ak. 
i I 

S(k1;a>)dk1 = C(")      if     k. =k0 

k.- Ak, 
i 1 =   0 Otherwise 

(2.9) 

where   C(ü) )   is an arbitrary function of frequency  ui   and   2Ak1   is 
the band width of the wave number   k1   .   The directional spectrum can 
then be represented by a delta function, & , and its Fourier represen- 
tation is given by 

S(k  ;w)   =   C(w) D8(k  D - k  D) 

C( 
^~K- +     2     cosnfrj-k^Dl (2.10) 

th where   n = 1,2,   ...    The N       order approximation gives 

1342 

. ■      —* -"■ - -■ i     u» am """* 



'    ,i.^1.H'.l'l|MII-|ll   I   UP"—■ UlilUINIUI.      IM    --»ii   ..l—.   ^M» 

Oaean Wave Spectra and Ship AppHaations 

Sik^.v) )   aH£L£    lL*    X)      co8n{krk0)D] (2.11) 
^ n = 1 J 

At   k    = k0   the approximation   S(k. ;«>)   has its maximum value of 

Ci^ (J- t N) .   A.  K, - ko   = ^D    o„e Ha.   Sft,;.)»^,.!, 

It is a factor of   -l/(l+2N)   smaller than the maximum value.   The 
approximation of equation   (2. 8)   to the narrow band directional spec- 
trum,  equation   (2. 9)   of  kg = 0 ,   is shown in Figure 6,   From this 
figure, one sees how a narrow-band directional wave-spectrum is 
directionally spread out as a function of-5^- D   in this approach.   The 
loss of accuracy, i.e., increase of spreading,   .vith decreasing-™-D, 
which has been discussed previously,  is clearly shewn in the 
figure, 

EXPERIMENT 

The basic approach described in the previous section was ap- 
plied to the measurement of the directional spectrum of waves gene- 
rated in   NSRDC's   seakeeping basin.    Wave measurements  were 
taken with sonic probes,  using three separate array configurations, 
which are shown in Figure 7.   For the linear arrays,  the fundamental 
distance between the probes was   2. 5 feet and the total array length 
was    32. 5 feet .  This arrangement enables one to approximate the 
Fourier series of the directional wave spectrum up to the ninth har- 
monic.   This configuration was suggested by PiersonL J       .   The 
reason this arrangement was used rather than the optimum array sug- 
gested by Barber [12],L1"!J    is that in Barber's configuration the total 
array length would have been only   22. 5 feet ; a greater length was 
preferred.   The linear array was arranged in two  orientations 
relative to the wave generators.    In the   first  case the array was 
mounted parallel to the West bank of the basin and at a distance of 
100 feet from the bank,  as shown in Figure 3.  In the second case the 
same array was rotated   45   degrees clock-wise to the North,   The 
third array consisted of a pentagon arrangement,  and employed six 
probes : one in the center and five outside forming an equilateral pen- 
tagon.   The sides were designed to be    10   feet long.   The orientation 
is shown in Figure 3. 

The seakeeping basin has wave generators along both the West 
and North banks and the wave generators on the two banks are operated 
independently. During the study three kinds of directional wave fields 
were generated.   These were : wave coming from West bank,   waves 
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coming from the North bank and waves coming simultaneously from 
both banks.  Both regular and irregular waves were generated.   The 
periods of the regular waves were    1.6,  2. 0,  2, 5, and   3. 0   seconds. 
These wave periods correspond to waves with angular resolution of 
less than   10   degrees up to   90   degrees.   The irregular waves were 
generated Irom available random seaway tapes.  These wave trains 
had average wave periods ranging from   1.6   to   3.0   seconds. 

Sonic probes operating at a frequency of   200 KH were mount- 
ed approximately  20 inches   above th<_ still water surface.   These 
devices can measure the instantaneous water surface elevations with 
great accuracy.  From the digitized records,   cross spectra were 
calculated for all irregular waves.   Wave amplitudes and wave phases 
were calculated for the regular waves by means of Fourier trans- 
forms.   The directional wave spectra were then obtained by the use of 
Equation (2. 8). 

Some resulting directional wave spectra measured from the 
linear array are shown in Figures 8 through 16.  Figures 8 through 
11 are for regular waves and Figures 12 through 16 are for irregular 
waves.   The curves for regular waves represent the directional spec- 
tra obtained under several different conditions such as different 
wave-maker dome air pressures,   which are indicated in terms of 
blower   rpm ,  different directions,   which are designated by   N   or 
W   for waves generated at the North and West banks,  respectively, 
and different wave combinations.   The coordinates of the figures are 
the normalized wave vector components in the direction parallel to 
the array,  and the normalized spectrum density 

S(k ;w) 

where   SA(
ü

')   is the average of the one-dimensional spectrum den- 
sities obtained by the five probes.  Since   S(k1 ; w)   is approximated by 
a ninth order Fourier series,  the normalized spectrum density 
S*(k. ;w)   should be less than   9. 5   as previously discussed.   The theo- 
retical maximum value of   S*(k. ;a))   depends on the wave conditions. 
If a wave of a given frequency were generated at only one bank, 
S*(k1 ;ü))   should have a maximum value of   9. 5   in the direction in 
which it was generated.   For other directions,  it will be less than 
9. 5 .   The actual value depends on the combination of the wave am- 
plitudes generated at the two banks.   The regular wave results as 
shown in the figures agree with this theoretical value very well regard- 
less cf the wave frequencies,   wave amplitudes and the presence of 
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waves coming from other directions.  Figure 11   shows how the an- 
gular resolutions varied with the frequencies of the waves.  As dis- 
cussed previously,  the angular resolution increases with increasing 
wave period and the theoretical value of   S*(k  .u)   is   -0. 5   at di- 
rection  ör ,   (k. -k0) -  "»TQ   ; The measured angular resolution agrees 
fairly well with the theoretical value.   However,  away from the peaks, 
S*(k1 ;&))   oscillated with a much higher value than one would expect, 
especially for the wave periods of   2. 5   and   3   seconds.  The irregu- 
lar wave results do not agree as well with the tehoretical value. 
Figure 1Z    shows the resulting directional wave spectra of irregular 
wave trains generated at the North bank.   It indicates that the waves 
were all coming from the North bank and the peak values of the spec- 
tra are between   6. 5   and   8 .  In comparison with the regular wave 
measurements of Figure 7,  the peak value is decreased.  However,   as 
the tail value also decreases,  one concludes that the mixture of the 
frequencies in the same direction does not affect the angular spread- 
ing significantly. 

Figure 13    shows the measured directional spectra under a 
different wave condition.  From it is concluded that there were long 
waves of period   2.5   to   3   seconds coming from the West and short 
waves of period   1. 6   seconds propagating to the South.  The direc- 
tional distribution of the   2. 0   second period wave is meaningless. 
However,   the actual wave field was different from the one pictured 
above.  An irregular wave train was generated at the North bank and 
a regular wave of period   2. 5   seconds was generated at the West 
bank.   The loss of accuracies of the wave directions for the waves 
with wave frequencies near that of the regular wave is clear.  Figure 
14   illustrates the same phenomena.   For this case the period of the 
regular wave was   2. 0   seconds and the amplitude was smaller in 
comparison with the previous case.   The loss of information on the 
wave directions in this case was not as serious as in the previous 
case.   The presence of the   2. 0   second period wave reduced the peak 
value of the   2.4   second period wave but increased that of the   1. 6 
second period wave.   Figure 15 shows the measured directional wave 
spectra for the case of two low-amplitude irregular wave trains pro- 
pagating at   90 degrees   to each other.   The directional distribution of 
the wave is reasonable. 

By examining the calculated cross-spectra we found that the 
method used in estimating the cross spectrum was responsible for 
the errors which appear in Figures 13 and 14.  Special care is neces- 
sary when analyzing the directional wave fields in theye cases.  By the 
use of a narrower frequency band-width,   the result was improved ; it 
is shown in Figure 16. 

1345 



11 mmmi 
■ xii     JLIIH^ " m"  ' 

■--mi    i  .    .  i  i ■  PP  —" 

Ving-t'ihun Chang 

The directional spectra obtained from the pentagonal arrange- 
ment were not good and are not shown here.   The measured phase lags 
between the probes had the same accuracies as those obtained by the 
linear array.   However, as previously mentioned,   the relations bet- 
ween the Fourier coefficients and cross spectra are more complicat- 
ed and thus,   the results were not as good as those obtained from the 
linear array method. 

DISCUSSION 

The result of the study on the idealized unidirectional spec- 
trum indicates the need for improvements in recommended spectral 
fonns in order to obtain a better prediction of long term ship motions. 
The two-parameter spectral form underestimates the wave energy for 
both high and low frequencies and overestimates the wave energy over 
the wave frequency range of   0. 1   cycle/sec.   to   0. 14   cycle/sec. 
This has been illustrated in Figures 1 and 5. 

For applications,   one has not only to be aware of this limita- 
tion associated with the idealized spectrum but also the varieties of 
ocean wave spectra.   For a better representation of the ocean environ- 
ment,  one needs to know not only the averaged wave period and wave 
height but also other parameters.  With more measured spectra a 
data bank of wave spectra can be established on a digital computer 
and stored on tapes for direct access.  Such a data bank would even- 
tually make idealized spectra obsolete.   It would certainly be more ac- 
curate than the idealized spectra and would contain samples of all of 
the various ocean wave spectra. 

The experiment on the directional waves suggests that the ac- 
curacy of a measured directional spectrum depends more on the di- 
rectional compositions of a wave field than on frequency compositions 
of the waves.   This is demonstrated in Figures 11,   12 and 13.  In order 
to accurately measure the spectrum of a swell and wind waves combin- 
ed sea,   one has to use a technique which can estimate a sharp peaked 
cross-spectrum accurately,   such as the narrow band process or the 
time shift processL'^J     .  However,  it will require much longer re- 
cords of surface elevation. 

The linear array is a better probe arrangement than a penta- 
gon arrangement for the wave fields generated for this paper.  How- 
ever,  a linear array does not allow one to separate the waves propa- 
gating in the direction left of the array from those of the right.  Two 
linear arrays may be needed for the measuring of an actual wave field 
in which waves propagate in an angle of more than   90 degrees . 
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The angular resolution illustrated previously can be improved 
if one applies a weighting function to the Fourier coefficients.  The 
choice of the weighting function depends on one's taste,  a« has bean 
discussed by Longuet-Higgins t>\ 

The separation   D   was   2. 5 feet   in the present experiment. 
This separation can be adjusted to improve the long-wave angular 
resolution.   The choice of the   D   depends on the wave frequency range 
in which one is interested.  If one is only interested in the long waves 
then one can chose a suitably large   D   such that—^—D < ir      for all 
frequencies in which one is interested.   But in this case,  the total 
array length will certainly be increased,  and the increase in the array 
length can complicate the operations of the detectors.  This has to be 
considered in the choice of an optimum   D .   By moving the probes 
opposite to the direction of the waves,   one can also improve the an- 
gular resolution significantlyL11 J      .  It is applicable in an open sea 
where the waves are considerably homogenious over a large area.  It 
may not be suitable for a model basin unless the basin is large and 
the waves are very homogenious with respect to space. 

The length of the wave records used for the above irregular 
wave calculations are approximately one minute long.   The accuracy 
might have been improved if longer wave records had been used. 
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Figure    1     Average hindcast,  wave spectra calculated at station 
near station India 
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Figure 2     Probab.lity diagram of Tj and H1/3 based on hindcast wave data 
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Figure   3     Probability distribution of the imaginary family of ship 
responses with   T j* = 10 sec. 
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Figure   4     Probability distribution of the imaginary family of ship 
responses with   Tj*= 15 sec. 
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Figure   6    The ninth order harmonic representation of the narrow 
band directional spectra 
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Figure   7    Wave-height probe configurations 
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Figure   8    Ivleasured directional spectra of   1.6 sec.   ptnod waves 
only,  with array parallel to West bank 
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Figure   9     Measured directional spectra of   2.0 sec.  period waves 
only,  with array parallel to West bank 
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Figure    10   Measured directional spectra of   2.5 sec.  period waves 
only,  with array   45°   to West bank 
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Figure    11     Dependence of angular resolution on wave period for 
wave generated at North bank and array parallel to 
West bank 
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Figure    IZ     Measured directional spectrum of irregular waves 
generated at North bank 
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Figure    13     Measured directional spectrum of an irregular wave 
train with a high amplitude regular wave train of 
2. 5 sec.   period 
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Figure    14     Measured directional spectrum of an irregular wave 
train with a low amplitude regular wave train of 
2. 0 sec. period 

1362 

■■M-mMHM MtMM^MBMMMMMHM 



i iivtmmmmam 1 -      > w   i    i     ■■    ■ iwm tn itwmmm^mim  i^wiiinnin ,   npiimmi 

Ooea« Vaff Speatra and Ship Appliaatione 

CENTER PERIOD OF FREOUENCV BAND 

     30 SEC 

 2 7 SEC 

         20 SEC 

• ••       16 SEC 

Figure    15     Measured directional spectrum of two irregular wave 
trains 
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DISCUSSION 

William E. Cummins 
l roch a v opm nt C ntero 

, U roy l nd, U. • A • 

As o ri g inally sch eduled, I was to be a co-author of this Paper 
and I sh ·n ld to off r a word of explanation. Because of high pressures 
in th e . avy Depa rtme nt it wa s not possible for me to contribute to 
thi s t o th e xtent that would justify my name being on the cover. All 
th e work and most of the good ideas are Dr. Chang's. I will not dis
sociat myself from any bad ideas, although I do not admit that there 
arc any in th P a p r. Fortunate ly Dr. Chang was able to do an ex
c e ll ent job with ou t me. She has started work in a very difficult field 
which w av all n eg l e cted, and which we must not neglect much 
longe r. 

shall :.ay a f e w words about the first part of her paper on the 
problem of standard spe ctra, which is something w~ have been fight
ing ove r in the ITTC now for some six years. I expect there will be 
a 'ood deal of conce rn with it n e xt month in Germany as well. 

The more we learn the more we realise that we are in trouble. 
We are using sea spe ctra in the United States Navy and we find 
that we do not know e nough to use them well. I would like ~o offer a 
word of e xplanation on some of the troubles that Dr. Chang showed 
where ther e w e re discr e pancies at th e two ends of the "average" 
spectrum. The average which was based on the fully developed spec
trum t ended to underestimate the ends, and in the middle it tended to 
overestimate. ~ rem e mbe r Bill Pierson warning u s many times that 
when he and Neumann and Moskovitz and the others who worked on 
the fully developed spectrum, they based their theories on only 15 
percent of the measured spectra available to them, 85 pe rcent could 
not be considered fully developed. So the naval architects who have 
been using them, against this advice of the oceanographers, have 
been concentrating on something that occurs about one time out of 
seven. 

If you have been to s ea and looked with your eyes open you 

1365 



.'.fing- hu Chang 

will realise that almost invariably what you see is a local wind sea 
with a swell underneath. The wind sea tends to be of relatively short 
wave length. The swell comes from some distant storm ; it has been 
through the filtering effect of distance, so it is a narrow band. Even 
when you cannot see it with your e ye the ship usually does see it. The 
local ' ind sea is usually doing one of two things : it is either growing 
or falling. So what you have is really a dumb-bell spectrum. You have 
a swell here from somewhere else and a wind sea developed locally. 
Thes e are not taken account of in the fully developed spectra on which 
we have been basing much of our wor":, yet they are very important 
for the naval architect ; we cannot ignore them. 

I wa~ on a ship just two months ago. It was not a normal ship 
but n evcrthdess it is an interesting case. The average wave height 
on one day was about four feet. There was a swell about 300 feet 
l ong for our Z50 foot ship. We here heading into it. It was a quiet 
day. The surface even glassy. The local wind sea was virtually zero 
- and we slammed about 55 times _per hour by count. The next day 
we had a local wind sea about the same h ight ; a few white caps, not 
much ; a lovely day. The waves were much shorter. It was an abso
lutely wonderful day, because the ship was just alive in the WC}ter. 
The ship behave d completely differently. • 

Over and over again we have used the fully developed fipec
trum for characterising response when it is just plain wrong. We 
have to look at all of the seas that the ships encounter. 

DISCUSSION 

Michel Huthe r 
Bureau Veri tas 
Pari s . France 

I first thank the authors for the very interesting Paper they 
present. 

As the authors noted it, for ship behaviour calculations sea 
states representation by spectra is nowaday commonly used, The 
main problem for naval architects remains the question of the multi
directionality of the sea. I shall be pleased to know the opinion of the 
authors upon the two commonly used representations, i.e. the cosine 
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of the angle incidence spacial repartition of the energy from the 
main direction,  and the concept of the superposition of different uni- 
directional spectra coming from different directions. 

DISCUSSION 

Manley Saint-Denis 
'Jniversity of Hawai 

Honolulu.   U.S.A. 

The spectral theory of waves is a difficult subject to discuss 
with clarity and cohesion because the subject,   even today,   is in great 
turmoil and no matter how much or how well is said about it,  even 
more remains in doubt.   At the present state of the art,  a point can 
be strongly developed only by disregarding a plethora of other points 
which,  however,   remain to haunt one like ghosts demanding to be 
heard in the night. 

Miss Chang's Paper is a welcome and well-written exposition 
on a point of keen interest,  namely,  do the idealisations made vn the 
effort to obtain a working description of the sea yield disfigurati  ns 
of reality ? Miss Chang believes that the correspondence between 
model and reality is unsatisfactory,  yet I suspect this is only a ques- 
tion of standards and that hers are somewhat higher than those of us 
who,  being older,  have learnt that nature,  no matter how well-behav- 
ed,   cannot be very well fitted by simple formulae,  no matter how well 
they may be conceived.   For me,   the fit of measured and idealised 
spectra in Figure 5 of the text seems to be very good. 

Miss Chang suspects the usefulness of the two-parameter 
spectrum and suggests a data bank.  Such an idea would have been 
frightening a few years ago but now that computers with abundant 
memory are available,   the suggested solution is feasible,   yet for all 
the merit of the idea I should like to enter a plea for elegance - that 
is,  for minimum effort,   that is,  for simple formulations instead of 
qua si-infinities of numbers,  the designer will be happier ; for,  having 
been brought up over the past century to depend on a length over   20 
wa\ e,   he would appreciate something almost quite so simple.  Whether 
the simple formula can be fitted to the vagaries of the sea wave de- 
pends,  in my opinion,   on how representative the probability distri- 
butions of Figures 2 and 4 in the text are,   i. e.  upon whether the 
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probability distributions really represent the sea behaviour,  and to 
this end,   I urge Miss Chang to explain,   if possible,   the double dip in 
the curves. After long meditation on the subject I have succeeded 
only in convincing myself that I do not understand the plot and am in 
somewhat of a dilemma as to whether the explanation underlying the 
double dip is a physical or a statistical inaccuracy.  At all events, 
the orderly presentation is a pleasant reward for the reader who seeks 
insight into this fascinating subject of how to describe the wind-driven 
sea and leaves him with a stimulating thought for further work.   From 
a single Paper written by a young lady one cannot possibly ask for 
more. 

REPLY TO DISCUSSION 

Ming-Shun Chang 
Naval Ship Researah and Development Center 

Betheada, Maryland,   U.S.A. 

My thanks to Dr.   Cummins and Dr.  Saint-Denis for their kind 
comments. 

On the question of how well the linear supposition of the direc- 
tional waves can be applied to the ship applications, I do not yet know 
the answer. This is one of the reasons for doing the directional waves 
experiment in the basin. 

The cosine power law spreading in the wave directions has 
been observed by a few experimental studies such as   SWOP   and the 
floating buoy of   N.I. O.    However,   these data were taken with respect 
t1' wind generated waves.   For a large percent of the time,  the waves 
in the ocean are a combination of swell and wind waves ; thus,  one 
si ./aid not expect this power law to hold in general.   The Atlantic hind- 
cast data could give a preliminary picture on this subject. 

As to Dr.  Saint-Denis' comment on the ■■ se of two parameter 
spectral formulation,   I certainly agree that it is dependent on the types 
of problems one is studying.  I do not believe it will be very good for 
studying optimum design and its associated problems because the 
shifting period may introduce a large error in probability at the large 
response end. 

About Dr.  Saint-Denis' question on the probability diagram 
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and the- dip in it,   I have as yet not studied it very carefully.   However 
1 believe the dip is due to the combination of swell and wind waves. 
This combination depends on the distribution of the wind field over 
the area under study.   I would say that you will find the answer in the 
wind statistics. 
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THE ROLE OF THE DOMINANT WAVE IN THE SPECTRUM 
OF WIND-GENERATED WATER SURFACE WAVES 

E.J.   Plate 

Univereity of Karleruhe 
Karlsruhe,  Germany 

ABSTRACT 

In an appendix to a paper on the structure of wind 
generated waves Plate et. al. (1969) have shown 
that the - 5 power law of Phillips is not necessa- 
rily an indication of a gravitational subrange but 
could be a consequence of the dominance of a 
train of significant waves. These waves are simi- 
lar in shape but not necessarily sinusoidal. The 
consequences of these observations were exploited 
in developing modeling laws for wind generated 
waves, by Plate and Nath (1970), and interpreting 
the shape of the spectrum of wind generated waves 
(Plate. 1971). Although these concepts serve well 
to explain a number of previously unexplained phe- 
nomena - such as the "overshoot phenomenon" of 
Barnett and Sutherland (1968) _ there appear cer- 
tain features in observed field data which are not 
in accord with the results. For example, many 
ocean wave measurements reveal a broader spec- 
trum than that of the similarity hypothesis, and 
non-constancy of the coefficient in Phillips - 5 po- 
wer law. It is the purpose of the paper to explain 
at least qualitatively the development of the ocean 
wave spectrum in terms of modifications to the 
similarity concept and to assess the consequences 
of these modifications for the laboratory simula- 
tion of ocean waves. 

I.    INTRODUCTION 

There exist two different methods of describing the state of 
the sea surface : the method of the dominant wave and the method of 
the spectrum.  The former has recently been replaced in many labora- 
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tory and theoretical   studies by the latter.  In this paper,  it will be 
shown that the two concepts  are not mutually exclusive but complement 
each other.   It will be shown that the dominant wave concept may have 
some important advantages for an understanding of the physical proces- 
ses involved in the energy transfer from the wind to the water surface. 
In particular,  it will be shown that the equilibrium spectrum constant 
ß of Phillips can be associated with the slope of the dominant wave. 

Consequences of this relationship between the dominant wave and the 
spectrum will be pointed out. 

II.    THE EQUILIBRIUM SPECTRUM 

In calculations of forces exerted by wind-generated waves on 
off-shore   structures two  different   views   oi  the  wave field have been 
held.   The engineer of older days has used what is called the "design 
wave" for his structures :  starting from the observation that for a long 
duration wind there arises a wave field in which similar waves of ap- 
proximately equal lengths and frequency but of variable height dominit. 
te ..he motion of the water surface,   he defined an average wave frorr 
the largest third or so of the observed waves and used the correspon- 
ding height or length for his design.   Such concepts lead to the repre- 
sentation of the design waves in the form of a fetch graph (see Wieget 
(1970) for the latest version of this graph).  We shall call henceforth 
this wave the "dominant wave". 

This essentially physical view of the ocean surface is con- 
trasted by the more recent,   essentially mathematical representation 
of the water surface at a point as a random time series as used by 
many modern writers.   This time function has some interesting prop- 
erties which were determined experimentally.  It was found,   for exam- 
ple,   that the elevations of the surface at a point conEtitute,   after a 
long duration wind,   a stationary sample o.' a Gaussian distributed en- 
semble (Longuet-Higgins (1953),  Hess et. al.   (1969)) with Rayleigh 
distributed extrema,  with a variance that can be decomposed into a 
variance spectrum.   Physics enters into this latter concept through 
the spectrum.  As sinusoidal waves satisfy the linear equations gover- 
ning surface    waves,   the  spectrum was thought to represent a super- 
position of very many "component waves",   that is,   linear waves of ve- 
ry small amplitude who by superposition form the large waves.   Empi- 
rically,   it was found soon enough that the  spectra of the water surface 
at many different points in many different  regions of the oceans had 
a somewhat similar shape,   and attemps were made - which are by 
now classical - to empirically associate a functional form with the 
spectrum,   who.ie parameters were empirically correlated with local 
independent parameters,   such as wind speed and fetch. 
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It might well be said that this development found its culmina- 
tion in Phillips' (1958) derivation of the - 5 - power law for the high 
frequency end of the spectrum.   From reasoning that all component 
waves shorter than some limiting,   longest component are at equili- 
brium in a state of breaking,  he deduced the equation for the high 
frequency end of the spectrum : 

2       -5 
S ("•')- A g     w for   ui » w (1) 

max 

where S { w ) is the spectral density,   g the acceleration of gravity and 
w    the angular frequency which has a value    u)m where the maximum 

S (   ctim) in the spectral density occurs.   How well the - 5 - power law 
equation  1 fits the experimental data is illustrated in figure  'a (from 
Hess et. al.   (1969)).    The data are from many different sources and 
range from short fetch laboratory data to long fetch ocean data obtai- 
ned at winds near Hurricane conditions.   A  separate set of data,   by 
Mitsuyasu (1 969) is shown in figure lb.   Through both sets,  a curve is 
drawn according to equation 1 with/3  -   1.48 .   10 

Unsatisfactory in equation 1 is the fact that ß  is an empiri- 
cal constant.   An analytical model that overcomes this defect by rela- 
ting /?   to the energy input into the wave field from the wind was sug- 
gested by Longuet-H: ggins (1969).   Assuming the rate of energy lost to 
turbulence by wave breaking to be proportional to the wave energy 
contained in the wave field,  and equating this to the work done by the 
wind on the waves,   he was able to show that if all wave components 
at frequencies above  ui      are in the state of breaking the coefficient 
ß   can be  related to the drag coefficient C for the wind through : 

log 1600 c '   pa/pu. 

where C - Tw/p,u,       , X^ is the water surface stress exerted by the 
wind,    P     is the density,  and  1.      is the wind velocity at height h, 
while the subscripts a and w refer to air and water,   respectively.   A 
drag coefficient of C ^  1. 5   X   iQ  3 leads to a value of/? =  1. 3 X 10*2 

in reasonable agreement with observed values,  and since it is empi- 
rically observed that the drag coefficient decreases with fetch,   or 
with duration,   the theory is even capable of predicting a slight decrea- 
se in  ß    as has indeed been reported. 
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III.     THE SIMILARITY SPECTRUM 

The model of Phillips and Longuet-Higgins for the high fre- 
quency end of the spectrum appears to neatly solve the difficult pro- 
blem of describing the water surface spectrum by means of physical 
concepts,   thus closing the gap between the purely mathematical des- 
cription of the surface and the physics of the generation process.   Yet, 
there are a number of observed phenomena which do not fit into this 
model.   There is,  for example,   practically no observed spectrum 
which does not possess "humps",   or small oscillations,  of the high 
frequency end of the spectrum about the best fitting - 5 - power law. 
These humps appear regularly in the neighbourhood of higher harmo- 
nics of u.'   and are more pronounced in the laboratory data (for exam- 
ple,   Hidy and Plate (1966)) than in field data (for example,  Moskovitz 
et.   al.   (1962),   or Liu (1971)).   There is,  also, no observational evi- 
dence of a water surface on which waves of all wave lenghts or fre- 
quencies are breaking simultaneously.   In fact,  it appears unreasona- 
ble to expect that small waves and large waves should be affected by 
the wind in the same way, because larger waves are always exposed 
to the wind,  while smaller waves either are exposed or sheltered, 
depending on where they are located with respect to the crests of the 
large waves. 

Add to this the strange phenomenon of the "overshoot".   Both 
in the laboratory and in the field,  if for identical wind conditions a 
plot is made of the spectral density at one particular frequency as a 
function   of fetch   it  is  observed that the spectral density first increa- 
ses very rapidly with fetch,   then reaches a maximum (for that fetch 
at which the component coincided with the peak of the local spectrum), 
and with longer fetches decreased and developed into an oscillatory 
curve.   An example of an overshoot plot is shown in figure 2 which is 
taken from a paper by Barnett and Sutherland (19). 

The experimental evidence and the theori ;ical models can 
be reconciled through the concept of the similarity spectrum,  of 
which Phillips' law equation 1 is a special case.  Similarity spectra 
are derived on the basis of the idea that by a proper non-dimensiona- 
lization of the frequency scale and the spectral density scale all ob- 
served spectra can be made to collapse upon a single curve.  In the 
literature,  one finds a number of different representations of a simi- 
larity spectrum which differ in the functional form of the spectral 
density distribution,  as well as in the parameters by which the mea- 
sured quantities are non-dimensionalized.   Well known is the simila- 
rity spectrum of Kitaigorodski (1962),   but other forms are perhaps 
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more useful. 

I think that G. Hidy and I were the first (Hidy and Plate 
(1965)) to suggest a method for avoiding the problem of determining 
the proper functional form of the scale parameters. To normalize 
the spectral density we used the fact that the integral over the spec
trum had to equal the variance a 2 of the sea surface, and we used 
the frequency "' m to scale the frequency. In this manner, a similari
ty spe ctrum of the form : 

s 
s 

(_"'_) 
"'m 

=S(w) w m 
~ 

(3) 

is obtained, where the non-dimensional spe ctrum Ss is a universal 
function of w / wm. We did not specify the functional form of equation 
3. But we pointed out that the high fr quency end could be represented 
by the - 5 - power law. Many later writers hn.ve adopted the same 
procedure and represented their spectra in the form of equation 3. 
Examples are shown in figure 3, in which three different results ! or 
the similarity spectrum are given. The solid curve is a "best fit" 
equation through non-dimensional data obtained on Lake Michigan by 
Liu ( 1971 ). - This curve has a maximum at w /wm= 1 o! 1. 5, Super
impose d are the curves of Hidy and Plc:.te ( 1965) and of Mitsuyasu 
( 1969). The curve of Hidy and Plate was derived from laboratory da
ta. It has bee n corrected here for a scale factor of ten by which the 
·,.re rtica l scale had been distorted in the origin::.! pape r. Thus, the 
maximum of the peak is found to be at about 5 rather than 0. 5 (as 
has been used, for example, by Plate and Nath (1969)) . At a first 
glance,one may attribute the difference in the shapes of this and Liu' s 
curve to the difference in the conditions at which the data w e r e ta
ken and one may conclude that there exist different spe ctra l forms 
for laboratory and field. Older analytical spectra for s ea wa v e s il r e 
found to have dim nsionless peaks close to the one given by Liu. 
Mitsuyasu (1969) '). S shown that the maximum values ob ain d from 
the spectra of Pierson and Maskovitz ( 1965) and Neuma nn (1952 ) 
are e qual to 1. 43 and 1. 15, respe ctively. 

But the r e is evide nce that there must be a di fe .,.. :1 t reason 
for the cliff renee in the peak values of Hidy and P lat ( 1965) and Liu 
( 1971 ). The re are the spectra for laboratory and Ii !.: ~ d waves, as pre
sented by Mitsuyasu ( 1969). For both conditions he finds almost iden
tical spectral sha, , , with a maximum dimensionless density at 

w / w zn = 1 which is equal to 2. 74. One m a y ther efor e suspect that 
the diffe r e nc e in the thre e results may be due to th e data analysis 
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technique employed, and that a similarity spectrum which is the same 
in field and laboratory is a physical possibility (see also Plate and 
Nath ( 1969) ). For the discussion in this and the following section, an 
equilibrium spectrum of universal shape and in the form given by 
Mitsuyasu is assumed to exist. 

The spectral shapes shown in Fig. 3 are averaged in the sense 
that the "humps" in the experimental spectra have been removed by 
drawing a smooth curve through them. There is no requirement that 
a similarity spectrum rnust be a monotonous function, and the multiple 
peaks observed in the experimental spectra will, since they occur at 
multiples of wm' occur again in the similarity spectrum. I have shown 
in a recent paper (Plate (1971)) that the concept of such a similarity 
spectrum leads naturally to an explanation of the overshoot phenomenC\n, 
But the significance of the similarity spectrum goes much further. F~ r 
if the spectra are similar at all frequencies, then the measurement of 
the properties at one particular frequency suffices to fully specify the 
spectrum. This ia an important conclusion, for it permits to reconcile 
the spectrum approach with the older dominant wave approach. If a 
single wave component suffices to describe the spectrum, why not use 
the dominant wave for this component ? 

This proposition is almost obvious, and yet, there is a very 
fundamental objection to it. For it is in general not permissible to 
identify component waves and physical waves. A physical wave is a 
water surface contour, while the component wave is a Fourier compo
nent. Consequently the former arises from a superposition of many of 
the latter. Fortunately, the sharp peak in the spectrum indicates that 
component waves of appreciable magnitudes are clustered around wID, 
and as a consequence are only weakly affected by components at higher 
or lower frequencies. This is of course reflected in the observed wave 
pattern. Since the dominant waves are waves that belong into a narrow 
ba1 d of components with frequency near wm, it follows that the domi
nant wave, the component wave at wm, and the higher maxima of the 
time series correspond to very nearly the same thing. In particular, 
one can assume that the highest n out of n waves below some number 
n <no all are dominant waves with frequency wm. 

Civ il Engineers and Oceanographers are accustomed to use 
the average height of the highest one-third of observed waves as a 
measure of the wave height of the dominant wave. This usage reflects 
the observation that these waves remain well defined and do not vary 
greatly in length or period or progression speed. One therefore can 
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put n0 equal to 0. 333 . m. The water surface maxima are Rayleigh 
distributed, and thus the water surface variance f12 is related to the 
average hei ht H 1/3 of the highest one third waves through the re
lation (Longuet-Higgins ( 1953)) : 

z 
f] (4) 

where the wave height is defined in the usual manner as the distance 
between tr .ugh and crest of a wave. Equation 4 is remarkable be
cause it conne cts the physical concept of a wave with the mathemati
ca: d~scription of the surface, and through this with the spectrum. 

Equation 4 is not sufficie nt to define the magnitude of the 
spectral density at "'m· We must f i '1d an additional condition which 
pt!ts bounds on the growth of the in ividual wave. This condition is 
imposed by th e breaking of the dominant wave, much as in the con
cept n which Phillips model is based. But unlike the breaking of 
all component wave s, the similarity spectrum presupposes a limi
ting growth pattern imposed on the whole spectrum by the dominant 
wave. An equilibrium spectrum exists also for the similarity spec
trurn, but in a different sense than that used by Phillips. The physi
cally unrealistic condition of breaking is no longer imposed on each 
of the mathematical component waves. But there is no doubt that a 
limiting form of a spectrum exist.s. It is well known thatat given fetch 
and with constant wind velocity, there is found (at least in the labo
ratory), a condition at which the time function representing the wa
ter surface elevation becomes truly stationary. Every spectrum 
that is determined from this time function is a sample from the sa
me ensemble. There is also sufficient evidence to suggest that even 
in the duration-limited case of water wave generation - that is, in a 
ca s e whe r e a wind of constant u has started to blow over a water 
s ::- face which was initially at r e st -, there exist only such waves on 
the wate r su rfac e which have g rown to the maximum possible heights. 
Only in those instance s when the wind had calmed after generating 
equilibrium waves, or when wind starts blowing over non -equilibrium 
waves that have entere d from another storm area in the form of 
swell, or when wind blows ove r waves that arc left from a previous 
storm, there will be spectra that are not of the equilibrium type. 
These spectra are likely to have a shape that cannot be described 
by the similarity law. We conclude that the similarity shape is al
ways valid for the maximum possible waves, and thus the spectrum 
of the water surface at equilibrium contains the maximum spectral 
dens i ties, i.e. the equilibrium spectrum is the envelope to all pos
sible wav spectra at ary one fetch and wind speed. 
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If the spectrum can be described through the dominant wave, 
then the breaking of the dominant wave affects the spectrum every- 
where and sets the scale of the maximum level that the energy of the 
water surface can attain.  Breaking of the wave occurs when the maxi- 
mum acceleration a -m    of the wave,   that is,  the acceleration of the 
crest of the wave,   reaches some limiting value determined by the 
acceleration of gravity g,   such that 

am =  "g m (5) 

where &• in the case of a breaking Stokes wave is equal to 0. 5 (Longuet 
-Higgins (1969)).   Plate et. al.   (1969) (see also Plate and Nath (1969)) 
have shown that the assumption equation 5 leads to a relation for the 
spectral peak given to : 

S ( z31 g   w 
m 

(6) 

with/?) = 
S     (1) a 

s 

if  a    is 
,   We note that there exists a constant value 

is a constant.   The assumption's*/?then leads to a value 
utting Sc    (1) = 2.74   (using Mitsuyasu'i 

of fil 
for o . By putting Sg (1) = 2.74 (using Mitsuyasu's value as an 
average) and ß =1.5. 10 (as given by Mitsuyasu for th. field) one 
obtains« *** 0. 15, which is of the same order, but considerably smal- 
ler than the upper limit 0. 5. 

A constant    a or /3  ,  and a similarity spectrum whose shape 
does not depend on the size of the dominant wave,   has a very impor- 
tant consequence for modeling of the ocean surface in a laboratory 
tank.  As Plate and Nath (1969) have shown,   it implies that wind-gene- 
rated waves can be used in the laboratory to exactly duplicate in sha- 
pe and reduced magnitude the wave spectra of the ocean surface,   pro- 
vided that the Froude Fr number 

Fr = 
m 

v? (7) 

is the same in model and prototype.   The condition equation 7 can be 
satisfied in the laboratory,  and thus it is possible to perform model 
studies of vibrating non-linear structures subjected to wind waves. 
Unfortunately,   the exact correspondence of the field-and laboratory 
is not quite assured,  as will be discussed in the remainder of the 
paper. 

1378 



Ro e f Dominant !v'ave i n Spea t rum of Wi nd-Generated Waves 

IV. THE EQUILIBRIUM RANGE CONSTANTS /3 AND /3 l 

One reason for a difference in laboratory and field spectra 
is found in the behaviour of a • We know that a should be less than 
0. 5, and a numerical value for a was obtained in section 3 from the 
condition of wave breaking. We note that if '3 is not constant, then 
a will also vary. Thus, if we take Mitsuyasu' s laboratory data, we 
find = 0. 08, about 6 times larger than the fi e ld valu e , and with 
this an a value of 0. 148 • V6 = 0. 36 - v ry close to the maximum 
theoretical value of 0. 5. There exists also the possibility of inferring 
a from the maximum observed wave slope. Observations of dominant 

waves from different sources have been reviewed by Deardorff ( 1967) 
who finds that the wave slope H 1/lj Lis approximately constant, at 
least for smaller ocean waves, and equal to about 0. 08. As the wave 
is approximately sinusoidal with wave number km = Z w / L, where 
L is the wave length, with frequency "'m• and with wave height H V3 

one can infer a value of a = 0. zc; from the maximum acceleration 
a max<>£ the sinusoidal wave on deep water :a max =-]- Hgk. For la
boratory waves, the c;lope can be steeper. Chang ct.al. (1971 ) re1 'Jrt 
a value of H 1/S j L..,.ll.l, and thusa~WO. 30. For la;~r ocean waves, 
the slope appears to decrease further, and consequcnt!.y the observed 
a decreases.As a result, we would expect to find a~1 value which is 

not quite constant but decreases with increase of wave lcn ght. This 
is in agreement with the observations of measured /3 values. One 
should realize that/3 is likely to be smaller than 131 in the laboratory 
because the drop-off of the laboratory spectra near the peak of the 
spectrum is more rapid than the - 5 law of Phillips. In the field, it 
is the other way round,/3 is larger than/31. As the values of /3i 
are not reported fr om field data, we shall use /3 to approximate fJ1• 
as we have don€ above. 

A close inspection of figure Ia reveals that the - 5 power 
law docs not quite connect the peaks of the spectra. At low fr equen
cies, the experimental spectra have peaks which constantly Lall be
low, while at high frequencies they lie above the average curve. In 
figure lb, the spectra have slightly different /3 and ,131 values. The 
same observation applies to the high frequency end of the spectrum. 
Longuet-Higgins (1969) has given a summary of observed /) values 
which were plotted as c. function of the fetch parame ter gx/ u2 by 
Mitsuyasu (1969) and Liu (1971), from whose paper figure 4 is taken. 
In defining the fetch parameter, xis the distance from the point of 
observation to the nearest upwind shore, or to the storm center, and 
u is the shear velocity u = ("tw/ P a) 1/2 • The curve of L iu ( 1971) 
through the data may not be a final result, because it is ba sed on da-
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ta which might not be applicable. The data at small fetch parameters 
are all by Mitsuyasu 1 and do not abrce with the data of Hidy and Plate 
( 1966) reproduced in figure 1 and which allow at most the conclusion 
thatJ3a.3 • 10- 2 for small values of the fetch parameter. Also1 as 
Liu states, the value at the largest fetch parameter is a result per
taining to a spectrum not in equilibrium. because the wave pattern 
has not yet adjusted to the decrease in wind speed which had taken 
place. While one may df'bate if the rate of change of /3 is properly 
expressed by th curve s hov.n ·u figure 4, it appears conclusive that 

/3 as w e ll as 131 decrease with increase of fetch parameter. or mor.e 
exact! with d cr ase of wln. But is it proper to associa this de
crea s e with the d e crease of the drag coefficient. as the model of 
L on gu t-Higgins and equation Z implies? I think that while the conclu
sion might be correct. - as one cannot disprove at this time 1 - the 
model i:; certainly oversimplified, in more than one respect. To be
gin with Longuet-Higgins' model neglects the part of the wind energy 
that is transmitted to the drift current. It would differ by a constant 
factor if this was a constant percentage of the total, but all indica
tions are that this parti tion depends on the "wave age" c / u. where 
c is th pha se-speed of the dominant wave. It is at present not clear, 
which fraction of the work done by the wind goes into the waves 1 and 
which fraction increases the et.ergy of the drift current. 0 "l l i ons on 
this differ, from assumptions like those of Longuet-Higgins t o thusc 
of Manton ( 1971) according to whose model a maximum of only 52 '1o 
of the total shear goes directly ir.to wave motion. 

A secund aspect not considered in the model of Longuet
Higgins is that wave growth changes with fetch. Consequently, some 
of the energy fed into the waves is convected further downwind rather 
than be ing dissipated through the wave breaking, a feature that must 
be considered in energy balance models. It is the reason for the exis
tence of the fetch graph. In fact 1 by assuming zero wave breaking ahd 
a wave shape which remains one of constant maximum slope at all 
fetches D eardorff ( 19 67) was able to quite adequately predict the fetch 
graph. without however being abl to provide an explanation on how 
a wave of this sort can exist. We must therefore point to this effect. 
although a mathematically and physically accepted model for the wave 
development with fetch appears at pres nt not to be available. 

V. THE DOMINANT WAVE AND THE SPECTRUM 

Apart from the properties of the wave acceleration limi.t (j... 

there exists an important difference of laboratory and field data in 
th ' s ha f the d o minant wave itself. It was already mentioned that 
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the wave spectrum has those significant "humps" at harmonics of the 
frequency of the dominant wave ""m• I have poin .ed out in a previous 
paper (Plate ( 1971)) that these humps indh..ate n ot so much a general 
behaviour of the spectrum, but could be the energy densities associa
ted with the hight..r ;~armonics of the dominant waves, that is with the 
fact that th€ domi!l.-.nt wave is not a tru e sinusoid. 

F o r a ). i1: · ~ t · · a.-· ion of this point, figure 5 is reproduced. It 
show :o the .:\·~ !" <:~e ~nape of the highest 20 out of lOC waves observed 
on the su ·.!ace of a laboratory channel by Chang (Chang et.al. (1971)). 
One notices that tj,if; cur·ve is skewed and decidedly non-sinusoidal. 
The skewness can be attributed to the pressure pattern that must 
e xist for this case . As the streamline pattern shown in iigure 5 indi
cates, the air flow s e parates from the air crest and reattaches at so• 
me distance upslope of the next wave . The result must be a non-sym
metric pressure distribution with )re ssure at the wave backs and suc
tion at the wave fronts. Se paration is also r e sponsable for a stream
line pattern above the dominant wave which is remarkably unaffected 
by the waves : all vertical ve locitie s induced by the wave motion are 
smoothed out b e cause the streamline formed by the w:ave and the upper 
limit of the s e paration bubble is pretty much a straight line. In th e 
laboratory one therefore finds und e r these conditions that the air flow 
at some short distance above th e wate r waves resembles that obser
ved in the turbulent bounda ry laye r along a rough surface. 

The spectral shape as&ociate d with th e wave of Chang et. al. 
can be jnfcrred from the Fourie r components of the wave of figure 5. 
The spectral d e nsity must be proportional to the square of the ampli
tude of the phase -shifted harmo,lic component at any frequency n Wm , 
with n = l, l, 3, •.. , divide d by the bandwidth 2p" whe re P is the 
pE'riod of the wave . The s e are plotte d in figure 6 against n. It is seen 
that the enve lope to the Fourie r component energies is r e markably 
close to a - 5 power law. As spectral analysis is not capable of pro
viding filt e rs that are so sharp as to prevent any side lobe leakage, 
it is flot unlike ly that the similarity spectrum is basically the smeared 
out energy spe ctrum of the dominant wave, in particular since domi
nant wCt.ves do not move as a pe riodic wave ttain but in groups which 
are phase -shifted with r e spe ct to each othe r. Such a behaviour ex
plains the peaky structure of the spectrum. But it also may explain 
the difference in th e peaks of the similarity spectra of the waves of 
Mitsuyasu (1969) c:.nd Hidy and Plate ( 1965) which are so evide nt in 
figure 3. If the spectrum is e ssentially that of a pure sinusoid, then 
the energy density at the peak is the energy of the sinusoid spread 
over the chose n bandwidth (the resolution bandwidth of spectral analy
sis). A very narrow resolution bandwidth leads to a very large density 
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at the peak and rapid drop of£ of the sinusoid's energy in the neigh
bourhood of the peak, while a wide resolution bandwidth has the ten
dency of spreading the wave over a broader part of the spectrum. It 
follows that very sharply peaked spectra can be compared only if the 
resolution bandwidth for ail spectra is defined as m • w . .,, where w111 

is the frequency of the pea' nd m 1 • constant for all spectra. For 
such an analyOJis, propL .• )ll<t.l bandwidth filters arc very suitable, 
which is one reason why a former student of mir.e, Mr. P. Su (1970) 
has developed in his MS Theds a new filtering technique for the ana
lysis of water urface data. It is one of the purposes of this paper to 
plead to futot r •· authors that they should pre sent their wave spectra 
with all the information on resolution bandwidth, spacing of the data, 
and methods used for their spectral analysis. 

A second important consequency of the dominant wave not 
being purely sinusoidal is that there exists only on phase velocity 
for all harmonic s of the dominant frequency. Instead of a phase velo
city of the component waves given to c :'. = g/ k, where k is the wave 
number of the particular component wave, all compone nts travel at 
the speed of the component at the spectral peak. As in the case of the 
Stokes wave in finite amplitude wave theory, this speed is larger than 
that calculated from c2 = g/ km • T o prove that this is indeed so, 
Su { 1970) has determined the phase speed of component waves filtered 
out of a wave record, He determine d the wave records at two wave 
gages which were placed close ly behind one another in a wind wave 
tank. For both records simultane ously,one particular wave compo
nent was filtered out and the cross correlation of the two filtered re
cords was determined. The distance between the wave gages divided 
by the tin e lag between the maximum correlation and zero yielded 
the phase velocity. Figure 7 shows a representative record. The fil
tering produces very high correlations even at long time lags {accor
ding to the uncertainty theorem of Fourie r analysis) due to the narrow
ness of the filter, and the wave natur e causes oscillation of the cross 
correlation function. These features are not important for the present 
purpose. Important is that the envelope to the cross correlation func
tion shows a maximum at the same tim€. lag for all harmonics of wm 
and Su has shown that this time lag implies a ph.:lse speed of all com
ponents equal to that observed directly for the dominant wave. 

Waves on the sea surface and on laboratory channels may 
show important differences. This may be inferred from the average 
wave of Konda et.al. (1971) reproduced in figure 8. This wave also 
is nonsinusoidal, but in contrast to laboratory wav~s it appears to be 
much less skewed. Unfortunately, Konda et. al. do not give a wave 
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spectrum corresponding to the observed wave. It can therefore not 
be ruled out that the wave pattern is not of the equilibrium type ~ ;~ •• ~ 

thus the wave could be of less than maximum possible height. _ t 
is not unreasonable to expect that separation, if in this case it v ... .;urs 
at all, does not cause pressure pattern which differs as much at the 
upstream and downstream faces of the wave as the kboratory case. 
Some observational evidence for this comes from the fact that Konda 
et. al. have found a very significant vertical velocity component in the 
air which was related to the period of the waves. A velocity profile 
of the vertical velocity above the wave is shown in the figure. The 
velocity is measured with a probe that wa!> fixed on a tower at a cons
tant distance above an undisturbed water surface. 

The spectrum corresponding to the wave in Fig. 8 is also 
shown in Fig. 6. In this case the spectrum of the average wave drops 
off faste r than the spectrum of the average laboratory wave, and its 
shape is much m o r e like that of a Stokes wave, whose energy spectrum 
has also been drawn into Fig. 6. We conclude from this that the domi
nant wave of the labo ratory may differ in form from the dominant wave 
of the ocean. 

How then is it possible that the similarity spectra C'! the 
ocean and the laboratory are so much alike? A tentative explanation 
may be as follows. As we saw, the laboratory wave has. by accident 
or for a reason which is at present not known, a shape that yields a 
spectrum whose high frequency end obeys approximately a - S-power 
law. The spe ctral analysis techniques currently practised tend to 
smear this energy of the waves over a broader spectrum, thus obs
curing gaps which might be in the laboratory spectrum. In contrast 
to the laboratory situation, the ocean waves are less skewed and 
tend to have lower e nergies associated with higher harmonics. But 
the air flow can follow the contours of the large waves and finds on
ly littl resistan(.e on them. Therefore, there might be generated on 
the large waves smaller waves which show the same characteristics 
as the laboratory waves. These then might "flesh out" the high fre
quency end of the spectrum, the result being that the spectra in field 
and laboratory become similar in shape. 

VII. CONCLUSIONS 

I have shown in this paper that the model of Phillips and 
Longu,.. t-Higgins of a water surface covered by waves of all possible 
frequencies above somc lower cut-off value which are in the state of 
breaking, and for which the work done on the waves by the wind is 
equal to the energy dissipated by breaking, does not agree with the 
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reality of the physical situation.   Instead,   the spectra of the water 
surface might be determined fully or at least to a large extend by the 
dominant wave.   Further progress in understanding ocean waves must 
then be expected to come from a  study of the energy balance of the 
dominant waves.   In pursuit of this model one can relate the equili- 
brium range "constant" 13     to the accerelation and thus to the  slope 
of the dominant wave,   and one can explain the spectrum as essential- 
ly that of the dominant wave alone   which has been distort ed and sha- 
ped into a continuous spectrum by the  randomness of the generation 
process and by the analysis methods by which the spectra have been 
determined.   Of the essential correctness of this model I am  so con- 
vinced that I recommend to future workers on ocean waves to direct 
their attention to the characteristics of the dominant waves and to 
develop statistical techniques,   such as the ones used by Chang et. al. 
(1971) or Konda et. al.   (1971) to isolate the dominant wave and the 
associated wind pattern from the records of measured ocean surface 
waves,   and to analyse their behaviour as function of space,   time, 
and wind field. 

The results of such  studies will find important applications 
in modeling forces on structures,   which are caused by wind-genera- 
ted water surface waves.   Most of the conclusions concerning mode- 
ling the similarity spectrum a_ arrived at by Plate and Nath (1969) 
apply equally well to the modeling of dominant waves,   with the impor- 
tant distinction that now the frequency of the dominant wave must be 
matched with the strucUiral eigenfrequencies. 
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Figure 2   Measured overshoot curves (a) Laboratory,  25 rad/sec 
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Figure 7   Filtered cross correlation for laboratory waves obtained 
from wave   -gages placed 31, 5 cm apart along the wind 
direction at a fetch of 9 m.   From Su (1969) 

Figure 8   Average wave and horizontal wind component associated 
with it.  Data by Kondo et.  al.   (1971) 
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DISCUSSION 

M.   Huther 
bureau Veritas 
Paris, France 

I first thank the author for the interesting paper he presents 
today. 

In the calculation of springing of ships a good knowledge of 
the energies in the range of high frequencies (i, e, u ~1. 50 rad-s" ) 
is necessary, so I shall be pleased to know the opinion of the author 
on the better sea state  representation to be used in this case. 

DISCUSSION 

R.   Tournan 
Bureau Veritas 
Paris, France 

As described at a conference at the "ATMA 1972" "Sollicita- 
tions externes et internes des navires a la mer" (J. M.   Planeix,  M. 
Huther et R.   Dubois),  and in a paper in the International Shipbuilding 
Progress of August 1972.   "Wave Loads - a correlation between cal- 
culations and measurements at sea" (J. M.   Planeix Ph.  D. ),  Bureau 
Veritas using classical spectral sea state representation has found 
a good correlation between calculated and measured ship behaviour. 

So I üsk to the author if such calculation and comparison had 
been done with dominant wave sea state representation? 
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REPLY TO DISCUSSION 

E.J.   Plate 
Universtty of Karlsruhe 

Karlspuhe,  Gemanu 

I think the two questions amounted to about the same thing. 
I shall try to answer them indirectly by giving my opinion on how 
best to represent the sea state in a mathematical or laboratory mo- 
del. 

I must speak as a coastal engineer because we arc usually 
concerned with structures that have very few degrees of freedom.  In 
coastal engineering we can usually identify only one or at best a small 
number of degrees of freedom and of corresponding natural frequencies 
or eigen-frequencies of our structures.   Therefore I would recommend 
that if one does laboratory studies of the vibrations of a structure one 
should always set the wave conditions for the laboratory in such a way 
that the most critical eigen-frequency of the structure corresponds to 
the peak in the spectrum of the wave,  if this is at all possible.   Of 
course,   if this natural frequency is of the order of 25 Hz,   it is point- 
less to try to get 25 Hz waves.   But if it is,   for example,   of the order 
of 0. 1 Hz,   may be the most important design case arises when the 
frequencies of the dominant wave and the natural frequency of the 
structure match.   This is somewhat different from present usage 
among coastal engineers. 

I should like also to say a word against the necessity for using 
so-called random waves for modelling the sea state in a laboratory. 
You have probably all heard that it is becoming more and more fas- 
hionable to use a random wave generator u;stead of the older sinusoi- 
dal wave generator to model the forces on structure.   In my opinion this 
is an ill-considered move for the simple reason that the random wave 
components you are generating arc component waves - that is,   each 
one of these waves is travelling at its owr. celerity.   Therefore,   these 
waves show interference pattern - that is,  the small waves modulate 
the big waves,  and vice versa,  and you get a breaking of waves owing 
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to random modulation; you do not get a breaking of waves owing to 
the fact that they are real waves.  Also,  you do not find waves which 
are skewed like the ones I showed in my paper.  And I think that you 
arrive at wrong conclusions,  or no better conclusions,  from this 
kind of study than those which you would get by just using a sequence 
of exjjeriinents with sinusoidal waves of increasing frequency and 
drew your response diagram in the usual manner,   because you are 
basically trying to solve a non-linear wave surface problem by a 
linear superposition method.  If you allow yourself to make this appro- 
ximation,  why not go all the way and just use sinusoidal generators, 
which would cost you a lot '.ess money? 
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INTERNAL WAVES IN CHANNELS OF VARIABLE DEPTH 

Chia-Shun Yih 
University of Michigan 

Ann Arbor,  Michigan,  U.S.A. 

ABSTRACT 

Internal waves in prismatic channels of variable depth 
propagating along the channel axis are studied. It 
has been shown that for whatever stratification of the 
fluid the frequency of the wave motion increases 
whereas the wave velocity decrease; as the wavi? 
number increases. A general method of solution lor 
an arbitrary channel is then presented in detail, which 
gives the wave velocity and the fluidmotion for a given 
wave number anda given mode by successive appro- 
ximations. Finally long waves are studied in some 
detail^ few specific examples of long waves are given, 
and the connection of the present theory with the cla- 
ssical shallow-water theory is shown. 

I.  INTRODUCTION 

Known solutions of gravity waves in a prismatic channel of 
variable depth which have a degree of general applicability are of 
three categories.   For very long waves (first category) the shallow- 
water theory (Lamb 1932, p.   273-274) gives   (gh)   ^   as the wave ve- 
locity,  where   g   is the gravitational acceleration and   h   the average 
depth.   For very short waves (second category) not confined to the 
edge region the variability of the depth is unimportant,   since the mo- 
tion is confined to the region near the free surface.   The third cate- 
gory is the category of edge waves,  which for short waves have an ap- 
preciable amplitude only near the shores (or the edges),  and are there- 
fore always affected by the geometry,   specifically the slopes of the 
channel near the shore lines,  however   short the waves compared to 
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the maximum or average depth.  The solution for edge waves (Stokes 
1839» or Lamb 1932,   p.   447)   is exact if the region occupied by the 
water is semi-infinite,  bounded only by the free surface and a plane 
of constant slope serving as the only solid boundary.  If the channel is 
finite in both depth and width.  Stokes'solution is nevertheless valid 
for each shore if the wave length (in the longitudinal direction) is very 
short,  since the variability of the depth has then an important effect 
only near the shore lines. 

Aside from these three categories,  and interrelating them, 
arc the exact solutions for water waves in a symmetrically placed 
triangular channel of vertex angle    ir /Z   (Kelland 1839,   or Lamb 1932, 
p.  447-449) or of vertex angle   2 ir/3   (MacDonald 1894,   or Lamb 
1932,  p.  449-450).   These exact solutions are useful because they pro- 
vide a check for any approximate theory. 

In this paper internal waves in channels of variable depth are 
studied.  The differential system governing the flow of a system of 
superposed layers of homogeneous fluids is formulated by first con- 
sidering a single layer.   Then for the layered system it is proved by 
the use of comparison theorems that the frequency   »    of the waves 
increases but the wave velocity   c   decreases as the wave number   k 
increases.   Then the differential system governing the flow of a con- 
tinuously stratified fluid is derived,  an^l the increase of    a   and de- 
crease of   c   as   k   increases are again proved in general. 

After giving a few solutions in closed form (under the res- 
triction of the Boussinesq approximation),  a general method of solu- 
tion for wave motion in stratified fluids is given.  In the form given 
the method is for application to continuously stratified fluids,  but it 
can be adopted to deal with homogeneous fluids, and the manner of 
adoption is briefly indicated in the last paragraph of Section 7. 

Finally we study long waves in some detail,   and both conti- 
nuously stratified fluids and layered systems are considered.  A few 
examples are given,  and the connection of the theory to the classical 
shallow-water theory for long waves in a single fluid is shown. 

II.    THE DIFFERENTIAL SYSTEM FOR THE CASE OF CONSTANT 
DENSITY 

If viscous effects are neglected and the motion is supposed 
to have started from rest,  and if the density of water is constant,  the 
motion is irrotational and a velocity potential   4>   exists, the gradient 
of which is the velocity vector.  We shall use the Cartesian coordinates 
(x,  y,  z),    with    z   measured longitudinally,  y   measured vertically, 
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and   x   measured across the channel.  If the velocity components in 
the directions of increasing   x,  y and z   are denoted by   u, v and w , 
respectively, we have 

U    =    -r—  ,        v   =    -r;— ,      W   =    -^—   . 
dx ay az (1) 

The equation of continuity then becomes 

dx' 
)    *    =   0   , (2) 

which is the equation to be solved. 

At solid boundaries the normal velocity component vanishes, 
so that 

r">n 
0   , (3) 

where   n   is measured in a direction normal to the solid boundaries. 
At the free surface the pressure is constant,   so that,  with the square 
of the velocity neglected and with    »j   denoting the displacement of the 
water surface from its equilibrium position, the Bernoulli equation is 

be 
IT   + g" =   constant. (4) 

in which   t   is the time.  Since 

(4)   can be written as 

at  • 
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which is the free-surface condition. 

We shall assume 

0 =   f (x,  y) expi (kz -at), (6) 

in which   k   is the wave number and      a /Z ir     is the frequency.   Then 
(2)   becomes 

(3) becomes 

and (5) becomes 

f   + f   - k2f =  0 , (7) xx   yy x ' 

M = ° • (« 

2 
a I     =     gi      at the free surface , (9) 

with subscripts indicating partial differentiation.  Equations   (7),   (8), 
and   (9)   constitute an eigenvalue problem,  of which,   k^   being given, 
a ^      is the eigenvalue to be found. 

III.   THE DIFFERENTIAL SYSTEM FOR SUPERPOSED LAYERS 

If the fluid system consists of superposed layers,  each of 
which is homogeneous,  the differential equation for each layer is still 
(2),  the boundary condition   (3)   still holds.  The interfacial condition 
at each surface of discontinuity can be derived in a way similar to the 
way in which   (5)   is derived.   The result is 

1400 

 ■■-     - -  1 ■ ll^mmä*mlmmmim 



Interval WaVea  in Channels of Variable Depth 

hS 
[{  P<t>) I    - (   P«0 )u"|     +   g(p^  - Pu)   «     =   0 , (10) 

in which the subscript   I    indicates the lower fluid and the subscript 
u   the upper fluid and   i'f'y) S = (*v)u 

=  *v  W there is a free surface, 
Pu = 0   there, and   (10)   reduces to   (5).  With the form of   <*>    (for any- 
layer) given by   (6),  we can write   (10)   as 

[(")/   -('%]   =   8<  ^-"u^v (H) 

The differential sy'm consists of   (7)   for each layer,  (8),   and (1 1) 
for each interface. 

IV.    VARIATION OF a2 OR  c2  WITH k2 FOR CONSTANT OR STEP- 
WISE DENSITY 

We can show that   a      increases and   c^   decreases as   k^ 
increases,  in a very general manner,   whether or not the fluid is stra- 
tified.  Consider first the case     p = constant,  and let  k^   have two 
values,    k    and   k * .   The corresponding eigenvalues will be denoted 
by   0)     and    d.'  ,  and the corresponding eigenfunctions by   £.    and 
f2 .   Then 

V\   -   k^f,     =    0, +  — 
2   ' 

(12) 

vf2  - k22f2  - 0 . (13) 

and the free surface conditions are 

2f (14) 
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(15) 

Multiplying   (12)   by  f2   and   (13)   by   f,   , integrating over the do- 
main occupied by water,  utilizing   (8),  (14). and (15)   whenever neces- 
sary, and applying the well-known Green Theorem, we obtain 

—   J       =   I    ,   +   k,2 I 
g       m ml 1     m 0 (16) 

-22 

g m ml 2     mO   ' (17) 

with 

// ■■ //' 
U     =    //    f,f2

dA.      Imi /|(f.xf2x   +   ^yV^' 

m 
/ 

a + b 
(18) 

£lf2 dx   ' 

where a and a + b are the values of x at the shore lines, so that 
b is the width of the free surface. The difference of (17) and (16) 
is 

_1_,     2        2. 
g       2 i  •    m im 2 1'      mO 

2-k2l 
"2     kl *   'mo (19) 

so that in the limit   (as   kj   approaches   kz) 
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da 

dk2 

2 gl. 
>    0   , U^; 

where 

// 
f2 dA 

a + b 

2 

/ - 
dx   . (21) 

One consequence of   (20)   is that the group velocity   Cg   is always of 
the same sign as the wave velocity   c ,   since 

k g 
da 
dk (22) 

so that 

da 

dk2 
>     0 (23) 

Now we wish to see how   c      varies with   k    .  Rewriting (19) 
as 

-L kf (c/ - c3 J 
g       12 r    m (kZ-kf^lmO-   i3J' W 

and going to the limit,  we have 

8 dk2 0 

2 

g 
(25) 
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But from   (16),   on making   k2 = kj  ,  we have 

—    J   =   I.    +   k'2!,    . 
g 0 1 

so that the right-hand side of   (25)   is negative, and we have 

dc 

dk2 
<    0 (26) 

Since 

c   +   k 
dc 
dk 

from   (23)   and   (26)   we have 

0     <    cc       <      c       , 
g 

(27) 

which means that the magnitude of   c      is always less than the magni- 
tude of   c,  whether or not   c   is positive. 

For superposed layers,   each of which is homogeneous within 
itself,    (23)   and   (26)   are obtained in much the same way.  All we need 
to do is to apply the same procedure to each of the layers,  and then 
apply the interfacial condition   (11)   at each interface. 

IV.    THE DIFFERENTIAL SYSTEM FOR A CONTINUOUSLY STRATI- 
FIED FLUID 

If the fluid is continuously stratified,  we shall denote the 
density of the fluid when it is undisturbed by     PQ ,  which is a function 
of   y   alone.   The density perturbation will be denoted by   p   ,   so that 
the total density is     PQ +   p .  The mean pressure   PQ   is related to 

PQ   by the hydrostatic equation 
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dy SP, (28) 

Then the linearized equations of motion are 

P0 ^-(u.v.w) ^ ^T' Ä)p + (0' ■gp' 0) ' (29) 

where   p   is the pressure perturbation.   The linearized equation of in- 
compressibility is 

ä7 + % ^ 0 • (30) 

with the accent indicating differentiation with respect to   y.  The equa- 
tion of continuity is 

du ^_v_ dw     _ 
c^x by äz 

(31) 

Cross differentiation of the first and third equation in   (29) 
gives 

;MPnu) ö(PAw) 

atv      d: )   =   0   . (32) 

Since dependent variables will all be assumed to have the time factor 
e"Ut ,   (32) gives 

ö ( P0u) ^ ( Pow) 
0   . (33) 

from which we have 
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(34) 

4» being a velocity potential for   u   and   w . 

Let   F   be a function of   x.   y.   z     and     t    defined by 

F  =   Tt(pov)  +  8" (35) 

Then the second equation in   (29)   can be written as 

(36) 

In view of   (34)   and the third equation in   (29).  differentia- 
tion of   (36)   gives 

tyz (37) 

Assuming for all dependent variables the factor   exp i(kz -   at), 
can write    (37)   as we 

ty (38) 

The subscripts in   (37)   and   (38)   indicate partial differentiation.  Re- 
calling that the first and third equations in   (29)   are 

'tx   =    -Px'       *tz   =    *   Pz   ' 

and combining   (36)   and   (38)   into 
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ty -  P., 

we see that 

*t   ' (39) 

since the exponential time factor is understood. 

The equation of continuity is 

VZ* 
<> ov 

0     by     ' (40) 

with 

Substituting   (3 9)   into the second equation in   (29),  we have 

är( V pov) + g"   = 0 (41) 

From   (30)   and   (41)   we have 

at 2   (  «y -   V)   +   g P0 V     =     0   ' (42) 

or 
a2    * 

'2 V^O 
(43) 
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With   v   given by   (43),   (40)   becomes (remembering the factor 
exp i(kz - <T t) ) 

 r K    <t>       +       O       P 
0    dyv    2 

)   =    0   . 

»    PQ + g^o 

(44) 

The boundary condition at the solid boundary is 

n,u   +   n v 
1 2 0   , (45) 

where   u   and   v   are given by   (34)   and   (43),  and   n  ,  n   and n    ( = 0) 
are the direction cosines of the normal to the solid boundary.  The 
Bernoulli equation is still valid in the free surface (if there is one). 
In fact, the Bernoulli equation obtained by integrating   (29)   is simply 
(39).  But we must recall that   p   is the pressure perturbation only. If 
we require the total pressure   p + pg   to be zero on the free surface, 
and use   (28), we have (with the new definition for $ ) 

    -srr +   gv      =   constant (at the free surface)   , (46) 
On Ot 

which gives,  upon idfferentiation with respect to   t. 

BVy 

""o + s'o 

(47) 

V.  VARIATION OF j2 AND    c2     WITH   k'' 

For the purpose of establishing the comparison theorems, we 
shall write   (44)   as 
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.2 

'0  d> 
0  B 0 

= 0 (48) 

and we recognize that this is really the same as the equation of con- 
tinuity   (31).  We also recognize that   (47)   can be written in the much 
simpler form 

2* a  0 
gv (47a) 

2 2 We now consider two wave numbers   k.    and   k? ,   with the 
2 7 corresponding eigenvalues    <T.       and     o*     ,  and the corresponding 

eigenfunctions    0^    and    <t>.   •   The velocity components   (u1 , v1  , w     ) 
and   (u_ , v   , w   )   satisfy 

öv. äw 
0    , (49) 

;>u. 

ax by 0    . (50) 

Multiplying (49) by <t>2 and integrating over the fluid domain, and 
utilizing the Green's Theorem and the boundary conditions (45) and 
(47a)   for      a =   a .     ,      <t> -   0 ^    ,   v = v^  ,   we have 

I,       +   k 2 I +   "fu,      -H    )     =   0   , 1 m 10m 1      I m        m (51 

in which 

1m jj %   ^x*2" 
dA   . I 

Cm Ik «<>, «2 dA   , 
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Im 

a + b 

[[    *'r%   M .  H   = / -i- *    «^   dx   . 
1     2 

where   a   and   a + b   are the abscissae of the shore lines.  Similarly, 
on multiplying    (50)   and integrating,  we have 

I. +     k,    I +     «r, (J,       -   H    )     =     0   , 1m 2     0m 2     2m m 
(52) 

where 

2m 

// 

«ly *2y 

^   P0 + gP0 

dA (53) 

The difference between   (S2)   and   (SI)   is 

,      2 2V 
(k2    -   k,)! 

Om 
a2   -    » 2)   (H        +   K    )   , (54) 

£ 1 m m 

where 

K 
// 

g P' 0 ^ 
'   0        ly      2y 

2      0     B   O7 v      1       0      ^   0 ' 

dA.(55) 

From   (54)   we have 

d a 

dk 

^0_ 
H+K    ' 

(56) 
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where   IQ^H   and   K   are respectively the value of   Iomi   Mm   and   Kr 

when   K,  = K2   and are obviously positive.  Hence 

dff' 

dk2 
>    0 (57) 

We can write   (54)   as 

^-,2) I.     - c,lH     + K   ) ^^-^("m^J 

which "ives 

dc2 \ - C^H + K) 

dk' k" (H + K) 
(58) 

It is a simple matter to show that 

J +K    >    0   . 

where   J   is   he value of   Jj,^ (or JZm^   when   kj = k2   and   ff j  = »2 
From   f^I),   on making   ki  = k2 ,    we have 

I0    +   c" (J - H)   <   0 

Hence 

I0 - c2H - C
2K   =   (I0 - c2H + c2J) - c2(J+K)      <    0   . 

and   (58)   gives 
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dc 

dk" 
<    0 (59) 

As before   (57)   and   (59)   imply,   respectively, 

cc     >    0 
g 

and 0 < cc     <    c"   . 
g 

(60) 

VI.    SOME SOLJTIONS FOR ARBITRARY WAVE NUMBERS 

If the density stratification is exponential,  and if the iner 
tial effect of density variation is neglected   (i. e, ,  if the Boussinesq 
approximation is used),  it is j/ossible to obtain solutions in closed 
form for waves in a symmetric triangular channel,   whatever the 
number may be,   provided there is a free surface. 

wave 

Let 

"0(0)6 
-0y 

(61) 

where   y   is measured from the vertex of the triangular chanrel,  and 
let the sides of the channel be given by 

With    PQ   given by   (61),   (44) becomes 

(62) 

*xx     +      A2 (  \Y 
+    "V    '   k20       =   0     ' 

(63) 

in which 

(64) 
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If the inertial effect of density variation is neglected,    (63)   becomes 

2 2 
<(>        +    X   0 -   k 0 

xx yy 0   . (65) 

The boundary conditions at the sides are,  in accordance with   (45) 
and   (62)   and with   u   and   v   given by   (34)   and   (43)   , 

«      + 
x 

     4>      =0 
m        y 

(66) 

for the two sides given by   (45),   respectively. 

The solutions for symmetric modes have the form 

♦ =   A    coshaxcosh7y cos k(z-ct + * ) , (67) 

provided 

2 i2      2 a      +     A     7 (68) 

The   *    in   (67)   is an arbitrary constant.  Since the channel is sym- 
metric and   (67)   is symmetric with respect to   x ,  it is necessary to 
consider only the boundary. 

mx (62a) 

where 

« 
m (66a) 

Substituting   (67)   into   (66a)   and using   (62a),  we obtain 
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om 

>X 

tanh ax    coth Tmx    =     1 

a -   im (69) 

Thus 

x2 2 
A       =     m (70) 

Since   m   is real,     X      must be positive.  Equations   (68),   (69)   and 
(70)   give 

,    2     2 2m    > 

so that 

7   = and 
VI m VT 

(71) 

The dispersion relation is given by the free-surface condition   (47), 
which in this case can be written as 

2A v2   A a   <p      =     g   A     <p (72) 

Substitution of   (67)   and   (70)   into   (72)   gives 

gkm 

VT 
tanh kd 

V2^ 
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where   d   is the maximum depth. Given    ß  and   m ,    a     is known, 
and   (73)   gives   k.    We can also write   (73)   as 

2        gkX           ,.      kd 
<r     = -5—     tanh      

VT Vzx 
(74) 

With   A      given by   (64),  given    ß and   k   we can find   *   from   (74). 
Then   Xz   is known and hence   m ^    i8 known. 

Evidently there is also an antiSymmetrie mode, given by 

4> =    A   sinh   ox   sinh   7y   cos k (z-ct+ t ) 

Then   (69),    (70),  and   (71)   still stand but the dispersion formula is 
now 

2        gkm             ,       kd 
»     =       coth       

VT VI^T 
(75) 

or 

gkA 

VT 
coth 

kd 

V2Ä 
(76) 

It can be easily shown from   (65)   that if there is no free 
surface   A2 must be negative.   The solutions given above all corres- 
pond to positive     A     .  Hence the presence of the free surface is es- 
sential for the existence of these solutions.   The waves these solutions 
represent are therefore largely free-surface waves rather than in- 
ternal waves, and the density stratification has only a minor effect - 
that of affecting the value of the slope   m.    For this reason these so- 
lutions are not very interesting.   We note that ii   ß =   0   we have 
m 1 and   (73)   becomes 
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tanh 
kd 

(77) 

which is just the solution of Kelland   (1839). 

We shall now proceed to study truly internal waves. 

VII. A GENERAL METHOD OF SOLUTION 

Given a density stratification    PQ   and a channel cross sec- 
tion,   our task is to find the relation between    o^   and   k      determin- 
ed by   (44)   and   (45),   supplemented by   (47)   if there is a free surface. 
Since   & *   appears in the denominator of the third term in   (44)   and 
as a multiplier of that term,     (44)   is inconvenient to use as it stands. 
We shall transform it into an equation in   v.    Differentiating   (44) 
with respect to   y,  and using    (43),   we have 

RP' 
P      (  

0 a* 
k  vl P0V)   -   0   . (78) 

with the accent un      PQ   and un    v   indicating differentiation with res- 
pect tu     y . 

The boundary condition   (45)   has to be written in terms of 
v   alone.   Since   u   is given by   (34)   and   v   by   (43),    we can write 

V 
g"', 
—)   vdy + fjU) (79) 

where   fjfx)   is an arbitrary function of   x.    It will be shown later that 
the boundary condition   (45)   demands that   fjM   be a constant. 
Hence 
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V u! 
gp' 

^     /   (po + •)   vdy   . (80) 

Multiplying   (45)   by     PQ   and using   (80),  we have 

ni äTT   j 
gp,( v:     I    (P^-y )   vdy   +   n2    P0v   =   0     , (81) 

in which the boundary geometry not only determines   nj   and   n^ ,  but 
will play a role after   v   has been differentiated with respect to   x   in 
the first term.  We shall show later that the integral form of   (81)   can 
be changed to a differential form. 

If the. : is a free surface the condition there is   (47) ,  which 
again must be expressed in terms of   v.    By virtue of   (43),   (47)   can 
be written as 

a   <t>      =   g „ov. 

Applying the operator    V       on this and using   (40),    we have 

g     /   d   v k2v) (82) 

Equations   (78),    (81),    and   (82)   constitute the differential system 
defining the eigenvalue problem. 
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We shall now impose two restrictions on our study : 
(i)   we shall assume that the channel is symmetric, and   (ii)   we shall 
exclude sloshing modes (with motion in the x-y plane only) from con- 
sideration. Asymmetric channels can be similarly treated without 
any substantial additional difficulties, and sloshing modes need a se- 
parate treatment.  We shall describe the boundary of the symmetric 
channel by 

x2   =  [f(y)]2 . 

and consider only the branch 

x   =     f(y) (83) 

Then the direction numbers   (nj ,  n^ ,  0)   of the normal to the boun- 
dary are 

"j    =    !.  n2   =   - f (y).    n3   =     0 (84) 

Restriction   (ii)   enable? 'is to use the following expansions 

v=v00(y)   +   k2v02U)   +   k4v04(y) + 

+   kV      v20(y)   +   k?V,2(y)   +   kV^y) + 

4 
+ k x     v40(y) + k2v

42(y) + k 4v44{y) +..._ 

+.. (85) 

and 

A0   +   k2X2   +   k4   X4   + (86) 

1418 

 ■—■-  



■ ■naaiH i —■ mmuvi-mmmmmnmn-i    "   «  .   • w»l!l" in.iwii""'  n. iwmin -r*-^—-^ wtm'i"""'' « ■i'-^.'i"' ■'"!> m 

Internal  Waveo in Channels of Variable Depth 

where 

<T) (87) 

Substituting   (85)   and   (86)   into   (78),  and extracting the terms of 
zeroth order in   k,   we have (p1     assumed never to vanish) 

^o^Vzo - gp,o  Voo + ( pov,oo)   = 0'      (88) 

which gives   V20   in terms of   v 00 

If terms of zero order in   k   in   (81)   are taken,  that equa- 
tion becomes,  with   nj   and   n^   given by   (84) , 

■/' VP'oV20dy   -   f'^  VOO   =   0 

With   x   equal to   f(y),   this becomes 

:/ w, 20 dy •—   P0 V00 = 0 (89) 

This equation is --alid for all   y.  Hence we can differentiate it with 
respect to   y   and obtain 

ZM'V,« - ('•'■   p«vnj 'O6^ 0'20 0  00' (90) 
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Eliminating   v       between (88) and (90) ,  we have 

(fc.v'     )'   +   (f'f" A.v^j'   -   X„gp'  v„„     =   0 
0    00 0 00 0      0  00 (91) 

or 
Lvoo = ("o^'oo)' + ^W^ - \,«p,o]voo - 0    (91a) 

The boundary condition   at   y = 0   is 

v00(0)    =   0 (92) 

If the upper surface is fixed, the boundary condition there is 

voo(d)  = 0 (93) 

If there is no flat upper surface, and the conduit is full of fluid,  (93) 
can simply be applied at the highest point.  On the other hand,  if the 
upper   surface  is  free,   the boundary  condition  (82)  can be written 
as 

"oo^ =   - V Ko{d) - vooH (94) 

Integrating  (90)  in the Stieltjes sense over a vanishingly thin layer 
at the free surface,  we obtain 

2Wdi •■wW 

Substituting this into (24),   we obtain 

vWd) v f'(d) i 
■ m\ 

voo(d) • (95) 

* If there  is a  flat rigid upper  surface the boundary condition 
there  for   V^Q   is   v20(d) = 0 ,    which can be  satisfied only if 
f'(d) = 0 .    The present analysis for  symmetric  channels is there- 
fore valid only  if the  channel boundary  has no  flat rigid part. 
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which could have been obtained by integrating   (91)   across the free 
surface in the Stieltjes sense. 

If   f(y)   is a constant,    (91)   becomes 

( pov'oo)    -   Woo   =   0  ' 

which agrees with the equation governing wave motion   (Yih   1965, 
p,   29)   in a stratified fluid for   k = 0 .   Furthermore,    (95)   becomes 

v,oo(d)   =   Vvoo(d)   ' 

Which is the free-surface boundary condition for a rectangular chan- 
nel,   and which agrees with   (82)   when   v   is independent of  x   and 
when   k = 0   (for which    ^ =  XQ).   The conditions   (92)   and   (93)   remain 
unchanged if   f(y)   is constant.   Hence the differential system consist- 
ing of   (91),    (92)   and   (93),    or   (91).    (92)   and   (95),  agrees, as it 
should,  with that for a rectangular channel when   f(y)   is taken to be a 
constant. 

From the system   (91),    (92)   and   (93)   or   (91),    (92)   and 
(95)   we can determine   \Q   and   VQQ(y) .    Then   V2o{y)   is known from 
(90). 

We shall describe the next stage of approximation.  The pro- 
cedure of successive paaroximation will then be clear.   Taking terms 
of order   k2   in   (78),  we have 

( 'OV    +   ( V^'o V(2v20-V00^   +   ^'o   V^-V 

x2    [(V20 >     +   «"'O    V'^Q-V    =      0 >[     - 
(96) 
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The equation corresponding to   (89)   is now,  for terms of order   k 
and free from   x , 

/ 
2    /     (VVZZ'WZO   +    V20)dy   +   I 

4    p„   [v02(y) + f2v20(y) 1=0. f 0 02' >J 
(97) 

where 

I   =   4 f ;/„\ gP'oV40dy 

Differentiation of (97)  gives 

2(X0ß',,0V22+    V20   +    V'o V20)     -\f0\2)^
lt\^'- V . 

(98) 

Elimination of   v2     between   (96)   and   (98)   gives,  after multiplica- 
tion by   f. 

L v 02     =     f  [-<"'  ^O^'   +   ('WVW1] 

in which   L   is the operator on   VQQ   in   (91a).  We see from the terms* 
of order   x2    in (96)   that   v40   can be expressed in terms of  ^20 • 
and is therefore known.  Thus   I   in   (98)   is known. 

*   Equating terms of   0(x   )   in (96) to zero also guarantees the sa- 
tisfaction of the free surface boundary condition for terms of  0(k x ), 
as can be seen from a Stieltjes integration of those terms at the free 
surface and from (82) . 
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The boundary conditions are,  if there is no free surface, 

V02(0)     =     0     =    V02(d)   * (100) 

If we now multiply   (91)   by   VQ^   and   (99)   by   VQQ, and integrate'he 
resulting equations,  by parts if necessary, and using   (92),    (93), 
and   (100)   whenever possible,  we obtain two equations the left-hand 
sides of which are identical.  Taking 'he difference of these two 
equations,  we have 

/V P   v     )  - ( P_+ 
^0  20' 0 

X  ß P'   )v 
2B     O'  00 

r dy = 0 (101) 

which determines    A, since   v. and are known.   Then '2 '   ■"'"■*-    '20       tt"u   v00 
(99)   can be integrated by the method of the variation of parameters 
to give   v Q2    •   Then   v ?9     is known.  Further approximations follow 
the same pattern. 

22 

If the upper surface is free,  the free-surface boundary 
condition can be found by integrating   (99)   in the Stieltjes sense,  and 
an equation similar to   (101)   can be found.   In fact,  to obtain it one 
need only add the terms 

f2f P „(d) v-,«(d) + x,fg  P   (d) v    (d) + 4 f H 0 20 2 0 00 Vo(d)V40(d) 

to the left-hand side of   (101). 

It remains to show that the   f (x)   in   (79)   can be taken to 
be a constant.   The argument is as follows.  We have obtained succes- 
sive approximations to the eigenvalue and the eigenfunction,  at each 
stage satisfying all the boundary conditions.  If   f (x)   is not a constant, 
it is an additional term for the potential   0   in   (34), which gives rise 
to an additional velocity whose   y   component is zero.  That velocity 

Recall that a flat rigid upper surface is ruled out, and at the highest 
point of the symmetric channel   x 
to vanish. 

so that   v40(d)   does not have 
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therefore cannot possibly satisfy   (45)   unless its   x-component is 
zero - or unless   f.(x) is a constant. 

In the next section we shall study long waves.  But before 
we leave this section we shall make two comments :   (i)   The method 
of expansion can be slightly modified to deal with unsymmetric chan- 
nels,    (ii)   If the fluid is not stratified,      PQ   is constant, and from 
(90)   one deduces that   VQQ   vanishes and with it   V20   also vanishes, 
according to   (88).   However,  for the second approximation,  in which 
terms of   0(k 2 )   are considered,  it is found that   VQ2   is governed by 
the equation 

02 (f'f" V =     0 (102) 

which is what   (99)   becomes.   The boundary condition on   VQ2   is 
identical with   (95) : 

^02^ ,8    " 
f'(d) 
f(d) Vd) (103) 

Equation   (102) is easily integrated,  giving the result 

V'02     ■   f,r* v02 C     , (104) 

and 

■f-'l 
y 

fdy     . 
(105) 

Substitution of   (104)   and   (105)   into   (103)   gives 
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d 

/fdy 
^0 

c       =    g          =    gh   , (106) 0 m 

where   h   is the average depth.  Equation   (106)   agrees with the result 
of the classical shallow-water theory for long waves.   Tims every 
comparison we have made indicates the correctness of our procedure. 

VIII.    LONG WAVES 

We shall give some specific examples of the speeds of long 
internal waves,  and shall consider two special classes of density 
stratification. 

(i) Exponential density distribution.  If the density distribution 
is given by   (61),  we can work directly with   (44),  which in this case 
becomes   (63),  with    X2   defined by   (64).  If we expand   <t>   in & power 
series in   k '   ,  we have 

=    *00(y)   +   k2  « 02(y)   +   k4 * 04(y)   + ... 

(107) 
+   kV    |\0(y)   +  k2^y)   +...J 

+  kV    r<040(y)   +  k2 042(y) + ...    i      +... 

2 
Since we expect    \     to be negative for internal waves   (i.e.,  waves 
that do not owe their existence  primarily to the free surface), and 
since    \     contains the factor     a2   , which contains the factor   k*   , 
we shall write 

X2     =    a2k2   +   a4k4   + .... (108) 

in which 
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.2     " (109) 

We shall endeavor to determine   y   for a given channel 
cross-section and a given    ß   in   (61). 

Substituting   (107)   and   (108)   into   (63)   and taking terms 
of order   k2   ,  we obtain 

2*20   -       >       ^"OO   ^W-SO   =   0 (HO) 

Let the channel boundary be given by (62).  Then the condi- 
tion there is,  from   (34),    (43),    (45),   and the definition of    X2   given 
by   (64), 

m 0       -      X       <p =0 
x y (111) 

The terms containing   k     in   (111)   are 

2mx«20(y)   +     y-    «.^(y)   =   o   . (112) 

or 

2y «20(y)  +     y-    «•   (y)   =   o   . (113) 

after substitution of   y   for   mx   (it being sufiicient to consider one 
half of the symmetric boundary). 

Combination of   (110)   and   (113)   gives 

'oo + ( ^+T)*,oo+ >2*o0   =   0 (114) 
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If the inertial effect of the density variation is neglected (Boussinesq 
approximation),  this equation becomes 

1 2 
v 00        y * 00 00 (115) 

the solution of which satisfying the boundary condition at   y = 0   is 
Jo^y)» wl161"6   JQ   *8 t^e ^e88el function of the zeroth order. 

If the upper surface is free,  then  (47) gives the condition 

^00 ^  ^'oo^   • (116) 

so that (116) is replaced by 

0Jo(-Vd)   = yJjfyd) (117) 

which gives y. Once y is known,  the long-wave speed   CQ   is calculat- 
ed from 

u2     2 

ßg 

k 2       ßg 
— '  or   co    -™ 
~2 y 

(118) 

It is important to note that the roots of (116) or of (117) are 
for internal waves only.   The speed of waves due predominantly to the 
presence of the free surface is found in the following way.   First of 
all,  differentiation of  (46)   with respect to   t   gives directly 

,2, «'(A 
0*0 

(119) 

We see that there are no terms free of  k   in (63)  and  (119).  Hence 
any solution of (114),  which automatically satisfies condition (45) at 
the channel boundary,  is an acceptable solution.  But at this stage we 
cannot determine   CQ.   Proceeding to the second approximation, whe- 
ther or not the Boussinesq approximation is used,  we reach a nonho- 
mogeneous differential equation in ^02^ '  t'ie 80^u^on 0^ which to- 
gether with the boundary conditions then determines y or   CQ.   The   CQ 

so determined is not proportional to V^T but is much larger,  and the 
corresponding waves are predominantly surface waves,  the density 
stratification merely causing a minor correction if 0 is small. 
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Because of the convenience afforded by the exponential density 
stratification,  we have used the differential equation in 0 instead of 
(78).   Remembering   (61),   (86), 

f - X - m     y    , 

and , ? 

ßg 

one can readily show that  (1 14)   is equivalent to  (91).  In fact, Ö'nnM 
is proportional to '>

n
v

nn(y) • 

(ii) Superposed homogeneous layers.  If the fluid is composed of 
superposed layers,   in each layer the governing equation is  (2)  or (7). 
The boundary conditions are (8) for the rigid channel boundary,   (l 1) 
for the interfaces, and  (9)   for the free surface. Of course,   (9) is a 
special case of (11).   Note that the   f   in (7) is not the   f   in  (83). 

The solution is now not restricted to symmetric channels. 
Suppose there art-   n   layers.   Wc shal use the expansion 

f    (x,y)    --    f        + k2f    , + k4f    . + ... (120) m mO m2 m4 

for the   mth   layern counting from the bottom up.   Furthermore,  we 
shall write 

2      ,22      ,42 
ff0    + k '2    + k "4      + (121) 

Substituting  (120) and   (121)  into  (7) and taking only terms free from 
k,  we see that the solution is 

f   «    =   C        .     *    = 0   , mO m 0 (122) 

which satisfy all the boundary conditions if only terms free from   k 
are taken. 

For the second approximation we have to solve the equations 

(fr + 
dx ^y 

*>  fm2 C        for    m = 1,2,  ...  n,      (123) 
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together with the boundary conditions.  Now (123) is just the equation 
for potential flow with uniformly distributed sources of strength   C    . 
If   (8)   is satisfied   (with   f  now identified with   fm2) • and if  dm   is 
the height of the   mth   interface, 

/. 
f^x.d.Mx   =    A1C1 

/ 
f'     (x.djdx   =   A.C^ AC.     . 22x '   z 1^1"     2   2 

(124) 

n 

/     f,n2<X'dn)dx   =      2 A      C 
m    m 

m =  1 

by virtue of continuity.   In   (124)   b       is the width   of the   mth   inter- 
face, and   Am   the cross-sectional area of the   mth   layer.   (See 
Figure 1).    Integrating   (11)   across   bm ,  layer by layer,  we have 

C0    V'lS    "   'Z^   =   g(   "I"    "J*!0!     • 

C02 b2(  P2C2   ■  ',3C3)   =   «(   P2 "    P3) {A1C1   +   A2
C2>       ' (125) 

n 

c.b      PC       =gP • 0     n      n  n *     n       ^^ A    C m   m 
m = 1 

There are   n  unknowns   Cm ,  not all of which are   zero.  Hence we 
obtain a determinant which must vanish. Its vanishing gives   n   values 
for   CQ   .  The last of the equations in   (125)   corresponds to a free 
surface. If the upper surface'is rigid, it is to be replaced by [ since 

Now a rigid flat upper surface is not excluded. 

1429 

■■■  ■ ■         -     -   -" ^^„^^M^i^Mjyi 



na^w* um i II ii.!!   i ii,  in  i   "»*'■ i 

Chia-Shun Yih 

Vn2.  must vanish at  y:dnbeing the height of the upper surface measur- 
ed from the lowest point of the channel 1 

A     C 
m   m 

m = 1 

Indeed,  the theory given here is a natural generalisation of 
the classical shallow-water theory for a single fluid of constant den- 
sity.  If there is only one single fluid, and if it has a free surface,   the 
last equation in   (125)   gives,  with   n = 1,    b = bj,    and   A = Aj , 

b   =     gA , or gh   . 

h   being the average depth.   This is a classical result. 
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Figure Caption 

Figure I.    Definition sketch 
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DISCUSSION 

Michael N.   Yachnis 
Naval Faailities Engineering Cormand 

Washington D.C.  ,  U.S.A. 

It seems to me that "boundary waves" or "inter-face waves" 
are more suitable terms for two or three layers of fluid that the term 
"internal waves". I have four basic questions associated with the ap- 
plication of Professor Yih's Paper,  especially on actual ocean intern- 
al waves : 

1. Possibility of short internal waves and breaking pheno- 
mena. 

2. Interaction between surface waves and internal waves. 

3. Effects of internal waves on fixed or moving structures. 

4. Influence of earthquake or disturbances of the bottom of 
the channel on internal waves. 

REPLY TO DISCUSSION 

C.S.   Yih 
University of Michigan, 

Ann Arbor, Michigan,  U.S.A. 

I have been asked by Dr,  Yachnis to comment on four matters. 
This is a great compliment.  I do not know that much, but I shall try. 

I am glad he mentioned short internal waves. I forgot to men- 
tion short internal waves propagating along a channel of variable depth 
in the direction of the axis. If you do not have stratification, very 
short waves are not terribly interesting, for this reason : if the den- 

1432 

■-■-■'• 



...mill    pu 11 i i - 

Internal Waves in Cnannele of Variable Depth 

sity is uniform the motion is concentrated in a region near the free 
surface and the fluid does not "feel" the nonuniformity of the depth. 
But for internal waves, especially if the modes are high,  that is to say 
if there are many internal zeros, then even for short waves the entire 
fluid participates in the motion. This has not been studied very much. 
My expansion scheme is not suitable at all for large wave numbers. 
One can do an asymptotic study of the differential equation to deal with 
that case,  and 1 do not think it would be terribly difficult to do so. As 
to breaking,  I should think that breaking is probably more severe for 
long waves.  In fact, we know that long internal waves u   a system of 
two layers indeed very often break.  Although there are a lot of other 
solutions for non breaking waves (cnoidal waves,   solitary waves and 
so on),  if you make a laboratory test,  pushing a plate against a layer- 
ed system you will see that indeed the interface breaks. Mathematical 
studies of the breaking of internal waves are even more difficult than 
the studies of the breaking of ordinary waves in one single fluid,  and 
I certainly do not know the mathematical theory.   You surely remem- 
ber the last picture shown by Pr.  Plate.  If a wave goes that far I 
would keep well away, both physically and intellectually. 

Secondly, about the interaction between surface waves and 
internal waves, that too has not been studied a great deal. We all 
know that after a storm there are internal waves created in the sea. 
How is the surface disturbance created and how are the messages 
transmitted from the surface down to the depths of the sea ? Not much 
is known about that. I think, however,  that the interaction between 
surface waves and internal waves can be considered in this way : if 
the surface waves already created   have a frequency very far away 
from that of any of the internal waves,   there is no chance for the re- 
sonance phenomenon to happen. However,  if short surface waves 
have the same frequency as some longer internal waves,  the surface 
waves can excite internal waves,  especially if the amplitude is not 
small.  If the amplitude is small we do not need to worry about excit- 
ation. 

As for the effect of internal waves on moving structures, I 
do not have much to say about that. Naturally there would be an in- 
ternal-wave drag for moving submerged structures. 

The last question concerns the creation of internal waves by 
earthquake disturbances. I think that as far as the linear theory goes 
it is really just a matter of Fourier analysis.  If one knows the details 
fo an earthquake,  you can obtain the spectrum of internal waves creat- 
ed.  Indeed,  the linear theory should be quite simple. 
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MODELING   AND  MEASUREMENTS  OF  MICROSCOPIC 
STRUCTURES OF WIND WAVES 

Jin Wu 

Hydronautias Ina. 
Laurel, Maryland, U.S.A. 

ABSTRACT 

The  microstructure  of   the    wind-disturbed   water 
surface,   characterized by   surface-slope and   sur- 
face-curvature distributions,  is measured in a labo- 
ratory tank under various wind and wave conditions. 
The   relative  frequencies of occurrence  of    various 
slopes  generally follow a normal distribution.   At 
low      wind velocities,   the  formation   of   parasitic 
waves  causes a  skewed  slope distribution;  at high 
wind  velocities,   the  wave breaking causes a peaked 
slope  distribution.   It is also shown that the mean- 
square  slope  rises  suddenly at about the wind velo- 
city where    the   airflow boundary   layer   becomes 
turbulent.   The curvature  distribution  of   the  wind 
disturbed water  surface    observed    from different 
angles is  generally  skewed with  greater radius of 
curvature at  steeper viewing angles from the nor- 
mal to the mean water surface.   As the wind velo- 
city    increases,    the average  radius  of curvature 
decreases    rapidly   at   low wind    velocities   when 
waves are  effectively excited by wind,  and gradu- 
ally at high wind velocities when waves approach 
saturated    state.    The present    measurements   of 
surface curvatures are the   only  set of data  of its 
kind.   The mean-square  surface   slopes are   com- 
pared favorably with those determined in the field; 
and both  sets  of data are consistent with the equi- 
librium wind-wave spectra. 

Preceding page blank 
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I.   INTRODUCTION 

The wind-disturbed water surface consists of waves of va- 
rious lengths moving at various speeds.   There has been ever-increa. 
sing interest in determining the statistical properties of the micro- 
structure (wavelets) of such a surface.   From a fluid-mechanics point 
of view,  these wavelets are involved in the inception of wind waves 
and are believed to be related to the dissipation of the wave energy. 
From an oceanographic point of view,   the quantitative measurement 
of the mean square surface slope provides the best determination of 
the coefficient involved in the equilibrium wind-wave spectrum for 
describing the directional energy-density distribution of ocean waves. 
From a meteorological point of view,   the microstructure plays a ma- 
jor role on the radiation of thermal energy from the sea surface. 
Finally,  from the remote-sensing point of view,   ripples are impor- 
tant for interpreting reflection and back scattering of electromagne- 
tic waves from the ocean surface. 

A few optical methods have been adopted in the past for de- 
termining the microstructure of the wind disturbed water surface; 
these include the photographic method of Schooley (1954,  1955), and 
of Cox and Munk (1956),  and the light refraction method of Cox 
(1958).   However,  the photographic method so far developed involves 
rather tedious data analysis and,   moreover,   is not completely apt for 
laboratory application.  Owing to the limited fetch,  the water  surface 
structure in the laboratory wind-wave tank lacks spatial homogenei- 
ty,  which is required for the photographic method.  In the light refrac- 
tion method,   the apparatus consists of submerged parts which offer 
obstruction to waves and are rather difficult to construct; in addition, 
the under tank illumination required is inconvenient for a deep wind 
wave tank which is appropriate to simulate the air-sea interface for 
more advanced studies.  The present instrument,  utilizing a light 
reflection principle,  is capable of determining not only the surface 
slope but also surface curvature with high resolution. 

In the present study,  the microstructure of the wind-distur- 
bed water surface,  characterized by surface-slope and surface-cur- 
vature distributions, is measured in a laboratory tank under various 
wind and wave conditions.   The features of these distributions are 
discussed, along with their variations with structures of dominant 
waves and the growth of slope and curvature statistics with the wind. 
The present measurement of surface curvatures is the only set of 
data of its kind.  The mean-square sea-surface slope obtained by 
Cox and Munk (1956) are reanalyzed and compared with the present 
results.   These two sets of data are shown in good agreement and to 
be complementary to the equilibrium wind-wave spectra.  Finally, 
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some discussion is included on mechanism of wave generation by 
wind through comparing the cutoff wavelength of the slope data with 
the calculated neutrally stable wavelength. 

II.    EQUIPMENT AND EXPERIMENTAL PROCEDURE 

II.   1 Wind-wave tank and general instruments 

The wind-wave tank has a 1. 5 x 1. 55-m cross section and 
is 14 m long; see Figure la.   The top of the tank is covered for 5. 5m, 
up to the test section.  Mounted at the upstream end of the tank is an 
axial-flow fan,  and a permeable-type wave absorber is installed at 
the downstream end.   The maximum obtainable wind velocity with a 
0. 35-m-deep air passage above 1. 2-m-deep water is 14 m/sec. 

The wind-velocity profile in the tunnel is determined by the 
vertical traverse of a pitot-static tube. The drift current is measured 
by timing the motion of floats of various sizes.   The surface drift cur- 
rent is determined by extrapolating the measured current-distribution 
curve to the water surface.   The results of surface drift currents and 
of wind velocities are used together to obtain the wind velocity rela- 
tive to the water surface. 

Two types of instruments have been used simultaneously for 
wave measurements: a conductivity probe for recording gravity-wave 
profiles,  and an optical instrument for surface-slope and surface- 
curvature measurements.   The conductivity probe,  a wave-height 
gauge,  does not provide enough resolution for measuring wavelets 
that ride on top of gravity waves and have amplitudes only small frac- 
tions of the latter.  A   detailed description of the wave tank and its 
associated instruments has been given elsewhere (Wu 1968,   1971a) 

II.   2     Optical instrument 

The optical instrument,   shown in figure lb,  consists of a 
light source,  a telescope, and a photomultiplier unit.  Supported over 
the wave tank,  the instrument can be set at any desired inclination 
from the water surface. The photomultiplier receives reflected light 
only when the water surface is normal to the plane containing the light 
beam and the   telescopic axis. The cross section of the light beam is 
rectangular,  with a length-to-width ratio of 20 to 1.   The short side 
of the beam is aligned with the direction of the wind.   Therefore,  the 
angular sensitivity of the instrument in the traverse (cross-wind) di- 
rection is about 1/20 times that in the longitudinal (wind) direction. 
The angular tolerance of fine instrument to the water-surface slope 
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in the longitudinal direction is about 1 °; sec figure 2. 

The focal spot of the telescope on the water surface is circu- 
lar,  with 0. 7-mm diameter.  This spot is completely bright when the 
water surface is relatively flat and is partially bright when the curved 
water surface reflects part of the impinging light away from the teles- 
cope.  Simple calculations have been made along with a calibration 
test consisting of passing cylinders,  with the same kind of reflecting 
surface but with various radii,  under the instrument.   The longitudi- 
nal axis of the cylinder is always parallel with the same axis of the 
lamp.   From the geometry in figure 3a,   the following relationships 
can be obtained for a curved surface with radius of curvature R : 

2 a = cot 
1 

Lj - R cos  a 

w/2 + R sin a 

for a convex surface,  and 

-cot 
-I 

Lt   - R COB  a 

.d/2 +   R sin   o . 
(1) 

2a = cot 
L? + R cos a ~ 

w/2 + R sin a . 
+ cot 

■1 
Lt   + R cos a 

.d/2   + R sin   a 
(2) 

for a concave surface,  where d is the diameter of the pinhole located 
in front of the photomultiplier,  w is the effective width of the plano- 
convex cylindrical lens for focusing the light,  and L^and Lf are the 
distances from the telescope and the light box lens to the mean water 
surface,   respectively.   Only single reflections are considered. 

By choosing the size of the pinhole to be much smaller than 
the beamwidth of the light and by putting the instrument away from 
the surface (for the pn sent setup,  w/d = 400 and L^/w = Lj/w = 50), 
we can show that the second term on the right of (1) and (2) is much 
smaller than the first term in each respective equation.  In other 
words,   by the proper setting of the distance between the instrument 
and the water surface ( L« » R),  both (1) and (2) can be approxima- 
ted by 

^icot-1     [^/(w/Z)] (3) 

Hence,   the response of the instrument to surface curvature is essen- 
tially the same for both concave and convex surfaces. 
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If we designate r as the radius of the focal spot of the teles- 
cope on the water surface, the degree of saturation of the light signal 
(s = I for saturated signal) can be shown as 

1  - — 
-1 

cos (i) .1 [,. (h/^]7j (4) 

where 
R sin a 

is the half-width of the bright portion of the water surface imat;e (see 
figure 3a).   Of course,  the radius of the focal spot of the telescope on 
the water surface,   r,  depends upon the diameter of th ! pinhole,  d, as 
well as on the characteristics of the telescope lens.   The calibrated 
response for the present setup, as well as those obtained directly 
from (3) and (4),  is plotted in figure 3b.  The scattering of the calibra- 
tion points is believed to be the result of local deflects on the calibra- 
tion cylinder. 

In summary,  the light signal is continuous and iaturated to 
a prescribed level,  insensitive to the change of curvature, as long 
as the angular change of the wavy water surface from the downwind 
face to the upwind face is less than the acceptance width of the instru- 
ment (about 1°).   As the angular change increases beyond that,   or if 
the surface curvature increases further,  the signal becomes discon- 
tinuous.   The signal is essentially a light pulse.  The intensity of the 
signal,  i. e. ,   the pulse height,  is related to the surface curvature; 
the period of the signal,   or the pulse width,   is the time required for 
a detectable slope to pass completely under the instrument. 

The distribution of the surface slopes is determined by accu- 
mulating the numbers of light pulses for each inclination of the instru- 
ment for a constant period (10 min).   To determine the distribution of 
surface curvatures,   each series of light pulses is sorted according 
to their intensity into 50 channels of the pulse-height analyzer,  with 
preset intensity bands.   The output from the analyzer,   the height dis- 
tribution of light pulses for a given instrument inclination,   is first 
traced on a x-y plotter and later digitized. 

The block diagram of the apparatus is shown in figure 4a. 
The light source is a 1500 W incandescent lamp,  approximately 18 cm 
long.  The photomultiplier tube is a nine stage,   side-on unit with 
S-4 spectral response.   The high voltage power supply is adjustable 
so that adequate sensitivity with minimum dark current noise can be 
obtained.   The output of the electrometer is comprised of irregularly 
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shaped pulses,  varying from 0 to 10 V in amplitude and having dura- 
tions of a few milliseconds.   However,  the pulse height analyzer 
(ND-110 128- channel analyzer manufactured by Nuclear Data,  Inc.) 
reqiires pulses o.r. much shorter periods and places very stringent 
requrements on the risetime.   The pulse conditioning circuit shown 
in f.gure 4a is thus required. 

The pulse conditioner is capable of analyzing both pulse height 
and pulse width (pulse period).  In both modes,  the signal activates 
the Schmitt trigger.   This in turn sets the binary and opens electronic 
switch N0 1.   In the height mode,  the track hold amplifier output is 
compared with the incoming signal.   When the input drops,  the ampli - 
fier is put in hold.   In other words, the amplifier tracks the signal to 
its maximum value and holds this value until it is reset.   On the other 
hand, when the signal drops below the threshold of the Schmitt trigger 
monostableij    is started.   This closes electronic switch N" 2 for 5 M 

sec. During this time the amplitude of the track hold amplifier is ga- 
ted to the pulse height analyzer as a pulse with a suitable width and 
risetime.  At the end of this time, Tj is started again to reset the bi- 
nary and to close electronic switch N° 1. By doing so the track hold 
amplifier is reset until a new pulse is received. 

In the time mode,  the operation is identical except that the 
Schmitt trigger controls a ramp generator,  which is tracked to con- 
vert time to amplitude.   Consequently, the amplitude gated to the pul- 
se height analyzer is proportional to the signal pulse duration.  The 
pulse described above,  from the signal to the pulse height analyzer, 
are shown in figure 4b.   The widths of r, and T are exaggerated for 
clarity. 

III.    EXPERIMENTAL CONDITIONS 

III.   )   Wind conditions 

The wind-velocity profiles were found to follow essentially 
the logarithmic law near but not too close to the water surface (Wu 
1968).  The shear velocities,  obtained at different wind velocities, 
are presented in figure 5.  Lines shown in the same figure are the 
shear velocity for a laminar boundary layer. 

• I2* vr (5) 

and for a turbulent boundary layer in the aerodynamically smooth 
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ow regime, 

u.r il 
I 2 

0.059 
R H y U. (6) 

o 

wherein the Reynolds number (R   = U      .  L/K) is defined in terms 

of the free-stream air velocity,  U , the distance between the fan 
and the test section,   L,  and the kinematic viscosity of air, •   . 

Judging from the trends of the data shown in figure 5,  we 
see that 

a) the air-flow boundary layer seems to be in the pretransi- 
tion region for U   <    1.9 m/sec.  Because the air was sucked into 
the wind-wave tank by an axial fan and through guiding vanes,  which 
were arranged to straighten the flow but not to diminish the high tur- 
bulence level,  the latter arrangement was helpful to increase the effec- 
tive lenght of the wind fetch. 

b; the effective transition region of the boundary layer 
from laminar to turbulent is very narrow, at wind velocities between 
1. 9 and 2. 4 m/sec. 

c) once the boundary la /er becomes turbulent,  U   > 2. 4 
m/sec, the transition from smooth to rough boundary layer takes 
place and this process is completed at U    = 3, 5 m/sec,   the aerody- 
namically smooth flow regime is rather narrow. 

d) for the aerodynamically rough flow regime,   the two 
groups of data are separated physically by the transfer of the gover- 
ning mechanism of wind-wave interaction from surface tension to 
gravity (Wu 1968, IPftQ); this separation occurs at U    =9 m/sec. 

It should be emphasized here that because of the difference 
of scales (such as wind fetch) between the ocean and laboratory con- 
ditions and of differences of the wind structures (such as turbulence 
levels) between various wind-wave tanks,  the shear velocity rather 
than the wind velocity should be adopted to characterize the wind 
conditions (Wu 1968).  By use of the shear velocity,  data obtained in 
the present experiment may readily be correlated with results of 
other investigations. 

III. 2   Wave conditions 

From the continuous wave-profile recording,  the periods of 
more than 100 basic waves for each wind velocity are obtained (Wu 
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1968).  The average values of the wavelength,  calculated from the 
measured period by using the dispersion relation for small-amplitu- 
de deep-water waves,  are shown in figure 6. A  general observation 
is that small-amplitude capillary waves are generated at very low 
wind velocities (U0 < 2 m/sec).  Rhombic wave cells are observed 
before the wind boundary layer becomes fully rough (2 m/sec < U0< 3 
m/sec); the waves forming cells are short gravity waves.  As the 
wind velocity further increases,  the propagation of waves becomes 
more and more along the direction of the wind.   Parasitic capillaries 
are formed in front of the gravity wave crests immediately following 
the transition of the wind boundary layer from smooth to rough (U0 » 
3 m/sec),  the water surface is generally smooth elsewhere.  As the 
wind velocity increases passing 9 m/sec,   ripples are seen covering 
the water surface and breaking is observed along the wave crests, 
which span transversely across the tank.   Various stages of wave 
growth with the wind velocity are indicated in figure 6. 

IV .  SURFACE SLOPES 

IV,   1   Distribution of surface slopes 

For each wind velocity,  the number of light pulses in lO-se- 
cond intervals is counted electrically with the optical instrument set 
at various angles of inclination.  Each light pulse represents the occur- 
rence of a particular water-surface slope,  whose inclination from the 
horizontal is the same as that of the instrument from the vertical. 
More than 30 sets of readings are recorded for each inclination,  of 
which the average    value as well as the standard deviation from the 
average are plotted versus the   angle   of inclination in figure 7,  As 
shown in the lower right corner of figure 7,   slopes with their normals 
pointing up-wind are considered to be negative,  whereas those pointing 
down-wind are positive.  A short vertical line accompanying each data 
point indicates the value of the standard deviation of the data from the 
average.   The reliability of the data is indicated by the small values 
of the standard deviations. 

The data points shown in figure 7 are seen to follow essential- 
ly a gaussian distribution.   The area defined by the data points is first 
integrated by means of Simpson's rule to determine the median value. 
Around this median value,  the data points for each wind velocity are then 
normalized.   The normal distribution curve,  found on the basis of least- 
square curve fitting,   is drawn as the continuous line shown in figure 
7,   It is now seen that the nearly normally distributed   data are skewed 
(maximum and median values at angles other than 0°) at medium wind 
velocity and peaked (maximum values beyond the gaussian curve) at 
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high wind velocity. 

IV. 2   Inception of high-frequency componentB of wind waves 

The standard deviations of the slope-distribution curves, 
shown in figure 7,  are equivalent to rms water-surface slopes and 
are shown in figure 8.   The trend of the slope variations shows that 
the rms water-surface slope is only a fraction of a degree at very 
low wind velocities,   U    <   1. 9 m/sec.  A sudden rise of the water- 
surface slope is observed in the wind-velocity range between 2 and 
3. 5 m/sec.   Beyond this range,  the slope shows a steady but gradual 
increase with wind velocity.   Figure 8 shows that the slope seems to 
reach a saturated value of 17.3°, when the wave growth with wind 
velocity ceases,  and whitecaps appear at virtually every wave crest. 

As is shown in figure 2,   the slope resolution of the present 
optical instrument is 1°.   It is conceivable that increasing the slope 
resolution of the instrument (narrowing the slope-response curve 
shown in figure 2),  would shift the lower end of the sudden slope rise 
(with slopes less than or near 1°) toward lower wind velocities, but 
the major rising portion (with slopes greater than 1°) will stay in the 
same wind-velocity range,   shown in figure 8. 

The boundary-layer regimes of the wind are superimposed 
on the velocity scale in figure 8. It is very interesting to see that as 
soon as the effective transition of air flow from laminar to turbulent 
occurs, the surface slope rises suddenly. This rapid change indica- 
tes, therefore, very efficient inception of waves as soon as the wind 
boundary layer becomes turbulent, as suggested earlier by Phillips 
(1958b), These rapid changes soon slow down bat the waves have al- 
ready been created and have grown to a considerable size. 

A similar sudden rise of the water-surface slope was repor- 
ted by Cox (1958); see the comparison between the present and Cox's 
results in figure 9.  It is seen that these two sets of data behave simi- 
larly with regard to the sudden slope rise corresponding to the incep- 
tion of wind waves,  as demonstrated in figure 8.   The sudden slope 
rise obtained in the present study has been related to the initiation of 
the turbulent boundary layer of the wind.  No wind-structure survey 
was provided by Cox; the close agreement between Cox's and the pre- 
sent data at the wave-inception stage suggests,  however,  that the sud- 
den rise of the water-surface slope in his experiment is also related 
to the transition of the airflow boundary laver,  as first suggested by 
Phillips (1958b). 
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Following the sudden slope rise,  the present data seem to 
show three stages of development : gradual change,   rapid change, 
and approaching saturation, as marked successively in figure 9 by 
three segments of lines.   The rapid change begins when waves start 
to break occasionally and ends when wave breaking was observed at 
most wave crests.   Cox's data display only two stages of development. 
The shorter wind fetch and the lower turbulence level are believed to 
be the reasons for causing the general shift of Cox's results.  The 
wave regime in Cox's tank may not have passed the occasional brea- 
king stage; wave breaking was not reported by Cox. 

IV. 3 Features of slope-distribution curves 

The slope-distribution curves,   shown in figure 7, are ske- 
wed toward the down-wind direction at medium wind velocities.   The 
skewness disappears at high wind velocities and peakedness follows. 
The skewnesses of slope distributions,  a measure of the asymmetry 
of wind-generated water waves, are shown in figure 10a. 

In order to understand the skewness features,  an experiment 
was done by placing the wave-height gauge 3 mm transversely from 
the telescope focal spot at the water-surface.   The outputs of the op- 
tical instrument,   set in the vertical plane, were recorded simultane- 
ously with those of the wave height gauge.  The location of the light 
pulse relative to the wave-height profile,   shown on the records,  cor- 
responds physically to the relative position of the capillary waves 
distributed along the basic wave profile. 

The distribution cu the capillary waves on the down-wind 
and up-wind faces of the basic wave profile is plotted in figure 10b. 
At medium velocity,  the pulses (wavelets) at   the down-wind face ve- 
ry much outnumber those at the up-wind face.  This is the velocity 
range at which the maximum skewness of the surface-slope distribu- 
tion occurs. As the wind velocity increases,  the pulses (wavelets) 
become more and more evenly distributed over the up-wind and 
down-wind faces, and the slope-distribution curve thus becomes less 
and less skewed. 

The distribution of wavelets along basic wave profiles,  pre- 
sented in figure 10b,  is also interesting in two other ways.  This dis- 
tribution indicates the presence of one of thi^ equilibrium regimes, 
the formation of parasitic capillaries in the front face of the basic 
wave profile.  This distribution may cause different backscattering 
of  electromagnetic waves from the leeward (down-wind) and from 
the windward (up-wind) faces of the basic wave profile. 
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The skewness of the slope distribution is shown to be related 
to an excess of wavelets riding on the down-wind face of the basic wa- 
ve profile.  Because the down-wind face is sloped,  the skewness results. 
On the other hand,  wave breaking introduces a local excess of wave- 
lets near the crests of the basic waves,  and consequently,  peakedness 
results at high wind velocities. 

V.    SURFACE CURVATURE 

V. 1   Distribution of surface curvature observed from vertical 

The surface-curvature distribution for each wind velocity 
was determined by setting the optical instrument in the vertical plane 
and sorting the light pulses according to their intensities.  During a 
portion of the experiment,   only two channels were available; the to- 
tal number of pulses was counted in one channel and the pulses with 
intensities within the preset intensity range were counted in the other 
channel.   The frequency of occurrence of light pulses within a particu- 
lar range can thus be determined.   This process is repeated by chan- 
ging the band settings to obtain the surface-curvature distribution,  as 
shown in figure 11.   The short vertical line is once again used to indi- 
cate the standard deviation of the data from the average,  which is 
generally less than 5 percent. 

The lower cutoff radius of curvature of the present optical 
instrument is 0. 067 cm.  This cutoff,  marked by a long vertical line 
shown on the left in each block of figure 11,  is set just above the ma- 
ximum instrument noise,  which is about 5 percent of the maximum 
signal intensity and about 1. 7 percent of the maximum detectable 
radius of curvature.   The upper cutoff (the maximum detectable radius 
of curvature) is 4 cm.  Below the lower cutoff,  no signal can be picked 
up by the instrument.  Any wave that has a radius of curvature greater 
than the upper cutoff is registered as having a 4-cm radius of curvatu- 
re.  Except at very low wind velocities,  less than 2 m/sec,  the radius 
of curvature of the water surface seldom reaches the upper cutoff 
value. 

V.2   Angular distributions of surface curvatures 

This portion of the experiment was conducted with the pulse 
analyzer described in previous sections.   For each wind velocity,   the 
optical instrument is set at various angles of inclination.   The signals 
are directed, according to their intensity,   to proper channels of the 
analyzer and are counted there.   Each channel is assigned a certain 
range of signal intensity,  between zero and the saturation voltage. 
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A typical trace of a series of automatic sorting and counting for one 
instrument inclination is shown in figure 12a. Channel 10 represents 
the lower cutoff,  below which the intensity of signal is comparable 
with noise; such light pulses are not counted.  The upper bound of 
channel 50 is set just above the saturation voltage,   so that the satu- 
rated signals can be counted.  From the digitized data,  the total num- 
ber of signals for each angle can be obtained. A gaussian curve,  fitted 
on the basis of the least-square principle,  is shown in figure 13 to re- 
present the distribution of water-surface slope for each wind velocity. 
(For clarity,  the data points are not shown in figure 13). 

The data shown in figure 12a are first replotted in figure 12b, 
where the horizontal axis is transformed from channel number (or vol- 
tage) into radius of curvature.  The lower cutoff radius of curvature 
of the present optical instrument is marked by a long vertical line 
shown on the left in figure 12b.   The centroid is then determined of the 
area,   shown in figure 12b,   enclosed by the Measured distribution cur- 
ve,  the horizontal axis and the lower cutoff radius of curvature.   The 
centroid,  indicated in the same figure,  is the average absolute radius 
of curvature.  Tin    i \i'rage (absolute) radii of curvature,  viewed from 
different angle- lur various wind velocities, are presented in figure 13 

V. 3   Features of surface-curvature measurements. 

The typical distribution of radii of curvature is shown in fi- 
gure 12b,  of which the shape is in rough agreement with that obtained 
analytically by Longuet-Higgins (1959) for a gaussian surface. A com- 
plete distribution of radii of curvature, extending to very small radii 
of curvature, was not obtained.   The present measurements,  however, 
are sufficient for determining the average radius of curvature.  Any 
uncertainty on the lower end of the data,   the righ-hand side of figure 
12b,  would not affect the determination of the centroid of the area 
under the distribution curve. 

The average radius of curvature is seen in figure 13 to have 
its minimum value at a small but positive viewing angle.   The average 
radius generally increases when the observation changes continuously 
from zero to negative viewing angles and reaches a rather high value 
at a steep negative viewing angle.  On the other hand,  the average ra- 
dius of curvature first decreases to the minimum value,  then increases 
when the observation angle increases, and finally reaches a high value 
at a steep positive viewing angle. A continuous curve was drawn to 
indicate the trend of the data,  which is believed to be the first set of 
radii of curvature of wind-disturbed water surfaces measured from 
various viewing angles and at different wind velocities. 
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The angular distribution of averago radius of curvature, 
shown in figure 13,  is normalized with respect to the slope  distribu- 
tion and replotted in figure  14.   The normalization involves only divi- 
ding the observation angle by the standard deviation of the slope-dis- 
tribution curve.  Such a step,   relating the average radius of curvature 
to the relative frequency of occurrence, is helpful for comparing re- 
sults obtained at various wind velocities.   The relative frequency 
of occurrence for the converted scale,   on the basis of the standard 
deviation,  is given by the error function. 

V. 4   Skewed angular distribution of surface curvatures 

The angular distribution of average radius of surface curva- 
ture,   shown in figure 14,  displays three different shapes correspon- 
ding approximately with the occurence of three types of carrier-wave 
patterns discussed in an earlier section.   At the lowest wind velocity, 
a very skewed,  bell-shaped distribution curve is related to rhombic 
waves,  although it is not clear at this stage what is the reason for 
this correlation. 

At medium wind velocities (3   <■  U < 9 m/sec),  the steep-fa- 
ced parasitic capillaries,   riding on the forward face of the carrier 
waves,  undoubtedly cause a skewed angular distribution of the avera- 
ge radius of curvature.  The observation angle with the minimum ra- 
dius of curvature is about the same as the forward-fac» slope -from 
the horizon) of the carrier wave.   This regime with highly skewed 
surface-curvature distributions,   however,  probably exists only in 
laboratory tanks (Wu 1970) 

At high wind velocity (U0 >   9. 5 m/sec),  the carrier wave is 
covered  -ither evenly by ripples.   This is the gravity-governing regime. 
The cas     vith the wind velocity of 9. 3 m/sec is in the transition re- 
gion between the surface-tension regime at low wind velocities and the 
gravity-governing regime at high wind velocities.  The microstructures 
of disturbed water surface for the three highest wind velocities are 
very similar to oceanic conditions; nonlinear interaction between 
short and long waves is believed to be active in this regime. 

The horizontal contraction of the water surface near the crest 
of the long wave was stated by Longuet-Higgins and Stewart  (I960) to 
shorten the lengths and to increase the amplitudes of short waves 
(ripples).  When these ripples are saturated,  further shortening will 
cause their breaking.  Phillips (1963) then showed analytically that the 
energy loss by short waves near the crests of long waves is partially 
supplied by the long wave,  and,   therefore,   causes the attenuation of 
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long gravity waves.   Later,   slow moving short waves are considered 
(Longuet-Higgins 1969) to be swept through by fast-moving long waves 
and to lose their energy to the long waves at a rate proportional to the 
orbital velocity in the long waves.   More recently,  Hasselmann (1972) 
found that the work done on the long waves through the sweeping is 
balanced by the loss of potential energy due to taking mass of high 
potential energy from the crests of long waves and returning it at a 
lower potential level in the troughs.   The dynamics of nonlinear inter- 
action of oceanic waves is therefore rather confused.  However,  all 
of these models are based on one common phenomenon : long waves 
sweeping through short waves and causing short waves to break on 
the forward faces of the longwave crests.  Some physical evidence 
substantiating this basic phenomenon has been obtained through photo- 
graphs of glitter patterns (Wu 1971b). 

Figure 13 shows that the minimum radius of curvature is 
observed at a positive angle for all of the wind velocities.   The mini- 
mum radius of curvature is undoubtedly produced by crests and 
troughs of the shortest waves.   The present results therefore seem 
to confirm earlier observations and conclusions that waves with the 
smallest radii of curvature,   very likely produced by nonlinear wave- 
wave interaction,   ride on the forward faces of long carrier waves 
having positive slopes.  In other words,  the skewed shape of the angu- 
lar distribution of average radius of curvature is probably due to the 
nonlinear wave-wave interaction. 

V. 5   Low and high grazing angles for back scattering. 

The reflection and back scattering of electromagnetic waves 
impinging on the air-sea interface depend on the sizes of the specu- 
lar areas.   The latter can be described statistically by the average 
radius of curvature.  The distribution of the size of the specular areas 
was considered by Schooley (1955) to be substantially the same for 
all slopes.   The results,   obtained here and shown in figures 13 and  14 
suggest that this earlier consideration may be approximately true for 
the ocean surface and at limited angles near the normal to the hori- 
zon.  As discussed in the previous section,  the skewed angular distri- 
bution of surface curvature seems to be as expected as a result of 
parasitic capillaries at medium wind velocities and of nonlinear wave- 
wave interaction at high wind velocities. 

The measurements for the three highest wind velocities are 
most interesting for practical application, because the surface struc- 
tures for these three cases are believed to be very similar to the air- 
sea interface.  As shown in figures 13 and 14,  and stated in the pre- 
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vious paragraph,  the microstructure may be considered nearly Iso- 
tropie for viewing angles very close to the normal to the mean water 
surface,   say,  less than the root-mean-square slope.   Beyond this 
region,   the sizes of specular areas,   represented by the average radius 
of curvature,  increases rather rapidly with the angle from the normal. 
No data were obtained at very steep angles,  where the situation is 
further complicated by possible shadowing effect. 

Judging from the data shown in figure  14,  the backscattering 
measurement is ideally made at small angles from the normal,   where 
the sea surface is nearly Isotropie.  A small error of the angular mea- 
surement at large angles would introduce serious change of the results 
because the sea surface in this case is highly nonisotropic. 

V. 6   Growth of high-frequency wind waves. 

In order to find the over-all average radius of curvature of 
the disturbed water surface for each wind velocity,   the cross product 
of the smooth data shown in figure 13,  is found.   One curve shows the 
angular distribution of average surface curvature and the other curve 
shows the relative frequency of occurrence of the particular curvature. 
Consequently,  the cross product represents the overall average of 
surface curvature obtained at a given wind velocity. 

The overall average radius of surface curvature are shown 
in figure 15.   The data indicate a rapid decrease of the radius of sur- 
face curvature with increasing wind-shear velocity is observed at 
low wind velocities and a steady but gradual decrease at high wind 
velocities.   Figure 15 shows that the radius of curvature seems to 
reach a saturated value of 1/4 f».fi,  when the wave growth with wind 
ceases. 

VI .    SEA-SURFACE SLOPE AND EQUILIBRIUM WAVE SPECTRA 

VI. 1    Equilibrium wind-wave spectra. 

The directional wind-wave spectra   4* (k) in the equilibrium 
range was proposed by Phillips (1958a,   1966): 

—      B -4 
Gravity waves :*(k)=— f(e)k      ,k      >k     >k 

ir 7 o 

(7) B' -4 
Capillary waves :4'(k)=— f(e)k      ,k     >k     >k 

TT ■' T 

where IT and k are the wave-number vector and scalar,   respectively; 
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k0is the wave-number at the spectral maximum; k^  is the maximum 
wave-number where the influence of surface tension is negligible; k,, 
is the neutrally stable wave-number,   B and B' are the spectral coef- 
ficients for the gravity and the capillary ranges,   respectively; finally, 
f ( 0 ) is a dimensionless function specifying the directional distribu- 
tion of wave components (Schule et al,   1971) where 9 = 0 indicates 
the wind direction.   The wave-number k^can be expressed as 

kv=(   pg/T )2 (8) 

wherein p is the density of water,   g is the gravitational acceleration 
and T is the surface tension.   The neutrally stable wave-number cor- 
responds to the wavelength at which the energy input from the wind 
is balanced by the energy dissipation through viscosity.  This specific 
wavelength was expressed by Miles (1962) as a function of the wind 
shear velocity. 

It is considered for the equilibrium wave spectra that high- 
frequency wave components spread isotropically.  In this case f (9 ) 
equals to unity and the one-dimensional spectra,  identical in all direc- 
tions,  becomes 

<M k ) = ( B/2  *  ) k"3   and   *( k ) = ( B" /2 r) k'3      (9) 

In laboratories,   owing to narrowness of the tank the waves propagate 
predominantly in the direction of the wind.  The spectra may be consi- 
dered to be unidirectional and may be described by (9) in the direction 
of the wind. 

The mean square slope of the wind-disturbed water surface, 
can be obtained from the directional wave-number spectrum 

♦ (lc),   or 

f   k2  * (k) dk (10) 

The integration should cover the possible range of the wave-number. 
Substituting (7) into (10),  we have (Phillips 1966) 

s2= B A   (kr'kj + B' A {k./ky ) (H) 

The first term on the right-hand side of (11) represents the contribu- 
tion of gravity waves to the mean-square surface slope, and the se- 
cond term on the right-hand side represents the contribution of capil- 
lary waves. 
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It is noted that the longitudinal (upwind-downwind) component 
is about one half of the total mean-square sea-surface slope, as short 
ocean waves propagate nearly isotropically. In the laboratory tank, 
the longitudinal component is about the same as the total mean-square 
surface slope, as waves propagate nearly unidirectionally. Needless 
to say,  these ratios can only be approximations, because the propa- 
gation of wind waves can neither be exactly isotropical nor be exactly 
unidirectional. 

VI. 2 Sea-surface slope and spectral coefficients. 

Cox and Munk (1956) deduced slopes of the sea-surface from 
the brightness distribution of photographs of sun glitter of the sea- 
surface.   The wind velocity at the time of taking sun glitter pictures 
was recorded at two heights,   9 and 41 ft.   from the mean sea level. 
The lower height may be too close to the water surface to be free 
from the wave-induced air motion, especially at higher wind veloci- 
ties.   Therefore,  the wind velocity measured at the upper height was 
used along with the wind-stress coefficient (C      ) formula (Wu 1969), 

10 
0. 5   U, 

10 
10 (12) 

to determine from the logarithmic wind profile the corresponding 
wind velocity U,.   at the standard anemometer height.  It may be 
worthwhile to note, however,  that this correction is very small and 
*hat the wind velocities U.      obtained from both methods are about 
the same.   The results of tne mean-square surface slope of a clean 
surface s2  versus U      are plotted in a semilogarithmic form in figu- 
re 16.   Various boundary layer regimes of the wind (Wu 1968) are 
shown in the same figure.  The results of mean-square slopes obtai- 
ned   from the interior of an artificial slick are not included in this 
figure. 

It is very obvious from figure I 6 that the data are divided 
into two groups : one in the hydrodynamically smooth flow regime 
and the transition region (U,-*    7 m/sec),  and the other in the hydro- 
dynamically rough flow regime (U        >   7 m/sec).  A straightline can 
fit the result in each group rather well.   The data are scattered at 
low wind velocities where the wind condition is less stable in the 
transition region,   scattering of the data seems to be inevitable.  An 
excellent correlation of the mean-square slope with the wind veloci- 
ty is seen in figure 16. 

Most of the results of Cox and Munk were obtained from a 
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clean sea surface,  where capillary waves were undoubtedly present 
and should contribute to the mean-square surface slope.   On the other 
hand,   some of their observations were taken in the interior of a dense 
artificial slick,  wliere waves shorter than 30. 5 cm (1 ft) were repor- 
ted by Cox and Mank to be absent.  For the latter case,  the maximum 
wavenumber for existing waves,  designated as kg (with the minimum 
wavelength yg ),  is certainly well outside the capillary range,  or in 
other words ka      smaller than  k^ .   Therefore,   for this portion of 
the data obtained in the interior of artificial slicks.   Equation (11) can 
be rewritten as 

t?*Btn[{VlQ
2/g)kB (13) 

in which the wavenumber k^is substituted with g/U      2     ( Phillips 
1966).   It i snow obvious,  if we replot the mean-square slope data in 
the semilogarithmic form and fit the replotted data with a straight- 
line, we can determine both B and k8    independently.  The k8   so deter- 
mined can then be compared with the observed k 

Replotted in figure 17 in the proposed form and fitted with 
straightlines by means of the least  square principle are the data of 
three different groups : (a) clean sea surface with the airflow in the 
hydrodynamically smooth regime and the tiansition region,   (b) clean 
sea surface with the airflow in the hydrodynamically rough regime, 
and (c) sea surface covered With slicks.   For the last group,   the va- 
lues of B and k     ,  determined from the slope and the intercept of the 
fitted straightline,  are 

B = 4. 6 x 10 -3 
\     =   38 cm 

8 
(14) 

The value of B is identical to that obtained earlier by Phillips (1966). 
Taking into account the scattering of the data and the rather crude 
visual observations of the minimum wavelength in dense slicks,  the 

A     can be considered in rather close agreement with the observed 
value of 1 ft.   This agreement also supports the technique used here 
to determine the spectral constant. 

For a clean sea surface,  the contribution of the capillary 
waves to the mean-square surface slope,   the second term on the 
right-hand side of (11),   cannot be neglected.  Relative to the data ob- 
tained in the slick,   those obtained in the hydrodynamically smooth 
regime of clean water surface are seen in figure 17 to be shifted al- 
most parallel upward and twoward the left.  Referring to (11) and (13) 
the upward and nearly parallel shift of the data indicates that the 
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contribution to mean-square slope from wave components having 
their wavenumbers greater than kB   are about the same for all wind 
velocities in the smooth regime.   This trend is along the lines of 
Phillips concept (Phillips 1958a) of the development of the wave 
spectrum,  in which the higher-frequency waves reach the saturated 
state earlier.   The shift toward the left of the clean-surface data or 
the shift toward the right of the slick data is also very interesting. 
This clearly indicates that the wind boundary-layer transition from 
smooth to rough regime is delayed by the presence of the slick.  It 
is expected that the ocean surface becomes smoother when it is cove- 
red by a dense oil slick. 

The difference of mean-square slope between the clean and 
the contaminated sea surfaces at low wind velocity is about   0. 0115. 
This difference is the contribution to the mean-square surface slope 
from wave components having their wavenumbers greater than   k  . 
Accepting this argument we can estimate from the slope difference 
the cutoff wavenumber   k     at low wind velocities provided that   k_   is 
smaller than   k^ .   From (13) and   ('4) we have 

0. 0046in(k    /k) = 0.0115 k    =2. 5 cm" 
c s c 

-1 

(15) 

The This value is indeed smaller than k    which is about 3. 6 cm 
closeness of these two values indicates that the straightline fitted 
through the clean surface data at low wind velocities may be the upper 
bound of the contribution from waves in the gravity range.  In other 
words,  the contribution to the mean-square slope at higher wind velo- 
cities shown in figure 17 above the extension of this straight line must 
come from waves in the capillary range.  At first look,  this conside- 
ration may seem rather arbitrary.  Actually,   since B is very small, 
the choice of a slightly different cutoff wavenumber kc   has an insi- 
gnificant effect on the results.   On the other hand,  the coefficient B' 
to be shown later,  is much greater than B,   so that wave components 
in the capillary range contribute much more effectively to the mean- 
square sea surface slope than those in the gravity range.   Consequent- 
ly,  once the integration of the wave spectrum extends into the capil- 
lary range,  a change in the trend of the data,   such as that shown in 
figures 16 and 17,  is expected.  More studies are needed to see 
whether it is just a coincidence that this separation of slope behavior 
coincides with the change of the regimes of the wind boundary layer. 

An excellent correlation of data between s 2 and U. / g 
is shown in the hydrodynamically rough regime of wind. This trend 
indicates two possibilities : the contribution to mean-square slope 
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from waves of capillary range is independent of the wind velocity and 
the coefficient B has a different value for the hydrodynamically rough 
flow regime; or k,,    is proportional to U      .   The former cannot be 
true,  because any downward shift of the slope data shown in figure 
17,  in order to get rid of the contribution from waves in the capillary 
range, would mean that the contribution from gravity wave compo- 
nents to the  slope at the lower portion of high wind velocities is lower 
than that at the upper portion of low wind velocities.   Furthermore, 
referring to (13),  the cutoff wavenumber obtained from the intercept 
of the straight line fitted to the data at high wind velocities is si.nnly 
too great to be reasonable. 

In summary,   the data seem to indicate that the mean-square 
slope is contributed by wave components from only the gravity range 
at low wind velocities      (   ^j n    <   ^ m/ sec)i   and from both gravity 
and capillary ranges at high wind velocities.  In addition,  the cutoff 
wavenumber,   or as considered by Phillips (1966),  the neutrally stable 
wavenumber is proportional to U      ,   the square of the wind velocity 
measured at he standard anemometer height.   Following this conside- 
ration,   wc now plot U. 2 versus the difference between the slope mea- 
sured at high wind velocities and that contributed by gravity wave 
components,   and  rewrite (l 1) as 

s^Bi,    (k>   U10
2/g) = B'A(kv   /k7) (16) 

Therefore,   the straight.line fitted through the replotted data shown 
in figure  18 .allows an indeper.dent determination of the spectral coef- 
ficient B' and the dependency of k ^    on U       .   It is noted that the trend 
of the data shown here provides a good verification of the form of the 
Phillips' capillary-wave spectrum,  which has not previously been 
verified by observations. 

The value of B' is found to be 

3. 15x10 
-2 

whicn ij about the value  1.5 x 10       offered by Phillips (1966).   Com- 
paring the curves,   fitted by the spectral coefficients shown in fiuures 
17 and 18 with those shown in figure 4. 17 of Phillips (1966),   one is 
inclined to believe that the former may be more accurate than the 
latter.   Moreover,   Phillips adopted Miles (1962) calculation of the 
neutrally stable wavenumber as the cutoff wavenumber of the slope 
data in his process to obtain B1 ,  while the present technique allows 
an independent determination of B' and the cutoff wavenumber.   The 
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latter technique is desirable especially when Miles' calculation has 
not been verified experimentally. 

VII .  COMPARISON OF LABORATORY AND OCEANIC RESULTS 

The average wavelengths obtained at various wind velocities 
are replotted in figure 19a.  As the wind velocity increases,   the wa- 
ves,  as described previously,   passing the following stages of develop- 
ment : (A) infinitesimal capillary waves,   (B) rhombic wave cells, 
(C) long waves accompanied by parasitic capillaries,  and (D) brea- 
king long waves.  The mean-square surface slope determined at va- 
rious wind velocities are replotted in figure 19b.   Taking together 
the results   presented in figure 19a,  b,  we see that capillary waves 
with infinitesimal amplitudes are the sole contributor to mean-square 
slope in stage (A),  gravity waves are the sole contributor in stage 
(B),  and both contributors in stage (C) and (D) 

Because of the great difference between wind fetches exis- 
ting in the wind-wave tank and the field,  the shear velocity rather 
than the wind velocity should provide a basis for comparison of slope 
data.   The upwind-downwind components of Cox and Munk's data and 
our laboratory results of the same components are replotted in figu- 
re 20a.   This comparison is made possible on the basis (Phillips 
1958b) that high-frequency wind wavos,  the principal contributor to 
surface slopes,   reach equilibrium states at very short fetches.  Such 
a concept is further illustrated by Cox's (1958) measurements of 
mean-square slopes,  which reach equilibrium states,   ceasing to grow 
spatially, at a fetch slightly greater than 3 m.  The wind fetch for the 
present experiment is about 6 m. 

It has been shown that oceanic slope data are divided   into 
two groups : gravity waves are the sole contributor to sea-surface 
slope at low wind velocities and both gravity and capillary waves con- 
tribute to sea-surface slope at high wind velocities.   The portion of 
the oceanic data fitted by a straightline in figure 20a is the second 
group.  A straightline is also drawn to fit the laboratory data in figu- 
re 20a.  It is interesting to sec that the fitted iiuc for the laboratory 
data which contributions from both gravity and capillary waves is 
parallel with the line fitted through the oceanic data which the same 
contributors;   see figure 19. 

The same trend of variation between the oceanic and the 
laboratory data further confirms our earlier discussion ; the separa- 
tion of oceanic slope data into two groups is indeed due to the fact 
that capillary waves contribute to mean-square sea-surface slope 
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only at high wind velocities.  Moreover,   since the slope of the fitted 
straightline  for the oceanic data is related to the spectral coefficients 
in the equilibrium range,   the same slope of the fitted lines shown here 
for laboratory and oceanic data indicates that the spectral coefficients 
are universal constants independent of wind fetches.  Consequently, 
the present results also verify the concept on developing the equili - 
brium wind-wave spectrum : high-frequency wind waves saturate at 
short fetches. 

The cross-wind slope has not been measured in the present 
tank.  However,  the fetch for the growth of resonance waves is about 
half the width of the tank,   or 0.5 m,  because the slope measurement 
was made at the center of the tank.  According to Cox (1958),  the 
mean-square slope should not rise until the fetch is greater than 1m, 
Therefore,  the cross-wind slope should be negligible in the present 
tank.   Consequently,   the upwind-downwind component of the present 
measurement should be nearly the total slope. 

The upwind-downwind components of the laboratory results 
are plotted along with the mean-square slopes of the sea surface in 
figure 20b.  Excellent agreement is seen between the oceanic data and 
the laboratory results except at low wind velocities, where the wind 
boundary layer in the laboratory tank is not even turbulent.  The boun- 
dary layer in the present tank becomes fully turbulent when the wind- 
shear velocity is greater than 12 cm/sec.  The agreement of oceanic 
and laboratory data further substantiates some previous considerations 
the s pectral coefficients are indeed universal; the s preading of wave - 
number vectors is nearly Isotropie for the sea and is nearly unidirec- 
tional in the laboratory. 

The comparison   shown  in figure 20b explains the discrepan- 
cy between the oceanic (Cox and Munk 1956) and the laboratory (Cox 
1958,  Wu 1971) results.   Furthermore,  the agreement on one hand im- 
plies that short waves are directly generated by the wind and the wind- 
shear velocity is therefore the appropriate parameter for correlating 
results obtained at different fetches.   On the other hand,   the agreement 
indicates the possibility of modeling microstructures at the sea surfa- 
ce in a laboratory tank. 

VIII .    CONCLUSION 

In the present study,   the microstructure of the wind-distur- 
bed water surface,  characterized by surface-slope and surface-curva- 
ture distributions,  is measured in a laboratory tank under various wind 
and wave conditions.  It is shown that wind -vaves arise at about the 
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time when the airflow boundary layer becomes turbulent.  The rela- 
tive frequencies of occurrence of various slopes generally follow a 
normal distribution.  At lower wind velocities,  the formation of para- 
sitic waves causes a skewed slope distribution; at high wind velocities, 
the wave breaking causes a peaked slope distribution.   The skewed 
slope distribution may produce different back scattering of electro- 
magnetic waves from the leeward and from windward faces of the 
basic wave profile. 

The curvature distribution of the wind-disturbed water sur- 
face observed from different angles is generally skewed with greater 
radius of curvature at steeper viewing angles from the normal to the 
mean water surface.  As the wind velocity increases,   the average ra- 
dius of curvature decreases; rapidly at low wind velocities when waves 
are effectively excited by wind,  and gradually at high wind velocities 
when waves approach saturated state.  The skewness is caused by 
the presence of parasitic capillaries at low wind velocities and by 
nonlinear wave-wave interaction at high wind velocities.   The back 
scattering measurement is ideally made at small angles from the 
normal,  where the sea surface is nearly Isotropie. 

The present measurements of surface curvatures are the 
only set of data of its kind.   The mean-square surface slopes are com- 
pared with those determined in the field,  and the difference is explai- 
ned as a result of various directional distribution of wave components. 
Equilibrium energy spectra of wind waves was first established for 
the gravity range and later extended to the capillary range.   The veri- 
fication of the latter extension and the determination of the spectral 
coefficients for both ranges are discussed on the basis of the experi- 
mental results for mean-square slopes.  Good agreement between 
present and oceanic results indicate a possible modeling of the micro- 
structure of the air-sea interface in a laboratory tank. 
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(o) General View of Wind-Wove Tor* 

A -Lighr Source and Adjuilmen» Auembly;   B 'Light-Signal Receiver and Adjuthnen» Aaenibly 
C - Cron-team and Arm Unit;   0 • Hinge-Joint Support;   E ■ Angle Indicator;   F ' Water Surface 

(b) Optical  Instrument 

FIGURE I - WIND-WAVE TANK AND INSTRUMENTS 
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FIGURE 7 - ANGULAR RESPONSE OF OPTICAL INSTRUMENT. 
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FIGURE 4 - ELECTRONICS OF OPTICAL INSTRUMENT. 
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Miaroaaopia  Structures of Wind Waves 
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FIGURE 6 - GROWTH OF WIND-WAVES. Stoges of wave growth with wind velocity: 
(A) Copillar/ wove»; (B) Rhombic, »hort gravity; (C) Gravity wavet with 
parasitic capillori«; (D) Breaking gravity waves. 
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Miaroaoopia Structures of Wind Waves 
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FIGURE 8 - INCEPTION OF HIGH-FREQUENCY COMPONENTS OF WIND WAVES. 
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Miarosoopia Struaturee of Wind Waves 
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FIGURE 10 - SKEWNESS OF WATER-SURFACE SLOPES AT VARIOUS WIND VELOCITIES 
( o ) SkewMti of Slopa-ditfribution curvet; 
( b ) Relofive Frequency of Occurrence of Capillary Waves at 

Upwind (O) and Downwind (•) Faces of Graviry Waves 
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Miarosaopia Structures of Wind Waves 
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THE WAVE GENERATED   3Y A FINE SHIP BOW 

T. Francis Ogilvie 
Univereity of Michigan 

Ann Arbor, Michigan,  U.S.A. 

ABSTRACT 

The flow field near the bow of a ship has some cha- 
racteristics of a high-Froude-number problem, even 
if ship speed is moderate. Some of these features 
can be predicted by slender-body theory if the usual 
assumptions of that theory are modified in the bow 
region to allow for the occurrence of longitudinal rates 
of change greater than normally assumed. Analytic- 
al results are derived for the case of a fine wedge- 
shaped bow, in which case a universal curve can be 
drawn for the shape pf the bow wave on the hull, re- 
gardless of speed, draft, or entrance angle (all with- 
in limits, of course). The lengths must be nondimen- 
sionalized by the quantity (HU2/g) . where H is 
the draft, U is ship speed, and g is the gravita- 
tion constant. It is shown how this mathematical mo- 
del matches with the usual slender-body model and 
how it eliminates certain of the objectionable features 
of the latter, with only minor complications. Some 
experimental re suits are shown which generally con- 
firm the predictions. 

I.    INTRODUCTION 

The Freude number can be taken as a rough measure of the 
relative magnitude of inertial forces with respect to gravitational 
forces in the interior of a fluid region.  In the usual problem of ship 
hydrodynamics,  neither of these forces dominates the other in the 
overall picture, and this fact is recognized in the custoi.i of treating 
Froude number as a quantity which is  O(l)   as «  -. 0,  where    t   is the 
small parameter that provides the reference for ordering all quantities 
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in the problem.   If we take as the Froude number   F = U/\gL ,    where 
U   is the forward speed,    L   is ship length, and   g   is the gravitation- 
al acceleration,  then the statement that   F =0(1)   means that there is 
a characteristic length   U /g   which is comparable with ship length 
and which is unrelated to the small parameter, i    , 

In a strict sense,  this should always be the case.  Suppose 
that   <   is a measure of ship thinness or of ship slenderness. As 
«-»0 , there is no reason to expect that   U2/g   should become either 
very large or very small ; one should certainly be able to specify the 
forward speed independently of ship thinness or slenderness, and   g 
does not vary significantly in any case. 

But there are a couple of reasons sometimes not to accept 
this apparently natural assumption :   a) When we develop an asymp- 
totic analysis,  we expect it to be more and more nearly valid as the 
small parameter becomes infinitesimally small.   But we usually ob- 
tain just one or two terms in our expansions,  and we try to use those 
expansions for computations when the small parameter is quite finite. 
We may actually obtain more accurate formulas if we assume an un- 
natural relationship between   *   and the length   V'/g, For example,  if 
the latter is actually comparable to ship beam in the cases of practic- 
al interest,  we may be better off in assuming that   U /g =0(«)   when 
we formulate the boundary value problem,    b) The implication about 
the ratio of inertial and gravitational forces may be locally invalid. 
That is, in some regions,  one of these forces may dominate the other 
to the extent that the asymptotic solution gives grossly wrong predic- 
tions in those regions. 

The first of these two points I have discussed at length in a 
previous paper   [l]*.  In fact,  the idea was not original there ; it was 
used many years earlier by Vossers  [^j   and also by Joosen ^3]   , 
for example. 

The second point is already implicit in slender-ship theory, 
for one assumes there that rates of change in the transverse direct- 
ions arc very great compared with rates of change in the longitudinal 
direction,  at least in a region near the ship.   This means that accele- 
rations (and thus forces) are greater in one direction than another, 
and the ratio between them depends on    t   .   Thus,   to the extent that 

•      Numberc in square brackets denote references listed at the end 
of the paper. 
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The Wave    Generated by a Fine Ship Bow 

we accept slender-ship theory, we have already recognized that the 
overall Froude number does not characterize the ratio of inertial and 
gravitational forces uniquely throughout the fluid region. 

This idea was also discussed in the earlier work  [l]  already 
mentioned.  There I pointed out that special order-of-magnitude con- 
sideration should be given to conditions near the ship bow. Because 
of the presence of the free surface,  the fluid particles just a very 
short distance ahead of the bow are quite unaffected by the oncoming 
ship, until -suddenly ; - those particles are in the region of highly 
accelerated flow around the ship bow.  The effects of water displace- 
ment by the moving ship are much greater than the effects of gravity, 
which normally hold the water surface horizontal,  and so the presence 
of the free surface is momentarily simply equivalent to a pressure- 
relief surface. All of this can be implied by saying that the flow near 
the ship bow is a high-Froude-number flow. 

Thus we come to the concept that the bow flow is a high- 
Froude-number problem, even if the ship speed is moderate.  The 
previous argument then suggests that we try to relate the Froude- 
number aspect of the bow flow to the slendemess parameter.  In this 
paper, I have done this in a very pragmatic way : 

In the usual slender-body theory,  we assume,  in a symbolic 
notation,  that   c^/^x = 0(1)   but that  ö/^y  and   c*/dz = 0(1/«) .  where 
x   is the longitudinal coordinate.  This means that rates of change in 
the longitudinal direction are smaller than rates of change in the trans- 
verse direction by an order of magnitude   <  .   (It is this very gradual 
variation in the longitudinal direction that leads to the typical feature 
of the slender-ship near field, namely,  that the free surface acts as 
a rigid wall. Rates of change are so gradual that gravity dominates 
and holds the free surface horizontal.)   This intuitive picture is for- 
malized in the mathematics by stretching coordinates in the transverse 
directions by a factor   l/t   . 

Now we suppose that, near the bow,   rates of change of the 
flow variables should be greater than those usually assumed in slender- 
body theory.  We may expect to introduce such a notion formally by 
stretching    the   x   coordinate from the bow sternward.  But what should 
be the degree of stretching ? Let us define a new longitudinal coor- 
dinate,    X = x/(n ,    with  x   and   X   both measured from the bow in 
the -ownstream direction. If   n = 0 ,  we have the usual slender-body 
theory, and if  n = I   wc have the original problem in three dimensions. 
(In the latter case the stretching is Isotropie. )   Therefore we seek a 
value of   n   such that   0<n<l .    It turns out that a nontrivial problem 

1485 

-      -'    ' ■'■■ - 



'gih 

arises only if   n = 1/2, and so I make such an assumption in this paper. 

The resulting theory is still a slender-body theory, in that 
the first approximation involves a Laplace equation in the two trans- 
verse dimensions only.  The rates of change in the near field are 
much greater in the transverse direction than in the longitudinal di- 
rection,  but the difference in order of magnitude between them is less 
than in the usual slender-body theory. 

One can describe the theory as being valid (presumably) in 
a region just behind the bow in which  x =0(»1/2) ( where   x   is mea- 
sured in units such that ship length is O(l).  It will be convenient 
sometimes to speak of a "bow near field",  by which I shall mean an 
asymptotically defined region in which  x =0(t /2)   and   r = (y2+z2)V2 

= 0(«) .  In the "usual near field",  we assume that   x =0(1)   and 
r =0(«) ,    whereas in the far field all variables are O(l)   (which 
means simply that we can fix our attention on a point in the fluid and 
the point is not supposed to move as « —» 0 ). 

Some interesting things happen in the bow near field.  We no 
longer have the rigid-wall free-surface condition which is typical of 
the usual near field.  Instead, we find exactly the same linear free- 
surface conditions that are familiar from classical thin-ship theory, 
for example.  But the partial differential equation is the Laplace equa- 
tion in two dimensions, as in ordinary slender-body theory.   This 
means that we must solve an equation in the variables   y   and   z , 
with boundary conditions involving derivatives with respect to  x . 

The explicit solution of this problem is presented for the 
case of a thin,  wedge-shaped bow.   The shape of the wave along the 
side of the body has been computed,  and experiments were conducted 
for comparison with the predictions.  The results are in fair agree- 
ment. 

From the analysis, it can be concluded that an appropriate 
length for purposes of nondimensionalization is the geometric mean of 
two lengths, the draft and the characteristic length,    X/ZJT = U2/g . 
That is,  we refer all lengths to   (HU2/g)1/2   ,  where   H   is the draft 
of the forebody.  The extent to which the experimental data then col- 
lapse into simple curves is quite remarkable.  Even in cases of very 
low forward speed,  in which the analysis fails completely,  the same 
data collapse still appears to occur. 

The conditions to be satisfied in the bow near field automa- 
tically match with the conditions in the usual near field of slender- 
body theory.  So it is not surprising that the solutions also match auto- 
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matically,  in the sense of the method of matched asymptotic expan- 
sions.  We can say that the new analysis actually encompasses the 
usual slender-ship theory, in that the formulas and equations of the 
new analysis include all of the terms in the corresponding expres- 
sions, plus some extra terms that would be considered as of higher 
order,  in the usual theory. 

It is quite striking how the solution of the bow-near-field 
problem goes over irto the solution for the usual slender-body near 
field : In a region extremely close to the bow,  the flow has the cha- 
racter expected of a high-Froude-number flow, i. e., the fluid velocity 
is mostly perpendicular to the plane of the undisturbed free surface. 
However,  as   x/« V2=  X —oo , the fluid velocity at the plane of the un- 
disturbed free surface becomes approximately parallel to that plane. 
The wave elevation alongside the body changes order of magnitude in 
this transition : Wave elevation is 0(« -v' )   in the bow near field, but 
it is 0(f2) in the usual slender-ship near field ; the present analysis 
shows how this change takes place. 

Finally,  it should be mentioned that this analysis probably 
contains no information that is not inherent in a thin-ship analysis. 
However,  the information which is available from the present analysis 
is quite easily obtainable,  in contrast to the usual situation with thin- 
ship calculations.  For example, the calculation of wave profile along 
the side of the ship was carried out in a few hours with a desk cal- 
culator .'   Also,  there are other possible applications of the ideas 
contained herein, applications which would probably not be feasible 
with thin-ship theory as a starting point. For example, Hirata   [4] 
has treated the case of a cambered thin ship (actually with zero thick- 
ness)   and Baba   C5]   has analyzed a flat ship by this basic method. 
The latter problem was partly anticipated by Maruo   [6]   . 

II.    THE BOW-FLOW PROBLEM 

Let the ship be travelling in the negative x direction, the 
origin of coordinates being fixed to the bow. The z axis points up- 
wards.  The ship geometry is defined by the formula 

t b(x, z) 

where the non-negative function  b(x, z)   is the hull offset correspond« 
ing to the point   (x, 0, z)   on the ship centerplane.  The free surface 
shape is given by the formula 
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f (x. y) 

defined for      |y| > b(x, 0) . 

It is assumed that the ship is   "slender", which means that 
there is a small parameter,   c , characterizing the smallness of 
beam/length and draft/length ratios. As t -. 0 , the ship shrinks 
down to a line,  the part of the   x   axis between the origin and   x = L , 
L   being the ship length at the waterline.  But "slenderness" means 
more than this.  It implies also that the size and shape of hull cross- 
sections change gradually in the longitudinal direction.  In particular, 
we shall require that 

-<—    =0(«),     0<x<L, 

even in the bow near field. 

The "bow near field" is defined as the region in which 

x   = 0(.V2)   .     r   =  (y2 + Z
2) l/2   = 0(«)   . 

It is assumed that,  in the bow near field,  the flow variables are 
changed in order of magnitude when they are differentiated, according 
to the following symbolic rules 

|-   =    CX."1/2)   ;^,     d    .    ö     =0(.-1)   . 
dx dr       ?y       dz 

These effects could be brought about formally through the introduction 
of new variables,    x = X«V2,    y=Y»   ,    z = Z«   ,    after which we 
vould require that differentiation with respect to   X ,  Y ,    and   Z   have 
no effect on orders of magnitude.  However,  the rules will simply be 
carried along implicitly,  the introduction of such new variables being 
quite unnecessary. 

Note that there is one exception to the above procedure : We 
have already required that   b(x, z) =0(«)   and   5b(x, z)/^x =0(«).   This 
is simply a condition on hull geometry.  It has nothing to do with the 
nature   (or existence)   of a flow around the ship. 
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We assume everything that is necessary for the existence of 
a velocity potential,  which we write in the following form 

Ux   + ^ (x, y, z) 

As usual, the potential satisfies the Laplace equation in the flu'd do- 
main : 

[L] xx yy zz 

The expressions in square brackets give the orders of magnitude in 
the bow near field of the terms immediately above. Although we do 
not yet know the order of magnitude of 0  , it is already clear that we 
can ignore the term 4 ^   in finding the first approximation to the so- 
lution in the bow near field. 

The boundary condition on the hull can be written 

0=      tUbt^b-^      t«b on       y=t b(x, z) 
x x x y z  z 

[.] 0*1/2]  [«/*]     [*/«] 

Dropping the one term which is clearly of negligible order of magni- 
tude, we can rewrite this condition 

[H] -|^~ on 

<*>* bz* z^z Ub, 

VTT 
=     O(t) 

ViT 

Since the operator d/3n  is similar to,  say,   d/är  with respect to 
its effect on orders of magnitudes, we can now conclude that either 
* = 0(«  )   or the first approximation to ♦   satisfies a homogeneous 
boundary condition on the hull.  Let us s.uppose that the former is true. 
If this is wrong, we shall discover that fact when we consider the other 
conditions on 0   . 
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There are the usual two boundary conditions to be satisfied 
on the free surface 

[A] 

[B] 

= gf + u*. +-4-r*2 + «<>2 + 02i j, 

[f]        [.3/2] 

2   l  x 

[•3]     [c2]    [f2] on 

z = f(x, y) 

=    Ufx    +    *xfx    +   *yfy    "    *z     ' 

[f/.l/2]   bt] [f] [0 / 

The orders of magnitude involving   $ have been noted, but of course 
we have not yet reached any conclusions,  even tentatively, about the 
order of magnitude of   f . In condition [A]  we can clearly neglect 
all of the quadratic terms, and in condition  [B]   the second and third 
terms on the right side can be neglected. Thus we have reduced the 
number of terms to the following 

[A] 

[B] 

gf   +   u«x   , 

o   =   ufx - *z   , 
on    z   =   0 

In [A]   , the first term cannot be lower order than the second, be- 
cause we would then have the meaningless result :   f 5 0 .    Thus, 
either the two terms are the same order of magnitude or the first 
term is higher order than the second. If the latter is the case, the 
first term in [ß] is higher order than the second term in [B]  , and 
this leads to an ill-posed potential problem.  Therefore we must con- 
clude that   jT =0(«^2 ) , and the two conditions are consistent in orders 
of magnitude. Note that this order-of-magnitude estimate for  f   al- 
lows us to impose the boundary conditions at   z = 0   with negligible 
error. 

following 
Finally, we can combine the two conditions above into the 

[F] 0    =    * xx K6 on 2    =    0 
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where    K = g/U 

In finding the first approximation to   0   ,  we have a boundary- 
value problem to solve in the   y-z   plane.   That is,  we have a partial 
differential equation involving only the transverse rates of change. 
The body boundary condition is a simple Neumann condition,  but the 
free-surface condition involves derivatives with respect to   x   ,  and 
so a   3-D   aspect is introduced through this condition. The problem 
in the cross plane is illustrated in Figure 1(a). 

For the moment,  we shall confine our attention to a special 
case of this problem,  namely,  to narrow bodies which can be generat- 
ed approximately by a distribution of sources on the centerplane, 
y = 0 .   This special case is   depicted in Figure 1(b). A modification 
of our method of solution has been worked out for more general cases, 
but we shall not consider such cases further in the present paper ; 
they would only distract us from the simple ideas which are being 
developed. 

(b) 

777 4      +   K<t>     =   0 vxx z 

4-=   *Ub  ,    y=    tO 
c^y x     ' 

Figure 1    Problem for the First Approximation 
(a)   General body.      (b)   Thin body. 

In both cases,  the potential satisfies : «a      +4       =0 
yy       zz 
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For the thin bodies being considered,  we shall suppose that 
the body boundary condition can be expressed 

-S-—   a * -I-— ä Ub on       y   =   ±   0   ,    f or   z  > -H(x) 
iin dy x 

The following   2-D   potential function satisfies this body boundary 
condition 

H7 Re   <   --V-   / d f b
x(x' H  log (y + iz - i f)} 

-H(x) ' 

In fact, if we let   v   and   w   respectively denote the corresponding 
velocity components in the   y   and   z   directions,  we find easily that 

0 
u     ( dr .    M v   -   iw   = -—     / -r-r—-.—       ,  b  (x, f) 
'       / i $ - (y + iz)    x 

J -H(x) 

For   y = * 0 ,  this can be evaluated through use of the Plemelj formula 

^-^y^O^-V-^T^f-1^^     ' 
•/-H(x) 

Thus, 

v(x,   i 0. z)     =    t ub (x, z)     , 
x 

as required. 

The above potential function satisfies the partial differential 
equation and the body boundary condition.  To that potential, we can 
add the potential for any other source distribution which induces no 
net normal velocity component on   y = 0 ,    -H(x) < z  < 0   .    We choose 
to write  <(>(x,y, z)   in the following fashion 
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0(x, y, z)    =     Re 

0 

K/ 
H(x) 

df b (x. 0   log (y+ iz -if) 

df bx (x,-0   log (y+ iz -if) 

-/ 

dn # (x, ?) ( 
"5 - (y + iz)l 

(i) 

The quantity in braces is a function of the complex variable   (y + iz). 
The   y   and   z   components of velocity are obtained easily 

0-10 
y z 

0 Ji(x) 
JL    [        ^Mx.O   +_U     /        d^b(x.-f) 

f      I if  - (y+iz)        IT     /        if - (y+iz) 

;/, 

d n ^, (x, •») 

i - (y + iz) 

If we require only that 

*(x,y)     =       ^(x,   -y)   , 

the boundary condition on   y = - 0   is satisfied,  for the last term above 
is purely imaginary on   y = 0 , and the next-to-last term represents a 
source distribution on the centerplane above   z = 0 .  Furthermore,  if 
we approach the plane of the undisturbed free surface from below,  we 
find that 

lim 0 (x, y, z) 
z TO 

^(x, z)   , (2) 

which will be an important fact in the analysis ahead. 
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The first two integrals in   (1)   represent the flow due to a 
line of    2-D    sources on the negative   z   axis and a line of sinks sym- 
metrically located on the positive   z   axis.  Together they cause only 
a vertical flow at the plane of the undisturbed free surface,    z = 0 . 
The third integral in   (1)   can represent a flow with both vertical and 
horizontal components at the plane   z = 0 . 

We now substitute the above potential function into the free- 
surface condition,    [F] 

XX z 

XX 

2UK     f dff   bx(xtf)       _K / 
T / f2   x     2 '   *  t 

d»? i    (x,»; ) 
v  

Rewritten slightly,  this is an integro-differential equation for f (x, y) 

0 
_K I. 

d>7 f      (x, IJ ) 
 V  

" - y 

2UK 
/en  i   c 

-H(x) + 

df f bx(x,f) 
(3) 

The next task is to solve this equation for i (x, y) .  When that has been 
done, we can use   (1)   to express 0 (x, y, z) . 

The above equation applies to thin bodies of rather general 
shape ; there is not much restriction on the function   b{x, z) .  Rather 
than try immediately to solve this general problem, I have decided 
that it was more important to determine first the degree of validity of 
the fundamental assumptions that were made.  For this reason, I shall 
next concentrate on one special case, for which the solution is easily 
obtained.  We can then compare the predictions of this analysis with 
the results of experiments and determine wether it is worthwhile to 
solve Equation   (3)   for more general shapes. 

III.    SOLUTION FOR A SPECIAL CASE : A WEDGE-SHAPED BOW 

We now restrict our attention to wedgelike bodies.  In the bow 
near field, in which   x =0( t1'2 )>  we assume that the body shape is 
given by 

y = *b(x) -H < z < 0 
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As before,  we assume that   b =0( «)   and also that   b'(x) = db/dx = 
0(« ) .  A consequence is that in the bow near field we have 

b(x)   =   b(0)   +   xb'(O)   +-YX2   b"(0)   +...     . 

[.3/2] [.2] 

For a wedgelike entrance,    b(0) = 0 ,  and so we have, approximately, 

y     -     *   xa     [l + o(l)]. - H <   z  <   0   , (4) 

as the description of the body,   where   a - b'(0) ,  the wedge half-angle. 
This argument might have been used previously to justify the thin-body 
approximation,  although one might question whether it would be more 
convincing than the simple statement of assumption made previously. 
However,  now it serves a much    more practical purpose : we can 
simplify the right-hand side of Equation (3).   In the bow near field,   the 
integro-differential equation becomes 

.   dn t   (x,»;) 
K        / it L KUo 

i,   - y 
log 

H +  y (5) 

At first sight, this equation appears rather formidable. But 
the integral can be considered as a convolution integral, a fact which 
suggests the use of Fourier transforms to eliminate the y dependence. 
In what follows, we manipulate some transforms which are nonsense 
in a classical analysis ; whenever necessary, integrals should be in- 
terpreted in the sense of generalized functions. We follow Lighthil) 
[TJ  in such respects. 

Let the Fourier transform be defined as follows 

My)    ; F{f(y)l   =   f(/)     = /dye^ 

/.oe 

d^A   f(i) 
00 
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The transform of the right-hand side of Equation (5) can be computed 
as follows 

Z*00     ./ „2       2 f i 
dy e'liy  log "    y     =     /    dy e"Uy   [log (y-iH) + log (y+iH) - 

- 2 log     |y|J 

1    ["A    -dy f    l      ,      1    \ x , • «gnj =Tr/dye    (-rriH+yTm-j+^^r 
•'-00 

The integral term in Equation (5) can be treated as an ordinary con- 
volution integral,  with the result that 

00    di,   ^   (x.i» ) 

1- y ) 

a   -A   [ii^(x;i)][iri,gnij    =    K|ik*(x ii) 

The integro-differential equation now becomes an ordinary differen- 
tial equation with respect to   x 

r   (x -J)    +    K\t\r (x d) 2KUa 
xx 1/1 

[l - e-«Wj (6) 

The solution of this equation is now readily obtained.  A par- 
ticular solution is the following 

^x i)    =    -JT\1- e"H|/|}l  1 - C08>/^  x| 
=    «»(x ;i;0) (by Equation (2) ) . 

(7) 

In principle, we should include the complementary solution, and this 
would be easy enough to do.  However,  the above solution appears to 
suffice for all that follows. 
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There seems to be little point in writing out the correspond- 
ing expression for ^  (x, y, z) , which could be done through use of 
Equation (1). In fact, we shall not even bother at this point to write 
out the inverse transform of the expression in (7), although we note 
that the latter can be expressed in terms of Fresnel integrals. It is 
worthwhile to write at least the transforms of two related quantities, 
namely,   *#

z(x;/;0)   and   **(x;/;0)   : 

♦•(x;/;0)    =    -™a    >/^7|(l.e-H|/|)sin>Wrx    . 

(8) 

(9) 

The behavior of ^*z   at large distance from the bow will be interest- 
ing to note presently, and   4>*%   is essentially the transform of the 
wave height,  which can be seen from the dynamic free-surface condi- 
tion    [A]  . 

IV.    LIMIT BEHAVIOR OF THE SOLUTION FOR THE WEDGE BOW 

Behavior as    |y|_ oo .  Since the potential and its deriva- 
tives on the plane   z = 0   are all given in terms of Fourier transforms 
with respect to   y   ,  it is nearly a trivial matter to determine how the 
inverse transforms act when   y —. - ** .   We need only to examine the 
behavior of the transforms near their singularities.  The only singu- 
larities occur at / = 0 .    For example,    ^*(x;x;0)   can be expressed 

*z(x;i;0)   =   2U«{H-i-H2|i| + ...||l ~LK|i|x2 + ...l 

=   ZUanTl .|/||-|-+^-Kx2|  +...1        . 

Treating this transform as a generalized function, we can obtain the 
limit behavior of its inverse transform by using the methods describ- 
ed by Lighthill  [?]   .  We find that 

..(..„.„) . "-wyfco t...     a. y   -. oe» 

This shows that, far off to the sides,  the disturbance appears to be 
caused by a vertical dipole distribution. Such a result should not be 
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too surprising,   since the body boundary condition was satisfied by 
distributing sources over the underwater part of the centerplane,  to 
which we added a distribution of opposite sinks on the abovewater 
image of the centerplane. These two distributions alone would certain- 
ly lead to the dipole-like behavior far off to both sides. Apparently, 
the third term in the expression for   0    ,  as given in   [l] , has negli- 
gible influence in this sideways limit. 

Actually, we guaranteed such a result by choosing the com- 
plementary solution as we did in  [7j .   Effectively,  we have implied 
that there are no waves upstream of the bow,  even in the bow near 
field.  In the final section, we shall return to this point ; it requires 
much more study in the future. 

The transform of the wave deformation function can be ex- 
pressed 

f(x;i)     =     -H_  **(x;i;0)     , 
g       x 

and,  from   (9) , this quantity has the following behavior near 1=0 

CXxJ)     =    i., /u   (l -e""1^1)   8iaVK|/j     x (10) 

The inverse transform then must have the behavior 

2 
f(x,y)    =   -°^    [H   +-^1] 

iry        L J 
as y —> 00 

It can be shown that the potential itself drops off inversely 
with   y     ,  but this does not seem to provide any special insight into 
the results. 

Behavior as   x-mo .   This is an important limit; for it pro- 
vides the connection to the usual slender-body solution.  Let us recall 
that   x =0(« V2)   in the bow near field region.  Our solution, when we 
let   x -♦ «o ,   should match the solution of the usual slender-body pro- 
blem if we let  x —> 0   in the latter. 
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In order to obtain these limits, we manipulate the inverse 
transforms into forms so that the generalized-function procedures 
can again be used. For the vertical component of velocity, for exam- 
ple, we go through the following steps 

*z(x, y. 
0) s-/: 

./^(f (i. .H|/f ') COSVK |/|X 

•HA 
■^     /""d/cosiyp-l^-jcosVKix 

^     TdX          X               VX2/l-e-Hx2/K\ -jr-   y   dXcosXx   cos-^-^ 5; j 

0 2 
2     /,        -HX  /K 

K       /1 - e ' 
= ^U_a     TdXe1^   cosl^-^1 

ixl ) 

4UttH 

JTKX2 
as x   -» 00     . (11) 

The interpretation of this result is of some'interest. The 
quantities   a   and   H   are each of order   t .  In addition,    x =0((V2 ) 
in the bow near field.   Thus,    ^z = 0(«)   in the bow near field. Now, 
we have already commented that the solution in the bow near field 
must match the solution given by the usual slender-body theory. In 
fact, the near field of the usual slender-body theory is a far field 
with respect to the bow region ;   x = O(l)   in the usual theory.  From 
this point of view, the expressions obtained above for   <t>z   represent 
a one-term inner expansion,  and the final formula above is the one- 
term outer expansion of the one-term inner expansion.  In Hatching 
it with the corresponding "far field",  we must reinterpret the va- 
riables as far-field variables and re-order the expansion. In the pre- 
sent case,  this means only that we revise our estimate by consider- 
ing   x   to be  0(1) , in which case we observe that  0Z = 0(«2)   on the 
plane   z = 0   as   x—»•».  This agrees with the well-known result of the 
usual slender-body theory. We shall say more about this presently. 

What is most remarkable about the above result is the man- 
ner in which the flow completely changes its character in the down- 
stream direction. Very close to the bow, the flow appears to have 
been caused by a distribution of vertical dipoles, and so the flow at 
the plane   z = 0   is almost completely normal to the plane. However, 
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as   x-*o0   ,  we find that the normal component of velocity on the plane 
z = 0   vanishes and the flow becomes parallel to the plane. 

We also examine how the wave elevation varies asymptotical- 
ly in the downstream direction. We proceed as with 0Z : We write f 
as the inverse transform of the expression in   (10)   and then mani- 
pulate it so that it appears formally to be a transform with respect 
to   x   .We obtain in this way 

f(x. y) 
2a     f 

jriK      / 

, .    iXx . 
d X e sgnA   cos 

2 

K 

dX iXx 

(- 

1  - -HX2/K 

sgnX 

X2 ) 

[■---] 
w + °'>^) as (12) 

It is worth noting that the   y   dependence enters only in the term which 
drops off inversely with  x5.  We also observe that   f  =0(« 3'2 ) in the 
bow near field,  where we assume that   x =0(« V2 ) ,  but when we re- 
interpret   x   as being O(l)   we must conclude that   f =0(«2).  This is 
in agreement with the well-known results of the usual slender-body 
theory. 

Finally,  we obtain an estimate for   <j>(x, y, 0)   as   x-<ae   .  The 
transform of this quantity was given in Equation (7).  It is clear that 
we cannot follow exactly the same procedure as we did for estimating 
0Z   of f ,   since there is a part of the expression in   (7)   which does 
not even depend on   x .  However, we can proceed in two steps : 

a)   First we consider the part of the transform in   (7)   that 
doe s not depend on   x , namely, the quantity 

2Ua 
(. - e-"^ 

We shall find that this is the transform of 

il—^       I df log (y + iz - i: 

-H "2^0 

Re^ •"II (13) 
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The interpretation of this result will be discussed after we prove that 
it is true.  By elementary means, we obtain the following result 

Re I-/ 
H | 

df log (y + iz - ifU 

-H ''2=0 

.   u«    / 
~    2*    I df log(y2+f2) 

= -^ (H log {H2+y2)/yZ + H log y2 + zfy cot'^y/H)-^!. 

The last expression is now broken into several pieces,  for each of 
which we obtain the generalized Fourier transform.  For the first 
piece,  the transform exists even in the classical sense 

r    -ily   ,      H2 + y2         ,    /"*               /    ,      H2 + y2 

I dy e log g-^    = /     dy cosZy log j*— 

From the point of view of generalized functions,  we have the following 
result 

/dy e 
J-n» 

-ity  u     2 log y 
Zw n 

■—    sen* 

"W 

One more integral can be computed readily 

/«oo „ 

/dy e"1 y    y cot'V/H) - H     =   2   f     dy cos/y  fy cot'^y/H) - H] 

-00 ^ 0 " 

1501 

 -   1   ■    ■■ 
 ———-^-^^ 



OgiIvie 

■7V*ir--H|/lH'l] 
These three transforms can now be combined to yield the result stat- 
ed above,  that is, 

ZU a 

I1 (■■ 

-HIüK Ua 
/ dy e"Jy I^H log(H2+y2) + 2 [y cot^y/H)-*!]], 

The expression in   (13)   is the potential for the flow caused 
by a line distribution of sources on the centerplane and on the above- 
water image of the centerplane, the potential having been evaluated 
on   z = 0 .  We recall that we started constructing our solution,  in 
Equation (1),  by assuming that there was a distribution of sources on 
the submerged part of the centerplane and a distribution of opposite 
sinks on the image of the centerplane. We now discover the interest- 
ing fact that one part of the potential, when evaluated on the plane of 
the undisturbed free surface,  represents a symmetrical distribution 
of singularities,   rather than an antisymmetrical distribution.  The 
symmetrical distribution would have been a logical starting point in 
the ordinary slender-body theory, in which a rigid-wall free-surface 
condition must be satisfied.  It appears in the present analysis as a 
natural consequence in the region downstream of the bow region, al- 
though we started with quite a different picture of the flow around the 
bow. 

b)   The remaining part of the expression in   (7)   is oscillato- 
ry with respect to   x , and so we use the procedure that worked well 
in estimating the downstream behavior of $z   and   f ,  We go through 
the following steps 

2>r 
jTl^yJ^^.t-Mj C08V^|X 

JUo 
IT 

/to 

dicosiy [i^- 
0 

WaK     I     d.\ 

-H|/|.      -/TTF   -J 
_e ) cos \K.t x   I 

i 

-iXx 
e sgnX   cos JU2    j",  . e-HX2/K J 
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4UaH    .      „ rt/, y 2.     log Cx   + 0(l/x ) as x    --« oo , 

where   C   is a constant which cannot be determined from this analysis. 

From the two-part analysis above, we obtain our desired re- 
sult, the estimate of the potential on   z = 0  as   x   -»••: 

H 

*(x,y,0)    -ReJ—"   I       dflog(y-if)J    -^^   log Cx +0(l/x2) o, ^j4-J 
H ' 

as    x   — oo       . (14) 

Thus, we see that the potential represents the source distribution al- 
ready discussed,  in addition to which there is a term which becomes 
infinite logarithmically when   x   goes to infinity.   These results will 
both appear in a proper perspective when we consider what the usual 
slender-body theory predicts near the bow. Both of the explicit terms 
above are OUMog« ) in the bow near field. 

The appearance of the constant,  C, in the above result is an 
unfortunate consequence of our use of generalized-function theory.  In 
general,  the value of the constant may even have to change as the for- 
mulas are manipulated.   From a strict mathematical point of view,  it 
is quite improper to leave a final formula in such a shape that it can 
be interpreted only in terms of generalized functions,   especially when 
it is supposed to have direct physical significance.   Fortunately, this 
is not so much of a problem for us here as might be supposed.  The 
quantities with real physical significance are  4Z   and   {*    ,  and their 
estimates are not at all murky. 

V.    THE USUAL SLENDER-BODY SOLUTION 

If one stretches coordinates near the body in such a way that 

x = X,    y=€Y,    z=«Z 

and then treats derivatives with respect to the new variables as if they 
had no effect on orders of magnitude, one obtains the usual problem 
and solution of slender-body theory.  Without going through the forma- 
lism of such changes of variables, we write down directly the boundary- 
value problem that results for the wedge-like body that we are consi- 
dering in this paper.   The first approximation to the near-field pertur- 
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bation potential satisfies the following 

[H] 

yy "zz =     0   ; 

**.   -     t   Ub. (x) 
dy 

-|*      -       0 
ÖZ 

on 

on 

y= ♦ b(x) . 

- H     ; 

[A] 

[B] 

x        2   y 

*, 

=     0 

on      z = 0 

The last condition,    [ß]   , is of course the rigid-wall condition which 
replaces the free-surface condition.  The dynamic boundary condition 
on the free surface,    [A]   ,   serves only for the determination of the 
free-surface shape,  i  , after the potential problem is solved.  In the 
body boundary condition, we have stated a separate condition for the 
bottom .f the wedge,  for we do not need or want to restrict ourselves 
to a "thin" slender-body over the entire body length. 

The above problem can be solved precisely,  by mapping, for 
example.  We do not need that complete solution,  however.   Let 
♦ (x, y, z)   be the solution of this   2-D   problem which has the property 

A, ,        2UHb' (x)    ,       I   2       2    1 
♦(x,y, z) j^—^    log    y   + x "17 

Then the perturbation potential,    0(x, y, z) ,  is given by 

<0(x,y,z)    =     <|>(x,y,z)   +   F (x)    , 

where   F (x)   is given by [s] 

'2 + z2   1/2 T z -»so. 

•F(x)   = "(0     Jsgn 

+  (2 + «gn(x-{))-f-Y0(K|x-{|)|     . 

og2|x-{|+-|.H0(K(x.f)) 

1504 

■ - ■ - —'  ■ ■ 



-•«•■Mi^MWWB ■   P»    ■   L'W|WHp iHjlWIPW—^—!■> I ■!   " '""l.- ■■    "ll     ' 

The Wave    Generated by a Fine Ship Bow 

where   s(x)   is the area of the immersed part of the cross-section at 
x   ,    YQ   is the Bessel function of the second kind,  and 
Struve function.   (Notation is the same as in   [9]   . ) 
note that 

0   18 a 

Near the bow, we 

s(x)     = 
0 x  < 0   , 

2otHx + . . .     0   < x   , 

where the   ". . . "   denotes some smooth function of  x .  The first and 
second derivatives of   s(x)   can then be expressed as follows 

.' (x) 
2aH   + 

x   <  0   , 

0   < x   ; 

s" (x)   =     2aH«(x)   +   ...      , 

where    j(x)   is the Dirac delta function. 

The function   F(x)   represents the effects of interactions bet- 
ween the various cross-sections.  For a body in an infinite fluid, we 
would have just the first term in the integrand, and one can show ea- 
sily that it represents the flow on the   x  axis caused by a distribution 
of sources both upstream and downstream of the point under conside- 
ration.  The other two terms represent the effects of the free-surface, 
and they combine with the logarithm term in such a way as to cancel 
any flow upstream of a source.  Tuck   [8] has shown this explicitly. 
The integrand of the   F{x)   expression has a wavelike nature for { <   x 
but not for f > x . 

We are interested in how the above solution behaves as   x —» 0. 
In fact, the easiest procedure for determining this behavior is to treat 
x   as being 0(« V2 )   and re-order all quantities accordingly.  When we 
do this (after much algebra,  expanding of the Bessel functions,  etc.), 
we find that 

F(x) 
4UHa f, 1    ,       K3        3    1      , „.   ,/. . 

•——     log x +-^-log— + —> ,    for      x   =   0(«V2 )   , 

where   t   is Euler's constant.  The problem for  <t>   becomes,  for 
x =0(«1/2 ) , a wedge-flow problem, with a rigid wall in place of the 
free surface ; its solution is 
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When we combine the two re•ult• above, we obtain a one-term ex
pan•ion of the potential, to be matched with the bow-near-field ex
pan•ion 

.. (x, y, z) - Re 
{ 

~CI- /H ~> t 
R d , log <Y + 1z - in _( 

-H 

where 
1 K

3 
3 

=- log- +--'Y 
4 4 4 

log C 

4UcaH 
---log Cx , 

1r 

This result •hould be compared with that in (14) : the matching h 
perfect, with the previou•ly unknown con•tant C now fixed. The in
terpretation is, of course, different. In (14) , the potential wa• ap
proaching infinity logarithmically a• x - oo ; here, the potential h 
approaching infinity logarithmically a• x - 0 • 

The kinematic free-surface condition, (B] , doe• not mean 
that •z i• precisely equal to zero on the plane z = 0 ; it mean• only 
that •z 1 z = 0 = 0 for the leading-order term in the •olution for • • 
The first approximation to • is 0( tl) and the first approximation 
to •z i• O(• ) • Thu•, the •tatement that •z lz = 0 = 0 really mean• 
that· •zl = 0 = o(•) • This remain• true even a• x-. 0. Thu•, the 
fir•t-or~er term in •z automatically ha• the correct behavior for 
matching with (11), which gave the behavior of •z in the bow near 
field, under the condition that x -.o-, 

Finally, we con•ider once more the wave-•hape function, 
t(x, y) • From the dynamic boundary condition, (A] , combined with 
what we have found above concerning the •lender-body potential for 
this problem, we can expre•• r in the following way 

rex. y) = u __ .. 
I X 

U F' (x) - _l_•l 
I 2g y 

on z = 0 • 

For the wedge-•haped bow, with con•tant draft, we can find immedia
tely that •x ~ 0 • (See (15)) For x very •mall, we also find ea•ily 
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F'  (x) = - iH«? 

The final term needed is the one involving <l>v i  this quantity being 

H 
_    (  Ua    / *°{4°J^^TW]*- y 

'-H 

the remainder being a quantity which goes to zero at the bow.   We 
need to evaluate this quantity only on   z = 0 ,  for which we find 

2Ua   , . -1   H 
*      «   —^   (sgny)tan       — 

We now have the following representation for the wave shape 

ti   \       4H«    z«2 r   -i H   ]  ^, 

The last estimate of order of magnitude is still valid in the usual 
near field,  where   x =0(1) .   In order to match this result with the 
bow-near-field formula,   we must reinterpret the order of magnitude 
of   x ,  that is,  consider that   x =0(«V2 ) ,  and re-order the expan- 
sion.  When we do this and keep just one term,  we have only 

f<-" - -w = «o3'2' 

We now observe that this matches precisely with the expression in 
(12)   . 

V.    COMPARISON OF RESULTS WITH EXPERIMENTS 

From Equation (10),  we can compute the shape of the free- 
surface disturbance  : 
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f(x.y) 

(16) 

For   y = 0 ,  this simplifies further 

f(x. 0) 
2a r^h*-) (16') 

We obtain our simplest fern when we make the following changes of 
variables 

X    =    x VK/H      , Z(X)    =   -i-^fir f (x, 0)     . (17) 

Equation   (16')   now collapses into the following 

Z(X) Pf^)(^) (18) 

Thus,  the wave along the side of the wedge can be nondimensionalized 
in such a way that we have a single universal curve, a function of just 
one variable,  which purports to describe the wave shape for any speed, 
any draft, and any wedge angle.  Of course, we have not yet considered 
the range of validity of these results, but it is clear that they are very 
simple results. 

It is worthwhile to notice the manner in which the length 
scales are made nondimensional : The reference length is   (H/K)'    = 
(HU2/g)V2 .  This is the geometric mean of two lengths,  the draft   H 
and characteristic free-surface length   U2/g. 

Also, the wedge half-angle enters in a very simple way : The 
non-dimensional wave height.    Z   , must be multiplied by the ratio, 
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<*/(*/!)   (In addition to beinr, made dimensional on the scale of 
(H/K)y2 ),  Thus, the theory predicts that wave height along the oide 
of the wedge will be proportional to the wedge angle. 

Calculation of   Z(X)   has been carried out,  with the results 
shown in Figure 2.  In addition,  the integral in   (18)   has very simple 
asymptotic approximations which are valid as   X ~. 0   or   X-> oo ,  and 
these are shown by the broken curves in Figure 2. 

In order to determine whether this result was even approxi- 
mately valid, we conducted some experiments with a very simple 
model.  The planform of the model was that of an unsymmetrical dia- 
mond ; at one end,  the model was a wedge with a half-angle of   7. 5s, 
and at the other end the half-angle was   15°.  Tests were conducted at 
speeds up to about   15 ft./sec. ,  with drafts from   4   in.    to   16 in. 
A grid had been inscribed on the model so that wave shapes could be 
measured from photographs of the bow wave. 

In Figures 3 and 4,  two selected series of tests are shown. 
In both figures,  the model is being tested at a draft of   12 in. 

There are several qualitative features in these photographs 
that are worth noting : 

(i) The model speed in Figure 3(a)   is   1. 64 ft./sec. ,  which is 
only about twice the minimum speed at which v. tves can travel on a 
water/air interface.   (Minimum speed is about   2^. 2 cm./sec.)   In 
fact,  capillary waves are quite evident in this picture, as well as in 
several of the higher-speed test pictures.   Whether tH^se ripples can 
actually be seen apparently depends more on the 'ighting than on any- 
thing else.  The existence of a sharp edge on the model presumably 
accentuated the amplitude of the ripples in all of our tests. 

(ii) In   (b) - (e)   of Figure 3,  the water level at the bow edge is 
about   1   in.  above still-water level.   (The white mark at the bow is 
at the   18 in.  draft mark, and the squares are   1   in.  on a side.) This 
rise of water level ahead of the bow is,  of course, not predicted in 
the analysis.  We fully expected to observe such a rise, and we re- 
cognized that it would represent a source of error in the predictions. 
What we did not anticipate was that the rise is quite insensitive to 
forward speed.  From a speed of about   5 ft. /sec.  (Figure 3(b))   to a 
speed in excess of   15 ft./sec.   (Figure 3(e)),  this rise increases 
from about   0.8   in.  to about   1.2   in. 

(iii) The corresponding rise in water level at the bow is greater 
for the wider-angle bow, but even in this case the level seems to 
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U =1.64 ft./sec. U = 4. 95 ft. /aec. 

U = 8. 22 ft. /sec. U = 11.52 ft./sec. 

U = 15. 17 ft./sec. 

Figure 3.    Bow wave on a wedge 

Draft = 12 in. Half angle = 7. 5' 
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U   =3.64 ft./sec. U = 4. 98 ft. /sec. 

U = 7. 64 ft./sec. U = 9. 80 ft. /sec. 

U = 11.46 ft./sec. 

Figure 4.    Bow wave on a wedge 

Draft = 12 in. Half angle =15' 
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stabilize at about   1. 7 in.    See Figure 4,  parts   (b)   to   (e) ,  in which 
the rise varies between about   1. 5   and   1. 9 in.    while the speed in- 
creases from   5.0   to   11. 5 ft./sec.   (Note : the white mark on the 
bow here is at the   16 in. draft.) 

(iv) The region in which the bow wave dominates the picture in- 
creases steadily with forward speed.  (The analysis predicts that the 
peak of the bow wave moves aft in proportion to   U ,  the speed. )   In 
the lowest-speed tests, there is a clear wave-trough behind the bow 
wave.  See, for example,  Figure 4,  parts   (a)   and   (b) ; The lowest 
visible white marks are on the still-water wateriine.  The trough is 
not predicted in the present analysis, and so we see that there are 
non-negligible waves at low speed which simply are not evident under 
the assumptions which have been made here.  We cannot say whether 
the same kind of troughs occur at the higher speeds,  because the 
model length was not great enough to observe the phenomenon. 

From Figure 2, it was clear that we have a "universal" 
bow-wave curve which is supposed to apply to all wedges at all speeds 
at all drafts - within some unknown limits.  To check this conclusion 
quantitatively, we measured just the amplitude and longitudinal po- 
sition of the peak of the bow wave.   For the finer wedge, the results 
for the wave amplitude are shown in dimensional form in Figure 5 ; 
the corresponding data for the longitudinal position of the peak are 
shown in Figure 6.  These dimensional data are shown only to provide 
the reader with an impression of the scale of what was observed.  The 
nondimensional wave-peak data are shown in Figure 7 ; according to 
the analysis,  the nondimensional amplitude,    Zmax ,  should always 
have the same value, approximately   1.6.    Figure 7 shows clearly 
that this is only roughly substantiated in the experiments. In fact, 
there are two ways in which the analysis is obviously deficient : 

1) The assumption that made our analysis distinct from the 
usual slender-body theory was that the bow flow is essentially a 
"high-Froude-number" problem,  in some sense.  The depth-Froude- 
number is the only reasonable Froude number to consider in the bow 
region, and one can hardly expect the analysis to give good answers 
when   Tu -»0 •  In fact, it gives terrible answers then .' 

2) At the higher Froude numbers,  the wave peak occurs at 
a considerable distance from the bow, at a place where the   "thin- 
ship" representation of the body is probably quite invalid. We used 
the "thinness" twice, first in satisfying the body boundary condition 
approximately,  then in evaluating the wave height on the body.   (We 
simply set   y=0   in passing from   (16)   to   (16').)   The worse agree- 
ment for the wider wedge suggests that this "thinness" assumption 
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Figure 5.    Bow wave amplitude on wedge 
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Figure 6.    Longitudinal position of wave peak 
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may well be the cause of the increasing error at high Freude number. 

If   Fpj   is below some moderate value,  it can be seen from 
Figure 7 that our method of nondimensionalizing the data seems to be 
still valid even when the Froude number drops below the level at 
which the analysis is valid.  The reason for this is not clear,  but the 
fact may be useful in reducing experimental data,  even in cases in 
which the present analysis is obviously invalid. 

The inaccuracy of the wave height predictions at high Froude 
numbers can probably be ameliorated if not completely removed by 
the introduction of a more precise method of solution of the problem. 
In principle,  it appears to be possible to solve the bow-flow problem 
without introducing the thinness assumption,  and some efforts have 
already been made to do just this. At the moment, however,  we have 
no results to show for this effort. 

VI.    CRITIQUE OF THE ANALYSIS 

Intuitively,  we visualize a "slender body1' as a body of which 
the length is much greater that the transverse dimensions. In addi- 
tion,  if we want to be a bit more precise,  we require that there be no 
sudden changes in cross-section size or shape. 

For such bodies,   slender-body theory is likely to lead to 
reasonable predictions concerning a fluid flow around the body - 
provided we do not examine too closely what is happening near the ends 
of the body.   The last qualification is necessary because slender-body 
theory is based on one major assumption which is usually violated 
near the body ends : It is assumed that the rates of change of all flow 
variables are much greater in the transverse directions than in the 
longitudinal direction.  For a body with cusped ends,  this assumption 
is valid even in the region near the ends,  but the assumption is not 
valid near the body ends for most bodies of practical interest.  The 
result is that slender-body theory typically predicts some kind of sin- 
gular flow near the body ends. 

Such a result is not necessarily unacceptable.  If the singu- 
larities are integrable in some appropriate fashion and if the solution 
is approximately correct in most of the flow region,  the presence of 
singularities in the mathematical solution may not even be serious. 
If one is very careful in obtaining the singularity strengths,  one can 
even make some reasonable calculations concerning the flow around a 
blunt body in an infinite fluid. At cross-sections not too near the ends, 
the presence of singularities in the solution for the body end regions 
manifests itself as a perturbation of the longitudinal velocity compo- 
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nent ; this effect is rather minor over most of the body surface,  and 
its precise evaluation is carried out by matching the near-field and 
far-field solutions. 

In the free-surface problem,  this procedure leads to an es- 
sential difficulty : In the far-field problem,  the disturbance caused 
by the presence of the body appears actually to be caused by a line 
distribution of sources aljng the   x   axis,  this axis lying in the plane 
of the undisturbed free surface. A concentrated source in the plane 
of the free surface is completely intolerable,  because it causes 
much more than just local problems.   (For example,  the wave resis- 
tance of such a source is infinite. )   Therefore we cannot hope to re* 
present end effects in the simple way that is sometimes so success- 
ful for bodies in an infinite fluid.  In particular,  we note the following 
important fact : No matter how nonlinear the local flow around the 
bow of the body may be,   it cannot appear from afar as if it had been 
caused by a concentrated source. 

In fact,  an even stronger statement is possible : If,  in the 
far field,  the disturbance appears to have been caused by a line dis- 
tribution of sources,  the distribution must have a density which varies 
continuously.   For the wedgelike body considered in this paper, 
slender-body theory predicts that the source density in the far-field 
expansion should have a jump at the bow.  Actually,   there may be a 
steep rise in the curve of source density,   but there can be no jump 
in value.   Otherwise the whole far-field solution has little meaning. 
The far-field solution must be less singular at the bow than one might 
expect from infinite-ffuid slender-body theory. 

There is another point of view which also encourages some 
optimism for treating the free-surface problem.   The local behavior 
at the nose of a body in an infinite fluid appears to be intrinsically a 
three-dimensional problem.   The presence of the body must have a 
fairly significant upstream Influence.  However,   the additional pre- 
sence of a free surface should reduce such upstream influences. 
Moreover,  the isobaric property of the free surface may tend to 
smooth out variations in the longitudinal direction.  Thus,  one may be 
greatly encouraged to attempt to analyze the ship problem by slender- 
body theory. 

These rationalizations have come,  for the most part,  after 
the preceding analysis had been developed and found to compare fair- 
ly well with experiments.   Originally the motivation had been more 
like that described in the   Introduction.  In any case,  we have found 
fair agreement between the analysis and our experiments, and so we 
should proceed to investigate further the internal consistency of the 
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analysis, while we also investigate possible modifications and check 
them against experiments. 

In the analysis as presented here,   one may observe that the 
solution in the "bow near field" was never matched directly with the 
usual far-field solution of slender-ship theory. As Hirata   (/U dis- 
covered,  this is no small task.  I have not yet carried out this match- 
ing,   but I assume that it would lead only to a modification of the far- 
field source density in the neighborhood of the ship bow.   Presumably, 
the source density curve would be rounded over in a region of length 
0( *  '   )   near the bow.   Thus it would be possible to compute the wave 
resistance of this shape of ship.   (We have no assurance that the value 
computed would be accurate,   but it would be a big improvement ove1* 
ordinary slender-ship theory,  which would give an infinite value of 
wave resistance for the ship with wedgelike bow .' ) 

We have made only a few crude attempts to predict what 
happens just ahead o: the edge of the wedge,  and these attempts have 
not been described.  Using a very heuristic mathematical mode,  I 
concluded at one time that the rise in water level ahead of the bow 
should be independent of forward speed (for a given wedge angle),  and 
it was this tentative conclusion that led us to examine our photographs 
carefully,  after which we came to a conclusion that there must be 
some truth in the crude analysis,   since the water rise is in fact quite 
insensitive to forward speed. 

The fact that the analysis is linear is,   of course,  a great 
help in obtaining a solution,  but the most casual observation of the 
physical situation (as in Figures 3 and 4)   suggests that linearisation 
may be a great over-simplification.   In defense of the linearization in 
this analysis,  I offer just two comments : 

(i) It always seems reasonable to try a linear analysis of any 
problem.  One must in any case trust experimental evidence for the 
justification of an analysis.  In the present problem,  it is evident that 
the linear analysis is not grossly wrong. 

(ii) In many mathematical analyses of fluid mechanics problems, 
apparently unacceptable singular solutions often become very useful 
when they are properly interpreted.   I have already mentioned the ap- 
pearance in slender-body theory of flow singularities which result 
from the invalidity of the assumptions in the regions near the body 
ends.   Perhaps an even more interesting situation arises in some pro- 
blems in which we find that the solution to a linearized problem re- 
presents approximately the correct flow patterns - but in slightly 
wrong places.   Our bow-flow solution,  for example,  is not so singular 
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as that which results from the usual slender-body theory, but it is 
still singular.  It is interesting to note that the experimental data in 
Figure 6 would have a more orderly appearance if the ordinate scale 
had started at about   xmax ~ -2 .  In other words, the predictions in 
Figure 6 are considerably improved if we arbitrarily assume that the 
rise in water level should have been measured from a point about 2 in. 
ahead of the bow.  To this extent,   our linearized results follow the 
pattern mentioned above : They are approximately correct,  but in the 
wrong place. * 

The form chosen for the solution in   (1)   is not an essential 
part of the analysis presented in this paper.  It was an easy way to 
arrive quickly at a solution for a particular case.  It has already been 
mentioned that this simplification may be at least partly responsible 
for the discrepancy between analysis and experiments at the higher 
Froude numbers.  Having now determined that we have found some 
general agreement between analysis and experiments,  we shall next 
try to obtain more precise solutions for these and similar problems. 
For example,  the body cross-section shown in Figure 1 (either (a) or 
(b))   can be mapped into an auxilliary plane in which body and free 
surface together make up the horizontal axis.  The free-surface con- 
dition must be transformed,   of course, and then an integro-differen- 
tial equation comparable to   (3)   can be obtained.  This procedure can 
also be followed for bodies which are not symmetrical or for bodies 
which have an angle of attack.  No solutions have been obtained yet 
except for that described by Hirata  [4]  for the case of a plate of zero 
thickness with an angle of attack.  I hope that we shall be able to ob- 
tain solutions for several more realistic situations - for which com- 
parisons with experimental data will provide more definitive evalua- 
tions of the fundamental approach described in the present paper. 

*    A more careful study of Figure 6 shows that the predicted curves 
have the correct slopes if the origin is placed on a sliding scale,  with 
essentially no shift for the case of small draft, up to a shift of about 
5 in.    for the maximum draft case.  I do not want to try to read too 
much quantitative significance into this result,  however. 
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NOTATION 

b(x, z) hull offset (half-width) 

b(x) special case of   b(x, z)   (the wedge problem) 

g gravitation constant 

H(x) draft of the section at   x 

H special case of   H(x)    (the wedge problem) 

* transform variable 

L ship length 

r (y2 + z2)1/2 

U forward speed 

x, y, z coordinates 

X XVK/H 

a b^O) ,  half-angle of the wedge 

< slenderness parameter 

f(x, y) free-surface elevation 

Z(X) nondimensional     f(x, 0) ; see Equation (17) 

K g/U2 

<P perturbation velocity potential 

^(x. y)     «tay, 0) 
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DISCUSSION 

Reinier Timman 
Delft Institute of Tesh 

Delft,  Hethcrlandp 
corpi 

I do not have many questions to ask.   The only thing I want to 
do is congratulate Professor Ogilvie on his paper.  Slender body theory 
for years has been stagnating because we all knew that it did not work 
well at the bow region.   Professor Ogilvie has apparently opened a way 
to get good results even there.   It could be asked,  though,   what would 
happen with a blunt body,  but that is rather trivial.   The only thing you 
know is that this does not work for a blunt body but it gives a result 
with this wedge shaped body which is really very good and his way of 
looking at it opens up a new way of attacking several other problems. 
So there is hope of making real progress in connection with many ques- 
tions in this field.   I am very happy tha'. this paper has been presented 
here and I hope that it will open the way for new progress. 

REPLY TO DISCUSSION 

T.   Francis Ogilvie 
Univapstt'i- lan 

Ann Arier,   'Hchigan,  U.S.A. 

I just want to say one word besides,  obviously,  thank you. 
This same analysis has also been apolied to a rather blunt,   flat ship 
by Baba.   I am sorry that I have not been able to read it yet although I 
have a copy,  but it is in Japanese.   He also claims some rather remark- 
able success so perhaps there is something there for blunt ships. 
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DISCUSSION 

Erne0tO.   Tuck 
Univereity of Adelaide 

Adelaide, Australia 

I have just one very small comment.   The nature of the two- 
dimensional problem that Professor Ogilvie is solving is, in fact,  that 
of a Cauchy-Poisson problem.   The co-ordinate   x   appears as a para- 
metric co-ordinaie,  since it does not enter the governing field equation, 
so that it plays a role which is identical to the role played by time in 
a two-dimensional Cauchy-Poisson problem.  In fact, with that inter- 
pretation the problem solved by Professor Ogilvie here actually cor- 
responds to a growing wedge in a Cauchy-Poisson two-dimensional 
problem and presumably the Baba problem is the equivalent of a pres- 
sure distrilVtion on a free surface which is growing laterally as well 
as increasing with time. 

REPLY TO DISCUSSION 

T.   Francis Ogilvie 
University of Michigan 

Ann Arbor, Michigan,  U.S.A. 

I should have recognized that. O' course, Wagner recognized 
that many years ago when he put these two problems together in one 
paper. 
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DISCUSSION 

Gedeon Dagan 
Teahnion and Hydronautiaa Ltd. 

Haifa,  IsmeJ 

I should like to ask if nevertheless you have tried to compare 
the experiments with thin ship computation,  and I will go farther than 
that.   I think that the slender body theory can be shown to be a kind of 
particular case of the thin body theory if you let the draft go down to 
zero,  and I wonder if your theory also can be derived as a particular 
case of the ship approximation. 

REPLY TO DISCUSSION 

T.   Francis Ogilvie 
University of Michigan 

Ann Arbor,  Michigan,   U.S.A. 

In fact I have a comment somewhere in the paper on that.   If 
you think back to the boundary value problem that I solved,  I had the 
same free surface condition which everybody uses in thin ship theory 
and I had the same body boundary condition whitfn everybody uses in 
thin ship theory.   The only difference was that I dropped one term from 
the Laplace equation.  So to the extent that   that term is small then they 
ought to give identical results.  Of course,  that term is probably not 
small and that is part of the reason I am looking at it.  So I am not 
quite sure what the difference would be. 
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TRANSCRITICAL FLOW PAST SLENDER SHIPS 

G.  K.  Lea 
National Saienae Foundation 
yaehington, D.  C.        U.S.A. 

J.  P.   Feldman 
Naval Ship   Research and Development Center 

Washington, D.  C.        U.S.A. 

ABSTRACT 

The transcritical shallow water flow past slender 
ships is analyzed using the method of matched 
asymptotic expansions. A consistent first order 
approximation was derived which is analogous to 
the non-linear transonic equation with the Froude 
and Mach numbers playing similar roles. Solutions 
are obtained for sinkage and trim in the transcri- 
tical region and are compared with experimental 
results. An important result is that both sinkage 
and trim are functions of Froude number as well 
as beam to length ratio in the region where Froude 
number based on undisturbed depth is close to unity. 

INTRODUCTION 

In a series of papers Tuck (0 (2) developed a systematic 
expansion procedure for the approximate solution to the shallow water 
flow past slender ships.  It was pointed out that a close analogy exists 
between this problem and the inviscid slender body aerodynamics pro- 
blem.  In fact,  Tuck's solution contains the same type of singularity 
that is encountered in aerodynamic theory and we present here an at- 
tempt to remove the singularity which occurs in the transcritical re- 
gion.   Thus the shallow water problem that will be examined is concer- 
ned only with steady translational motion of a slender ship and the 
associated surface waves so that viscous and compressibility effects 
are neglected. 

The Froude number (Fh   =   U^ /V gh, where U^ is the free 
stream speed, g   is the acceleration of gravity,  h   is the undisturbed 
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depth) can be interpreted as the ratio of a characteristic speed to the 
propagation speed of small disturbances on the water surface in shal- 
low water theory.  On the other hand in aerodynamic theory,  the Mach 
number ( M^ = Ugo /a^,   ,  where M^    is the free stream speed and 
a^  is the isentropic speed of sound) is the ratio of the characteristic 
speed to the propagation speed of acoustic signals in the gas. Thus we 
see that Froude and Mach numbers play similar roles and this is re- 
flected in the mathematical formulation of the two problems. For ex- 
ample.  Tuck*   '   gave for the first approximation a hyperbolic equa- 
tion for supercritical flow Fh   >    1 and an elliptic equation for subcri- 
tical flow F.   <    I.  We find the same situation in in viscid compressi- 
ble flow past slender bodies for supersonic M„> 1 and subsonic M < 1 r 00 00 
flows.   His results for vertical force,   trim moment as well as drag 
contains integrals which relates the source sink distribution to the 
local hull area and multiplied by the following factor : 

.2 
rU^   /   hvl-F       for subcritical flow and 

fU^ /   h V^FT-l        for supercritical flow 

This factor seem to indicate catastrophic failure at critical flow 
F^  r    1.  However, it should be pointed out that aside from the trans- 
critical region, where | Fh

2 -1   {   is small.  Tuck's results appears 
to be more than adequate for most engineering purposes. 

We shall seek a singular perturbation solution to the problem 
of shallow water flow past a slender ship with the requirement that 
the solution must be valid within the   transcritical region.   This ap- 
proach is that followed by Tuckv '*z'   and is well documented in books 
by Cole'3'   and Van Dyke    ^ .   The important difference between what 
follows and the works of Tuck is that two small parameters appear 
in the formulation,   slenderness ratio and Froude number parameter 

I    F.     — 1  |i  instead of only the slenderness ratio.  Appearence of an 
additional parameter drastically alters the mathematical representa- 
tion of the problem and the nonlinear effects suggested by Tuck'2' are 
indeed present. 

I.    EXACT STATEMENT OF THE INVISCID PROBLEM 

Consider a ship immersed in a steady stream of inviscid, 
incompressible stream with free stream velocity of   U00öx     , A car- 
tesian coordinate system is afixed to the ship with its origin at the 
bow and at the undisturbed waterline.   The positive x-axis is directed 
toward the stem   of the ship and z-axis is directed vertically upward. 
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The total velocity in the flow field is given by : 

T   = U« Sx    +   grad p 

where f is the disturbance potential due to the presence of the ship. 
The dimensional governing equations are the Laplace equation, free 
surface kinematic and pressure equations, bottom condition and hull 
tangency condition.  These are as follows : 

rxx ^yy     Tzz 
0 (1 -a) 

^z    ^ 
+ Vfx+ p

y fy 
(1 -b) 

2 f g/ui = .(2^x + rX y 
rZ      Z: :f(x y) (1 ■c) 

( ^ z)z =.H    =0 (l-d) 

(p        =   (1    +(fc       )A       +(p    A (1-e) ry rxxrzz 

where C (x, y) is the unknown free surface and A (x, z) is the given 
surface of the ship hull.  If we are to proceed in a systematic fashion 
the relative orders of magnitude of the various terms must be establi- 
shed.  One way of accomplishing this is by selecting proper scales for 
all the dependent as well as independent variables and thereby intro- 
duce non-dimensional variables of order unity.   This does not mean 
that all quantities will have its maximum of one,  but rather that if we 
choose the correct scale the maximum value could be large as ten 
units but not one thousand units.  We take Ua,      as the velocity scale 
and the undisturbed depth,   H, as the vertical length scale. The selec- 
tion of a horizontal length scale is a bit more involved as it must re- 
flect the shallow water approximation include the transcritical nonli- 
nearities produced by a slender hull. 

Now,   shallow water theory assumes as a first approximation 
that the vertical pressure variation is purely hydrostatic or that ver- 
tical accelerations are negligible   compare to horizontal accelerations. 
This can be derived in a systematic manner assuming that the depth 
to characteristic wave length ( H   / Lw <<   1 ) is small and utilize 
Lw    as the length scale in x and y directions and  expand »p  as a power 
series in H / Lw   .  We note that shallow water theory is not necessa- 
rily linearization and the latter results from restrictions that we pla- 
ce on the type of "wave maker" present in the problem.  Furthermore, 
we note that the surface wave system generated by a ship at critical 

1529 

     ■     M  ■ ■     



■■ .■. iii'-ii i. i.innnfum    i      '.. iiin.nroi iiinni»»!» 11     ■»-— —   m,,... .imi«»^.^«.».!»'...^^^!!'!!!» I.JI , 

Lea   and   FeIdman 

speed is a single wave of translation perpendicular to the free stream. 
In the absence of viscous dissipation this wave extend to infinity so 
that the disturbance in the lateral, y,  direction is greater than in the 
axial, x,  direction.  Thus it seems logical that we should have x=0(l) 
and y=0 (C   ) at large distances from the ship where £   is a small 
parameter related to the "shallowness" of the water. 

Shallowness implies that depth is small relative wave length 
( H / Lw << 1 ) and slenderness implies that the wave maker, the 
ship,  must be longer than it is either wide or deep.  If we define B 
as the maximum beam,  T as the maximum draft,  then slenderness 
means 

B / L «   I ,    T / L «  1 

where L is the length of the ship.  In order to proceed in an   order- 
ly manner some estimates must be placed on the relative orders of 
magnitude between Lw   and L .   We note that the dispersion relation- 
ship for steady progressive free waves in two-dimensions is 

tanh(27rH/Lw)   /(ZVH   /LjrU^/gH (2) 

which can be approximated by the following expression after making 
use of the long wave assumption ( H / Lw   <<    1) 

H / Lw =   V(3/2Tr)(l  -O  F„   = U./gh       (3) 
H"     H 

The behaviour of this expression in the transcritical region is esti- 
mated as 

-2 
H/Lw   =0(VT~7F^   ) (4) 

Furthermore, if we take the depth to ship length ratio H / L as gau- 
ged by the slenderness of the hull,  i.  e.    H / L   = 0 (£),    then 

Lw/L= 0(£    /VT^F^) (5) 

As the ship approaches the critical flow condition,   the characteristic 
wave length of the surface wave decreases so that in order to retain 
the transcritical effects and at the same time impose slenderness 
assumption we take 

Lw/L= 0(6    /Vl    -   FH)= 0(1) 

We note that in Tuck's analysis'   'it was assumed that as the ship 
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approaches a line (E—»0) thatj   1  - F: |   remains fixed and of order 
unity which implies that L w     |L   =   0 ( 6 ) « 1 and is equivalent to 
the condition F      = U^ /VgL'- 0 (v/T).   Thus outside the transcritical 
region the proper scale length in any horizontal plane is the length of 
the hull L.   However,  the situation within the transcritical region is 
L = 0 ( Lw    ) so that we can choose either L or Lw   as a horizontal 
characteristic length with the restriction   E /VU - FJT   = 0 ( 1   ) or 

H 
=   1 + EK (6) 

where K is some similarity constant which is of order unity.  The 
particular form chosen here is guided by the transonic aerodynamics 
analysis of the slender airfoil theory since we anticipate a close ana- 
logy between it and the present shallow water problem.  It should be 
noted that in aerodynamic theory K is not uniquely determined by any 
analytical approach but depends on the correlation of experimental 
data. 

II.    FAR FIELD APPROXIMATION 

Singular perturbation solution is a systematic procedure by 
which successive estimates to the solutions can be made in the various 
regions of the domain of solution.  If properly applied,  the dominate 
features of each of these regions will be magnified and secondary fea- 
tures suppressed by scaling of variables.   We expect that in the far 
field details of the ship hull will be lost c.nd that the dominate feature 
of the problem is that of the surface wave system.  As noted in the 
previous section L        / L •      =  0 ( 1 ) in trarscritical region so that r wove        vti 6 

for scaling purposes either one would be appropriate and we shall 
refer to it as simply the characteristic length L.   The shallowness 
parameter   6   and the slenderness parameter   &  are given by 

E = H / L 

b= B/L,  T/L 

We shall restrict our attention to that class of problems in which the 
hull must be more slender than the water is shallow, i. e. the maxi- 
mum draft be less than the depth,   thus 

lim       ( Ö / £   ) =  0 
E—-0 

A simple relation which satisfies this condition is 

£ =6 ,      0   <  m  <  1 
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where m is a constant which will be determined by the matching of 
far field solution to near field solution.   It must be remembered that 
this restriction placed on    i      and 6   does not imply the existence of 
a functional relationship between slenderness of hull and depth of free 
stream. We have chosen the shallowness parameter, £  , as a conve- 
nient gauge function*and use it as a standard for order of magnitude 
comparisons. 

The following non-dimensional and scaled variables are in- 
troduced : 

x=xL,y = yLe ,z = zL6,f   =fLe 

and the non-dimensional variables 

qU 
00     i U^Lp.    F      = 1 +eK .   K = 0 ( 1 ) 

The full inviscid equations become : 

Potential Equation 

,   , 2 , 2 + 2 p to       + 8   ^       +£ '   u> 
zz xx '  yy 

Buttum Tangcncy 

H 

=  0 {7-a) 

p    ( x. y,-  -1 ) = 0 (7-b) 

Free Surface Kinematic 

^ -f2 (1 + Px) fx   H2+2%   iy    on z =f( x.y) (7-c) 

Free Surface Pressure 

2e2f/l+tK   =-(fz)
2.fc2[2px   +(px)

2   +e
2p  (v;)2] 

on z = f ( x, y ) (7-d) 

We assume the following far field expansions for the disturbance po- 
tential and the free surface elevation 

^~E1f
nv   (x.y.z) .    f~E     En f   (x. y) 

n=l        n n=l n (8) 

Substituting these expansions into the full inviscid equations and equa- 
ting like powers of E results gives the following : 

• See Van Dyke (4),  pages 23-28 
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Disturbance Potential : 

^^£1{x,y)£     +£2(x,y)f2   + [f3 (x, y) - (z+1 / 2)2 f jj €3. 

+ fc4[£4 (x.y) - (z+1 / 2)2 (f^ + flyy) J + 0 ( £ 5) (9-a) 

Free Surface Kinematic 

( f     + f,    )fc3   +(f,   +f,     if,    f,    +f. f,     +£,     )E4  .. v    lx        Ixx' v   2x       2xx       Ix   Ix      1    Ixx       lyy 

+ 0(0 = 0 (9-b) 

Free  Surface Pressure : 

(fl + flx)£3 +(2r2 ^2x^x + 2Kfix)£4 ^(^) = o 
(9-c) 

The bottom tangency condition is satisfied to 0 {   t    ) and the "stretch" 
in the y-coordinate is taken as y - yL /£   - yL /vt    or p =  1/2.   This 
is determined   by the observation that if p^l/Z,   then the expansions 
should proceed as fractional powers of t  which cannot be matched to 
the near field solution.   On the other hand,   if p > 1/2,  then the term 
f |        would not appear to 0 ( {.* ) and a degeneiatc case results.  Thus 
the choice of p =  1/2 results in a "distinguished limit process" as 
fc    —» 0? The governing equation for the first approximation to the 
disturbance potential    (ip.    = f,     (x, y)        is obtained by elimination 
of second order variables ( f,    and f,) between the free surface kine- 
matic and pressure conditions to  0 (fc4 ) and is 

(K + 3f.   )f 
lx     Ixx lyy 

=   0 (10) 

The mathematical structure of this equation could change locally in 
the domain of solution depending on the algebraic sign of the term 
(K    + 3f 1x ).   This equation can describe locally subcritical flow 
(elliptic equation) when ( K + 3f j- ) < 0,   supercritical flow (hyperbo- 
lic equation) when ( K + 3f|     ) > 0 and the local characteristics have 
the slope 

( dy/dx ) = * [K   + 
lx 

-1/2 
(H) 

The expansion for the disturbance potential ( f» ) given by 
equation (9-a) is similar to Tuck's outer expansion; however,  it must 
be noted that our small parameter is based on depth ( t   = H / L ) 
while Tuck's parameter is the slenderness ratio (6   = B / L ). We 

See Cole (3),   page 46 

1533 



»«IBK^W^WI^P« 
illUHill.    I   IW^I» 

Lea   and   Feldman 

note that the Laplacian operator in the horizontal plane does not occur 
to 0 ( E    ) thus in this respect the present expansion for the distur- 
bance potential is simpler than the linear theory.   On the other hand, 
the free surface kinematic and pressure conditions for <f>j   are deri- 
ved from higher order approximation which lead directly to the non - 
linearity in the problem. It would appear that in the transcritical 
region the nonlinear free surface conditions are dominate and the po- 
tential nature of the flow is only secondary.  In passing we note that 
equation (10) is mathematically identical to the equation governing 
transonic flow past two dimensional airfoils. 

i 

We can now define the relative orders of magnitude between 
the shallow water parameter ( £ ) and the slender body parameter 
(   6 ) by examination of the behavior of the  far field solution on the 
body surface. While this can actually be done by the formal matching 
process,  we choose to do it here to simplify the algebra. Substituting 
the far field variables and expansion into the hull tangency condition, 
we obtain for the leading terms 

.3/2. 5/2 
C      fly   (x.6A) + tb/Zf2y(x,bA) = 6Ax+£6[flx(x.6A)Ax... 

-(z+l)flxx(x.6A)Aj      (12) 

where the "slenderness" of the ship hull is exhibited explicitly 
through 6 A   with A =  0(1),  Guided by the two-dimensional aerodyna- 
mic slender air foil theory,  we take   6   '     = b     which satisfies our 
earlier requirement that Urn  Q   (6/E) = 0.   Thus it seems to imply 
that the shallow water problem is analogus to high aspect ratio air- 
foil problem while the deepwater problem is analogus to the low aspect 
ratio problem. 

III.    NEAR FIELD APPROXIMATION 

The nonlinear effects are not expected to be important in the 
near field region where the basic flow pattern is strongly influenced 
by the hull form.  Asa result,  one would expect that the near field 
expansion would yield a series of Neumann problems in the ( y-z ) 
cross flow plane similar to those derived by Tuck I   '  .  The following 
non-dimensional and scaled variables are introduced : 

x = XL ,  y =6LY :eLZ, f    =6 Lf,    N   =eLN 

All the remaining variables are as in the case of far field approxima- 
tion. An additional variable N is introduced such that the unit vector 
8,T   in the N direction is normal to g 

N x 
and the hull contour (6A(y, Z)) 
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at any given cross section.  We assume the following expansions for 
the disturbance potential and the free surface elevation 

„^«„^    •       f £ Wn (13) 

Following the same procedure as for the far field solution, 
we obtain a consistant approximation in the near field to 0   (E '    ) 
given by 

^(6  ) = € 3/2    .^(E  )   =E5/2   .   pj (E  )=E 

V 0 
(Y,Z)    n 

0nZ (X   Y.   -1) = 0 

^ _   (X, Y, 0 ) =   0 

*nn (X'A)  = ^n 1 

(n= 1.2 ) 

( alln's ) 

( n = !, 2 ) 

0,    tr Ax/vmz 

(14-a) 

(14-b) 

(14-c) 

(14-d) 

To the second approximation   ( n = 2 ),  the boundary value problems 
derived are identical to those of Tuck(2i   as well as the order of 
magnitude estimate placed on the disturbance potential.   However, 
we note there is a difference in the estimate placed on the elevation 
of the free surface and is 

2 ''2 ) = 0(E6/2 . present present fxuck -^TUCR) =0(6:.—.J = O(E:'_I.__J 

fpresent ~     present ^      t) pref .nt o"4^) 
Thus we see that the surface disturbance is stronger here than in the 
linear case. 

Since the Neumann problems defined by equations (14) have 
already discussed in detailed by Tuck")'2) , we shall make use of 
his results and using the restricted matching technique of Van Dyke 
\i) to match one term far field to the two terms near field approxi- 
mation.  The important result is the hull tangency condition for the 
far field equation on a equivalent body and gives 

f1Y (x. 0    )   = S'  (x) / 2 (15) 

*We note here the difference in notation E =^ =E 3'2 

Tuck      pres,       pres. 
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where S(x) is the cross sectional area of the ship hull immersed in 
the water. 

IV ,    RESULTS AND DISCUSSION 

The resulting nonlinear problem,  for the first approximation, 
can be solved numerically or solved approximately using methods of 
local linearization developed in transonic aerodynamic literature'^' 

V6' ,  We have taken the latter approach due to limitations on compu- 
ter time and the details of which are given by Feldman*' '.  Here, we 
shill present some results for the sinkage and trim of a semi-submer- 
ged spheroidal hull.   The cross sectional area of the hull is 

R ^ B (x / L max x2 / L2 ) 'Z2, 

where B       is the maximum beam.  The trim and sinkage are compu- 
ted at the bow with units of trim measured in terms of ship length and 
slcnderness ratio of 1: 10.   The results are presented in figure 1 where 
the Froude number is based on the undisturbed depth.   In figure 2,  we 
have presented the samt' curves but using a different scale so that the 
linear results computed from Tuck's'    '   solution can be viewed si- 
multancously for comparison. 

The apparent discontinuity in slope at F.    =1,0 and   Fh = 1 
is due tu the method of solution and not the model equation.  We note 
that these solutions do indicate the overshoot as well as undershoot 
of sinkage and trim respectively through the transcritical region 
which have been measured in experiments such as the works of Graff, 

09 

Kracht and Weinblum («; as well as the more recent work of Graff 
and Binek'^'.  Sinkage as well as trim data have been computed for 
more realistic hulls and these will be reported else-wheret  However, 
one particular case with experimental results of Graff ('*' et al is 
given here for comparison.   The hull chosen is Model A3 of D. W. 
Taylor's Standard Series and the flow condition is exactly critical 
(Fh     = 1).  For computational purposes, the cylindrical hull is approxi- 
mated by a fourth degree polynomial-arc, we have 

Experiment (Graff et al) 

Trirtv = 2. 0,  Sinkage/LengthL bow e/s    bow 
015 

Theory 
Trinx = 2. 09, Sinkage/Length       = -. 0123 

at F    =  1.0 
h 

#    Paper to appear in the proceedings of the 13th ITTC Conference by 
Feldman and Lea. 
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The theory appears to be in fair agreement with experiment and indi- 
cates that this direction or research should be fruitful. 
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DISCUSSION 

Ernest O.   Tuck 

University of Adelaide 
Adelaide, Australia 

I am very please to see this done.   One thing that bothers me 
is the condition that delta is order epsilon to the three halves.   It seems 
very surprising that the theory should depend upon such a restriction. 
In my original linear theory,  delta and epsilon were identical,  and it 
seems unreasonable of a theory to demand such a geometrical cons- 
traint a priori. 

REPLY TO DISCUSSION 

George K.   Lea 
National  'Jsienae Foundation 

Washington D.C.,  U.S.A. 

The odd power of 3/2   appears is due directly to the critical 
flow parameter   \Fu-'.   You must remember that the relation between 
£ and 6 is an artificial one.    Their relative orders of magnitude are es- 
tablished through matching,   with the a priori requirement that a rea- 
sonable solution can be obtained as   Fj,—• 1  .    This type of proceedure 
must always be followed when more than one small parameter appears 
in the problem.   The difference between this and your linear result is 
the difference between non-linear and linear approximations. 

DISCUSSION 

Ian W.   Dand 
National Phyviaal Laboratory 

Feltham,  Englana 

We have obtained some measurements of sinkage and trim on 
tanker forms in sub-critical flow,  but,  using self-propelled and towed 
models.   These showed that the effect of the propeller when the model 
was self-propelled was such as to modify appreciably the measured 
trim.   I have two questions as a result. 
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1. Were the model results,  used as a comparison in this 
paper,   obtained with self-propelled or towed models ? 

2. As the effect of self-propulsion on trim seems to be quite 
ma rked in our experience, is it possible to take account of this theo- 
retically ? 

REPLY TO DISCUSSION 

George K.   Lea 
National Saienae Foundation 

Washington D.C.,  U.S.A. 

We did not run any model tests ourselves and all comparisons 
were made with the data of Professor Weinblum and others given in the 
list of references.   Test were towed tests. 

Self-propelled models may be under additional moments due 
to the onboard thruster which could cause an initial trim even at zero 
Froude number.   The result is that the water plane area could be dif- 
ferent and this can be accounted for by changing the area distribution, 
S(x),  in our computations.   I would expect the differences between tow- 
ed and self-propelled models to be the least for trim when you are 
dealing with full-forms like tankers. 
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COMPUTATION OF SHALLOW WATER SHIP MOTIONS 

R. F.   Beck and E.O.   Tuck 
University of Adelaide 
Adelaide, Australia 

ABSTRACT 

In previous papers by Tuck (Journal of Ship Research, 
1970) and Tuck and Taylor {8th Symposium on Naval 
Hydrodynamics, 1970), a framework was set up for 
a complete theory of ship motions in shallow water, 
in all 6 degrees of freedom. The present paper con- 
tinues this work by presenting actual computed mo- 
tions for a full form hull, both restrained and unre- 
strained, in long waves of various headings. 

I.    INTRODUCTION 

In this  paper we present computed results and/or discussion 
of motions in all six degrees of freedom of a Series 60,  block coef- 
ficient   0. 80   ship, at zero speed of advance in shallow water.   These 
motions are supposed to be induced by incident plane sinusoidal 
waves of various headings. 

The shallow water theory of Tuck (1970) (see also Tuck and 
Taylor, 1970,and Beck and Tuck,   1971) is used to provide the coeffi- 
cients in the equations of motion.   This theory requires that the wave- 
length be much greater than the depth of the water,  which restricts 
attention to long waves and low frequencies.  Such long waves are im- 
portant for large ships,   since they have the greatest potential for mo- 
tions excitation,  even though the low frequency assumption rules out 
resonance in heave,  pitch or roll. 

In Section 2 we discuss some general analytical features of the 
equations of motion of a ship in shallow water, and consider the re- 
lative importance for each mode of motion in turn of various types of 
inertial,  hydrostatic,  and hydrodynamic forces.  The force balances 
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which dictate the ultimate motions are complicated,  but in most cases 
there are pairs of forces which contribute most to this balance,  other 
forces being formally of a smaller order of magnitude with respect 
to a small parameter such as beam/length ratio. 

For instance, in heave and pitch the dominant force balance 
is between hydrostatic restoring force and the pressure of the inci- 
dent wave (so-called Froude-Krylov exciting force).  Inertia, both 
natural and hydrodynamic (added mass), damping, and diffraction of 
the incident wave are all effects of lesser significance in the range 
of wave periods considered. Indeed,   remarkably in shallow water the 
natural inertia or mass of the ship has the least influence of all these 
forces.  Similar simplifications can be made to the other modes of 
motion,  leading to "first-order) theories involving only the dominant 
forces. 

However,   the computations presented in Section 3 for coupled 
surge,  heave and pitch do include all forces, not only those of first 
order.  The first order computations are verified as numerically rea- 
sonable, and information is obtained about the most significant second 
order effects.  For example,  the diffraction exciting force (unfortunat- 
ely neglected by Beck and Tuck,   1971,  in making similar comparisons) 
appears to be the most significant second-order contribution to heave, 
whereas pitch is affected more by added hydrodynamic inertia than 
by diffraction effects. 

In the case of surge the first order balance is between natural 
inertia and Froude-Krylov exciting force, and this first order result 
appears to be remarkably accurate.  In particular,  there appears 
little need to worry about coupling with the other modes.  Some moor- 
ing force considerations are discussed in Section 4,  the conclusion 
being that for large ships only surge is likely to be affected, and then 
perhaps only marginally.   The general theory of surging of moored 
ships has been thoroughly treated in the Civil Engineering literature 
(see Wilson,   1967,  for a bibliography),  and perhaps the only new 
contribution we can make here concerns the correct evaluation of the 
surge exciting force as a function of hull geometry.   This question is 
given some attention in Section 3 and Appendix III. 

In Section 5 we continue the theoretical treatment of the very 
difficult problem of horizontal plane motions,  clearing up most but 
not all of the loose ends left by Tuck (1970) for sway,   roll and yaw. 
The appropriate integral equations which determine the hydrodynamic 
coefficients in these modes have been set up,   but the roll equations 
have not yet been solved. 
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Finally in Section 6 we present computed sway and yaw motions, 
neglecting coupling with roll.  This is justifiable,  as discussed in 
Section 2,  if the metacentric height is sufficient to remove the roll 
resonance period from the range of wave periods of interest,  a situa- 
tion which is not unlikely in shallow water.  The resulting motions 
agree well with simple approximate and limiting results,  which may 
be used for estimates in lieu of the very complicated computation 
procedure needed in the general case. As indicated by Tuck and 
Taylor (1970),   the detailed computations are, however,   of importance 
if swaying is to be in any way resisted,  by moorings,  fenders,   etc. 

In no case have the present results been experimentally verifi- 
ed.   The apparent lack of systematic (as distinct from ad hoc) expe- 
rimental measurements of ship motions in shallow water in the publish- 
ed literature is deplorable in view of the importance of this subject 
today,  and it is to be hoped that this situation will be remedied as 
soon as possible. 

II,    THE EQUATIONS OF MOTION IN GENERAL 

The equations of motion for any ship moving sinusoidally with 
complex amplitude    f:   at radian frequency    o in the   jth   mode of 
motion,  the time-dependent displacement being 

n.(t)    =01    f.e-1'1, 

are (Salvesen,  Tuck & Faltinsen 1970,  Tuck 1970) 

(2.1) 

_6 

2J     (-^M.j - T.j + C^fj    =   F.  ,     i= 1,2,... 6   (2.2) 

Here   Mjj   is a generalized mass matrix,   i. e. 

[M..] 

M         0       0       0       Mz^ 0 

0         M      0    -Mz„    0 o Mx( 

0         0      M      0     -Mx^ 0 

0     -MzG 0      Mkf     0 -I4G 

Mz„   0    -Mx„ 0      Mki 
Ci                     G                    ^ 

0 

0        MxG0    -I<6       0 Mk 

(2.3) 
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where 
M 

(XG.0.ZG) 

k6~k5 

= ship mass 

- coordinates of centre of gravity 

= roll radius of gyration 

= pitch radius of gyration 

- yaw radius of gyration 

= roll-yaw product of inertia (small) 

Cj-   is a matrix of restoring force coefficients,   including all hydro- 
static effects and mooring forces,  if any,   but no hydrodynamic effects. 
The hydrostatic contributions to   Cji   are zero except for 

Where 

33 =    pg A 
WL 

c35 = c^ '-    -pgXFAWL 

c« P«kF    AWL 

'^ MK(ZM *  ZG) 

WL 

(B4j 

-   waterplane area 

-   x   coordinate of centre of flotation 
(centroid of   A       ) 

W JLJ 

M 

radius of gyration of  A 
WL 

z   co-ordinate of meta-centre . 

Possible mooring force contributions to   Cj;   are discussed in Section 
4. 

The remaining terms in the equations of motion are hydro- 
dynamic in nature,  consisting of the hydrodynamic forces involving 
T^;   and exciting forces of amplitude   Fj ,    Tjj   is a complex-valued 
transfer function equal to the hydrodynamic force in the   ith   mode 
due to a unit amplitude movement of the ship in the   jth   mode,  and 
can be written (Tuck 1970)   in the form 

T.. = »    a..   +   io-b.. 
ij iJ ij 

(2.5) 
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where   ^^(«T)   is a real added mass and   h^-Aa)   a real damping coef- 
ficient,  both frequency-dependent. 

F;   is the force in the   ith   mode due to the incident wave. If 
the latter is a pure sine wave of amplitude   f 0  at an angle   ß   to the 
x   axis,  i. e.  has equation 

z     - fo 
ik(x cos 0+ y   sinß ) - iat 

(2.6) 

where    k = 2 ir/wavelength, we can write (Tuck,   1970) 

Fi     =     (Tio + Ti7>    fo (2.7) 

where   T^0   is the Froude-Krylov force per unit wave amplitude i. e. 
that obtained by integrating the incident pressure field over the equi- 
librium hull position,  and   I-     is the correction due to diffraction of 
the incident wave around the (fixed) hull.  This notation for the excit- 
ing forces is convenient in allowing us to display all hydrodynamic 
effects in the form of a   6x8   matrix   [T^j]   ,    i = 1,2, ...   6, 
j = 0,1,2,   ...  7 . 

The foregoing applies to a very general class of ship motion 
problems,  and in particular is not yet subject to restrictions on the 
nature of the sea floor.  However, bottom topography determines the 
dispersion relationship between  k   and a ,  and in the present work 
we assume the shallow water appioximation in uniform depth   h , 
namely 

ghk (2.8) 

which is valid only so long as 
as we ihall see. 

kh «   1 , a very restrictive condition, 

In addition,  of course,  the bottom topography has a profound 
effect on the numerical values of the frequency-dependent transfer 
functions   T^ .   The whole difficulty in any ship motions calculation 
is in the computation of   Ty ,  since once these quantities are known, 
(2. 1) is trivially solvable.  In following sections of this paper we dis- 
cuss in detail various specifications of   ' 
resulting motions problems. 

and solve some of the 

First, however,  it is of interest to provide a general summary 
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of the orders of magnitude of various terms in the equations of motion. 
We find that not all terms are of equal importance,  and some may be 
neglected to an acceptable order of accuracy.   This is a conclusion 
which may be arrived at formally by asymptotic expansion with res- 
pect to a small parameter   «   « 1   such that the beam and draft of the 
ship and the depth of the water are all small   0(«)   quantities relative 
to both the length of the ship and the wavelength of the incident waves. 
In some cases in addition we provide in later sections direct confir- 
mation of the smallness of the numerical effect on motions of terms 
which are asymptotically small. 

The orders of magnitude of   Tf;   with respect to   t   are 

OiT..) 

,2    <4 o t
3 o t

3 0 

t
2     0 e3 0 .4 0 .3 

3 2 2 
t       «0 t 0 t 0 

t
3     0 e4 0 <5 0 t

4 

3 2 2 
•       «^ 0 t 0 « 0 
2     „ 3     „ t       0       t       0 .4    0 

(2.9) 

Recall that the first column gives Froude-Krylov exciting forces,  the 
last column diffraction exciting forces,  and the remainder of the 
matrix added inertia and damping forces.  The above orders of magni- 
tude are quite difficult to estimate, and the following observations are 
by way of explanation. 

Lateral bymmctry of the ship provides the zero entries,  de- 
coupling horizontal and vertical modes,  and also affects some ex- 
citing force orders of magnitude.   For example, if the ship did not 
possess lateral symmetry there would be an   0(«)   contribution to the 
Froude-Krylov force   T. _   in sway. 

The water depth   h ,  assumed   0(c) ,   has a significant effect 
on these orders of magnitude,  especially in the vertical modes. 
Whereas in infinite depth of water a unit magnitude vertical motion of 
a slender ship produces a small   0(«) motion of the water in cross- 
flow planes,   such a ship motion produces a significant   0(1)   lateral 
motion of water of   0(«)   depth.   Thus the surge,  heave and pitch self 
and diffraction forces are all one order of magnitude larger than the 
corresponding estimates (Newman & Tuck 1964)   for infinite depth. 

In horizontal modes (sway,  roll and yaw) the assumption has 
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Computatt'c»! o/ Shallow Water Ship Motions 

been   made above that the clearance (water depth minus ship draft) 
is not small compared with the water depth.  In the case of small 
clearances,  the order of magnitude of the horizontal self and diffrac- 
tion forces is increased above that shown, in the ratio "water depth/ 
clearance". 

We now consider the effect of these order of magnitude esti- 
mates on the equations of motion (2. 2), supplementing the hydrody- 
namic estimates (2. 9) with the information 

M 

lG'\ 

l46 

= o{0 

-- o(*2) 

= 0(f) 

= o(.3) 
(2. 10) 

C33'C35'C53'C55   '- ^ 

Cu = o(.3) 

Note that   (2. 8)   requires   a    = 0(«) ,  restricting attention to low fre- 
quencies or long waves,  and at least in principle ruling out resonance 
in any mode.   The order of magnitude of   C.^  is an upper bound,  on 
the basis that the metacentric height is at most   0(c) ; in fact it be- 
comes a crucial question for roll to assess correctly the minimum 
order of magnitude of   C, ^ . 

The significance of ine various forces in the equations of 
motion (2. 2)   may now be summarized for each mode in turn as fol- 
lows. 

SURGE,   0(« "  )   motion 

2 
Important Forces,    0(«   ) : natural inertia,  F-K exciting 

force. 

Small Forces,    0(t   ) : added inertia and damping,  coupling 
from heave and pitch, diffraction 
exciting force. 
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HEAVE-PITCH,  0(1)   motion 

Important Forces,    0(«)      : hydrostatics,     F-K exciting force. 

Small Forces,    0(«   ) added inertia and damping, 
coupling from surge,  diffraction 
exciting force. 

3V Very Small Forces,  0(«   ) : natural inertia 

SWAY-YAW,    0(t'1)   motion 

2 
Important Forces,    0(f   ) 

Very Small Forces,   0(«   ) 

ROLL,    0(1)   motion 

3 
Important Forces,    0(«   ) 

Very Small Forces,   0(«   ) 

natural inertia, added inertia and 
damping,  F-K and diffraction 
exciting forces. 

coupling from roll. 

hydrostatics, coupling from sway 
and yaw, F-K and diffraction ex- 
citing forces. 

natural inertia, added inertia and 
damping. 

Several features of the above table are at first sight surpris- 
ing.  Firstly we should note that the conclusion that surge,  sway and 
yaw involve large   0(«"1)   motions, while heave and pitch involves 
only   0(1)   motions   (i. e.  of the order of the wave amplitude) is rea- 
sonable, in that the ship moves more or less as does a water particle 
and the horizontal particle motions in a shallow water wave are much 
greater by a factor of order wavelength/water depth than the vertical 
particle motions.   Roll is rather special,  and its   0(1)   magnitude is 
due to the assumed sufficiently large order of the metacentric height. 

Forced surging is an extremely inefficient method of creating 
hydrodynamic disturbance, so that all hydrodynamic effects on surge 
are small. Note however, that the added inertia is only one order of 
magnitude smaller than the natural inertia, whereas in infinite depth 
it becomes two orders of magnitude smaller. 

Heave, pitch and roll are the only modes to involve hydrosta- 
tics, and the hydrostatic contribution is necessarily dominant for these 
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Computation of Shallow Water Ship Motions 

modes.  The main force balance in heave and pitch is between hydro- 
statics and Froude-Krylov exciting forces,  exactly as in infinite depth 
(Newman & Tuck 1964) .  Remarkably however, in shallow water the 
added inertia dominates the natural inertia.  This conclusion is only 
valid so long as    o? = 0(() ,  i. e.  for reasonably low frequencies, 
certainly well below resonance.  This question is discussed further 
in Section 3. 

In sway and yaw most forces are comparable in magnitude so 
long as the clearance is not small,  the only negligible effect being 
roll coupling.  The latter is only significant if the roll magnitude is 
0( i    ) ,  two orders of magnitude higher than that predicted. If the 
clearance is small,  the added inertia dominates the natural inertia 
by an extra factor of depth/clearance. 

Finally,  the amplitude of roll is profoundly affected by the 
order of magnitude of the metacentric height.  The orders given cor- 
respond   to   Zy, - ZQ = 0(() , but broadly similar conclusions apply 
for (say)   zj^ - ZQ = 0(tl) .    Only if   zj^ - ZQ = 0(t3)   does the roll 
amplitude become large enough for roll to affect sway and yaw,  or 
for roll inertia to be important. 

Another way of looking at this effect is to observe that the 
roll resonance frequency is roughly given by 

gO 
»■_   ~ 

M ZG> 

Since   k^ = 0(«) ,  the frequencies of interest such that  a* = 0 («)   are 
necessarily far below resonance in roll, unless the metacentric height 
is as little as   0( (J) . 

A final rather more intuitive argument for neglect of roll is 
that the shallow water assumption requires that the incident wave 
pressure be uniform with depth.  Thus the resultant force on a verti- 
cal wall (modelling a ship with a very small clearance in shallow 
water,  beam seas) acts through the mid-point of the vail.   One should 
anticipate a pure swaying motion of the ship section due to such a 
uniform distribution of pressure.  In terms of a roll angle measured 
about an axis in the waterplane, this amounts to the conclusion that 
the sway coupling term from   Mj;    in   (2. 3)   cancels out the net in- 
cident pressure moment about the waterline. 
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III.    COUPLED SURGE,  HEAVE AND PITCH MOTIONS 

The formulae for the transfer functions   T33 ,   T 
ved by Tuck (1970),  and in a similar manner w*- ma« « n 

lowi 
53   were de- 

manner we may obtain the fol- 
ng results,  valid for all   i-- 1.3.5   and all   j= 1.3.5  7 

n   [    dxeikxC08%(x) (3.1) 

where 

AjU) 

A3(x) 
A5(x) 

A7(x) 

ij 4h 
/: 

dxdf A (x)A.(f)H 1        J        o 
(1) 

=    SM x ) 

=     B(x) 

- ''B( x ) 

(k|x- f|) . 

(3.2) 

(3.3) 

(3.4) 

(3.5) r        v     ' 2 (3- 5) 
=      -B(x)4   S(X)C08 g   iS^x^osgl ikxcosfl   .'   ,v 

h kh       Je • (3-6) 

Here   B(x)   is the full waterline width and   S(x)   the section area at 
station   x , while   H^'is an Hankel function (Abramowitz and Stegun 
1964,  p.   358), 

A brief derivation of the above results is given in Appendix I. 
The physical plausibility of these results,  especially the rather com- 
plicated formula   (3. 6)   for the diffraction exciting force,  may be ex- 
hibited by considering the direct effect on the equations of motion. 

state For instance,  in heave,    i = 3,    the equations of motion   (2.2) 

•'2Mf3 + c^ + c» r '33 '3 35  J5 " T30 f0 
^   fl+T33f3+T35f5 + T37f0 

'-HS-Jj^M    j     ^[B(f)(f3-ff5-f0eikfco8'J) (3.8) 
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+^-S(0(fi±teLeeikfco^ 
(3.8) 

)] •  H^Mklx-«!) 

The terms on the left of   (3. 8)   constitute natural inertia, 
hydrostatics, and Froude-Krylov exciting forces,  all hydrodynamic 
effects being on the right.  The expression 

^3   " {f  5 ■   f0
e 

ikicos/S 
(3.9) 

is the relative vertical displacement between ship and wave at station 
i , whereas the term 

if cos/3 
o ikfcosp - e 
kh (3.10) 

is the relative horizontal displacement between the (surging) ship and 
the water particles in the wave. 

This display of the equation of motion is similar to that given 
by Newman and Tuck (1964) for infinite depth,  except that in infinite 
depth the horizontal motion terms do not appear.  It should be noted 
that the surge motion   f.    and the horizontal fluid particle motions 
are large in shallow water,  of   0(«"1),  which is the reason why the 
relative horizontal motion is now potentially as important as the re- 
lative vertical motion in determining hydrodynamic effects. 

The first step to actual solution for the motions is numerical 
evaluation of the coefficients   Ty .  This is a moderately difficult task, 
especially as regards the double integrals in   (3.2) .  This task is 
carried out indirectly,  by Fourier transform techniques as described 
in Appendix II. 

An apparently trivial but actually significant point about the 
numerical computations is the fact that we may wish to avoid nume- 
rical differentiation of the section area curve  S(x)   to give   S'fx)   in 
(3. 3)   and (3. 6) .  In fact a simple integration by parts avoids this 
difficulty, but raises another question.  If the section area   S(x)   does 
not vanish at the ends   x = i« (e. g. with transom sterns),  what do we 
do about the "integrated part"   after integration by parts ? This is a 
classical end-effect problem in slender body theory,   since at least 
in principle slender body theory is inapplicable to such blunt ships. 
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This question is examined further in Appendix III,  where it is 
argued that, at least in su far as the surge exciting force   T10   is 
concerned,  the theory remains valid for "blunt" ships, provided we 
discard the terms arising from integration by parts. It seems likely 
that a similar consideration applies to all expressions involving S^x). 
Of course in the absence of transoms etc. , i. e.  when   S(i£) = 0 , this 
difficulty of interpretation does not arise, and this is true of the com- 
putations to be presented here for the Series 60,  block   0. 80   hull. 

Figures   3. I - 3. 3   show vertical motions computations in all 
3 modes for head seas   {ß= 180°).   The horizontal scale chosen is 
ship length divided by wavelength,  while the vertical scales represent 
linear displacement amplitudes divided by wave amplitudes.  In pitch 
this is equivalent to vertical bow motion due to pitching alone.  The 
results are given for depths of   1.0   and   2. 5   times the draft of the 
ship   (0. 062   and   0. 15   times the ship length). A depth equal to the 
draft is of course not safely achievable,  but no difficulty arises theo- 
retically in this case for vertical modes (not so for horizontal modes) 
end this case may be viewed as a limiting one in practice. 

The motions shown are those resulting from use of all available 
information about terms in the equations of motion. In spite of the 
imbalance in orders of magnitude as indicated in the previous section, 
no terms have been neglected, and a1' couplings between all three 
modes have been included. 

For comparison purposes however,  the first-order results are 
also shown,  these being balances between hydrostatic and Froude- 
Krylov forces only in heave and pitch, and between natural inertia and 
Froude-Krylov forces only in surge.  In heave and pitch the first-order 
result is independent of depth at fixed wave-length, whereas the first- 
order surge varies inversely as the depth. 

The effects of the second (and third) order terms are quite 
varied,  but some general comments can be made.  The main difference 
between the first order and full heave results in Figure 3. 1   is due to 
the diffraction exciting force.   This is particularly true near the mi- 
nimum of the first order heave (about   L/X = 1.2), where the heave is 
substantially increased by diffraction effects. 

The general trend of the heave resultf is remarkably similar 
to those of Newman and Tuck (1964) for infinite   depth.  The first order 
heave minimum at about   L/X =1.2   appears in both cases to be shift- 
ed by second order effects,  especially diffraction, to about   L/X =1.4. 
This is not too surprising numerically in view of the similarity bet- 
ween   (3. 8)   and the equation of motion in infinite depth. 
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Computation of Shallow Water Ship Motions 

Pitch is almost unaffected by diffraction effects, the substan- 
tial increases shown in Figure 3. 2   over the first-order theory at 
about the pitch maximum   (L/x = 0. 8)   being instead largely due to 
inertia,  especially added inertia. A rough explanation of the nume- 
rical smallness of the pitch diffraction force is that the first term of 
(3. 6)   involving   B{x)   is a nearly even function for a nearly fore-and- 
aft symmetric ship ; for reasonably low values of  k   (thus low   L/X) 
the corresponding value of   T,.^   is small because   A, = -xB   is near- 
ly an odd function of  x .  The terms of   (3. 6)   involving   S(x)   corres- 
pond broadly to surge motion, and lead io small effects when the 
surging is small, as it is at these wavelengths. 

All second order effects on surge appear to be small, the 
first-order balance between natural inertia and Froude-Krylov ex- 
citing force being   (Figure 3. 3)   remarkably close to the full result. 
The magnitude of the surge motion is,  as expected, quite large for 
the longer waves,    L/x < 0. 8 ,   say, for which the horizontal particle 
motion in the wave is large. At fixed   L/A ,  the first-order surge 
varies exactly inversely with depth, and the full equations give a 
similar trend except at high frequencies where surging is in any case 
quite small. 

Computations have also been carried out in oblique seas, i. e. 
for values of  ß   other than   180°.  In general,  effects of reasonable 
heading angle on vertical plane motions are mostly accounted for by 
use of head seas results, but with the effective wavelength   X  se~ ß 
instead of X   in the horizontal scale. 

This is exactly true for the first-order results in heave and 
pitch, and nearly so when second and higher order terms are includ- 
ed.  In surge this effect is combined with a   "cos2j9"   factor,  tending 
to reduce surging.   However,   since the effective wavelength is longer 
than the true wavelength and surge is greatest in longest waves, we 
should anticipate increased surging, were it not for the   cos2 0 fac- 
tor.   The net effect at fixed (true) wavelength is a   "cos/3"   reduction 
factor on surge. 

Since the computed results agree well with the above qualita- 
tive discussion,  we omit presenting computations for bow seas 
(/3= 135°) .  Note however,  that the "stretching out"   of the head seas 
curves due to the sec ß factor means that heave and pitch are both 
increased at values of   L/X   (true)   of about   1.2 - 1. 6 , where the 
head seas responses were small.  In this important range bow seas 
produce significantly greater net vertical bow motions than do head 
seas (see Beck and Tuck,   1971). 
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One interesting feature of the heave equation of motion in 
beam seas   (0= 90")   for a fore-and-aft symmetric ship is that all 
second order terms disappear,   so that were it not for the third-order 
mass terms the heave would exactly equal the wave amplitude.   Thus 
at   /S= 90° ,   (3.6)   gives   A7 (x) = -B(x) = -A3(x) , and we have 
T      = -T-,  ,  But also   T-.  = C,, ,  hence assuming fore-and-aft sym- 
metry the heave equation of motion is 

a Mf, +   (C 33 T33 )(fj V (3.11) 

Hence 

V '   c ['-A] 
= r0( 1 + o(.')) 

(3.12) 

Similarly,  if we do neglect all second and third order effects,  the 
first order theory predicts zero surge and pitch,  and heave f     = f- 
even in the absence of fore-and-aft symmetry. 

Figures   3. 4 - 3. 5   show computed heave and pitch motions in 
beam seas.  There is a substantial   (60%)   increase in heave over the 
first-order value    L = ^   as the depth increases,  especially at about 
L/X = 1.5,  The pitch (in bow motion)   remains below   25%   of the 
wave amplitude, however, and surge is quite negligible, never more 
than   2%   of the wave amplitude at any frequency. 

IV.    MOORING FORCES 

As an example of the type of analysis required in order to ac- 
count for the effect of mooring lines on motions (and perhaps more 
importantly,  vice versa !), we give below a simple discussion of the 
effect of a single linear bow mooring line on vertical plane motions. 
More realistic and complicated types of mooring systems can be 
studied with similar procedures and conclusions.  The general con- 
clusioi. is that of Wilson and Yarbaccio (1969), who find that "the 
spring is quite weak compared to the mass, and the ship can be con- 
sidered to be floating unrestrained except for restraint against conti- 
nuous drifting". 

If we consider only linear effects of mooring lines,  the appro- 
priate modifications to the equation of motion simply require contri- 
butions to the restoring force coefficients   CJ;   in equation   (2. 2) , 
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Consider for example a linear elastic cable of spring constant  k 
and length   R , attached to the bow and initially nearly parallel to the 
calm water line and nearly lying in the centre plane of the ship. 
Small angular deviations from this equilibrium configuration have no 
effect on the restoring coefficients. We suppose there is a mean cable 
tension   TQ   at equilibrium due to wind,  wave (mean stress) and cur- 
rent effects. 

The displacements of the bow as a result of small vertical 
plane motions are f,      longitudinally and    f3 - £ f5 upwards,  and 
from Figure 4. 1   we see that the new cable length is 

R1     = VR2 -Z^R + f, 2 -Mf3   - S^)Z 

ä R - f, 

if all   > .  «R , and the new cable tension is thus 

T     =    T0  + MR' - R) 

=   To-kfi 

(4.1) 

(4.2) 

Thus heave and pitch have no effect on cable tension in this case. 
However,  this does not mean that there is no vertical restoring force 
in these modes. 

In fact the surge restoring force due to the mooring is 

Fj     -     ( T - T0  ) cos O 

~   T - T 
'o (4.3) 

=    - k f,  , 

the heave restoring force is 

F3     =     - T sin« 

-Vf3-^ 
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and the pitch moment is 

F5    =     .2F3   . (4.5) 

Thus the restoring force coefficients due to this mooring are 

and 

33 

Cll     =    k 

35 
fT( A 

55 

(4.6) 

(4.7) 

all other   C--   being zero.  The total restoring force coefficient   Cj; 
for use in equation   (Z. 2)   is the sum of the hydrostatic contributions 
given in equations (2.4) and the mooring contributions given in   (4. 6), 
(4.7)   above. 

Equation (4.7)   show that there is a small additional contribu- 
tion to the restoring forces in heave and pitch from the equilibrium 
tension in the mooring line, independent of its elasticity. Since these 
modes already possess very large hydrostatic restoring forces, it is 
very difficult to conceive of equilibrium cable tensions sufficient to 
produce significant effects on heave and pitch. 

For example, if we use   T = 37   tons and   R = 100 feet , the 
former bein^ computed from Taylor's air resistance formula 

0.00218 
2   2 

B  V (4.8) 

where   B   is beam and   V   wind speed (assumed   40 knots) ,  we obtain 
less than one tenth of a percent change in the computed heave and 
pitch motions of a   200000   ton ship.  For this type of mooring or any 
combination of such moorings,   the equilibrium tension would have to 
be quite unrealistically large* for any significant change to occur in 
the heave and pitch motions. 

*     For a single cable the   figure of   37   tons is of course already in 
this category I 
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Computation of Shallow Water Ship Motions. 

Surge is rather different,  in that the mooring provides the 
only restoring force   (4, 6) .  If we assume,  as is clear from the re- 
sults 05 the previous section,  that all hydrodynamic effects on surge 
are negligible,  we can analyse linear surging as a simple one-degree- 
of-freeilom undamped spring-mass system,  with the result that the 
surging cimplitude is 

(4.9) 
k - Ua 

or (neglecting diffraction) 

h / f0 
10 

k -Ua 
(4.10) 

where   T|0-
T

l0(<')   is obtained from (AIII. 5) . 

In fact the surging amplitude in the presence of a mooring is 
simply equal to the factor 

M(r2-k 

1 

,     2   /  2 
l.,R/a 

(4.11) 

times the free surging amplitude,  where   ar, = vk/M   is the resonant 
frequency.  Figure   4.2   shows this factor as a function of frequency 
a   .  Note that unless the wave frequency        is less than TO0';   of the 
resonant frequency   ffp -^k/M ,  the effect of the mooring is to in- 
crease the motions.   For large ships,  conceivable values of   a^     jr- 
respond to periods of minutes or more,   so that typical sea or swell 
gives frequencies well above resonance ; however (Wilson 1959)   long 
period range action in harbors can produce resonance,  with disas- 
trous effects.   The condition   a < 70% ar,    is in general met only by 
tides and currents,   and indeed the purpose of the moorings must be 
to overcome these very low frequency excitations. 

On the other hand if   o  » To» it is clear that the mooring is 
having very little effect on the surge motion of the ship,  which moves 
as if free.  The force exerted on the mooring by the ship is then of 
prime interest,   and this may simply be computed by assuming given 
free ship motions.   This also applies of course to motioi s in other 
modes   (e.g.   sway),   so long as the wave frequency is again well above 
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the resonant frequency of the mooring. 

The actual variable tension in the cable resists only a small 
fraction of the exciting force under these circun stances, which is 
just as well,   since these exciting forces on large ships are generally 
enormous.  The ratio between the amplitude of variation of the cable 
tension and the exciting force is 

kf. 

1    I k-Ma 

1 

i     2/  2 
(4.12) 

which is also shown in Figure   4.2 .  For example,  if    " >^ou (*• e. 
the wave period is less than one fifth of the mooring resonant period), 
the mooring bears less than   4%   of the exciting force,  and the motions 
are not more than   4%   higher than the free motions. 

V.    THEORETICAL CONSIDERATIONS ON HORIZONTAL PI.ANE 
MOTIONS 

The developments of the theory of Tuck (1970) and Tuck and 
Taylor (1970) on horizontal plane motions were confined in effect to 
computation of the sway exciting force.  The resulting formula for the 
total exciting force is 

T, 0   -   To .    =   ipghk sin/J j      dxeikX C08^(x) 

■/, 
(5.1) 

where  A<t>-   is a "potential jump"   across the ship section,  computable 
from purely near-field considerations. Although   (5.1)   was only deriv- 
ed for   i = 2   (sway)   it is also valid for   i = 4   (roll)   and   i = 6   (yaw) . 
In the case of yaw,   there is no need to obtain A 06   separately,   since 
N*, ~ x A<t>2-  The computation of A 4)-   and A<t>,    will be discussed 
later. 

Tuck (1970)   also suggested a connection between the integral 
(5. 1)   at   0=0   and the added mass and damping coefficients.  For 
instance we have 

22 Pa I n2«2dS 

(5.2) 
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■pa 

/,'■/.- 
4*- 0_di 

(5.2) 

where   H   is the section at station   x , and   n   is outward from the 
hull (into the fluid).  Now the contour integral can be evaluated entire- 
ly in the near field region as follows. 

JH JH JH 

dl 

/[Ii*2-v|?]^-/fe 
H+F+B+R^+Loo F+B+R.+L« 

/ 
yn2df 

(5.3) 

H 

where   F   denotes the free surface,    B   the bottom,    Rw   and   L^, 
vertical lines at   y = +«> and   y = - oo respectively in the inner   (y, z) 
plane, as shown in Figure 5. 1 . 

The first integral above vanishes by Green's theorem and 
there is no contribution from   F   or   B   in the second integral since 

both-r*i and-^-L vanish on   F   and   B .  On   L«, ,  di A = dzA_ , 

whereas on   R^ , d/-_ = - dz—- .  Hence (using also   (A.   1. 9) ) 
on dy 

y = +oo 

HJ J.h     L Jy = - 

+   S(x). (5.4) 

But the boundary condition for the inner potential   <f>     is   (Tuck 1970) 

yV2      +   1/2 A(<>2        as      y ^* + < (5.5) 

Hence 
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^■y^v2"-"- 1/2A*2      as       y—-*-**. 

'      •    ■ ■' ■     ^2. 

and we have 

H 
/"U  V^   r   h^2(x)   +   S(x) (5-7) 

Thus finally 

,   J 
22 -   j    **   [^2{x)   +   S(x)j 

i 

• P<r h  /      dxbtjx)   -    a M (5.8) 

J 
where J 

M     =   P   /        dxS( x ) (5. 9) 

is the mass of the ship.   Note that the term involving the mass   M 
was erroneously omitted by Tuck (1970).  The new result indicates 
that the virtual or total inertia, not just the added inertia,  is propor- 
tional to the real part of the exciting force integral   (5. 1)   at   ^ = 0 . 

The above analysis may now be repeated for   T^: ,  for all 
i, j = 2,4, 6   except for the roll self-force term   T44   .   For example 

T26     =   T62     ^   -p<'h   /      dxxA^x) -paM     dxxS(x)       (5.10) 

JJ JJ 

i 1 
2/2 2   /" 2 T66     =   -'" h    /      dxx A* (x) - p*    /     dxx S(x) (5.11) 

h JJ 

1562 

—— - --1        111     ir 11   ■   •     '    •■ - - ■      ■ —    —■   ifi       11 11  iimii iiifciBi ^i^lMa^fcM—ÜÜ—äliMMMiaalMlia 



fUlU'WWlWII 
punnPOIMWnPXOI'W"'. NIIIII'JIIIIJI.WI ■"■wii"i      >   ■■""        iinmii ■ i mw 'm*' ' 

 MMMWMMHMP >■*■ 

Computation of Shallow Hater Ship Motions 

24 42 
2 

pa h 

•a 
<JxA«4(x) +pff2 /"      dxfS(x)zc(x) +72B3(x)] 

-^ (5.12) 

where   zc(x)   is the   z-co-ordinate of the centroid of the section at  x. 
Unfortunately if   I » 4 , the element   n4 = yng - zng   cannot be written 
as the normal derivative of a harmonic function,   so that the two- 
dimensional Green's theorem cannot be used, as in the above deriva- 
tion.  It would appear that we must leave the formula for   T44   in the 
form 

44 pa frL* 4*4^ (5.13) 

and evaluate the contour integral explicitly. 

Computation of all quantities (apart from T,, )   in the horizont- 
al equations of motion now proceeds via preliminary computation of 
the potential jumps A^^x) .  These are related to the inner streaming 
velocity   V^x)   by   (Tuck 1970,  Equation (54) ) 

V.(x)   = -li ■"] (; (1) ^.(OH^'ft x-{|)d{ (5. 14) 

which comes from the outer expansion, and 

«. _^yVj[x)+  1/2^. (x) as   y —*■ + a» (5.15) 

which is the inner boundary condition. Solving the inner flow problem 
leads to a connection between   V-   and A4>- , which in combination with 
(5. 14)   gives an integro-differential equation for A0 {(x) . 

For example, if we solve the canonical problems indicated by 
Figure    5. 2 ,    i = 2, 4,     we have 

*2    =    V  +   ^"^ ^2 (5. 16) 
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and 

^4     =     V4(y+V   '    ^4   ' 

from which follows * 

and 

A02     =     2C2(V2 -   1) 

A*4     =     2C
2(V4 - C4 / C

2) 

(5.17) 

(5. 18) 

(5. 19) 

Thus we have the integro-differential equations 

J 
^fttkl/r*'<siHo",kH- 

Ldx J   ^ P 
«) 

C^x) 
(5.20) 

which can be converted into integral equations of the form 

4. /"' 
.      Mid)   . u,    _ 

— I    at    ._   />t   sin k(x - <) 2C2(0 

x      C;(0 
A. cos kx + B. sin kx +-jr /    d^ -   IA sink(x-i) 

(5.21) 

where   A. ,  Bj   are constants to be determined by the end conditions 
d&d i) = 0 .  Although the left side of   (5.21)   contains the same 
kernel for   i = 4   as for   1 = 2,  the parameter   C4(x)   which appears 
on the right has not yet been evaluated numerically,   so that in the 
following section results are given only for sway and yaw. 

VI.    COUPLED SWAY AND YAW 

As discussed in Section 1., there are indications that roll is 
not a significant mode of motion in shallow water, and that in particu- 
lar its coupling with sway and yaw is small.   Therefore we present 
here computed free motions of the Series 60,  block   0. 80 ,   ship in 

•      The quantity   C,   corresponds to   C(x)   as in Tuck (1970) 
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sway and yaw,  with complete neglect of roll coupling.  The equations 
to be solved can be written 

T •    f      -   T  *    f 
22    S2 26    S6 

r •   >■    -  T •   f 
62    ^2 66    56 

(6.1) 

(6.2) 

where 

T • 
22 /' 

JJ 
•pa h    I     dxA02(x) (6.3) 

T   * T62     =   m'"h    I    dxx^*2^ (6.4) 

66 
p/h    /     dxx2A(<)2(x) -ff2/ dxx2(pE(3t)-.W(Ä| ) 

r    2        zr 
I     dxx2AA (x) -ff2/ 

J 

iinß I    < 
Ji 

(6.5) 

f ikpgh sin^   /    dxA«)(x) eikx C08 ^ (6. 6) 0 h    z 

ykpgh  sinß /    dxx^2(x) e** COa0.      (6. 7) 

Here starred quantities represent natural inertia plus hydrodynamic 
effects.  Note that natural inertia cancels out corresponding terms in 
the equations   (5. 8) ,   (5. 10)   for the unstarred quantities   Ty? »  T_? 

and   T2g , assuming the unexcited ship is in equilibrium.   However 
there is a contribution to   Tgg   if the longitudinal radius of gyration 
of the displacement of the ship does not equal that of its actual mass 
distribution,  expressed in   (6. 5)   as   W(x)   per unit length.   This extra 
term in   (6. 5)   is quite small in practice,  but has been included in the 
computed results. 

The quantity A^-fx)   is obtained numerically by solving the 
integral equation   (5. 2l) ,  which for   i = 2   reduces to 
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Lj    d^2(«)H^(kx-{).-lj d{ c2«) sin k(x- () (6.8) 

(6.8) 
-r-  +    A    cos kx   +   B_ sin kx 

Numerical procedures for obtaining Cp(x) and hence by solving (6. 8), 
^*?(x) i are discussed by Taylor (1971) and summarized by Tuck and 
Taylor (1970). 

Figures   6. 1   and   6. 2   show the resulting solutions for the 
sway and yaw amplitudes respectively. At high frequencies,  the 
motions tend to zero rapidly.  On the other hand, as the frequency 
tends to zero (wavelength to infinity) the sway motion tends to infinity, 
as in the case of surge,  because the ship is then following the hori- 
zontal fluid particle motions. 

For a fore-and-aft symmetric ship   (Tjg*3 0)   in beam seas 
( 0= 90°), the sway equation of motion simplifies to 

2. 
pa  h /' 

JJ 
dxA0 (x) f   . ikpgh   /    dx^« (x) 

/, 

i. e.  the integral containing the potential jump A<t>2{x)   cancels out, 
leaving simply 

ifo 
(6.9) 

kh 

This remarkable result shows that in this case the sway mo- 
tion equals the horizontal fluid particle motion at all frequencies, not 
just as the frequency tends to zero.  The small amount of asymmetry 
in the Series 60 ship does not prevent   (6. 9)   from giving quite close 
agreement with the curve of   Figure 6. 1   for ß   = 90° .  Note that 
(6. 9)   predicts that sway varies in direct proportion to wavelength 
(or period), and inversely as the water depth.  These qualitative pro- 
perties are also confirmed by the full computations. 

Clearly the geometry of the ship,  which in general influences 
C2M , hence A02 (x) »    has little effect on the free sway amplitude in 
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beam seas,  since the integrals involving &<t>z (x)   tend to cancel out. 
We may expect a similar conclusion for other headings,  and for yaw 
motions.  On the other hand,  as indicated by Tuck and Taylor (1970), 
if the swaying motion is to be restrained, by moorings,  fenders, etc. 
a knowledge of   C(x)   and hence A4    (x)   is vital for computation of 
the required restraining forces. 

The yaw motion is plotted in Figure 6. 2   as horizontal bow 
motion, analogously to pitch.  Note that yaw vanishes identically in 
both head and beam seas,  irrespective of fore-and-aft symmetry,  so 
that maximum yaw occurs at some intermediate heading angle. 

As the frequency tends to zero,  the yaw motion tends to a 
finite limiting value which may be estimated for a fore-and-aft sym- 
metric ship as follows.   We also assume that we can neglect the second 
term of   (6. 5) , which is true if the radii of gyration of displacement 
and mass are nearly equal.   Then as   k—»-0 , we have 

6 
pa h   j   dxx A<t>2(x)   =   f  ikpgh sin/3 /    dxxA<L(x)[l+ikx cos/3+. ..] 

2 / 2 
= - s k pgh sin/3 cosfll     dxx A^ (x)   . 

U 

Again the integrals involving A^, (x)   cancel out, leaving 

f6    «   i0Si^COBß-. (6.10) 

However,  this result is of much more limited validity than   (6. 9) , in 
particular being valid only for low frequency.  Note again an inverse 
dependence on depth,  and a maximum at   45°   heading. 

VII.    CONCLUSION 

In the present age of offshore mooring facilities for super- 
tankers and giant ore carriers, the usefulness of a shallow water ship 
motion theory is obvious.   However,  the results presented in this 
paper are purely theoretical.   To the author's knowledge there is very 
little experimental verification available.  Until there are experiments 
with which to compare the theory, we are forced to rely on the good 
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agreement between experiments and deep water theories to give us 
confidence in the present shallow water theory. 

In the case of heave and pitch,  the theory presented in this 
paper  (but with neglect of diffraction exciting forces) has been com- 
pared to Kim's (1968) shallow water strip theory by Beck and Tuck 
(1971). As expected, the present slender body theory seems to give 
more acceptable results in the very low frequency range, while the 
strip theory should be more accurate for high frequencies. In the in- 
termediate frequency range,   both theories give similar predictions 
of heave and pitch motions. 

This work was supported by the Australian Research Grants 
Committee. 

APPENDIX I 

DERIVATION OF   T..    FOR VERTICAL MODES 

The definition of   T^   is   (i,j = 0, I,   ..,  7) 

iJ 
- pc /n.t.dS 

1   J 

where 

_ _J_   ikx cos ß    cosh k(z + h)   iky sin/3 
0       a 2 '       cosh kh 

g    ikx cos0 ,,      .,        .0^/2,. 
-f- e (1 + iky sin/*+ 0( «  ) ) 

(A. 1.1) 

(A. 1.2) 

(A. 1.3) 

and the result of Tuck (1970)   is that for   j = 1,3,5 

^ ^L *:   =-^r  /    A.(«)H0
(1^k|x-«|)d{ (A. 1.4) 

=   «.(x) 

where 

.A.(x)    -fn. 
H 
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is the flux across the section   H   at station   x   in the  jth mode.  The 
results   (3.1),  (3.2)   for   T.Q   and   T^ ,    i,j = 1,3,5  now follow di- 
rectly from   (A. 1.1),  while that for   j = 7   follows after using sym- 
metry,    Ti7 = T7i . 

It remains to evaluate the quantities   Aj(x)   in terms of hull 
geometry,  an easy task for   j = 1, 3, 5   using the elementary results 

/ 

njdi   =   -S'U) (A. 1.6) 

and* 

I      nd%   = - B( x ) 
J 3 

H 

with   n    = -xn    ,    For   j = 7   we have 

„      -       „ ^^0 n_   =   - n„ =    - -»—— 
7 0 7*n 

(A. 1.7) 

1 dx 2 ^y 3 oz 

(A. 1.8) 

Carrying out the differentiations of   (A. 1.2) and integrating we obtain 

ikx cosß 
A7(x)   =   e* /ficos^l, f   y sin/3 "      zlljß 

nl-kh-+   n2    "^h—   +   n3   ,+h       dJl 

M   L     L J L J L JJ 

which leads to   (3. 6) ,  using the further elementary results 

/ yn2dl   =      j    zn^di   =   S{x)   . (A. 1.9) 

H H 

*    The corresponding result in Tuck (1970) has a sign error which 
occurs twice and therefore does not affect the final answer for   T        ! 
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APPENDIX II 

COMPUTATION PROCEDURE FOR VERTICAL PLANE INTEGRALS 

The task of evaluating the integrals   (3.2)   is simplified by 
re-casting them in a Fourier transform manner.  Thus 

M^rÄA:(kk)Ai(kx) (An. i) 

where 

A^X) /      dxA^ x ) elXx (An. 2) 

a bar denotes a complex conjugate, and we adopt the convention that 
for      X >1 , ^  1 -X2    = i^XZ . l   ,  The result   (All. 1)   follows from 
the integrals 

Jo(z)   --? cos X z 

and 

Y0(z) H dX 

>F~r cosXz   , 

with   H^    =   J0 + iY0   . 

The Fourier transforms   A?   (which are incidentally also re- 
quired for the Froude-Krylov forces   TJQ   in   (3. 1) )   are obtained by 
a modification of  Filon's quadrature (Tuck,   1967) . Data concerning 
Ai(x)   (i. e. beam B(x)  and section area   S(x) )   is supplied at given 
(not necessarily equally spaced)   values of  x . Data actually used was 
read directly from the table for the Series 60, block   0. 80   parent 
form (Todd,   1963)   at 25 stations.  The Filon quadrature maintains 
uniform accuracy as the parameter  X   increases. 

The integration with respect to 
separately for   0< X <  1   and   1 < X < 

X in   (All. 1)  is carried out 
o . In both cases there is a 
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1 ,   removed by the changes of varia- 
+ u2 ,   respectively.  The integrals are then evaluated by 

square root singularity at 
bles    X= 1  + u< 
the trapezoidal rule,  with a fixed given interval in  u . In practice an 
interval   20-30   points per unit of  \    have been found sufficient.  The 
infinite range of the integral is accounted for by testing for conver- 
gence after integrating through about one unit of   X   at a time,   stopp- 
ing when the answer changes by less than   0.1% . 

The program is accurate but inefficient and expensive to run, 
taking about one minute   (CDC 6400)   fcr a run at a single depth and 
a single heading angle,  each run including   8   frequencies.  This time 
is at least half due to diffraction force computations, which doubles 
the number of Fourier transforms to be evaluated because of the fac- 
tor   e""4 C08ß   in   (3. 6).  Also,  were it not for the diffraction force, 
the integrals   (3. 2)   would be independent of depth and heading angle., 
enabling more information to be obtained cheaply for each run.   Clear- 
ly much can be done to improve the efficiency of this integration pro- 
cedure. 

APPENDIX III 

END-EFFECTS IN SURGE FOR TRANSOM STERNS 

In evaluating the surge exciting force   TJQ   we appear to re- 
quire the derivative   S^ x )   of the section area curve.  To avoid nu- 
merical differentiation,  we can integrate   (3. 1)   by parts in this case, 
obtaining 

(0     =   pg[S(x) e1 X COS'3] o-pgik cos0 /    dxS(x) 
iKx cosß 

(A III. 1) 

If   S( t X) /   0 ,  the question arises as to whether retention of the in- 
tegrated part in   (AIII. 1)   is correct.   This question is not easy to an- 
swer,  in view of the fact that such extreme bluntness of the ends of 
the ship ought to be precluded on slender body grounds. 

However,  it is clear by considering the following special case 
that a decision on this matter can be made.  Suppose the ship is a rect- 
angular   box,  with   S(x) = SQ - constant ,    |x| </? .   Then clearly the 
Froude-Krylov exciting force arises solely from pressure differences 
between the two flat ends of the ship.   That is,  the force amplitude per 
unit wave amplitude is 

Tm     =   Sn I*'*)   -   P(*)] 10 (AIII. 2) 
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where   P(x)   is the amplitude of the pressure in a unit amplitude in- 
cident wave i. e. 

P(x)   =   pge 
ikx cos/9 

(AUI. 3) 

Equation   (AIII. 3)   neglects pressure variations with   y   and   z   over 
the "end plates" ,  consistent with the slender body assumption. 
Thus 

T =   - Zipg S0 8in(ki coeß ) (AIII. 4) 

On the other hand, the original formula   (3. 1)   leads to the 
ridiculous result   Tj0  =0,  since   S'fc) = 0   for   |x|<i    with this 
ship.   This is reflected in the modified formula   (AIII. 1)   by the fact 
that the integrated part cancels the integral exactly. In fact if we 
"neglect"   the integral part in   (AIII. 1) ,  leading to 

T|0     •   -pglkc osß j 

JA 
dx S(x) e 

ikx cos/3 
(AIII. 5) 

we obtain the correct result   (AIII. 4)   for the special case   S(x) = SQ = 
constant I 

Thus it would seem that the correct procedure is to disregard 
integrated parts on integrating   S'fx)   by parts.   This is equivalent to 
saying that all ships actually have zero area at their ends,  so that a 
transom is replaced by a very rapid decrease to zero area. If the 
ship in fact has no transom this question does not arise,  of course, 
and tho only example used in the present paper comes into this cate- 
gory. 

Although the justification is far from obvious,  we have used 
the same procedure in all integrals involving   S'fx) .  For instance, 

A     required in   (All. 1)   is actually evaluated the Fourier transform 
as 

Aj" (A) r - i X /      dx S(x) e 

U 
iXx 

(AIII. 6) 
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DISCUSSION 

Valter Kostilainen 
Ship Hyarcdynamias Laboratory 

University of Teahnclcgy,  Helsinki,  Finland 

We all know that we cannot use the results obtaii.ed in study- 
ing ship motions in deep water to compute ship motion in shallow 
water.   For instance,   most of the ships sailing in Finnish fair-ways 
should, according to this shallow-water theory, touch the bottom 
quite frequently. We do have some groundings now and then but not 
quite so often.   The importance of research on ship motion in shal- 
low water has been recognised and the present paper is an important 
step forward in the study of this topic.  In our laboratory we try to 
approach the problem experimentally and one of the most important 
things from our point of view is the effect of viscosity.  If the ship is 
moving in shallow water the thickness of the boundary layer is of the 
same order as the clearance between the bottom of the ship and the 
bottom of the sea.  This introduces some scaling problems in model 
testing and I should like to ask the authors,  first,  if they have taken 
account of viscous effects in their computation in zero speed and, 
secondly,   wether they are,   as I hope,   planning any further investi- 
gation for non-zeru speed and how they are then going to take account 
of viscous effect. 

REPLY TO DISCUSSION 

Robert F.   Beck 
Univereity of Michigan 

Ann Arbor,  Michigan,   U.S. 

This theory was derived for zero forward speed and an ideal 
fluid.   Thus,  no account was taken of viscous effects.  At t1 is time I 
do not know if we will include forward speed in the theory or not.  At 
zero forward speed,  I am not sure what the effect of viscosity will be. 
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With appendages like bilge keels, it will certainly be important in 
such terms as the roll damping. As for the problem of the boundary- 
layer under the ship,  I*do not know how important it would be for zero 
forward speed. 

DISCUSSION 

Cheung-Hun C.  Kim 
Stevens Institute of Technology 

Hobokcn, New-Jersey,  U.S.A. 

I recently calculated the motion of the same model ship moving 
in head seas.   Perhapy Dr.  Tuck and Dr.   Beck have made a compari- 
son with these results in forward zero speed : for   h/T, the depth 
draft ratio   =   2. 5   and   1.5, If so have you found any difference bet- 
ween your calculation and my own ? 

REPLY TO DISCUSSION 

Robert F.  Beck 
University of Michigan 

Ann Arbor, Michigan,  U.S.A. 

Dr.  Kim has computed the results of finite depth ship motions 
using a strip theory as opposed to a slender body theory.   We compar- 
ed our computed results with his in the Melbourne paper which we 
have referenced.  It may be a good idea to repeat this comparison at 
this time. 

In Figures 1 and 2 the results for heave and pitch are shown. 
These results are for head seas only, for a Series 60 ship with a block 
coefficient of   . 70 .  In Figures 1 and 2 the dashed line is the first- 
order theory mentioned in the present paper.   The chain dotted line is 
for a so-called "second order" theory ; it is the first-order theory 
with,  in addition,  just the mass of the ship taken into account,  and is 
not,  in fact,  a consistant approach,   since there is no added mass or 
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damping.   Thus,  you can see the infinite motion at resonance in both 
pitch and heave, just as you would expect.  Finally,  the solid lines 
(labelled "Tuck") are from the present theory without diffraction ef- 
fects, and the dotted lines are the results of Kim,   The differences 
between the two are very interesting because slender body theory is 
a theory which is inherently good for very long wavelengths,  and 
strip theory,  on the other hand,  was developed for a higher frequen- 
cy where the wave length is the order of the beam.  What you can see 
in Figures 1 and 2 is that at the low frequency end,  Tuck's results 
gave larger motions and at the high frequency end, Kim's results 
are larger.  In the region of short wave lengths we would not expect 
our theory to give particularly good results since it was derived for 
very long waves.  In this region strip theory would be expected to 
produce the more accurate results. 

Notice that the results in both Figures 1 and 2 are reasonably 
close to the first order theory.   This is because of the dominance of 
the hydrostatic terms and the Froude-Krylov exciting force.   The 
aitch results for slender body theory do show a marked increase 
over the first-order theory at around   L/\   of   , 8 .   This is due pri- 
marily to the increase in added moment of inertia.  We can actually 
see this in Figures   3,4, 5 and 6.  In addition,  the reasons for the 
differences between slender body theory and strip theory can be ob- 
tained from these figures. 

In Figures 3 and 4 are the heave, added mass and damping 
for head seas.  In Figures 5 and 6 »re the pitch added inertia and 
damping.   The solid lines are the results of slender body theory. At 
low frequencies, we can see that the pitch added inertia of slender 
body theory is much higher than computed by strip theory.  This ac- 
counts for the larger pitch motion in this region.  In the higher fre- 
quency region,  the damping of both heave and pitch computed by 
slender body theory are much larger than the strip theory results. 
This accounts for the fact that in this region,  where there is reson- 
ance,  the motions we compute are much smaller than Kim's.  In this 
region Kim's results are no doubt more accurate. 

In the low frequency range,  we know that theoretically the 
damping curve has to go to zero with zero slope at zero frequency. 
The slender body theory correctly predicts this,  whereas the strip 
theory results,  which are not strictly valid in this region, asymptote 
to zero at a slope other than zero. 

In the high frequency region,  the heave added mass and pitch 
added inertia as computed by slender body theory go to zero.   How- 
ever,  we know that they should asymptote to a finite value obtainable 
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by replacing the free surface by a plane of symmetry.   The strip 
theory results seem to be headed in the right direction.   Thus,  as 
state before,  we would not expect our results to be good in this re- 
gion. 

DISCUSSION 

Cheung-Hun C.  Kim 
Stevens Institute of Technology 

Hoboken,  New-Jersey,   U.S.A. 

Thank you.   May I ask you another question ?  You used the 
Froude-Krylov forces,  why did not you calculate the diffracted wave 
exciting force in your calculation ? 

REPLY TO DISCUSSION 

Robert F,   Beck 
University of Michigan 

Ann Arbor,  Michigan,   U.S.A. 

Unfortunately,   we overlooked those terms at the time.   How- 
ever,  I do not think the results will change very much     the curves 
would just be shifted slightly in the high frequency r<>i   -m. 
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SEAKEEPING CONSIDERATIONS IN A TOTAL 
DESIGN METHODOLOGY 

Chryssostomos Chryssostomidis 
Maasaahuaetts Institute of Technology 

Cambridge, Massachusetts,  U.S.A. 

ABSTRACT 

A procedure leading to the prediction of seakeeping 
qualities of monohulls in a seaway is briefly re- 
viewed. The two parameter conformal represen- 
tation of hull sections is described and compared 
with the close-fit representations. 

A proposal for incorporating seakeepin conside- 
rations into a total ship design methrriology with 
particular emphasis on the identificati n; of the pro- 
blem areas and design indices associated with sea- 
keeping is made. The advantages and limitations of 
the two parameter representation are discussed. 
The optimization criterion, constraints, and opti- 
mization scheme used in conjunction with the pro- 
posed design methodology are discussed and illus- 
trated by an example. 

I - INTRODUCTION 

Attempts to improve the methodology for designing large 
ocean based systems such as ships have recently appeared in litera- 
ture,   e. g.  References 1 and 2.   The approach proposed in both these 
references has retained the iterative nature of the traditional solution 
method but it has attempted to introduce most of the factors that can 
influence the overall configuration of the ship as early in the design 
cycle as possible. 

In order to do so the proposed approach requires that the 
largest possible number of alternatives be examined at the outset of 
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study and that all considerations that can affect the final decision 
6« introduced at that time.   To be able to do so within the time and re- 
»ource limitations imposed in all real life problems the proposed ap- 
proach requires the development of suitable mathematical models that 
can be used at the different iteration cycles.   The mathematical model 
to be used in the first iteration must be quick (speed is gained by sa- 
crificing the degree of detail) but of sufficient detail to permit the 
decision maker to select correctly from among the large number of 
alternatives that are being investigated.   This selection usually invol- 
ves elimination of all infeasible alternatives.   The mathematical model 
to be used in the second iteration must be sufficiently detailed and re- 
latively quick to permit the decision maker to select from the alter- 
natives that were not eliminated in the first iteration.   This selection 
usually involves the elimination of all clearly inferior alternatives. 
The mathematical model to be used in the final iteration must be fully 
detailed in order to provide all the information necessary that will 
permit the decision maker to make the correct final decision.  Fig.   1 
shows all the steps involved in the proposed design methodology. 

Seakceping is a consideration that can affect the final deci- 
sion because it can affect the system's cost (profit) and feasibility to 
perform iU" mission.   Therefore according to the method proposed 
above seakeeping considerations should be incorporated as early as 
possible in the design cycle. 

A procedure for incorporating seakeeping considerations in 
the design cycle is proposed in this study and is described in some 
detail in the sequel. 

II - FIRST ITERATION 

The mathematical model describing the system under inves- 
tigation during the first iteration of the proposed design methodology 
must have at least the following two attributes.   First,  it must be 
quick to enable its user to investigate the large number of alternatives 
called for by the proposed methodology and second,  it must be accu- 
rate enough to allow its user to draw the correct conclusions from its 
results.  The method that will permit us to construct the seakeeping 
part of the mathematical model to be used in the first iteration of the 
proposed design methodology is given in Reference 3. 

The highlights of this method are described below, 

II. 1.    Method 

The notion of using standard series,   see for example Ref.  4 
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for the determination of the calm water resistance of a given ship is 
extended to permit the determination of the seakeeping qualities of a 
ship operating in a seaway.   The preliminary results of such an effort 
are given in Reference   3   where the results for heave amidships, 
pitch,  wave bending moment amidships,  added resistance,  accelera- 
tion at stations   0,   5,   10,   15   and   20   and relative motion and velocity 
at stations    1,  2,   3,  4   and   20   of a ship operating in long-crested 
head seas can be found tabulated.   The results are given as a function 
of : 

Froude No. 0. 10   (0.05)   0.30 

H    '   /LBP 0.015,   0.020,   0.025,   0.030,   0.040,   0.050,   0.075 
and   0.100 

LBP/B 5.50   (1.50)   8.50 

B/T 2.00   (1.00)   4.00   and 

CB 0.55   (0.05)   0.90 

and are applicable for cruiser stern type ships. 

The   72   hull forms,   the six Froude Numbers and the eight 
non-dimensional sea states   (H '3/LBP)      defined above form a grid 
which allows the user to predict the seakeeping qualities of his ship 
by interpolation (extrapolation) with all the accuracy called for in the 
first iteration of the proposed design methodology. A sample table 
from Reference [3j is included in Appendix I of this study for the 
reader's convenience. 

U. 2.    Mathematical Model 

The following describes the method employed in the present 
study to determine the values of independent variables of the system 
that will best satisfy an owner's given set of requirements. 

a) Assign different combinations of values to the independent 
variables. 

b) Evaluate the mathematical equations describing the sys- 
tem under investigation for each combination of values of the 
independent variables (each evaluation constitutes a sampling 
cycle of the optimization procedure). 
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c) Eliminate all infeasiblc designs. 

d) Evaluate the optimization criterion for all feasible de- 
signs,   and 

e) Select the alternative that is feasible and satisfies the 
problem objective. 

The part of the mathematical model that is directly related 
to the seakeeping considerations will now be described in some detail. 
The other elements of the mathematical model can be found described 
in the literature dealing with the subject of preliminary ship design 
optimization,   see for example Reference [5] ,  and therefore will not 
be repeated here. 

Description of the Environment 

The environment in which the system under investigation is 
to operate must be described in order to permit the evaluation of the 
system's seakeeping qualities.  Given the route of operation such a 
description can be obtained from the information given in Reference 
[6j.   The complete environment description would require the cons- 
truction of a frequency histogram as a function of significant wave 
height,  average period,  direction,time and geographical location. 

For the present study the environment description was sim- 
plified to a frequency histogram which is a function of the significant 
wave height and geographical location only,  and the spectrum  des- 
cribing such seaways (fully developed,  long crested) is given by : 

*fr   (w aw exp ( -   p ui     ) 

where a  ■-     0.0081 g2    [ft2/sec4] 

and 0=     0.0324 g2/(H1//3)2    [sec'4] 

In addition only head seas were considered in this study. 

The simplifications adopted in this study are not considered 
unrealistic.   In the route chosen for investigation (New York-Rotterdam) 
head seas were predominantly encountered at least   50%   of the time 
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spent at sea,   see Reference   6   . In addition the seasonal variation is 
not significant as can be seen from the tables presented in Ref.    6   , 
and fully developed seas are the predominant seas encountered in the 
North Atlantic as can be seen from the results of Reference   7   . 

The frequency histogram obtained from Reference   6   for the 
area of interest is given in Table 1.   Table 1 also gives the simplified 
histogram used in this study.  The author did not have access to a 
computer during the study and had to keep computations to a minimum, 
resulting in this further simplification.  However attention was paid to 
retain enough detail in the environment description.   Therefore valid 
conclusions can be drawn from the results of the present study. 

TABLE 1 

Significant Wave Height Histogram 
for the New York-Rotterdam Route 

Histogram from Reference 6 HistogramusedinthisStudy 
Significant Wave Height Percentage   Significant Wave Height Percentage 

ft % ft % 

4.76 4. 16 7.94 48.25 
5.48 6.81 10. 58 26. 14 
6. 92 17.32 13.23 13.47 
8.37 19.96 15.87 7.87 
9. 81 14. 90 21. 16 2.38 

11.25 11.24 26.45 1..89 
12.70 7.70 
14. 14 5.77 
15.58 3. 82 
17.03 3.44 
18.47 0.61 
19.91 0. 59 
21.36 0.90 
22.80 0.89 
24.25 0.37 
25.69 0.44 
27.20 0.34 
28. 58 0.22 
30.02 0. 17 
31.46 0.34 
35.79-44.46 0.01 

1594 

■ 



Seakeeping Considerations in a Total Design Methodology 

E. H. P.   Calculations 

The Effective Horse Power (EHP) of a ship operating in the 
seaway is computed in the following manner. 

First,  the bare hull calm water Effective Horse Power is 
computed as a function of ship speed from Reference   4   ,   This es- 
timate is then augmented by   3%   to account for the presence of ap- 
pendages.  Second,   the Effective Horse Power necessary to overcome 
the increased resistance because of fouling is computed.  It is assum- 
ed that the ship is dry docked every year.   From the results reported 
in Reference   8   it is found that increasing the value of     ACF   by 
0. 000IS   would account,   on the average,  for the yearly increase of 
resistance due to fouling.   Therefore : 

EHP fouling 

3 3 
0. 00015 «p»V   • (1.6889)    » wetted surface 

2 • 550 

where 

and 

V   =   ship's speed in knots 

P   =   sea water density in slugs/ft. 

Third,  the wind resistance is computed as a function of the ship 
speed and sea state   (H'3 ).   From Reference   9   the Effective Horse 
Power necessary to overcome the wind resistance is given by 

EHP   . 
wind 

Ü. 00435 «B2 » VR   ' V 
2 • 325.66 

where B   =   ship's beam in ft. 
VR  -   wind velocity relative to the ship in knots. 

The wind velocity relative to the ship,   VR,   is computed by adding the 
wind speed corresponding to each sea state to the ship's speed V.   The 
wind speed as a function of sea state   (H1'3)   is determined from Fig. 2. 
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Figure 2      Principal parameters for fully developed seaways 
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Fourth, the Effective Horse Power necessary to overcome the 
mean added resistance in waves as a function of ship speed and sea 
state   (HTO)   is computed using the appropriate Seakeeping Tables 
from Reference   3.   Finally,   the Effective Horse Power of a ship 
operating in a seaway is obtained by adding the bare hull calm water 
EHP (augmented by the appendage allowance) and the EHP necessary 
to overcome the increased resistance due to fouling,  the wind resis- 
tance and the mean added resistance in waves.  The results of such a 
computation can be found in Figures   3   and   4. 

Speed Calculations without Motion Considerations 

Given the EHP curves as a function of ship speed and sea state 
it is possible to compute the average ship speed (assuming no limi- 
tations due to motion) for a prespecified engine output,  SHPa,  in the 
following manner. 

First, a family of propellers is selected.  For the present study 
the Wageningen B-Screw Series,  see Reference 10,  is selected.  The 
propeller type used in the present study is the   B. 4. 55   propeller.  It 
is of interest to note that ships similar to the ones investigated in 
this study operate using propellers with characteristics similar to 
the   B.4. 55   propeller. 

Next the curve of  K-p/J^   is computed and plotted on the pro- 
peller diagram to allow the selection of the most efficient propeller 
for operation in a prespecified sea state.  In the present study it was 
decided to optimize for the sea state characterized by   H l1= 7. 94 ft. 
because according to information given in Table 1 it is the sea state 
that occurs most frequently.  In the computation of 

KT EHP   ♦    325. 66 

J2 p»d2» V3» (1.6889)3« (1-w)2» (1-t) 

the   EHP   and ship speed   V   was determined from the   EHP   vs   V 
and   H '3 curves developed in the previous section,  the propeller dia- 
meter   d   was taken as in Reference   4   , i. e.    d as 0. 70 T, and the 
values for   w   and   t   were determined from Reference   4   from the 
calm water data.   These values were assumed to apply to the propel- 
ler operating in the seaway.  Unfortunately the effect of this assump- 
tion cannot be estimated as very little is published on the subject. 
However the results obtained from the calculations using this assump- 
tion appear to be in agreement with published results and it is there- 
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fore concluded that this assumption is not unrealistic. 

Once the open water effii iency   i) Q is computed the propulsive 
efficiency    np i  is then calculated 

P O       H       R     'S 

where "„  =     (l-t)/(l-w) H 

relative rotative efficiency 

(Reference   9   suggests a value of   1.026 which 
was adopted for all sea states) 

shaft transmission efficiency 

(Reference   9   suggests a value of   0. 98 for 
machinery aft,  which was adopted in the pre- 
sent study) 

This allows to compute,    SHPr,  the power required to operate 
a given ship at a given speed and sea state from the following equation 

SHP     =   EHP/ »;„. 
r P 

The above calculations are repeated by selecting pairs of values for 
EHP  and   V   until   SHP SHP, 

This procedure is then repeated using pairs of   EHP  and   V 
values from the   EHP   curves corresponding to the other sea states of 
interest.   In these calculations of course the propeller selected for the 
sea state characterized by   H /3 =   7. 94 ft.  is always used.  Once the 
speed that can be achieved in all the sea states of interest for a given 
SHP 
equation 

a , the average speed. r
a , can be obtained from the following 

N 

1 
100 

F.V. 
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where 

F.   ia the frequency of occurrence of the ith sea state (H   ' J 
obtained from Table 1. 

V.   is the ship speed in the ith sea state (no motion considera- 
tions) 

and     N    is the number of sea states   (H       )   used to describe the 
environment   (N = 6   for this study). 

The results of such a computation can be found in Figures 5 and 6. 

At this stage it is important to point out that in the present 
study  SHPa   is an independent variable because the calculations are 
not done for an assumed average condition,  as was the case with 
Reference 5,  but rather for the actual operating environment. 

Speed Calculations with Motion Con aide rations 

1/3 
The ship speed as a function of sea state   (H      )   determined 

from the previous analysis must now be modified to account for pos- 
sible further reductions due to motion considerations. 

The criteria used to determine whether a given ship is motion 
limited or not are the following 

a) For the safety of the crew the   RMS   vertical acceleration 
at station   15   is not to exceed the value of   0. 12 5 g.  This value 
is determined from Reference   11 . 

b) For the safety of the cargo 

(i) the average   l/lO   highest values of vertical acceleration 
must not exceed one g anywhere along the ship's length. 
From Reference   12 

H 1/10 
1.800 V 8m0(l- «'72) 

where       Vm       is the RMS of the response of interest 
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and  c       is the broadness factor assumed to equal 

0. 60 for the present study. 

In order to satisfy the requirement that the    1/10   highest values 
of vertical acceleration does not exceed one g anywhere along the ship's 
length the inequality     \ HIQ   <   0.217   must be satisfied. 

(ii)   the probability   Pw   that the amplitude of relative motion at 
station   1   will exceed the freeboard at station   1 (fw)   be 
less than   0. 01. 
From Reference   12 

P      =   exp (-f  2/A2      ) 
w r      w '      rm 

where rm =    2(1- .   /2)mr 

c)   For the safety of the ship the probability, Pg   of slamming at 
station   2   should not exceed   0.01. 

exp r.(fV +v 
2
/A

2
)1 

L     s     rm        cr        rv J 

where f     is the draft at station   2 

cr 
is the threshold critical velocity assum- 
ed to equal   12 ft/ sec   for a   500 ft. 
ship and scaled according to Froude for 
other ship lengths 

and rv 
2(1 «2/2)m. 

Once the motion indices are calculated the speed determined 
from resistance considerations is reduced (if necessary) until the 
motion criteria are satisfied. If the speed is reduced to   3. 5  knots 
(speed assumed to be necessary for the maintainance of a prespecifi- 
ed course) and the motion criteria are not satisfied,  no further speed 
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reduction is allowed in the model proposed in the present study.  When 
this occurs it is advisable to augment the optimization criterion by 
outputing the seakeeping qualities of the ship at this reduced speed in 
order to provide the decision maker with all the information neces- 
sary for the selection of the "best" ship. 

In the present analysis since only head seas are considered it 
is only meaningful to satisfy the motion limitations by speed reduc- 
tions.  This is not always what happens in actual operation where In 
heavy seas the operator might elect to change course.   It is actually 
common practice to take heavy seas at   30°-35°   off the bow in order 
to ease the pitching motion.  However this limitation in the model is 
not considered important because in other headings the speed in- 
creases,   see Reference    13   , which partly compensates for the lost 
time due to extra distance traveled. 

The average ship speed in a seaway can be computed using the 
same formula given in the previous section the only difference being 
that now   V-   is the ship speed in the ith sea states including motion 
considerations.  The results of such a computation can be found in 
Figure 5. 

Fuel Consumption 

Steam Turbine is the main propulsion unit adopted in this study. 
The specific fuel consumption at powers other than   100%   power can 
be obtained from 

SFC 
SFC 

x% 
100%      ''100% 

,x% 

Typical values for power,  RPM  and efficiency   v 
Table 2. 

are given in 

It is also assumed that for a given power setting if the value of 
RPM is less than the one shown in Table 2, it will not affect the ef- 
ficiency of the steam turbine. This is a reasonable assumption since 
steam turbines are constant power machines. 
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TAi3LE 2 

RPM - Power - Efficiency   Curves for a Typical Steam Turbine 

Efficiency RPM Power 
[fraction of design RPM]        [fraction of full Power] 

0.60 
0. 65 
0.70 
0.75 
0.80 
0.85 
0. 90 
0. 92 
0. 94 
0.96 
0. 98 
1. 00 

0.216 
0.275 
0.343 
0.432 
0.512 
0.614 
0.729 
0.779 
0.831 
0. 885 
0. 941 
1.000 

0.766 
0. 807 
0. 845 
0.881 
0.913 
0.941 
0.965 
0.973 
0.979 
0.984 
0.988 
0.990 

TABLE 3 

Ship and Propeller Principal Characteristics 

CASE A CASE B 

LBP   [ft.] 529.00 666. 50 

LWL [ft/ 538.15 678.03 

B         [ft.] 75.57 95.21 

T         [ft.] 25. 19 31. 74 

D   at Amidships   [ft.] 45.00 56.70 

D   at Station 1       [ft.] 55. 50 69.94 

CB 0.650 0.650 

CP 0.661 0.661 

A    [long tons] 18700 37400 

Wetted Surface [sq.  ft.] 48510 77000 

d    [ft.] 17.50 22.50 
Pitch/d 1.00 1. 00 
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II. 3. E-.mple 

The two •hip• and propeller• who•e characterbtic• are liven 
in Table 3 are the two caM• analy•ed in the pre•ent •tudy. Ship• A 
and B are 1eol""etrically •imilar and •hip B ha• twice the db
placement of •hip A. The calculation• performed in thb •ection are 
the calculation• that the de•i1ner would have to perform in a typical 
.amplin1 cycle of the •olution of a problem where the unknown• are 
the ve .. el •iae and •peed of a Oeet of •hip• that will .ati•fy a pru
pecified tran•port capability and optimia:1tion criterion. 

Flpre• 3 and 4 1ive the EHP v•. •peed and •ea •tate curve• 
for •hip• A and B. The EHP va. •peed curve with the traditional 
ZS~ allowance h abo •hown da•hed for comparhon purpo•••· It h 
of intere•t to note that in the •peed raqe of practical intere•t the 
EHP curve ~th the ZS~ allowance h almo•t identical with the EHP 
curve for H 'b = 7. 94 ft. 

The SHPa a .. umed for thi• •tudy h determined from the 
value of EHP with Z5~ marain u•ing a propul•ive efficiency equal 
to 0. 75 a a •u11e•ted ill Reference 5. Thh wa• done in order to be 
able to compare the reault• of the pre•ent •tudy with the re•ult• that 
would have been obtained if •eakeepin1 con•ideration• were not in
cluded in the analy•h. The value• of SHPa u•ed in the pre•ent •tudy 
were 18000 for •hip A and 37400 for •hip B, both of which cor
re•pond to a •peed of ZO knot•. The re•ult• of the •peed calculation• 
are •hown in Figute• 5 and 6. 

From re•i•tance con•iderations alone, the average •peed for 
•hip A h 18. 85 and for •hip B h 18. 81 knot•. When motion con
•ideration• are included the avera1e •peed of •hip A h reduced to 
18. 6Z knot• while the •peed of •hip B remain• unaffected. 

The speed reduction for •hip A wa• primarily due to the wet
ne .. ~riterion. Slamming con •ideration• yielded re•triction• which were 
•liahtly le .. binding than wetne•• while vertical acceleration con•ider
ation• were not binding. For •hip B the motion con•ideration• were not 
at all bindiniand if the •hip had more power available it could 1oatahi1her 
•peed. 

The •hip •peed at the low •ea •tate• wa• computed to be 
lower than ZO knot• even thouah the EHP value computed with the 
method •uaae•ted in the previou• •ection i• about the .ame •• the 
value of EHP computed u•ing the method Rll••ted in Reference 5 • 
Thi• h due to the fact that the propubive efficiency computed in the 
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Figure 3      EHP curves for ship   A 
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/— Average Speed. No Motion 

v L, Average Speed. With Motio 

9      11     13     15     17     19    21     23     ^5     27 

Figure 5     Speed curves for ship  A 
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r-   Average   Speed.   25% Margin 

Average  Speed.   No Motion 

Average  Speed.   With Motion 

9       11     13     15     17     19     21     23     25     27 

Figure 6      Speed curves for ship   B 

1607 

..i    MmMMUMMMMiigyMi 



ChryaeoatomidiB 

present study is lower   (0.69  vs.  0.75)   than the one suggested in 
Reference   5   .   The reason is that in the present analysis the design 
point for the propeller corresponds to a heavier load condition than 
the one used in Reference   5   , It is also of interest to point out that 
because the design point of both propellers of this study is well to the 
left of the peak of the efficiency curve,  there was no need to make 
any special provisions to assure efficient operation in light loads as 
this is achieved automatically. 

II. 4.    Analysis of the Results. Conclusions and Recommendations 

From the results of the previous section it can be seen that 
seakeeping considerations should be incorporated in preliminary 
design as they affect the ship's speed and hence its profit earning ca- 
pability and/or ability to perform its mission. It is recommended that 
seakeeping considerations be included when speed   (SHPa)   is a va- 
riable in the optimization scheme.   This is not so much because of the 
variation of added resistance with speed for a given ship but because 
of the importance of motion limitations above a certain speed. It is 
also zecommended that seakeeping considerations be incorporated in 
preliminary design optimization schemes when large differences 
exist among the alternatives investigated,  as is the case with ships 
A   and   B   of the previous section,  because their seakeeping perfor- 
mance is different. 

The results also suggest that when optimization does not in- 
volve large changes in the principal characteristics of the different 
alternatives considered, as in the case of ships with constant payload. 
then seakeeping considerations should not be included in the optimiza- 
tion   scheme because they are not expected to influence the final de- 
cision.   It should be emphasized however,  that this is not to be inter- 
preted that seakeeping considerations are not to be included in preli- 
minary design of such ships.  On the contrary they should be included 
because it is only then that the designer can predict with confidence 
the speed (and hence profit) of his ship in the actual operating environ- 
ment. 

The optimization criterion to be used in conjunction with the 
model proposed in the present study must include profit considerations. 
This is so because speed and payload are variable and therefore mi- 
nimum cost solutions are not necessarily synonymous with the "best" 
solution. 

Comparison with published results show that the speed re- 
duction from motion    considerations is underpredicted,  see Ref.   14 . 
This is not because unrealistic motion indices were adopted but rather 
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because wave added resistance is overpredicted.  Since preliminary 
ship design decisions are primarily based on ship speed it is recom- 
mended that research effort b»directed to improving the prediction of 
wave added resistance.   Research should aljo be directed in the area 
of propeller operation in the seaway in order to permit a better pre- 
diction of the propulsive efficiency as it also affects our ability to 
predict correctly the ship's speed.  Finally the establishment of some 
ship motion criteria that are   widely accepted is also recommended, 

Asa continuation of the present work the author suggests 
computerization of the mathematical model described in the previous 
section in order to permit a complete investigation of the effect of 
seakeeping in preliminary ship design.  In addition such a model will 
help  to  direct   seakeeping  research by  examining the importance of 
its contribution in ship design.  It is suggested that the computer pro- 
gram recommended for development employ a more detailed descrip- 
tion for the environment that the one used in the present analysis.  It 
is also suggested to extend the model to include ballast condition con- 
siderations.   Finally it is recommended to extend the coverage of the 
Seakeeping Tables of Reference   3   to include transom stern ships as 
these types of ships are extensively used in certain trades such as 
container transportation. 

Ill - SECOND AND THIRD ITERATION 

III. 1.    Second Iteration 

The model recommended for the second iteration of the pro- 
posed design methodology for the prediction of the se.^Weping qualities 
of the different alternatives under investigation,   is in tb. form of 
detailed seakeeping computer programs.  The description of typical 
examples of such computer programs can be found in References   12, 
15  and   16 . 

With the aid of these computer programs it is possible to 
analyse the effect of variations in the value of   LCB-LCF   separation, 
for example,  for which average values were assumed in the first 
iteration.   However unless the designer is willing to investigate large 
changes in these parameters the effect in the seakeeping qualities of 
the ship is not expected to be appreciable. 

Recently the Classification Societies,  e. g.  Lloyds, ABS, 
etc. ,   started to recommend the use of seakeeping theory for the pre- 
diction of wave bending moment.  For the application of such inform- 
ation in ship design the reader is directed to Reference   17   . 
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Figure 7      Hydrodynamic coefficients of a bulbous section 
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The computer programs described in References   12   and   15 
employ a two parameter conformal representation for the hull sections. 
This has been found to be very satisfactory when compared to the 
close fit representation.    Figure 7 from Reference   18   shows that the 
close fit representation approaches the results of the two parameter 
representation when the number of points employed in the close fit 
representation is increased (i. e.  its accuracy is increased).  However 
as the number of points is increased in the close fit representation 
the expense also increases and for   40   points it is prohibitive.  The 
limitation of the two parameter fit is that all calculations are perform- 
ed with the transformed sections and not with the original sections. 
This however is not considered important because good two parameter 
description of regular sections and of sections with moderate bulbs is 
presently available.  In addition moderate geometrical changes in the 
section shape do not affect the seakeeping results.  In any case if a 
section is to be described accurately in the close fit representation, 
especially bulb sections, a large number of points is necessary which 
make it prohibitively expensive. 

The expense for the use of seakeeping programs can be con- 
siderable especially if a complete investigation is to be made.  In an 
attempt to overcome this limitation the authors of Reference   3   are 
extending the notion developed therein and are currently working on a 
scheme in which the Hydrodynamic properties of a section is stored 
in a matrix as a function of the two parameters describing the section, 

X   and    a   , and the non-dimensional frequency   5    .  Although the 
work is still underway, it is expected that a sparsely populated matrix 
will provide all the accuracy necessary in the second iteration of the 
proposed design methodology.  This will permit the designer to perform 
the analysis suggested above at almost no cost at all. 

Before concluding this discussion the author wishes to take 
this opportunity to suggest research in the area of viscous roll damp- 
ing under speed and with bilge keels because the state of the art in this 
area is not satisfactory. 

III. 2.    Third Iteration 

In the final iteration the author suggests the use of seakeep- 
ing experiments for the selection of these parameters whose effect 
cannot be predicted by either models described above such as for 
example the above water hull shape.  In addition these experiments can 
serve as a confirmation of the prediction made with the seakeeping 
computer programs especially in the areas where the theory is v/eak, 
for example in the prediction of power.  The author recognises that 
seakeeping experiments are time consuming and expensive and there- 
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fore in designs where previous experience has demonstrated that sea- 
keeping performance is satisfactory seakeeping experiments should be 
omitted. However where no previous experience is available, as in 
the case of a novel design,  such experiments are highly recommended. 

IV - CONCLUSIONS 

From the results presented in the previous sections the author 
has concluded that it is advantageous to incorporate seakeeping consi- 
derations in preliminary  ship design optimization programs because 
of the potential payoff. However seakeeping considerations should 
only be included where it is meaningful to do so for example when the 
speed and size of ships are variable. They should not b« included when 
only small changes in the principal characteristics of the ship are 
contemplated as they will not affect the final outcome. 

Special attention was drawn to the case of novel designs where 
seakeeping can be the controlling factor in the feasibility of the system. 
In this case seakeeping must be considered at the outset of the study. 

Although the state of the art permits the incorporation of 
seakeeping considerations in the design of monohulls improvement in 
the theory in certain areas will be worthwile as it will permit a better 
analysis.  In particular, improvement in the theory to permit better 
predictions for added resistance,  propulsive efficiency and viscous 
roll damping is considered worthwhile. In addition a better definition 
of the motion indices is necessary. 

NOMENCLATURE 

B beam 

CB 

EHP 

Fn 

g 

H* 

J 

K„ 

,1/3 

block coefficient 

effective horse power 

Froude number 

acceleration of gravity 

significant wave height 

advance coefficient 

thrust coefficient 
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LBP        length between perpendiculars 

LWL       lenght on designed waterline 

root mean square value 

available shaft horse power 

required shaft horse power 

draft 

ship speed 

2 
non dimensional frequency   (   S   =    w  B / 2 g) 

ACF correlation allowance   (     ACF   =   0.0004) 

< broadness factor 

X half bean to draft ratio for each section 

p specific density of salt water 

? sectional area coefficient for each section 

u circular frequency 

RMS 

SHP 
a 

SHP 
r 

T 

V 

6 
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APPENDIX I.    SAMPLE SEAKEEPING TABLE 

Definitions of the quantities that appear in the sample Sea- 
keeping Table. 

Froude No. 

Non-dimensional Sea State 

Heaving Motion 

Pitching Motion 

Bending Moment 

Added Resistance 

Acceleration 

Relative Motion 

Relative Velocity 

Ship Speed/ VgfLWL) 

Significant Wave Height/LBP 

RMS Heave Amidships/LBP 

RMS Pitch in Degrees 

(RMS Bending Moment Amidships) 103 

Pg (LBP)4 

(Mean Added Resistance) 103/pg(LBP)3 

RMS   Acceleration/g 

RMS Relative Motion/LBP 

RMS Relative Velocity/\g(LBP) 
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DISCUSSION 

Manley Saint-Denis 
University of Hawat 
Honolulu, U.S.A. 

I should like to suggest that the paper does not live up to its 
title.   The problem of seakeeping is both one of tremendous scope and 
the preeminent hydrodynamic one facing the ship designer, but the 
reduction of such a problem to the determination of the speed lost in 
head seas of the Pierson-Moskowitz type,  having a height of roughly 
8 ft.,  is, I think,  something too brutal.  To try to predict the seakeep- 
ing characteristics of the ship in such a manner is like trying to pre- 
dict the behaviour of all ladies (and some non-ladies) by that of one's 
own wife.  I should like to think that one might be in for some surprises. 

To develop the proper perspective note that for over a century 
the ship designer has equated seakeeping to transverse metrocentric 
height.  It is obvious that one parameter is insufficient to cover all 
the sins and virtues of a ship,  but one cannot overlook the experience 
of past years, which indicates that of all the aspects that of roll is by 
far the most important.   The greatest motion is that of roll, and the 
greatest danger comes in roll.  But the only time the author mentions 
the work roll is when he speaks of recommendations on viscous roll 
damping research, and even that recommendation is unsupported by 
anything in the text.   This I find to be a disturbing omission. 

Of the three iterations,  only one is developed, and that one 
partially, and the other two are only hinted at.   The first iteration is 
simply a recommendation that the seakeeping behaviour of a ship is 
assessed in some approximate manner by how a series 60 ship behaves 
when fitted with a Wageningen B.4. 55.  propeller.  The series 60 was 
designed to find out how resistance varied with pertinent parameters. 
But the tests undertaken certainly did not cover adequately the para- 
meters of form that are important for seakeeping. In fact, Dr. Todd 
and his collaborators did not even think about seakeeping in those days. 
But that I mean to say that series 60 good as it is for estimating the 
resistance of ships of normal form, it is not necessarily relevant to 
determining the seakeeping characteristics of any ship that a designer 
might have in mind ; and indeed the relevance of series 60 is not a 
point to be assumed but a point to be approved, if anything, and I do 
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not think this can be done,  or done very easily.   To remain with series 
60,  the work of Vosser on the motions of this series is totally ignored. 
In fact, if I study the references I find something strange : a prepon- 
derance of them are fron» authors at M. I. T.  Now I am an alumnus  of 
M. I. T.  and am very proud of the work that is being done there but I 
think that the paper is a bit parochial and I have the feeling that it is 
essentially an advertising brochure for the work done there. 

DISCUSSION 

Raymond Vermter 
Naval Ship Reaearah and Development Center 

Bethesda, Maryland, U.S.A. 

This interesting paper represents a rather ambitious exten- 
sion of our normal ship design process and I should like to discuss 
several points made by the author and to advise some caution in the 
use of the procedure.   First,  the author states that for the particular 
example given in the paper,  fully developed long crested sea spectra 
are used and that this simplification is not considered unrealistic.  It 
would appear from some of yesterday's discussion regarding sea spec- 
tra, however, that this assumption is unrealistic,  that the fully risen 
case is rarely realised and that swell forms an important component 
of most seaway forcing functions.   That the consideration of swell is 
an important factor for the successful accomplishment of naval mis- 
sions has been painfully demonstrated to us at the Naval Ship Research 
and Development Center several times in the recent past and it is 
never accounted for through the use of standard spectra.   It is suggest- 
ed that multi parameter direction spectral considerations are neces- 
sary for a valid design study of this type. 

One might also question the suggested number of iterations 
concerning the establishment of an EHP value for propeller selection 
and,  even more generally,  the real importance of power limitations 
as regards ship operation in a seaway.  It has been our experience that 
naval ships are never power limited,  but that power is voluntarily li- 
mited from a fear on the part of the captain that he will cause either 
personnel injury or structural damage if he drives his ship harder. 
Propeller design considerations for the Naval ship case involve pro- 
per blade stressing and vibration considerations for maximum power 
and cavitation free operations to as high a speed as possible,  trading 
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these factors off against the propeller efficiency. 

So it would seem that improper assumptions have been made in 
this paper regarding propeller selection. 

Even in the case of the merchant ship design it is hard to con- 
ceive of a ship being power limited in a seaway prior to arriving at 
the voluntary limitation point.  Here in propeller design we again con- 
sider stress and vibration characteristics for full power, but design 
for maximum efficiency at 80 percent power.  While 80 percent is an 
arbitrary number arrived at through experience,  it is a design point 
of some significance to the ship owner.  It represents a real value 
around which full scale propeller performance can bt evaluated and 
indicates whether the propeller is on or off design.   This performance 
determines payment or financial penalty for the designer. It appears 
that the proposed procedure may tend to shroud this well defined de- 
sign point in statistical vagueness. 

REPLY TO DISCUSSION 

Chryssostomos Chryssostomidis 
Massachusetts    Institute of Technology 

Cambridge, Massachusetts,  U.S.A. 

Answering Dr. Saint-Denis first.   The thesis of my paper is 
that in the first iteration of the proposed methodology, once the user 
decided to adopt a cruiser stern monohull as the solution to his pro- 
blem.  Series 60 ships form as good a basis as any other standard 
series or for that matter as any other realistic point designs to pro- 
vide the information needed to make the decisions called for in the 
first iteration of the proposed methodology.   The small variations bet- 
ween the final design and whatever standard form was used do not in- 
fluence the outcome of the first iteration and their effect need only be 
considered as it is suggested in the paper,  in the subsequent itera- 
tions of the proposed design methodology. 

Roll was not included in the present study, as it was stated in 
the paper, not because it was considered unimportant but because the 
state of the art is such that does not permit theoretical prediction of 
roll with any reliability and therefore a creation of a theoretical de- 
rived standard series for roll was considered unwise. 
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Finally answering the comment about the optimization criterion. 
I do not believe that my considerations were limited to an environment 
having a wave height of roughly 8 ft. 

In answer to Dr.   Wermter,  I recognise that the environment 
description adopted in the present study was rather limiting. What ia 
of importance is to recognise that the proposed procedure can accom- 
modate other standard environment descriptions which are consider- 
ed to be more suitable.  I believe,  however,  that in the first iteration 
the environment description must be kept as simple as possible,  as 
long as it is realistic,  in order to allow the user to investigate the 
large number of alternatives called for by the proposed methodology 
and that the appropriate place to use the exact environment descrip- 
tion is in the second iteration. 

Answering the question about power.   The proposed methodolo- 
gy treats the available power as an independent variable and permits 
the user to determine the "optimum" power that one must install in a 
ship operating in the "actual" environment taking into account both 
voluntary and non-voluntary speed reductions 

Answering the question about detailed propeller design.   This, 
in the proposed methodology,  is treated in a subsequent iteration.  In 
the first iteration it is necessary to accept a standard but realistic 
propeller design,  in order to be able to examine as earl/ as possible 
the influence of seakeeping considerations in the decision making pro- 
cess. 

U.S. 

DISCUSSION 

Reuven Leopold Keuven .Leopold 
flavy.  Naval Ship Engineering Center 
Hyattsville,  Maryland, U.S.A. 

When I saw the title of the paper,  "Seakeeping considerations 
in a total design methodology",  I was looking forward with great inte- 
rest to the paper itself,  which I must admit is rather disappointing. 
There are several reasons for my disappointment.   The first is because 
I read with great interest and enthusiasm reference 1 "A design metho- 
dology for ship and other complex systems" by Professor Chryssosto- 
midis and Professor Mandel in London earlier this year, which I feel 
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laid £. very good foundation and franiework for a sophisticated ship 
design methodology,  which we badly need, and I thought this might be 
a second instalment in that direction. 

The second reason for my disappointment is because I had 
made repeated attempts to incorporate seakeeping considerations into 
early design decisions,  as this paper repeatedly points out by rpferr- 
ing to reference   5   and while I feel that in reference   5   Professor 
Mandel and myself have described the principles of such a step,  we 
found that it did not influence those early decisions. 

The third reason is that because of the latter experience I 
thought that maybe this paper would show how seakeeping considera- 
tions can influence early gross design decisions.  Unfortunately,  the 
paper does not achieve this objective.   In fact,  in the conclusions 
chapter it is even stated : "The results also suggest that when opti- 
mization does not involve large changes in the principal characteris- 
tics of the different alternatives considered, as in the case of ship 
with constant payload, then seakeeping considerations should not be 
included in the optimization scheme because they are not expected to 
influence the final decision". 

But after all,  the normal ship design problem is posed in such 
a way as : "Transport or carry a certain payload (say with some future 
growth and convertibility for a warship) with a certain maximum speed 
and endurance optimized against some criterion".   Therefore to say 
what the author has stated in the conclusions part of the paper, which 
I quoted earlier,   seems to me to cut out the majority of design situa- 
tions.   Thus accounting for seakeeping indices,   such as acceleration 
in certains locations along the ship,   slamming, wetness and added 
powering in waves versas not accounting for them in the normal ship 
design case will not have a significant effect on the gross ship dimeri- 
sions. 

I am obviously not referring to a whole host of ship hull cha- 
racteristics such as   LCB-LCF locations,   sheer and freeboard, the 
detailed design of the hull form itself and the selection of various sta- 
bilization systems.  What I am referring to,  is this : given the mathe- 
matical model and superimposed optimization technique,   reference   5 , 
the existence of a subroutine for seakeeping indices considerations 
would not result in,   say, a   10-20 percent change in gross ships cha- 
racteristics of a conventional monohull design. 

There is a big difference between being able to predict the per- 
formance of a vessel, which is important,  versus changing the signi- 
ficant gross ship characteristics as a result of considering or not con- 
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sidering seakeeping characteristics. 

REPLY TO DISCUSSION 

Chry880Stornos Chryssostoxnidis 
Maaaaahuaetta Institute of Technology 

Cambridge, Maaaaahusetts,  U.S.A. 

Thank you,  Mr.  Leopold ; I fully agree with your conclusions 
in the case of conventional ships with conventional missions. If there 
are not going to be large changes in the owner's requirements I do not 
believe it is profitable to include seakeeping considerations in the op- 
timization scheme of the first iteration of the proposed methodology. 
For unconventional ships however, I believe seakeeping considerations 
should be introduced as early as possible in the decision making pro- 
cess because they might determine feasibility.  We have a recent 
example of this in the form of a small catamaran vessel. I also be - 
lieve that in unconventional missions even with conventional ships one 
must introduce seakeeping considerations as early as possible in the 
decision making process because they might influence the final solu- 
tion.  Recently I was involved in the design of a deep ocean mining ship 
where seakeeping considerations forced me to accept as "optimum" a 
much larger ship than I would have accepted if no seakeeping conside- 
rations were introduced in the investigation. 

DISCUSSION 

Michel K. Ochi 
Naval Ship Reaearoh and Development Center 

Betheada, Maryland,  U.S.A. 

The author has brought up an important subject in the first 
iteration of the proposed design methodology, namely, the speed re- 
duction due to ship motion. As pare of the criteria to estimate the 
speed reduction due to ship motion,  the author considers the probabi- 
lity of occurrence of deck wetness at Station 1 and the probability of 
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slamming at station 2.  It is understood that these two probabilities 
are considered to be independent in the author's mathematical model. 
I would like to point out that these two probabilities are both a func- 
tion of relative motion at stations I and 2,  respectively.  Since these 
two relative motions are highly correlated,  the two probabilities can- 
not be treated as independent.  The correlation coefficient for relative 
motions at any two forward locations on the ship is usually of the 
order of 0. 7 to 0. 8  depending on ship speed.  I would like to suggest 
that the evaluation should be based on the joint probability function of 
the two relative motions taking into account the correlation between 
them. 

REPLY TO DISCUSSION 

Chryssostomos Chryssostomidis 
Maasachueette   Institute of Teahnology 

Cambridgej Massachusetts, U.S.A. 

Thank you.  Dr.  Ochi,  for your recommendation.  I will look 
into this. 

DISCUSSION 

Edmund V.   Telfer 
F.I.N.A. 

Euell, Surrey,  U.K. 

In my very early professional life this was a subject to which 
I devoted probably far too much of my time but I now find it rather 
sad,  that although most of that work was probably published before 
the author was born, it has had practically no influence upon his think- 
ing.  I do not mind this,  but I do regret that the author makes no re- 
ference to the work of Professor Aertssen, and I think anybody attempt- 
ing a thesis of this nature who has not carefully studied, and profited, 
I hope,  by the work of Aertssen - and still earlier the work of Kent - 
will not see the many issues involved as clearly as he ought to in 1972 AD. 
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It is by no means necessary to go into the esoteric detail that 
the author does.  Very much simpler and reliable information can be 
obtained by straightforward consideration of the problem as the owner 
himself sees it,  and I would recommend the author,  if he has time, to 
look at some of the earlier work that has been published in the subject, 
Personnally, I find it quite tragic, looking over the references to many 
papers in this symposium, to find that very little of the work goes back 
more than five years.  I do stress to my younger colleagues that quite 
a lot of good work was done before five years ago,  and nobody will hold 
it against them if they refer to and see good in the work done 30, 40, 
50 or even a hundred years ago. 

I still hope,  however, despite this criticism, that the author 
will continue with his subject, gain perspective and, by so doing, add 
to professional information on the subject. 

REPLY TO DISCUSSION 

Chryssostomos Chryssostomidis 
Massachusetts    Institute of Technology 

Cambridge, Massachusetts,  U.S.A. 

Thank you Dr.   Telfer.   The list of references included in my 
paper is not a complete list of all the material consulted. 

DISCUSSION 

Edmund Lover 
Admiralty Experiment Works 

Haslar, Gosport, Hants,  U.K. 

For some time it has become apparent that a systems analysis 
including seakeeping considerations is necessary for modern ship de- 
sign,   we should be grateful to the author for demonstrating how these 
might be taken into account. 
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Such an analysis does however require a quantification of per- 
formance parameters that are very difficult to quantify.   The author 
has bravely stocked this problem but I wonder whether his assump- 
tions concerning the effects of overall size on hull efficiency elements 
are not oversimplified.  Also for instance  SHPri8 not always equal to 
EHPAp   - a paradox that is discussed at length within the I. T. T. C. 
and elsewhere. 

The example given is particularly interesting,   not only as a 
demonstration of the method,  but also for the result obtained.   In this 
case, the ship with twice the displacement is shown to be better able 
to maintain speed in a seaway.   This result is not surprising.   What is 
surprising however is that the difference appears to be so slight. 

Here is an example of two vessels,   designed for the same 
speed but with one having twice the displacement, and hence twice the 
payload of the other.  A comparative through costing of performance 
would therefore need to compare the profitability of one ship versus 
two and would involve an assessment of profound differences of de- 
ployment, availability, and manning, as well as first cost. 

I suggest that these outweigh the seakeeping speed and fuel 
effects to an extent that one can conclude that these may be ignored 
when determining the overall size of a large merchant ship design, 
even when large changes are possible.  In other words,   the first ite- 
ration is redundant in such a case and efforts should be concentrated 
on evolving detailed design improvements - incorporation of adequate 
freeboard,   suitable bow sections to avoid slamming and so on. 

I am not however suggesting that a systems approach including 
seakeeping is always unnecessary.  Such an approach is appropriate 
for smaller vessels and is indeed vitally necessary for the design of 
small warships,   where other considerations of crew operation and 
weapon deployment become dominant. 

REPLY TO DISCUSSION 

Chryssostomos Chryssostomidis 
Maeaaahuaetta Inatitute of Technology 

Cambridge, Masaaahuaetts,  U.S.A. 

Thank you Dr. Lover.   I agree with all your conclusions. 
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THE APPLICATION OF SYSTEM IDENTIFICATION 
TO DYNAMICS OF NAVAL CRAFT 

Paul Kaplan,  Theodore P.  Sargent 
and Theodore R. Goodman 

Oaeanias, Ina 
Plainview, Hew York 

ABSTRACT 

An important problem associated with establishing a 
mathematical model that adequately represents the 
motions of a naval vessel is the question of the pro- 
per form of the equations, as well as the values of 
the various parameters entering the equation system. 
A technique for determining the ability of a particul- 
ar mathematical form to represent the motions of 
such a vehicle, together with the determination of the 
numerical values of various parameters(such as sta- 
bility derivatives, etc.) is carried out by application 
of the technique known as system identification. The 
method of system identification is used in this con- 
text for the means to determine the unknown para- 
meters in a dynamical system representation from 
measurements of the time histories of the vehicle 
trajectories. Different techniques are used for ap- 
plication to problems that are of transient nrUire, 
following a sudden disturbance or control deflection 
in a smooth seaway, and for those problems associ- 
ated with the motions of a vehicle in a disturbed sea- 
way where the motion is continuously forced in a ran- 
dom manner. In addition the influence of noise in its 
generalized effect as a source of measurement error 
is also considered in this work. These techniques 
have been successfully applied to the determination 
of the stability derivatives (and nonlinear function 
coefficients) of a conventional surface ship, a hydro- 
foil  craft,   and an SES (surface effect  ship)  craft. 
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These applications have included vehicle trajectories 
obtained from computer-generated data, as well as 
full scale data. The utility of the techniques is de- 
monstrated by the results obtained for these appli- 
cations, together with a discussion of limitations in 
different towing tanks throughout the world for this 
purpose, ranging from multi-component balances for 
static force and moment measurementxotating arms, 
horizontal and vertical planar motion oscillator me- 
chanisms, etc. (see [l] - [2j). Considering the com- 
putational and data reduction equipment required as 
ancillary elements of the measurement devices, as 
well as the time and expense required to obtain the 
required parameter values by these means, other 
methods that may reduce the effort required for de- 
termination of hydrodynamic coefficients then become 
attractive(e specially to laboratories or organizations 
that do not have such involved instrumentation). 

A particular approach to determine the values of va- 
rious parameters in a mathematical representation 
of the dynamics of an arbitrary system (whether it is 
a vehicle, a chemical process, control system, etc.) 
has been developed recently as part of modern con- 
trol theory. This procedure is known as " system 
identification", which in the present case is a means 
of determining the numerical value s of the coefficients 
that enter into a set of mathematical equations that 
are assumed to represent the dynamic motions of a 
particular vehicle or system (in addition the proce- 
dure can also determine the suitability of a particu- 
lar mathematical model form as well as the sensiti- 
vity of different modes of motion to particular coef- 
ficients, as will be demonstrated herein). These va- 
lues are considered to be the appropriate values re- 
presenting the system dynamics when they are ob- 
tained with the same values from a number of differ- 
ent trajectories of the vehicle motion, thereby insur- 
ing their uniqueness. The extent of realism inherent 
in the coefficient values is related to the capability 
of the mathematical equation model to represent the 
vehicle motions, since the results of captive model 
tests in wind tunnels, water tunnels, towing tanks, 
etc. are aimed at measuring such coefficients ex- 
perimentally, where the coefficient structure is based 
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upon the form of the equations that will be or are as- 
sumed for representing the motion of the system. 
Therefore the basic foundation underliying system 
identification as a means of representing the vehicle 
dynamics has (at least) the same degree of validity 
as any method of dynamic analysis that is presently 
used as a model of vehicle behavior. 

What is done in this technique is to obtain responses 
of a vehicle by measuring "trajectories"(8uch as ve- 
hicle linear and angular displacements, velocities 
accelerations, etc.) following different types of dis- 
turbances. With the formulated mathematical model, 
values for the unknown parameters are then sought 
so that the solutions to the dynamic equations give a 
best fit to the data, where this best fit is defined by 
minimizing the mean square error between the solu- 
tion of the equations using these coefficients and the 
actual data record itself. The procedure can be ap- 
plied to data from both full scale and model scale 
trajectory observations, thereby increasing its uti- 
lity for correlation and validation purposes of par- 
ticular mathematical simulations of naval vehicles . 

Obtaining stability derivatives from full scale tra- 
jectories has been standard practice in the aircraft 
industry from its inception, and this has ordinarily 
been done by various means of data analysis that are 
primarily based upon the assumption that the equa- 
tions arelinear.In addition to considerations of non- 
linearity which are important for certain naval craft 
the sensitivity of some modes of motion of particular 
craft (such as hydrofoils, SES craft, etc.) to surface 
wave disturbances requires consideration of the in- 
fluence of random forcing functions, sensor errors 
and other "noisy" disturbances applied to the system 
and its measured motion responses. These different 
effects then require particular techniques for their 
analysis, and the present paper will provide a des- 
cription of the analysis methods as well as the re- 
sults obtained when the methods are applied to dif- 
ferent representative naval craft. 

The work described in this paper was carried out 
under the support of different agencies in the course 
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of various study contracts, viz. the Office of Naval 
Research, the Naval Ship Research and Development 
Center, and the Surface Effect Ships Project Office . 

INTRODUCTION 

In order to predict the dynamic performance of various naval 
vessels, different methods of simulation are often employed.   The 
general term "dynamic performance" used here refers to the deter- 
mination of dynamic stability,  maneuvering and turning properties, 
response to control input commands,  motions in wave systems,  etc; 
the term "simulation" includes both free model trajectory tests as 
well as the use of computer solutions based on a mathematical model 
that is assumed to represent the craft motions.  Considering the basic 
limits of free model testing,  which are associated with limitations in 
the size of models and/or test facilities (or inherent limits such as 
in the case of submarine maneuvers),  propulsion and control model- 
ing errors, time constant differences,  etc., the major emphasis for 
motion prediction is the use of computer simulation using mathema- 
tical models. 

When considering prediction and simulation studies of ship 
dynamics with the use of a mathematical model, a vital aspect is es- 
tablishment of the proper form of the equations as well as the appro- 
priate numerical values of the various parameters (coefficients, 
stability derivatives,  etc. ) entering the equation system. At the 
present time the main method of determining the various hydrody- 
namic force and moment coefficients in a desired mathematical model 
for a particular type of marine craft is by means of captive model 
tests in a towing tank,  together with the associated mathematical 
analysis of the experimental data in order to provide the required 
coefficients.  Various special purpose apparatus exist. 

GENERAL DESCRIPTION OF ANALYTICAL TECHNIQUES 

When considering a vehicle in an undisturbed smooth water 
environment,  transient responses of the craft are excited by means 
of different initial conditions or excitation inputs (such as a rapid 
rudder deflection or other impulsive disturbance).  The measured 
outputs (i.e.  vehicle motions) are recorded and operated upon by a 
technique that is essentially a generalization of a Newtonian iteration 
procedure   [3J    .  The differential equations of motion of the vehicle, 
whether it is linear or nonlinear,  are used together with additional 
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variables that represent the unknown coefficients in these equations. 
The coefficients themselves are the actual variables that are sought 
in this system identification procedure,  and different techniques are 
used within the course of the analysis with the understanding that the 
variables desired are the coefficients in the equations.  Solutions are 
necessary for all the variables starting with estimated initial condi- 
tions,  where the variables include the state variables of the system 
as well as the coefficients themselves.   Errors between the calculated 
state variables and the actual measured trajectory data itself are 
determined,  and then modifications of the unknown coefficients are 
obtained in this procedure.   These new values are then inserted again, 
solutions obtained,   modified coefficient values found,  and these are 
inserted again with the method repeated,  i. e.  an iterative procedure. 

The main features of this method are the fact that the basic 
dynamic system itself can be nonlinear (in terms of the state variables) 
and it is not necessary to measure every response variable in order 
to obtain the values for the coefficients.   Even in the case of a linear 
system,   if each and every response variable,  including displacements, 
velocities,  and accelerations of all degrees of freedom are measured, 
then the only unknowns are the coefficients themselves which can be 
obtained from solution of a set of linear algebraic equations.   However 
it is often difficult,  if not impossible,   to measure every variable, 
derivative,  etc.,  as well as the fact that often such measurements 
are not very accurate due to instrument limitations.   The technique 
applied here requires selecting just those variables that are easiest 
to measure and which are available,  but nevertheless a certain num- 
ber of variables must be measured since in a coupled system more 
than one mode of motion applies; e.g.  as an illustration,  it is neces- 
sary to obtain measured data on yaw and roll responses since measur- 
ing a single mode such as yaw alone would not yield sufficient data to 
obtain information on roll coefficients,  and vice-versa. 

The original derivations in   [3]    presented a method for deter- 
mining unknown parameters in an otherwise known dynamic system 
using only measurements of the time history of just one state variable. 
However,   practical experience with largn systems containing a number 
of degrees of freedom and many parameters led to a generalization of 
the procedure involving the use of an increased number of measured 
trajectory records,   (as mentioned above),  and this improved proced- 
ure overcame many difficulties in regard to convergence and unique- 
ness of the results.  A number of applications were made to different 
vehicles,   including aircraft,  a surface ship,  and a hydrofoil craft, 
and the results obtained are d »scribed in   [4]   and   [5]   . A description 
of the mathematical procedures,   and a discussion of results obtained 
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by uae of this method,  are given in following sections of this paper. 

When considering the case of a craft in waves, the effect of 
continuous random forcing functions (due to the waves) is present. 
Therefore another technique different from the one used in the pre- 
vious work described above,   which is based on transient responses 
with no "noisy" measurements or random forcing functions,  must be 
used.   The method proposed for application to this problem is based 
on developments in recent literature of modern control theory 
(maximum principle,  two-points boundary value problems,   invariant 
imbedding,  and sequential estimation) which are described in   [6J 
and   [?]   .  The basic technique is applied to problems that are gener- 
ally nonlinear, with the possibility of measurement observation 
errors and with unknown random inputs.  Using continuous time his- 
tories of the observed output measu  .Tnents, the task is then to 
obtain optimal estimates of the state /ariables and also various 
parameters in the equations (such as coefficients and other unknown 
magnitude mathematical forms) by a procedure that is based on 
minimizing an integral of the sum of weighted squares of residual 
errors.  The errors are the difference between the observed data and 
the actual desired system outputs (i. e.  eliminating the measurement 
noise), and also the difference between the nominal trajectory of the 
system and the assumed form of the equation representation (i. e. 
eliminating the noisy input excitation and achieving a proper repre- 
sentation of the basic system dynamics). In this case,  the unknown 
parameters are also added as additional variables in the complete 
dynamic representation. 

The equations that result for the    stimates of the system 
state and also for the parameters provide an   on-line filtering pro- 
cedure together with a sequential estimation technique, which does 
not require repeating all calculations after additional observations 
or measurements are made,  as in classical estimation schemes.   The 
resulting equations are of a form that is somewhat similar to that of 
the Kaiman filter  [8] ,  but they are applicable to nonlinear systems. 
In addition the terms entering the equations are not dependent upon a 
knowledge of the statistical characteristics of the input disturbances 
or the measurement errors,  thereby allowing consideration of 
vehicles in arbitrary seaway conditions and hence increasing the 
generality of the approach. 

The equations developed for this system identification pro- 
cedure use the continuous measurements of the actual system outputs 
as observed, and those signals are operated on and processed with 
the special estimator equations. As time evolves the combined fil- 
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tering action and identification allows the evaluation of the desired 
parameters to exhibit themselves as functions of time and arrive at 
their final steady value. Similarly the estimation of state variables 
with random disturbances present also evolves as a function of time, 
and the ability of the estimated state variables to "track" the measur- 
ed trajectories when using the estimated parameter values in the 
representative system equations is directly exhibited in this proced- 
ure. 

Applications of this technique that allows for the presence of 
"noise" in the system response have been made for the case of a 
surface effect ship (SES craft) as well as for a hydrofoil craft (see 
\jf\   and    Qo]   ).   The mathematical procedures underlying this par- 
ticular technique, as well as the results obtained in practical appli- 
cations to different seagoing craft,   are described in later sections 
of this paper. 

MATHEMATICAL PROCEDURES - ITERATION METHOD 

The iterative technique used for system identification of 
dynamic systems fcr which transient response data is available is 
described by the following.  The dynamical equations representing 
the system are assumed to be given in the form 

Y.   =   g.CY,.. a.   t).   Y. (0) = c. 
i (1) 

where the dot denotes differentiation with respect to time t, a denotes 
the unknown parameter vector and   c   denotes the initial value of the 
solution vector   Y   and may or may not be totally known.   Measure- 
ments     blr ^m > of the state variables     Y, at 
times   tm   are available,  and it is required to find an initial vector 
c   together with a parameter vector a which minimize the sum of 
the squares of the deviations : 

M 

M 

m = 1 

n 2 

Y.  (t    ) -b, 
1     m       1m 
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M 

w_ Y?   (trr,)   -b2m c     m       cm 

m = 1 *- 

(2) 

where the weighting factors   w   are chosen to make each sum non- 
dimensional and of the same ordpr of magnitude.   Thus,  the solution 
of   CO    is sought which is in best agreement with the measurements 
in a least square sense.  The parameter vector,  a , is suppressed 
in   (l)   by considering its components to be additional state variables 
subject to the equation 

a =   o (3) 

The number   n   is thereby increased to include the additional state 
variables and the extended   c   vector includes the unknown parameter 
vector in addition to the state variable initial conditions. 

The parameters of the system are determined in the following 
way : the initial vector is estimated and   (l)   is integrated.   The es- 
timated initial vector is denoted by   c* and the resulting solution of 
(l) by   Y*.  The deviation can then be calculated and its value denoted 
by   «*. Assuming the initial vector to be changed by an increment 
5 c,  this would cause the solution vector to be changed by an incre- 
ment    5Y and the deviation by an increment 5«   . From   (2)   it is 
seen that 

M 

* 
m = 1 

(tm) m 1m 
«Y, (t

m
) + m (4) 

The equations which the incremental solution vector safisfies are 
called the equations of differential corrections and are obtained by 
expanding   (l)   in a Taylor series and retaining only linear terms : 

n 

(5) 
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(the asterisk means that the coefficients are calculated using solu- 
tion   Y *),  Equation (5) is now integrated   n   times; the   jth   time 
the integration is performed the initial conditions are that   {   Y, 
(0) = 1   and all the other   6Y,    (0)'s vanish.   This special solution is 
denoted by    äYI,    , and the general solution can then be written, by 
superposition, 'as 

«Y. 

j = i 

6c.   dY:: (t) 
J ij 

(6) 

This incremental solution vector is used to express    iY1    ,      6Y2   , 
...  in terms of   6 c,  and upon substituting into   (4)   and interchanging 
the order of summation the variation of the deviation becomes 

M   i 

M 

m = 1 
('rn^lm 'V^*- 1(7) 

where the repeated suffix implies summation on j from 1 to n. 
The variation of the deviation has thus been expressed directly in 
terms of the variation of each of the initial conditions.  In order for 

< to be minimum   6t   must vanish for an arbitrary variation in the 
initial conditions.  This means that if    U.       is defined to be 

J 

U. =     w. 

M 

m 

(t    ) -b, m        1m *Yli {tJ + 
Ij     m 

(8) 

then the error will be minimized with respect to the   c.'s   whenever. 
J 

U.    =   0,     j = 1.   . . .  n 
J 

(9) 

In general, using the estimated vector   c*   and the resulting 
solution vector   y * ,  the values of   Uj    will not vanish.  Denoting the 
value of   Uj     , as calculated in this way by   U *     ,  the objective is 
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to make the Uj vanish by an iteration procedure. Considering the 
increment in Uj caused by the increment in Vj , from (8) there 
is obtained 

6U. 

M 

m = 1 
i   m ij    m (10) 

in order for each   U.   and hence   St     to vanish the condition 

5U. 
3 

-u: (ID 

must be imposed.  Upon substituting (6) into (10) and interchanging 
the order of summations there is finally obtained 

U. «c, 

M 

m = 1 

aYlj
(tm)    ÄYli(tm)   + (12) 

Equations (8) with   Y = Y*.  together with Equations (11) and (12), 
constitute   n   simultaneous linear algebraic equations for the   n 
unknowns   4 c,    .  Upon adding the incremental values to the estimated 
values of   c *   ,   improved estimates of the   Cj    are obtained, and the 
procedure is then repeated until convergence is achieved. 

A modification of the above algorithm which at times is 
found to be useful is to introduce some or all of the   b's   into the 
right hand sides of Equations (1)   and   (6)   in place of the respective 
y#t8 

A digital computer program for the above procedure was 
established, and various guidelines evolved for its effective use. 
One of the problems associated with an iterative procedure is to 
achieve convergence, and this depends upon the compatibility bet- 
ween the mathematical model and the actual physical system as well 
as the "quality" of the initial guess of the unknown parameters.  Even 
when these conditions are satisfied there are often cases where con- 
vergence does not readily follow,  and different strategies are used. 
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Among these are using measurements of additional state variables, 
applying a gain on the   6 c   vector (to inhibit any over-correction), 
and to vary the length of the record in steps (from a short record to 
longer records, using the converged outputs of each step as the ini- 
tial guess for the next longer record length until the entire record is 
processed). 

Another problem is that of the proper values of the parameters, 
even if they produce trajectories that match the measured values 
quite well.   Sometimes a parameter that has only a small influence on 
the particular motion data being analyzed is sought by the system 
identification technique.  In that case very little information related 
to that parameter is contained in the data,  and the value determined 
by this procedure is spurious (and could also sometimes "contamin- 
ate" other parameter values). Various means of increasing confidence 
have been developed as a result of experience.  Among these are using 
as many state variable measurements as possible, as well as moni- 
toring the change in the estimates of the converged   c*    values as the 
record length is increased. Since lengthening the record introduces 
more information,  the   c *   values should begin to settle at some value 
(i.e.  to stabilize), after which no further record lengthening is ne- 
cessary. Another means of establishing confidence in the results is 
to vary the weighting factors.  When a change in the weighting factors 
produces no apparent effect on the results,  confidence in these results 
is increased. 

APPLICATIONS OF THE ITERATION TECHNIQUE 

The iteration technique described above was applied to a 
number of dynamic systems for which transient motion response data 
was available.  The naval craft of interest that were treated by this 
method are a surface ship and a hydrofoil craft.  For the case of the 
surface ship,  the nonlinear three degree of freedom system of equa- 
tions describing the steering and maneuvering ol that ship are 

2 2 2 jt  2 u   =     f(u) + CjV    + C2r    + C3u    * 

rv6 2 
v   =     C .uv + C,ur  +  C,    + C_u j 4 5 6    u 7 

2 , . rv 2 
r   =    C8uv+C9ur + C10__  + C^  i 

(13) 
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where u - surge velocity, 

v = sway velocity, 

r = yaw rate, 

6 = rudder deflection, 

f(u)     =     known function of  u   that represents the difference 
between thrust and resistance, 

C. =     coefficients to be determined. 

These equations were obtained from (11),  and the "measured" input 
to the system identification program is provided by a maneuver 
generated on the computer with known parameters typical of a con- 
ventional cargo ship,  as obtained from   [l l]    .  The maneuver chosen 
is a turning circle initiated by commanding a 35 degree rudder angle. 

Difficulty in converging to the known set of eleven coefficients 
was encountered with the basic computer algorithm even though the 
predicted time histories of  u, v and   r   themselves became indis- 
tinguishable from their respective input records.   Efforts to improve 
the results by sampling at a higher rate or by taking a longer record 
proved fruitless, and only by retaining an inordinate number of 
significant digits in the input data did the converged coefficients agree 
with their known values.  However,  the accuracy of data measured by 
real sensors is limited, and, the difficulty in obtaining good coeffi- 
cients was eliminated by applying the modification to the technique 
which used the measured state variables instead of the predicted 
values in the operations of Equations (1)   and   (6).  Using this modi- 
fication,  the effect of varying the sampling period,  length of record, 
number of records,  and accuracy of the data was investigated to 
indicate the measuring requirements for the identification of a real 
ship (or model) from a maneuver.  It was found that a sampling period 
of from one to two seconds and a record length of from one-half to 
one minute was adequate for successful identification of a full scale 
ship.  However,  it was found necessary to have measured all three 
variables,  namely  u,   v   and   r,  to identify the eleven coefficients in 
Equation   (13). 

Using the computer generated data of   u,   v   and   r   accurate 
to four significant digits, which was sampled every second for one 
minute,  the identification by this iterative technique was carried out. 
The resulting   C-coefficients are shown in Table I together with their 
time values,  where reasonably close values were found.   The identi- 
fication process converged very rapidly,  as only two iterations were 
required. 
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Table     1 

suits of System Identification of Surface Ship 

True 
4 Dig. 
Digit 

2% 5% Analog 

Values Data Noise Noise Data 

C
1 

X io2 -.  203 -.202 -.071 -. 127 

cz X ID"2 .   113 .109 -.589 -1.64 

C3 
X io3 -.  214 -.213 -.164 -.091 

C4 X io2 -.   146 -.149 -. 185 -.231 -.143 

C
5 

-,   334 -.337 -.370 -.415 -.342 

C6 X io'1 .   958 .942 .796 .611 

C7 
X io3 .  323 .  322 .321 .318 

C8 
X io4 -.   122 -.114 -.072 -.012 -.119 

C9 
X io2 -.  397 -.391 -.360 -.315 -.399 

C10 -.   120 -.116 -.097 -.070 

Cll 
X io5 -.   584 -.583 -.586 -.591 

In order to assess the accuracy requirements,  the input was 
contaminated by adding Gaussian noise of 2 and 5% error magnitudes, 
where this error is based on the indicated percentage of the maximum 
value of the variable.  The results of identification with these inputs 
are also shown in Table 1.  It is seen that as the noise level is in- 
creased some coefficients remain close to their true values while 
others drift away and still others lose all significance.  The coeffi- 
cients   Ci    and   C2    are seen to deteriorate the most rapidly.  These 
coefficients have been shown in   [if)    to be of minor importance, and 
the present results support the relative ordering given in    [11]     . 
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Ship trajectory data was also generated on an analog computer, 
using only linear equations in   v   and   r   while assuming a constant 
forward speed.  The equations in that case were given arbitrary initial 
conditions and then allowed to seek equilibrium.  The   v   and   r   analog 
signals were sampled every two seconds by   A/'D   converters to pro- 
vide the input to the system identification program.  The results using 
the data supplied from the analog experiment are also included in 
Table I and in that case,  even though the data can at best be consider- 
ed to be 1% accurate,  better values for the four coefficients consider- 
ed as unknowns are obtained than that predicted using the noisy di- 
gitally generated data.  This is ascribed to the fact that more accurate 
values of unknown coefficients can be predicted for a simpler system 
than for a system with a larger number of unknown coefficients.  It 
is also possible that real "noise" from the analog computer output, 
which is closer to true processed experimental data,  may not be as 
severe as the artifically generated digital noisy data. 

For the case of a hydrofoil craft, the nonlinear longitudinal 
equations of motion for a typical hydrofoil craft under autopilot con- 
trol are : 

Normal Force Equation 

h   =   32. 17 m m Cl    ^F-C2WR (14) 

Pitching Moment Equation 

0=7, I—^   +   C,   w„ 
1 I   m IF ll   m +   C2WR^ 

The lift on the forward foil is 

F 
m 

WF — +    C       i     +7 
V 3      e 4 

+   C. 

^ + C5 

VC6 T? 

(16) 
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where w       =    h + V i v 
r F    =     fF      +  h   -  i£« 

o 

(17) 

Similar expressions are given for the lift   LR       on the rearward foil, 
where the unknown parameters   C3    ,    C5    ,    C6    ,    C9   are replaced 
by   c4      •    C7      •    C8     and   C10     . 

Autopilot Transfer Functions 

'command 

r14 

= [(7TTT)+ ^iz] V^^;^]' 

(h. f tJC^' (r.  s + 1)       v command       s HS' 

(18) 

in terms of the Laplace transform operator   s, 

Command "    '''iS WR +   ^ 16 ö 

HS fHSO-   h   +   ^HS 

(19) 

Flap Actuation System Transfer Functions 

(r2 s + i)  «e command'     f 
(3 8 + l)l 

(20) 

command 

where 

iF. fR. /HS 

7,7  = 

heave, 

pitch angle, 

craft velocity (assumed constant), 

lengths from c. g.  to forward foil,   real foil 
and height sensor, 

given constants, 
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HSO 

s     = 

vertical distance from height sensor to 
undisturbed water surface at design 
foilborne condition, 

Laplace transform operator, 

unknown parameters. 

To demonstrate the feasibility of using system identification 
to estimate the C's from full-scale tests,  computer generated trajec- 
tories were first used as trial inputs.  The sponsoring agency supplied 
the computer generated trajectories but withheld the values of the   C's 
used in the generation until the results of system identification became 
known.  Three sets of trajectories for each of the three different con- 
figurations,   termed   A,  B,  and   C (i.e.,  for three different sets of 
C's) were supplied.  A run in each case consisted of a step change in 
the commanded height after the craft bill  reached equilibrium. Alto- 
gether,  there were   9   sets of trajectories supplied. 

Even though there was no prior information given as to the 
proper values for the   C's   ether than the crudest order of magnitude 
estimates,  no difficulty was encountered by the system identification 
program in converging to a set of   C's   for each configuration and run. 
Confidence in the converged results was investigated by varying the 
record length as described previously,  and also by comparing the 
results from different runs of the same configuration.  In all cases 
high confidence in the results were indicated.  The estimates from 
system identification are given in   Table 2,  together with the true va- 
lues. 

Table     2 

Hydrofoil System Identification Results 
Configuration  

True (Estimated) 

B 

0450(.0439)       .0450(.0439)       . 0950(. 0942) 

131   (. 131) . 131    (, 129)        . 131    (. 129) 

1794(. 179) .1794(. 179) .1906(. 190) 
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10 

.3276(. 327) 

1.912(1.97) 

.5097(, 53) 

2.668(2.67) 

. 4427(. 45) 

0 (0(.2)) 

0   (0(.l)) 

. 4446(. 445) 

1.912(1.97) 

. 5097(. 53) 

2.053(2,06) 

.4427(.45) 

10.0 (10.3) 

0   (0(.2)) 

. 4446(. 445) 

2. 114(2. 18) 

. 5579(. 58) 

1.886(1.87) 

. 5126(. 51) 

0 (0(.2)) 

0   (0(. 1)) 

The parameters   Cg   and   C10    represent coefficients of nonlinear 
lift. Nonlinear lift appeared to play an insignificant role in almost 
all the trajectories,   making it impossible to obtain firm estimates of 
these parameters.  It was only possible to estimate the order of ma- 
gnitude of these parameters.  This has been indicated in the table by 
use of an order symbol (as an example,  the entry   0(. 2)   is to be in- 
terpreted to mean that the value of the parameter is no greater than 
t. 2). In the case of   Cg    for configuration B,   the nonlinear lift term 

had been artifically increased so that it played a more significant role 
in the trajectory, and was therefore detectable.  The comparison with 
the true values in Table 2 shows a remarkable agreement between the 
values estimated by system identification and their respective true 
values. 

More detailed information concerning the results obtained 
for the case of a surface ship and a hydrofoil craft by means of this 
particular system identification method is given in   [4]     and     [5]    . 
In addition to consideration of these particular naval craft,   results of 
application of this technique to the case of a   V/STOL   aircraft using 
experimental trajectory data from a dynamic free-flight test facility 
(for vertical plane motion) and also a full scale airplane using flight 
test data (three lateral modes of motion), are also presented in     [5]    . 
For those cases the agreement with other techniques of data analysis, 
or by virtue of matching measured trajectories,  also provide veri- 
fication of the present technique and its ability to successfully iden- 
tify many unknown parameters in large dynamical systems from 
measurements of time histories of state variables (a total of eleven 
stability derivative parameters were determined for the full scale 
aircraft case). 
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When considering the utility of system identification tech- 
niques for analyzing data from full scale maneuvers or from towing 
tank tests for naval craft,  there are various ways in which it could 
be most efficiently used for such analyses.  This is especially true in 
the case of model testing where the ability to constrain motions 
enables selected coefficients to be sought independently from the 
others.  The system identification program has the ability to identify 
simpler constrained maneuvers first and then incorporate the resul- 
tant or otherwise known coefficients into the more complete model 
when a complex maneuver is analyzed.  This might also relax the 
indicated measuring requirements as less demand would be placed on 
the system identification program.  In the case of full scale sea trials, 
where the motions are naturally unconstrained,   system identification 
techniques offer a useful method of directly analyzing ship motions 
when seeking knowledge of a large number of unknown coefficients 
simultaneou sly. 

Another possible use of system identification for surface 
ship problems is an application to the case of a ship in a restricted 
waterway,   such as a canal,  when applied to model testing.  Various 
static force and moment derivatives and related hydrodynamic data 
can be obtained from captive model tests in a towing tank with   spe- 
cially configured restrictions simulating the canal.  However the im- 
portant dynamic derivatives due to angular velocity,  and angular 
velocity effects combined with lateral velocity and forward velocity, 
cannot be obtained with ease or without serious questions as to data 
validity (for oscillator experiments) with ordinary towing tank test 
techniques.  In that case the use of system identification applied to 
trajectory data from model experiments would allow determination of 
basic stability derivatives by that method,  when normal test proce- 
dures have basic limitations.   Thus it serves as an adjunct to model 
testing that would allow more complete determination of pertinent 
parameters,  thereby resulting in more reliable prediction of full 
scale ship performance. 

The major problem exhibited in the application of this method 
is demonstrated when noise is artificially added to the observed data, 
as illustrated in the case of the surface ship.  However,  the low level 
noise associated with analog computer output data,  for a lower order 
equation system,  did not seem to influence the results.  Similarly the 
full scale data of the aircraft analyzed in   [5]   also contained some 
noise in the records, and the influence of this noise was reduced by 
means of simple smoothing operations applied to each data point 
(obtaining average values in terms of data points on either side of a 
particular data point at each instant of time).  While the generated 
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noise in the surface ship case may have been more severe than noise 
that would be experienced with actual recorded data on a full scale ship, 
or in the case of model test trajectories,   the indications are that the 
influence of noise tends to degrade the estimated parameter values 
given by this technique of system identification.   This behavior might 
be anticipated to some extent in view of the fact that the basic analy- 
sis method makes no allowance for the presence of noise in the re- 
corded data,  or noise present as a result of an arbitrary (unknown) 
random excitation.   The only requirement is that the resulting diffe- 
rences between observed and predicted trajectories satisfy the mini- 
mum mean square error criterion,   and that may not be sufficient 
without other ancillary conditions that would allow for the presence 
of such noise influences.   More extensive investigations of the in- 
fluence of noise on the prediction capabilities of this method of system 
identification must be obtained in order to determine its limits when 
applied to such realistic cases. A discussion of the application of this 
iteration technique to a full scale case where significant noise dis- 
turbances were present is given in a later section of this paper,   when 
considering techniques applicable to noisy systems.  A description of 
the mathematical techniques and the results of application to different 
naval craft where noise has a significant influence is presented in 
the following sections. 

MATHEMATICAL PROCEDURES - SEQUENTIAL ESTIMATION 
TECHNIQUE 

When considering the use of system identification for cases 
where the observed ^'ata is contaminated by noise or if the system is 
excited by a random input,  the method that is used is based upon a 
sequential estimation procedure that is derived as illustrated below. 
The basic problem underlying this system identification technique is 
that of estimating the state variables and the parameters in a noisy 
nonlinear dynamical system,  and this problem is treated in   [7]   , 
which is an extension of the simpler problem where only observation 
errors occur    [6J   .   Considering the scalar case (i. e.   a single state 
variable),  the system is represented by 

g(x,t)   +   k(x,t)   u(t) (21) 

where   u(t)   is the unknown disturbance input.  The measurements or 
observations of the output are 

y(t)   =   h(x, t)   +   (Measurement errors) (22) 
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No assumptions regarding the statistics of the unknown input functions 
or the measurements error is made.  With measurements of the out- 
put   y(t),  for   0<t   <T ,  it is required to estimate   x(T)   on the basis 
of minimizing with respect to   x(t)   (a nominal trajectory) the func- 
tional 

'■/ 
ej   (t)   +   w(x.t)   e2    (t) dt. (23) 

where   w(x, t)   is a positive weighting factor, and the errors   e     and 

(24) 

e     are defined by 

ejU)     =     y(t)   -   h(x.t) 

e2(t) g(x. t) (25) 

The least squares estimate of  x(T), denoted as   x(T),  is obtained 
from minimizing the integral of the (weighted) mean square errors, 
where the error   Cj (t)   represents the difference between a nominal 
trajectory and the assumed form of its equation representation. 

The minimization problem is then a problem in variational 
calculus, which leads to the associated Euler-Lagrange equations 
that contain an unknown Lagrange multiplier.  The boundary conditions 
for this Lagrange multiplier are known at the ends of the interval, 
i. e.    0 and T, but there is no information about the value of  x(T), 
and hence the problem reduces to a two point boundary value problem 
(TPBVP)   that yields the optimal estimate   x(T). With the variable   T 
now considered as a running time variable, the problem is treated as 
a family of problems with different final points,  T,  and the problem 
becomes one of sequential estimation,  i.e. the   TPBVP   must be 
continuously solved for all values of   T   (the running time variable). 

The problem is solved by application of the concept of in- 
variant imbedding    [iZ]    ,  which is used to convert a   TPBVP   into 
an initial value problem that can be easily solved.  The missing 
"initial condition" is represented in a general manner for different 
values of   T, thereby establishing a family of problems.  On the basis 
that neighboring processes (i.e.   system responses) are related to 
each other,  the missing condition is found by examining the relation- 
ships between such neighboring processes.  The procedure leads to a 

1648 

^,_ 



il. HIHI  iliipil  

Dynamiaa of Naval Craft - System Identification 

partial differential equation that is solved by an expansion of the 
solution about the desired reference condition, which in the present 
case is the estimate   x(T)   (see   [71).   The result of this invariant 
imbedding approach is a sequential estimator,  which is such that 
previous data points do not have to be repeated whenever new obser- 
vations are added,  and hence the estimation operation can be carried 
out at a fast computational rate. 

The estimator equations for the scalar case are 

dx 
dT 

dP 
dT 

g{x.T)   +   2P(T)   h^x, r)    |Y(T)   -   h(x,T)| (26) 

2P(T)g-(x. T)   +   2P |^ 

1 
2w (x, T) 

[Y(T)   -   h(x,T)l 

c, T) h h.(x,T)|Y(T) - h(x,T)|j  P 

(27) 

where 

ah(x,T) =    3g(x,T) 
dx        '        x dx 

(28) 

The above results are somewhat similar to,  and represent a genera- 
lization of the results of linear Kaiman filtering   [8]   .   The weighting 
function   P(T)   is found from a Riccati-type equation,  and the two 
equations are solved when given the initial conditions.   The initial 
value   x(0)   represents the best estimate of the system state at 
t = 0,  which is based on available a priori information,  and the 
initial value   P(0)   reflects the confidence in the initial value of   x 
and the observed signal   y(t). 

The estimator equations for the vector case are derived in 
[yj   and are given below as 

dx 
dT 

g(i.T)   +   2P(T)H(x,T)Q      Y(T)-h(i,T) (29) 

41   =   g'(i.T) P   +   Pg-(i, T)' dT        6xv       ' Bxx       ' (30) 

2P IHQ     Y(T) - h(x, T)   I  ^ P +2 k(i, T)V'1(i. T)k'(x, T) 
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where 

Hix.T)   = M' (31) 

(' symbol represents transpose of matrix),    Q   is a normalizing 
matrix used to weight the observation errors in the minimization 
procedure,  the function  k(x, T)   is a coefficient of the unknown input 
forcing function (as in Equation (21),    but for the vector case , and 
the function   V(x, T)   is defined by 

V(x,T)   =   k1 (x.T) W(x.T)k(i,T) (32) 

with W the weighting matrix for the errors in the basic equations 
due to the input disturbances.  In the estimator equations the term 
[HQ JY(T) - h(x, T)|]   -       is an   nxn   matrix with   i,h    column given 

by 

d [HQ { Y(T) - h(x, T)}] (33) 

The basic equations of the system and its observations are similar 
to those of Equations   (21)   and   (22)   but generalized to the vector 
case.  With   x   and   n-vector,    P(T)   is an   nxn   matrix,   so that the 
number of equations required to be solved are   n2 +   n   which can 
become a large computational task.  Some possible simplification 
could occur in some cases where the   P-matrix has symmetry for 
the off-diagonal terms,  depending on the form of the functions   H, 
Q,  etc. ,  thereby leading to a reduction of the number of equations 
to be solved. 

In the case where identification of parameters is considered, 
the constant (but unknown) parameters,  denoted as a vector b   (with 
m   elements),   satisfy the differential equation 

da 
dt 

=    0 (34) 

and the   m   elements of a can be considered as additional elements 
in the state vector, i. e.  they are adjoined to the state vector elements 
(/elements)   so that   n =   £+  m   is the total number of elements in 
the state variable   x,  which also includes the estimates of the   m 
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unknown parameters in a.   The equation given in Equation   (34)   is 
easily absorbed into the total system representation in establishing 
the   g-matrix,  and the remaining equation b for  P   readily follow. 
The only problem resulting from the introduction of the additional 
elements is the increase in the total number of equations to be solved 
which increases the computational complexities.   Illustrations of the 
results obtained by application of the equations presented above are 
given in the following sections of this paper. 

APPLICATIONS OF SEQUENTIAL ESTIMATION TECHNIQUE 

The digital computer program established for solution of 
the coupled estimator and gain equations is structured to carry out the 
solution of the equations as a group of coupled first order ordinary 
differential equations.   These equations are nonlinear and time-varying, 
in general,  and the technique for solution is based upon use of a 
Runge-Kutta fourth order integration scheme.  The integration step 
size is not arbitrary,   since there is a maximum basic frequency of the 
vehicle motion modes for any particular craft,  and hence sampling of 
any data would have to be made at twice the rate of the largest frequen- 
cy manifested in the system response in accordance with the requi- 
rements  of the sampling theorem    [13]    .    The integration time step 
can be less than this amount,  and the values to be used would depend 
upon requirements of stability,  total time of solution,   bandwidth pro- 
perties,   etc.  All of the computer operations for a general equation 
system are carried out in matrix form,  as indicated by the represen- 
tation of the equations given in the preceding section,  and various 
subroutines to make use of matrix manipulations are employed,  which 
are standard procedures associated with digital computer operations. 
The results of application of these equations for various illustrative, 
cases and for different naval craft are provided below. 

In order to illustrate the capabilities of the basic method of 
analysis,  a series of computational experiments were carried out on 
simple systems with known parameter values.   The first problem 
considered is that of a second order system,  where it is required to 
find the two unknown parameters,   and the second problem is to obtain 
one of the coefficients in a third order system.   The test cases are 
selected with no external forcing function,  thereby being transient 
response trajectory data as input information.  These particular pro- 
blems are similar to test problems solved using analog computers in 

[l4J   ,  with noisy forcing functions there,  and serve to validate the 
digital computer program and procedures. 

The first problem is represented by the differential equa- 
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tion 

y   +   ay   +   by (3 5) 

and it is required to estimate the coefficients a and b, assuming that 
measurements are made of the time histories of   y  and   y. Solutions 
were obtained m the digital computer for Equation   (35)  with known 
coefficients having the values   a = 0. 1   and   b = 0. 4, and these were 
the input information to the estimator and gain equations.  The output 
time histories of the estimated and observed trajectories of   y  and 
y  are shown in Figure 1,   showing the rapid convergence of ihe es- 
timated values to the observed data and the "tracking" of these es- 
timates to the true values.  The coefficient estimate were started 
with initial conditions (or "guess" values) at   a = 0. 6   and  b = 10, 
and the rapid convergence to the true values is exhibited in Figure 2. 

The second problem is represented by the equation 

y + V a2y a3y    = (36) 

and it is required to find the va'   e of the coefficient      &2       when 
the other coefficients are kno'.n (the values chosen are   a,   = 0. 05, 
a      = 0.3,    a.    = 0.01). Defining the four state variables 

xl   =   ^    x2   =   y' x3   =   y* X4 =   a. (37) 

the system equations are 

Xl    =   X2 

X2   =   X3 
(38) 

x,   =   -0. 05x,  - x„x, - 0. Olx, 
i 3 4  2 1 

*4 = o 

and the observed variable is   y   or   x2  , with the observations given 
by the solution of Equation   (36)   with all the known coefficient values. 
The results obtained from the digital computer solution of this system 
(4 state variables, 
the error signal 
given 

16 P;,      equations) are shown in Figure 3, where u 
«= x, 2        *2 

The initial condition for   x 
and the coefficient estimate   x.    are 

(the actual system response)   is 
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x.   (0)   =    I,  and the estimated initial condition for   x2   and  x4    are 

i2 (0)   =   0.     i4 (0)   =   0 (39) 

The rapid convergence of  x,—»x     ,  and the value of   x4    to the true 
value of   a2  = 0. 3,   in a time period of about 10 sec. ,   shows an effec- 
tive technique for this simple case. 

The results obtained here indicate that the technique ap- 
plied to these test cases can provide valid parameter estimates in a 
relatively short computation time, and that performance is working 
properly.  Similar performance using analog computers for the same 
type of problems, including noisy forcing functions, was shown by 
the results in    [14]   ,  and hence the present system identification 
technique is applicable to the case of naval craft in waves. 

No noisy forcing functions were applied in these test cases 
for the exercise of a digital computer program because of the exten- 
sive effort required to produce a forcing function (by digital means) 
within a prescribed bandwidth for the representative test systems. 
This is an important requirement for system identification, i.e.  a 
proper input signal that would excite the system adequately, and that 
is obviously related to the effective response bandwidth of the system. 
In order to gain some insight into the effect of the forcing function 
bandwidth,   some experiments were made with the simple second 
order system given by Equation   (35)   that was treated above.  The 
forcing function in that case was obtained from a random number 
generator.  With the sampling and integration step at every   0.01 
seconds,  it was found that the id( ntification would not be achieved in 
that case.   The system never settled toward a convergent situation, 
and this was ascribed to the relatively high frequency of the forcing 
function relative to the system bandwidth.   Thus it appears that,  in 
any identification procedure,  the excitation should not be unrealistic 
in comparison to the expected range of frequencies of the forcing 
functions for the system to be identified.   This is a general guideline 
for all identification studies,  and should be considered for various 
simulation procedures in generating actual data.Since the occurrences 
in nature for various systems often have natural limits consistent 
with system behavior,  there does not appear to be a severe problem 
in that (more realistic) case. 

For the case of an   SES   craft,  the basic linearized mathem- 
atical model for vertical plane motion is given by 
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(40) mz   =   Z.z   +   Zz   +   Z.Ö      +ZÖ     -A^p + Z       v    ' 
z z a a r        waves 

I„tf -   U.d    +   M9   +   M.z   +   M   z   +   M (41) 
Y Q Q z z waves 

where   Zwaves   and   MWaves   are the wave-induced vertical force 
and pitch moment,   respectively, which are random forcing functions. 
The quantities   m,    ly   and  A (plenum area)   are known constants, 
and the unknown coefficients are   Z'z ,    Zz ,    Z •. ,    Z. ,  Mi ,    M- , 
Mj   and   Mz .   For these equations there is also appended a relation 
involving the pressure,   leakage rate,  fan characteristics,   etc.  which 
is derived on the basis of consideration of mass in the air cushion. 

In the representation given by Equations   (40)   and   (41) 
it is assumed that the center of pressure of the bubble volume is at 
the   CG,  and the mathematical model only represents the vehicle 
motion,  with no consideration of any seal motion or even of a direct 
presence of any seals.  Similarly there is no direct dynamic force 
influence of the seals embodied in the mathematical relations above, 
except for the possible influence of the seal forces in determining 
the total hydrodymamic stability derivatives in the equations. 

Mathematical experiments were carried out with these 
equations,  using computer generated data.   In these experiments on 
the application of the system identification method,   it is assumed 
that the pressure is a precisely known function,   which is still a ran- 
dom function in general,  and that this pressure variation is obtained 
from measurements.  Thus the problem is reduced to treating only 
the two degrees of freedom of heave and pitch,  and   8   coefficients 
have to be determined.   The basic procedures were applied to this 
problem,  which contained 4 state variables and 8 unknown coeffi- 
cients,   leading to a requirement for   156   equations for this case. 
Various difficulties in regard to long computation time and small 
movement of the coefficients were found,   and other approaches were 
considered. 

Instead of using a noisy input function to excite the system, 
which was attempted with the use of a random number   generator in 
the digital computer,  it was decided to make use of trajectory data 
that was generated using the large digital computer simulation pro- 
gram for rigid sidewall   SES   craft.  This particular simulation also 
included a complete representation of seal dynamics,  which allowed 
for seal motions   nnd   the generation of water contact forces that 
would be transmitted to the craft.  The type of wave system exciting 

1654 



minpuum iij wwmwmi  mi mil—HPIIIIIII i ,,,•!,,„m ■ ii-m. u.-»— i-' ™~..-^ '■'•' -        '■' ■'   ■ "■•   "•'  • ••'f ••••>••• '■«—r»- 

Dynamias of Naval Craft - System Identifiaation 

the motions v/as appropriate to a sea state that was generated by a 
summation of separate regular sinusoidal waves. 

The method of analysis used in the identification procedure 
is based upon assuming that the pressure is a known measured 
quantity,  which is the actual real case,  and it is also assumed that 
continuous time histories of   z,    z,   0   and 6   are available.   On that 
basis it is then possible to analyze the equations for heave and pitch 
separately,   so that only   4   coefficients are required in each case, 
i. e.  the derivative   Z2 ,    Zz ,   Z^ ,   Zg   can be obtained from a model 
based on Equation   (40),  while values of   MQ ,  Mg ,  M'z ,  and M 
are obtained from a model using Equation   (41).   Computations were 
carried out for the pitch motion case primarily,   since the heave 
motion is mainly due to the effects of pressure and both hydrostatic 
and hydrodynamic force terms have only a small influence for that 
particular motion. 

For the heave motion case the hydrostatic terms are the 
only contributions from the sidewalls, while there is a hydrodynamic 
term in addition that contributes to   M^ , as well as a small desta- 
bilizing effect due to the bubble pressure.   It is expected that the 
hydrostatic term is the predominant effect for   Ma in this case. 
However,   there is also some influence of the seals,   on the moment 
derivatives,  and that may be difficult to estimate accurately since 
the seals are not "statically" maintained in the water but partake of 
their own motion,  and hence are a complicated element in this entire 
representation.   The values found from the identification procedures 
are essentially the hydrodynamic stability derivatives divided by the 
particular inertia term in the equation,  i.e.  the mass   m   for the 
stability derivatives in the heave motion and the moment of inertia 
ly   for the pitch stability derivatives. 

Computations were made for the heave equations initially, 
with pressure as an input that is precisely known and using the values 
of   z ,    z , 0     and   0   as obtained from the simulated trajectory out- 
puts.  Values of the coefficients in the heave equation were found, 
and an examination made of the results.  In a number of simulations 
it was found that the signs of certain terms changed,  and in addition 
values of some coefficients were found to have signs that were dif- 
ferent than would be ordinarily expected.  When such "unrealistic" 
values are produced in a number of different identification studies, 
this is an indication that the parameter may not have a significant 
influence on the resulting motions of the craft.   The terms that did 
not appear to have a particular influence on the heave motion were 
the derivatives   2. ß  and   Z^   ,  and special studies were made to 
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determine whether they had any influence or could be discarded for 
further consideration.  It was suspected that these terms would have 
little effect,   based on the fact that the heave motion is primarily 
influenced by pressure effects and the only hydrodynamic or hydro- 
static terms that would influence the heave motion would be those 
terms involving heave motions per se.   Previous simulation studies 
of similar   SES   craft have demonstrated that the coupling of pitch 
motion into heave had little effect, and the results obtained for heave 
motion responses with these pitch derivative terms deleted were 
almost the same as when they were included.  Thus they  were neglec- 
ted in the identification experiments. 

A similar treatment in the case of pitch motion was made 
where the   4   pitch stability derivatives associated with Equation 
(41)   were estimated.   Computations made with all motions ( ß ,  8, 
i   and   z) assumed to be measured and available produced values 
for these particular derivatives,  with different magnitudes resulting 
for the coupling coefficients   Mz   and   M-    that could not be recon- 
ciled with simple estimates based on hydrostatic computations,  for 
example,   in the case of the derivative   Mz.  Similarly the change in 
sign of   M •   in different runs also indicated that this particular 
variable had a small influence on the resulting pitch motion,  and in 
accordance with the procedure applied in the case of heave motion 
these quantities were also neglected.  The results obtained for the 
derivatives   M ß   and   M g   , with all motions measured including the 
effect of   M^   and   Mz,  are shown in Figure 4,  while those obtained 
with the assumption that   M M: Oare shown in Figure 5, 
which uses only measurements of ß and   0   •  These results are suf- 
ficiently close so that it can be assumed that there is no significant 
influence of these variables, just as in the case of the coupling coef- 
ficients for heave motion,  and hence they can be ignored in future 
system identification work. 

An interesting result was obtained when it was assumed 
that only measurements of the pitch angle were available,  and in that 
case the stability derivatives are shown in Figure 6,  which indicates 
a well converged solution that does not deviate much from the initial 
guess values.  In order to determine if these coefficients are really 
appropriate to this particular motion, the pitch angle trajectory is 
shown in Figure 7,   together with the estimated trajectory using these 
values. It is seen that very good tracking of the observed pitch tra- 
jectory is indicated by these values and hence they can be used as 
the appropriate estimates from system identification.   This is in- 
dicated by a comparison of values given in Figure 6 with those in 
Figures 4 and 5,   showing only a small difference in M ß while there 
is some difference of the order of 25-30% for the derivative M^   . 
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Since the hydrodynarnic contributions to   Mß   by the sidewalls are 
known to be small (from other analytical studies),  and there is also 
a small influence of the destabilizing moment due to pressure,  these 
two quantities generally negate each other leaving mainly the hydro- 
static term.   This result appears to be sufficient,   since the estimate 
of   M^   given by Figures 4-6 is close to the value of   -9. 0 (for 
Mß /ly)   obtained from hydrostatics, and can then be considered to 
be a good estimate of this particular parameter. 

The magnitude of   M £   determined by this technique was 
somewhat different from the values estimated by theory due to the 
influence of the sidewalls.  The predominant contribution to this 
stability derivative is due to the rigid stern seal hydrodynamic forces, 
which depend upon the seal wetted length. Since it is difficult to 
determine this contribution due to the seals, and the simplified 
equation system does not include any representation of seal dynamics, 
the procedure only gives a measure of the overall seal contribution 
to the resulting vehicle dynamics in this case. 

It would appear on the basis of these results that the pre- 
sence of the seals has an important influence on the values of effec- 
tive stability derivatives in the linearized equations representing 
SES   craft motions.  Since they are not statically fixed,  and transmit 
their forces directly to the craft,   some other representation would 
be necessary to adequately model an   SES   craft together with the 
seals and their influence on the craft dynamics.   This would certain- 
ly require some representation of the seal motion as a separate 
degree of freedom,  together with measurements of the seal motions 
in order to characterize the seal parameters adequately. Since this 
was not done in a way that would provide useful information in the 
full scale measurements, no mathematical modeling was carried out 
for the seals (i. e.  for coupling the seal motions with the vehicle 
motions) in the case of simulation studies used for the application of 
system identification to such a system.   One possible influence of the 
seals that has not been included in the determination of various sta- 
bility derivatives is the fact that the seal forces due to the varying 
seal and bubble pressure have an effect on the seal as well, which in 
turn influences the resulting dynamics of the craft.  Since only limit- 
ed treatment of the hydrodynamic forces on the seal has been includ- 
ed,  that may be one reason why there is poor matching between the 
theoretical prediction of the damping-type stability derivatives that 
included the seal terms,  as compared to the estimates obtained from 
system identification. A much more precise match of measured data 
and quantities that must be modeled in the mathematical representa- 
tion has to be made in order to carry out successful system identi- 
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fication for vertical plane motions of   SES   craft. 

Although there has only beer a somewhat limited degree of 
success in identifying (i. e. ,   finding correct numerical values) the 
various important stability derivatives for heave and pitch motions 
using the trajectory data obtained from simulation studies with a 
complete mathematical model,   important insight into the require- 
ments for achieving improved results was obtained.   The importance 
of seal dynamics and forces ; the lack of significant influence of 
certain coupling coefficients ; the effect of measurement of more 
state variables ; and the influence of sampling time and integration 
step size on stability and conv -rgence of the solutions,   are examples 
of the various conclusions obtained from these particular studies.  In 
order to obtain more understanding of methods for treating full scale 
data,  which is the ultimate objective,  the methods were applied to 
some full scale data. 

This data was recorded on magnetic tape,   in digital form, 
with the "important" information necessary for dynamic analysis 
provided by samples at the rate of   100 cps.   The data useful for the 
present analysis was   CG   heave acceleration   (z),   bubble pressure 
(p),  and pitch angle   ( 6 ).  Pitch rate data   ( 6 )   was recorded at a 
much slower rate   (10 cps)   and hence was not compatible with the 
pitch angle data,  as well as possibly losing important information due 
to improper sampling at too low a frequency (the Nyquist sampling 
rate for the present   SES   craft corresponds to   20 cps,   or sampling 
every   0. 05 sec. ).   No information on the heave motion except heave 
acceleration was available and hence   z   and   z   would have to be 
found by integration operations,  which have more stringent sampling 
and time increment requirements.  In addition,   the actual data mea- 
sured during the full scale tests suffered from telemetry errors that 
result in sudden "drop-out" of data.   This caused "spikes" in the re- 
sulting data,  above and beyond the generally spike-like appearance 
of much of the data,   especially for bubble pressure and accelerations, 
and this data was specially treated by filtering and interpolation pro- 
cedures to assure a relatively continuous and "smooth" data output. 
Thus the measured data itself may have certain inherent defects from 
the point of view of its applicability as a source of trajectory data for 
system identification,   while it is still perfectly good for its original 
purpose of providing information on vehicle response characteristics 
(e.g.  level of accelerations,   maximum and average pitch angles- 
bubble pressure variations,  etc). 

The experience in applying this method of system identi- 
fication td full scale data obtained from tests of the   SES   craft in ir- 
regular waves provided valuable guidelines for future applications. 
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Various procedures were used to carry out the required integrations 
Of heave acceleration to obtain velocity and displacement records, 
and the sampling times,  integration time step,  and numerical inte- 
gration techniques used had to satisfy certain requirements for use 
in system identification work.  Similarly it was found necessary to 
have proper accelerometers that provided data relative to a "true" 
vertical,  rather than with reference to the craft body axes, which 
requires a properly aligned accelerometer system,  i. e.  a "stable 
table".  In addition,  accurate data on the craft weight,    CG   location, 
moment of inertia,   etc.  appropriate to the actual test condition in 
full scale must be available so that the precision of system identifi- 
cation can be fully realized using the representative mathematical 
model. 

Asa result of the analyses illustrated here,  it appears 
to be possible to determine the numerical values of certain stability 
derivative coefficients in a simple linear mathematical model charac- 
terizing vertical plane motions of   SES   craft.  Some coefficients 
have been shown to have negligible influence on different modes of 
motion as a result of the identification analyses,   thereby verifying 
similar indications from separate simulation studies.   While the 
more simple hydrostatic-type stability derivatives have been found 
with consistent values close to those from theoretical predictions, 
the damping-type terms are shown to be affected by force contribu- 
tions that probably arise from the seals.  It is thus necessary to 
include additionel degrees of freedom in the mathematical model 
for vertical plane motion to represent seal motion and seal forces 
that are transmitted to the craft. 

Other requirements for successful system identification 
are that the data should be sampled, for use in digital processing, 
at a rate equal to   10 times as fast as the highest frequency of in- 
terest in the expected vehicle response,  and possibly faster depend- 
ing upon the number of integration stages to be applied for determin- 
ing state variable trajectories.   On this basis, and with the proper 
mathematical model (including seal dynamics) it can be anticipated 
that successful estimation of the important stability derivatives for 
SES   craft vertical motion can be achieved using measured data ob- 
tained during tests in a random seaway. 

Another application of this particular technique was made 
to the case of a hydrofoil craft,  using data generated on a digital 
computer. In that case the equations were exactly those given by 
Equations   (14) - (20), with the addition of random forcing functions 
on the right hand side of Equations   (14)   and   (15),  which were 
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supposed to represent the wave-induced vertical force and pitch 
moment due to waves.  In addition to the excitations due to random 
waves,  various step changes in commanded height were made at 
different times in the trajectory records. 

For the present application,  the elevator and flap angles 
were generated in accordance with the transfer function relations 
given in Equations   (18) - (20)   but their time histories were assumed 
to be known (i. e.  as measured input) and hence inserted into the 
identification equation system.   This procedure is sensible,  and also 
serves to reduce the order of the equations to be treated by a signi- 
ficant amount,  thereby reducing the required computation time.  In 
the present hydrofoil case the magnitude of the   "noisy"   excitation, 
which was generated by filtering the output of digital random number 
generators,  was very small as supplied by the sponsoring agency 
who provided such trajectory data.   Thus there was little to "drive" 
the system by means of this noise and the identification depended 
upon use of the larger disturbances provided by the commanded step 
changes due to the controls. 

The generated trajectory data used in the idertification 
was that of pitch angle   ß ,   pitch rate 6  , and the   Cl   heave dis- 
placement   h   which was obtained from combining signals involving 
the height sensor,   pitch angle,   etc.  As mentioned above,   the eleva- 
tor and flap deflection   6 e   and     6 f   were also used as known input 
data, and all of this trajectory information was sampled every   0. 05 
sec.  for use in the identification equations.  With   10   unknown coef- 
ficients and   4   state variable equations, a total of   210   differential 
equations must be solved for this problem (by use of symmetry 
considerations in the   P^j   matrix elements,  this can be reduced to 
119   equations).   Different runs were made for the trajectories 
representing the same craft,   starting with an initial guess for each 
of the   10   unknown parameters.   Typical outputs illustrate the man- 
ner in which the various coefficients evolve as functions of time,  as 
shown in Figure 8.   Those values that appear to approach a limit 
after a period of time are then used as initial values for another run 
with the recorded trajectory data (since the continuous "noisy" 
forcing functions were not sufficiently large to excite the main dy- 
namic responses),  and a comparison of the predicted trajectory 
(using the estimated coefficients in the equations) with the recorded 
(i.e.  generated) trajectory illustrates how well the estimated para- 
meters produce adequate "tracking" of the actual system responses. 
An illustration of these results,  where the final values of the es- 
timated parameters are established since they do not change signi- 
ficantly throughout the time period of the experiment,  is shown in 
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Figure 9.  The good agreement between the observed motion responses 
and the predicted trajectories is exhibited in this graph,  and the final 
estimated parameters are listed below together with the actual (true) 
value used in the computer simulation that generated the observed 
data. 

Table   3 

Hydrofoil Estimated Parameters From Noisy Data 

Parameter Estimate Actual   Value 

m,' = mC. 300-350 375 

m. = mC, 
r           2 

900 892 

C3 
.50 .491 

C4 
.16 .167 

C5 2.2 2.053 

C6 
.57 .521 

C7 
2. 13 1.829 

C8 
. 55 .457 

S . 18 0 

c.« . 18 0 
10 

In this particular case the values of   mC,    and   mCj 
(where   rr.   is the craft mass) did not change at all,  throughout the 
total time of computation from the original initial guess value.   The 
good estimates of the added masses,  together with the probable 
small influence of the differences in values of added mass on the mo- 
tions,  resulted in satisfactory trajectory tracking with these values. 
Similarly the nonlinear lift terms, represented by Cg and CJQ,  did not 
appear to have much influence either since the motions (and angles) 
were small,  so that the data itself did not allow an adequate estimate 
of these values, just as in the case with the iteration method discussed 
previously.  While there were some small differences in the estimated 
values of   C 

5*    ^6 ' 
and C     as compared to the actual values, 

o 
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the ru C^/CQ   and   C /C8   ,  which is the form in which these 
coeffioenis are determined, are about the same from the estimates 
and the true values.  In general the values shown in Table 3 are suf- 
ficiently close to represent a successful identification of the system 
parameters,  as is also indicated by the trajectory matching in 
Figure 9. 

Full scale responses of a hydrofoil craft (essentially the 
same craft treated above using simulated responses) were provided 
as a means to test the techniques developed herein for system iden- 
tification.  This data was supposed to be obtained as a result of im- 
posing various commands to the craft controls (i. e.  elevator and 
flaps) in an ostensibly smooth seaway,  i. e.  they were expected to 
represent transient responses of the craft. The basic equations re- 
presenting the craft motions included the additional degree of freedom 
due to surge;  the craft propulsive thrust force was represented in the 
equations as a function of propeller   rpm, and drag forces (which 
included quadratic terms in resulting angle of attack) were al«o pre- 
sent in their influence on surge and also the pitch moment (see    [lO] 
for a more detailed discussion of these equations).  The initial intent 
was to apply the iteration method for transient responses that was 
discussed previously,  and this approach was attempted.  The equations 
were simplified to eliminate the surge degree of freedom (since the 
speed was almost constant during these particular maneuvers) and the 
iteration method was applied.   The results showed a lack of conver- 
gence and/or stabilization throughout many attempts,  and further 
simplification   was made to eliminate the drag forces from conside- 
ration since the motions were generally small. 

For the more simplified representation of the craft 
dynamics success was still not achieved due to lack of convergence 
and/or stabilization of the parameter estimates, although for some 
portion of time the estimated trajectories seemed to be in fair coin- 
cidence with the measured data.  The experimental trajectory data, 
which included the pitch angle,  pitch rate, and the height sensor time 
histories, did exhibit fairly large "noise" superposed on the main 
craft responses due to the commanded control deflections.  A typical 
illustration of the control deflections experienced in the full scale 
tests is shown in Figure 10,  and similar types of noise were present 
in all of the recorded data (the observed data from the tests was 
presented in digital form every   . 05 sec., as a result of digitizing 
the measured craft motion tape records).  The record for the flap 
deflection really represents the average of starboard and port aileron 
deflections, which was the chosen method of representing this control 
action in the analysis of this trail data.  Simple smoothing operations 
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applied to the data still did not allow proper identification of the 
required parameters by the iteration method, and hence the sequential 
estimation technique was applied. 

The equations representing the hydrofoil craft motion for 
the full scale case were simplified to represent only heave and pitch, 
as previously considered for the computer generated data.  However 
nonlinear lift terms were still retained while the added mass terms 
were kept fixed (assumed known) at the values 350 slugs forward and 
950   slugs for the rear foil.  The equations contain expressions for 
the lift forces on the forward and rear foil,  which are represented in 
terms of the lift coefficients as : 

C
L„ = \y + Ve ^'j Fi +Ki hr)        <42) F 

where 
Al   +   V F 

Fi   =   c   + / • <43) 
1 J F 

and similarly 

CLR 
= (ir + Vf +>")   F2 'S^h)       w 

A2   +   B2   f R 
F =   -J 2__R- (45) 

2 
C     +     f 2 f R 

The   10   unknown parameters are   Ke ,   K,  ,   A, ,   B,   ,    C.   ,   K£ , 
K2 ,    A2 ,    B2 ,    C     which are similar to the coefficients previously 
represented ; i.e.     Ke   =   C3 ,    K£   =   C4 ,    K,   =   C9 ,    K2   =   C10 . 
The representation of    F,     and   F2    in Equations   (43)   and   (45)   was 
proposed as the required form for the depth effect on lift by the spon- 
soring agency,  who supplied the proposed mathematical model. 

The analysis of the full scale data was applied to the 
first maneuver (Experiment   1) in the vertical plane,  with the initial 
guess of the coefficients taken from the results of the computer 
generated data analysis discussed above, and the initial values of the 
coefficients in the depth terms   F,   ,  and   F2   were taken as 1.0. 
A   10 sec.  data portion was analyzed twice,  with the parameter es- 
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timates obtained from the first "pass" used as the initial guess for 
the second pass.  The results are shown in Figure 11 for the manner 
in which the parameter values change as functions of time.  It is seen 
that all of the parameter values stabilized except for  Kf  which tended 
to fall off toward the end of the maneuver. Examination of the various 
motion and deflection time histories showed erratic fluctuations in 
J£  in this region ,  so that the value of  Kf  before the fall-off was 

retained. These coefficient values obtained from Experiment 1   were 
then used as the initial guess values from analysis of another maneu- 
ver of the craft, denoted as Experiment 4 ( the control deflection for 
that case is shown in Figure 10). 

In the analysis of Experiment 4   the initial value of  Ke 

was inadvertently taken as   . 05   instead of   . 50. However the esti- 
mate of  Ke   rapidly moved back to a reasonable value as time in- 
creased in the first pass.  All of the other parameters did not show 
much change from their initial values, which were taken from the 
results of Experiment 1   and from the first pass for the second pass 
case. An illustration of the variation of the parameters during the 
analysis of Experiment 4   is given in Figure 12. A tabulation of the 
values obtained from analysis of the full scale hydrofoil data is given 
below in Table 4. 

Table   4 

Hydrofoil Parameters-System Identification Using Full Scale Data 

Estimated Value Parameter 

K 
e 

Kf 

Kl 

K2 

1 
Cl 

Al 
Cl 

Bl 
Cl 

.32 

.33 

.07 

. 14 

.10 

.97 

1.30 
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Parameter Estimated Value 

■p- .085 
C2 

A2 
-^ .965 
C2 

ci 

With the parameter values established by this procedure! 
the resulting trajectories of the craft are presented in comparison-' „ 
with the measured full scale data (from Experiment 4) in Figure 13. 
The time histories of  CG   heave   h,  pitch angle   9 , and pitch rate 0 
are compared in Figure 13, and it can be seen that there is generally 
good agreement using the estimated coefficients obtained from this 
system identification procedure.  Some of the small differences can 
be explained,   since the heave motion is obtained by combining various 
measured signals, including that from the height sensor which will 
contain "noise" due to local ambient waves as well as waves generat- 
ed by the craft motions themselves.   The lack of more precise agree- 
ment in the final values of the pitch angle is due to the inability of 
the present mathematical model (a simplified quasi-linear model, 
with reduced degrees of freedom,  and neglecting drag and thrust in- 
fluences,  etc. ) to provide a very accurate measure of trim condition 
near or at equilibrium.  The deviations in pitch rate are actually 
quite small in magnitude as can be seen from the scale in Figure 13, 
so that the "tracking" by the predicted   9   trajectory is better repre- 
sented by the ability to change sign and generally follow the measur- 
ed data,  which is done sufficiently well. 

Examination of   Figure 12   shows that the representation 
of the parameter values associated with the depth variation expres- 
sion is exhibited in terms of r-,"i^~ «"PT •  etc.Th« values of 4- and 
fr for these functions seem to approacn zero,   so that the resulting 
values of   F    and   F    behave in an almost linear variation with tp  £ 
while these   F.   and   F    functions approach an almost constant value 
as     F, R   vary for the representation used in the case of the compu- 
ter generated data model.  This is shown by the curves in Figures 
14 and 15. A means of judging the effect of this difference is to com- 
pare the values of the products   KeF1    and   KfF.   obtained from the 
full scale tests with the values used in the computer simulation ma- 
thematical model,   since these terms represent the lift effectiveness d 
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the controls.  The product  KeFj    ,  which varies si.'ghtly throughout 
the depth range covered in the full scale tests and tie simulation 
data,  is found to compare very well using the respeitive parameter 
values obtained in each case.  This indicates the same lift effec- 
tiveness being manifested by the forward foil elevator control. 

The values of the product   KfF_   ,  representing the rear 
foil flap effectiveness were quite different,   ranging up to about 3-4 
times as large in the case of the full scale data value when compared 
to the mathematical simulation model value.  This result indicates a 
possible difference in the flap areas (or other dimensional changes) 
between the values assumed for the mathematical model exercise 
and the actual craft flap characteristics,  or it may also imply a 
defect in the form of mathematical representation used, as given in 
Equation   (44).  Still another possibility is that since there were 
separate port and starboard flap deflections,  the use of an average 
value may not be proper for the present application test of system 
identification ; there may be some rolling motion developed by the 
different flap deflections that causes different relative immersions 
on each side of the craft ; etc. 

With regard to the question concerning the basic mathem- 
atical model given in Equation   (44), as well as the representation 
in Equation   (42),  the quantity   Fj   (or F1 ) represents the foil lift 
coefficient rate   CL      for the particular foil.  The depth dependence 
inherent in this type of representation appears to be appropriate, as 
exhibited in Figure 14, which was the basis for its selection in the 
mathematical model.  However that functional form of   F.     and   Fj 
implies that the same depth dependence is present for the control 
elements of the foil as is the case for a total foil angle of attack 
change.   This does not appear to be a reasonable assumption,  in 
view of the small sizes of the control element chords relative to the 
craft foil submergences.  It would appear to be more appropriate to 
assume a realistic depth dependence,  with known values similar to 
the variation exhibited in Figure 14,  for the terms associated with 
the angle of attack variables in Equations   (42) - (44).  The unknown 
functional form of   F1    and   Fj    ,  which would just be associated 
with the unknown elevator and flap parameters   Ke   and  Kf ,  would 
then be sought by means of the present system identification tech- 
nique to determine the appropriate parameter values and check the 
resulting trajectory tracking. Thus the results of system identifi- 
cation provide a means of judging the general validity of particular 
mathematical model representations that are assumed to represent 
vehicle dynamics. 
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The results demonstrated here show that the present 
sequential estimation technique can provide accurate estimates of 
parameters as a means of system identification for cases where 
random-noise interference or excitation is present.  For the case 
where the data was generated on a computer,  and the mathematical 
model was precisely known, quite good agreement between estimat- 
ed parameter values and the true ones were demonstrated for the 
hydrofoil case.  The analysis of the full scale case was partially 
successful,  in that generally reasonable parameter values were 
found that yielded good tracking of observed trajectories when using 
well stabilized values of the parameter estimates.  There is a 
question concerning the proper form of the equations to represent 
the depth dependence influence on the effectiveness of the controls, 
as well as a  possible influence on the nature of the measured input 
data on the results,  when examining the results of this system 
identification procedure.  These questions aid in the development of 
more rational mathematical model representations as well as on the 
nature of data acquisition for use in this type of analysis. 

There are a number of features of this particular se- 
quential estimation technique that have been observed in the present 
work.   These features are concerned with methods used to obtain 
convergence and useful solutions,  as w-1! as information on com- 
putation time requirements.  It is easily seen that the computation 
time generally increases as the number of variables (including 
unknown parameters) is increased.  A general rule is that the time 
increases as   n3    ,  where   n   =   sum of number of state variables 
in equations and the number of unknown parameters.  For the pre- 
sent case of the hydrofoil problem,  with   n   =    14,   the computation 
time was   22 times longer that the "real time" extent of the observed 
data,  and this is for the case of a sequential estimation technique 
that would minimize computation time as compared to the classical 
nonsequential estimation schemes (with the problems being run on 
a very fast large comnuter,  the   CDC   6600).   This time could be 
reduced by about   50%   by applying symmetry considerations to the 
Pj:   elements,  thereby reducing the number of equations to be solv- 
ed, as mentioned previously. Another possibility is to separate the 
equations into separate sets of a smaller number of equations, 
by mean», of partitioning,   which could  then reduce the time si- 
gnificantly depending on the number of partitioned elements.   These 
particular computational modifications were not carried out in this 
work due to the increased programming effort required,  and the 
fact that the main objective of the work was to develop the capability 
of system identification per se.   These approaches to reduce com- 
puter time remain as a further step in providing a more "computa- 

1667 

tm*m 



■HWWIPI^ ■—"--' '       —'"■"   '" '""■■'"•"" ""■■   

Kaplan, Sargent and Goodman 

tionally" efficient method for system identification purposes. 

Various techniques for reducing the time (i. e.  real time 
of the observed data) for convergence of the parameters, which would 
then also reduce total computer time,  were also found.   Thus an im- 
proved convergence time is found when the constant matrix elements 
on the right hand side of the gain equations (i. e.   the P-equations, as 
shown in Equation   (30) ) arc made larger,  but that improvement does 
not show significant gains for larger equation systems.   The most 
useful approach is to vary the magnitudes of the elements in the 
weighting   Q-matrix   that appears in Equations   (29)   and   (30)   in 
order to reflect the importance of measured state variable data that 
are well known. Thus larger values of the matrix e'ements are used 
for particular variables that are known to be measured accurately 
and directly,   rather than data that is not directly observable or has 
a lower degree of accuracy due to instrumentation difficulties.  Thus 
these particular strategies are useful means of achieving more rapid 
convergence for this type of system identification technique. 

CONCLUSIONS 

The present paper has demonstrated the feasibility of 
using different system identification techniques to determine the 
values of major parameters and coefficients in a mathematical model 
representing the motion of different naval craft.   This was demons- 
trated by application to a number of diverse vehicles,   such as a 
surface ship,  a hydrofoil craft,  and an   SES   craft, using data that 
was generated on a computer (with known coefficients and a known 
mathematical model) as well as from full scale tests.  Different 
techniques are used,  in accordance to the extent of the influence of 
noise on the system (and its measured responses), and their limi- 
tations as well as capabilities are described in the paper.  Certain 
virtues of the two different methods used are quite important,   such 
as having a means of determining a level of confidence for different 
converged parameters while carrying out the identification, as well 
as an indication that a particular mathematical model is not fully 
appropriate for representing certain features of the craft motions. 
The two techniques demonstrated here are generally applicable to a 
number of different stability and control problems of naval craft, for 
both full scale and model scale data and analyses.  Depending upon 
the degree of accuracy and the procedures used for data acquisition, 
these methods can be applied to determine stability derivatives, 
nonlinear coefficients,  etc.  in a structured mathematical model 
representation,  from data taken in model tanks.   Such data would 
only involve motion trajectory measurements of free models and could 
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provide a simpler means of determining the required dynamic data 
without recourse to complicated special purpose test apparatus. 
More opportunities to apply these methods for this purpose will pro- 
vide a final demonstration of its utility and practicality. 
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Figure 1.    Estimation of states for second order system, 
transient response. 
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Figure 2,    Estimation of parameters in second order system, 
transient response. 
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Figure 3.    Estimation of state and unknown parameter for third 
order system,  transient response. 

1673 



map»»ii uiiiiuiipiiimi 

Kaplan,  Sargent and Goodman 

o m 

o 
n 

u 
0) 
0) 

o 

o CO • • 

■a 
§ 
o 

XI 
o 

kl 
o 

u 
4) 

T3 

V 

s 

s 

• H 

01 

W w 

X 

1674 



i  \i\tiimm^mmn^mimmm •^■—-^■" ■-■■' ■' 
I      ■.■■•.■     ■     ■ .!   |. 

Dynamiaa of Naval Craft - System Identification 

g 
■a 
o 
E 

X. 
o 

o 2 

a 2 
5 S 
r <* 
2 ß 

•■H "O 

M 

O 

f Z v £ 
SI «> 
S5 

■M CO 
■ w 

4) 

60 

£   IM 
<r>|   >i 

1675 

■iMa ■M 



wm^^m p. ■■iffipii  i  immwn^^^mmm^mf^^^r^^T' 

Kaplan, Sargent and Goodman 

n u 
ai 

o 
m 

o 
n 

u « « 

o 

u 
o 

2 
H 

M u 

o 
2 

v -o 
•o  V 

1 8 
2 8 

o 
« 

I _L 

a\ 

o 
0« 

a» 
ao 

"SS 
U M 

V 
u 

X   IM E  IM 

1676 



^mm ^m* **^m'9m*i*mimmm*i**m 

Dynamiaa of Naval Craft - System Identification 

v *> 
> 9 u e 
«I H 
n *> 
a ■ 
o <i 

ü   § 
u (0 

W 

O 

>. 
u 
o 
u 

n) 
»4 

00 

00 
c 
n) 

o 

§ a 
01 

U 
0 
u 
(0 

> 
U 

• H 

4) 

W 

u 

3, 

J3     . 

<a    . 
ob 

3   .H 

1677 

ttamammmmmm 



Pf1   , Jim III» I» II ■IM I        '   ■•"■ ■     ■       '■■      •."—■.■-■■-  ^w^.   wm,,..,...,»,^.^« 

i.oH 

0.5' 

Kaplan, Sargent and Goodman 

i r 
t,  sec, 

T 

1.0- 

0.5- 

 r— 
8 

t,   sec. 
TT i 

*-\ 

2-r 

8 
t,   sec. 

10 1 

i.oH 

o.s-r 

0 T ii 

t,  sec. 

Figure 8   Variation of hydrofoil craft parameter values (as a function 
of time) from computer generated data. 
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Figure 10   Time histories of hydrofoil control deflections, full 
scale data. 
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Figure 11   Variation of hydrofoil craft parameters from full scale 
data.  Experiment 1. 
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Figure 12   Variation of hydrofoil craft parameters from full scale 
data, Experiment 4. 
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Figure 13 Comparison of measured and predicted trajectories using 
estimated parameters for hydrofoil craft, full scale data. 
Experiment 4. 
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DISCUSSION 

D.S. Blacklock 
Hydrafin 

West Chiltington, Sussex, U.K. 

Mr. Christopher Hook, the inventor of the hydrofin had to 
leave two days ago for England, but he has two friends in this gather- 
ing. Professor Weinblum and Dr. Saint-Denis and I think another 
gentleman was to have come here. Dr. Todd. They all helped Mr. 
Hook in 1951 after he had shown the Red Bug hydrofoil at New York 
Boat Show. Hook believes in trying to learn through the seat of his 
pants : ever since 1944 when he converted a scrap cockpit he has been 
risking his life on hydrofoils with stability devices, and for this he 
deserves a great deal of credit. It is now thirty years since his 3-ft 
hydrofin was tested in the sea near Simonstown Naval Base but with 
the growing importance of Oceanology there is still time for the su- 
periority of his design to be recognised and for large-scale construct- 
ion to be undertaken by Prance, America and ourselves. 

The paper which we have just been listening to could be entitl- 
ed "Out of the test-tank and into the computer". I wonder whether we 
are better off. Perhaps what we tend to do is to be so dazzled that we 
fail to notice the paramount criterion, parameter or coefficient, viz. 
"low-g stability".   The other eleven factors discovered by the authors 
(or nine factors for their hydrofoil) are irrelevant. What we are try- 
ing to design is a stabilising homeostatic device, something that is 
stable in spite of speed. If now we invert the criterion of stability we 
have one of the two components of a sensible unit for costing sea- 
transport, K/G for "knots over g-rating". What we hope to provide is 
a service, say ton-miles,  where one ton provides space for three 
passengers, but people pay not only for a service to get across the 
Channel, la Manche, but also for speed, and speed in rough weather, 
and comfort in rough weather. Garbage IN, garbage OUT and we can- 
not afford to build surface-skimmers on bad criteria. Criteria and 
costing are very important, if you are trying to be commercial. Yet 
another criterion is the smallness of the craft. 

This brings to mind the fact that although the Tucumcari gun- 
boat which has just returned from Vietnam is a wonderful device and 
the films are absolutely superlative, it was so costly and big that there 
is no commercial hydrofoil in the United States.' at the present time 
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(footnote A). There are a dozen surface-piercing foil craft at Hong 
Kong, mainly made by the Japanese, but no country has a hydrofin 
for commerce (footnote B). 

I realize that my remarks are disjointed and I apologize to the 
very able Oceanics team. I am myself a statistician and I am enorm- 
ously impressed by the precision of the authors' predictions. C'est 
magnifique, but is it what we want ? I am reminded of a paper read to 
the Royal Statistical Society Journal twenty years ago - and this should 
.should please Professor Telfer - by Barnet Wolf on multi-factor re- 
gression analysis. He called it the add-a-variant s^steip. for he added 
a factor at a time and tested for significance. Does the added factor 
improve your predicting of the criterion you are really interested in- 
namely, stability at speed ? If not, and if you carry on this testing of 
possible factors, you will end up with a sensible regression equation, 
having 5 or 6 inputs. Another method is to confine attention to a single 
factor with a sequence of observed values over time. We cannot afford 
to have clutter. We just simplify the problem and predict, whether by 
multi-factor regression or by auto-regression (footnote C). 

If I may have one more minute I should like to say that after I 
had used my firm,  Plasticol, Ltd., to exhibit the hydrofin in London 
in January 1969 our Centre of Industrial Innovation at Strathclyde 
University decided to do a computer study as advocated by the Ocean- 
ics Team. The report ran to 66 pages and cost   £ 10,000, but it did 
not produce the low-cost sea-transport. There was no man willing to 
risk his money in producing hydrofoils for the British Navy or for 
anyone else. So we turned in desperation to the Daily Express, whose 

A. T^e authors do not name their hydrofoil, but Mr Kaplan told me 
it was the (naval) Plainview cf Grumman-Lockheed ; this craft has 
now joined the costly ladder-type hydrofoils of the Canadian Navy in 
retirement. 

B. My prepared comments had been handed to the Chairman, but 
they did refer to the re-designing of hydrofin by Cox & Gibbs in 1952, 
with sonic sensers, for the US Navy. Mr Hook has been asked to de- 
scribe the system at the January 1972 Symposium of the Aero-Space 
Corporation, Los Angeles. 

C. Auto-regression includes the Box Jenkins formula and my own, 
Orthodiction, with its freedom from swings with runs of errors in 
prediction sharing the same sign. 
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reporter is here, and they found a school in Devon with 20 boys and 
for the sum of  £ 500 they have built a 24-foot sailing hydrofin which 
in my opinion will win the £ 2,000 race next month financed by 
Player's cigarettes (footnote D). I am sorry if I have been advertis- 
ing and I realize now that I have. Would you please edit my remarks 
before they appear in the Journal. 

DISCUSSION 

Peter T. Fink 
University of New South Wales 

Auatrclia 

It is, of course, marvellous to have a transfer of an advanced 
control technology concept into this field and obviously a lot of success 
has been achieved. What we are dealing with seems to be a very so- 
phisticated kind of curve fitting and I wonder if Mr Kaplan is aware of 
one thing that was mentioned at the IUTAM meeting on manoeuvrabi- 
lity and control in London in April. After a discussion of a very im- 
pressive Ph.D. thesis from MIT by Lt. Hayes of the United States 
Navy, in which he was adapting similar concepts to the evaluation of 
a vast number of coefficients describing a deep submergence rescue 
vehicle, and I think pretty successfully, the discussion after that by 
Mr Nils Norbin of Sweden revealed something which I found very di- 
sturbing and which I think must have a bearing on this sort of game as 
well. He was discussing the question of what sort of law to fit to a yaw 
rate rudder response curve, say  y  as a function of x  and he took 
first of all the sum of a linear term, with an   x   modulus   x2term. 
Then he did it again taking a linear term with a different coefficient, 
plus an x3 term. He achieved very nice coincidence of the experim- 
ental points with both of these curves, but in one case the linear coef- 
ficient was 50 per cent different from that obtained for the other case*. 
So it looks to me as if a very great deal depended on just how you 
chose these powers, and when you get to much more sophisticated 
systems like those Mr Kaplan deals wif-"   it must be much harder to 

D.    I was wrong but only because the British entrepreneur had to 
make do with existing moulds for the floats. The British climate is 
inimicable to the privte entrepreneur. 
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make the intelligent engineering decisions that he is calling for. 
would be interesting to have his comments on that. 

It 

REPLY TO DISCUSSION 

Paul Kaplan 
Oceanias Ina, 

Neu York,  U.S.A. 

A number of points are raised by Mr Blacklock. With regard 
to the particular case of a hydrofoil craft, the design of a control 
system for such a craft is a function of the basic dynamics of that 
craft, which differs from that for a surface ship, a submarine or an 
SES craft. This difference is manifested by finding what are the basic 
dynamics of the vehicle and then using that information to guide the 
application of particular sensor outputs to provide commands to the 
control. This is most often done nowadays for very complex systems 
by means of computer simulation, and certainly well before actual 
experiments with the vehicle at sea. 

The procedure in this paper is not in any way to be consider- 
ed as statistical. What we are doing here is applying something that 
is independent of actual statistics but functions within the domain of 
randomness, which represents the real situation. We are finding 
values of the coefficients that are supposed to be invariant for a ve- 
hicle throughout the whole range of maneuvers or motions that it will 
experience. This is a way of dealing with full scale dynamics, which 
is really another method of replacing getting data from a towing tank 
under controlled tests. When you go to sea how is one to find out what 
the numerical values of the coefficients are ? All you have is a result- 
ing trajectory for which there are a lot of possible ways that one can 
"fit" some representation to. However there is something that is 
unique and invariant which must be close to what is being measured in 
the tank in order to allow an analyst to structure a representation of 
the original system. That is a feature of this method, since it brings 
you to that point of comparison with model test data as well as the ef- 
fective values of the coefficients representing the full scale craft dyn- 
amics. 

The next point is in regard to Dr Fink's comments. There are 
a number of features of the work of Lt Hayes that are somewhat si- 
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milar to our own results, although the particular cases considered 
for illustration are different in each paper. There is a problem which 
has not been mentioned and emphasized in any evaluation of coef- 
ficients using system identification. This is concerned with the time 
required for obtaining convergent values of the coefficients, which in 
the case of the hydrofoil craft required computation time 22 times as 
long as real time (of the trajectory time history) in order to deter- 
mine these values. We had 14 state variables, including the coef- 
ficients, and since computation time increases as the cube of the 
number of state variables in your system, too many coefficients in a 
representation will involve a tremendous computational effort. Thus 
the simplest possible representation of a dynamic system is neces- 
sary when carrying out system identification, as well as any simulat- 
ion work, as long as the major features of the craft dynamics are 
adequately represented. 

With regard to the aspect of fitting the curve that Mr Norrbin 
presented, I am fully aware of the paper wherein he presented these 
results, since I have seen it and also looked into the same question. 
The real issue of importance is not the value of the linear coefficient 
that is obtained by using different representations (for the nonlinear 
portion of the force) in the mathematical form used to express the 
force. The major point is how well the overall representation fits the 
total measurement of the force, and most important of all how well 
whatever mathematical formulation you use for the hydrodynamic 
forces and moments results in matching the trajectory of the vehicle 
under varied motions and maneuvers. Thus it is easy to see that there 
is more than one mathematical form that can represent any set of 
data, with different coefficients associated with different powers of 
the variables, and the particular choice may be dictated by consider- 
ations of formulation, ease of manipulation and subsequent evaluation, 
etc. I hope that this answers your question. 
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NON-LINEAR SHIP WAVE THEORY 

Gedeon Dagan 
Teahnion Haifa, and Hydronautias Ltd 

Reahovoth, Israel 

ABSTRACT 

Systematic attempts to extend ship wave theory into 
the non-linear range are described. The basic deri- 
vations are carried out for two-dimensional flows 
and the bearing of the results on corresponding ship 
wavemaking problems is discussed. The main topics 
are : (i) the derivation of the second order wave re- 
sistance for a body generated by an arbitrary distri- 
bution of sources, (ii) the wave resistance at low 
Froude numbers. A uniform solution, valid at low 
speeds, is for the first time presented and (iii) a few 
preliminary experimental results on the bow break- 
ing wave. 

I - INTRODUCTION 

The linearization of the problem of free   surface gravity flow 
past a   ship body has   (unlike the equivalent aerodynamical problem) 
a two-fold effect  :  not only the body boundary  condition is   simpli- 
fied,   but also  the free  surface boundary condition is linearized. 
Although these two simplifications are associated with the same first 
order term in a perturbation expansion in which the uniform flow is 
the zero order leading term,  the mathematical difficulties associated 
with the nonlinearity of each one are quite different.  It is relatively 
easy with the present large computers to derive a solution which sa- 
tisfies  the boundary condition of zero  normal velocity on the hull 
body.  It is extremely difficult, if not impossible,  to satisfy the non- 
linear  free surface condition,  even by numerical approaches. It is 
no wonder,  therefore,  that effort has been spent in the last years for 
solving the flow past ship like bodies, while keeping the free surface 
condition in its linearized version (the so called Neumann -Kelvin 
problem).   The aim of  such  studies was  to determine the  range of 
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validity of the usual linearized solutions and to improve them, when 
necessary.   This way it was hoped that a better agreement between 
theory and experiment could be achieved. 

The present work is dedicated mainly to the influence of the 
nonlinearity of the free-surface conditions on the wave resistance. 
Since at this stage we are interested in elucidating problems of prin- 
ciple and basic concepts, we ha"e carried out the derivations for 
two-dimensional flows.   Two-dimensional solutions are obtained much 
easier than the three-dimensional ones due to the use of the powerful 
tool of analytical functions.   They permit to find in a simple way quick 
answers for problems which in three dimensions need a tedious nume- 
rical treatment.   It is realized,  however,   that the final conclusions 
about the applicability of the results derived here to flow past ships 
could be drawn only after their extension to three dimensions.  We 
consider,  nevertheless,  at each stage of the present study,  the impli- 
cations of the results to associated ship problems. 

II - THIN BODY EXPANSION. 

II . 1  - General. 

We consider an inviscid two-dimensional flow past a submer- 
ged body (fig.   5a).   Let   z' = x' + iy1   be a complex variable,    V - f +1^ 
the complex potential and   w' = u' - iv1 = df'/dz1   the complex velocity. 
We limit our considerations to a symmetrical body parallel to the 
unperturbed free surface :   hj,       is its submergence depth,    2L'   its 
length and   2T1   the maximum thickness.   With   U'   the velocity of 
unifor. n flow far upstream, we make variables  dimensionless  as 
follows : 

x-.x'/L'    ,   ysy'/L'    ,    t--x'/L'   ,   w=u-iT=w/ü',, = ,/L' 

f = « + U = f'/u'L'   ;  hzh^/L'   ,    «=T'/1/     FrU'/gL')1^ 

Ptt=Uy|2gL')^ (1) 

V being the free surface elevation above   y' = 0 . 

The exact boundary conditions satisfied by   w(z) , which is 
analytical in the flow domain   y   $* q (x) ,  given here for convenience 
of reference,  are as follows 
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Im  [iF2(w)2    ^  .wl   .-o 
"- dz 

(y = v) 

Im Wdz = 0 
(2) 

(3) 

u   - 1 (x - - co) (4) 

Im wdz = 0 (|x|<l. y =+«t{x))(5) 

where   t(x) = t' / T'    is the dimensionless thickness distribution and 
w = u + iv . 

For a given body shape   w   depends on   z,  « ,  h   and   F. 
We consider now a "thin body expansion",  i. e.   an expansion of   w 
for        «= o(l)   and   F,  h = 0(1).   This is the basic linearization pro- 
cedure used in ship wave resitance theory. 

Hence,  with 

w(z.  c ,   F,   h) = 1 +   «Wj (z,  F,  h) +   c   w2 (z,   F,  h) + . . . 

f (z. *  .   F,   h) = z +   tfj (z,  F,  h) +   «2 f2 (z.   F,  h) + . . . 

»j(x. t  ,  F.   h)= »^(x,  F, h) +   t2  vz (x,   F,  h) + ...        (6) 

the free surface (2),   (3),  radiation (4) and body boundary condition (5) 
become at first and second order 

2     dfl 
Im(iF  dr-V = PiW- 

"i -*i 

^j =±t 

(y = 0) 
(7) 

(8) 

(x-*-«.) (9) 

(|x|<l.   y  =   -h   +  0) (!U) 

Im ^   ^f " f2) = P2(X) S4[3(ui)2+(Vl)2}Ulv
1(X 

M) (n) 
) 
(12) 
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-») (13) 

»A   =±u   t r2 1 
(|x|<l,  y = -h ± 0) (14) 

Equations (7) - (14) have been written,  after a simple integration,  in 
terms of   f1    ,  f,        rather than   w,    ,  w.      (the derivation may be 
found, for instance,  in Wehausen & Laitone,   1965). 

The main purpose of this section is to derive the second 
order solution   f2    , and the associated wave resistance, with appli- 
cation to a few particular shapes. 

Such computations have been carried out previously by Tuck 
(1964) for a submerged cylinder and Salvesen (1969) for a submerged 
hydrofoil.   The subsequent developments in this section are a continu- 
ation of their work.   The cylinder is an extremely blunt shape whose 
three dimensional counterpart is a sphere.  In the case of the hydrofoil 
it was found that a major nonlinear contribution comes from the 
vorticity associated with the Kutta-Joukovsky condition.  We have been 
interested to extend the previous computations to the case of elonga- 
ted two-dimensional bodies ressembling ships and we have also con- 
sidered only the contribution of thickness,  since the trailing edge 
condition has no direct counterpart in three dimensions.   In contrast 
with the previous works, we have been able to derive   f?    in a closed 
analytical form and we are inclined to believe that the method em- 
ployed here may be efficiently used in thr«e dimensional cases. 

To obtain simple results we replace the body by a distribu- 
tion of an arbitrary number   n   of discrete sources of strength   q' , 
located at   z'   = x1.   - ih'   (j = 1,   . . . . ,  n) (fig.   1).  Under this scheme 
the two boundary conditions (10) and (14) become 

+ «[^    ln(z - z.)]       + 0 (  i3)       |z-z.|=««. (15) 
^T J J J 

where   «, = q'.  / U' 
tive thickness at   z 

= 2 A t'j / T' = 2 A t.      is the change of the rela- 
Obviously,  by (15) the actual body is replaced 

by one undergoing abrupt thickness changes at each source,  but by 
taking the spacing   x: .   - x-      sufficiently small in the portions of 
steep variation of   t , we can achieve any desired accuracy. Again, 
in view of our interest in three dimensional applications, we do not 
take into account the trailing edge Kutta-Joukovsky condition.  Our 
problem reduces,  therefore,  in determining   f j   an»!   f 2  .   subject to 
(7),  (9), (11),  (13) and (15).  The profile of the far free waves is 
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obtained aubaequently from (8) and (12) with x 

II . 2 - Solution for two Sourcea. 
... . .. 

We derive now f~ and f~ • the potential• related to the 
flow paat two aourcea of atreqh • j • •K at •j = Xj - ih, lite = :11.K - ih 
reapectively. The advanta1e of the body diecretiaation ia the eaay 
extenaion of the aolution for n = 2 to any other n . The firat order 
aolution ia liven (Wehauaen and Laitone 1965) by 

• . •k •. 
f . =~In (a - a.) + - In (• - • ) - -=.L ln (• - • - 2ih) + l,Jk 2W" J 2 .or k 2W" j 

+ !!_ ln (a - a - 2ih) _ _!.L w( • - &j -
21h)-

2r k 2 F2 

• k ( • - •11 - 2ih) -z;- w F~ 
(16) 

The function w ( r ) ia defined aa 

-1 - -1,1 a .. ·r .~r · ~ 
w( r) =a+ ill = e Ei (if)= e (e /A) dA (17) --where the A plane ia cut aloq the real ne1ative axia and the inte1ra

tion ia carried out below the cut, 11uch that (9) ia aatified. 

The equation of the far downatream wave ia obtained from 
the w terma of (16), by the reaidue in (17), aa followa 

-hI F 2 

"l,jk = - ~l.jk (x, 0) = 2 e • 

J ~ X 
• (( t .coa 2 + • kcoa Z )coa-z + 

J F F F 

X. Xk X 

+ ( • .ain --j + • kain --z> ain--z) 
J F F F 

(x-.-) (18) 

The aecocd order potential ia now aplit into two parte 
f2 ·11 = f: jk + f' jk where f:jk ia the body correction 
wiih the free aurlace condition kept in ita homo1eneoua form (7) and 
f;,jll ia the free aurface correction related to the lineariaed 
preaaure p2,j 11 of (ll j in the abaence of the body. 
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We begin with the body correction.   To satisfy (15) we have 
to cancel arround the source   j ,  on  ( z - z,|= «*j  ,  the velocities 
induced at   Zj     by the first order terms of (16),  excepting the first 
term representing the source itself.  In other words we require 
w*j s(d£1jK /dz) "tj    In (z - Zj ) / ZirJ- 0   for   | z - Zj | = « «j    .To 
satisfy this requirement at second order we have to superimpose a 
source of strength   i^ «j u*   (x., - h )   to the original source of 
strength t «,    and also a vertical doublet of strength   -<3(i v* (xj, - h). 
Since we consider only second order terms, we disregard the vertical 
doublets which contribute only at third order.  Adding the appropriate 
sources at   Zj      and   Zj,     and carrying out the computations (for 
details see Dagan,   1972a) we obtain finally, for the second order 
streamfunction far downstream,  the following expression 

2 2 2 
,b       /      rt\     i        -ix / F     i-   2   ix; /F    ,   2   ix«/F  .._b ^-   ..   (x,  0) = Im e }(« . e   J '       +*.« )iB  + 

where 

. n.ixJ /F      -ixk /F   ^ irb 
e.   .^[(e    J -e    k | i Ejk   + 

>k /F    . jb + *'y*"    ilb.]l (x ) (19) 

Bb = 2e-3h / F 

Eb      rh / F"   r 4h2 

jk     ' -jk -   - jk 
C^.(F2^t+   4h2)   +2^^j 

2h 
jk )] 

jk 
.   -3h / F n 
4e cose 

jk 
(20) 

>  x; 
In deriving (19) and (20) we have assumed that    k > j , 

and Ip* (xfc   - Xj ) / F2 >  0. 

We consider now,   the second order free surface correction 
which results from the linearized pressure   p   (x)   in (11), acting on 
the free surface.  In the case of a pair of sources   p       can be written 
as follows 

2,jk 

2 2 
j      -- k   -w j    k    ~ 

T?   Pjj+  4?Pkk+      4?r-Pjk (21) 
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the different terms resulting from the substitution of the real and 
imaginary parts of   df, jj, /dz   into the last term of (11).   The complex 
potential of the flow generated by   p ,     ,  for instance,  is (Wehausen 
and Laitone,   1965) 

jk 
JTF 
7/pjk

(8:xr v h' F2) -(-H1^- (22) 

jj      ...M   .^i,   ,   corresponding to   p|        and   p of (20),   respective- fjj      and   fkk   , 
ly,  are obtained from   f ,)<    by letting   x. —» xj, 

Carrying out the detailed computations (see Dagan,   1972a) 
yields for the streamfunction far downstream 

*2ijk(x.  0) = lme 
•ix^^^^/F2^^ ixk/F2

)(A8+.Bs) + 

r.   IX, /F ix^/F  .  ^s 
+  «.   «.  [ e    J '      + e   ^      ) C,    + 

2 2 
,  ix;/F ixL/F  , .„s ixk. „s       ..,8 .-ii 

+ (e J    -e k   )iEik+e ^VV31* 

2+«1
2)G8+    ..  ..G^os^.k        (x-*o0)(23) 

j k j    k j 

where 

,   Z 2 
A" = 4e'h/F   [toh/F2) + 0. 8272 - 2a(0,   -%) + ^-] 

2 '      4h' 

„s     ,   -h/F    .,       .   -h/F''. 
B    = 2e     '        (1 + 2e     /      ) 

/   2 2 
„s       2    -h/F r 1 jfl  .,   4h  . .a     n.     ^ .    B 2h . Cjk=Te [7Ml^) + «(-«jk0)-2c<^jk-FT) + 

^2   +4h2 

jk 
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> 
2    -h r 2h    a,    fl     AV     , - ,  ^ 2h  , = -e      [-tan   -^+ß{ A .,0) + 2 ß (A )   + 

2jk-^   -JV ^>"7 
2h   T 

.    -h/F    .,      ,   -2h. a 
) cos c, r   = 4 e     '        (1 + 2e 

jk 

.»8       ,     -h/ F  ,   .       _   -h. j 
K.,   = 4 e (-1 + 2e     ) sint., 

jk jk 

-s ,   -2h/F 
G    = - 2e (24) 

II . 3 - The Wave Renigtance of   n   Sources. 

In the case of   n   sources (fig.   1) the streamfunction far 
downstream is obtained from the solution for two sources as a finite 
sum.   If we write for   n   sources 

.    ,      „>      ,cos .sin   . ^   (x,  0) = ^        cosx +    y       sinx (x-   oo) 

.     .      „,       .cos .sin   .       ,   .const       , .        ,__> 
^2   (x,  0) =  i        cosx +    ^       sinx + ^ (x -.  oo)        (25) 

where    ^f00*1    results from the last two terms of (23),  then the wave 
resistance at second order (Salvesen,   1969) is given by 

2 3 
*D1    +       <D2 (26) 

with 

_        I   r/      ,cosx2      ,   .sin.2-i 
Dj =7 [(      ^j      )    + (  *,      )  ] 

_        1   ,     .cos       .cos «in     .sin. 
D2 =1 (    *1 ^2       +    ^1 h     > (27) 
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,2 where   0 = 0'/ pgL' and   D'    is the wave drag. 

By using the results for two sources,    D,      and   D.     for   n 
sources are found after some manipulations (Dagan,   1972a) as 

D    =e-2h/F2   E     ZVH^jk 
1 i=1       k=1 

n n 

(28) 
1 = 

-     n    n 

D    = D^ D,8 = -e-h/^2lEE Vk [AW+^+BVSJL   ] + 

m-l j:i    Kijfl 

+ (E.,  + E8 ) (cost    .  . cost   . ) + (I..   +I8 )cos t   ,   - 
jk        jk mj mk jk      jk mk 

-K^suJjl (29) 

D-      and   D.       are obtained in (29) by the selection of the 
coefficients with the appropriate upper index.  All the coefficients 
are given in an analytical closed form in (20) and (24).   (29) permit 
the computation of the nonlinear wave resistance of a body of arbi- 
trary thickness distribution at any desired accuracy.   The function a 
and    &    (18) may be taken from the tables in Abramowitz and Stegun 
(1964),  taking into account that   w ( f) = e'f [2iri - E,   (-if)]     ,   or 
may be easily calculated bv using the appropriate power series of 
Ei(if). 

1.4- Application to Bodies of Different Shapes. 

We consider first the simplest conceivable case,  i. e.   the 
wave resistance of an isolated source.   We immediately obtain from 
(28) and (29) with   n = 1,   «, = 2 

T.       .   -2h/F2 
D    = 4e 

b        , .   -4h/F2   ,     2 
D2 = -I6e / F 
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/   2 ,2 
_8        .,   -2h/F    ,,      _   -2h/F .   , _2 .,„. 
D    = -16e (1 + 2e ) / F (30) 

The wave resitance (30),   of a blunt semi-infinite body in our 
approximation (fig. 2a), is represented in fig.  2c.  We have used there 
the more common drag coefficient   CQ = D' /pU'2 T' = D /«F 
With   C0 =«   CQ!   +«2   (CD2+CQ2)   we have       CD1   =D1/72, 
CQJ  = ^2    / ^      ■  ^e have also taken in this case   L' = h' ,   i. e. 
h = 1  ,    F2   = U'2/ gh'   and       «= T' / h1 . 

On the same fig.  2c we have represented the coefficient of 
wave resistance for a semi-infinite body having a fine leading edge 
of a wedge shape (fig.  2b), created by distributing ten sources of 
equal strength at constant spacing.   This way we could estimate the 
influence of the fineness of the bow on the nonlinear wave resistance. 
In fig.   2c   we have represented   CD1      as well as the ratios   C^ /Qj? 
and   CQJ /CQ^    .  The first ratio is a measure of the relative impor- 
tance of the free surface correction versus the body correction.   The 
second ratio represents the relative magnitude of the second order 
correction. 

In these examples there are no interference effects because 
the bodies are of semi-infinite length.   The next case considered was 
of a closed body generated by a source and a sink of equal strength 
(fig.   3a and 4a).   With     n = 2   and     «, = - t2 = 2   in (28) and (29) we 
obtain in this case 

Dj = 8e"h//F      [l  - cos (2 / F2)] 

2 
D2 = -8 (e"h/F /F2)   |(2Aß - 2c[2 + K^) sin(2/F2) + 

+ (-2E?2 + ^2 " 2E12  ' I12)  t1""^2 / F2)]f        (31) 

where all the coefficients are given by (20) and (24). 

Again, we have represented the wave resistance in figs.   3 
and 4 in terms of the more common coefficient   CQ = D'/^pU'    L' = 
D /2F2   .  Hence with   CQ   = «2CD1   +    «3CD2     we have this time 
CD1   = D,   /2F2       and   CD2  = D2     /2F2     .  In fig.   3b   CD1  ,   CQ2 
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and   CQ2       are represented as functions of the Froude number for 
a body of length submergence ratio   2L1 / h' = 20.  In fig.  4b the 
same curves are represented for the case   2L1 / h' = 10.  It is em- 
phasized that the scales of the various quantities are different in 
figs.   3b and 4b. 

II . 5 - Discussion of Results and Conclusions. 

Fig.  2 permits to draw a few conclusions on the effect of the 
bow shape on the nonlinear wave resistance.   First,  it is seen that 
the free surface correction   Cpj     is larger than the body correction 
CQ2     by a factor of three at sufficiently large   F = U' / (gh1)1'2    . 
When   F   decreases this ratio begins  to increase in a very steep 
manner.  Hence, any conclusion regarding nonlinear effects which 
is based on the body correction solely is completely misleading, 
particularly at small Froude numbers.   The total nonlinear correc- 
tion   Cg2     is a small part of   CQ1       at large   F . Again,  the nonli- 
near correction becomes unboundedly large as   F~*0 .  In fact,  from 
(30) we have   CD2 / Cp, ~- 16 / F2       as   F-.oo and   CD2 / CD1 ~ 
Ci- / CD1 ~   - 4 / F       as   F-» 0 .   The influence on the nonlinear 
wave resistance of making the bow fine is manifest in the medium 
range of   F   values, when the bow length and the wave length are of 
the same order of magnitude.   In that range, for a fine bow   CQ-J/CL. 

is almost constant over a large stretch of Froude numbers and is 
smaller than   CQ, / C-.        of a blunt bow.  At small and very large 
F   the behavior is similar to that of an isolated sources.   Finally the 
second order effect is always negative,  i. e.  it dimin'shes the wave 
resistance.  Moreover,  if   <    is not sufficiently smell   CQ    -• CD1    + 

*    CQ2     (figs.   3 and 4) may become negative, whici' is obviously an 
absurdity. 

Figs.   3 and 4 display clearly the interference effects.   The 
nonlinear effect is very large for the large length submergence ratio 
of fig.   3   ^L' / h' = 20) and becomes significantly smaller for 
2L1 / h' = 10   (fig.  4).  Obviously,  these large ratios have been select- 
ed in order to emphasize the nonlinear effect.   To render it relative- 
ly small,  the body has to be execeedingly thin or not so blunt. Again 
the body correction   CDi,     is generally smaller than   CQJ    >  especial- 
ly at small F.   The nonlinear term   CQ2   tends to sharpen the peaks 
of the resistance cuve and to widen its hollows.   The nonlinear effect 
becomes very large in comparison to the first order wave resistance 
for small   F . Again, we may arrive at negative wave resistance 
near the zeros of   CQ,    if   «    is not sufficiently small. 

One of the stricking results of our computations,  which has 
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been observed previously by Salvesen (1969)   is the singular beha- 
vior of the waves amplitude and wave resistance at small Froude 
numbers.   If   <   is kept constant,  and no matter how small,  the 
second order wave resistance become« unboundedly large in compa- 
rison with the first order wave resistance as   F—»0 .  Hence the linear 
theory, as well as the second order correction,  become inadequate 
at small Froude number, although both   Cp.    and   C-,   tend to zero 
as   F-*0 .   This effect is called subsequently "the second small 
Froude number paradox". 

Finally, we believe that our method of computing the wave 
resistance of   n   sources by starting with the solution for two sour- 
ces offen a possiMe efficient way of attacking three-dimensional 
problems. 

Ill - SMALL FROUDE NUMBERS PARADOXES. 

Ill . I - Introduction. 

We have seen before that the computation of the wave resis- 
tance by the thin body expansion,  which is the method universally 
used at present as far as the free surface condition is concerned, 
becomes doubtful at small Froude numbers.   This could be observed 
only after evaluating the second order terms.  Experiments also 
support the conclusion that the linearized theory fails to predict 
correctly the wave resistance at low speeds.   The aim of Chaps. Ill 
and   IV is to elucidate this problem   The same subject has been 
considered previously by Ogilvie (1968).  Some of his ideas are vali- 
dated by the present study,  but his solution is shown to be incomple- 
te. 

Ill . 2 - Solutions in the Potential Plane. 

As long as we seek solutions of two-dimensional flows it is 
more convenient to operate in the potential plane   f = ^ f i^   , as 
the plane of the independent variable,   rather than the physical plane 
z = x + iy ,  in order to derive results of principle.   The advantage 
stems from the fact that the free surface is kept at the   fixed and 
known location    ^= 0 .  Hence,  we consider now the solution of   w(f) 
(fig.   5b) analytical in the half plane ^ ^0    cut along   |^|< 1 , 

\p - - hiO    satisfying the following condition,  equivalent to (2),   (3) 
and (4) 

2—2 
Im [iF    ( w )   w 

dw 
dT '] ( ^ = 0) (32) 
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u-1 (^-..oo) (33) 

Here,  the variables are made dimensionless with respect to   U'   and 
I'     (fig.   5b) and   h   is defined as   h;   /L' 

The physical plane is mapped on   f  with the aid of 

which leads to an unwieldy integral equation replacing the boundary 
condition (5).  We shall see,  however,  that in different approximations 
the body boundary condition becomes quite simple. 

We consider now two basic types of perturbation expansions 
of  w(f; < ,  F ,  h) aimed to linearize (32) : 

(i) the thin body expansion,  considered in Chap.   II, 

w (f; « , F .h) = 1 + «Wj (f; F, h) +   t w2 (f; F, h) + 

for     «=o(l),    F = 0(1) and 

(ii) the naive small Froude expansion 

0 2    1 
w (f; « ,   F,  h) = w    (f; t ,  h) + F  w    (f;  « ,  h) + . . . 

for   F = o(l),      €= 0(1). 

(35) 

(36) 

Our aim to study the solutions obtained for different limits 
«-0,   F-0. 

HI . 3 - The Thin Body Expansion. 

The thin body expansion in the potential plane yields results 
similar to those obtained in the physical plane.   The mapping (34) 
becomes 

z = f+«z+     «z+. (37) 

where 

=-/vf' = -f[vz -(W^/Z]   df 
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Using these relationships we obtain the following set of equations for 
w1     and   w-   ,   similar to (7)-(14) 

Im(iF     77- -Wj) ( ^=0) (38) 

w  -»    0 (0 -► - 00) (39) 

Im w.  =   i   T (0) 

2    dw2 F"     ;i 
Im(iF      __.W2)=.__ 

{\<t>\ <1.    ^= -h+0) (40) 

F      B ^(Uj)2 + (Vj)2]     U=0) (41) 

w2-   0 (<<» - - 00) 

Im W2=  -N^l^ ( l*^1'  *= ■h't0) 

(42) 

(43) 

where      r = dt |dx|x = 0 is the slope of the body contour and under the 
linearization process   L' =L'    +o(L'),    h^ = h^   + o(h^ ) such that   h, 

<   and   F   retain their meaning of (1).   Equations similar to (38)-(43) 
may be written for higher order terms. 

Due to the similarity between {38)-(40) and (7)-(10) the solu- 
tion for   w,     may be written at once as 

= 1   f-tM ds-i/'    T(B) 
1      fyf+ih-s Vf-ih-s 

-1 

2i      f    ,.      ,f-ih-s. 
+ —     /   T(S)W( 2 )    dl 

ds   + 

(44) 

where w     is defined by (17) (for details see Dagan,   1972b). 

w2 , obeying (41)-(43) may be again found like i Chap. II 
by a discrete source distribution. It will display the same singular 
behavior for small   F   as   w2   (z). 

Let us consider now a small Froude number limit of   w. 
(44),   i. e.   an expansion of the type 
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0 ^2        1     X w    = w    + F w    + . (45) 

for   F     = o(l).  To carry out the expansion of (44) we have to find the 
asymptotic expansion of   u   for large arguments. 

It can be shown that the function   <*» ( f ) = e       E^ (i f )   has 
the following asymptotic expansion for large f 

oo 

'in-Z k! 

~    (if) 
CO 

<-(f) = L 

k+l 

k! 
k+l 

(-«■«rarg f^-i) 

+ Zirie'        (-Ä<arg f^ir) 
KzO   (if) 

where   S    is an arbitrarily small angle (see Erdely,   1956). 

Hence, by using (46) we find that   w       has the following 
expressions 

(46) 

o    i   r1 

(■)(• 
i 

f + ih - s f - ih 
-)    ds 

and 

(-7r«arg(f - ih + l) < «J 

-1 

(47) 

s f - ih -) ds 

1 
4 -h/F2 e-if/F

2/" 

-1 

/  \    is/F     . (s) e ds 

(- «<arg(f - ih+ 1) C ir) (48) 

Hence (4 7) is valid in the   f   lower half plane,  excepting a 
"wake" attached to the image of the body across the free-surface 
(fig.   6).  In this wake we have to add the last "wavy" term of (48) to 
(47).  In particular (47) is not uniform along any line parallel to  ^ = 0 
and below     ^ = h.   In other words,  no matter how small is   F ,  it is 
always possible to find,  for    ^^h , a sufficiently large   <t>   such that 
the wavy term of (48) becomes arbitrarily larger in comparison with 
the first term.  In fact (48) is a uniform asymptotic expansion in the 
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region   -w +i^arg(f - ih + l)^ rr 

The far free waves associated with   w.      (44) or   w0    (48) 
are given by   z1    (37) as 

A      -if/F2     r..   -h/F2/     .   .   is/F2^  ,    -;/F2 lAn, z    =A  e =[4ie J    r{a)e d»J e (49) 
-1 

and the coefficient of wave resistance is 

CD1    =   lA^/SF2 (50) 

Again,   these well known expressions continue to exist if 
F-*0,  in virtue of (48). 

Ill . 4 - The Naive Small Froude Number Expansion 

We turn now to (36),  valid for a body of finite thickness 
moving at low speeds.   Substituting (36) into (32) and (33) we obtain 

Im w    = 0 (^ = 0) (51) 

Re w0 = 1 («--«>) (52) 

T     1      i  a , o.4 
Imw  =■ A a0(u > {i =o) (53) 

w1— 0 (* -» - «>) (54) 

w    is therefore the solution of uniform flow at infinity past 
the actual body beneath a rigid wall at    ^ = 0 ,  briefly "the rigid 
wall solution",    w1      described a flow generated by a source distri- 
bution along   ^= 0 ,  (53) being a standard Neumann condition.  It can 
be shown that the higher order approximations satisfy the same type 
of free-surface conditions (53).  Moreover,   it has been shown (Dagan 
and Tulin,   1972) that the total flux of the sources in (53) and higher 
order approximations is zero such that   w0 ,  w1   ,   . . .  are   0(1/ (f | ) 
as |f| -too for a closed body (in the absence of circulation).   In parti- 
cular no free-^waves are present and the wave resistance is identical- 
ly zero. 

We can now consider a thin body limit of   w0    ,   i. e.  an 
expansion of the type 
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1 + « w  + 

It is easy to show that 

1 
O. u         O./         If   T(S) L  1    /•     r(s) 

,   = w,       + w.        =—   /-;—Vr d8 + — / ; rr^ d' 1          1               1            iryf-ih-s iryf+ih-s 
-1 -1 

(55) 

(56) 

(56) represents the rigid wall solution for the flow past the linearized 
body.   It is easy to ascertain that   w?'1'   (f) = w°'      (f). f'"   (f) 

We have arrived to what we call "the first small Froude 
number paradox" : the thin body limit   ( «-»0)   of the naive small 
Froude number solution   w'"     (56) is not equal to the small Froude 
number limit of the thin body expansion   w0      (47,  48).   The two solu- 
tions differe in the "wavy wake" of fig.   6. 

Ill . 5 - Discussion of Results. 

In the preceding   sections we have defined the two small 
Froude number paradoxes occurring as   F—»0 ,  in the solution of tht 
problem which depends on the two small parameters  t     and   F .   The 
nonuniform behavior of the solution may be related to the fact that 
in carrying out the naive small Froude number expansion (36) we have 
lowered the order of the boundary condition (32),  the derivative dis- 
appearing in the 1. h. s.   of (51) and (53),   similarly to well known 
boundary layer problems.   This observation is strengthened by the 
inspection of the wavy term (49) : the function C' changes its 
order by differentiation and the two terms of (38) become of the same 
order of magnitude no matter how small is   F   (this observation has 
underlain Ogilvie's (1968) study).   The nonuniformity present in our 
problem is,  however,  different and more subtle than that of other 
singular expansions (Van Dyke,   1964; Cole,   1968) with a few respects 
(i) we cannot detect the nonuniformity of the solution from the naive 
small Froude number expansion which is well behaved in the entire 
flow domain.   We cannot,  therefore,  rule out this solution at the pre- 
sent stage; (ii) for a submerged body the "wavy wake" is attached to 
the fictitious image of the body (fig.   6) rather than the body itself. 
It intersects the flow domain   ^<0   only far behind the body and has 
an exponentially small effect upon the body itself; (iii) the wavy term 
t-if/F2      ^etf/F2   e-\<t>/F2       haB> for   F_0>  the character of an expo- 
nential boundary layer decay for ^<0   and a rapidly oscillating beha- 
vior in the   <p   direction.  It displays, therefore,  a complex pathologi- 
cal behavior as   F-»0. 
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It is also worthwhile to point out that only for   h ^ 0   (sub- 
merged body) is the amplitude of the free waves decaying exponential- 
ly for   F-» 0.  Otherwise,  for   h = 0   the decay may be algebraic at 
best. 

We are going to determine the origin of the small Froude 
number paradoxes and to derive uniform solutions for the wave 
resistance as   F = o(l) and       *= 0(1)   or      t= o(l). 

IV - WAVE RESISTANCE AT LOW SPEEDS. 

IV .1  - The Model Problem. 

Like in other nonlinear problems of hydrodynamics we seek 
a "model" problem which has the same features as the basic nonli- 
near problem,  but can be solved exactly.   We define our auxiliary 
problem as follows : determine the complex function   w ( f , «   , t   ,  h) 
of the complex variable     f = i  + i X , analytical in the whole plane 
cut along    x = h,   {<!    (fig.   7a),   satisfying everywhere the differen- 
tial equation 

i« 2[1 +a (f ;«!, «2.  h)]    ifl-w=p(f j^, «2. h) (57) 

subject to the condition 

w-'O ({-.-o^x <h) (58) 

a and   p   are given functions,  holomorphic in the entire    f   plane 
excepting the slit  |{|   <1,       x= h   and   0(1 /|f|2)   as | f I—*? More- 
over,  a    and    p   are bounded along the slit and   1 + <r   does not vanish 
there.   To simplify matters we assume that  a    and  p   admit expan- 
sions in power series in   t.    and    t-   of the type 

'(*■: w h)=Z £(fi)k(<2)jffk(f ;h) 

p(f ^j. t2. h) =2 («2)J PJ (f :*!- h) 
j--o 

1 /(l +a)= 1 +£   (.2)J pJ( f; v  h) 

j = 0     K:l 
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uniform in the entire   f    plane cut along    ^ = h ,   |(|< 1     and conver- 
gent for finite t^    and «,   ,  not necessarily small. 

The "model" problem is similar to our original flow problem. 
(57) being eimilar to (32),     «2 ,    «,  ,    ui   and   f    corresponding to F2 

«   , w   and   f ,   respectively, and  p    representing the body effect. 
Two major simplifications are present, however,  in (57) : the coeffi- 
cient of  du / df      is given,  the equation being thus linearized,  and 
equation (57),  with analytical coefficients,  is valid in the entire plane 
and not merely at      ^=0.  Due to these simplifications (57) admits 
an exact closed solution. 

Our purpose is to establish, by using the exact solution,  how 
can uniform expansions of  w for    «2 = o(0   be obtained from the 
expansion of (57). 

If we expand (57) for «, 
the thin body expansion) with 

o(l),   «2= 0(1) (corresponding to 

w =  « «"j  + ( 
\2 

(60) 

we obtain for    w^ , u equations and solutions similar to (38), 
(39),  (41),  (42),   (44)7  In particular,  if we let subsequently t—» 0   into 
(60),  i. e.      u), = JJ +   «2^ + «-2 = «0   + «2 we arrive 
at different asymptotic expansions in the two regions of the  f     plane 
(fig.   7a) exactly like in (47) and (48),  "wavy" terms being present in 
the shaded region of fig.   7.   If we start with an expansion of (57) for 
«2 = o(l),   t,   = 0(1) (corresponding to finite thickness,  naive small 

F   expansion) with      u» = w   + «p    w + .. .  we obtain equations similar 
to (51)-(54) and solutions with no waves.   Furthermore,  if we let 
afterwards «, -•   0,   i. e.       oP =   «, u^+ («,  )   w9 + , . . , we obtain li- 
mits which are different fron; those of the preceeding expansion,   in 
the shaded zone of fig.   7.   Hence,   our model problem leads to the 
same "paradoxes" as the prototype nonlinear problem. 

Now,   let us consider the exact solution for u   ,   satisfying 
(57) and (58), which can be written at once as 

p(^   ; «1. I2> h) «(f;V .2, M = — r\pt .' *1 *<2' ' 
» CO 

.exp[i-  f' ^ ]|dX 
*2 ^     I +(*{" ; * . «2. h) 

(61) 
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where the integrals are carried out below   Re X < 1    ,    Im X    = h 
and   Rec < I    ,    Im x   = h   in the    X    and     v     planes,   respectively. 
We can use now the series (59) to rewrite (61) as follows 

exp 

valid  tor  finite 

-X 
l<2    f     0 

2   "'f 
12 2     1 12     2 

] exp(iA/.2) 

(62) 

) dxldX 

We are now in a position to expand (62) 
for small    «1   and/or    ( j  •   The detailed analysis may be found in 
Dagan (1972b).   Herewith,   the main results : 

(i) the limit   t^   = o(l) 
results at first order,     t, u)1 

(57) if,  and only if,     «i  / «2 

the existence of the ratio    t. 

,   «2   = 0(1)   of (62) yields the same 
,  as the solution obtained by expanding 

- o(l).   This last condition stems from 
/   12 in the last exponential of (62); 

the limit   t [u) trie limit   12 r 0(1)   •     *1 = ^(1)   of (62),    CüQ   ,  does not 
coincide with that obtained by the naive expansion of (57).   The uni- 
form solution differs from the naive solution in the "wavy wake" and 
does comprise "waves".   Moreover,  to obtain a first order complete 
solution we have to retain in the last exponential of (62) all the writ- 
ten terms,  up to   (   «2)     .  in particular   «? ju:.  The "far waves ate 
obtained by contour integration (fig.   7b) as follows 

0 
uniform 

-4-2 ex^-ir/^)* [P0(X)+ P0(X) M0(X) j.exp(iX/.2) 

exp 

^ 
"V) + 1- 

/U    (f )] d.} dX      (Ref-oo)    (63) 

Again,  it is emphasized that in the last exponential     t J contributes 
at   0(1)   becaure of the division with   «3   ■   Going in reverse,   the 
differential  equation which yields the uniform first order solution, 
obtained by the appropriate expansion of (57),  is 

7df + (i/ •2)(1 + 
0 

P    + M1) =  (i/ .2)( P0 +  P0 P0)   (64) 
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where terms up to   (  «^ )       have been retained in   l/(l +o),    the 
coefficient of (59). 

(iii) the limit    «,  = o(l),     «2 - 0(1)   oi (^2) i8 not defined un- 
less we specify the order of     «, /  t- .  For     (1 / c.   = 0(1)   we obtain 
again at first order a solution with a "wavy" term,  the latter having 
the expression 

w° =   «, w?       ., +...  = ~exp(.if/.,)   /V(X) 
uniform        I     1, uniform «, 2    J      1 

i < 

.  ex p(iX A2).  exp[—lyM^Od.] dX +0(f j/«2) 

(Re f -»   oo) (65) 

This solution differs from that obtained by taking the limits  «. ~»   0 
first and   «,-• 0   afterwards in (57).  Moreover (65) is obtained from 
the solution of the differential equation,  derived from (5 7), 

0 / df     + (i / »   x /, 0.      0      ,.   ,      ,       0 .... do» j  '     s V       *2) (1 + «, Mj)   Wj = (i / i2)    Pl (66) 

(iv) the limit      < -0(1),   «.= o(l),     '1 / •?   = 0^ ^ yields by the expansion 
of 

1« i« X .,   , 
exp[_l   /"fVjd.]    = 1  +—i   /   "% 

2   «f 2   ^• 
the usual linearized approximation 

V        + in (65) 

"l = 
'•i r   0 
—iexp(-if/,2)y   Pj (X)exp(iX/.2)dX (67) 

2 "'S 

satisfying the differential equation 

dw j + df     + (i /«2)w   j    =   (i /«2) (68) 
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IV . 2 - Application of Result» to the Nonlinear Problem (Potential 
Plane). 

Due to the similarity between (32) and (5 7) the results obtain- 
ed in the model problem can be extended to the hydrodynamical pro- 
blem at once (for details see Dagan,  1972b).  With   w = 1 + W   the 
uniform solution,  the key to obtaining first order uniform approxima- 
tions   W0   (for   F2    = o(l), 
and     t Vf°( «= o(l). 

«W,  (for     «= o(l).    F^ = 0(1)) «=0(1)), 
F2  =o(l),     t/F2    =0(1))   is to expand the 

coefficient   (w)'w   of   dw/df   in (32)   in a naive small Froude number 
expansion and to retain the appropriate number of terms.   By doing 
that we obtain the following uniform asymptotic approximations for 
W : 

(i) *=o(l),    F2  =0(1).   i.e.     t/F2   = o(l)   (thin body, finite 
length Froude number,  large thickness Froude number (U^/gT1), 
W = t W1  + . . .   .   Wj      coincides with (44), and the usual thin body 
approximation is,  therefore, uniform. 

(ii) F2 

ness),    W = W0   + . . . 
dition (similar to 64) 

o(l),    (=0(1)   (Small Froude number,  finite thick- 
W     satisfies the free-surface boundary con- 

T     i -r^ r, 0,3     „Z, 0,2 .,1     .1. n dW       ,.,0i 
Im J iF    L(u )    + F  (u )    (3u   + iv ) + . . .J-77— - W   I   = 0 

df 

( ^ = 0) (69) 

and along the body   1 + W    = w   ,    where   w0 (51, 52)   is the naive 
small   F   solution,    w0    is not an uniform solution in the "wavy 
wake".   The solution of   W0      subject to (69) is very difficult. 

(iii) F2    =o(l),      e=o(l).      t/F2    =0(1)   (small Froude 
number,  thin body,  thickness Froude number    U'2   / gT1    of order 
one),   W = t W,0   + .. .   . 
W°      satisfies the free-surface condition (similar to 66) 

dW. Im   [iF^ (1 + 3 «up -ip-   - W"]     =0 (^ = 0) (70) 

where   u?    = Re is the naive linearized small   F   solution (56). 
Also, along the body skeleton   So    (fig.   7)   W.0   = w0    .   By analytical 
continuation and integration by parts   W1       has been found in a close 
form as follows 
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0'U   x     2i /    ■r/Tr2\   C 0'U   / v \ Wj       +—    exp (-if/F  )/       Wj       (X) 
-Oo 

X 

.   exp (iX /F  ) .   exp[ ^- / w     ( f ) dv]   dX 
F2 y    1 (71) 

For   F2-'0      W,0-. w"   + o(F2 )  excepting the "wavy wake".   There, 
we obtain similarly to (67),  by contour integration like in fig.   7b, 

-1 
/ W 

0 
fW    + ^V-exp [-i(f - ih) /F2]  ( v?'* (s + ih) 

stih 
exp (is/F  ) .   exp  [ =—  /       w    ( v ) dc]   ds + . 

(Ref (72) 

,o.l where   w0'u        .nd   w.0»'       are given by (56).    w°       is obviously not 
a uniform solution. 

Only, and if only, « / F = o(l) (72) degenerates into 
(47,48). The implications of the different limits are discussed in 
the following sections. 

IV . 3 - Uniform Solutions in the Physical Plane. 

It was advantageous to carry out the basic derivations in the 
potential plane.  In applications it is convenient (and in three dimen- 
sions it is essential) to operate in the physical plane.  It is easy to 
transfer the previous results to the physical plane.   With   w(z ; « , F , 
h) = 1 + W(z; t ,  F   ,h)   we have the following limits : 

f = o(l),    F     =0(1)   (thin body,  finite Froude number). (i) 
W=eW1    +   «^ Wj   + . . .   ,    W,   ,    W, satisfy equations similar to 
(7) - (14).    W      = df. / dz   is the usual thin body solution, 
Wj    = dfj / dz   is the second order solution (see chap.   II). 

(ii) F2   = o(l),    t = 0(1)   (Small Froude number,  full body), 
W = W0   + F2 W1 + . . .   .   The complete first order term   W0 = U   - iV0 

satisfies the free-surface boundary condition 
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F   [ (u ) + 2F   u   u J 
dx 

(y = o) 

4    0    1 
+ 2F   u   v av 

öx 
- Vv 

(73) 

on the unperturbed free-surface, similar to (64). w0 = u0 

the rigid wall solution for flow past the actual body and w1 

next term of the naive small Froude number solution. 

ivw    is 
is the 

(73) has a simple physical interpretation : it represents the 
equation satisfied by waves generated on a stream of variable speed 
w°    + F2  w1 .    beneath   y = 0.    Ogilvie (1968) has retained only the 
first term in (73),  i. e.  has replaced (73) by 

Im [iF (u  ) 
%■-*- 

(y = o) (74) 

He has based the derivation of (74) on the intuitive reasoning that at 
small   F   the wave length of the free waves becomes small compared 
to the body length scale (which governs the rigid wall solution) and, 
therefore,  the waves are travelling on a basic stream of varying 
velocity.  Although the argument valid in principle,  (74) is not a 
uniform asymptotic approximation,  as shown in the   preceding   sec- 
tion.   To determine 
not pursued here. 

W 0 satisfying (73),  is a difficult task which is 

(iii) « = o(l),    F2    =o(l),      «/F2    =0(1)   (thin body,   small 
length Froude number, finite thickness Froude number),    W     =«W1 + 
By analogy with (70)   W?    (z) 

Im [iF    (1 + 2 «Wj ) 

satisfies the boundary condition 

0 

"        0 (y = 0) 
dW 

dz 

the radiation condition 

*?]■ (75) 

W,  —    0 (x -•   00) (76) 

and the body condition 

W =   w 
1 

along the skeleton of the body,    w, 
tion has the expression 

(|x|<l, y = -h)     (77) 

the linearized rigid wall solu- 
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•1 

o,ux    o.t        1    f T (B) ,     .    1    /"     r(«) . + w,        = —   /     rr1-^—    ds  + —   /    —i-rf     ds 1 1 * J     z - ih - s »■yz + ih-B 

(78) 

W1     may be found by analytical continuation across   y = 0.    After 
some manipulations (Dagan,   1972b) the solution is found to be 

WJ (z; h) = Wj'       - Wj'      + —2   e * 

f    o.u.    .iX/F2    -Ziff.    (X)/F2    .. .    /   w        ( X )e e i   >    ' ' d^ (79) 

which is analogous to (71) .   The profile of the free waves   N = « N1 + 
is derived from (79) as 

0 0   -ix/F2     ,    r ,/     o.u    iX /F2 

N    = Im A  e = Imj^  21>   w        e 

. e 
-2i « f°  /F' dX] ■ix/F' 

(x -.   oo) (80) 

cut   jx^l. In (79) and (80),    f,0  =J w°  ( ^ ) d.-       and   S   is the c 
y = h ± 0   in the X plane.  Along   S   w°'u     = u°'u   ± i r 
f1    = f°     + ^°'    1 it.    Hence,  we can write for   A?       the following 
expression 

and 

1«th 

Aj^ /    •' 
X/F2    -2i.  (f^'   + <?'U    )/F2 

-Uih 

rl,u    ..2ft,. 2«tT    .. . I u        sinh —IT- + i T cosn —r— I   d X 0 ^2 ^,2    J 

F F 

The wave resistance coefficient   Cn       is given by 

(81) 

2   ,      2 
/ 8F (82) 

(iv) «=o(l),    F2    = o(l),     «/F2    = o(l)   (thin body,   small 
length Froude number,  large thickness Froude number).   This limit 
can be obtained in two ways : by expanding   W1     of (i) for   F2 -• 0   or 
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via (79) for   (-»0. Hence, the usual linearized approximation used 
in ship resistance theory may be extended in the range of small 
Froude numbers only if   «2/F ■= gT'/U'2       is small.  To keep j 
fixed and to let   F2-» 0   is tantamount   to write in (80) e-2'* 1 /F a 
1  - lit  iy   /F       which is obviously illegitimate if     « /I*   is not 
small. For this reason the second order approximation  2i«  if /F 
may become large compared to unity and the expansion of (79) may 
diverge.   For   « /F2  = o(l)   (81) leads to 

I,ten 

i. e.  the usual complex amplitude of linearized waves. 

,2 J /   2 

J r(8)e,8/F        ds (83) 

IV . 4 - Illustration of Results : Wave Resistance of a Biconvex 
Parabolical Body. 

To illustrate the main features of the thin body small Froude 
number solution (79,80,81), presented here for the first time, we 
have computed the wave resistance for a parabolical body (fig.   8) 
with the thickness distribution   t = 1 - s2       ( |s|<  1),   r = -2s.  The 
linearized rigid wall solution in this case is expressed by 

^ 
oj         o.u 
1         1 

z - ih + 1 
"   z - ih - 1 

w? = df1
0/dz. 

= 4l2'-  7     [U-">)2   -0«« 

-in'^-^-irlTTi      <«> 
and   w^    = df " /dz.    By using (81) we have computed   CQ     (82) by a 
simple S mpson integration, for     « = 0. 05   (Dagan,   1972b).    CQ   /e2 

as functk n of   Fn   =U'/(2gL')   is represented in fig.  8.  On the same 
figure we have represented   CQ ^    based on the usual linearized 
approximation (83).  In addition we have represented   C    /t2= CQ/^n + 
«C_2      based on an expansion up to  *       of   (82),  i.e.  on an illegiti- f

2 

mate expansion of the exponential in (80). 

Our small Froude number thin body solution (81) differs 
from the usual one (83) with two respects : while (83) may be regard- 
ed as   a summation of elementary waves   e"'( "5'        generated by 
each element of thickness   dt = rds, in '81) the elementary waves 
e -'t'-*' have phase and amplitudes depending on  X    in t complex 
manner.  In particular waves are generated by the parallel part of 
the body ( r = 0,   t = const)   and the amplitude changes if the direc- 
tion of motion of an assymetrical body is reversed.  The wave 
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resistance is always positive, while in an illegitimate expansion of 
e-   '*fl/ 2 in a truncated power series it may become negative. 
CD    is close to   CQ^I     (fig- 8) at relatively high   Fn      (i. e.   small 
«2 /F),    but shifted towards small   F      .   The peaks of the resistan- 

ce curve of the uniform solution are,  excepting the highest peak, 
much smaller than those of the usual theory. 

The disastrous effect of using the second order approxima- 
tion of the thin body expansion in the region of small Froude numbers 
is illustrated clearly in fig.  8. 

It is worthwhile to point out that the wave resistance (81) is 
integrable only if the leading (or trailing) edge singularity is like 
w1    -w (z - ih + I)"a   where   a < 1 .  Hence,  a parabolical nose 
( a = 0. 5) is acceptable, while a box like shape   (o = 1)   is not inte- 
grable. 

IV . 5 - Extension of Results to Three-dimensional Flows. 

It is easy to proceed along the same lines and to derive the 
free-surface conditions satisfied by the various uniform approxima- 
tions as   F—»0   in three dimensions.  With   u,  v, w   the velocity 
components and   z   a vertical coordinate the exact free-surface con- 
dition,  counterpart of (2), may be written as follows 

2       2 2 
F     fu u,     + uv(v,     + u,   ) + v v,     + uww,    + uww,   T+ w = 0 •- x x y y x yJ 

(z=v) (85) 

The naive small Froude number expansion   (u,  v, w) = 
(u0   ,  v0   ,  w0   ) + F2  (u1   , v1   , w1    ) + r,     = F2 ,0  + .. .  leads 
to   u0   ,  vü   ,w0     as a rigid wall solution for flow past the actual 
body.   With   <    a fineness or slenderness parameter, a further expan- 
sion of   (u,  v, w)   yields   u^   = 1 +    tu°   + (v0   , w0 )   = 
t (v0  ,  wlj1   ) + . . .   .  The usual linearized approximations is obtained 
from (85),  by expanding the velocity near the uniform flow 
u = 1 + « u, + . . . ,  (v, w, T; ) = « (Vj    , w1    ,   ^ )+..., as follows 

F2u1   x   +   Wj   =   0 (z = 0) (86) 

Let now   1 + V <|>   be a uniform small Froude number appro- 
ximations.   By analogy with (73),  in the limit   F-»0,   t =0(1)   ♦ 
satisfies the following free-surface condition 
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0.2 2 0   1- 0  0 .2, 0   1 1   0. 
F     { [(u  )    + 2F u u  J ♦.^ + 2 [u  v    + F  (u v   + u v )] ♦,       + 

XX 

r,  0,2      ,,,2  0   11A0     x „2  0    LO JL  0   K0    i 0 
+ I (v  )    + 2F  v v J*,      +Fuw<l>,      +Fvw*, +♦,      =0 yy xz yz' 'i 

(z = 0) (87) 

4>      may be represented along the actual body surface by a distribu- 
tion of singularities derived from the rigid wall solution.  The rigid 
wall solution is asymptotic to   4>      as   F—• 0   excepting a "wavy wake" 
which this time is generated by rays emanating from the body image 
across   z = 0   towards   x-»Mat an angle -h      (arbitrarily small) 
with the horizontal plane.   To determine    4>   ,    representing waves 
over a stream of variable velocity,  is a very difficult task. 

The simpler approximation of thin (slender) body   t = o(l) 
small Froude number   F = o(l),    and finite beam (and draft) Froude 
number      « /F2= 0(1),    is obtained from (87) like (75) 

♦ 
0 
1, xx 

1 - 2 « u. 
♦ 
l.z 

(z = 0) (88) 

<Pj     may be represented by the source distribution of the rigid wall 
solution on the body skeleton (central plane,  or axis).  (88) is the 
extension of the usual linearized free-surface equation (86) (which is 
the basis of computation of ship wave resistance via Michell integral) 
into the range of small Froude numbers,  where (86) becomes inva- 
lid.   The solution of   4>?     is the object of future studies. 

IV . 6 - Discussion of Results and Conclusions. 

The two small Froude number paradoxes have been explained 
with the aid of our model problem. 

It was shown that the naive small Froude number expansion 
does not yield a uniform solution,   the region of nonuraformity being 
the "wavy wake". 

The elucidation of the second paradox has led to the impor- 
tant conclusion that the usual thin body first and higher order appro- 
ximations are valid only for large thickness Froude numbers.   For 
moderate values a new first order approximation has been derived : 
it results from taking in the free-surface condition a basic variable 
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speed,  rather than a uniform flow, as an "unpurturbed" state.   This 
new approximation is the natural extension of the thin body theory 
into the range of small Froude numbers. 

The basic equations of flow past a body of finite thickness 
moving at low Froude number have been also derived.  Again,  to ob- 
tain a uniform solution one has to satisfy simultaneously the bounda- 
ry condition on the full body and a free-surface condition in which a 
flow of varying velocity is taken as the basic state.   This basic flow 
is derived by solving for the two terms of the naive small Froude 
number expansion (rigid wall and first order Neumann type problem). 

To solve for flow past the actual body, while keeping the 
free-surface condition in its usual linearized form,  may lead to 
erroneous results in the range of small Froude numbers. 

V -   PRELIMINARY EXPERIMElITS ON THE TWO DIMENSIONAL 
BREAKING WAVE. 

An important free-surface nonlinear effect,  present in the 
case of blunt bow ships,  is related to the breaking wave. At the 8th 
Naval Hydrodynamics Symposium we have presented (Dagan & Tulin 
1972) theoretical models of the breaking wave inception and of the 
bow jet.  Recently,  experiments have been conducted at Hydronautics 
Inc. under the supervision of Mr.  M. Altman in order to visualise 
the two-dimensional breaking wave.   The detailed results of these 
experiments will be reported elsewhere.  Herewith a few prelimina- 
ry observations. 

A rectangular body has been towed at constant speed in the 
small Hydronautics towing tank.  The water depth was 38 cm and the 
model has been submerged at (i) 2. 5 cm and (ii) 1. 25 cm beneath the 
unperturbed level,   such that the effect of the bottom was negligible. 
The model has been towed at six different speeds in the range 0. 61- 
1.46 m/sec.   The model motion has been recorded through the chan- 
nel glass wall on a 16 mm color film at 64 frames per second.   Tak- 
ing the pictures has started after 3. 5 m of run (the tank total length 
is 24 m).   In fig.   9 we have reproduced two pictures for the 2. 5 cm 
model : at 0. 61 m/sec and at 1.46 m/sec,  the corresponding draft 
Froude numbers being 1.22 and 2. 93,  respectively. 

The free-surface in front of the body had vertical pulsations 
which became more violent as the speed increased.   This made quite 
difficult the definition of the average free-surface profile.  It seems 
that the oscillations are related to gravity effects since the periods 
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for the two submergence depths were roughly in the same ratio as 
the square root of the drafts.   Satisfactory Froude number similitude 
has been obtained for the free-surface elevation near the body for the 
two drafts. 

The breaking wave inception apparently occurs at a Froude 
number somewhere between 1. 20 and 1. 50,  which correlates quite 
well with our theoretical prediction of 1. 50.   Separation at the cor- 
ner of the body profile,   visible at high speeds,   makes difficult the 
definition of the body shape for an inviscid flow calculation.   We did 
not reach a "spray regime" in the range of considered speeds.   The 
study of the complex flow pattern of a developed breaking wave is 
the object of future studies. 

VI  - GENERAL CONCLUSION. 

We have discussed the pertinent conclusions at the end of 
each of the preceeding chapters.   Here,  we will try to discuss their 
bearing on ship wave resistance. 

The usual thin (or slender) body first order linearized 
approximation,   leading to the Michell integral,   is valid for sufficient- 
ly large beam (and draft) Froude numbers.   In its range of validity 
this approximation may be improved by taking into account the se- 
cond order term.   It seems that the contribution of the free-surface 
correction is of the same order of magnitude as that of the body 
correction in this second order term.   As the shape becomes finer, 
the Froude number limiting from below the range of validity of the 
linearized approximation,  as well as the second order correction, 
become smaller. 

For moderate beam (and draft) Froude numbers and,  hence- 
forth,   small length Froude numbers,   the linearized solution is no 
more valid and the second order correction worsens the results, 
rather than improving them.   To obtain a first order uniformly valid 
solution for a thin (or slender) body in this case,   one has to take a 
variable velocity distribution,   rather than a uniform,  as the basic 
unperturbed distribution in the free-surface condition.   This basic 
flow,  as well as the singularity distribution along the center plane 
(or axis),   may be computed by solving for a rigid wall flow pas the 
linearized body. 

Linear free-surface conditions with variable coefficients 
have been derived also for the case of small length Froude number 
flow past the actual body (finite beam,   or draft,   length ratio).   To 
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obtain a uniform solution,  the basic nonuniform flow (on which the 
variable coefficients of the free-surface condition are based) has to 
include the rigid wall, as well as the next term,   of a naive small 
Froude solution of flow past the actual body.   The singularity distribu- 
tion on the body surface may be taken from the rigid wall solution 
solely.   This results suggests that solving for the actual body shape, 
but with a linearized free-surface condition with constant coefficients 
(the Neumann-Kelvin problem) does not yield a uniformly valid solu- 
tion at small Froude numbers. 

The above conclusions are based on the assumption that the 
results obtained in the two dimensional case may be extrapolated to 
the ship wave resistance problem, at least in principle.  Only solving 
for actual three-dimensional flows will make the conclusions valid 
in both qualitative and quantitative terms.  Such three-dimensional 
solutions pose,  however, difficult mathematical problems which 
have not yet been touched. 

The picture of the nonlinear ship wave resistance theory is 
not complete unless we refer to two components which are somehow 
related to viscous effects : the bow breaking wave and the wake. 
Only the first component has been considered in our studies. 
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LIST OF SYMBOLS. 

Dotted variables have dimensions; undotted variables are 
dimensionless. 

A amplitude of free waves for downstream. 

C coef.  of wave resistance. 

D' wave drag. 

f complex potential 

F Froude number based on half length 

F FrouJe number based on length n B 

h1   , h'   submergence of body axis beneath unperturbed level. 

h' submergence of stagnation streamline far upstream. 

P -. 
strength of source located at z! 

J 
(x,1   - xl) g/U'       dimensionless distance between two sources jk        k       j 

L' body length 

U length related to the body image in the potential plane 

N free-purface elevation in a uniform small   F   expansion 

V(x') thickness distribution 

T' body maximum half thickness 

u1 .v' velocity components 

U' unperturbed velocity 

w1 complex velocity in two dimensions : vertical velocity com- 
ponent in 3d. 

W perturbation complex velocity in a uniform small   F   expan- 
sion 

x' horizontal coordinate positive in the direction of flow 

y' vertical upwards coord,   in 2d,  horizontal in 3d 

z' complex variable in 2d,  vertical upwards coord,   in 3d. 

a, ß real and imaginary parts of « 

j angle arbitrarily small 

t slenderness parameter 
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I.; <     perturbation parameters. 

0 velocity potential in two dimensions 

<t>        velocity potential of a uniform small   F   expansion in 3d. 

\t> streamfunction in 2d. 

ü)(f) = e-1       Ei (if) .   Ei (f)        is the exponential integral 

y\'       free-surface elevation above the unperturbed level 

f.|.X. X; ►- auxiliary variables 

a, p    auxiliary functions 

T slope of body contour 
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Fig.   1 A distribution of sources. 

Co-Olfl/'f.CC^.s'c,,, 

C  .t'/K 

Fig.  2 Wave resistance of a body of semi-infinite length : (a) 
a source generated body,  (b) wedge shape leading edge, 
and (c) wave resistance curves. 
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Fig.  3 Wave resistance of a source-sink body : (a) the body 
shape and (b) wave resistance curves for   2L' / h' = 20 

TTT »r- 

Fig. 4 Wave resistance of a source-sink body : (a) the body 
shape and (b) wave resistance curves for   2L' / h*   =10 
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f«) (b) 

Fig.   5 Two-dimensional flow past a submerged body : (a) the 
physical plane and (b) the potential plane. 

21 v / /y / / * / ■ /' / 

-^ 
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Fig.  6 Regions of uniformity of the small Froude number 
solutions. 
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Fig.   7 (a) Regions of uniformity of small   «2    solution» of 
the model problem and (b) integration path for large 
ReT 
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Fig.  8 Wave resistance of a biconvex parabolical body by 
different approximations. 
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(a)   U'/(gT')1/2=    1.22 

(b)   U'/CgT'l^r    2.93 

.     ■ ■        '■■: 

Fig.  9 Flow in front of a rectangular body 
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DISCUSSION 

Ernest O.   Tuck 
University of Adelaide 

Adelaide, Australia 

In the first instance I want to pass on a comment that Dr. 
Salvesen asked me to make on his behalf because he could not be 
here today.   Incidentally,  I agree with his comment.   The comment 
concerns neglect of the Kutta condition at the trailing edge of these 
two-dimensional bodies.  In fact both Dr.  Salvesen and I fell that our 
own original papers on these two-dimensional problems were defi- 
cient,   in that we should have included the Kutta condition in the first 
order solutions.  We are a little disappointed that in doing this pro- 
blem again,  Dr.  Dagan has not seen fit to include the Kutta condition, 
for reasons which he has stated but with which we do not really agree. 

My own comment is actually relevant to Dr.  Salvesen's 
work,  in that I feel that perhaps insufficient attention was paid to 
Dr. Salvesen's paper of a couple of years ago.  Dr.  Salvesen himself 
was aware of what Dr.  Dagan has called the "second low Froude 
number paradox".  He analysed this in some detail in this paper, and 
perhaps some direct reference could have been made to this work. 

DISCUSSION 

Edmund V.   Telfer 
R.I.N.A. 

Ewellj Surrey,  U.K. 

I want to ask a very innocent question.   Could the author tell 
me what he intends to be the significance of the word "naive" *  in the 

* According to the Oxford Dictionary the meaning of naive is " Cha- 
racterised by unsophisticated or unconventional simplicity or artless- 
ness. 
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description of the naive email Froude number? Is it an adjective,  or 
should it correctly be an adverb,  meaning "naively small" ? But how 
is anything naively small in the modern interpretation of the word 
"naive" ? 

My second question is,  would he care to hazard a guess as 
to how at very low speeds the wave-making resistance varies? Does 
it vary as the fourth power of the speed or does it vary as the sixth 
power of the speed? Could he just give an answer to that, because in 
a further paper to be discussed this afternoon this point will proba- 
bly arise? 

REPLY TO DISCUSSION 

Gedeon Dagan 
Teahnion Haifa, and Hydronautiaa Ltd 

Reahovoth,  Israel 

Regarding the Kutta-Joukovsky condition,  I have stated in 
the paper thai I am not really interested in solving problems of two- 
dimensional flow,  but only in using the two-dimensional computations 
as an instrument for understanding and opening the way for the more 
complex solution of three-dimensional ship problems.   Since in the 
latter case only the thickness effect is generally taken into account, 
I did not consider the circulation.   I agree that if one really wants to 
solve the problem of the hydrofoil (but I do not see the usefulness for 
small Froude numbers),  the Kutta-Joukovsky condition has to be 
taken into consideration. 

The paper of Dr.Salvesen has been amply quoted in the present 
work. I believe that my main contribution is the solution of the second 
paradox,   and not its discovery. 

The term "naive" as applied to a perturbation expansion has 
been borrowed from the applied mathematics literature.   The word 
is used in the sense that one expands in an apparently natural way in 
a power series,  without observing the nonuniformity of the expansion. 

Since the present work is concerned with two-dimensional 
flow,  no attempt has been made to correlate the resistance curve to 
the power of the Froude number. 
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ON THE UNIFORMLY VALID APPROXIMATE SOLUTIONS 
OF LAPLACE EQUATION FOR AN IN VISCID FLUID 
FLOW PAST A THREE-DIMENSIONAL THIN BODY 

J.  S.  Darrozes 
Eaole Nationale Supirieure de T^zhniques Avanaies 

Paris France 

ABSTRACT 

The classical solution of the Laplace equation for an 
inviscid incompressible fluid flow past a three-di- 
mensional thin body, is shown to be not uniformly 
valid in the vicinity of the planform edge (X). In order 
to find a solution which is valid in the vicinity of (X), 
the technique of "matched asymptotic expansions" is 
used. The inner solution in the neighbourhood of a 
rounded leading edge brings a shift correction to the 
classical outer solution. The inner solution in the vi- 
cinity of a sharp trailing edge gives the starting shape 
of the vortex sheet. 

I.    INTRODUCTION 

The study of three-dimensional flows past arbitrary bodies 
gives rise to many problems of great interest iiv Naval Hydrodynamics. 
For an inviscid incompressible fluid, the velocity potential <}> is a solution 
of Laplace equation, and in the few last years,  most of basic works 
have dealt with the numerical methods used to solve this problem.   The 
greatest difficulty comes from the fact that there is no rigourous ma- 
thematical theory available for such a problem and numerical attempts 
may be handled only with addition of physical assumptions.  A unique 
solution could be obtained, only after the difficult analysis of the corres- 
ponding high Reynolds number flow,  in the limiting case of an evanec- 
cent viscosity.  As it is not possible to do so,   it is necessary to guess 
[ijsome results in order to define a problem which has a unique so- 
lution.    For instance,   if the physical flow takes place with separation, 

Thit   work   has   bMn  tupportad   by   the  » Office   National   d'Etud«!  at   da   RacharchM  Aarotpatialai » 
29, Av. da la Olvlilon Laclarc - 92320 CHATILLON 
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we must give an a priori geometric description of the separated flow^ K 
This is the reason why we will assume later on,   that no separation 
occurs.  With this condition,  the Kutta-Joukowski theorem leads to a 
physically correct description,  but,  even with this requirement,   one 
does not know the starting shape of the vortex sheet in a non-symme- 
tric flow.  So,   the solution still depends upon an additive assumption^! 

One can go further,  assuming that the body is very thin,  be- 
cause the flow is undisturbed in a first approximation,  and the velocity 
potential $ is formulated in the form of an asymptotic expansion. 
Unfortunately,  new difficulties arise when the classical solution of this 
simpler problem is evaluated through a numerical analysis.   The flow 
velocity is found to be infinite on the leading edge,  the trailing edge 
and the vortex sheet edges.  Up till now,   theoretical investigations allow 
us to know the singular behaviour of the asymptotic expansion of the 
functions <t> ,   in the vicinity of the afore-mentioned lines,  but they do 
not suffice to solve complety the problemL3J .   The classical method is 
to consider an inner region in the neighbourhood of the singular lines 
in which we look for the velocity potential in the form of a new asymp- 
totic expansion called the inner approximation.   The technique of match- 
ed asymptotic expansions, which is the properway of investigation,  has 
been successfully employed by M. J.   Lighthill W and M.   Van Dyke L5J , 
to solve the two-dimensional problem of a flow past a thin hydrofoil. 

In this paper we apply the same technique for the three- 
dimensional case and it will be seen that the results depend strongly 
upon the wing geometry. 

II.    FORMULATION OF THE CLASSICAL OUTER PROBLEM 

II.   1  - Basic equations 

Figure 1 shows the body shape with the following assumptions 
and notations.   The body is very closed to the plane   z = 0,  and the inci- 
dent flow is supposed to have a uniform velocity at infinity,  parallel to 
the plane xoy,   in the x-direction.   The planform (S) is the projection of 
the body on this plane,   in the z-direction and its limiting curve ( X ) 
is the projection of a curve ( \ ) drawn on the body.  The curve ( X ) , 
which parametric equations are x(s),  y(s) and t z(s) separates the 
body surface into two parts. 
- The upward surface S+ has a given analytic expression : 

z   =  «f+ (x,  y ) 
- The other part S~ is known in the same way : 

z   =  «f- ( x,  y ) 
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Uniformly Valid Solutions of Laplaae Equation 

Figure   I    The Body shape 

The straight lines ( L, ) and ( Lj ), edges of the vortex sheet ( L ), are 
tangent to the planform at points i and j,   projections of the points I 
and J belonging to the obstacle.  In order to avoid separated flows,  the 
rear part of ( A  ) from I to J is assumed to be a sharp edge.   The body 
is smooth at any other points.   The vector n is a unit outward normal. 

Written under its usual non-dimensional form,   the problem to be sol- 
ved for the velocity potential <1> (x, y, z, »  ) is the Laplace equation : 

Al1      = o 

n. v i' = o 

(J) ~X 

on   S* ( t    )   U   S " (  t   ) 

at infinity 

(I  ) 

It is easily proved in any text-book,   that the function    4,    ,  may be 
approximated in term of an asymptotic expansion,   the first step being 
the undisturbed uniform flow <i>'0' = x 

♦ (x.y. z, t   ) = x +  .<l>"(x#y,z) +.V,, (x, y, z) + O ( « *) ( 2 ) 

At each step,  we have to find an harmonic function,   vanishing at infi- 
nity,  and satisfying some boundary conditions,   on both sides ( + and - ) 
of planform S. 

A*UI= o 

* (<■) 

i = 1.  2, 
o at infinity 
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We are going to consider now,  the validity of the so-called "outer 
expansion"     ( 2 ). 
It could be plausible that some difficulties arise when looking for the 
behaviour of outer solutions ♦ ''•'in the vicinity of the part   ( S)     of 
the plane z = o,  because the liquid cannot go through the body,  and 
the first approximation seems to be a non uniform flow. 

II.  2 - The region of uniform validity in the plane   z = o 

It is known that,   any point in the xoy - plane is regular for 
the outer expansion   ( 2 ),   except the points located on the lines ( X   ) 
( Lf) and ( L2].   This result is easily proved by introducing a new ex- 
(mtitiiun in the following way. 

Any function A ( x, y, z) is written A ( x, y, »j"z) - A { x, y, z, 1? ). 
The formal expansion of the function A ,  when z goes to zero,  is iden- 
tical to the expansion of the function A ,  when n goes to zero with a 
fixed value of z .   The »; -expansion must depend upon the cluster 

< f ? i since A does not depend upon   n    . 

Inserting this formalism into the problem governing the 
t  - term   <t),1)   of the potential velocity,   the behaviour of the solution 

for vanishing values of z is given by the corresponding  i> - expansion. 

4>   ( x, y, i»z) =♦   '( x, y, z, n ) =*0  ( x, y) +   »» <t>   '( x, y, z ) +   ... 

1) 

V       -   O 

z - o K * - "        . (x, y)   « ( S ). 
d i 

The following result is obtained without any difficulty 
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^(1) 
4»     (x,y)   is an arbitrary function and  A „„    stands for the operator 

o xy 

The same procedure is used to know the behaviour of the 

function <t> 

ä*f2) 

(2) 
a*      2       ~(2) 
dz xy 

•fc1 
d*^ + t 

t   ä*0
f,) 

+fA ♦;' 
xy   o ÖZ1 Tx       Sx 1y       Oy 

The »j -expansion in the vicinity of a point (x, y) on the planform (S) is 

1  zxO1.   (x. y) « (s) 

♦ f2l    f (x.y) ^zff   -1^ f  -Ä f,    ^   1 4,VA  A^ 
o Ixax yoy xy0|2 xyo 

(4) 

If we consider a point   (x, y)   on the vortex sheet   (E),   the Taylor be- 
haviour of any function   <i> W   is : 

-(1)1 ~(i) t -- ~(i,) t „,     2. 
+ 12*       + o( n ) 

The pressure continuity across the sheet gives additive 
conditions such as 

a*k 
^   X 

a*k 
r»x 

_ ~ U) ~ (i) 
Outside   SUZ,      ♦    =0 .   Consequently,   *     is a discontinuous function 
on the curves   (A),  (1_1 ) and (L2).  At these points the flow velocity has 
no meaning and the outer expansion   (2)   is not valid.  Elsewhere,  this 
expansion is uniformly valid,  as it can be shown easily in the follow- 
ing analysis corresponding to a point   (x, y)   located inside the plan- 
form   (S). 

If the approximation   (2)   is not valid in the neighbourhood of 
(S),  it must be within a region of thickness   0(«),  because,  in such a 
layer, the boundary conditions must be written on the real body, and 
cannot be approximated by a condition on the plane   z = 0 .  Replacing 

»? by « ,  the preceding results give the behaviour of the inner solution 
at infinity rewritten with the inner variable   z   ,  as indicated by the 
matching conditions. 
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^0) 
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Darrozes 

r~(21       1 
L    0 XJ (5) 

+ z (f 
a*i 0) 

+ £' 
.2.«) 
o «fro 

+  f A        «o     ) x    ä x       "y ^ y xy 2    xy   oj 

The inner problem is formulated as follow : 

N2~ 

~jr + 
2       ~ 

«A    * 
xy 

7= =      « 

!-.' ox y 
d* 

äz ) x     ox       y    ay    1 

+   Matching conditions at infinity. 

on   z =   f (x, y) 

The expansion ( 5 ) is shown to be the exact inner solution.   Therefore, 
the inner region exhibits nothing more than the behaviour of the outer 
solution.  This means that the outer expansion is regular at any point 
( x, y )E S,   and the inner region is   not required. 

ir 
ii 

Figure 2 Sketch of the flow when g goes to zero . 
The streamling I generates the streamlines I' 
from the leading edge.   The streamlines H'gives 
only the streamline II. 

Figure 2 shows the flow in the xoy-plane^ when 6 vanishes.  There 
exist physical reasons to explain the singular behaviour of the outer 
solution on the lines ( X ) and ( L,).   On a round leading edge,  the slo- 
pe is infinite and the normal velocity w = "♦/^z is   o ( i ) instead of 
o ( «  ).  At any point of the angular trailing edge,   the Kutta- Joukowski 
condition requires a velocity tangent to the curve (  X ), which contre- 
dicts the fact that there is a uniform flow in the first approximation. 
On the line ( Li) ,  the streamlines I1 closed to the streamline II rolls 
up,  and generates the apex vortex.  At infinity downstream,  any 
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streamline ( I') goes to ( L,) and makes the vortex growing. 

UI.  THE SINGULAR BEHAVIOUR OF THE OUTER SOLUTION ON 
THE PLANFORM EDGE   (   X ) 

In this section,  we look for the behaviour of the outer solu- 
tions 4^" and (l>*    ,  in the vicinity of a round leading edge,   or a sharp 
trailing edge.   To this end,  a carefull description of the body geome- 
try is required. 

III.  I   The body geometry 

Let us denote byT ( s ),  the outward normal to ( X ) in the 
plane z = o. 

Figure 3 The leading 
edge geometry (upper 
surface). 

Figure 4 The local 
curvilinear coordi- 
nates. 

We define a reference frame a XYZ, with  aZ parallel to the z-axis, 
and the unit vector "v    in the   Y-direction. Figure 4 shows the local 
curvilinear coordinates (s, Y, Z ) : 

OM = Oa ( a ) + Y v ( » ) + Z k 

DM = h^ds fTdY   +"kdZ 

h,    =    1 - Y C  ( s ) 

(6) 

C   ( s ) stands for the curvature of the pLinform edge (  X ). 
If this quantity does not vanish for any value of   s ,  the mapping 
( x, y, z )—>( s,   Y, Z ) is a one to one transformation in a region of 
thickness less than   8in'| C ( s )| ,   surrounding the curve ( X ). In this 
region,  the body equation may be written under the form : 
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4-=^(8) + H±( s.Y ) (7) 

with the condition : H"( s, Y )+o when Y_o for any   s.   The behaviour of 
functions H^when Y goes to zero is obtained using the reverse functions 
G±= H"1-.  The identity : YsGi( s,H(s, Y) ) is expanded into Taylor 
series for small values of H : 

Y=   af H: ,±   u±2 Hiz/2 

The following results are found. 
a) Round leading edge     ar s   o,   a i <D 

t zA{ s ) t. 

b) Sharp trailing edge   a, 
■V?-^01**1 

T r ZA( s ) + $--$$^M-$)*«>^ 
(8) 

(9) 

c) The transitions point I and J.  Assuming that   s (I) = o,  we must 
have a^ s ) = o   s^ o ; a, ( s ) ^ o     s>o , and conversely for the 
other point J 
When   s—.o+ we admit the following expansion 

a, ( s ) =1,    8a +   o ( sa) a>l 

In that case the behaviour of the body equation in the vicinity of point I, 
depends upon the way in which s and Y goes to zero.  In other words, 
the expansion (9) is not uniformly valid when   s goes to zero.  It is 
possible to write a uniformly valid approximation of the function 
H ( s, Y ) = T " ZA( S ) •  ^or any liniiting process { 8-.0   and 
Y _, o f-'J The corresponding description is given when Y and s go to 
zero simultaneously :    Y = V ( s ) Y ,  with ^ ( s )—»o   when   s —»o, 
and Y   has a fixed value.  The function ß( s)   is determined by using 
the less degeneracy principle.   Writting 
H ( s, Y ) = H ( S.M"? )   =   H ( s. Y )   ,  we know that "H ( s, Y )_»o   when 
s—»o   for a fixed value of   Y ,  and 

H( s.Y)   =   r ( s)   jtl, ( Y )     + 

Inserting these definitions in the equation 

Y   =   a. 

o( 1 )l 

H   +4-2H2 fH3 + 
we obtain 

( s)   ,Y=ä1 8*r ( s)| Hi+...| +^( •s 
)     H0 + 

In order to take into account the greatest number of terms in the 
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7a first approximation,  we must choose :    r ( s ) = s   and ^ ( s ) = s' 
Then 

7- = *A( » ) - ^"[ä,1- y (•,*)'+   Zaf^Y] + o ( sa; ( IO) 

This expansion is shown to be uniformly valid in a neighbourhood of 
the point I, after verifying that   : 
the limit     Y —»o-egives expression    ( 8 ) 
the limit     Y —* 0 gives expression    { 9 ) 

III.  2   The vicinity of a round leading edge 

This paragraph is devoted to the study of the singular beha- 
viour of the outer solutions ♦'''and <p   , in the vicinity of a point   A 
belonging to a round leading edge.  Let us start our investigation with 

k11' the function 4 ,   solution of the equation   (II). 

ö♦,,, 
A  «p   = o 

da 
=   V (x.y)   e   S (11 ) 

which is rewritten using the curvilinear coordinates 
-(11      c(*) a*(w.      ^/.r'^JYC^s)       d*^ 

^Z*-I-YC(S) iry + (1-YC(8)  57+rüYcT3    dT 
I) cosa(s) 

1 - YC{s) ^(s) fH^ V 8ina( s)H^   (Z —o^) 
(12) 

There are many solutions to this problem, due to the fact that we cannot 
take into account the condition at infinity, when looking for a beha - 
viour. Any solution of equation ( 12 ) is obtained from a particular 
one, after addition of a solution corresponding to the homogeneous 
problem        |  -2^. = o      , Z —>■ o ^ 

The homogeneous problem 

In order to investigate the behaviour of the homogeneous 
solutions in the vicinity   of A , we define the new variables 

Y =   Y / , ;        Z = /z - i zA( s )j /, 
with ») < 1 

We look for an 1 - expansion of the function 

* "   [ s,   >) Y,  «zA( s ) + i?? j ♦    ( s, Y,  Z ) 
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solution of the homogeneous equation ( 13 ) 
.HI      _„,     .    a*111 

^vo?*    - ^(s) ^-+ o(n') 

■§r 
-= o z = o Y^o 

( 13) 

lÜSi. 
(.)Gx 

p    X M 

<e 

Geometry of the outer 
problem 

The complex variable 

Figure 5 

Using the complex variable z ~ p e   =    Y + i   Z   ,  and its conjugated 
value z = Y - i Z , it is easily shown that the  T; - expansion of «fr'1', must 
be written with   the asymptotic  sequence   »j^2(k=l,2,   ...) 

r Ml tm= i>0
m

+ ^*;"+, ^,'+o(^) ( 14) 

Each term is obtained after resolution of a trivial Hilbert problem on 
the negative part of the real axis of the plane   z .  The final result is : 

* = c0( s ) + 1  d,( s )'p   siny-+ 1 c2( s )pcos   +V d3{ s )p8in-^-= O {v7) 

c ( s ),  d ( s ),  c2( s ) and   d3 ( s ) being arbitrary functions 

The full problem 

We are now looking for^solutions of equation ( 16 ) 
A

YZ*  -   "Ms)    |Y- +      0('?2)      =o 

lz.1 

^2 ?• V2 

Z = o" Y    < 

( 16) 
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Using the previous result ( 1 5 ),  it seems plausible to try an a priori 
expansion under the form : 

-111 W n*{:\v%v:\ ( 17) 

It will be seen,  later on, that expansion ( 17 ) is incomplete,  because 
the asymptotic sequence must contain logarithmic terms. 

-CD 
Let us consider the problem to be solved in order to find<P1 

AYZ*.   = 0    =*> 

♦r'd.V -\^\z),^\^] + i [BJ'U) - B;'U#)] 

where A^ Y ) and Bjt Y ) are real functions on the positive part of 
the real axis. The holomorphic functions A, l[ z ) and B^ z ) are obtai- 
ned after solving the Kilbert problems deduced from the boundary 
conditions 

^Z      \:<z   'hi, /'[hz    +bz*   )'    pVi 
) 

<    o 

e.. i(Al
t'
,'+-   A'1

,,,')   - ( B',"^ B1,11'-) = tlpLJLl 

e^-r   KA1/""-     A1'/)      -   (   B,
|"

,+ +Bjt1»')   =    Sjjll 

1(1) + 

Bi(l)+ + 

1 

B Kil 

-iSofe)  (s)/ p'/a (18) 

-&0
,p)(s)/P^ (19) 

The following notations are used : 

f(z) =-^;    *(e) 

dz o 
1, (p) (i    . i   )   . &   w (S     +  5   ) 
Zoo o 2     o o 

The solution of equation  (18) is :   A =   {       (s)'z-y+ homogeneous 
solution. . i   (p).  . 
The solution of equation   (19) is :   B 1-L z-^-log "?   + homo- 
geneous solution. 
Coming back to the previous variable   z-tz = Y+iZ   we can see that 

^^'(s) z-4-=   i ^'(s) z-y- does not depend upon T; .  But the func- "   2   -o 
tion 

„  2    «o(p)(s)    ~ 1 .      ~ 
1       i—i    z -- log z 

W C» 

io(p)(s)       1, +1  ——   Zylog z + log »; ̂ A 
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still depends upon V    . 
It is easy to see that the logarithmic term is an homogeneous solution. 
Then,  the expansion of the function   $   is 

&l ^Log ^lkinf+ .«E ^os|+
2-iiP(LogP3in^cos |    If 0( ^ 

The same procedure is used to evaluate the following terms,  and after 
many computations, the final result is found to be : 

*      — 

ne.iii p (loqp cose-e«.neJ + 1  -iA p 4i 

Particular solution of the 
non-homogeneous problem 

'P)- V 

O    ' tin  t^sV^sinl -VloQV—PCOiQ 

+ c2(s) pcose 1 

+,¥io^y|^rc(s)*'0^H 

+ d,(5)5in JÖ.+ 
J 2 

+ 0(1»^  log i? ) 

General solution of the 
homogeneous problem 

Following the same argumentation,  we investigate now the behaviour 
of the function  ♦        solution of the equation   ( 21 ), 

(21 ) 
.„,(21   C(8) W 

YC)   TPf(i-yc)3 TT--0 

^„-vc-'^.H^Ulf"-«1 
^Z2 

ID 
■o-,   Y<o 

With the new coordinates   Y =   Y/v   z.ua Z = ( Z - « z. (s)) /?;    ,  and 
using the known expansions 

H1  (s.   n  Y) VllYl     Ho1   + 0 

1 + 

»)   Y  Hf   + 

C 

Hy"  (s.   1   Y) = ^^    H0-   +       H,       + . 

SY   yjTm   " +yfm '^'3 
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d2*«2)        log >»       I" 1 I1 l II" 

the equation (21 ) is rewritten below : 

A^L   ,C(B)     ^
,2) l?2 ÖY 

+ c C» a)   = o 

^,2, 

01 

'   L°S,   ^|-   H^ftH!**^"1^ 0       2 

+ 

+ , 

Z  »o Y    <     o 

H, = - ^3 (a2)5 
H'o = - 1 V 2    a 21 > 

I1 JP) 1* ?ÄiP^(P) I1 

1+ . (e) ^c/ 
+!,-    =    . ^J- Log | Y| + 2 c2 - ^^l- 

Z  Tt Z   IT 2 

(e) 

sH 

The expanded solution contains some terms   o (Log »?) and 
o ( »»^(Log  n)2 )   because   the Hilbert problem : 

e = ^   . M = Log  p *     P =  IYI 

has the particular solution     n   (z) = 
4 ITT 

( Log z )2 

After analytical calculations,   the result is found to be : 

$2) = (Log^)*d2V Log »i t1
,2U2

Pi')1/i(Logr;f^i2)+ n^Log Itfl 

^      *0(P)   .   H+ + Ho'       $(2) öJP)   Hj+Hö 
"27r2 2 ''JTZ- 2 

(23) 
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^'-io^. üLJLüL ^'-^•"V"8 [(Log;)2. «2] e« O^HJ 6   - Ho 

+ 3 = - —"T   sin —     3 5 o    —y— 2-  -   ö , _»_ Si. 

TT 2       L 2 2 2 

III.   3 The vicinity of a sharp trailing edge 

This paragraph is devoted to the study of the asymptotic be- 
haviour of the flow velocity potential,   in    the  neighbourhood of a sharp 
trailing edge.  The function   <f    ( s, Y, Z , n) must fulfill the following 
equation : 

(i) a*1 

^V7*        -    ^     (8)^-   +     0(0     = YZ 
a »to 
r>Z 

ft? 
J.s 

" Ä1  (s)+ i «2 (s)   Y   + 

Y   <   o (24) 

with the addition of the generalized Kutta-Joukowski condition : 
•(Di 

i   z a s 
bounded by p       ,   when p—.o, V-K^> o (25) 

When   7.  —,o-   with a positive value of Y   ,   the pressure must be a 
continuous function : 

rd). sin or  ti *' ID 
p' '= -    v--    + cos a -r-r- |1 +   vc Y + 

+ + 

^5 
1  +   ^CY + o (i2) (26) 

The syribols *^(s) and ^(s) have a new definition in this section 
(see (9)j 

+ 
=    cos a z' (s)    -  sin  a / a"    (s) 

6 2       =    - (a2 /a, ) sin a + C cos a  z '   (s) - cos a (a{   /a, ) 

Now,   we proceed as in the last section,   in the complexe plane 
z = Y + i Z 

1752 

«^MMMM^M 



yrr. <-•">■■•••>--.<    '  '.*" ." 

Uniformly Valid Solutions of Laplaae Equation 

7 
\ 

♦z 

body 
CB) 

trailing 

edge 

Figure   6 

If theT^-expansion of the velocity potential has a term      o   (1) 

^     *<"     + 

ID. the function    <l>o   is a solution of the homogeneous problem 

A ♦o11' = o^lfta 1J= A0  (z)   + A0  (zj + i (BQ (z) - Bo (zj) 

but AQ (Z) and BQ (Z) are holomorphic functions except on the real 
axis.   For the negative values of Y        ,  AQ (Z) and BQ (Z) are not defi- 
ned when Z goes to zero,  and the limit functions are denoted   Ag (Y) 
and B|(Y). 

In the same way,  we denote by A^='(Y) and Bfl^Y) the corresponding 
limits for    Y ^ o.  As an exemple,  we solve  the problem involving 
AQ  (Z). 

A^       =   A'Q"        =k 

k = o, because the function A(j(z) cannot contain   "z .   Then   AQ (Z) is a 
constant,   but this constant may have different values in the upper pla- 
ne and in the lower plane   ( Z   <. o ). 

AQ      (z)    = co+ (s) Z   >   o 
(27) 

AQ      (z)    = CQ' (S) Z   <   o 

+ ~(1) 
It is easily proved that      B0   (z)   = i eö (s)   so <b0 =co (s)+   eo   (s) 

The following term is the Tj-expansion of <l>   is not of ordr r  q4.  In 
fact,  if such a term »; ^«t1, does exist,  with      -. 

<!>/'=   AA (z)   + A1   (z,) + i rB1 (z) - B1 (z,) the pressure  condition 
(26) shows that L -' 

A,®+ A1© + i    [ B\®. BjQ]= A1©. Aj®+ i [BI©-  B\® ]    (28) 
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This relation is fulfilled for any function   A,, (z),  and we must solve 
the Hilbert problem for a function B, (z) holomorphic on the positive 
part of the real axis.   This has been done in section III. 2,  but the cor- 
responding solution    z"Vi    ,  does not fulfill the Kutta-Joukowski con- 
dition   (2 5). 

Consequently   :     <t>     =c0(s)±|o{s) +"?*,+ ... 

A^-*!1^ o=^*|M= A, (?) + A, (zj+ i [B, (Z) - B^ (z#)l 

A1 (z) and B^ (z) are sectionally holomorphic functions,   satisfying the 
following relations 

A'^     - A'f     = - i «1
(e)     Z - o        Y < o (29) 

B^     + Bj"    = - «^          Z  = o       Y < o (30) 

B;® - B;G= - i cotgaei/s)        Z-o.    Y> o              (31) 

with   « i= -j(  «T- «i) ,   *1     =—( 4i + *i) 

The equation  (29)  has been solved in the preceding paragraph : 

* ie) ~ ~ t 
A^z)  = - y^- z   Log z   +  c-(s) z (32) 

From equation (29) 

B,j(2)   = -i-Ä^+ieJ  (s) 

and using the relation (31),  the solution is 

B, (z)   - -yl   F ^ticotgaej/s)! (33) 

From these results,  the rj - expansion of the flow velocity potential is 
written in the following form : 

~W ,(e) ~( (e) 

4>=   c0(s)-e0 (8)-»/lyOg tj _*1_   "pcos Q+ iplh-  ( 6sin B - Log? cos 6) 
n ' w        J 

+ 0^8) cos 6 + «^'sinGt e0(8) cotg a cosO >   + o(n^) (34) 

In this expression,  we have assumed that the vortex sheet has no 
thickness,   so writing   ä5',/r)Z|®-   ät/^E©  ,  we obtain 
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Figure 7   Outer description of the vortex sheet 

The starting shape_ of the vortex sheet is given,  in this outer solution 
by the value of   d <t>'   /c^ Z   when 9 - o or ZtT.The figure 7 gives a 
sketch of this departure IE 

The slope is found to be b\ 
drofoil without thickness. 

in a plane normal to the planform edge ( X ), 
4, as in the two-dimensional case of an hy- 

We conclude the analysis of the outer problem,  with the figu- 
res 8 and 9 which show the singular behaviour of J^'in the vicinity of 
a round leading edge (20) and a sharp trailing edge (34). 

THE    SYMMETRIC   PROBLEM 

LEADING   EDGE TRAILING     EDGE 

GEOMETRY 

Z| 

Y <* 'df V ^ 

NORMAL 
VELOCITY 

1 i 

W+ 
i 

Y ^ Y ^ 

PRESSURE 
DISTRIBUTION ... ;>1 logp y V^   log P 

Y^ y^ 

Figure 8 
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THE LIFTING  WING 

LEADING EDGE TRAILING   EDGE 

GEOMETRY 

H;-MIö zf 

-^ 

*o(Pi0 zf «„'no 

Y-^ 

Z» 

~J^ 

NORMAL 
VELOCITY 

Y-» 

^(lo, \ 

ZK 
wr 

■r\ V 
♦ v? 

Y*- 

TT. 

i Wi 

7^" 
PRESSURE 
DISTRIBUTEUft 

v^ 
M^fi) pi 

V P-X 
Y-«- 

Figure 9   A discontinuity in the curvature of the leading 
edge increase the order of the singularity 

IV,    THE INNER SOLUTIONS 

With the new variables   Y = Y / >?   and   Z = — ^K the 
body equation is 

_ t Y   + 3(4) ± 
2 It is easily seen that,  in an inner region of order  y = *   ,  the bounda- 

ry conditions   must not be written on   Z = o,  but on the exact body 
wall : ■  

Z = W-pp     +   o (  e  ) 

Therefore,   the study of the vicinity of a round leading edge requires 
the introduction of an inner layer with a thickness   0 {t2\   The beha- 
viour of the inner solution at infinity,  for this region,   is given by the 
outer solution (20) and (23). 
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Unifoimly Valid Solutions of Laplaae Equation 

♦     =   x(8)   +   « 

+ «   | - Ysin« (s) +/>-7 2io <:osr + -Tr(Log''sinz+   co8-)+d^s) sinyjf 

''      ^^[(Log^-e^-SaiSL^}.»«.^.)      (35) ♦"If 

For the sharp trailing edge,  the outer expansion is singular 
for the symmetric problem,  as shown on figures 8 and 9 

1 Log P 
(el 

p -r\p +o 

From this result,   the study of the vicinity of a sharp trailing edge 
requires an inner region with thickness of order  ») = o ( e " /• ).  The 
behaviour of the inner solution at infinity, for this layer,  is given by 
the outer solution (34) : 

-*, * = x(s) +« (co(slie0(s)) +6-^1 ii_P-7sin«(s)lco8e +o(te'/«)    (36) 

IV. I   The neighbourhood of a round leading edge 

The full problem,  to be solved in the general case of an un- 
symmetric nose is written below : 

A— <t) .2C   (s)f|-+o(^) 

n.V* = o   on   Y   = "r^Z2* 0 (  < ) 

Matching condition (35) at infinity 

Z 

(a2< o) 

Figure IO   The local problem for an unsymmetric 
leading edge 
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Taking into account the expansion (35) at infinity,  the solution   $   is 
expanded under the form of an asymptotic approximation : 

* = $0    +   * *,   +     (   ♦ Log « ) *2+    «*Log«*3+... 

We have obviously 

*0= x (s) 

*i= c0(s) 

7       2ii,p)Ho+HÖ .(p)   sinrt    HO+HS        J1   +1"* 
♦2  = IfT "I  «0 = -y- .  -2--^;        H0= ^_T 

The function  ♦  is a solution of the following problem 

-, - -                 ^     at   ~z                    r    46^-4     e (37) 
n.v 4> = o   on Y =-==-2.    ; At  oo   *3' p z:n— 

In order to solve this problem,  we must change the 
se the focus of the upper parabola as a new origin 

Y = Y   + 
1 

Z     =   Z 

Z-axii and choo- 

(38) 2|a2|+    ' 

We define the conformal mapping z = f    , with z = Y + i Z   and 
f =   ^   + ity.   In the f-plane,  we have to determine a flow,  with the 

uniform complex velocity 4 i ig /if   ,  along a step   Q)     (when aj =0) 
or along a curvilinear wall in the general case   (2)    (when a«» ^o).  The 
solution,  in the first case ® is easily obtained,  but has no interest 
because the infinite velocity at the point   O   generates separation 
(except for the ideal angle of attack).  The solution in the second case 

(2)     has not been obtained, but this solution does not present a great 
interest, because a slight change in the incidence    remove this point 
of discontinuous curvature, from its present particular position.  We 
restrict our study to the regular nose ( i.e.  discontinuous curvature). 
In that case   H©  = - HJ and 4Q''V=O .  From the expression (35),  the 
behaviour of the inner solution at infinity is : 

* =x(s) +tc0(8) + *2  - Ysina+P^(26*co»x+d1(8)sin-) + o(l)     + o[tz) 

and   + is expanded under the form <|) = x(s) + «eis) + <2<I>,.+ o(*1) 

With the new coordinates defined by (38),  the function «l^ is solution 
of A       * A YZ*1   = 0 
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1 ao   ^3    .   +——Z*    is a stream line 
Zaj      2 

At infinity    ♦.   =    R   I- sin a z  > 

^1 

F 

l/NÄ /       * 

Figure l l    The local problem for a symmetric 
leading edge 

Using the conformal mapping z =   f   ,  the given parabola is transfor- 
med into the straight line f    =  1/ \2\ltg\     and the corresponding 
complex potential is      f(f) = ''(f)   +iM^(p) 

f ( i") = - sino(( f . f )2+   Cste 

with 

r. i 

v 2 I a, 
+ i A 

So,   the solution we are looking for is : 

♦,      =  - sin o( | Y    -2 P 

and rewritting  it,   with the coordinates   Y ,   Z 

♦, 

[7    -2'P(b"|C082- + 27
vVinr+ K (s) 

i        -> -   i   \4 
R     - sino^z     +2  f0(z + jr—j)* +K (s) (40) 

1 "I       "      '    "  ,ü\-  ■   2la2l 

The identification with the asymptotic behaviour (3 9) at infinity gives 

which is identically satisfied «0 
(e)   sino( 

^2 I a2l 

point P. 
^Q = d^s) /Z        which gives the position of the stagnation 

In the physical plane   Y ,   Z,   P is located at the point 
( -d*/4. di /   VTuTi) 
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The arbitrary function d^s) may be d. uied only after the resolu- 
tion of the whole problem,  the location ol P depending upon the Kutta- 
Joukowski coi.dition at the trailing edge. The matching condition is 
fulfilled up till      O ( e 3). 
The following term in the behaviour of the velocity potential at infini- 
ty, given by the matching conditions is : 

- «Log « _J_pcos 0 +   «     Log « ^—       " ■L' 
TT 

P *COPj 

3    2«ie)r ~ t    Log c |-   p cos G + 
IT -e[- ^-^^^-f] 

2Z .   3, The expansion of   <t> is then :  +   = x(s) +« c^s)   +t i>^+t Log t   <!>,+ o(«ä) 

_<bz being_a solution of the problem (41), written with the variables 
Y      and     Z     : 

A9Z*2 
-2 

Y = - 1 / 2a2   +   a2 Z   / 2 
(e) 

is a streamline (41) 

at oo    ♦ 

led as befo; This solution is obtained as before 

with 

vTT 
+ iA 

The matching conditions show that/9, = o     and /■  , -*rr~   which 1 v2 I a2'     ^f Ia2l 
is identically fulfilled. 

We can conclude by writting the composite expansion uniformly valid 
in the vicinity of the round leading edge.  There is a shifting correc- 
tion analogous to that found by M.   Van Dyke in the   2-dimensional 
case [81 . 

♦ = x(s) - Y sino((s) + «♦'%, Y, Z) + «Vts. Y, Z) 

fp{.^,lt.L„g.,.i^l]^^-f]}t^ 
(42) 

Y + i Z 
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Uniformly  Valid Solutions of Laplace Equation 

IV. 2 The vicinity of a sharp trailing edge 

The new problem that we inveotigate now is formulated as 
follows 

~P    -    x{s)+t(c»   1   e0(s))   +e-yt   |(s,Y.Z..     ) 

Figure   12 

We must solve : 

A-^r ♦ + o (e" ^C)       = o 

— -.« ~ t Y 
n.V <t>- o on Z   - —^--7—> 

a* (s) 

with the matching condition at infinity. 

It is easy to see that the function 

«Psin a       \ 
*o-3 

L 1 ^ 

Of«). 
TTsin *) 

(44) 

is a particular solution of the two-dimensional problem,   and the 
matching condition at infinity requires : 

V 

U («)= e 

if sin a 
sin o< + «   ( c^ te1,, cotga ) (45) 

We did not prove the expected result : 

♦     =     *0    +     o ( t 2) 
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Nevertheless, the departure of the vortex sheet, given by the expres- 
sion (44) (see figure 12 ), is not in agreement with the results obtai- 
ned by Mangier and Smith L&]. 
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WAVE FORCES  ON A  RESTRAINED 
SHIP IN   HEAD-SEA WAVES 

Odd Faltinsen 
Det Noreke Veritae 

Oelo, Norway 

ABSTRACT 

The exact ideal-fluid boundary-value problem is 
formulated for the diffraction of head-sea regular 
waves by a restrained ship. The problem is then 
simplified by applying four restrictions : I) the bo- 
dy must be slender ; 2) the wave amplitude is small 
3) the wave length of the incoming waves is of the 
order of magnitude of the transverse dimensions of 
the ship ; 4) the forward speed is zero or it is the 
order of magnitude t  ' ;   0<a<l/2,  where c is 
the slendemess parameter. 

The problem is solved by using matched asympto- 
tic expansions. The result shows that the wave is 
attenuated as it propagates along the ship. The re- 
sult is not expected tobe valid near the bow or stern 
of the ship. 

The experimental and theoretical pressure distri- 
bution along a prolate spheroid have been compar- 
ed. The predicted attenuation of the peak pressure 
is very well confirmed by the experiments. In ad- 
dition, theory and experiment agree that the peak 
pressure near the ship generally leads the Froude- 
Kriloff-pressure peak by 45°. 

I.    INTRODUCTION 

There is a growing interest in finding the pressure distribution 
along a ship due to waves. Up to now one has mainly concentrated on finding 
motions, shear forces, bending moments and torsional moments along 
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the ship.   But the development of the finite element technique in ship 
structure analysis has necessitated a more detailed information of 
the force distribution along the ship. 

We are in this paper going to consider the regular wave case. 
But it is to day well accepted that we can apply the principle of linear 
superposition and statistical theories to sum up the responses in re- 
gular waves of different wave lengths and headings to predict the res- 
ponses in irregular sea. 

The solution of the regular wave problem is usually divided 
into two problems.   One part is the case when the ship is forced to os- 
cillate and there is no incoming waves.   The other part is the problem 
when there is incoming regular waves and the ship is restrained from 
oscillating.   Due to linearity the pressure,   forces and moments ob- 
tained in those two problems can be superimposed to give the total 
pressure,   forces and moments on a ship which oscillates in a steady- 
state condition in regular waves. 

We will here consider the case when there is incoming regu- 
lar v/aves on a ship which is restrained from oscillating.  We will as- 
sume that the wave length is of the order of magnitude of the trans- 
verse dimensions of the ship,   and that the waves are coming from 
ahead.   Our goal is then to find the pressure distribution along the ship. 
The head-sea problem is up to now an unsolved problem.  For the 
oblique-sea case Ursell ('.968 b) found a solution but he was not able 
to find a solution for the head-sea case(Ursell (1968 a   and   b) ). 

Ogilvie and Tuck (1969) have considered the complementary 
problem,  namely the forced heave and pitch oscillation of a ship when 
there are no incoming waves.   For the zero-speed case the order of 
magnitude of the frequency of oscillation used in Ogilvie & Tuck (1969) 
is the same as the order of magnitude of the frequency of the waves 
assumed in this paper.  In the forward-speed case,  the assumptions in 
Ogilvie & Tuck (1969) and in this paper are different. 

Ogilvie & Tuck got a strip theory result and it is well-known 
that strip theory gives good results for a wider range of wave lengths 
than Ogilvie & Tuck restricted themselves to (see Salvesen,  Tuck & 
Faltinsen (1970) ).  So it is the hope that the theory presented in this 
paper also will cover a wider range of wave lengths.  But it is only 
our experience that is going to tell us for how large wave lengths our 
theory is capable of predicting the pressure distribution along the 
ship.   The theory predicts that head-sea waves of small wave length, 
are deformed as they propagate along the ship.  Experiments seem to 
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Wave Forces on a Restrained Ship in Head-Sea Waves 

indicate that this is true for a wave length which is half of the length 
of the ship,  but that it is not true for a wave length which is three- 
fourths of the length of the ship. 

By integrating the pressure in an appropriate way over the 
submerged part of the ship,  we are able to predict the exciting force 
and moment on the ship.   For the zero-speed case there is another 
way to obtain the exciting force and moment on a ship,  namely to use 
the Khaskind relation (see Newman (1962) ).  The disadvantage of the 
Khaskind relation is that it cannot predict the pressure distribution 
along the ship.   Further it is a formula derived on the basis of a gene- 
ral mathematical relationship, and so it does not give us much insight 
into the physical problem. 

We are in this paper considering both the forward-speed and 
the zero-speed problem.   They are separate problems and are handled 
as so.   Both problems are solved by using the method of matched 
asymptotic expansions.  We then introduce a farfield description which 
is valid in a distance of order one from the ship and a near-field des- 
cription which is valid in a distance which is of order   t    from the 
ship.  Here   *     is the usual slenderness parameter which is a measure 
of the transverse dimensions of the ship compared with the longitudi- 
nal dimensions of the ship.   The ship is slender so   c    is a small 
quantity.   The length of the ship is a quantity of order one.  It is the 
diffraction potential we solve for,  and it is found that the far-field 
picture can be described by a line distribution of sources of density 
oscillating in the same way as the incoming waves and located on the 
x-axis between   -L/2   and   L/2   (see Figure 1).   It is,  however,   the 
near-field solution that has the main interest.   But the inner expansion 
of the far-field solution is giving us necessary boundary conditions on 
the near-field problem.  It is found for both the zero-speed and the 
forward-speed problem that a first approximation to the diffraction 
potential in the near-field (not near the ends of the ship) is just minus 
the incident wave.  So a first approximation to the total potential (in- 
cident + diffracted wave) will be given by the second approximation to 
the diffraction potential.  Writing the total potential as 

i (   «t "x)./ 

it is found that   i1    satisfies the following equations in a cross-sectio- 
nal plane of the ship. 
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(a) Jty     +     J£± 
ay ^z 

"   i     =   0   in the fluid domain, 

(b) -f^     + 
dz 

=    O   on   z   =    O   outside the ship, 

(c) 
di 

dn 
2D 

on the submerged part of the body. 

(d) condition to satisfy as 

For a definition of coordinates see Figure 1.   Further   u   is 
the frequency of encounter,    t   is the time variable,    v   is the wave 
number,     ^ZD   *s a two-dimensional normal to the body in the cross- 
sectional plane. 

Condition (d) is obtained by the matching procedure and it 
will be different for the zero-speed and the forward-speed problem. 
It should be noted that the longitudinal coordinate   x   will be a para- 
meter in the solution of    ip   ■ 

Ursell (1968   a   and   b) set up a similar equation system as 
above. The very important difference is the condition (d).   His mathe- 
matical solution to   (a),  (b)   and   (c)   did not agree with his condition 
(d).   But it will agree with our condition (d). 

The solution to   (a),    (b),    (c)   and   (d)   can be written as 

VU) + I/U 

or 

^  = 
V   x   +   L/2 

—      (T (y.  z;  x) 

1766 

■HMMIHHHM 



■N       '   ^T"— 
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Here       w0   is the frequency of the wave and   U   is the for- 
ward speed of the ship.     x =--^-     is the   x-coordinate of the forward 
perpendicular.   Positive   x   is in the direction of the after perpendi- 
cular. 

We do not want to go into detail in this chapter about the ma- 
thematical expression for   ^Q     (or    t'   )•   For more details see the 
chapters about the zero-speed and the forward-speed problems.   But 
we should note the following :    ^Q   is the solution to the zero-speed 
problem.  So the solution at a certain forward speed   U   can simply be 
obtained from the solution of the zero-speed problem by multiplying 
with 

/ 

+    Ui 

Further     ^' will not vary with   x   if the submerged cross-sectional 
area of the ship is not varying.  The second expression of    ^ is then 
telling us that there is a decaying factor   (x + L/2)    '       as the wave 
propagates along the ship. 

The presentation in this paper is divided into the following 
steps.  First we set up a general formulation valid for both t^j zero- 
speed and the forward-speed problem.   Then we study the zero-speed 
problem separately.  We derive a far-field expansion for a source 
distribution located on the   x-axis   between   -L/2   and   L/2.  We 
obtain an inner expansion of the far-field source solution and study 
then finally the near-field solution and the matching between the near- 
field and the far-field solution.   Then we have a chapter for the 
forward-speed problem,  which is presented in a similar way as the 
zero-speed problem.  Finally we have a chapter about numerical cal- 
culations.  A computer program has been developed for a ship having 
circular crosa-sections,  and comparisons between experiments and 
calculations have been done.   The agreement is shown to be good. 

II.    GENERAL FORMULATION 

We assume that the ship is moving with constant speed   U   in 
the direction of the negative   x-axis.   The   z-axis   is upwards, and the 
y-axis   extends to starboard.   The origin of coordinates is located in 
the undisturbed free surface at midship,   so that the forward-speed 
effect appears as an incident,  undisturbed flow with velocity   U   in the 
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direction of the positive   x-axis. 

Figure 1   Coordinate system 

The ship is slender and there is no other bodies in the fluid.  The 
fluid has infinite depth.   It is incompressible and the flow is irrota- 
tional,   so that '.here exists a velocity potential   4>   which satisfies the 
Laplace equation. 

dZ<t> 

d x 

dZ<t> 

dy 

dZ<t> 

77 (i) 

in the fluid domain.   The ship is restrained from performing any os- 
cillatory motions,  and so the boundary condition on the wetted surface 
of the ship will be 

3» 
an 0     on     z h (x . y) (2) 

Here   z = h(x.. y)   is the mathematical description of the wetted surface 
of the ship.      d / dn   denotes the derivative in the direction of the 
outwards normal on the surface of the ship. 

The conditions on the free surface,    z -    T (x, y, t),    are. 
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Wave Forces on a Restrained Ship in Head-Sea Waves 

neglecting surface tension, 

(A) the dynamic free surface condition 

gf    +    «    +    1/2   [>        +    «<>       +<<>]    =    1/2 u' 
t x y z 

on    z   =    f( x,  y,  t ) 
(3) 

(B) the kinematic free surface condition 

xx y   y \  +   ft 
0     on     z   =    H x,   y,   t )      (4) 

Here   g   is the acceleration of gravity. 

4>   must also satisfy a radiation condition,   which will be discussed 
more later. 

We will assume that there are incoming,   regular gravity 
waves propagating along the positive   x-axis.   The wave amplitude is 
assumed to be small so that the classical linear free-surface theory 
is applicable.  We will late- Unearize the problem with respect to 
the wave amplitude.   The potential    ^r   of the incoming waves will be 
given by 

Re fii VZ 1 
e 

OJt     - "x)! 
(5) 

Re   means the real part,    h   is the wave amplitude of the incoming 
waves,     w0   is the wave frequency,     v    is the wave number and   t 

* As is usual we are going to drop the notation   Re .   We will write 
the potential in complex form,  and it should be understood that we 
should take the real part. 
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is the time variable.   The wave number     v   can be written as 

In 
(6) 

where    X   is the wave length.   The frequency of enccunter  w    is re- 
lated to     uQ ,   v    and   U   for the head-sea case by 

Ü)    = U)       +    1/     U 
o (7) 

We are going to operate with a slenderness parameter   « 
It is a measure of the transverse dimensions of the ship compared 
with the length of the ship.   So   t    is a small quantity.   If we denote 
the   x,  y,   z-components of the normal   n   on the wetted surface of 
the ship by   n1   ,  nj  ,  n^    respectively,   then we can set 

=     0(e), 0(1) . 0(1) (8) 

We will assume that the frequency of the wave has the following 
asymptotic behaviour 

. -'/*, (9) 

Using   (6)   this means that 

x =   0(0 (10) 

III.    THE ZERO-SPEED PROBLEM 

The frequency of encounter,    w   ,   is the same as the frequen- 
cy of the waves,   w0 ,  for the zero-speed case (see (7) ).   The time 
dependence of the incident wave is given by   e 1        (see (5) ).  It is 
expected that the time dependence for the total potential is also given 
by   e1 ^ * .   We will use this fact and now write down the equations to 
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determine the velocity potential.   From   (1),   (2),   (3),   (4)   and the 
assumption about linearity it follows that   4>  satisfies 

2 2 2 J_±     +     _d_|        +      ±±    =     0   in the £luid domain (1) 

dx dy dz 

-—   =       0      on      z   -   h ( x,   y ) 
an 

(2) 

w   0      +   g     -r—    =0     on    z = 0   outside the body       (11) 
d z 

In addition,   the diffraction part of the potential must satisfy a radia- 
tion condition. 

We will write   <t>    as 

gh cz    i (   wt -    vx) 
(12) 

Here    <<)Q   denotes the diffraction potential.   To find     <>TJ   we are 
going to use the method of matched asymptotic expansions (Van Dyke 
(1964) ,   Ogilvie (1970) )   and set up an asymptotic theory valid as 
t   —.   0.  As is usual,   we introduce a far-field description and a near- 
field description.   The far-field description is expected to be valid at 
distances which are   0(1)   and larger from the ship.   The near-field 
description is valid near the ship at distances which are   0(e),  but 
not near the ends of the ship. 

The ste, s we are going through is first to obtain a far-field 
description and then obtain an inner expansion of the far-field des- 
cription.   So finally we are studying the near-field solution and the 
matching between the near-field and the far-field solution. 

III. 1.     Far-field source solution and the inner expansion of the far- 
field source solution. 

In the far-field description,  we expect to have waves.   In 
order to have waves,   we must satisfy the condition (11).   This means 
that the two terms in (11) must be of the same order of magnitude in 

1771 

■naaaaaaaBa tmtmm 



IMP 
pjft -«-■'^■i-^^ 

Faltineen 

the far-field,  and so     d/ dz = 0( «   * ),   The existence of a surface 
wave implies that    d / dz    and,   say,     d/ da   are the same order of 
magnitude,  where   s   is measured normal to wave fronts.  In the far- 
field,  we cannot in general say that the normal to the wave fronts 
should be neither along the   x-axis   nor along the   y-axis.   This im- 
plies that     d/ dx   and     3/ dy   must also be of order      « "^   in the 
far-field. 

From a far-field point of view,   one cannot see the shape of 
the hull.  As      t ~> 0   the disturbance from the hull to the far-field 
seems to emanate from a line of singularities located on the   x-axis 
between   -L/2   and   L/2.   The dominant far-away effect is expected 
to appear to be due to a line of sources.  Since the incoming waves 
vary as   e1^ w1 *  ""z ,  it is expected that the line of sources has a 
source density of the form 

<r ( x ) e 
i( wt - vx) 

Due to the slenderness of the ship we assume 
dx 

0(a) . 

These physical arguments can be given a mathematical for- 
mulation.  We can replace equation   (1)   by the Poisson equation 

x J y o z 

Here 6 is the Dirac-delta function, and initially we take z0 < 0. 
When the solution of 0Q is found, z0 will be set equal to zero. If 
we set   z0 = 0   first,   we would be in difficulties solving the problem. 

We cannot expect that the far-field solution will satisfy the 
boundary condition on the hull given by (2), but it must satisfy a 
proper radiation condition. We must be sure that the diffraction po- 
tential 4) Q does not contain an incoming wave. This is most easily 
taken care of by introducing the artificial Rayleigh viscosity M (see 
for instance Ogilvie fc Tuck (1969) ). The free-surface condition (11) 
will then be modified to 
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d4> ,.               ,2                            D 
(lu     +M)     «p   +   g  0     on     z = 0 (14) 

At an appropriate later point,  we will let ß   go to zero. 

The solution to   (13)   and   (14)   with   z0 = 0   can for instance 
be found in Ogilvie & Tuck (1969)   and is 

«D U. y. z.t) -V   eiwt      /dke
ik*F|ff(x)e--x{ 

4   IT •' 

lim j A1^L1^[7Vt 
'-oj vk

2; t2—L(..i 

(15) 

( u) - i/i) 

Her« 

Fi^x)«-1"5'} 
/ 

,     - ikx       .   ,    - ii/v 
dxe ff(x)e =   a'(k + i/) 

Expression (15) can be  rewritten in a form which is more convenient 
to handle for our purposes.   The derivation is shown in Appendix A. 

We can write 

*D (x.y.z.t)   -    «»(x.y.zje1 (u't " "^ (16) 

where 

1773 



wfivrnwrmm—*—-T" 1 ■••  »   | >    > 

Faltimen 

t(x, y, z)   ~ 
In / 

dk e 
ikx - y\k{k-2v) 

■.i^-tj    v k(k-2 v ) 
M 

,-0-^; 

,/ 

dk e 
ikx - iyVk (2.  -k)    ff>(k) 

k(2^  -k) 
(17) 

o iux   +   i2i'x - iy\(u+2i')(-u)       .     _   . 
dt^e  7    v n     ' g*(u+2i') 

XTM (u+20(-u) 

t-d-«.) ? 1     -2 i' 

(-(i-V 

/ 

iux + iZfx - y\(u+2i')u       _, 
iu e   ' g*(u-l<. 

V(u+2»')u 

(17) is valid for y = 0(1) > 0. b. in (17) is some very small posi- 
tive number. It will be evident in Appendix B why it is convenient to 
have     f'U-'lJ   as an integration limit in   (17). 

We will now find a two-term inner expansion of the far-field 
source solution.   We then let   y   Se of order   t    ,   and we reorder the 
terms in   (17).   The procedure is shown in Appendix B.   We get 

, , fz     -i ir /4 
* (x, y, z) ~   -   i/e e 

/ 

•L/2 

+    f ye        a(x) 
V^T" [x-7] (18) 

i/z     -iir/Z    (»(x) 
e        e —T  
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Using   (16)   and the symmetry properties associated with 
sources,  we can now write down a two-term inner expansion of the 
far-field source solution as 

<t>D(x, y. z,t)   ~ e 
i( a) t-  v x)      VL '4 

v e 

-L/2 

_dj_a_m_ 

^    (19) 

+   f   yU   (x) - e 
-in/Z    a   (x) 

We note that this expression represents waves propagating 
along the ship in the same direction as the incoming wave.   So to the 
lowest order it seems as if the disturbance created by the ship is 
carried along the ship in the direction of positive   x-axis   (see Fig. 1). 
Looking on what is happening at some cross-section   x,   we should 
therefore expect an integrated effect of what is happening at sections 
from the forward perpendicular   (x =  -L/2) up to the cross-section 
we consider.  And this is what the lowest order term in   (19)   repre- 
sents.   The two last terms in   (19)   are the highest order terms.   The 
last term represents an integrated effect from a given cross-section 
to the after end of the ship.   This can be better understood from the 
mathematical expre'ssions in Appendix B. 

III. 2,     The near-field problem and 'he matching. 

We are now going to formulate the near-field problem and 
perform the matching between the near-field and the far-field solu- 
tions.  A one-term far-field solution is found to be due to a line of 
sources with source density 

(x) 
i ( a; t - v -K) 

spread along the line   y = z = 0 ,     -L/2   <   x    < L/2   (see Figure 1), 
and a one-term near-field solution will be found to be the negative of 
the incident wave.   The matching between the lowest-order term in 
the near-field problem and the lowest-order term in the far-field 
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problem gives an integral equation for     ^    (x)   (see (32) ).    a,   is 
needed in the second order near-field solution.  The two-term near- 
field solution is given by   (48). 

It should be notea that   "Near-field"   means the region near 
the body,  where the distance from the body is   0( t ).  However,  we do 
not expect the near-field approximations to be valid near the bow and 
stern. 

We will express the potential of the diffracted wave as fol- 
lows : 

i( u t - c x) , , ,_-, «        =     e   v ^(x,y, z)   . (20) 

By putting   (20)   into the Laplace equation,   (1), we get 

*!* +   l±  .   »h    . Zi,L±+   l*= o       (2i) 
dt .  t a x -   £ y dz ax 

in the fluid region.   The free-surface condition,  (11),  is : 

4^--       ^=0      on      z   =   0. (22) 
dz 

The body boundary condition,   (2),  together with   (12),  gives 

[d 4> d4f     . d \l/-i       r ■ i   ßh n,     —-  +   n,     ■— - ivn, \L    + n,      —i-     -   I ifn, -    vn,   -=— e 
2     ay I     dz 1 r 1     dx J        L      1 3J    w 

VZ 

(23) 

on     z   =   h ( x, y ) 

n1   i n-  i    and   n~    have been explained before equation   (8).  A last 
condition on   ^   is that it must match with the far-field solution. 

We will assume that     ^ varies very slowly in the   x-direc- 
tion compared with the variation of    4>  i" the transverse plane.  We 
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assume that the rate of change of  f    in the transverse plane is go- 
verned by the order of magnitude of the transverse dimensions of the 
body and that the rate of change of   ^   in the x-direction is governed 
by the order of magnitude of the longitudinal dimensions of the body* 

So in the   f -problem we stretch the coordinates 

y = «y z = ( z (24) 

Here   n2D   is the unit normal out of a cylinder with the same cross- 
section as the ship at a given section. 

We will assume an asymptotic expansion of   ^   of the form 

N 

n = 1 
*    (X. Y.Z.   «   ) n (25) 

where     ^n+^   = o (^ n)   ase-»     0   for fixed   X,   Y,   Z. 

We introduce 

k   =   vt (26) 

and 

gh (27) 

Since the problem is linear in   C, we shall not be bothered with the 
order of magnitude of   C. 

* Note that the rate of change in the   x-direction   of the diffraction 
potential,    0p ,    as given by   (20)   is of the same order of magnitude 
as the rate of change of    <bp   in the transverse dimensions. 
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The lowest-order equations become 

dY 

1 S)    h    -*: 
az 

(28) 

Tz- k>   ^i 0        on     Z   =   0     ; 

2    (   J,   ) - Cn  ke on the body. 

(29) 

(30) 

In addition,   ^       must match with the far-field solution. 

A one-term far-field solution is assumed to be the potential 
associated with a line distribution of sources of density 

"j ( x )   e 
i( uit - c x) 

spread along the line     y = z = 0,   -L, 2   <  x   <  L/2.   That solution has 
been obtained in a   previous chapter,   and a one-term inner expansion 
of a one-term far-field solution can be found from (19).   For any fixed 
x   greater than   -L  2,   it is obvious that a one-term inner expansion 
i s 

i  (  u; t -    vx) 1   2 V^ kZ      -1*7 4 
e e 

-L/2 

dUjU 

>/MI 
(31) 

and that the second-order term in the inner expansion is of order 
«v   compared with the first-order term. 

(31)    should match with a one-term outer expansion of  ^ 
ei(u)t-   rx^   as determined from   (28),   (29)   and   (30). 
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Ursell (1968 a) *     has given a solution to that problem,  but it does not 
appear to match with   (31).  However,  if we say that the one-term near- 
field solution is just the negative of the incident wave (this is a special 
case of Ursell's solution),  then   (28),  (29)   and   (30)   are satisfied, 
and if we require that 

VF -1/2    kZ      -iir/4 
e e 

x 

-L/2 

du ^n 

VR 
Ce 

kZ 
(32) 

then we see that a one-term outer expansion of the one-term near- 
field solution matches with a one-term inner expansion of a one-term 
far-field solution.   So we have the solution 

^(X, Y, Z, « )   =    -  f 
die,   U) 

-L/2   ^ 

(33) 

Ce 
kZ 

We solve   (32)   for  a   (x)   formally by letting it be an equality for 
all   x    > -L/2.  We recognize   (32)   as Abel's integral equation (see 
Dettman (1965) ),  which has the solution 

ff1 (x)   =     t 
1/2 

lfirk(x + L, 
i JT 

/2) 
/4 (34) 

This solution is singular at   x = -L/2,  which is a violation of the 

*   Ursell's solution will be needed in the second order term and 
will be discussed then. 
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assumptions made earlier.   However,  this is not a serious difficulty 
if we do not try to use our results very near the bow of the ship.  The 
near-field expansion of which   (33)   gives the first term,  is not uni- 
formly valid near   x = -L/2.  In order to examine the solution preci- 
sely in the neighborhood of   x = -L/2   we should construct a separate 
expansion for a region in which   x + L/2 = 0( «      ),  for some    7  > 0. 
One may expect then that ^    (x) is not given in that region by   (34) ; 
rather,  o^    (x)   will decrease continuously to zero at   x = -L/2,  as 
physical considerations require that it must.  Using   (34)   to express 
^   (x) produces a higher-order, i.e. , negligible,   error in the velocity 

potential,   provided that we restrict our attention to a region in which 
*y   -  o(x + L/2). 

We wish next to find ^     ,   but first we need to say some more about 
the far-field. 

We expect that a two-term far-field expansion is obtained by a line 
distribution of sources of density 

(   <r 1 (x)   + <f2 (x) )   e 
i ( wt -  KX) 

(35) 

spread along the line     y - z -  0 ,    -L/2  <  x   < L/2.    It is assumed 
that 

aZ     =     0 <   «^ (36) 

A two-term inner expansion of this two-term far-field ex- 
pansion can be obtained from   (19) ,    and it is 

i( w t -  i/x) 1/2    Jf     *Ze-i*/<     fjpt^ 

.L/2 
ViTTTj 

t  -1/2   jT*Ze.i*/4      j dU2U) 

-L/2 
vM 

•       kZ   .,   Ivl       f   \          -i'r/2       "^     kZ 
+   e        k   | Y| <r   (x)   - e — e (37) 
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It is found that the near-field equations for  ^9   is 

^2 2 

dY dZ 
k')    ^2   =   0 (38) 

<h k)   ^ 0      on      Z   =   0 (39) 

d N 0 on the body . (40) 

In addition   ^     must match with the far-field solution. 

Ursell (1968 a)   has derived a solution of   (38),   (39)   and 
(40).  It can be written as 

*2 = V > f    kz r 
x)        e +      / k,i(s;k)   .     [G(kY.kZ;kf (s^k^s) ) 

C(+) 

+   G(kY.kZ: -ki (s).  k, (s) ) ]    ds" 

(41) 

where 

G(kY,kZ;kf   .k,  )   =   Ko    [k    V(Y-nZ   +   (Z-t))2] 

I 
+ 4 

/•/ 
08 h

,i^1     exp   [ ik(Y - |) Bin h M + k(Z+ r, ) cos h>i- 

:os h M d M (42) 
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I 
The symbol j   denotes integration along a contour passing below the 
double pole at M = 0, with a corresponding meaning for -r> . K0 is 
a modified Be s sei function of the second kind. In (41) C(+r denotes 
the half of the boundary curve of the submerged cross-section at x 
for which y > 0 ; Y = { (■) , Z = n {s) are the parametric equa- 
tions of the curve C(+). M(s,k) is determined from satisfaction of 
the body boundary condition (40). It should be noted that (38), (39), 
and (40) will be satisfied for an arbitrary A2 (x) in (41). A2 (x) 
has to be determined by the matching procedure. 

In order to match,   we need an outer expansion of   (41). 
Ursell (1968 a)   has done that.   The result is 

A. (x)   [e 
kZ |y|   kZ 

4k ir     LCle 
< 

/      M(8,k)   e 
kn(s) ds] (43) 

C(+) 

A three-tc-rm outer expansion of the two-term near-field solution, 

Uj    +   ^2 )    e 
i ( Ü) t -  ex) 

(44) 

can now be written down.  It is 

i( wt - f x) 

+ A2 (x)   ekZ -   A2 

-1/2 /T:ekze-i,/4   r^i 

-L/2    ^ 

dU, (f) 

<&T\ 

(x)4k2.    MekZ       L(s.k)   e^^)   d. 
; 

c(+) (45) 
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The last term is the lowest-order term and the first term is the 
next lowest-order term.    (45)   should match with   (37)   and we see 
that it does if we set 

A2(x) 
^(x) 

JMs.k)   e1^   ds 4k, 

C(+) 

1/2   tF^  if irk (x + L/2) 
e C 

4k 7 j   M{8.k)   e^^   d£ 

C(+) 

( a     is given by   (34) ) ,   and if also 

(46) 

..-'/'   yTe.u/4   I du,m 
2^' .    ,   , -in/l     gl(x) 

.L/2 
Ix-d 

A2(x) + e 

= [ 
■i./Z 

] ßis.l 4kr     /«(s.k)ek'' (8)   ds 

C(+) 

1/2 
Vk (x + L/2) e C 

(47) 
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which is a condition to be satisfied by a.     . Equation   (47)   gives us 
Abel's integral equation,  and it can be solved in principle.  It is to be 
noted that the term in the brackets is a function of  x ,    which is de- 
termined in practice    by numerical computation. 

It is the near-field solution that has the primary interest.  So 
let us summarize our result : A two-term near-field solution of the 
diffraction potential is given by 

(^ + 
^)eiM-,x) = eiM-,x)|\C) 

1/2 
kZ \£ 

[^ / 

x+L/2) e C 

4kir L»;k) ekn{t) 

•'c{+) 

ds 

kM(8;k)   [GlkY.kZik^sj.knis)) + GlkY.kZi-k« (s), 

C(+) kv (•))   ds] (48) 

where   k   and   C   are given by   (26)   and   (27),  and   G   is given by 
(42).   The first term in   (48)   is just the negative of the incident wave 
and so   (48)   tells us that the total (incident-plus diffracted-wave) 
potential near the body (except near the bow and stern) will have a 
decay factor 

(x + L/2 ) 
-1/2 

(49) 

in the   x-direction.   But note that   M    in (48)   is also a function of   x , 
and so   (49)   does not give the total   x-dependence.   However,   n   will 
be the same for similar cross-sections.  So,  if the cross-sections 
are not varying murh in the   x-direction, the potential will,   roughly 

-1/2 speaking,  drop off with the factor   (x + L/2)      '       in the lengthwise 
direction.  Note that we have assumed that the wave length is of the 
order of magnitude of the transverse dimensions of the ship. 
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THE FORWARD-SPEED PROBLEM 

We write the total potent!»      ^  as follows 

«Mx, y.z.t)   =   Ux   +   U^8(x,y,z)   t   «T(x,y.t) (50) 

where   U0S   is the perturbation velocity potential in the steady motion 
problem.   It can easily be shown that   ^j   satisfies 

,2 

ax 

d      0, 

d y 8 z 
(51) 

in the fluid domain and the body boundary condition 

d<t>. 
~   0       on       z   =   h (x, y) 

dn 
(52) 

By combining   (3)   and   (4)   and using the assumption about linearity, 
it can be shown that   ^^    satisfies the free-surface condition 

f   d dl2 

L 8t dxj 

d(t>r 

+  e     0        on    z = 0        (53) 

i w t 
Since the time dependence of the incident wave is given by     e 
(see   (5)),  it is expected that the time dependence for the potential 

0~   is also given by     e 1 ^ t.   This implies that we can write equa- 
tion   (52)   as 

[iw + u ^r]2   «T 
d*. 

+   g -   0     on    z = 0 (54) 
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We will write    <p —   as T 

0      =       0 
T 

. gh vz     i ( ut - vx) ,rr\ 
I   +     *D   =   .       e e +   0D    (55) 

where  <t> ^   denotes the diffraction potential.   <t> Q   must satisfy a ra- 
diation condition.  As in the zero-speed problem we are going to use 
the method of matched asymptotic expansions to find  ^ ry 

We will assume that the forward speed 

U    =   0 ( 
1/2 - a) 

0    <a  <   1/2 (56) 

In the steady forward-n.otion problem we know that there is a length 
scale in the   x-direction which is connected with the wave length 
2 irU2/g. So   (56)   implies that this length scale is large compared 
with the transverse dimensions of the ship,  and that it can be of the 
same order of magnitude as the length of the ship.   In some way,  I 
expect this length scale will enter our diffraction problem and affect 
the rate of change of the variables in the   x-direction.  But it turns 
out that it will not have any influence on the first two approximations 
of the diffraction potential.  The important length scale in the   x- 
direction will be connected with the wave length of the incoming wave, 
in the same way as for the zero-speed problem.  As we remember 
from equation (10),  this wave length is assumed to be of order    t . 

If,  however,  we had assumed that   "a"   were zero in   (56), 
we would have been in difficulties finding the second approximation to 
the diffraction potential.  The reason must be that there then are two 
important length scales of order  t    in the   x-direction,   one connected 
with the wave length of the incoming wave and one connected with the 
forward speed,  and it is difficult to separate out the effect of one of 
the length scales from the other. 

Using   (7)   and   (9),  we can show that   (56)   implies that the 
order of magnitude of the frequency of encounter,    w  will be 

w =     o ( « 
1/2 - a) 

0 < a   <  1/2 (57) 
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We then see that the order of wio.gnitude of   r 
g 

^=     0(.-2a 

8 
)   ,    0   < a   <   1/2 (58) 

It is obvious that    r   will be larger than   l/4.  This is important, 
because the solution will be singular when    r = 1/4   (see Ogilvie and 
Tuck (1969) ). 

There are two parts in this chapter :   (1)   derivation of the 
far-field source solution due to a line of pulsating,  translating sources 
located on the   x-axis   between   -L/Z   and   L/2   (see Figure 1)   and 
derivation of a two-term inner expansion of the far-field source solu- 
tion ;   (2)   formulation of the near-field problem,  and the matching of 
a two-term near-field solution with the far-field solution. 

IV. 1.    Far-field source solution and the inner expansion of the far- 
field source solution 

In the far-field description we expect to have waves.   It is 
difficult to say how differentiation changes order of magnitudes in the 
far-field.   So,  to be careful,  we would rather keep too many terms in 
the far-field.  But we have to be sure that we have a system of equa- 
tions that describes a wave motion.  Using arguments similar to those 
in the section "Far-field source solution and the inner expansion of 
the far-field source solution" in the chapter on the zero-speed pro- 
blem,  we can find that    0 Q   must satisfy the Poisson equation. 

2 2 2 
a » a   »D a  »D               i(«t - .x) ,. . ,. 
—f— + —2—      T~ =   <T(X) e              '(y) «(z-2o) 

ax ay a z 

where   z0  <  0.  We write the free-surface condition as follows 

2 d<t>^ 
(iu»+U-^-+M)      «O^   +   g     -3—    ^0       on       z   =   0 

OX D O SB 

where   n   is the artificial Rayleigh viscosity,  which will approach 
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zero at a proper later point.   This equation system does give waves. 

The solution to the equation system with   z0 = 0   can be found 
in Ogilvie & Tuck (1969).  It ip 

*D (x, y.z.t)   =   -        2 

4 ir 

1        i 
e Wt     /dk 

ikx 
F    \o[*)*-1V*\ 

(59) 

li 

< 

/" 
im        I ■ 

d£ i?y + z V77F 

Vk2   +  lZ    --i-(w + Uk-iM)2 

g 

where 

F    Hx)   e'4^} 
/ 

-ikx        .   .      -i K x 
dx   e ff(x)   e 

»* ( k +  v ) . 

We will rewrite   (59)   in a way similar to the way we did 
with   (15)   in the zero-speed problem.  See   Appendix   C   for more 
details. 

We can write 

<I>D (x, y, z, t) ♦ (x, y.z)   e 
1 ((i) t - fx) 

(60) 
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where      <l>(x, y, z) as 

k, «-(l-a-P) 

/;•/  •/  •/ 

r(l-a.0) 

-t   -(l-a-U)     0 

t 

•/ 

.-(l-a+«2) 

«  -(l-a-/9) 

ju   ikx 
dk e        <r •«[■^] UkT       i*   Y    "z e    o   e 

L       ü»0J 

^A 1      2 

(61) 

In the first integral,    l0 =     >/{  w   + Uk)    / g    - ( K - k)    .    In 
the second and third integrals,    60 =   i V( y - k)2     -   ( un + Uk)4 / g2 . 
In the fourth and fifth integrals,       IQ   =    -   yji w0 + Uk)4   / g2 -   (   v -k)2 

Further 

k     =    -   A-   (2w     U/g + 1) . 
^ U 0 

a   the parameter introdu   ed by   (56),   ß and    i,   some very small po- 
sitive numbers and 

xe 
i  vx 

al 
4ir 

,0 

/ . -i v a   x , .       r 
I        doe (r*(  v - av   )      j d t   e ^  e"   "^ 

(62) 

i.zV«2.«2 -i.zVFTT2 

>rnTa2
+i[1+^jL(1.a)j2 >f^^.i|-I+%.^ 
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4 IT 1 
e ff ( c + fO) 

oo 

/ 1^   e""^ 

(63) 

i n z \ l      -a -i K z \t     -   a 

[Vf~7+i[.^(1+»,]2 Vr7■'[-%-)]2J 

Here,  i1     is some very small positive number.    (61)   is valid for 
y = 0(1)   >   0.   We are now going to find a two-term inner expansion of 
the far-field source solution.  We then let   y   be of order  c    ,  and we 
reorder the terms in   (61).  The procedure is shown in Appendix D. 

We get 

<t>(x, y, z) 
/4 

yfV i du m 
L/2 JIZUZ lx -«I 

v z vz      ,  \      e "(x) +    f ye (T(x) - — 

V7 

(64) 

Using   (60) and the symmetry properties associated with 
sources,  we can now write down a two-term inner expansion of the 
far-field source solution as 

1790 

arfVMaMaaaBkaMa mmmm mam^mmm 



■   -     ■    .   . " —...—   - '•*"">  •'■ l>,■»'■> ' --»■ --■ 

Wave Forces on a Reatrained Ship in Head-Sea Waves 

./        v       r  -i "74 r 
0D(x, y, z.t) ~ e x e F^ / 

dU    (O 

V7 '-x-A^^,, 

+    f   y   ff   (x) (x) 

iVT, 

(65) 

As for the zero-speed problem we see that the two-term inner 
expansion represents waves propagating along the ship in the same 
direction as the incoming wave. Arguing as for the zero-speed pro- 
blem we should therefore expect an integrated effect along the ship as 
the lowest order term in   (65)   represents. 

We note that   (65)   does not reduce to   (19)   when   U = 0. It 
should not be expected that   (65) reduce to   (19)   when   U = 0   since we 
have assumed    r   = -=— > 1/4   and since this assumption has been an 
important part in our analysis. We should note that the last term in 
(65)   represents a distrubance arising from upstream while the last 
term in   (19)   represents a disturbance arising from downstream. 

IV. 2.    The near-field problem and the matching 

We now formulate the near-field problem and perform the 
matching between the near-field and the far-field solutions. A one- 
term far-field solution is found to be due to a line of sources with 
source density. 

ffj (x) e 
i( U) t -  KX) 

spread along the line   y = z = 0,    - L/2 <   x   < L/2.   (See Figure 1). 
As in the zero-speed problem, a one-term near-field solution is found 
to be the negative of the incident wave.   The matching of the far-field 
solution and the near-field solution determines   <x.   (x)   in a similar 
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way for the zero-speed problem.   The two-term near-field solution is 
given by   (92). 

It should be noted that "Near-field" means the region near the 
body where the distance from the body is   0 ( « ).  However,  we do not 
expect the near-field approximations to be valid near the bow and 
stern. 

We will express the potential of the diffracted wave as follows 

i (wt - i«x)     , , . 
e * (x, y, z) (66) 

Using   (55),  (51),  (54), and the fact that the incident wave po- 
tential satisfies the Laplace equation and the free-surface condition 
(54), we get that    4>n   w^ satisfy the Laplace equation and the free- 
surface condition   (54). 

Putting   (66)   into La pi*.:    oquation gives 

dz4>        a2* 
;»   2     +      A2 
o Y oz 

,2, a it     a it 

dx        dx (67) 

in the fluid region. 

The free-surface condition is 

a 2 d*D 
(iw + U—)     0^+g    -ä—     =0       on      z = 0 (68) ox D o z 

Putting   (66)   into   (68)   gives 

2 
■ u>      4/ o  T +   g ^ +   2 iU.   4^  +   U2  M az O   1 X 

ax 

(69) 
on     z = 0 
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The body boundary condition   (52)   together with   (55) gives 

d t d* d* 
fn,     -r-1- +   n,    -r^-wn^      + n,    —i-] 
L2oy 3oz 1 ldxJ 

=    \i v n   -   »»n]    ——   e on      z =   h(x, y) 
1 -^ w 

(70) 

A last condition on   ^   is that it must match with the far-field solu- 
tion. 

As in the zero-speed problem,  we stretch coordinates 

y   =   e Y    ,     z = « Z   ,    n2D =   t N .    x = X (71) 

to express that   ^    varies very slowly in the x-direction compared 
with the variation of    ^   in the transverse plane. 

We assume an asymptotic expansion of    f of the form 

N 

*~2J      ^(X. Y. Z;«   ) 
n = 1 

(72) 

where     ^ n+i   =   o(^n)   as    €   -»  0    for fixed   X, Y, Z. 

As in the zero-speed problem we introduce 

k     -   v t (73) 

and 

_gh_ (74) 

1793 

-••• *~ii. mm^^m^mmmmm ^1— ■MMMM 



mi*immmm^***pm^'^~*****^*~**  «m 

FaU^taen 

The lowest-order equations become 

av dZ 
k     )     iy (75) 

(Ä   "   M      ' Z = 0 (76) 

a 
aN - Cn   ke 

kZ 
on Z =   h(x.y)      (77) 

In addition    ^     must match with Ihe far-field solution. 

A one-term far-field solution is assumed to be the potential 
associated with a line distribution of sources of density 

»j (x) e 
i (tu t - i/ x) 

spread along the line     y = z = 0 ,    - L/2   <   x   <  L/2.   That solution 
has been obtained in'a previous section,  and a one-term inner ex- 
pansion of the far-field solution can be found from   (65).   For any 
fixed   x   greater that   - L/2 ,  ö. one-term inner expansion is 

i( uit -  vx.)   [ I' 
f Z   -   1   T /* 

<7 ■-/ 
- L/2 

d«a1 (f) 

V2 ü)   f 2 Ui 

I/O) 
x -* 

(78) 

In a similar way as for the zero-speed problem,   one see that 
the only  possibility for a solution satisfying   (75),   (76),   (77),  and 
matching (78) is by requiring that 
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vz - \ * A 

<7 •'-L/2 Jzu. +2 Ui 

Ce 

V^ x -« 

(79) 

and letting a one-term near-field solution of the diffracted wave be the 
negative of the incident wave.  So 

Ce 
vz 

(80) 

We solve   (79)   for    c    (x)   formally by letting it be an equa^ 
lity for all    x   > - L/2.  We get Abel's integral equation to solve 
(See Dettman (1965) ).   The solution is 

„j (x) V Zu   + 2 Ui 
K(X + L/2) 

eir/4C (81) 

The discussion that followed the expression of a      (x)   for 
the zero-speed problem (see after equation (34) ) can also be applied 
for the forward-speed problem.   The conclusion was that we had to 
construct a separate expansion for a region in which     x + L/2   = 
0(    •       ) >   (y   some positive number) , and that     <T   (X)   is not given 
in that region by   (81). 

We wish next to find \p      ,  but first we need to say some more 
about the far-field. 

We expect that a two-term far-field expansion is obtained by 
a line distribution of sources of density 

('■ 
(x)   +    <r2 (x) 

\   i ( wt - KX) 

T (82) 
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spread along the line    y = z = 0,    - L/2 ^ x   <  L/2.  A two-term 
inner expansion of this two-term far-field expansion can be obtained 
from   (65), 

It is 

^(ut-Kx) nr -" /: 

0^,(0 

V L/2     J   Zu + 2 Ui 
:-« 

r1 iT/4   f d«a2 ({) 
(83) 

:V^ 
■+    V 

L/2*/ 2w+_2_UH 
Kb) 

fZ 

yk'-'.W-^^jW 

In the same way as for the zero-speed problem we will find 
that     4,     satisfies 

'^ * i? - A ^ °   m 

[A- - *] ^2   =    0        on        Z = 0 (85) 

d*. 
a N   =   0     on the submerged part of the body (86) 

In addition    ^      must match with the far-field solution. 

Ursell   (1968 a)   has derived a solution to   (84), (85)   and   (86). 
It can be written as 
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x)   [ekZ   +     /     kM (fl;k)   .[ G(kY,kZ;k{ (•).kn (s) ) ^   =   B2 (x)    | e*^   + 

Cff) 

+   G(kY,kZ; -k{  (s), k^ (s) )]       ds 

(87) 

For an explanation of   (87),   see the discussion following 
equation   (41)   in the zero-speed problem.     Bj (x)   in   (87)   is unknown 
at the moment now,   but will be determined by matching. 

The two-term near-field solution, 

Oj   +      *2]     e 
i ( wt - ex) 

(88) 

has the following three-term outer expansion 

i( cü t -   fx) c"      .-i./4     f        di•l((, 

VT 
-L/2   Jzu)  + 2 U x -I 

,    f  4   
kZ        ^    /   v ., 2       |Y|    kZ    /     ,    , . k»  (s) 

+   B2 (x) e -   B2 (x) 4k   »•   ü e /   M(s,k)e ds 
/ 
C(+) 

^     89 

See   (43)   and the text in connection with   (43) 
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and 

We •ee that (19) match .. with (13) if we •et: 

=-

-ir /4 
e 

2 "' + 2 u.. i .. /4 
.. .,.., (x + L/2) e C 

0 

4k•/ ,a(a,k)ek•(•)d• 

cc•t 

-----

(90) 

Equati011 (91) 1ivea ua Abel'• illte1ral equati011 to •olve. 
B2 (x) 011 the ri1ht-hand aide of (91) h&a to be numerically deter
mined (•ee (90) ). We are Ollly i.Dtere•ted ill the fact that the near
field and far-field aoluti011a match, &lUI we are not 1CiiDI to find , 2 

It ia the near-field aoluti011 that baa the primary illtere•t and 
we have found that a two-term near-field aolution of the diffracti011 
potential ia 
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Ln      ^J I - Ce I 
irvw   (x + L/2)   ' 

iir/4   ^ 
K e       '       C 

j M..k).k,,(,|d. 

[^ kZ 

4k tr 

C(+) 

+      /        kM (8;k)    [G(kY.k2;k{(») . kn (•)+ 0(kY.kZ; -kM«) . 

C(+) M (s) )]  d.]l 
(92) 

V.    NUMERICAL CALCULATIONS 

V.l.    Theoretical background 

It would be time consuming to evaluate the solutions we have 
found (see (48)   and   (92) )   for a ship with arbitrary cross-sections. 
But if the ship had circular cross-sections, there is a faster way to 
find the solutions.   We can use the solution given by Ursell (1968 b) 
for a circular cross-section.   Ursell has used a different coordinate 
system that we have used earlier, and I find it convenient using 
Ursell's coordinate system when talking about Ursell*s solution.   The 
coordinate system is shown in Figure 2. 

free surface 

X I             y i 
i 

\   r-Q/ 

; 
/ 
/ 

/ 

i y 

Figure 2   Ursell's coordinate system 

The two-dimensional problem which Ursell solves is given by the 
Helmholtz equation 

[■ <t>     =   0 (93) 
dx' *Y 
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in the fluid domain, and the boundary conditione 

when y .= 0, lxl > a (94) 

and 

0 when r = a , - r /Z < I < r /Z (95) 

He ahowa that a aolution of (93), (94) and (95) can be written in 
the form 

-
• = B 3 lA

0
S

0
(x, y) + exp (- "Y) + L A 0 (x, y) J 

m m (96) 

m =I 

The function• S0 (x, y) and Om(x, y) will be diacu .. ed preaently. 

Uraell conaidered an infinitely long cylinder and there were 
no appropriate conditione for x-:!:- that could determine the ar
bitrary conatant B3 in (96). But we conaider a ahip, and we have 
found a condition when •-~ oo that will determine B3 • Thia ie ei
milar to what we did in finding the aolutiona (48) and (9Z). Then we 
uaed an integral equation approach to eolve (93), (94) and (95). 
But for thie epecial caee with a circular croaa-aection it ie more 
convenient to write the aolution aa (96). We will later c.ome back to 
the determination of B after we have diecueaed the terma in (96) 
aome more. 

The •ource term 5 0 can be written a• 

S (x, y) = 1/Z [ /:/-] coa h-' 
1 

exp( -11y co a hi' + illx ein h,.) dl' 
o co• hi'-

-• -- (97) 
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The paths in the two integrals pass respectively below and 
above the double pole at    M = 0. 

We are going to rewrite   (97)   so that we can more easily 
evaluate it numerically.   We introduce 

1    = v 3 in hß 

as a new integration variable. 

We then introduce closed integration paths in the complex 
c - plane properly indented at the branch points of the integrand. 

By using the residue theorem,   we can then write    (97)   as 

S     =   2 o 

as 

/du u fu coB(uy) -   »8in(uy)1 

J^2~Y 2        2 
0^+uL »'+u J 

-   x Wf  + u 

(98) 

2 TC    x   e "Y 

The other unexplained terms in   (96)   are the wave-free potentials 
Ojyj.   They are given by 

O     (x, y)    =   K. , (  ^r) co8(2m - 2) Ö m cm. - c 

+ 2K- .  ( fr) cos(2m -   1)     + K_    (IT) cos2m 
ZTTX -  1 cm 

m     =     1,2,3, (99) 

(e) (Ursell denoted these functions by   Om       . ) 
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Kn   are modified Bessel functions as defined by Abramowitz and 
Stegun (1964). 

The coefficients   A0   and   Am   in   (96)   are determined by 
satisfying the body boundary condition   (95).  This leads to an equation 
of the form 

dS 

o   dr    +    2^1 
dO m 

m     dr 
m = 1 

-  fr cosfl 
ccos de =0 

on   r = a 

(100) 

We have assumed here that we can differentiate the infinite 
series in   (96)   term by term,  and we have used the fact that 

r sin i r cos 6 (101) 

dO -m ^r        in   (100)   is obtained from   (99)   and by using   9.6.26   in 
Abramowitz a id Stegun   (1964).  So 

e>0 
m 

8r 
2m - 2 

i-K2m.l^   + -.T^m - 2^ -M   -os(2m - 2). 

2m - 1 
+   2   |- K     (. r)+-^2-^K (.r)|     . cos(2m - 1) * 

"        cm v r       LTCI - i 

2m 
+   j-K, (,r)+-=^_K_    (.r)}     „cos   2m 9 1        2m + 1 c r      2m ' 

We will now describe in more detail how to solve   (100) nume- 
rically and how numerically to evaluate   S«   in (96)   and      °Pn in 
(100). ^ 

Equation   (100)   is solved by setting up a least-square condi- 
tion.   One assumes that the infinite sums in   (96)   and   (100)   converge 
sufficiently rapidly so that a finite number of terms in the infinite 
sums gives a satisfactory approximation.  One calls this number   M. 
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The least-square condition leads to the linear equation system 

N 

m 
m =   0 

ZdO   (r,   0 .)       do (r,   9.) 
m i n x 

dr 
i  = 1 

dr 

(102) 

N 

i  = 1 

^O (r,  6 .) 
-  VA cosd. n i 

cos 6. e i   —  
i dr 

■a c An 
for   r = a.     n   goes from zero to   M.    We have set      t 

0   =  —,-0- 
d r or 

in   (132). 

N   is chosen so that   N   > 3/2 (M + 1).  It was found that 
N = 10   gives satisfactory results.    8 j   have been chosen as 

V 4N" + '2Fr(i ■ ^   ■    i = ' • 2 N        (103) 

(102)   can be solved by standard methods.    S0   in   (96)   are 
evaluated in the following way.   We introduce   (101)   in   (98)   and 
write   S0   as 

S     =   - 2 ir f r sin 8     e o 
vr cos( 

+ 2 
tA 

n    ,   2        2.3/2 0   ( v    + u  )   ' 

cos(ur cos ö)   e 
.   „  Wl       2 

-r sin 8   1 v + u 

- 2 
rA fll/2 2 
/ du   uc .   , /, v      -r sin "if    + u 
/     ; 2^.2,3/2  8in(ur C080 e 
j f0 (  "     +u   ) 

+   O (B  ) for     0 < 8   < */Z 

(104) 
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-r sintfVi'   + A 
where    B 

1 r sini 

A   is chosen so that   B.     is sufficiently small.  It was found 
that it was satisfactory to use   B1    =   0.0001. 

Each integral in   (104)   was evaluated by first locating the 
zeroes for the integrand.  For the first integrand the zeroes are 
easily found to be   u = 0   and   u =  «*   * (2m +1),    m = 0,  1,  2, . , . 
and for the second integrand the zeroes are   u ^rco. a m,  m = 0,   1, 
2. . .Between each zero in an integrand we then used Simpson's for- 
mula.  As is seen above the length of the interval between each zero 
depends on 6 , and so the number of points used in Simpson integra- 
tion should depend on   8 . When d was close to  ir/2, as many as 
50 points were needed in the Simpson integration.   But when   6   was 
close to 0,   it was only necessary to use   8   points.  If  A   was less 
than   u   at the second zero of an integrand,  then Simpson's formula 
was only used between   0  and   A. 

j P   was numerically evaluated in a way similar to tlat for 
S0.   We have now explained how to obtain numerically the terms in 
the brackets of   (96).   We will refer to these terms as 
solution"   and denote them by <t> u.   So 

"Ur sell's 

B,   <P 
3       u (105) 

(See (96) ). ^u has been plotted in Figure 3 as a function of cr 
for different values of Ö and in Figure 4 as a function of 6 for 
different values of     i/ r. 

We now have to find   B3    in (105).    B-j   will of course be de- 
termined in the same way as we did in the previous chapters where 
we solved the zero- and the forward-speed problem.  We prefer now 
to use the coordinate system shown in Figure 1. 

If we take an outer expansion of   (105),  the term which is 
linear in   y   will be 
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B A   Z trv \Y\     e 
3   o I7 I 

vz 
(106) 

(see (96)   and   (98) ).  In accordance with what has been done in the 
previous chapters,   (106)   should (for both the zero-speed and forward- 
speed cases) match with 

|y |    e     "    ^ (x)   e 
i( wt - KX) 

(107) 

where   » .(x)   can be written for both cases as 

-  , / (2 g,   + 2 U riw =   Y^rTöTTTTz) 
"  )     „»«•/•*      gh 
—L—   e ■*— (108) 

By equating   (106)   and   (107)   and putting the expression for 
B3     into   (105),   we can write the potential 

1 v A 
2   TT   A 

V1      2 a»   + 2 U 1/ ) 

irw    ^(x + L/2) 
gh      i( wt -  KX) 
■   ■■   ~    C m 
O) u 

(109) 

Using Bernoulli's equation,  it is now easy to find the pressure. 
To the leading order the pressure will be 

pgh 2 ir A 

i3  ir/4 ,  
e /      2 0)+ 2 Uy      . i( wt 

VTTW    V(X+ L/2)     U       e 

•     o 

x) 
(HO) 

One should note the simple forward-speed dependence in 
(110).    ^u   and   A0   will only depend on the wave length.  So for a 
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given wave length the amplitudes of the pressure, force and moment 
for a given forward speed can be obtained from the corresponding 
values at zero-speed by multiplying the zero-speed results by a cons- 
tant factor. 

V. 2.    Comparison with Experiments 

CM.   Lee has measured the pressure-distribution along a 
restrained,   semi-submerged,   prolate spheroid which was towed at a 
constant speed in regular head-sea waves.  He used the experimental 
pressure values to calculate a longitudinal force distribution along 
the spheroid (CM.   Lee (1964) ).  He did not publish the data for the 
pressure distribution along the spheroid,  but he was kind and gave us 
those data. 

The surface of the prolate spheroid that C. M.   Lee used can 
be described by the equation : 

2 2        2 
*_ + y + z 

„2,2 1. 

where     t   = 19.8"   and   bQ = 3.3".    x, y, z   are defined by Figure 1. 
He measured the pressure at cross-sections located at   x ■16' 
(called   CF),    x = - 12. 5"   (called   BF).    x = - 7"   (called  AF). 
x = 0 (called ($).    x = 7"   (called   AA),    x = 12.5"   (called   BA), 
x = 16" (called   CA).   He did the experiments for   X  /L = 0.5,   0.75, 
1.0,   1.25,   1.5   and   2.0   where   X    is the wave length and   L   is the 
length of the model.  The Froude numbers of the model were   Fn   = 
0.082,   0.123.  0.164,   0.205.  0.246,   0.328. 

In our theory we have assumed that the wave length is of the 
order of magnitude of the transverse dimensions of the ship.  But 
note that this does not necessarily mean that the theory is bad for 
larger wave lengths.   One can refer to the strip theory which has 
shown to give good results for a wider range of wave lengths that one 
rationally has to restrict oneself to.   The comparisons with the ex- 
periments by Lee seems to indicate that our theory is not good for 
wave lengths     X /L = 0. 75   and   larger.  We will therefore only show 
the comparisons for     X/L   =   0. 5. 

There were evidently some irregularities in the experiments 
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for   Fn = 0. 328, and so we did not compare experiments and theory 
for that Froude-number.  We decided to present the comparisons bet- 
ween experiments and theory for Froude-numbers   0.082   and   0.205, 
but the agreement between theory and experiments was just as good 
for Froude-numbers   0.123,  0.164   and   0.246. 

In Figures 5 through 10 are shown the comparisons of the 
pressure amplitudes for Froude-number   0. 085.  Figure 5   shows 
the longitudinal distribution of the pressure amplitude along the keel 
of the spheroid.  It is seen that the experiments confirm the theoretic- 
ally predicted longitudinal deformation of the wave along the ship. 
Figure 6 shows the pressure-variation along the cross-section   Bp. 
(The index   F   indicates that the crosu-section is on the forward part 
of the model.) The variable  8   ,  the abscissa in the figure,  is  r /Z 
for a point in the undisturbed free-surface and   0   for a point located 
on the center plane of the model.  It is seen that the agreement bet- 
ween theory and experiments is reasonably good.  Similar compari- 
sons are made for cross-section   Ap   in Figure 7,   cross-section^ 
in Figure 8,  cross-section  A^   in Figure 9,  cross-section   B^   in 
Figure 10.   (The index   A   indicates that the cross-section is on the 
after part of the model.) It is seen that the agreement is good,  es- 
pecially for the after cross-sections. 

In Figures 11 through 16 are shown the comparisons of the 
pressure amplitudes for Froude-number   0.205. Figure 11 shows the 
longitudinal distribution of the pressure along the keel of the spheroid. 
Figures 12-16 show the pressure variation on the cross-sections 
Bp ,    Ap ,   0   , A^   and   BA ,  respectively.  It is seen that the 
agreement between experiments and theory is at least as good as in 
the case of the smaller Froude-number.  Since the theory is not as- 
sumed to be valid near the bow or stern,  no comparisons have been 
made for cross-sections   Cp   and   C^. 

In Figure 17   is shown the comparison between theory and ex- 
periments for the longitudinal distribution of the phase angle of the 
pressure.   The theory predicts that for all Froude-numbers the phase- 
angle of the pressure is   T/4   before the phase-angle of the Froude- 
Kriloff pressure.   For a given cross-section,  the experimental value 
of the phase angle varied somewhat. So the presented data ar . ave- 
rages.   The variation is,   roughly speaking, not more than   _ 10". It 
is seen that the agreement between experiments and theory is good. 
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NOTATION 

Fn 

g 

G(kY.kZ;kf   , ki,  ) 

h 

h(x, y) 

used in the description of the order of 
magnitude of the velocity   U, U = 0((

1/2~*  ), 
0 <   a   <  l/Z. 

gh_ 
wo 

U/   V Lg ,   Froude number. 

acceleration of gravity. 

wave source potential   (see (42) ). 

wave amplitude of the incoming wave. 

function defining the wetted surface of the 
ship. 

equal to       v.t        in the sections about the 
near-field problem and the matching.   Other- 
wise integration variable in the Fourier 
transform. 
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=    0 

N 

2D 

t 

T 

U 

x, y, z 

X, Y.Z 

-\ (2WoU/g + 1) 

length of ship. 

coordinate-axis in the direction of the out- 
ward normal on the wetted surface of the 
ship. 

stretched coordinate (see (24) ).  (Can also 
mean a number. ) 

coordinate-axis normal 10 and out of a cylin- 
der with the same cross-section as the ship 
at a given section. 

i = 1, 2,  3 : the   x-, y-, z-   component of the 
unit normal vector to the wetted surface of 
the ship. 

radial coordinate used in the chapter : 
"Numerical Calculations" (see Figure 2). 

time variable 

draft of the ship midships . 

forward speed of the ship. 

Cartesian coordinates (see Figure 1).   (The 
ship moves in the direction of the negative 
x-axis,    z   is measured upwards,    y   to 
starboard). 

stretched coordinates (see (24)   or   (71) ). 

V  -k 
where   k   is an integration variable, 

very small  positive number, 

very small positive number, 

very small positive number. 
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f(x,y.t) 

B 

X 

alenderness parameter.   It is a measure of 
the transverse dimensions of the ship com- 
pared with the longitudinal dimensions of 
the ship. 

free-surface displacement 

angular coordinate used in the chapter ; 
"Numerical Calculations"(see Figure 2). 

0    =   0   is a point on the center plane. 

wave length of the incoming wave. 

fictitious (Rayieigh) viscosity.   (Note that 
M     (arg) has another meaning. ) 

<T(X). 
i( ut -  KX) 

lit 

g X 

density of water (mass per unit volume). 

source density per unit length in line dis- 
tribution of sources. 

*#(k) 

«(x.y, z.t) 

«D(x, y, z, t) 

«8(x, y, z) 

/ 

g 

-ikx  , dxe        <T(X) (the sign  •   means 
here inverse Fourier 
transform). 

velocity potential in forward-speed problem 
and in zero-speed problem.* 

velocity potential of the incoming wave. 

velocity potential of the diffracted wave. 

(l/U)*    perturbation-velocity potential in 
steady motion problem. 

* Note,  however,   that in Chapter V   "Numerical calculations",  it 
means the time dependent part of the velocity potential. 
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^.(x, y, z, t) 

♦(x, y, z) 

^(x, y, z) 

time-dependent part of velocity potential. 

see   (16)   and   (17)   for zero-speed problem. 
See   (60)   and   (61)   for forward-speed pro- 
blem. 

see   (20)   in zero-speed problem. See   (66) 
in forward-speed problem. 

h 
N 

i = 1,2 N,^-      T 
i = 1 

wave frequency of the incoming wave. 

o 

REFERENCES 

ABRAMOWITZ, M. . and STEGUN, I.A. , "Handbook of Mathe- 
matical Functions", National Bureau of Standards Mathematics 
Series,  55,  Washington,  DC.   (1964). 

DETTMAN,  John W.,   "Applied Complex Variables",  The 
Macmillan Company,  New York - Collier - Macmillan Ltd, 
London (1965). 

ERDELYI, A. , "Asymptotic Expansions", Dover Publications, 
Inc. ,  New York (1956). 

FALTINSEN,  O.,   "Wave Forces on a Restrained Ship in Head- 
Sea Waves",   Ph.  D.   Thesis,   The University of Michigan, 
Ann Arbor (1971). 

JONES,  D.S.,  "Generalized Functions",  McGraw-Hill Book 
Co.,  New York (1966). 

LEE,   C. M. ,   "Heaving Forces and Pitching Moments on a 
Semi-submerged and Restrained Prolate Spheroid Proceeding 
in Regular Head Waves",  Report No.  NA-64-2,  Institute of 
Engineering Research,  University of California,  Berkeley, 
California,   (1964), 

1811 



mw^wiw ■^.■in.   HI »i u      )i      up«    -TI.JII — I.  »imiii   w, ■■■.. ,ivn...H..< ■     IIMIIIR  J   II     pJIIIIII.IIIIUIffq 

Fattineen 

7 LIGHTHILL.  M. J. ,  "Fourier Analysis and Generalized 
Functions",   Cambridge University Press,  Cambridge (1958). 

8 NEWMAN,   J. N.,   "The Exciting Forces on Fixed Bodies in 
Waves",  Journal of Ship Research,  6:3 (1962) 10-17. 

9 OGILVIE,  T.F.,    Unpublished work (1969). 

10 OGILVIE,   T.F.  and TUCK, E.G.,   "A Rational Strip Theory 
of Ship Motions : Part I",  Department of Naval Architecture 
and Marine Engineering,   College of Engineering,   The Univer- 
sity of Michigan,  Ann Arbor,  Michigan,  Report No.   013, 
March 1969. 

11 OGILVIE,   T. F. ,   "Singular Perturbation Problems in Ship 
Hydrodynamics",   Department of Naval Architecture and 
Marine Engineering,   College of Engineering,   The University 
of Michigan,  Ann Arbor,   Michigan,   Report No.   096,   October 
1970. 

12 SALVF.SEN,  N.,  TUCK,  E.G.,  FALTINSEN,   O. ,   "Ship 
Motions and Sea Loads",  SNAME Transactions,  78,   (1970) 
250-287. 

13 URSELL,  F. ,   "On Head Seas Travelling Along a Horizontal 
Cylinder",   J.  Inst.   Maths. Applies.,  4 (1968 a) 414-427. 

14 URSELL,   F. , "The Expansion of Water-Wave Potentials at 
Great Distances",   Proc.   Camb.  Phil.  Soc. ,   64,   (1968 b), 
811. 

15 VANDYKE,   M.,   "Perturbation Methods in Fluid Mechanics", 
1964,  Academic Press,   New York and London. 

1812 

-        - -^^-^ HWMMMI^MWHMlMIUMMBIHiiHIMlCi   ~—~—~ 



mi^mpf»»^nww»i^^r "w» »■"■■■■ ^""        - 

Vave Foraea on a Reetrained Ship in Head-Sea Waves 

APPENDIX A 

Simplification of the far-field expansion in the zero-speed problem 

We will show how   (15) can be rewritten into   (16)   and   (17). 
The procedure is based on work by Ogilvie   (1969). 

We first introduce 

k1   =   k   +   » 

in   (15).  If we drop the primes we can write   (15)   as 

0   (x.y.z.t)    =      .»(x.y.z)   ev (A-l) 

where 

♦ (x.y, z) ' /"     dk   eikX   ,' (k) 

.   lim        / 
M o ; 

~    d?   ei«y+zV FTV*   -k)2 

VP + (    ] -k)2  - ( v-iM) (A-2) 

We will let   y = 0(1)   and we are going to assume that   y   > 0. 

We define 

7,,«     i^y + z   VP + ( , -k)2 

I(k) = lim        / dV  — 
( v  -k)    - {   v -in) 

(A-3) 
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The poles of the integrand are important in the evaluation of 
I(k).  They are given in the limit        M-»0   by : 

(2i/   - k) k 

Let us first study the case in which these singularities are 
imaginary,  which means   k   < 0   or   k   < 2i/    .  Then we study case 
II,  in which   0 <   k   < 2 K   . 

Case I:   k<   0   or   k  <  2   c  . 

By introducing a closed curve in the complex      t -plane pro- 
perly indented at the branchpoint   i    IK -k| of the integrand of   (A-3) 
and using the residue theorem,  we will get 

I(k) 2 ir f e 
fz - y 

Nkfr-Z*  ) 

\k(k-2 K)        7 n e ivzyX.    - a 

I #T72 + i 
Jn      2-, 

-i KZ \C     -a 
s  

VF^-i - (A-4) 

It can be shown that the integral term in   (A-4) Here     a = 
is exponentially small with respect to  * 

Case II :   0 <   k <   2 » . 

The poles of the integrand of   (A-3)   are now real.   The 
Rayleigh viscosity is helping us to determine  how to indent the inte- 
gration path of   I(k)   around the poles.  We get by using the residue 
theorem in the same way as for Case I that 
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I(k) 
Zu i cz iy Vk(2 v   -k) 

fk(21'    -k) 
(A-5) 

/   ^ 
- vv ' 

Vn     2 *m     ; 
6     -a -iKZwC-a e 

— + —zzzzz  
VI'Z        2 J/2        2 

-C      -a+i fO-a-i 

It can be shown that the integral term is   0( « )   compared with the 
first term. 

By using   (A-2),  {A-3),   (A-4)   and   (A-5),  we can now write 

<t>(x. y, z) 
2ir /j dkeikx-y Vk(k-2. ) 

Vk(k - 2v) 

/;; 

dk   eikX -iy>/M2.-k)ffMk) 

v^ k(2v  -k) 

(A-6) 

•/ 
dk   e 

ikx - y   Vk(k - Zv )    # 

2^ Vk(k - 2 ^ ) 

(k) 

+   higher order terms 

This expression can be rewritten as Eq. (17). 
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APPENDIX B 

Inner expantion of far-field tource «olution for the zero-speed pro- 
blem 

We will show how a two-term inner expansion of   (17)   can be 
written as   (18). 

We let   y   be of order  «   , and we reorder the terms in   (17). 

By expanding the integrands in   (17)   we obtain 

0 

♦ (x, y, z)   = ve 
VZ 

2* 
C ^ eikx _^M 

l»   k 

.*./ 

«-(i-a^ 

VzTT 

Ke 
VZ 

2» / 

«-u-V 
dk e ff»(k) 

^-(i-a^ 

, *eVZ      i2.x      f     duemx   g>(u+2 

+ 1 -T^e / ^7^ 

xe si2.x y 
'-(i-aj) 

du e 
iux    g»(ü+2y) 

V2   vu 

+   higher order terms 
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The integration linr its   -t 1     have played an important 
role in obtaining   (B-l). 

Note that the first brackets in   (B-l)   contain the lowest-order 
terms,  the second brackets the next-lowest-order terms. 

Because we want to apply Fourier-transform techniques,  we 
want to set «'"'"l'   equal to oo .   For the three higher-order terms 
in   (B-l)   we could do that ; the effect would be only to introduce 
higher-order,  negligible effects.   But we must be careful with the 
lower order terms.   But assuming that a (x)   and o'(x)   are continuous 
in the interval   -L/2  < x  <L/2,  it can be shown that   k3a   (k) remains 
bounded as   k -» t oo .   This enables us to replace  «  '^'6\) by in the 
first two integrals too. 

Let us now define 

F»(k)     = 

vtr 

k < 0 

k > 0 

(B-2) 

F*(k)   denote the Fourier transform of a function   F(x).   So 

-iw/4 
F(x) 

V^H 
H(x) (B-3) 

where   H(x)   is Heaviside step function. 

We also define 

G*(u) 

So 

G(x) 

 1__ 

-iir/4 e 

u   < 0 

u   > 0 

(B-4) 

H(-x) (B-5) 

We can now write   (B-l)   as 
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dk eikx »•(k) F»(k) + .ye^alx) 
Zir 

vs    ilvx 
ce     e f 1UX 

2ir V27 

Using the convolution theorem we get 

du e   *ff«(u + 20   G»(u) . (B-6) 

^ (x, y, a)   =   -  fe     e 
iir/4   /'X ££5 

7-L/2   VzT 

vz     i2^x     -iir/4   / 
'e       e e / 

J V 

K X-{ 

L/2 

+  xy e   ff(x) 

d^(0 •12^ 

V2  ^ Ü-1 

By using an asymptotic expansion of the last integral (see Erd£lyi 
(1956)),  (B-7) can be written as Eq. (18). 

APPENDIX C 

Simplification of the far-field expansion in the forward-speed problem 

We will show how   (59)   can be rewritten into   (60)   and   (61). 

We first introduce 

k'   =   k + 

in   (59).   If we drop the primes we can write   (59)   as 

(<>D(x, y,»,t)     =     ♦(x, y, s) e 
i(wt - i/x) 

(C-l) 
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where 

* (x, y, z)   = dk   eikx    «r»(k) 

.  lim f 
Ai-0     j 

(C-2) 

^y + zV(..k)2
+  TZ 

V( .-k)2+ iz .i(w  +uk -ip)2 

go "' 

We will let   y = 0(1)   and we are going to assume that   y   > 0. 

We define 

(C-3) 

I(k)   =    lim 
MT«0 

i     ity  +zV^2+(,.k)i 
/dp   eily   + z \(; "+ ( ^-k)" 

VPT7T -k)2 - - (« + uk -i 
ao go 

M)' 

The poles of the integrand of   (C-3)   are important.   They are given 
in the limit by 

(C-4) 

i- *■    V^ K +  Uk)4    -    (  y -k)2 

We have to study the sign of the radicand in order to deter- 
mine the i >cation of the poles in the complex    c -plane. 

Let is define 
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k1    =     0 , (C-5) 

U 

2a,0U 
+ 1 (C-6) 

It can be shown that when k > k.   or   k< kp   the poles of the inte- 
grand of (C-3) are real and when  k   < k <0   the poles of the integrand 
of (C-3) are imaginary. 

Let us now study  I(k),   given by   (C-3), for different ranges 
of  k : 

Case I :   k   <   k < k 

This is the case in which the poles are imaginary.  We define 

in     =     i    V^-k)2  •• (a,    +Uk)4   /g2 

(C-7) 

By introducing a closed curve in the complex   (-plane   properly 
indented at the branch point   i | v -k | of the integrand of   (C-3)   and 
using the residue theorem, we will get 

l(k) 
-ra 

2       i 
e K* 4^] 

/ 
i   e'"^ 

Jgl      2 
ivz Ml    -a 

>F-«2 + i i + 
Uk 

o 
(cont.) 
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  i    "-' 

•     JT2      i -IKZ W t-     - a 

(C-8) 

fTJ.^^] 

Here   a      = 
are exponentially small with respect to  t 

It can be shown that the integral terms in (C-8) 

Case II :   k   > k 

The poles of the integrand of   (C-3)   are now real.  The 
Rayleigh viscosity   tt    is helping us to determine how to indent the 
integration path of   I(k)   around the poles.   By using the residue 
theorem in the same way as for Case I,  we will get a similar result 
as   (C-8).  In this case,  however, we cannot say that the integral 
terms are exponentially small for all   k.  We can write 

2 ir i 

Kk)   - 
K] 

it y      KZ 

e KJ 

+   exponentially small terms 

for   0<k<« ■(1-a+^I(k).   /Tie"^ 
Jt2~   i 

LVKZ. [■ ^ 
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.i,,{l Z 2 
-    a 

^-"2-'[-€ 
+   exponentially small terms 

for      a 
f-k < t (^ V- (C-9) 

Here   ^     and    Ä-    are some very small positive numbers,    "a"   is 
defined by   (56)   and is restricted to    0 <  a   <  1/2.    ?0   is given by 

i      =     -   VU   +Uk)4   /gZ    -   ( v  -k)2 (CIO) 

For all other values of  k   in Case II,    I(k)   will be exponentially 
small. 

Case III :   k   < k, . 

We define 

I   =   y[{ 7 + uk)4 /i  - { * -k)2 (c-ii) 

In this case the poles of the integrand of   (C-3)   are also real. 
The Rayleigh viscosity   M   will tell us how to indent the integration 
path around the poles.  By using the residue theorem in the same way 
as for case I,  we will get a similar result as   (C -8).  It can be shown 
that the integral terms are exponentially small.  We get 
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Kk)   = 

Z w i [-?] 
2     ir    y        fz [■ -Si 

(C-12) 

+   exponentially small terms 

for      k <  k. 

Using   (C-2),  (C-3),  the different approximations we have ob- 
tained for   I(k)   and the fact that exponentially small terms in   I(k) 
will give exponentially small terms in the expression for   <t>   , we can 
easily obtain   (61). 

APPENDIX D 

Inner expansion of far-field source solution for the forward-speed 
problem. 

We will show how a two-term inner expansion of   (61)   can be 
written as   (64). 

We let   y be of order t   and we reorder the terms in   (61). 

We will assume as for the zero-speed problem (see Appendix 
B)   that   a (x)   and    a '(x)   are continuous in the interval   -L/2  < x 

< L/2.    Outside     -L/2 <   x   < L/2 ,     » (x)  =  0 .    It can then be 
shown (see Lighthill (1958) )   that    k    v#(k)   remains bounded as 
k -> _ oo.  Using this it can be shown that the contribution from the 
inner expansion of   I  .     ,  I   ,     and the fifth integral in   (61)   will be 
of higher order of magnitude than the terms we will retain in the 
inner expansion of   (61). 

In the third and fourth integral in   (61)   we make an expansion 
of the integrand.  The integration limits   t «~ " will then play an 
important role.  In the first two integrals in   (61)   we first introduce 
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the new variable 

Faltinaen 

k -k. 

The next step is to change the integration limits so that the 
lower integration limit in the first integral is - « ■t1"   '^ and the upper 
integration limit in the second integral is    t-^-a-P .  Then we expand 
the integrands.  We can then write a two-term inner expansion of   (61) 
as 

♦ (x.y.z)   a   - 
VZ 

2 w f dkeikx   (r*(k) 

CM 

/ 

dkeikx   <r*(k) 

V2a>   + 2 Ux 11 0     J 2 a.  + 2 u7^ 

fye 
l/Z 

I ,,     ikx 
dk e c (k) 

ik,x + f z. 
2 i 

27 

r" dvelvx /(v + k2)     r 

J.cc       1 Zw+ ZUM- •'„ 

\        ""o 

* ,      »vx  »,       ,   v dv e        a (v + k ) 

V2ü)+ 2U./ 

^o 

(D. 1) 

We should note that we have changed the integration limits 
from   ±  « "(1"8"^)to   t oo .  This can be justified for the two first 
integrals,  which is the lowest order terms,   by using the fact that 

(r • (k) k 3  remains bounded as   k-»±oo.   For the three last integrals, 
which is the highest order terms,   it is obvious that we can change 
the integration limits from 1 « "^ to +«»   . 
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By using   (B-2),  (B-3)   and the convolution theorem we can 
now write 

♦ (x, y, z) a 
'Z-i * /4 

~7r~ •*-L/Z 

dU   ({) 
+    fye      ff(x) 

V2w+2 UK   I 
      x 

(D-2) 

ik^x +   KZ +   i  ir/4 x 

f dU   ({)e-ik2{ 

•'-L/2 ,  
/2«   + ZU^i      J 

1 o 

By using an asymptotic expansion of the last integral (see 
Erdelyi (1956) ),    (D-2)   can be written as   (64). 
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Figure 3   Ursell's solution as a function of   V r for a given value of 0 
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Wave forces on a Restrained Ship in Head-Sea Waves 

o.s 1.0 6(radian«) 

Figure 4   Ursell's solution as a function of 9 for given value of</r 

1827 

MIL-I Hi«.....».!    iinmin  ,|>^^MgaM(t|M|MMtM,iMMt<|Mt|i|i,M,M|^^ mmm 



II«". .1   "     1^^»WW»PU    ■ in ii   «i   iiu-.l i-PPHIWiiplillBnu'-n-r" ^^—^r-" 

Faltinaen 

-    I t 1 ■ i ■—i  

• « g 
0 o 
1 I 

■ 

\% V      0 II 1 k 
■ 

%s. M      0 K 

■ 

/ 

11 

1  1  

( 

1 

i * 
^ 

/ 

i 

/ ; 

HI 

H2   • 

0) 

o 

c 
0 

h 

g 
01 
« 
a 
V 

a 
o 

01 

-I 
• rl   A •o a 
2 « v* 
IT) 

V 
U 

1828 

  - ■   -- - ■ ^^.M^MM 



Wave Foraee on a Restrained Ship in Head-Sea Waves 

o.s 1.0 6(radians) 

Figure 6   Pressure variation along the cross-section   B 
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Figure 13   Pressure variation along the cross-section  A 
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Wave Forces on a Reetrained Ship in Head-Sea Waves 

o.s x.o 6(radians) 

Figure 14   Pressure variation along the cross-section  ft 
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DISCUSSION 

Michel Huther 
Bureau Veritae 
Paris, France 

I have been very interested by the presentation of the author, 
and I should be very pleased to know his opinion about the limitations 
and possible extensions of the method.  I am interested to know the 
order of magnitude it is possible to use for the slenderness parameter. 
Also, have calculations been done with other section shapes as rec- 
tangular,  for example,   shapes more similar to the nowaday midship 
sections than the cylinder ? 

The author writes that linear superposition can be used.  I 
agree with this point of view for longitudinal motion such as pitching 
and heaving,  but I should be pleased to know the author's opinion in 
the case of transverse motions such as rolling, where large ampli- 
tudes are to be considered. 

DISCUSSION 

Cheung-Hun C. Kim 
Stevens Institute of Technology 

Hoboken, New-Jersey,  U.S.A. 

Dr.  Faltinsen proposes a method for improving the present 
strip method of evaluating the wave-exciting forces.   His method is 
based on the slender body assumption and the comparison was made 
with the corresponding results of calculations based on the Froude- 
Krylov hypothesis.  I would like to xnow why the comparison was not 
made with the corresponding results of calculations based on the strip- 
wise diffraction theory. 
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REPLY TO DISCUSSION 

Odd Faltinsen 
Det Norske Veritas 

Oslo, Noruay 

The first limitation that I mentioned in my presentation was 
the small wave length assumption.  I would guess that the upper limit 
for using the theory would be for a wave length divided by the length 
of the ship between 0. 5 and 0. 75.  Another limitation is that the theo- 
ry is not valid near the bow or the stern of the ship.   Near the bow 
there is a singularity in the solution.  For practical purposes I think 
one can use the Froude-Kriloff theory in the bow region. 

The theory is not restricted to circular cross-sections and it 
is shown in the main text how to solve the problem for arbitrary cross- 
sections.  But no calculations have been performed for arbitrary ship 
forms.   Further it remains to test how slender the ship ought to be for 
the theory to be valid.   But the slenderness assumption is not expect- 
ed to be a great problem for conventional ship forms. 

To get a similar theory for an arbitrary wave length does not 
seam easy.   However,  for the long wavelength range one can use the 
Froude-Kriloff theory to find the pressure. 

I do not find the question about linear superposition to be ap- 
propriate in this context.   But I agree that the linear superposition 
principle can be questionable in the case of roll.   Further I did not 
hear good enough Dr.   Kim's question about the strip method. 

DISCUSSION 

Cheung-Hun C. Kim 
Stevens Institute of Technology 

Hoboken, New-Jersey,  U.S.A. 

Dr Faltinstn evaluated the pressure distribution along the 
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keel line according to the method based on the Froude-Krylov hypo- 
thesis and for relatively short waves.   It is well known that the Froude- 
Krylov assumption is valid only for    ery long waves.  Would it not be 
better then to compare the results with calculations based on a strip 
method which evaluates rigorously the diffraction potential in the strip 
domain ? 

REPLY TO DISCUSSION 

Odd Faltinsen 
Det Norake Veritas 

Oslo, Nonoay 

I see what you mean.  I have not done that comparison.   The 
reason why I showed a comparison with Froude-Kriloff pressure in 
the presentation of the paper, was to make clear that there is an order 
of magnitude between Froude-Kriloff pressure and pressure accord- 
ing to my theory in the low wave length range. 

I do not agree with Dr Kim's last statement that the usual strip 
theory evaluates the diffraction potential rigorously in the strip do- 
main.   The usual strip method for zero speed is based on no inter- 
action between different parts of the ship, and the two-dimensional 
Laplace equation is used to solve the problem.   This can only be true 
for beam sea. 
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FREE ■ SURFACE EFFECTS IN HULL PROPELLER 
INTERACTION 

Horst Nowacki 
University of Michigan 

Ann Arbor, Michigan, U.S.A. 

Som D.  Sharma 
Hamburg Ship Model Baein 

Hamburg, Germany 

ABSTRACT 

The quantitative role of wavemaking at the free sur- 
face in the phenomenon of hull propeller interaction 
is investigated by means of a general scheme devised 
to determine the potential, viscous and wave compo- 
nents of wake and thrust deduction. It requires the 
concerted application of various analytical tools such 
as the lifting line theory of propellers, the method 
of singularities for representing the hull and propel- 
ler by source distributions and the linearized free- 
surface theory of wavemaking, as well as model ex- 
periment techniques such as the conventional Froude 
analysis of propulsion factors, nominal wake mea- 
surements and wave profile measurements. The pro- 
cedure is actually applied to the specific case of a 
thin mathematical hull form driven by a four-bladed 
propeller of simple geometry. It is found that the 
wave component is dominant in the wake and quite si- 
gnificant in the thrust deduction at Froude numbers 
around 0. 3. Surpiisingly, there seems to be an ap- 
preciable viscous component in the thrust deduction 
at practically all Froude numbers. 

Preceding page blank 
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Nowacrki and Sharma 

I.    INTRODUCTION 

The purpose of this research was to clarify by analysis,  com- 
putation and experiment the quantitative role of wavemaking at the 
free surface in the phenomenon of hull propeller interaction and con- 
sequently its contribution to the hydrodynamic propulsive efficiency of 
the system hull and propeller. 

Following Froude (1883),  hull propeller interaction is con- 
veniently studied in terms of three propulsion factors : wake,   thrust 
deduction and relative rotative efficiency.   The wake is caused by the 
presence of the hull and the free surface and is a simple measure of 
the change in propeller inflow as compared to an equivalent open- 
water condition (free running propeller in an infinite parallel stream). 
The thrust deduction is really an indirect expression of the fact that 
the force of resistance acting on the hull is modified (usually augment- 
ed as compared to the towed condition) as a result of propeller action. 
With the present state of our knowledge, only wake and thrust deduc- 
tion are amenable to rational analysis,  the relative rotative efficiency 
being an empirical catch-all for various unclarified effects of relative- 
ly insignificant magnitude. 

Since the fundamental work of Dickmann (1938, 39),  it has 
been customary to study hull propeller interaction as a superposition 
of three basic effects : "potential" effects due to an ideal displacement 
flow about a deeply submerged double body (the zero Froude number 
approximation), viscous effects due to the boundary layer and viscous 
wake, and wave effects due to the presence of the free surface.  Using 
standard symbols   w   and   t   for wake and thrust deduction fractions 
respectively,  one may write formally 

=     w    + w    + w 
p V w 

=   t    + t    + t 
p V w 

(1) 

(2) 

where the subscripts   p, v   and   w   denote potential,  viscous and wave 
respectively.   By comprehensive theoretical analysis and careful ex- 
periments Dickmann demonstrated that the most significant compo- 
nents were   w  ,  t     and   wv . 

.Among Dickmann's most impressive achievements were 
1)   a theoretical rclaticnbetweenpotentialwakeand trust deduction in- 
volving the thrust loading coefficient,  and   2) a reasonable explanation 
of the effect of the free surface on propulsive efficiency.   His main 
analytical tools were a simple actuator disk model of the propeller 

1846 



twHprnw"""". ' 

Free Surface Effects in Hull Propeller Interaction 

(momentum theory), the method of singularities (Lagally's theorem) 
for calculating forces on the hull and Havelock1 s method of images for 
a linearized treatment of the free surface. 

In recent years considerable effort has been put into the in- 
vestigation of potential and viscous effects in hull propeller interaction 
(see Bibliography).  Especially in this country,  Beveridge in a series 
of papers (1962, 63, 66, 68) has refined the technique of calculating the 
potential thrust deduction to a state of near perfection. At the same 
time,  Hucho (1965,68) in Germany has made significant contributions 
to our understanding of viscous effects.   The wave effects, however, 
were persistently ignored for nearly thirty years since Dickmann(1939), 
until the fundamental treatise of Yamazaki (1967) revived interest in 
this subject and inspired the recent work of Nakatake (1967, 68) in 
Japan. 

Still far from resolving the complex issues at stake, Nakatake's 
papers are just added evidence of the same conviction that underlies 
the present study(which,  incidentally, was initiated without knowledge 
of the Japanese effort),  namely that the time is now ripe ."o make a 
fresh attempt at the further clarification of this admittedly difficult 
problem.   This is due mainly to the following reasons : 

1) Major advances in the vortex theory of propellers now 
allow the use of a far more refined mathematical model of the propel- 
ler. 

2) The recently H°veloped technique of wave profile measure- 
ment and analysis ena' -es us to verify by (almost) direct measurement 
the wave effects predicted by analytical theory. 

3) The general availability of large electronic computers al- 
lows the use of more realistic singularity distributions for represent- 
ing the hull,  the propeller and their images in the free surface. 

Beside the intrinsic interest of a fundamental problem in ship 
hydrodynamics, a recommendation by the Performance Committee of 
the International Towing Tank Conference 1966 for specific research 
in the basic problem area of hull propeller interaction - of which free 
surface effects are certainly the most intriguing aspect - as well as 
the prospect of practical application to modern high speed craft with 
propellers operating at shallow or even partial submergence were 
further motivations for undertaking this research. 
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II.    GENERAL APPROACH 

The originality of the   present study lies not in the develop- 
ment of a novel method but in the concerted application of miscella- 
neous existing analytical, computational and experimental techniques 
to our specific purpose.  Since these numerouj tools have to be appli- 
ed in a rather intricate sequence to get the information desired,  it 
seems necessary in the interest of claritv to precede the account of 
work done by a brief schematic description of our general approach. 
The internal details of the individual techniques are only of indirect 
interest in the present context and will therefore be banished to appro- 
priate appendices. 

The basic aim is to determine for a given hull-propeller sys- 
tem the propulsion factors and their potential, viscous and wave com- 
ponents by all feasible analytical and experimental means.  This dic- 
tates roughly the following set of operations. 

First, a considerable amount of basic information can be ga- 
thered by a number of independent experiments and theoretical calcu- 
lations which may be executed in any convenient sequence. On the ex- 
perimental side we may deploy the following more or less routine mo- 
del tests in the towing tank : 

E 1)   Hull resistance test, 

E2)   Propeller open water test (at deep and shallow submer- 
gence), 

E 3)   Self-propulsion test with hull and propeller, 

E4)   Nominal wake measurements behind the hi'1' in forward 
and reverse motion,  and 

E 5)   Wave profile measurements (e.g.   longitudinal cuts) for 
the hull with and without propeller. 

On the theoretical side only few calculations can be perform- 
ed without resort to some empirical data ; these are : 

T 1)   Wavemaking resistance of the hull, 

TE)   Wave wake induced by the hull in the propeller plane 
(both in forward and reverse motion), and 

T 3)   Potential wake induced by the hull in the propeller plane. 
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From here on the further analysis is of a semi-empirical 
nature and must be conducted in an essentially predetermined sequen- 
ce because at each new step certain information from previous steps is 
required . It is helpful to list separately the pure hull analysis ,  the 
pure propeller analysis , and the interaction analysis . 

The purpose of the hull analysis is to verify the mathematical 
representation of the hull as a source distributio.i and to establish the 
degree and range of validity of the linearized wave theory . 

H 1 ) The total resistance measured in step El can be subjected 
to a simple form-factor analysis (based on a suitable plane friction 
formula) so as to yield the viscous and wavemaking components . 

H 2 ) An alternative estimate of wavemaking resistance can be 
obtained from a Fourier analysis of the wave profiles measured in step 
E5 . 

H 3 ) The experimental estimates of wavemaking resistance 
derived in the two preceding steps may now be compared with the theo- 
retical calculations of step TI   . 

H 4 ) For a more exacting test of the theory the experimental 
and theoretical free-wave spectra can be compared at each speed . 

H 5 ) An additional test of the theory lies in comparing the eum 
of the calculated wave wake and potential wake from steps T 2 and T 3 
to the measured wake in reverse motion from step E4 since the latter 
is essentially free of viscous effects  . 

H 6 ) If the mathematical model of the hull flow can be verified 
in the preceding steps then the calculated wave wake and potential wake 
may be subtracted from the measured total wake in forward motion to 
yield the important viscous wake component . 

The purpose of the propeller analysis is to determine a vortex 
model of the propeller and to verify the validity of its alternative 
representation as a source distribution which is to serve as the basis 
for calculating thrust deduction and wave effects . 

P 1 ) A computer program based on lifting line theory in con- 
junction with the Lerbs ( 1952 ) induction factor method may be used 
to calculate for any given propeller geometry and assumed foil cha - 
racteristics the equivalent distribution of bound circulation over the 
radius and hence by Kutta-Joukowsky's theorem the thrust and torque 
coefficients as functions of the advance ratio . 
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P2) The thrust and torque predictions of the previous step 
are compared with the actual performance as measured in step E2 
and the agreement is improved iteratively by adjusting the assumed 
foil characteristics.  Again the crucial link in the algorithm is  the 
circulation distribution. 

P 3) Using the Hough and Ordway (1965) approximation, the 
circulation distribution is now translated into an equivalent source 
distribution over the propeller disk. 

P4) This source distribution is the basis for calculating the 
wavemaking due to the propeller by Havelock*s (1932) theory.  In parti- 
cular,  the axial velocities induced by the operation of the propeller 
near the free surface, in other words the self-induced free-surface 
wake of the propeller,  can be calculated. 

P5) This self-induced wake is fed back into the propeller 
performance program based on lifting line theory to obtain predictions 
of thrust and torque with the propeller operating at shallow submer- 
gence. 

P 6) A comparison of propeller performance predicted in 
step P5 with actual measurements at the same submergence then pro- 
vides a check on the correct accounting of free surface effects in the 
theoretical model. 

After the mathematical representations of hull and propeller 
have been verified the actual interaction analysis can be executed as 
follows. 

I 1) The Froude propulsion factors (mean effective wake, 
thrust deduction,   relative rotative efficiency and propeller efficiency 
in the equivalent open water condition) are first determined from the 
results of tests   E 1,  E2   and   E3   in the usual manner. 

12) The radial distribution of nominal wake from step E4 is 
adjusted to match the mean effective wake from step I 1 and fed into 
the propeller performance program.   The output is the circulation dis- 
tribution of the propeller in the behind ship condition at each Froude 
number. 

I 3) Again the Hough and Ordway relation is used to translate 
the circulation distribution into a source representation of the propel- 
ler in the behind-ship self-propulsion condition. 
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14) From the now known source representations of the hull 
and propeller free-wave spectrum and wavemaking resistance are cal- 
culated and compared with the corresponding results of the Fourier 
analysis of the wave profiles measured in step E 5.  This provides a 
check on the principle of linear superposition of hull and propeller 
waves. 

I 5) The mutual flow patterns of hull and propeller can now 
be calculated and thence by Lagally's theorem the potential and wave 
thrust deduction. 

I 6) Finally the viscous component of thrust deduction can be 
estimated indirectly by subtracting the potential and wave components 
from the total thrust   deduction of step I 1. 

III.    DISCUSSION OF RESULTS 

III. 1.    Choice of Hull and Propeller 

Since our work was to consist essentially of a single concrete 
example   of the actual application of the sequence of operations out- 
lined in the previous section it was rather important to choose as in- 
structive and useful an example as possible. After considering various 
alternatives we finally selected the somewhat idealized hull propeller 
configuration of Figure 1 that has a sufficiently simple geometry for 
the ease of theoretical calculations and yet quite realistic proportions 
for the results to be of practical value.   The arguments leading to this 
choice can be summarized as follows. 

In order to keep the wavemaking calculations manageable it 
was decided to use a symmetric hull form with parabolic waterlines 
and frames.   The wetted surface is then defined by the equation 

-f{l  -(2x/L)2m}{l  -(-z/T)n} (3) 

The hull above water is a simple continuation of the underwater form 
with vertical sidewalls.   The integer powers   m,n   and the form ratios 
L/B,  S/T   were chosen to satisfy the following requirements : 
1) sufficiently thin hull for linearized theory to be valid,  2) sufficient- 
ly large angle of run to get measurable interaction with the propeller, 
and   3) realistic value of block coefficient. 

This led to the following set of parameters : 
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m = 2,     n   =   4 

L/B 10,   B/T   =    1.5 

CM = Cp   =   Cwp   =   0.8 

CB 
= 0.64 

^ 
- iR   =   arctan   0.4 « 21.8 (4) 

The absolute size of the model for the towing experiments 
was dictated by the size of the tank and equipment available : 

L - 4. 500   m = 14.764 

B = 0.450    m r 1.476 

T = 0. 300   m = 0.984 

V = 0. 3888 m3 = 13.731 

s = 3.4962 m2 — 37.633 r. 
(5) 

The choice of propeller was governed mainly by considera- 
tions of availability and simplicity.   Fortunately,  it was possible to 
borrow a very suitable propeller from the Hamburg Ship Model Basin 
(HSVA),  namely a   200mm   diameter model of the Standard Propeller 
recommended by the ITTC Cavitation Committee in I960 for compara- 
tive testing,   see Burrill (i960).  It has a simple geometry (constant 
pitch,  no rake,  no skew) with accurately defined offsets (Figure 2), 
and performance characteristics were already available from previous 
tests at the Hamburg and other tanks.   Its two-dimensional foil charac- 
teristics,   however,  were not known.   The center of the propeller was 
positioned at 

Xp =    -0.51 L 

yp 
=     0 

z„ =    -0. 50 T (6) 

in the coordinate system of Figure 1.   This arrangement relative to 
hull ensured complete submergence (0, 75 D at rest) at all speeds and 
a low axial clearance (0.225 D) with accordingly accentuated interac- 
tion effects. 

III. 2.    Summary of Model Tests 

In accordance with the scheme outlined in Section 2 the fol- 
lowing model experiments were conducted : 
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E 1) Measurement of bare hull resistance over the entire 
feasible speed range of   0. 1 < Fn<0.45, 

E2) Measurement of propeller performance in open water 
(thrust and torque as functions of speed of advance and rate of revo- 
lutions) over the range of advance coefficient   0 < J < 1. 2 at four depths 
of submergence :   h/Rp=3.47,  2.00,   1,50   and   1,00. 

E 3) Propulsion tests with the propeller operating behind the 
hull (measurement of thrust, torque and residual towing force as func- 
tions of model speed and propeller rate of revolutions) at fourteen dis- 
crete speeds corresponding to   7o = 3.5   step   0,5   until   8,0   step  1.0 
until   11,0,  and   12, 5, At each speed the propeller revolutions were 
varied to obtain a sufficient range of loading usually covering both the 
model and the ship self-propulsion points (for an arbitrarily assumed 
model scale of   1:80), 

E4) Measurement of nominal wake in the propeller plane be- 
hind the hull (xD =  -0. 51 L) in both forward and reverse motion at 
three selected speeds corresponding to  yo = 4,0,   7,0   and   12. 5.  At 
each speed the circumferential average of the axial wake velocity was 
measured by means of calibrated wake wheels at ten different radii 
R/Rp = 0,2    step   0,1   until   1,1, 

E 5) Measurement of longitudinal wave profiles at a fixed 
transverse distance   (y0 = 0. 134 L)   from the model center plane in 
two conditions ;    1) model with propeller running at ship self propul- 
sion point and   2) model with propeller replaced by a dummy hub, 
each at two selected speeds corresponding to 70 = 4,0   and   7,0. 

Revelant details of the test procedure are given in Appendix A. 

Ill, 3,    Hull Analysis 

Figure 3 shows the measured total resistance of the bare 
hull as a function of speed in the usual nondimensional coefficient 
form : Cf   versus   Fn (or Rn),  Also shown in the figure are the ITTC 
1957 model-ship correlation line 

CF   =   0,075 /(log10Rn - 2)2 (7) 

and the curve of estimated viscous resistance coefficient 

Cv   =   ( 1+k) CF (8) 

The latter is based on the Hughes form factor concept and determined 
from the measured total resistance at low Froude numbers by the gra- 
phical method of Prohaska (1966),  Assume 
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and further for   F_ 

Then 

'T 

■»0 

= c„ + c w 

cwFn 
CT/CF   =   ( 1+k)   +   cw(Fn /CF) F 

and 

(9) 

(10) 

(11) 

:w   may be determined from a linear fit so the constants   (1+k) 
to the plot of   Cp/Cp   versus   F^/Cp   for low Froude numbers. 
Figure 4 shows that the linear relation implied by Equation (11) applies 
reasonably well to our model up to Froude numbers up to   0.2.   The 
numerical values of the viscous form factor   (l+k)   and the coefficient 
cw   were found to be 

(1+k)   =   1,025 "w 0.73 (12) 

The coefficient of wavemaking resistance thus indirectly derived 

"W CT - ( 1+k ) CF (13) 

has been plotted in Figure 5 against the appropriate speed-length 
parameter  7      and compared with the corresponding calculations based 
on linearized thin ship theory (see Appendix B,   especially Eq. (B28)). 
Although there is a remarkable semblance between theory and ex- 
periment (e, g.   the second, third and fourth humps can be clearly iden- 
tified in the measured curve),  it is disappointing to observe that even 
for our relatively thin ship (L/B = 10) reasonable quantitative agree- 
ment between theoretical predictions and experimental reality could 
be established only over a limited speed range of   2. 5 < V   < 4. 5.  At 
higher    f 0   (i. e.   lower Froude numbers) the experimental curve ex- 
hibits much less pronounced humps and hollows and its general level 
is only half as high as the theoretical curve.   This suggests that the 
viscous boundary layer and separation probably made the stern quite 
ineffective in wavemaking. 

In any case,  the two speeds corresponding to 70 = 4(F   =0. 354) 
and >0 - 7(Fn - 0. 267) were singled out from Fig.   5 as the most pro- 
mising for further investigation. At these speeds the wavemaking re- 
sistance was evaluated directly from measured wave profiles by the 
longitudinal cut method described in Appendix B.8.   The result, as 
indicated by the two isolated spots in Fig.   5,   showed that the wave- 
making resistance associated with the wave pattern actually generated 
by the model was about 30 to 40 percent less than tha theoretical pre- 
diction or the empirical estimate of Eq. (13).   Further discussion of 
the results of wave profile analysis will follow in Section 3. 5. 

The next step in   hull analysis was the evaluation of nominal 
wake,  i. e.   the flow perturbation created by the hull in the propeller 
plane in the absence of the propeller. In order to avoid the compli. 
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cations invariably caused by viscous effects behind the hull, we first 
compared the calculated and measured wake in reverse* motion,   see 
Figure 6. The measured values were obtained from calibrated wake 
wheels directly as circumferential averages at ten discrete radii.   The 
calculated values based on thin ship theory (see Appendix B5,   espe- 
cially Equation (B56)) were available pointwise in the propeller plane 
and were numerically averaged along the circumference at various 
radii for the ease of comparison with measurements.   It is encourag- 
ing to observe in Figure 6 the fair agreement between theory and ex- 
periment,  the discrepancy being nowhere larger than 0.03.    In par- 
ticular, both the mean effect of Froude number and the general varia- 
tion with radius are correctly predicted by theory.   However,  the mea- 
sured wake shows some erratic oscillations of unclarified origin at 
the outer radii. 

Figure 7 shows an analogous comparison of calculated and 
measured wake in forward motion.  Here we cannot expect direct 
agreement between experiment and theory since the former contains 
a substantial viscous component not included in the latter.  However, 
if we subtract the calculated from the measured wake,  we notice that 
the remainder is relatively insensitive to Froude number (see Fig. 7) 
as we would expect of the true viscous component.   This may be inter- 
preted as indirect evidence that wave effects actually present in the 
measured total wake are of the same order of magnitude as predicted 
by thin ship theory.   This is quite encouraging,   especially in view of 
the relatively poor agreement between calculated and measured values 
of wavemaking resistance. 

For the sake of completeness the conventional "potential" or 
zero Froude number component of wake as calculated by theory (Ap- 
pendix B. 5,  Equation (B54)) is also plotted in Figure 7.  It is by de- 
finition independent of Froude number.  In view of the foregoing,  the 
trichotomy of nominal wake in potential,  wave and viscous compo- 
nents as displayed in Figure 7 can be regarded as quite meaningful. 
Evidently,  the wave effects are by no means negligible as commonly 
assumed. 

*   Incidentally,  by virtue of the longitudinal symmetry of our hull the 
"stern" wake in the propeller plane   x = x     in reverse motion is equi- 
valent to the "bow" wake in the reflected propeller plane x = -x- in 
forward motion. 
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III. 4.    Propeller Analysis 

Measured propeller performance characteristics for three depths 
of submergence are plotted in Fig.8 in the usual nondimensional coeffi- 
cient form. The largest depth (h/Rp = 3, 47) was the maximum attainable 
with the propeller boat available for open water tests, and the smallest 
(h/Rp = 1. 50) corresponds exactly to the immersion selected for self- 
propulsion tests (zp= -0. 5T) described later. Apart from verifying the 
measurements conductedpreviously at an even lager depth (h/Rp = 4.0) 
in the Hamburg Ship Model Basin (HSVA), the principal conclusion from 
these tests was that free-surface effects are negligibly small for depths 
h/Rp>l,50. 

At the shallowest depth investigated ,   however ,  with the pro - 
peller disk just touching the static water level (h/Rp = 1.0), pronounced 
free-surface effects were measured ,   see Fig. 9 .   The observed loss 
of thrust and torque as compared to the deeply submerged condition , 
the steady accentuation of the effect with increasing loading (i.e.  de- 
creasing advance coefficient) ,  and a slight drop in efficiency are to be 
naturally expected from the combined effects of ventilation and wave - 
making at the free surface .  It is not intuitively obvious ,  however , 
why the thrust and torque should suddenly break down at some "critical" 
advance coefficient ,  here   Jss0.41   .  Similar discontinuities have been 
measured by others,   notably by Shiba (1953)  .   Flow observations reveal 
that the discontinuity is accompanied by a sudden transition from partly 
ventilated to fully ventilated condition . A satisfactory theoretical ex- 
planation of this phenomenon would certainly require an intricate ana- 
lysis of the stability of partly ventilated flow  .   It is also intriguing to 
note that the drop in thrust and torque is nearly proportionate so that 
the discontinuity is hardly perceptible  m the curve of efficiency.   This 
lends some credibility to Dickmann's   (1939)    simplified treatment of 
propeller ventilation as a mere reduction in the density of the medium 
due to a mixture of air with water 1 

For the sake of completeness it should be reported that ventila- 
tionalsooccured  to some extentat two of the deeper immersions,namely 
h/Rp = 1. 5 and 2.0,   especially in the bollard condition and at the low- 
est advance coefficients.   It was distinctly audible and often visible as 
a vortex from the free surface to the propeller tip,   but its effect on 
thrust and torque was obviously too small to be measurable (see Fig.8). 

The measured thrust and torque characteristics (in the deeply 
submerged condition) were transformed into an equivalent vortex model 
of the propeller by means of a computer program based on lifiting line 
theory and using assumed (or adjusted) two-dimensional foil characte- 
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ristics as the connecting link between propeller geometry and forces 
after taking account of .the velocity perturbation induced by the trailing 
vortices . Without going into details , whi·ch are given in Appendix C , 
Fig. 10 is presented as evidence for the close fit finally achieved bet
ween calculations and measurement . Note that the results of two dif
ferent calculations are displayed . The four sets of crosses mark the 
calculated performance of a series of hypothetical propellers indivi -
dually designed at each respective advaftce coefficient so as to produce 
the known measured thrus·t with a minimum loss of energy (i.e. optimum 
distribution) . The exact agreement with the measured KT values is 
therefore trivial , while the good ag.reement with the measured Ko 
values proves that hydrodynamic losses were reasonably estimated .i.n 
the calculation and that the actual performance of the propeller is near
ly optimum over the range 0. 6$ J $0.9 . On the other hand , the 'our 
sets of squares in Fig. 10 mark at each respective advance coefficient 
the calculated performance of the given propeller with predetermined 
geometry . Hence • the perfect agreement with measured KT and Ko 
values is trivial only at the design point , assumed to be at J = 0. 8 , 
whereas at the three other points it demonstrates the usefulness of the 
scheme devised to calculate the off-design performance with the aid of 
assumed {or empirically adjusted) foil characteristics . In particular , 
it may be anticipated from the trend visible in Fig. 10 that a more 
elaborate off-design analysis {as compared to the simpler design point 
analysis) would probably pay of~ at higher loadings {lower J values) by 
producing a more accurate simulation of actual propeller performance 

The heart of the vortex model of the propeller used above is the 
calculated distribution of bound circulation along the blade . This is 
shown in a suitabl~ nondimensional form in Fig. 11 for each of the four 
advance coefficients marked in Fig. 10 . It serves to illustrate the eifect 
of loading and variation with radius , and is the basis of all further 
analysis . In passing we note that the two different calculations just 
discussed produced practically identical (within one percent) circulation 
distributions in t~e four cases considered here . 

The vortex model of the propeller was in tum transformed into 
a sink disk model by means of the Hough and Ordway (1965) relation , 
and linearized wavemaking theory was applied to calculate ita self-indu
ced wake when operating near the free surface , see Appendix B , es
pecially Equation~ (B 13) and (B 61) . The final results of four such 
calculations for a relatively shallow submergence of h/Rp = 1. 0 are 
shown in Fig. 1 Z . It is a rather remarkable coincidence that although 
the calculated self-induced wake varied strongly over the disk , its 
circumferential averages came out almost independent of the radius . 
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The disk average    wJ increases steadily with loading (i. e.   decreas- 
ing J) as one would naturally expect. 

The next and final step in our propeller analysis was aimed 
at an indirect verification of the entire theoretical model by compar- 
ing the calculated performance at shallow submergence (based only on 
theory and the known performance at deep submergence) with actual 
measurements.  For this purpose the calculated self-induced free- 
surface wake   W£(R)   was used in two ways.  First, following Dickmann 
(1939), its disk average value   W£   was used simply to define a virtual 
advance coefficient 

(l-wf) J (14) 

at which the thrust and torque values were read off from the known 
deep submergence characteristics (Figure 8) and replotted against   J 
(see squares in Figure 13) as the predicted characteristics at shallow 
submergence. Second,  the radial distribution   w^R)   was fed into the 
computer program for off-design performance which then calculated 
the thrust and torque by vortex theory (see crosses in Figure 13). 
Since this program matched perfectly with the deep submergence cha- 
racteristics (see Figure 10) and since   w^R)   was practically constant 
over the radius (see Figure 12), the net effect was the same as in the 
first method, namely a loss of thrust and torque owing to the negative 
value of self-induced wake and increasing steadily with loading.  The 
actually measured characteristics,  replotted from Figure 9 as the 
dashed curves in Figure 13, indeed confirm that the calculated effect 
is in the right direction and of the right magnitude. 

Encouraged by this success of the theory, we repeated the 
above calculation for the entire range of advance coefficients   J = 0, 10 
step   0.05   until   1. 10.   However,  for the sake of simplicity,  we now 
estimated the source strength directly from the thrust coefficient by 
Dickmann's relation (i. e.   substituting Equation (BIO) instead of (B13) 
into (B6I)) and applied only the simple method of virtual advance coef- 
ficient   j£   explained above.   The result is represented by the conti- 
nuous curves in Figure 13.  Although not as accurate as the previous 
calculations, which made use of vortex theory,   even this simple ap- 
proach leads to fairly reasonable predictions of the effect of wave- 
making on propeller performance. Of course, at very high loadings, 
especially for advance coefficients below the "critical" value of   0.41, 
ventilation rather than wavcmaking is the decisive factor, and hence 
wavemaking theory alone fails to predict the behavior found in the ex- 
periment. 
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As explained in Appendix B. 6,  the wavemaking resistance of 
the propeller follows directly from its self-induced wake,   see Equa- 
tion (B62).  Hence opportunity was taken to compare the three differ- 
ent source representations of the propeller,  defined by Equations 
(BIO),  (Bll) and (B13),   by plotting for each the ratio of calculated 
wavemaking resistance to measured thrust as a function of advance 
coefficient,   see Figure 14.  Since the source disk is not a valid model 
for calculating forces acting on the propeller, the wavemaking resis- 
tance   Rwp   is not necessarily equal to the loss of thrust experienced 
by a propeller operating near the free-surface as compared to an 
equivalent deeply submerged condition.  More appropriately,  the ratio 
R-^p/T   should be regarded as a measure of the loss of propeller ef- 
ficiency due to the expenditure of energy for maintaining its steady 
wave pattern. 

III. 5.    Wave Analysis 

It has already been stated that longitudinal wave profiles were 
measured at a fixed transverse distance   (y0 = 0. 134 L) from the 
model center plane in two conditions :    1) model with propeller runn- 
ing at the ship self-propulsion point (for an arbitrarily assumed model 
scale of   1:80), and   2) model with propeller replaced by a dummy 
hub,  each at two selected speeds corresponding to the two values of 
speed-length parameter  TQ = V. 0 (Fn = 0.267)   and 70 = 4. 0 (Fn   = 
0, 354).  Two pairs of corresponding profiles are reproduced in suitable 
nondimensional form in Figures 15 and 16 respectively with the verti- 
cal scale magnified 100 times for the sake of clarity. 

Evidently,  the propeller exercised a measurable influence on 
the wave pattern of the model,   the transverse wave amplitude behind 
the stern being higher with the propeller running in the cases shown. 
Even within the linearized wave theory two significantly different ex- 
planations can be offered for this effect.   First,  it might be a purely 
linear effect due to a superposition of the propeller wave on the hull 
wave.  Second,  it might be a pseudo-nonlinear effect due to a modifi- 
cation of the wavemaking properties of the hull itself as a result of 
propeller suction. 

Another point of interest to note is the slight breaking of the 
bow wave clearly visible at the leading peaks in Figure 16.   It shows 
that the wave pattern was in places steep enough to introduce truly 
nonlinear effects,  at least locally.   This should be kept in mind when 
making comparisons with the calculations based on strictly linearized 
theory. 
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The measured wave profiles were analysed by the Fourier 
transform method as explained in Appendix B.8 and the results compared 
with the corresponding theoretical calculations based on explicit sour- 
ce representations of the hull and the propeller .The measured and cal- 
culated nondimensional free-wave amplitude spectrum E ,   and its sine, 
cosine components   F ,   G are plotted as functions of nondimensional 
transverse wave number u in Fig .   17 to 19 for 70 =   7.0 and in Fig. 20 
to 22  for 7j =   4.0.  The following remarks are added to avoid any am- 
biguities of interpretation .   The bare hull calculations are based on 
Equation   (B 23),  the propeller calculations on Equation (B 27) in con- 
junction with (B 16) ,  and the total system hull-propeller on Equation 
(B 30) .   The free-wave  spectra of the propeller alone in Fig.   19 and 
22 are referred to a coordinate system with its origin in the propeller 
plane ,   see Equation (B 7 3) ,   whereas all others refer to a coordinate 
system with its origin in the   midship   section of the hull (see Fig. 1 ). 

Some obvious conclusions are in order here .  First ,   the agree- 
ment between calculations and measurempnt is only qualitative at the 
lower speed ,  but quite good at the higher speed .  Second ,   the discre- 
pancy between theory and experiment for the bare hull is mostly in 
phase and not so much in the amplitude of the free-wave spectrum . 
This is consistent with previous results of similar comparisons ,   see 
Sharma (1969) .   Third ,   the fair agreement between the "measured" 
free-wave spectrum of the propeller - it was actually derived from the 
principle of linear superposition ,   see Equation (B 72) - and the calcu- 
lated spectrum shows that our theoretical model of propeller wavema- 
king is reasonable and that the pseudo-nonlinear effect of the propeller 
on the hull waves referred to above is at least not the predominant 
phenomenon . 

Finally ,  the calculated and measured wavemaking resistance 
according to Equations   (B 28, 29) and (B 74) respectively are compared 
in the following table  . 

Nondimensional coefficient   R    g    /pV°   as calculated  (measured) 

Speed-length parameter >o = 7 or  Fn= 0.267 70= 4   or  Fn=0. 354 

Hull alone 

Propeller alone 

Interaction term 

System hull and propeller 

0.0650 (0.0380) 

0.0037 (0.0039) 

0.0017 (0.0001) 

0.0704 (0.0420) 

0.0354 (0.0245) 

0.0013 (0.0037) 

0.0058 (0.0025) 

0.0425 (0.0307) 
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As already noted in Section 3. 3   (see Fig. 5) ,  the measured 
values fall considerably short of the calculated ones ,  presumably 
due to viscous effects at the stern which reduce the wavemaking effec- 
tiveness of the afterbody . An interesting point to observe is that in 
one case the hull-propeller interaction term is found to be several ti- 
mes larger than the wave resistance of the propeller itself .   This can 
be understood by reference to Equation  (B 32) which shows that the or- 
der of magnitude of the interaction term is intermediate between that 
of hull wave resistance   RyrH   an<* ProPeller wave resistance   R-wp ■ 
Since the wave resistance associated with the propeller is an indirect 
measure of the loss   of efficiency ,   it follows that the effect of propel- 
ler waves on the propulsive efficiency of the system hull and propeller 
can be significantly larger than one would expect from the observed 
loss of open water propeller efficiency at the same submergence and 
loading . 

III. 6.    Interaction Analysis 

III. 6. 1.    Propulsive Efficiencies 
The first step in hull-propeller interaction analysis was the 

empirical determination of the conventional Froude propulsion factors 
by an analysis of the self-propulsion tests in conjunction with the re - 
suits of the hull resistance and propeller performance  (open water) 
tests .  Using standard definitions and symbols ,   the factors in question 
are ; the hull efficiency   n     ,  the equivalent open water efficiency   rjQ 
and the relative rotative efficiency  »>n     which combine to yield the 
propulsive efficiency    ij 

^HVR (15) 

In the present context ,  the factor of primary interest is the hull effi - 
ciency t)j^   which combines the effect of thrust deduction fraction   t 
and the effective wake fraction   w. 

E 

H       =    v  •     -    w    ,     x »    -      wE; (16) n„ (1    -   t)   /   ( 1   -    wj 

Unfortunately ,  the breakdown of propulsive efficiency into various 
factors is not unique (except for the fraction   t   ) ,  but depends on the 
somewhat arbitrary definition of an "equivalent" open water propeller 
condition .   The common alternatives are the thrust identity and the 
torque identity methods . In order not to prejudice our results by the 
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arbitrary choice of any one method ,  we carried out three complete 
analyses : one based on thrust identity  (subscripts T) ,  one on torque 
identity (subscripts Q) ,  and one based on a mean (subscripts   M) 
advance coefficient   J,.   defined as 

M 

M =   (JT   +   JQ   )/2 (17) 

where    J      and   J      are the points of thrust and torque identity (be- 
tween the behind hull condition and an equivalent open water condition 
of the propeller) respectively . 

Our procedure for evaluating the propulsion factors can be 
briefly outlined as follows .  Fig.   23 shows the typical result of a self- 
propulsion test at one Froude number ,   i.e.  dimensionless coefficients 
of measured thrust   T.,   ,  torque   Q      ,  and residuary towing force   F 
as functions of propeller advance coefficient   J      (based on hull speed) . 
Obviously ,   this presentation is suitable for determining the self-pro- 
pulsion points .   Thus the model self-propulsion poirt lies at   C__  = 0 
and the ship self-propulsion point at 

C =   C -  r 
FD VM VS 

{{    +   k)(CFM    "   CFS) 
(18) 

if viscous resistance is estimated by the form-factor method and a 
surface roughness allowance is neglected for the sake of simplicity . 
Here   C and   C are the predetermined coefficients of friction 
at the moael and ship Reynolds numbers respectively , see Equation 
(7) . For instance , the self-propulsion point of a smooth geosim 80 
times as long as the model ( and running in fresh water at a tempera- 
ture of 15' C) is found to lie at J 

H 
0.7 33 .    Leaving aside the self- 

propulsion point for the moment ,   at any value of   J      (representing a 
certain propeller loading) the propulsion factors are uiund as follows . 
Take from the resistance test   (Fig. 3)   the coefficient of total resistance 
C      at the given Froude number and obtain the propulsive efficiency* 

-»D   =   (RT  - FD) V/ZrnQj^ 

-   (S/D2) (CT - CFD) / 4 1rKQHJH
3 

For a truly self-propelled system the towing force   r Q 

then Equation (19) agrees with Equation (15). 

(19) 

Fp. = 0 ,  and 
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and the thrust deduction fraction 

(TH   +   FD RT) / TH 

=    1    -   (S/D2)(CT    -   CFD)/2KTHJH
2 

(20) 

Now read from the open water characteristics (Fig. 8) the advance 
coefficients   J      at thrust identity   (K       -   K      )   and J      at torque 
identity   (K      =   K      )   .  Calculate    J       from Equation   (17)   ,   and 

,   . Q.     ,     QH ,,.   . M . , 
read the equivaleniopen *vater efficiencies   »/Q-p   ,  »JQQ   , ^QM      from 
Fig.  8 at   J, 
fractions 

J^-i   >    J.*    respectively   .    Calculate effective wake U M 

WT = ' * JT/JH 

WQ ^ ' * JQ/JH 

WM    =   '    "    JM/JH (21) 

hull efficiencies 

(l-t)/(l-wj 

"HQ       =    ('-t)/(l-wQ) 

"HM      =    ('-^   ('-V (22) 

and relative rotative efficiencies 

"RT 

'RQ 

'RM 

This completes the analysis. 

\/""OT ''HT 

'D/'OM "HM (23) 

The result of one such evaluation ,  out of fourteen actually 
carried out ,  is reproduced in Fig.   24 . Since this is generally typical 
of all others ,  the following remarks are relevant .  First ,  the thrust 
deduction fraction and relative rotative efficiency are relatively insen- 
sitive to changes in loading. Second, the equivalent open water efficiency 
decreases with increasing loading (decreasing   Ju) as expected .   Third 
the effective wake fraction ,  and consequently the hull efficiency de- 
crease    with increasing loading .   This is in contradiction to the 
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theoretical   behavior   in   potential flow (see Appendix D) .  However, in 
a   real flow the decrease in effective wake with increasing loading can 
be explained Qualitatively by a supposed contraction of the viscous wake 
due to propeller suction as first pointed out by Dickmann   (1939)   ,   see 
also next section .  Fourth ,  all propulsion factors vary slowly and al- 
most monotonically with changes in loading,  so that the arbitrary choice 
of one particular loading   (e.g. that corresponding to the self-propulsion 
point of a ship of   X   - 80)  for further investigation is not liable to hide 
any important phenomena , 

Fig.   25 shows the various propulsion factors as functions of 
Froude number over the range    3.5  ^.IQ <\2..$ ,  all evaluated at the 
self-propulsion point of a smooth ship of   7   =   80    .   ( This choice of 
scale ratio is arbitrary ,  but not crucial as just pointed out ).   The 
following features deserve special, mention .   First ,   all factors depict- 
ed   exhibit a significant and oscillatory dependence on Froude number . 
Second ,   the self-propulsion point advance coefficient   J       ,   and   con- 
sequently the equivalent open water efficiencies   »JQ   •   depend mainly 
on hull resistance ,  and hence reveal humps and hollows in inverse 
phase to the coefficient of wave resistance (compare Fig.   5) as expect- 
ed   .   Third ,  contrary to common belief ,   the thrust deduction fnd 
effective wake fractions vary significantly with Froude number ,  the 
most remarkable feature being the sudden drop around  Yo =   5   .   The 
hull efficiency   ripj   merely  shows their combined effect .  Fourth ,  the 
relative rotative efficiency   JJJ^   is exceptionally low but approaches 
normal values at higher Froude numbers  .   Fifth ,   there is an unusually 
large discrepancy between thrust and torque identity points ,  but it 
tends to decrease with increasing Froude numbers  .   The last two 
effects are presumably due to strong nonuniformities in the viscous 
wake of the hull ,  which would also explain why they are relatively 
weaker at higher Froude numbers . 

III. 6. 2.    Wake 

The next step in interaction analysis was an attempt to corre- 
late by theory the measured wakt and thrust deduction .   This required 
first the generation of a mathematical model of the p.opeller in the 
behind hull condition .  Again the computer program described in 
Appendix C was used .   The inputs to the program were the advance 
coefficient   JJ^J   at the ship self-propulsion point ,   the corresponding 
thrust coefficient   K-J-J^ ,  the radial distribution of measured nominal 
wake   w (R) ,   and the two-dimensional foil characteristics already 
established on the basis of open water characteristics ( see Propeller 
Analysis )  .   In order to account for the difference between nominal 
and effective wake the program was allowed to determine by trial and 
error a wake corrector   k^   ,  with which the nominal wake   w(R)   was. 
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multiplied,   such that the calculated thrust coefficient equalled the 
measured   KJJ^ .   The primrry output of the program was the distri- 
bution of bound circulation along the radius.   In addition,  it also fur- 
nished a calculated torque coefficient   Kn      and a mean effective wake 
w,p (based on thrust average rather than volume average) from which 
followed the equivalent open water advanca coefficient   Jj .   This 
elaborate analysis was done only i'or three selected Froude numbers 
corresponding to  7    = 4.0 ,  7.0   ai;d   12.5 .   The results are shown 
in Fig.  26 and 27.   The effect of wake on circulation distribution is 
quite evident in Fig.   26 where the circulation maxima have been shift- 
ed toward smaller radii as compared to the open water condition of 
Fig.   1 1.   Turning now to Fig.  27,  the good agreement between cal- 
culated and measured advance coefficient   JT   is a confirmation of the 
realistic simulation of thrust generation in the theoretical model, 
while the lack of agreement between calculated and measured torque 
coefficient   KQU   points up the shortcomings of the theoretical model, 
specially the total neglect of all circumferential nonuniformities and 
the associated lack of any simulation of the relative rotative efficiency. 
However,  we would not expect these defects to have any serious effect 
on the intended calculation of thrust deduction. 

Before passing on to the evaluation of thrust deduction we 
pause to considti  briefly the issue of nominal wake versus effective 
wake.   Conceptually,  the distinction is clear : Nominal wake is the 
flow perturbation created by the hull in the propeller plane with the 
propeller removed,  while effective wake is the flow perturbation due 
to the hull in the propeller plane with the propeller in place and oper- 
ating.  In practice,  however, the relative magnitudes of these two 
wakes have been a topic of considerable controversy and confusion in 
the literature on hull propeller interaction.  It is generally agreed 
that there are two fundamentally different reasons why these two wakes 
need not be identical.   First,  there is a genuine physical effect of the 
propeller on the flow perturbation caused by the hull.   This has three 
partially counteracting components,    a) The potential component, 
which may be understood as the additional flow induced by the image 
of the propeller in the hull,  tends to increase the effective wake com- 
pared to the nominal wake,   since this image consists predominantly 
of sinks in the afterbody,    b) The viscous component,  which results 
from a contraction of the viscous wake,  is specially pronounced if the 
line of boundary layer separation is shifted rearward by propeller 
suction and generally tends to decrease the effective wake compared 
to the nominal wake by bringing more undisturbed flow into the pro- 
peller disk,    c) The wave component,   referred to as a pseudo-non- 
linear effect of the propeller on the wavemaking properties of the hull 
in Section 3. 5,   can act in either direction depending upon Froude 
number.   Second,  there is a spurious computational effect due to dif- 
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ferent methods of averaging.   The measured nominal wake is conven- 
tionally averaged over the disk on a volume flux basis,  while the 
mean effective wake is measured by the propeller as a calibrated 
thrust (or torque) generating device which tends to put maximum 
weight near the radii where the circulation is a maximum.   The follow- 
ing table,  a by-product of our calculations,  is likely to shed some 
light on the relative importance of these two effects. 

Speed-length Measured Wake Corrected Effective 
parameter nominal 

wake 
cor- 
rec- 

nominal 
wake 

wake 

Simu- Meas- 
i lated ured 

To 
F w w(.7Bp)|     kw k  w   jk w(.7R ) 

w      | w          P "T T 
4.0 JO. 354 0.208|   0.230 | 0.704 0. 146      0. 162    | 0. 153 0. 145 

7.0    0.267  , 0.291 ,   0. 322    0.892 0.259      0.287    10.291 0.285 

12.5    0.200 j 0.304     0. 370 j 0933 0.284      0.346    ! 0. 377 0. 360 

First,  note that the wake corrector   k      is a measure of the w 
true physical difference between nominal and effective wake since,  as 
explained earlier,  it was determined by trial and error as the requir- 
ed multiplier of the measured nominal wake in the computer program 
to ensure that the si "nulated   and measured thrusts were equal.   This 
difference is here seen to vary from   -7%   at the lowest Froude 
number to    -30%   at the highest.   That it is strongly negative,   suggests 
that the viscous effect mentioned above was probably dominant in this 
case.   Second,  the residual difference (up to   +33%) between the cor- 
rected volume average wake   kww   and the thrust average wake   w-p 
must be attributed to the difference in the methods of averaging.  Note 
that this spurious effect is greatest at the lowest Froude number 
where the concentration of bound circulation over the inner radii was 
also the most pronounced.   Third,  the good agreement between the 
computer simulated and the experimentally measured mean effective 
wake is rather encouraging.   Fourth,  note that the effective wake is 
much better approximated by the corrected nominal wake at   0. 7 
radius,    kww(. 7Rp),  than by its disk average,    kww .   This observa- 
tion has direct relevance to the design of wake-adapted propellers. 
Finally, as a word ofcaution,  it should be noted that the relative ma- 
gnitudes of the nominal and effective wakes ap well as the quantitative 
rankings of the different effects found here may be peculiar to this 
model and therefore should not necessarily be generalized. 

To complete the discussion of wake,   Fig.   28 shows the meas- 
ured versus calculated wake as a function of Froude number.   The fol- 
lowing quantities   are plotted :   1) The disk average of the measured 
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nominal wake   w .   This was available at three speeds only (compare 
Fig,  7).    2) The disk average of the potential wake   Wp   calculated by 
thin ship theory,   see Appendix B. 5,   especially Equation (B 54).   This 
is a zero Froude number approximation.    3) The disk average of the 
sum of potential and wave wakes   (w    + ww) also calculated by thin 
ship theory,   see Appendix B. 5,  especially Equation (B 53),    4) The 
quantity   (wj-w   -ww)   as an approximate estimate of the viscous 
component   wv ,   see Equation (1),   The striking correlation between 
the measured effective wakes and the calculated wave wake certainly 
suggests that the observed oscillations of wake with Froude number 
are indeed free-surface effects and that the thin ship wavemaking 
theory despite all its weaknesses does give a reasonable estimate of 
this phenomenon.   Even the quantity   (w.p-w_-w   ),  which as the dif- 
ference of a measured effective wake and calculated nominal wake 
components must be regarded with due caution,  gives a credible im- 
pression of the magnitude of viscous wake   wv ,  However,  one cannot 
put much faith in its observed oscillations. 

III. 6. 3.    Thrust Deduction 

We now turn to our final goal of calculating the thrust deduc- 
tion fraction and its components.   This was done to two different de- 
grees of approximation.  At the three selected Froude numbers,  where 
the calculated circulation distribution was available (see Fig,  26),  the 
Hough and Ordway relation.  Equation (B  16) in conjunction with the 
simulated effective wake   kww(R) ,  was applied to generate the equi- 
valent sink disks.   At all other Froude numbers we had to be content 
with Dickmann's approximate relation between thrust coefficient and 
source strength,   Equation (B  15) in conjunction with the measured ef- 
fective wake   w-r, .   The numerical difference between these two ap- 
proximations is illustrated in Fig.   29.   Evidently,  the Hough and 
Ordway approximation yields slightly higher mean values and,  in ac- 
cordance with the distribution of bound circulation,   effects a concen- 
tration of sink strength toward the inner radii.   It is believed to be 
more accurate than Dickmann's uniform sink disk since the vortex 
model yields a more realistic flow pattern than the simple momentum 
theory. 

In either event,  the sink disk was used to calculate first the 
wavemaking resistance of the propeller alone and of the system hull 
and propeller as explained in Appendix B.   The wavemaking resistance 
(and free-wave spectrum) of the propeller in the behind hull condition 
calculated in this way were found to be in reasonable agreement with 
the corresponding results of measured wave profile analysis at two 
Froude numbers as already discussed in Section 3, 5.  Given the wave- 
making resistances of the hull   R^H '  ProPeller   H-wp •  an^ total 
system   R^T •  only one additional quantity  äH^WP »   see ^Q-  (^ ^)> 
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was needed for calculating the combined potential and wave thrust 
deduciion force •^WH see Equation (B 65),   from which followed 
the thrust deduction   fraction   (tp + tw)   by Equation   (B 66).   The po- 
tential component   t     alone was obtained from a simple degenerate 
case (zero Froude number wake) of this calculation,   see remark fol- 
lowing Equation (B 67),   The final results of this calculation are 
shown in Fig.   30 in comparison to the measured total thrust deductioi 
t   replotted from Fig.  25. 

Let us try to interpret the salient features of Fig.   30.   First, 
the wave component of thrust deduction   tw   is small,  but not negligi- 
ble compared to the potential component   t    . JScf /nd,  the oscillations 
in calculated thrust deduction are not due to   tw ,  but are already 
present in   t- .   This can be understood by reference to Equation (B 63) 
which defines thrust deduction as the Lagally force on the hull sources 
due to the axial flow induced by the propeller sources.  Since our hull 
sources were assumed independent of Froude number and since the 
flow induced by a source upstream of itself is almost monotonic with 
Froude number,  the observed oscillations of calculated thrust deduc- 
tion can only be due to variations of propeller source strength with 
Froude number.   This is indeed the case,  for by Equation (B 15) the 
source strength depends on loading and wake,   which were both found 
to oscillate with Froude number.  As a result the calculated thrust 
deduction   t      (as well as   tw)   correlates strongly with advance coef- 
ficient   Jj,   and effective wake   Wj (compare Fig.   2 5).   Third,  the 
oscillations in the measured thrust deduction   t   are much stronger 
than in the calculated   (tp + tw).   This means that either the residual 
viscous component of thrust deduction   tv ,   see Equation (2) ,  oscil- 
lates appreciably with Froude number or that our assumption of the 
hull sources being independent of Froude number was invalid.   This 
point cannot be decided at the moment.   But in any case it points to a 
significant interaction of viscous and wave effects at the stern,  pre- 
sumably intensified by propeller suction.   For instance,  if the line of 
boundary layer separation is pulled rearward by the propeller,   the 
result would be a negative viscous thrust deduction as well as a rela- 
tive increase in the effective sink strength of the afterbody.   Fourth, 
specifically the steep variation of measured thrust deduction around 
>0 = 5   cannot presently be explained,   except as a possible viscous 
effect,  i. e.   a reduction in the extent of boundary layer separation 
under the combined influence of a negative wave wake (Fig.   28) and a 
high propeller loading (Fig,   25).   Fifth,  the thrust deductions calculat- 
ed from the Hough and Ordway sink disk are significantly higher than 
those calculated from the Dickmann sink disk and are in bettor agree- 
ment with measurements.   This is a direct consequence of the signifi- 
cant difference between the two sink disks,  both in average intensity 
and in its relative distribution over propeller radius,   see Fig.   29. 
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IV. CONCLUDING REMARKS 

It has been demonstrated by practical application to a speci- 
fic example that our conceptual scheme for determining the potential, 
viscous and wave components of wake and thrust deduction is indeed 
workable.  It has required the concerted application of miscellaneous 
analytical,  computational and experimental techniques.   The varying 
degrees of success achieved with the individual techniques have been 
discussed in detail in the appropriate sections and need not be repeat- 
ed here.  Several results were obtained by more than one method,   for 
instance by independent calculation and measurement, and in most 
cases there was fair agreement,  at least there were no striking con- 
tradictions except perhaps in the calculated and measured wavemaking 
resistance at low Froude numbers,  which came as no surprise. 

It would Lc rash to try to derive general conclusions concern- 
ing the quantitative role of wavemaking at the free surface in the phe- 
nomenon of hull propeller interaction on the basis of one single exam- 
ple.  However,  two salient results do seem to have a broader signifi- 
cance.   First,   it was found that contrary to common belief the wave 
component can be dominant in the wake and quite significant in the- 
thrust deduction at Froude numbers around   Fn - 0. 3.    Second,   there 
seemed to be an appreciable viscous component in the thrust deduc- 
tion at practically all Froude numbers.   Moreover,  the undulating va- 
riation of this component with Froude number points to a complicated 
interaction of viscous boundary layer,  hull wave pattern and propeller 
suction near the stern. 

These two effects are of direct relevance to the hydrodyna- 
mic design of fast ships and also to the methods of extrapolating pro- 
pulsive performance from model to full-scale. 

It is recommended that further sti dies of this nature be under- 
taken to resolve the remaining issues and to collect systematic design 
data on the effect of wavemaking on the propulsive performance of 
ships. 
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LIST OF SYMBOLS 

Note : - The standard symbols recommended by the ITTC 
Presentation Committee have been used wherever possible  . See also 
Section B. 1  for the special notation used in Appendix B . 

Beam of hull 

Block coefficient of hull form 

Drag coefficient of propeller blade section 

Value of   Cj}   at design point   JQ 

Coefficient of friction ,  Equation (7) 

Coefficient of residual towing force   =   ZF^/pSV 

Value of   Cp    at model Reynolds number 

Value of   Cp   at ship Reynolds number 

Lift coefficient of propeller blade section 

Value of   CL,   at design point   J^ 

Miaship section area coefficient 

Longitudinal prismatic coefficient 

Coefficient of total resistance   =   2Rj/p SVZ 

Thrust loading coefficient ,   Equation (B15) 

Coefficient of viscous resistance   =   2Rv/pSV^ 

Value of   Cy   at model Reynolds number 

Value of   Cy   at ship Reynolds number 

Coefficient of wave resistance    =    ZR^/pSV^ 

Waterplane area coefficient 

Fourier cosine ,   sine transforms,  Equation (B50) 

Modified Fourier cosine ,   sine transforms ,Eqn.(B70) 

Diameter of propeller 

Free-wave amplitude spectrum 

E (u) of hull alone 

E (u) of propeller alone 

B 

CB 

CD 
CDD 
CF 

CFD 

CFM 

CFS 

CL 
CLD 

CM 

Cp 

CT 

CTh 

Cy 

WM 

Cvs 
cw 

CWp 

c.s 
c*. s# 

D 

E (u) 

EH(u) 

Epju) 
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Ex(u) E (u) of total system hull and propeller 

Ei.s Special function ,  Equation   {B39) 

F   (u) Sine component of free-wave spectrum 

Subscripts   H,  P, T   apply as to   E (u) 

FQ Residual towing force in self-propulsion test 

Fn Froude number   =   V / */ gL 

Fnh Submergence Froude number   - V/%/gh 

F(
N

) N   -   1,  2,  3 ; Special functions , Equation   (B24) 

Fp,Gp Free-wave spectrum of propeller in a coordinate 
system with origin in the propeller plane , Eqn. (B73) 

G Non dimensional bound circulation   -   T/   ir DV 

G Green's function of point source ,  Equation (B33),(B57) 

Gx Partial derivative of  G   ,  Equation   {B58) 

G (u) Cosine component of free-wave spectrum 
Subscripts   H,    P,    T   apply as to E (u) 

G(
N

) N = 1,  2, 3   :   Special functions , Equation   {B47) 

Im Imaginary part of 

I0 Modified Bessel function of zero order 

J Advance coefficient of propeller 
= V / nD   for free-running propeller 
- V^/nD   for propeller operating behind hull 

JJ-J Value of J at the design (optimum) point 

j£ Virtual advance coefficient of propeller operating 
near the free surface , Equation   (14) 

Jpi Advance coefficient of propeller based on hull 
speed   - V/nD 

JJ^J Mean of   JQ   and   Jj 

JQ Value of   J   at torque identity   KQ   -    KQH 

J-p Value of   J   at thrust identity   Kj   -    K^j^ 

KQ Torque coefficient of free-running propeller =Q/pn D 

KQ^J Torque coefficient of propeller behind hull = Qj^/pnzD5 
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KT 

KTH 

L 

Oxyz 

P 

Q 

QH 

Re 

RH 

Rn 

R„ 

W 

RWH 

RWP 

RWT 

R .B 

R1 .B' 

S 

T 

T 

TH 

V 

V 

VA 

Thrust coeficient of free-running propeller = T/pn^D 

Thrust coefficient of propeller behind hull = Tf^/pn^D 

Length of hull 

Coordinate system,   see Figure 1 

Pitch of propeller 

Propeller torque in open water 

Propeller torque behind hull 

Real part of 

Propeller hub radius 

Reynolds   number of hull   -   VL/i- 

Propeller tip radius 

Total resistance of hull 

Viscous rrsistance of hull 

Wavemaking resistance 

R      of hull alone 

Rw   of propeller alone 

R       of total system hull and propeller 

Polar coordinates in propeller plane ,  Equation (B9) 

Coordinates of source point in propeller plane 

Wetted surface area 

Draft of hull 

Propeller thrust in open water 

Propeller thrust behind hull 

Speed of advance of hull 

Speed of advance of free-running propeller 

Speed of advance of propeller relative to wake in the 
behind hull condition 

Speed of model 

Number of blades of propeller 
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aj, a2 

b 

c 

cw 

dD 

dL 

f (x. z) 

g 

h 

i 

»A 

iE 

»R 

iT 

IN.W 

k + 1 

m 

n 

n 

r , 

s 

t 

Empirical constants defining propeller foil 
characteristics ,  Equation (C13) 

Half beam of hull   =   B/2 

Chord length of propeller blade section 

Empirical constant , Equation (10) 

Drag generated by blade element.  Equation   (CIO) 

Lift generated by blade element,  Equation   (C8) 

Function defining hull surface ,  Equation   (B4) 

Acceleration due to gravity 

Submergence measured to propeller axis 

Imaginary number   =    ^1 

Induction factor for axial velocity , Equation   (C5) 

Angle of entrance of hull 

Angle of run of hull 

Induction lactorfor tangential velocity ,  Eqn.    (C6) 

Empirical factor defining propeller foil 
characteristics ,   Equation   (C12) 

Circular wave number   (Appendix B) 

Empirical wake corrector , Appendix   C.3 

Viscous form factor ,  Equation   (8) 

Half length of hull   =   L/2 

Hull form parameter ,  Equation   (3) 

Hull form parameter ,  Equation   (3) 

Rate of revolutions of propeller 

Distance between field point and source point 
Equation   (B33) 

Distance between field point and mirror image of 
source point ,   Equation   (B33) 

Function of   u , s   =     */ (1+v) /2 

Thrust deduction fraction 
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u 

UA 

V 

w 

w 

wf 

WP 
wv 
ww 
w(R) 

w  (R.G) 

wE 

WM 

wQ 

WT 

wx 

wi,  w2 

x 

x 
P 

x,  y,  z 

x'.y'.z' 

Potential component of   t 

Viscous component   of   t 

Wave component of   t 

Transverse wave number 

Axial velocity induced at the lifting line by the 
vortex trail of the propeller 

Tangential velocity induced at the lifting line by 
the vortex trail of the propeller 

Function of   u ,      v   =   ^1 +4u2 

Longitudinal wave number   (only in Appendix   B) 

Wake fraction   (Unless otherwise specified ,  the disk 
average of the nominal ,  axial wake is irr.plied .) 

Self-induced free-surface wake of propeller 

Potential component of wake   w 

Viscous component of wake   w 

Wave component of wake   w 

Circumferentially averaged value of   w (R,9) 
Subscripts   f ,  p , v ,  w ,    apply as to   w 

Local nominal wake fraction at point   (R ,6 ) 
Subscripts   f,  p,   v,  w   apply as to w 

Effective wake fraction 

Mean of   WQ   and   w-p 

Effective wake fraction from torque identity 

Effective wake fraction from thrust identity 

Simulated effective wake fraction ,  Equation   (C18) 

Weights in iteration formula , Equation   (Cll) 

Longitudinal coordinate ,  positive forward 

Longitudinal coordinate of center of propeller 

Coordinates of field point 

Coordinates of hull source point 

Transverse coordinate ,  positive to port 
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y0 Transverse position of longitudinal wave profile 

Yp Transverse coordinate of center of propeller 

z Vertical coordinate   ,    positive upward 

z Vertical coordinate of center of propeller 

r(R) Bound circulation along propeller blade 

* Geometric pitch angle ,  Equation   (C3) 

At Step size in time   t 

Au Step size in wave number   u 

Ax Step size in distance   x 

a Angle of attack of blade section ,  Equation   (CZ) 

cij-. Value of   a   at design point   Jj) 

$■ Hydrodynamic pitch angle    ,     Equation   (C4) 

/3 j£) Hydrodynamic pitch angle at design point   Jp 

7 Nondimensional speed-length parameter    =   gL/ZV^ 

äpjR^yp Increase in propeller wave resistance due to 
presence of hull 

fipR^ypj Increase in hull wave resistance due to presence of 
propeller    =   force of thrust deduction 

t Hull form parameter in Appendix   B, Equation   (B5) 

t Drag / lift ratio in Appendix   C   ,   Equation   (C18) 

f (x, y) Free-surface elevation at point   (x, y) 

7?T-, Propulsive efficiency ,   Equation   (15) 

•Jj^ Hull efficiency ,   Equation (16) 
Additional subscripts   M   ,    Q   ,    T   defined in Eqn. (22) 

1Q Openwater propeller efficiency   =   K   J / 2jrKQ 
Additional subscripts   M , Q ,   T ,    apply as to   J 

''R Relative rotative efficiency   ,    Equation   (15) 
Additional subscripts   M ,  Q ,   T   defined in Eqn.   (23) 

0 Direction of wave propagation in Appendix   B 

9, R Polar coordinates in propeller plane ,  Equation   (B9) 
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e' . R' 
x 
^ 

t'. r 
p 

a 

a (x, z) 

<;(R. O) 

a(R) 

r 

f 

^x    y    z 
jH 

4N) 

Polar coordinates of propeller source point 

Scale ratio 

Kinematic viscosity of water 

Summation index , Equation   (B50) 

Relative field point coordinates , Equation (B36) 

Relative source point coordinates , Equation   (B36) 

Density of water 

Source stre.igth   =   Source output   /  4ir 

Density of hull source distribution 

Density of propeller source distribution 

Circumferentially averaged value of    a (R, 6 ) 

Draft/half-length ratio ,  Equation   (B36) 

Velocity potential of perturbation flow 

Partial derivatives of V 

Longitudinal flow induced by hull 

Axial flow induced by propeller 

N   =   1,   2,   3,  4 ;   Components of Vx,   Equation   (B34) 

Angular velocity of propeller   =   Zrn 

Displacement volume of hull 
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APPENDIX A 

EXPERIMENTAL PROCEDURES 

All hull and propeller model experiments were conducted in 
the towing tank of the Ship Hydrodynamics Laboratory of the Universi- 
ty of Michigan following essentially standard test procedures.  Some 
of the more interesting,  but less obvious details are documented here 
for the sake of record. 

A. 1.    Hull Resistance Test 

The University of Michigan ship model No.   UM 1201, built 
out of wood to the shape and size determined by Equations (3) through 
(5),  without appendages was used for the hull resistance test. An un- 
usually high freeboard (equal to full draft) was provided to enable test- 
ing at high Froude numbers up to   F    = 0. 5.  Circular cylindrical studs 
of 1/8 inch diameter and l/8 inch height were fitted at 5/8 inch spac- 
ing center-to-center along the entire girth of station No.   1  (that is 
0. 05 L abaft of the vertical stem) to stimulate turbulence. 

Departing from standard practice,  the model was almost ri- 
gidly attached to the towing carriage by means of a three-point system 
of vertical supporting rods in addition to the usual grasshopper type 
anti-yaw guides at the two ends.   This constraint was necessitated by 
the marginal transverse stability of the model and by the desire to 
preclude dynamic trim and sinkage for the ease of comparison with 
theory.   The model was correctly weighted before making the connect- 
ions ,   and static draft,  heel and trim were verified before and after 
each test. 

The resistance was measured by means of tare weights and 
a horizontal load cell built into a floating beam arrangement between 
the model and the carriage.  Carriage speed was measured from wheel 
contacts and displayed on a calibrated digital counter.   The speed 
range was extended up to   Vm = 9. 75   ft/sec (about   Fn ~ 0.45), which 
was the highest attainable within the limitations imposed by tank length, 
model freeboard, and instrumentation. 

A. 2.    Propeller Performance Test 

The Hamburg Ship Model Basin model propeller No.  HSVA 
1222 with a standard nose fairing piece as shown in Fig,   2 was used 
for the propeller performance tests in open water.   The propeller ma- 
terial is bronze. 

1883 

  



Nowaaki and Sharma 

The test procedure was to keep a constant rate of revolution 
and measure thrust and torque at various speeds of advance so as to 
cover the entire range of advance coefficient from the bollard condi- 
tion (J = 0) up to the zero thrust condition (J«P/D),  A standardKempf 
& Remmers propeller dynamomet      was used.   The measured torque 
was corrected for bearing friction      termined under identical test con- 
ditions with the propeller replaced by a dummy hub.  No "dummy" hub 
correction" was applied to the measured thrust. 

The Reynolds number for open water propeller test is conven- 
tionally defined as 

.2 

^Vo.TR, 
nD 

(—) ,V JD2 * <"• 7,)' 

with the design advance coefficient   Jp   usually approximated by 
O. 75 P/D.  Given the propeller geometry 

D = 0.2 m.fc/D).   ,_      =0.328,    P/D = 1 0. 7Rp 

and our test conditions 

11  rps 69 "F    v =   0.9904 10 
■6     2, 

m /s 

it is seen that the Reynolds number was about   3,4  -10   .   This might 
appear to be barely sufficient to avoid scale effects due to laminar 
flow. However,  we obtained satisfactory agreement with previous tests 
run at the Hamburg Ship Model Bas.n at a Reynolds number of   3. 6 * 
10   . By contrast, a test series run at the Institut ffir Schiffbau in 
Hamburg with the same propeller at a Reynolds number of   6.0 •   10 
showed systematic scale effect at advance coefficients   J< 0. 6, of. 
report by Meyne (1967). 

A. 3.    Self-Propulsion Test 

Special care was taken in the self-propulsion tests to ensure 
that test conditions were identical to those of hull resistance and pro- 
peller performance tests.   The model was constrained in the same 
fashion as in the resistance test and the towing force was measured by 
the same instrumentation used for resistance measurements.   The mo- 
del propeller was driven by an electric motor at predetermined rate 
of revolutions and thrust and torque were measured by the same dyna- 
mometer used for the open water tests.  A streamlined tail fairing 

*       This was the highest rate of   revolutions possible without over- 
loading the propeller dynamometer in the bollard condition. 
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piece (see Fig.   2) was fitted to the propeller hub.   The measured 
torque was corrected for bearing friction determined by replacing the 
propeller temporarily by a dumm> hub.   No "dummy hub correction" 
was applied to the measured thrust. 

The self-propulsion points were determined by the so-called 
British method,  i. e.   for each test run the towing speed and propeller 
rate of revolutions were preset while thrust,   torque and residual tow- 
ing force were the quantities to be measured when the steady state 
condition had been reached.   For each Froude number investigated, 
five to eight test runs at the same towing speed but varying rates of 
revolution were conducted to cover a wide range of propeller loading 
around the ship self-propulsion point (and usually extending up to and 
beyond the model self-propulsion point). 

There was some indicaiion (a characteristic knocking sound 
familiar from the previous open water tests) of mild ventilation at 
the highest propeller loadings encountered in the self-propulsion tests. 
However,   there was no visible effect on the measured thrust and 
torque values. 

A. 4.    Wake measurement 

A set of standard Kempf & Remmers four-bladed wake wheels 
was used to measure the nominal wake in the propeller plane behind 
the hull in both forward and reverse motion.   The diameters of the 
wheels available ranged from 40 to 220 mm in steps of 20 mm.   The 
wheels were designed to yield directly the circumferential average of 
the axial flow velocity at the wheel radius.   There was provision for 
turning the wheels around by 180 deg on their axis to ensure that the 
direction of flow relative to the blades was the same for both forward 
and reverse motions of the model (thus requiring only one set of cali- 
brations). 

The wheels were first calibrated in open water at a submer- 
gence of 150 mm (identical to that used for the model wake measure- 
ments) by means of a special towing device also supplied by the manu- 
facturer.  In principle, the calibration curves (i. e.   wheel rate of 
revolution as a function of towing speed) should have been linear.   In 
practice,  a few wheels showed pronounced nonlinearities and even 
mild discontinuities at some speeds,  presumably due to flow instabi- 
lities.  However, all calibrations were highly repeatable. 

For the actual wake measurements, the wheel towing device 
was mounted rigidly to the inside of the model with only its axis pro- 
jecting out of the stern tube on to which each respective wake v/heel 

1885 

■ ■ ■■■■■■■■■■ ---'■ ■■    -   ■■ MMMIMI 



^^ l'""1" ■"■ mm-^m iwimmiwim mmi i mut     i     i 

Nowaaki and Sharma 

was mounted at the appropriate propeller clearance (45 mm from 
wheel center to the vertical stem profile).  Every measurement was 
repeated at least once. 

It has been noted elsewhere that the measured wake in both 
forward and reverse motion showed somewhat erratic undulations at 
the outer radii (see Fig. 6 and 7). This could possibly be blamed on 
the method of measurement. We had no way of establishing just how 
accurately the uniform flow calibrations could be relied upon for de- 
termining the circumferential averages of a varying axial velocity in 
a complex nonuniform flow involving significant circumferential and 
rad.al components. 

A. 5.    Wave Measurement 

A stationary wave probe was mounted at a point about midway 
along the length of the towing tank and at a fixed transverse distance 
y0 = 605 mm   from the center plane of the model (which coincided 
nearly with the center plane of the tank itself).  Hence, a time record 
of local wave height at the probe,   while the model passed by,  was ob- 
viously equivalent to a longitudinal cut    z = f (x, y0) through the steady 
wave pattern of the model in a coordinate system   Oxyz   moving with 
the model. 

A thin light b*   m was set up across the tank at a known fixed 
distance (xj  = 336 mm) upstream of the probe.  During the run a shutter 
affixed to the model at a known fixed distance (x8 = 2933 mm) forward 
of the midship section interrupted the light beam and generated an 
event signal marking the point   x = xs-x,    on the wave record,  thus 
defining the coordinate origin. 

The wave probe itself was of the conductance wire type adapt- 
ed from the HSVA design of Luft (1968) to match the available Sanborn 
carrier frequency preamplifiers.   The circuit output was fed into one 
channel of a Sanborn strip chart recorder.   The overall sensitivity was 
set at 6 to 9 mm deflection per inch of wave height so as to produce 
full scale deflection at the measured wave peaks.  Wave height records 
were manually read off   at about 350 points at equal time intervale 
At = 0. 03 sec,  that is at a step size   Ax = -V A t,  and key-punched on 
IBM cards.  All further analysis was done by computer programs. 

It should be noted that at the highest Froude number investi- 
gated the length of useful record (taken before running into tank wall 
reflection) was not really adequate to establish with confidence the 
asymptotic character of the wave profile behind the model which is 
needed for the application of a truncation correction (see Fig.   16). 
However,  this was due to a purely geometrical constraint resulting 
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from the given ratio of model length to tank width,   so there was little 
we could do about it. 

APPENDIX B 

WAVEMAKING CALCULATIONS 

All calculations concerning the wavemaking of the hull and 
the propeller were based on the strictly linearized theory and there- 
fore involved the usual assumptions of irrotational flow,  infinitesimal 
wave heights etc. ,   see e. g.   Lunde (1951) or Wehausen and Laitone 
(I960).   The following is essentially a compilation of the important 
formulas used in the present study without attempting to give complete 
proofs o   derivations. 

B. Nondimensional Notation 

Throughout this Appendix a special nomenclature particularly 
adapted to the analysis of steady-state gravity-wave problems will be 
used.   This differs from the nomenclature in the rest of the report 
only in that all * dimensional variables have been consistently rendered 
dimensionless by reference to a set of three fundamental quantities, 
namely the acceleration due to gravity   g ,  water density j> ,  and ship 
speed   V .   Thus if   Q  is any dimensional quantity involving only the 
units of mass,  length and time,  its nondimensional counterpart   Q   is 
defined simply as 

Q =   Q / g?p_&Vl (Bl) 

where the choice oi a ,  ß  and   7 is obviously unique.   For instance. 

a   = jr /_V 

Rw  = % / g"2 P v 

i- i/g-V 

(B2) 

where   x   is the longitudinal coordinate,  £   the half-length of hull (now 
identical to the dimensionless speed-length parameter  y0   used else- 
where in the report),  <r the density of a surface distribution of sources, 
Ryf   the wavemaking resistance etc.  With this notation the quantities 
p,  V and g   can be formally eliminated from the analysis,  thus lead- 
ing to a considerable simplification of many formulas without any es- 
sential loss of generality. 

* Where dimensional variables are nevertheless required, e.g. for 
purposes of definition, they are identified by underlining to avoid any 
possible ambiguity. 
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B. 2.    Source Representations 
All wavemaking calculations were based on the Havelock ( 1932 ) 

theory of sources moving under a free surface . It was therefore neces- 
sary to first define mathematical representations of the hull and pro- 
peller by means of source distributions . 

The standard first order (linearized) approximation in thin 
ship theory is to represent the hull by a center-plane source distri - 
bution of density 

where 

ff(x, z)   =   -   [ 5f/äx ) / 2T 

lyl   = f (x , z )>o 

(B3) 

(B4) 

defines the hull surface (see Fig.   1) .  The results obtained by Have- 
lock's theory are then identical to those of Michell   (1898)   . 

The family of hull forms considered in the present study is defi- 
ned by ,     . y                                                                                                               (B5) 

y  =   +b|l   -   (x/£)2rr'Ul   -  €(.z/T)n| 

where   b ,   £    and T   are half-beam ,  half-length and draft respectively, 
while    «   is a flat-bottom parameter that can vary from   « = 0   (wall 
sidc-d    hull with completely flat bottom) to   t   = 1    (sharp keeled hull 
with completely curved bottom) .  By virtue of Equations   (B3,  B4) this 
form is represented by the polynomial source distribution 

„(x.z)   =   (m/0(b/i)(x//)2m-1|l-<(.z/T)n} 

over the rectangular plane 

- l< y.  < It ,      y   =   0        -T<z<0 
(B7) 

Following Dickmann   (1938) the propeller can be represented 
by a continuous distribution of sources of (negative) density   a (R, 9) 
over the propeller disk 

Xp .     RH < R < Rp, - ir < e < T 

where R, 6 are polar coordinates 

y   -   R   cos 6    , z    +R   sin 6 

(B8) 

(B9) 

the point   (x-,   0,   zp)   is the geometrical center of the propeller and 
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^H   >   Rp     are t'le ^u^ an^ ^P ra<iius of ^e propeller respectively . 
There is no simple way of relating the source strength directly to 
propeller geometry ,   speed and rate of revolutions .  However , using 
momentum theory ,  Dickmann derived two useful approximations con- 
necting propeller source strength to thrust loading ,  one of which yields 
a uniform sink disk of source density 

(R. e)  =   - ( ^i+cTh - l)/4: 

over 

x   =   x RH <   R < Rp.       -T < 6  < jr (BIO) 

and the other a discrete point sink of source strength 

- ( J 1 + C Th   -   1 )  (Rp
2-RH

2)/4  at  (xp.O.Zp) (Bll) 

where 

CTh  = 2   1  /_£.  V_2   '   (Ip2-JH2) (B12) 

is the thrust loading coefficient based on disk area (excluding the hub ). 

In addition to the above we have also used the following alter- 
native relation due to Hough and Ordway ( 1965 ) : 

a   (R , 9)   =   -   Z   G  / 4  J (B13) 

where 

G (R  )   =   J(R) /   «i   ir   V   R (B14) 

is a non dimensional function representing the radial distribution of 
bound circulation _£   along each blade of a   Z   bladed propeller at 
advance coefficient   J   -   \   /   Z   n_  R—   .    Here the source density is 
a function of radius   R   ,    but still independent of angle    6  .    Since the 
circulation is obtained numerically from a computer program at dis - 
crete radii ,   o   will generally be defined merely as a tabulated function. 
Unless analytical interpolation is used for further processing ,   it is 
tantamount to a radially stepped sink disk   . 
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A certain ambiguity arises in interpreting the speed .V   in 
the above relations when the propeller is operating in a wake behind 
the hull .   We believe that the physical sink strength of the propeller 
should be determined by the local speed of advance   VA   while its wa- 
ve pattern must be characterized by the speed   V_   relative to the 
fluid at infinity .  Hence the corresponding relations in the presence 
of an effective axial wake    wr   become 

a (R , e)   =   - 

CTh   -   2   T  / 

'I 1 + c Th 1 )(1 Wr )/41 

YA
2
 " (Sp2 - *H

2) 
(B15) 

in the Dickmann approximation ,  and 

a(R   .   0)   =    -   Z   n XiR}   /   V2    |l   -    wE(R) | (B16) 

in the Hough and Ordway approximation . In either case , the left hand 
side is the appropriate dimensionless source density a to be used in 
the subsequent calculations of wavemaking and thrust deduction 

It may be noted that source disk representations of the propel- 
ler are only useful for calculating the induced flow field (outside the 
slipstream)   .   For calculating propeller performance (thrust and 
torque) resort must be taken to the correct vortex model . In princi- 
ple ,   it is possible to calculate also flow Held and wavemaking directly 
from the  vortex model ,  cf   e.g.  Nakatake   (1968) .  However ,  the 
increased computational effort is hardly justified in view of the other 
approximations in the analysis. 

B. 3.    Free-Wave Spectrum 

A useful description of the wavemaking characteristics of a 
ship is provided by its free-wave spectrum as defined for example 
in Eggers , Sharma and Ward (1967) . Given an arbitrary source 
distribution a (x, y, z) over a domain D , its complex-valued 
free-wave spectrum (as a function of transverse wave number u ) 
becomes 

G (u) + iF(u) = Sir 

where 
D 

=   J l+4u2 

y,   z)   exp 

and 

/ s    z + i(8x+uy) } dD 
1 '   (B17 

y(l+v)/2 (518) 

The significance of the free-wave spectrum lies in its ability to yield 
a simple description of the asymptotic wave pattern behind the ship . 
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For x -•    -oo  ; 

a« 

f(x.  y)    = TIT / { F (u) sin {8x+uy)    +    G(u)co8(8x+uy) > du 

(B19) 

Here   s   and   u   can be interpreted as the circular wave numbers in- 
duced by a free plane wave (moving with the ship) in the   x   and   y 
direction respectively .  Hence   F(u)   and   G(u)   are called the sine and 
cosine components of the spectrum and its amplitude is given by 

E   (u)   =    J   F2(u) + G2(u) (B20) 

The phase of the free-wave spectrum depends on the choice of the coor- 
dinate origin but its amplitude does not .   The associated wavemaking 
resistance 

(B21) 

is determined solely by the amplitude spectrum . 

By virtue of formulas   (B6) and   (B17)   the free-wave spectrum 
of the hull becomes 

OH   (U)  +iFH(u) = Sir 

exp (s  z+isx) 
(B22) 

or after some simplification 

GH(u)    =   0 

FH(u)    =   16^ F^   (m. a/)  FU'(n. t.Ts2) (2), 

(B23) 
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F(
1
)   (m.p)   -   m   f   t2"1"1 sin UP)   d« 

F(2)   (n.  . .q)    '-   F(3)(0 .q)  -    (F(3) (n(q) 

F(3)(n.q)    -   q f f nexp ( -  f q)    df (B24) 

■(1) -(3) The integrals   F^   '   and   F        can be solved in closed form   [ see 
formulas   2.6334   and   2.3212   in Gradshteyn and Ryzhik   (1965)] or 
evaluated by recurrence formulas   : 

FO) (o.p)  =   o, 

F(1)(m,p)    .-.   2m   |  (2m - 1 )   [ sin (p )-F^1 )(m - 1, p)] /p-cos (p)l/p 

F(3)(ü,q)   =    l-.-xp(-c|) , 

F(3)(n.q)    -   -exp(-q)   +   nF(3)( n-1 , q ) /q (B25) 

Similarly ,   the fret'-wave spectrum of the propeller can be written as 

1+v     RP * 
Gp(u)+iFp(u) ^ 8ir{    V

V |y    dR       fRde   rff(R.Ö)exp /s2(zp+RsinG) 
RH ,-ir 

+   i(8xp + uR cosG)l (B26) 

If the propeller source distribution    ff   is a function of radius only , 
then this simplifies by virtue of transverse symmetry to 

G    (u)+iF   (u) = STT |—^r-|exp(s2z  +isx  )   f        Rff(R)dR   /" exp(82R sine)x 

^RH .* 

co8(uR cos e)de 

= UT
2
 |-4r-}e*p(s2zp+i8Xp)     r R „(R) ^ ( sR )dR 

R-H (B27) 
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Free Surface Effeate in Hull Propeller Interaction 

where I0   is the modified Bessel function of zero order   [see Gradsh- 
teyn and Ryzhik   (1965)   , formula 3.9372 ]   .   This last integral can be 
easily evaluated for any numerically defined function   a (R)   . 

B.4.    Wavemaking Resistance 

The  individual wavemaking resistances of the bare hull   Ru^u 
and the free running propeller   R^P  are found directly by substituting 
the appropriate free-wave spectra   (B23) and   (B27)   into the general 
formula   (B21)   . 

*WH =17   / {—■ F("(n„./>r'V .,T.W) }     ^ du 
(B28) 

w x- 

RWP = "87  /[l6^{iTL}exp(s2Zp)y     R«r(R)I0(sR)dR]   2 TVdu 

0 RH 
(B29) 

To calculate the wavemaking resistance   R\yrT   0^ t^e tota^ 
system hull with propeller one can use the principle of linear super- 
position of free-wave spectra , that is 

GT (u)   =   GH (u)   +   Gp (u) 

FT (u)   =   FH(U)   +   Fp(u) (B30) 

provided both spectra are expressed in the same coordinate system . 
The general formula   (B21)   can then be applied to the total spectrum 

ET( u)   =   J|GT
2
(U)   +   FT

2(u)J 

Evidently ,   in general 

RWT   ^   RWH   +   HWP (B31) 
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and the difference 

a» 

»WT - RWH - »WP =  -gT / 2 {QH(u)Gp(u) + FH(u)Fp(u)|-Jlr7du 

(B32) 

is a measure of the interference between the wave patterns of the hull 
and the propeller .  The interaction term can be positive or negative 

B. 5.    Wave Flow due to Hull 

The perturbation flow induced at th; propeller plane by the 
motion of the hull under the free surface can also be calculated by 
thin ship theory .  We start with the Green's function of the problem as 
defined by Equation   (63)   of Eggers , Sharma and Ward   (1967 ) : 

1 i 
G (x, y, z.x'.y'.z')   = -"Yj" +   —jy 

-Re-f/"du    fexp Qw [x-x1! +iu(y-y') + iyw2-u2(z+z')] dw 

--       M /w2 .u2   .iw2 

+lm— |l-sgn(x-x1)U—v exp ^(x-x1) + iufy-y')+s2(z+zl) l du 

with (B33) 

rj ^(x-x'^Hy-y'^Mz-z)2 

r,2     =(x.x')2+(y-y•)2+(z+z•)2 

This is the velocity potential due to a point source of unit strength at 
(x'.y'.z1) . Integration over the hull source   distribution (B6) yields 
the velocity potential of the hull   <e (x, y, z) , and subsequent differen- 
tiation with respect to   x, y, z   yields the components of perturbation 
velocity ^x   ,   ip    ,   <pz   .    li is convenient to break up each expres- 
sion into four parts corresponding to the four terms of the Green's 
function   (B33)    .  For instance 

Mx.y.z)   =*x(1) + 'x(2) + *x
(3)

+*; 
(4) 

(B34) 
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with 

V (1) x 

(x-x1) 
(B34) 

(B35) 
|(x.x,)z+ (y.y,,z + ( z-z')2 

etc . It turns out that in the resulting integrals the x' , z' integration 
can be carried out in closed form , while the u , w integrations must 
be performed by numerical quadrature . 

It takes some algebra to reduce the expressions to a foi 
suitable for computer programming . We will show this for one 
pie . Substitute in   (B35) 

rm 
exam- 

«      x/i .    V-. x.// .    ^ y/i ,    r; z// .   f = 2. /i .    ' = T/i 

Th.-n 

(I) 

(-36) 

f*rfdt • /    ^')2m-1Ih! (-J_ 7 0n3(t.f) d f 

Now put 

Then 

f - *-*•       f=    f 

(B37) 

(338) 

Now factor out the constants and apply thi iial theorem to get 

2m-1 

x     ";   ,- Ll       2- 
i = 0 

(-)i (2T 
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2m-l    n 

{-+}"■£    L(-)i+ieT-,X")e2m-Irn%1,j] 
i=0      j=0 

where 

t1   N 
«-1     _ f 

E.   . (f .n.f.   r   )   = f   df        fdf 

(B39) 

This double integral   E^ , ;   has a closed form solution (for constant 
limits of integration) amenable to numerical evaluation by a recurrence 
formula .  (The authors are indebted to Drs K.Eggers and RKajitani 
for this suggestion )  .  Consider the indefinite integral 

Ei.jlx.y.z)    =Jj    —-j- dx dz ,      r^W i   2^   2 ^    2 dz ,      r=*/x   + y   + z 

(B40) 

By repeated use of formula   2. 2631 from Gradshteyn and Ryzhik 
( 1965 ) it can be shown that 

EiJ      - T^r{jxi-1Elij.(i-l)(z'+1R.2il .yV.,   .)} 

Hence,   starting from the four fundamental solutions 

E0 0 r "7 arctan (yr/xz) 

E0jl   = - In (x+r) 

E1(0   - - In (z+r) 

1.1 

(B41) 

(B42) 
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any element Ei, j can be conatructed by recurrence , for example 

~ x3 A-3 1 3 
Ez,z = -----y--+3 1n (z+r) + 3 ba(x+r)+----y arctan (xz/yr) 

(843) 

For a computer al1orithm , however , it ia not neceaaary to develop 
the analytical expreaaiona explicitly aince the recurrence formula 
(841) can be applied numerically to each of the four aummanda (cor
ner valuea) of the definite inte1ral (839) . 

A aimilar analyaia can be applied to the aecond term of (834) , but 
but the final reault ia obtained more eaaily by conaiderationa of aym
metry : 

(Z) ( 1) 
., (x, y, z) = -., (x, y, -z) 

X X (844) 

Reatrictin1 our attention to field point• behind the hull 
(x < -1) , the third and fourth term• of (834) can be aimplified aa 
follow• . 

., (3) = 
X 

b 4 -=-r ~ JI(u,x,z,l,m.n, e, T) coa(uy) du 

0 

(845) 

where 

1 = _ exp [u(x+l)] ~- Gfz·wl) R {exp(iz~G(Z)(n,e, T0)l 
x+J z e .. ../ z i . Z l • 

0 -u l w -u -1w 1 

exp(-t) dt 

(846) 
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with t   =   -(w-u)   (x + /)      and 

G(1)(m,p)=-£ip   exp(.p)/,     t2"1'1 exp(.pOd£ 
Z- 1 

G(2)(n. «.  q)   =   G(3,(0.q)    -   . G(3)(n,q) 

G(3)(n>q)   =   p f     f
nexp(.iqf )   df 

J 0 

The integrals   G^1'   and   G'3'   can be solved in closed form or 
evaluated by recurrence formulas ; 

(B47) 

G(1)  (0. p)   =   0  . 

,(1) G(1,(m,p)  = m{(2m-l) [(l-e"2p)/T+2G(1)(m-l>p)/p]/p-(l + e-2p)Aj 

G(3)(0.q)   =   (l-e'iq)/i 

(3) G(3,(n.q)   =    {nG^ (n-l.q)-e-iq|/ (B48) 

The integral   I   has an exponentially decaying factor in the integrand 
and is therefore suited to Gauss-Laguerre numerical quadrature . 
The real part in   (B46)   need not be evaluated analytically ,   if complex 
arithmetic may be used in the program . 

Similarly ,  for   x   < - z   : 

1   ' 

--     -i      -T 

exp   Jis(x-x,) + iuy + s  (z+z1)} 

=i^/l^PlUL)8in(sx)F(1)(m.s/)F(2)(n. ..s2T)lco8(uy) du 

0 
{B49) 
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where   F        and F        are the functions already defined in   (B24)   . 
The integrals   (B45)   and   (B49)   can be truncated at a sufficiently 
large value of   u   and   approximated by the known recurrence for- 
mulas for Fourier series .  Suppose 

C   +   iS   =   I   I(u)   icos(uy/   +   i   8in(uy) l   du 

0 
N 

a iiu X)l(u„) I co»("i/y)   +   i»in(u„y)|« 

with 
1 

vAu,   t„   =—for f = 0, €„  = 1 for i/ =^   0 

(B50) 

where Au   is a suitable step size and   N   is sufficiently large .   Then 

C   =-T  (U   -UJ Au ' o      2 

and 

S    =   U     sin(yAu)    Au (B51) 

where the   U^ are defined by the sequence 

U =   U =0 N+l N+2 

" =   N,    N-l 0   : 

U,   =   KuJ   +   2cos(yAu)Uk + 1-Uy+2 (B52) 

This completes the wanted algorithm for all four terms of (B34) . 

By our definition , <p     evaluated in the propeller plane is iden- 
tical to the total potential wake fraction ,  i.e. the sum of the so-called 
potential wake (zero Froude number effect) and the wave wake (finite 
Froude number effect) .   Thus 

(B53) 
Wp(R, 6) + v^ (R, 9)  = ^x(x> y, z) 

if x   =   Xp,    y   =   R   cos 9   .      z =   Zp + R sin 9 
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By evaluating f      at a sufficiently large m.mber of field points 
the circumferential and disk averages of the theoretical wake can be es- 
timated. Moreover , it can be shown that the zero Froude number wake^ 
the infinite Froude number wake and the bow wake   (x >I)   can also 
be derived from the four components of expression   (B34) 

w wt • .i" (2) 

so; (l) (2) w_  + w-,   = V v  '  + ? P w X X 

X   > V»   (x.y. z) = vj1)(.x,y.z)+ V   (2) (-x, y, z) 
(3). 

+ ^x'   (-x.y.z) 

(B54) 

(B55) 

(B56) 

This last quantity evaluated at   x   =   -Xp yields   by virtue of longitu- 
dinal symmetry the desired theoretical wake in the propeller plane 
"behind" the hull in reverse motion . 

B. 6.    Wave Flow due to Propeller 

In order to calculate the perturbation flow induced by the mo- 
tion of the propeller under the free surface ,   we start with an alter •■ 
native expression for the Green's function (B33) ,   see formula    (56) in 
Kggers ,  Sharma and Ward   (1967)   : 

//2 
r2 1 

tRc~-J    sccZOdO-X oxp[k(z+zl+iw)idk 
*   - ir/2 JQ k-secZo 

+  Im 2      / sec   B exp [sec   H (z+z' + iöjJdG 
r/2 (B57) 

with 'S" = (x-x1) cos 0 + (y-y1) sin 6   and rj, ^ as befo- 
re . Differentiating with respect to   x ,  and taking advantage of the 
symmetry in   9   ,  we obtain 

jr/2 

Gx(x-x' .y-y'.z.z') = 
x-x' 

1 

x-x' j4 

/ 
secGde . 

k dk 
fexp[k( z+z') ] sin [k (x-x1 ) cos 0] cos[k (y-y1 ) sin e] — 

k-secze 
0 

(contd. .) 
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Mi 
4 /   sec +4/   secJe exp[ (z + z1) 8ec?'e]co8[ (x-x*) sec e] 

cos   [(y-y1) tanesecejde (B58) 

Since we are interested only in the flow induced by the propeller in its 
own plane (the so-called self-induced wake) ,  we confine further ana- 
lysis to the case   x   =   x1   =   Xp      The first three terms of   (B58)   then 
vanish  ind in the last we substitute 

to get 

u   -   secetane,     v   =   */l+4u2,      s   =*/(l+v)/2,     du/dG= sv 

(B59) 
OO 

GxlO.y-y' , z,z,) = 2   f   exp [(z+z'js2 jcos [(y-y^u]"^- du 

0 (B60) 

Now integrating over the propeller source distribution a   (R)   and 
taking advantage of its transverse symmetry ,  we get for the self - 
induced wake the following expression 

R, 

f(R.e)   =/        dR1/ G^O.y-y'.z.z')    »(R^R'de1 

R, 

= 4T   y|-i^lexp  [(z+z^s2]^     R'a(R)l0(sR')dR') 

0 ' Ru        ,     /     v  , /■ H    cos (uy)du (B61) 

where the integral formula quoted after   (B27)   has been applied again. 
Since the function   a(K')   is in general not analytic , the   R1   integral 
must be evaluated by numerical quadrature   (e.g.  Simpson's rule) for 
suitable values   s(u )   such that the   u   integral can be approximated 
by the recurrence formulas   for Fourier series   ,   see Equations 
(B50-B52) . 

By proper choice of the fields points   y = R cosG,  z - Zp+Rsinö 
the self-induced free-surface wake   wf (R,9)   can be calculated at sui- 
table points (R; , O^) on the disk ,   from which the circumferential ave- 
rage   W£ (R)   and the disk average   W£    can be obtained by numerical 
integration . 
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A useful check on the numerical accuracy of the calculated 
values of      w,(R,6)   is obtained by using them to determine the wave- 
making resistance of the propeller by virtue of Lagally's theorem [see 
Equation   (11)   of Eggers , Sharma and Ward   (1967)]: 

Rp V2 
RWp   --   %vf      R   ff(R)/ wf(R.e)dedR 

(B62) 

Analytically , of course , this is identical to the more direct formula 
(B29) based on the free-wave spectrum        Numerically , we found that 
the differences were negigibly small for a reasonable step size A9 < T/b. 

B.7.    Thrtst Deduction 

We wish to calculate the force of thrust deduction ,  i.e.  the 
augmentation of hull resistance due to propeller action   .    Let us call 
it     *pRwH •    Conceptually ,  the most direct approach would be to use 
Lagally's theorem ,  i.e. 

J.ff      J„ * ' (B63) 
dx I*      dz    | a (x.z)  <<>*   (x, 0,z)| 

This would seem to necessitate the explicit calculation of the longitu- 
dinal perturbation flow <?£ induced by the propeller on the center-plane 
of the hall   y   =   0    ,  which is not quite easy due to the singular double 
integral in formula   (B58)   .  However ,  we will circumvent this diffi- 
culty by an indirect approach   .  Let us denote by  äH^WP   t^e augmen- 
tation of propeller resistance due to hull action    .   Then again by 
Lagally's theorem 

Rp jr/2 
ÄHRWP   =   &*   f dR/" 

RH IT/2 
R de MR,e)^x  (xp.R.e)| 

(B64) 

where    ^ now is the axial perturbation flow induced by the hull in 
the propeller plane ,  i.e.  the wake as already defined by   (B53) 
On the other hand , by virtue of previous definitions we have 

RWT   -   RWH   +   RWp   + «pRwH   +   «HRWP 

Hence , 

JPRWH   =   RWT   "   RWH    "   RWP    "   ÄHRWP 
(B65) 
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where the sum of the first three terms as defined by (B32) is relatively 
easy to calculate    .   Thus we see that the calculation of thrust deduc- 
tion requires no further effort beyond that already expended for the 
calculation of hull wake and the wavemaking resistance of hull alone , 
propeller alone and the total system hull with propeller . In particular, 
it is needless to calculate the flow induced by the propeller on the hull. 

Note that   SpR^pj   is the total potential thrust deduction ,  i.e. 
the   Bum of the  so-called "potential" component   (zero Froude number 
effect)   and the "wave" component (finite Froude number effect) . 
The thrust deduction fraction becomes 

tp  + W = ^PEWH/^H 

UPRWH/KTH,  (v2/gD)2(V/nD)2 

= (apRWH/KTH)  (L/D)2(Fn)4(JH)2 

(B66) 

At zero Froude number , of course 

R WT =   R WH ^WP =   0 

and therefore 

'PNTH 
= - «HNVP (B67) 

Thus if we use the zero Froude number wake   (B54)   in   (B64)   to 
calculate   ^ j^R^p , we can determine the "potential" component of 
thrust deduction   tp   from the simple principle of reprocity   (B67) 
already exploited by Dickmann   (1939) 

It must be emphasized that the force   äfjRwp  apparently exer- 
ted on the propeller by the hull does not necessarily have a physical 
meaning since the source disk is an inappropriate model for calculat- 
ing    propeller forces .  However ,  it is a perfectly valid mathematical 
artifice for a simple , although indirect ,  determination of the quantity 
^P^WH   which is a real force exerted on the hull due to propeller 
action,  viz.  the force of thrust deduction. 
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Incidentally, if the source strength is uniform over the disk ,  as 
in Equation   (BI5)   ,  the integral   (B64) simplifies to 

«H^p   =  4nZ(Rp
2 . RH

2) ^(R)  (w    + ww) (B68) 

where Wp and ww are the disk averages of the potential and wave 
wake respectively . Moreover , if only the potential component of 
thrust deduction is wanted , substituting from (B15) in (B68) and 
taking advantage of   (B67)   one obtains 

Ä   R       /T 

2 
■ ^ Th {T±) (B69) 

This is slightly different from the classical result of Dickmann (1939), 
cf.  his equation   (15)    .  However it agrees with Tsakonas1   (1958) 
equation   (12)    ,  except that he does not distinguish between the poten- 
tial component   w_   and the total wake   w™ 

B.8.     Wavt- Profile Analysis 

The purpose of wave profile analysis was to establish the true 
or experimental free-wave spectrum   (and associated wavemaking 
resistance)   of the hull and propeller as opposed to the theoretical 
spectrum based on linearized source representations discussed in the 
previous sections .   The longitudinal cut method of Sharma (1966) as 
described in Eggers,  Sharma and Ward (1967) was used.   The essential 
steps of the analysis are given below. 

Let z = f (x, y0) be a longitudinal cut through the wave pattern 
of the model as measured at a fixed transverse location y = y0 in the 
coordinate system of Fig.   1  .  Define modified *    Fourier transforms 

C*   (s.yo)  +  iS*    (s,y0) sf: s^-l   f (JC, yo) expfisx) dx    (B70) 

•     The asymptotic nature of the wave pattern behind a ship is such 

x/|y|—»-oo    :       f(x, y)    ä exp(ix)/ Jc-x 

that the modified Fourier transform remains finite for any   s ,  while 
the ordinary Fourier transform becomes infinite at   s = 1  . 
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Then the free-wave spectrum of the model is given by 

4 
G(u)   = 

F{u)    = 

2s2.. 

2s2-l 

|c*(s,yo)cos(uyo) - S'Cs, yo)sin(uyo) I 

{C*(8,y )sin(uy ) + S*{8,y )co8(uy ) \ 
\ o o o o   J (B71) 

!re   u =   s ^[ i where   u=    s^s   -1    in accordance with (B18).   By applying this pro- 
cedure separately to the model hull with and without propeller one can 
obtain the spectrum   Gj(u),  FT(u)   of the total system hull and propel- 
ler and the spectrum   Gi,(u),   FH{u) of the bare hull respectively. The 
spectrum of the propeller alone  Gp(u) ,   Fp(u)   then follows from the 
principle of linear superposition. 

Gp(u) 

Fp(u) 

GT(u) - GH(u) 

FT(u) - FH(u) 
(B72) 

For the ease of comparison with theory the propeller spectrum may 
be transformed to a new coordinate system Oxyz* which has its ori- 
gin in the propeller plane.  If  x = x-Xp ,    y = yi    z = z,    then 

Gp(u)     =    Gp(u)cos(sxp) + Fp(u)sin(8xp) 

?p(u)    =     Fp(a)cos(sxp) - Gp(u)sin(8Xp) 
(B73) 

The associated wavemaking resistances of bare hull (Rwu^' 'jare 

propeller   (R^p)   and total system hull-propeller   (R^-p)   are obtain- 
ed from the respective spectra by use of the general formula : 

R 
W 8 ir 

a« 

y|F2(u)+G2(u)} v; +4u du 

1+ \l+4u'1 

(B74) 

It is assumed here that the wave pattern has transverse symmetry. 
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APPENDIX C 

LIFTING LINE CALCULATIONS 

C. 1.    Problem Formulation 

The principal method for calculating thrust deduction and free- 
surface effects due to a propeller as described in Appendix   B   pre - 
supposes that a lifting line representation of the propeller ,  i.e.  the 
distribution of bound circulation along the radius ,   is known .  In order 
to be able to apply this method to a given propeller we need a scheme 
for determining the circulation distribution for any given operating 
condition of a propeller of predetermined geometry .   This is essential- 
ly the classical "performance" problem in propeller theory ( as opposed 
to the design problem ,   in which a certain performance criterion is 
prescribed and the optimum propeller geometry is sought for ) . 

Physically ,  the problem can be formulated as a set of rela - 
tions which must be satisfied at every propeller radius between the hub 
and the tip .    Using standard symbols ,   these relations are 

CL        CL( 

*   - /J. 

tan  1'       P/ZirR 

tan/Jj       {   ( 1-w )V + uAj/ LK -ul 

Rp 1     /" 1   dHR'n dR' 

Rp 

T 4   TT 
fKp   •    rp/R     R    7\ idr(R')|   dR- 

7J R   
lT(R/V*i,z) j-air-jirR 

H 

P-   CLc    |( l-w )V + uAl /( Zsin/Jj) 

(Cl) 

(C 2) 

(C3) 

(C4) 

(C 5) 

(C6) 

(C7) 
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Here ,  Equation   (C I)   represents the predetermined two- 
dimensional foil characteristics ,  i.e.  the lift coefficient   C*    as a 
function of angle of attack  a   . Equations   (C2)   to (C4)   establish the 
local angle of attack   a  as the difference between the predetermined 
geometric pitch angle   4>   and the unknown hydrodynamic pitch angle /9j 
The velocities   u^   and   u-p   induced by the free vortex trail of the 
propeller may be obtained from Biot-Savart's Law and are expressed 
in Equations   (C5)   and   (C6)   as integrals involving the slope of the 
bound circulation   T (R)   and two special functions   i/^   and   i-p   ( of 
three variables  ) , the so-called induction factors ,   see Lerbs (1952) . 
Equation   (C7),  finally ,  is  the relation between lift and circulation in 
accordance with Kutta-Joukowsky's theorem . Mathematically , thf 
problem is an integral equation for the unknown function $^ (R/Bp)   , 
which can be solved by iteration if efficient algorithms are available 
for computing the induced velocitieb   u^   and   Uj   . 

The solution of the above problem yields the distribution of 
circulation ,  and hence lift , over the radius   : 

dL   =     p (( l-w )V+ uA| F dR/(8inß. ) (C8) 

Now the drag can also be estimated from the known foil charac- 
teristics   : 

CD   =   CD   (« ) (C9) 

dD     =-f- P   |(l-w) V+uA l2C   dR/(sin/Ji)^ (CIO) 

Hence , by resolving lift and drag along the axial and circum- 
ferential directions and integrating over the radius , one can calcula- 
te the thrust and torque produced by the propeller . 

C. 2.    Method of solution 
Our method of solution was dictated by the computational tools 

and the information on propeller characteristics available to us . The 
principal computational tools at our disposal were two computer pro- 
grams for propeller design , both based on the lifting line theory and 
incorporating efficient algorithms for numerical evaluation of induced 
velocities . One was obtained from the Naval Ship Research and Deve- 
lopment Center and the other from the Technical University of Berlin 
by courtesy of Dr. Ostergaard . They are well documented in the lit- 
terature ,  cf. Haskins   (1967)   and Ostergaard   (1970)   ,  and therefore 
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need not be described here in detail . After several test runs had re- 
vealed that the two programs yielded practically identical solution of 
the design problem ,  we chose the Berlin program for further use and 
adapted it to a solution of the performance problem .   The   principal 
modification necessary was the following . In the design problem the 
hydrodynamic pitch angle     ß^ (R/Rp)   is generally prescribed to fulfil 
the optimum ( minimum energy loss ) condition thus eliminating the 
need to solve an integral equation . In the performance problem ,  how- 
ever ,    the   integral equation must be solved .   This was done by the 
method of successive approximations to the unknown function/?i(R/Rp). 
Starting with an initial guess   (Pj )0 •  say corresponding to the opti- 
mum condition ,  a better approximation was found by cycling through 
Equations   (Cl)   to (C7) . In order to prevent the iteration from diverg- 
ing it   was found necessary to weight the successive approximations 
as follows 

(0i) n+2 'lUi)n (0i)n + 1 (Cll) 

With   W!    =   0.9   and   W2   =   0.1   the final error in ß ^R/Rp) after ten 
iterations was found to be generally less than   1  % 

A major handicap in this algorithm was that the two-dimensional 
foil characteristics of our propeller (see Fig. 2) were not explicitly 
known to us . We therefore back-calculated the foil characteristics 
from the known measured performance (thrust and torque) of the pro- 
peller (in the deeply submerged open water condition) This was 
done by treating any given operating condition as a small perturbation 
from an assumed design (optimum) condition ,  i.e. 

CL(a)    =   CLD   +   27r(a-aD)  k (C12) 

CD(«)    =   aj    CL(«)-CLD|    2   +   c 
DD 

(C13) 

The design angles of attack  a      and the corresponding lift coefficients 
CLD   were specified indirectly by the choice of a design advance coef- 
ficient   Jj).    Let ß ijj   be the optimum hydrodynamic pitch angle at any 
radius at the design point   Jp.    Then for calculating the performance 
at any other advance coefficient J (and assumed pitch angle  /3j ) ,  it 
is only necessary to evaluate the differences   (see next page) 
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( a-aD)   =0iD-0i 

CL (a) - CLD    =   2ir(o-«D)k 

CD(a) 'DD al   CL (a) 'LD 

(C14) 

(C15) 

(C16) 

It is thus seen that in all five arbitrary constants   (J£)> CQQ.k.a. ^2) 
were used to match the calculated propeller performance to the 
actual measured performance . By trial and error the following best 
fit values were determined for our propeller : 

cDD   =   0.01 JD   -   0.8 , 

k   =   0.67 

aj    =0.17,       a2   =   6 (C17) 

Note that the only critical parameter here is the factor   k   ,  which may 
be interpreted as an empirical catch-all to account for viscous losses 
and miscellaneous three-dimensional effects . 

The degree of agreement finally achieved between the measu- 
red and calculated (more precisely , simulati-d) performance of the 
propeller is obvious from the following table and from Fig.   10 . 

Further details of this method of calculating off-design perfor- 
mance and results obtained with other propellers are reported in a 
recent paper by östergaard ,  Kruppa and Lessenich   (1971) 

Measured Simulated 

J K-p IOKQ K'T* 10KQ 

0.6 0.223 0.355 0.223 0.353 

0.7 0. 179 0.300 0. 178 0.296 

0.8 0.135 0.242 0.135 0.242 

0.9 0.087 0. 182 0.088 

1  

0.179 
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C. 3.    Applications 
It should be obvious from the foregoing that as far as the dee- 

ply submerged open water condition is concerned ,  our computer pro- 
gram as described above did not really predict propeller performance 
analytically but rather simulated the known measured performance by 
means of a lifting line model .   This was perfectly acceptable because 
our primary aim here was not to predict propeller performance , but 
to determine the equivalent lifting line for use in calculating thrust 
deduction and free-surface effects . However ,  in two subsequent ap- 
plications this program was indeed used to obtain certain genuine pre- 
dictions of propeller performance. 

First ,  for estimating the effect of free-surface on propeller 
performance at shallow submergence the program was run with the 
calculated self-induced wake   wf (R)   of the propeller as an additional 
input   (see Section B. 6)   without any attempt to manipulate the foil 
characteristics fixed once for all on the basis of the deeply submerged 
condition ,  see Equation   (C17) .  Hence ,  the thrust and torque calcu- 
lated for shallow submergence as plotted in Fig.   13 and reproduced 
in the following table are ,  in a certain sense ,  true pr" Mctions of the 
free-surface effect   . 

h/Rp = 3 .47  « oo h/Rp -1.00 h/Rp= 1.00 

Measured Measured Calculated 

J K T"- IOKQ KT 10KQ T 
10K 

Q 

0.6 0.223 0.355 0.194 0.313 0. 198 0. 324 

0.7 0.179 0.300 0.163 0.275 0.165 0.280 

0.8 0.135 0.242 0.124 0.226 0.126 0.229 

0.9 0.087 0.182 0.079 0. 170 0.084 0.170 

It may be noted that the wake   Wf(R)   input   to the program was here 
calculated for the lifting line corresponding to the deeply submerged 
propeller . In principle,  it would be possible to run a second iteration 
with the wake   w^R)   recomputed for the new lifting line determined 
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Ly the program for the shallow submergence.  However, this refine- 
ment is considered unnecessary. 

Second,   for evaluating the propeller performance in the behind 
hull condition again the same procedure was used, with the measured 
nominal wake   w(R)   substituted in Equations (C4) and (C7).  However, 
the calculated thrust and torque were found to deviate substantially 
from the measured values.  Since the primary purpose of thib calcula- 
tion was to obtain a realistic simulation of actual propeller perfor- 
mance by a mathematical lifting line, it was decided to enforce a 
thrust identity.  However, this was accomplished not by further mani- 
pulating the assumed foil characteristics but by multiplying the input 
wake   w(R)   with a constant wake corrector   kw   whose final value was 
determined by iteration.  Thus the program was here used not only to 
determine the equivalent circulation distribution but also to simulate 
the physical difference between the nominal and effective wake through 
the factor   kw.   Moreover,  the program also calculated a mean effec- 
tive wake   Wf   which was based on a thrust average rather than a 
volume flux average.   This was defined as 

k
w/     W(R) {"R-"T} I1'   «tan /J. I r(R)dR 

vv. 
P   . 

f      |a.R - uTl/l-«   tan^ilr(R)dR 

(C18) 

H 

where not only the nominal wake   w   and the circulation   T but also 
the quantities   u-p , ^j , and   « = CQ/CL   vary with radius,  even though 
this has not been explicitly indicated in the formula.  The numerical 
values obtained for   kw   and   wj   and their practical significance have 
been discussed in Section   3. 6. 2. 
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APPENDIX D 

DOUBLE BODY CALCULATIONS 

D. 1.    Motivation 

All calculations described in Appendix B are based on the 
first-order thin ship theory in which the hull is represented by a li- 
nearized (with respect to the beam) source distribution on the center 
plane,   see Equation (B6).   This has the great advantage that "potential" 
(i. e.   zero Froude number) efects and wave (i. e.   finite Froude number) 
effects can be calculated consistently using the same source distri- 
bution. However, the accuracy of the results depends in an uncontroll- 
ed manner on the "thinness" of the ship. In order to obtain a quanti- 
tative estimate of the error involved in the application of thin ship 
theory to our hull, a few wake calculations were also performed by 
the method of Hess and Smith (1962),  which does not impose any res- 
trictions on hull geometry.  As is well known,  the Hess and Smith al- 
gorithm provides a general solution of the Neumann problem of non- 
lifting potential flow about arbitrary bodies by means of a surface dis- 
tribution of sources.  Due to the enormous amount of numerical com- 
putation involved,  however,  the application of this methou to the cal- 
culation of flow about ships is still limited to the so -call ;d zero 
Froude number approximation,  in which the ship (including the pro- 
peller) is conceptually replaced by a deeply submerged double body 
generated by reflecting the under water form about the static water 
plane.  In our terminology,  therefore, only the pure potential effects 
(as distinguished from the viscous and wave effects) can be evaluated 
by this method. An improved version of the original Hess and Smith 
computer program was made available to us by the Naval Ship Re- 
search and Development Center. 

D. 2.    Results 

Without going into the intricate details of the Hess and Smith 
method we report here only a few relevant results obtained by this 
program.   First, a series of nominal wake calculations was perform- 
ed with the propeller disk assumed in its proper transverse and ver- 
tical position   (yp= 0    ,   Zp- -0. 5 T)   but at five different longitudinal 
positions as shown in the following table.  Since the accuracy and com- 
puting effort in this method depend    critically on the number and size 
of the body surface elements,  we tried four different arrangements 
involving   N = 100,   125,   145   and   150   elements. As our double body- 
had three planes of symmetry,  the elements are understood to cover 
only one  eighth of the total body surface.   To ensure finer detail near 
the stern the element size was not uniform over the entire length of 
the hull but made increasingly smaller toward the ends. 
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The results showed that the arrangement with 125 elements yielded 
adequate accuracy for our purposes.   Moreover,  the average wake 
was practically identical to that calculated by thin ship theory.   (This 
gave us, of course,  more confidence in applying the thin ship theory 
also to the finite Froude number case where no such accuracy control 
was possible. ) 

Potential wake   w     averaged over the propille r disk 

Hess and Smith Program Thin Ship 

2Xp/L 
Theory 

N = 100 N = 125 N =145 N =150 

-1.01 0.1785 0.1769 0.17 56 0.1769 0.1758 

-1.02 0.1520 0. 1502 0.1496 0. 1506 0.1492 

-1 .03 0.1307 0.1295 0.1287 0. 129Ö 0.1278 

-1 .04 P   1 136 0.1127 0.1120 0.1127 0.1107 

-1 .05 0.0998 0.0990 0.0985 0.0991 0.0969 

Next, a st'rifs of effective wake calculations was conducted 
with the propeller located in its proper position   (xp = -0. 51 L)   and 
assumed operating at the advance coefficients   Ju = 0. 733, 0. 889 and 
1.131    corresponding to the ship self-propulsion points at  TJ. = 4.0, 
7.0   and   12. 5   respectively,   see Section 3. 6.   This involved two extra 
complications compared to the previous nominal wake calculations. 
One,  the presence of the propeller destroyed the longitudinal symme- 
try of the flow so the number of significant hull surface elements had 
to be doubled from 125 to 250,   Two,   the flow induced by the propeller 
(and its mirror image about the plane   z = 0)   on the hull surface had 
to be given as an additional input to the Hess and Smith program.   For 
this the Hough and Ordway source disk representation of the propeller 
(see Fig.   29) was used.   The algorithm for computing the flow induced 
by source rings at arbitrary field points was taken from Ktlchemann 
and Weber (1953), pp.   310-316.   The results are summarized in the 
following table. 
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Calculated effective wakes   wEp versus nominal wakes Wp 

Thin 

R/hp 

Hess and Smith Program Ship 

(»=0) 

w 
P 

*<, = 4.0 >o   ='70 *o   = 12.5        ( ff=0) 

WP - a 
WEP 

-a 
% 

-V 
% 

0.2 0 .1924 0 .1908 0 .1874 1822 .1838 

0.3 .0573 .1866 .0609 .1850 .0482 .1819 1770 .1778 

0.4 .0669 .1795 .0640 .1781 .0452 .1753 1708 .1711 

0.5 .0700 .1719 .0616 .1706 .0395 .1680 1641 .1637 

0.6 .0688 .1640 .0582 .1629 .0359 .1606 1571 .1560 

0.7 .0653 .1562 .0506 .1552 .0290 .1531 1501 .1484 

0.8 .0561 . 1486 .0382 . 1477 .0206 .1459 1433 .1411 

0.9 .0415 . 1413 .0310 . 1405 .0122 .1389 1366 .1341 

1.0 0 . 1344 0 .1337 0 .1323 1303 . 1275 

Disk .0533 .1573 .0439 .1562 .0260 .1541 1510 .1495 
Avg. 

It is seen that the calculated effective wake   wjrp   is 2 to 4% 
higher than the. calculated nominal wake  w-   , depending upon propel- 
ler loading of which the source strength a    is a measure   . This is 
exactly what one would expect from theoretical considerations ,  since 
the propeller sinks induce extra sink strength in the afterbody which 
in turn induces an additional positive wake in the propeller plane . 
However , the difference is too small to have a significant effect on 
the calculation of thrust deduction . 
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Figure I   Hull propeller configuration and coordinate system 
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Figure 3   Measured total resistance 
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Figure 4   Measured total resistance at low Froude numbers.  Deter- 
mination of viscous form factor 
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O  D«rlv«d froa w«v» cuta 
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Figure 5   Calculated and measured wave resis tance 
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Calculated    w  (H) ►><, (K) 

0.20 

0.15. 

0. 10- 
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Figure 6   Calculated and measured wake in reverse motion 
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Figure 7   Calculated and measured wake components 
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Figure 8   Propeller characteristics at deep submergence 
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0.6J 

     h/R,,  -   3.47,   2.0,   and 1.5 

—X—    h/Rp  -  1.0 

0.41 

0.2J 

1.2 

Figure 9   Effect of low submergence on measured free-running pro- 
peller characteristics 
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Figure 10   Calculated and measured propeller characteristics at 
deep submergence 
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Figure 11   Calculated difccribution of bound circulation for free- 
running propeller at deep submergence 

1925 

  i HIIMIII——■ 



•"•"■"^'■II    11 
11 ' ■■"»mil »i]i.iiiii|i, i« 

Nowaaki and Sharma 

wf(R) 

-0.08 

-0.06. 

-0.04. 

-0.02. 

0.0Q. 

0.0 

J-0.7 

J-0.8 

J-0.9 

0.2 0.4      R/fcp     0.6 0.8 1.0 

Figure 12   Calculated self-induced free-surface wake of free-running 
propeller at subinergence   h = R0 
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0.6 X Calculated by lifting line theory 

O Estimated fron Jf for «ink disk (Hough and Ordway) 
  Eatimated from Jf for elnk dlak (Dlckmar.n) 
  Measured 

— —    Measured at deap 
submergence 

0-2 0.4      j       0.6 0.8 1.0     \    1,2 

Figure 13   Calculated and measured propeller characteristics at 
shallow submergence 
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Hull with propeller 
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Figure 15   Measured wave profiles at Fn = 0. 267 
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Figure 16   Measured wave profiles at Fn = 0. 354 
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Figure 17   Free-wave spectrum of bare hull at   Fn = 0.267 
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Figure 18   Free-wave spectrum of hull with propeller at Fn = 0. 267 
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Figure 19   Free-wave spectrum of propeller at  F    = 0.267 
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Figure 20   Free-wave spectrum of bare hull at Fn = 0, 354 
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Figure 21    Free-wave spectrum of hull with propeller at Fn = 0. 354 
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Figure 22   Free-wave spectrum of propeller at  Fn = 0. 354 
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Figure 23   Typical result of a propulsion test and the determination 
of self-propulsion points,   >0 = 4.0 
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Figure 24   Variation of propulsion factors with loading for TQ = 4 
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Figure 25   Variation of propulsive factors with Froude number at the 
ship self-propulsion point 
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Figure 26   Calculated distribution of bound circulation for propeller 
behind hull at self-propuision point 
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Figure 27   Calculated and measured characteristics of propeller 
operating behind hull at self-propulsion point 
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Figure 28   Calculated and measured wake fractions as functions of 
Froude number 
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Figure 29   Calculated distribution of source strength for propellei 
behind hull at self-propulsion point 
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Figure 30   Calculated and measured thrust deduction   fractions as 
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DISCUSSION 

Edmund V.   Telfer 
R.I.N.A. 

Swell,  Surrey,   U.K. 

Anybody who has attempted to read this paper, as I have 
during the past two or three days and this morning at 2 o'clock after 
coming back from our delightful banquet,  will appreciate that it con- 
tains a lot of matter for real thought.   The first point I would like to 
deal with is the authors' attack on the subject of relative rotative ef- 
ficiency and their quite innocent reference to relative rotative effi- 
ciency being an empirical "catch-all" for various unclarified effects 
of relatively insignificant magnitude.   1 am not sure whether that is 
fair.   Undoubtedly during the thirties,  a lot of attention was given to 
the subject.   In 1951 I published a North East Coast Institution paper 
on various aspects of the propeller/hull interaction problem and I 
made a suggestion that the real meaning of relative rotative efficiency 
could be very simply understood by plotting   Kj   to a   KQ   base so 
getting the well-known propeller polar.  Suppose we have such a plot 
of all propeller polars over a range of pitch ratio,  we will then have 
the higher pitch ratios on the right and the lower ones to the left. 
What then happens in self-propeller tests is that the measured   K-p 
value does not locate on the correct pitch polar with the correspond- 
ing   KQ   value.  In most cases it will be found that the   KQ   lies to the 
low pitch ratio side of the actual open polar and it is this that produ- 
ces the phenomenon of relative rotative efficiency.  Values of relative 
rotative efficiency exceeding unity are then obtained, which to the lo- 
gical mind appears to be impossible,  but if it is realised that what 
has really happened is that the actual correlation of the behind thrust 
and torque has left the open line and come to a smaller   KQ   value or 
in other words the centroid of the thrust of the behind propeller has 
been moved radially inboard, as a consequence of the normal wake 
distribution in a single-screw ship,  having the heavier wake towards 
the shaft centre.   Thus when we see this taking place we realise that 
all that positive relative rotative efficiency is showing is that there 
has been a change in the wake distribution compared with the uniform 
distribution of the open condition.   Therefore,  really,  relative rotative 
efficienc/ is merely a wake distribution factor and if one thinks of it 
in that way one can get a much clearer understanding of the problem. 
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R. E.   Froude, when he first introduced the idea of rotative 
efficiency was then principally concerned with twin screw naval ves- 
sels,  and there the erratic variation of rotative efficiency with oppo- 
site screws certainly puzzled him.   Part of the trouble was due to the 
fact that the starboard and port propellers,being of opposite hands, 
were never made with identical accuracy ; and one frequently found 
different   rotative   efficiencies for the two screws,  so offering some 
justification for the authors'own statement that rotative efficiency was 
earlier known as a "catch-all".  Model manufacturing inaccuracy 
should no longer be allowed to occur and so cloud a fundamental issue. 

The effect of a positive rotative thus indicates a change in 
the wake distribution and therefore a bigger wake towards the root. 
If one makes the thrust wake integration as the authors have done ra- 
dially,   it will be found to yield a correct rotative efficiency (in the 
real meaning of the word) which is actually less than unity.   Thus if 
one does not presume the propeller to do the integration but if, as the 
authors did,  one takes each radius separately,  from such integration 
a lower rotative efficiency and a higher wake will be obtained.  It is 
rather significant however that in the authors' tests the thrust wake 
is less than the torque wake.   This is most unusual.  Most single screw 
ships show the reverse,  certainly with ordinary testing methods. 
When this is more deeply considered,  as the authors have done, it 
becomes clear that the wake has actually increased,  and one has then 
to recredit what was previously known as rotative efficiency to an in- 
crease in the wake due to the difference in the wake distribution. 

I am extremely glad that the authors have brought out this 
particular point and I hope my remarks are understandable in the 
light of their own work. One is tempted to believe that the original 
description of the words "rotative efficiency" was a justifiable one, 
but we now see that there is no justification for thinking that the pro- 
peller normally can work with a higher efficiency behind the hull than 
in the open.   Yet certainly in the thirties,   Teddington was reporting 
rotative efficiencies of about 1.2 and even higher, and Dr.  Baker him- 
self expressed the view that these results were evidently "phoney" and 
there was some other explanation to be found for the meaning of rota- 
tive efficiency.  I suggest that the wake distribution effect is the real 
interpretation. 

The authors state that the wake is caused by the presence of 
the hull and the free surface.   This is not quite correct.  It is not caus- 
ed by the presence of the free surface,  but provided there are waves 
on the free surface then admittedly they may have some effect on the 
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wake.  Ont- could have,  for example, a submarine generating waves 
on the surface when the submarine itself was totally submerged. 
There could then be a wake change depending upon the orbital motion 
of the waves passing the propeller.  If there were no surface waves, 
however,   there could not be any additional wake,  at least not in my 
opinion. 

Finally,  I should like to refer to the authors' determination 
of the form effect of their model.   They have used the ITTC line with 
its 7 5 numerical coefficient to determine the form effect deduced by 
the Prohaska method.  If one allows for the fact that the low value they 
obtained of about   2 l/2  per cent,  by using the   7 5 coefficient   should 
be changed to refer to the Hughes' two-dimensional basis using a   66 
coefficient,  one will find a form effect of   16 l/2   per cent.  On the 
other hand,  when one investigates what the equivalent plank would be 
for the model   - that is a plank having the same length as their model 
and the same measured surface as their model -   one finds the mini- 
mum value to be some   22 l/2 per cent.   This throws doubt on the 
Prohaska method which is insecurely based,   in my opinion,  on the 
unjustifiable assumption that the specific resistance initially varies 
as the fourth power of the Froude number.  Older work, and certain- 
ly the very early work of Hovgaard,  Taylor and others, appeared to 
produce a certainunanimityinthe finding that the specific resistance 
initially varies as the square of the Froude number.  One has just the 
choice between the fourth and the second power and if the Prohaska 
method is used with either of these assumptions one finds that using 
the square relation gives a much smaller form effect than using the 
fourth power of the Froude number.  It is suggested therefore that the 
method is not sufficiently acceptable for determining form effect ; and 
when this is also associated with the basic defect of the ITTC line in 
its inability correctly to extrapolate to the ship,  I think we have to 
fall back on the only alternative way of correctly determining a form 
effect,   which is to have a geosim series for each particular ship. 
Against this it is always held that a geosim series is much too expen- 
sive,   and this is certainly true.   But I suggest that the cost of truth 
has to be faced and in the general euphoria is soon forgotten. 

I would say,  in conclusion,  that I have greatly enjoyed this 
paper and strongly recommend it to all who are interested in the sub- 
ject. 
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DISCUSSION 

Georg P.   Weinblum 
Institut für Schiffbau der Universität Hamburg 

Hamburg, Federal Hepublia Germany 

There exists a small number of investigations on the inter- 
action problem of the complete system hull-propeller-rudder,  Herbert 
Voigt showed   (JSTG 1932)   that the thrust deduction   t   of a single 
screw ship with an old fashioned square rudder post and a plate rud- 
der could be appreciably reduced by fitting a stream lined rudder. 
Results of a systematic investigation of the "complete" problem have 
been published by Ivchenko   (publications of the Krylov Institute, 
Ship hydrodynamics II ; unfortunately, I was unable to obtain the re- 
port by the same author which show the pertinent proofs, Krylov Ins- 
titute,  No 146).  Ivchenko's findings are supported by extended expe- 
rimental work. 

Most advanced ideas on the subject are due to Yamazaki ; 
the first of a general and therefore rather programmatic character, 
the second one presenting the application of theory to a thin ship, 
showing an unexpected increase of   t   due to a streamlined rudder. 

Because of the complex character of our problem the authors 
justly restrict themselves to the classical hull-propeller system, 
emphasizing free surface effects while a recent paper by Dyne treats 
pertinent scale effects.  It may l?e permitted to state,  that the authors 
lived up to the high standard,   set by Dickmann in his classical work 
on the subject.   Especially they used all modern methods partially de- 
veloped by them and were not anxious to perform tedious calculations 
to obtain quantitative results.   The choice of a simplified mathematic- 
al model is justified by the fundamental character of the investigation 
leading to the conclusion (Fig.   30),   following which the wave thrust 
deduction   t      contrary to Dickmann's conjecture becomes heavily 
dependent upon the "roude number for   Fn=0.30.  Indications of this 
dependence   tw(Fn) Wave been communicated by Pien (SNAME Jubilee 
meeting,   1968). Because of the extremely bad wave making properties 
of the model this speed limit may be higher and the effect much less 
pronounced with usual practical forms.  I disagree with the authors 
statement in concluding remarks that   "contrary to common belief 
the wave component can be dominant in the wake. , , ,  at   Fn.«0, 3" . 
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The dependency of the wake upon the Froude number was an important 
finding by F.Horn,   several times published by him and his school, 
also in English,  and recommended as design principle.   The authors 
being thoroughly familiar with the German school,   I would prefer a 
statement that their findings nicely support these well known results. 

It is a matter of opinion and of considerable importance with 
regard to scale effects that the difference between measured and cal- 
culated   t-values   is due to an appreciable viscous component. 
Ivchenko corrected the disagreement by a factor caused by non unifor- 
mity and unsteadiness.   As pointed out by the authors here much re- 
mains to be done. 

DISCUSSION 

Klaus W. Eggers 
Institut für Schiffbau der Universität Hanburg 

Hamburg, Federal Repuklia Germany 

I have a short comment regarding the analytical method for 
determining the wave-thrust deduction, which wap performed here 
following Eq.   (B65)  in order to avoid explicit calculation of the flow 
generated by the propeller singularity at the hull surface.  I want to 
suggest a more elegant and direct method.  As the wave flow generat- 
ed by the hull within the propeller area is available through closed 
form integration over the hull,  the wave induced drag on the hull due 
to the propeller field can easily be calculated as a Lagally-force on 
the propeller singularities induced by the inverse flow due to the hull, 
i. e.   the flow for the case that the ship travels astern vrth the same 
speed.  I wonder if such a calculation would confirm the numerical re- 
sults obtained so far only indirectly through  (B65). 
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DISCUSSION 

Carl-Anders Johnsaon 
Statena Skeppsprovningeanatalt 

Göteborg, Sweden 

I should like to emphasise Professor Telfer's ploa for taking 
the relative rotative efficiency seriously and draw the authors' attent- 
ion to an earlier work by Yamazaki in 1966 which contains some in- 
teresting calculations of the relative rotative efficiency. I should also 
like to ask the authors why they use wheels for measuring the wake 
and not pitot tubes. Some years ago we used wheels at the Swedish 
tank but we had difficulties in getting consistent results. 

DISCUSSION 

Gilbert Dyne 
Statena Skeppsprovningaanstalt 

Göteborg, Sweden 

The investigation presented in this paper is a valuable con- 
tribution to the understanding of the important hull propeller interact- 
ion problem.   The paper illustrates clearly how fruitful a combination 
of theory and experiment can be when treating complicated flow phe- 
nomena. 

The strength, a , of the sinks representing the propeller is 
directly related to the propeller induced mean axial velocities at the 
disk.   Following the definitions used by the authors, a ,  is given by 

u. 
*(R.e) 

Z    Z*1 dG 
4    /     dx 

Jx 

irx 
J 

UT« 
VA 

)rx(l 
/A. 

dx 

) 

(1) 

for a moderately loaded propeller,   see   [l].   In Eq. (l)   uAo0   and  u_ 
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are propeller induced velocities in the ultimate wake. 

If the rotation of the slipstream is ignored   (uToo*T^   an^ 
G   is assumed to be independent of the radius   x 

Aco ,(R.e) = —^ 4J 
1  + 1    UAoo 

Inserting 

Th t"* 
u 

Aoo [1 i\oo 
1J, and eliminating———.the Dickmann formula 

VA 

<T(R,e)   = - V 1 + C^L -' Th 
(2) 

is obtained. 

If on the other hand  G   is assumed to vary along the radius, 

but both 
"Aoo 

and ^ATco are ignored,  the formula proposed by 
VA 'A 

Hough and Ordway is obtained : 

<T(R.e) 
ZG 
4J (3) 

This formula is strictly valid only for   very lightly loaded propellers. 

Fig.   1    illustrates the different values of a obtained with the 
exact formula,   Eq.   (l) and the approximate ones,  Eq. (2) and (3),  for 
a propeller loading typical for the investigation in question. As seen 
the Dickman approximation   agrees much better with the exact solu- 
tion than the light load approximation of Hough and Ordway.   Thus the 
reason for the higher a values obtained with   Eq. (3) is not the mere 
realistic distribution of circulation but the erroneous ignoration of 
the propeller induced velocities.   This means that the calculated 

- self induced free surface wake of free-running propeller 
in Fig.   12, 

- wave resistance of free-running propeller in Fig.   14, 

- free-wave spectrum of propeller and hull with propeller 
in Figs 18,   19,  21 and 22   and 

- thrust deduction fractions in Fig.   30 . 
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are overestimated in these cases where the Hough and Ordway appro- 
ximation is used. 

The authors have calculated the potential (or displacement) 
and wave wake fractions assuming ideal flow conditions.  In real flow 
these fractions are,  as pointed out by Dickmann,  influenced by the 
viscous wake in a con>plicated way.  This influence can,  however,  be 
calculated if experimental values of velocity and static pressure at 
the propeller disk are available,   see [2] .  Are there any plans to 
follow up the investigation with pitot tube measurings ? 

The oscillations in the measured thrust deduction with Froude 
number were found to be much stronger than in the calculated.   The 
reason for this is said to be that either the viscous thrust deduction 
oscillates appreciably or that the assumption of the hull sources being 
independent of Froude number is invalid.  In my opinion a much more 
likely explanation can be the measuring errors.   Everyone acquainted 
with towing tank experiments knows how difficult it is to determine 
the thrust deduction with good accuracy.  No direct information on 
these errors is given in the paper,    but the measuring   points in Fig. 4 
indicate that resistance is determined with an accuracy of   - 2 % , 
Assuming the same accuracy for the thrust measurements the error 
in thrust deduction will be A t =  - 0. 04 - a value which is of the same 
order as the oscillations in   t   shown in Fig. 30. 

The influence of the free water surface on the propulsive 
coefficients has been determined for the ideal flow case.  As pointed 
out by the authors the viscous flow around the ship can make the stern 
less effective in wavemaking.   This means that the presented calcu- 
lation procedure instead of giving an exact measure gives almost 
equally important qualitative results and an upper limit of the wave 
influence. 
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REPLY TO DISCUSSION 

Som D. Sharma 
Hamburgische Schiffbau Ve~suchsansta~t 

Hamb~iJ • i?ede~a l Repub Z ic Gemany 

To Profeuor Telfer 

We agree with Professor Telfer that our treatment u : rela
tive rotative efficiency has been probably less than adequate. While 
we still regard it as an empirical catch-all for various unclarified ef
fects, we must admit in the light of our own results that these effects 
are not neceuarily of insignificant magnitude ! We are well aware of 
the historical reason why R. E. Froude (1898) first intro~uced the 
concept of relative rotative efficiency and of the fundamental research 
in the thirties, notably by Horn ( 193Z), which led to the modern inter
pretation of relative rotative efficiency as representing the effects of 
dissimilarity in flow conditions on the propeller behind the hull and in 
opt>n wate r, while still retaining the original, somewhat misleading 
nam e . The n•ultifarious nature of this dissimilarity can be illustrated 
by <'nurn ··rating son• e of its aspects : 

I. Spatial nonuniformity of the incident flow, i.e. the variation of 
axial wak e component wx with the three space coordinates (x, R, e), 
and th e ve ry presence of any non-zero radial and circwnferential 
wak~' components wR, w 0 as we ll as their local variation with the 
coordinates (x,R,9). 

Z. Temporal nonuniform1ty of the incident flow at any fixed point in 
space, e. g. due to unsteady boundary layer separation from the hull; 
including ambient turbulence in the hull wake. 

3. Guide vane effect of hull and rudder. 

4. Hub effect due to the opposite directions in which the propeller 
shaft generally extends in the behind-hull and open-water conditions. 

5. Possible differences in the Reynolds (and Froude) numbers bet
ween the behind-hull and the open-water teats. 

In the currently accepted method of propulsion factor analy
sis the relative rotative efficiency is indirectly determined as a deriv
ed quantity thereby lumpin& together all these effects into a ti.n&le 
fudge factor. Despite some remarkable attempts in the thirtiee, euch 
ae by Lammeren (1938), to identify individual phenomena, it can 
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hardly be asserted that the effects involved have been really clarified. 

The confusion and mystery still surrounding the relative ro- 
tative efficiency are best illustrated by the fact that values larger 
than unity are often observed on models of single screw ships while 
physical reasoning suggests that nonuniformities of flow would in ge- 
neral tend to lower propeller efficiency.  The traditional explanation 
fur this phenomenon used to be a favorable propulsive effect attribut- 
ed to the rudder.   However,  it is doubtful whether this view can be 
sustained in view of recent rational calculations of propeller-rudder 
interaction such as by Isay (1965) and Brunnstein (1968).   They have 
evaluated this interaction in three parts.   First, it is found that a sui- 
tably profiled rudder does experience a thrust in the slip stream. 
However, a force acting on the rudder must by definition show up in 
the thrust deduction fraction and not in the relative rotative efficiency. 
Second,  the displacement flow associated with a thick rudder tends to 
increase both propeller thrust and torque.  This,  however,   is just a 
consequence of the increased mean effective wake.   Third,  what then 
remains as contribution of the rudder to relative rotative efficiency 
is a guide vane effect reflected in a nonuniform flow induced by the 
rudder singularities in way of the propeller.  This effect,  as Isay and 
Brunnstein conclude,  actually tends to decrease propeller efficiency! 

It is true that Professor Telfer in his (1951) paper had sug- 
gested a different explanation of relative rotative efficiency.   His ar- 
gument was based on the notion that the simple thrust identity princi- 
ple yieldo a wrong value of mean effective wake since propeller per- 
formance behind the hull is affected in a peculiar way by the radial 
variation of the (circumferentially constant) axial wake.   He proposed 
an alternative analysis in which the mean effective wake is determin- 
ed from the   K-p vs.   J   curve of a virtual propeller which is similar 
to the real propeller in all respects except pitch,  such that the open- 
water   Kj vs.   KQ   polar of the virtual propeller matches the behind- 
hull   K-T-u vs.  KQU   polar of the real propeller.  It is easy to deduce 
from propeller series charts that Teller's analysis would almost al- 
ways lead to a value of relative rotative efficiency closer to unity than 
the conventional analysis.  Suppose for instance that the conventional 
analysis produces    IR^*!-   Then the behind-hull   Kju vs.   KQ^J   polar 
will lie to the left of the open-water   K-p vs.  KQ   polar and hence a 
virtual propeller of lower pitch will have to be chosen.   This would 
indicate a lower value of   J ,  which in turn due to the convex shape of 
the    »)Q VS.   J   curve would yield a higher value of   In/^ "w)   ^or t'le 

real propeller.  But since    »)j-j   and   t   are independent of the choice of 
wake,   so is the quantity 

"R io/(1"w) =   "E/C-1) 
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Conaequently,  the increased value of   t)Q/(l-w)   in Telfer's analysis 
would automatically lead to a lower value of   ^ .  If we had started 
out with the conventional analysis yielding    VD<1 > an opposite effect 
would have been achieved.   Thus Telfer's analysis simply transfers to 
wake a part of the effect manifested in conventional analysis as rela- 
tive rotative efficiency,  whether or not his argument is physically 
justified. 

Professor Telfer seems to interpret our results as provid- 
ing new evidence in favor of his hypothesis.  This requires some clari- 
fication.   First,  it should be emphasized that our propulsion factors 
as depicted in Fig. 25   were derived by strictly conventional analysis 
and not by any special method as Professor Telfer seems to imply. 
Results for the three speeds chosen for detailed study are reproduc- 
ed below : 

Speed Measured Measured in open-water 
parameter behind hull at thrust identity "R 

4. 0 

F 
n JH KTH 10 ^ JT KT 

10KQ "o 

KQ 
KQH 

. 753 . 210 . 358 .627 .210 . 341 .616 .95 

7. 0 .267 . 889 . 207 . 361 .636 .207 . 336 . 624 .93 

\Z. s . ZOO 1. Ml . 170 . 34 1 .724 . 170 .290 . 67 5 .85 

If nominal wakt-s indicated by wake wheels (see III.6.2) had been used 
instead of the thrust identity wakes,  the following propulsion factors 
would have been obtained : 

Speed From open-water at mean From open-water at 0. 7R 
nominal wake nominal wake 

7o J KT 
10 KQ "o "R 

J KT 
10 KQ "o "R 

4.0 . 581 .228 .365 . 578 .94 .564 .237 .375 .567 .93 

7.0 .630 .209 . 340 . 616 .93 .603 .221 . 354 . 599 .92 

12.5 .787 . 140 .252 . 696 .90 .713 . 173 294 .668 .85 
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It is seen that our relative rotative efficiencies always come out less 
than unity,  irrespective of whether nominal or effective wakes are 
used for analysis.   The above numbers cannot be used as evidence 
either for or against Telfer's hypothesis.   However,  our paper con- 
tains more specific information not explicitly pointed up in the text. 
Since our computer simulation of the propeller behind the hull includ- 
ed the j-adially varying £ircumferentially averaged axial wake com- 
ponent but none of the other nonuniformities,  its results may be used 
to isolate what may be termed for brevity the   "rvcaaw"   factor from 
all the other influences  responsible for relative rotative efficiency. 
This is done in the following table (    see below    ).   It is seen that the 
"rvcaaw"  factor,   represented by the ratio of open-water torque   KQ 

to the simulated torque   KQJ^   in a hypothetical flow in which only a 
radial variation of the axial wake is allowed,  is here indeed slightly 

Speed 
Computer simulated 
3ehind-hull condition 

Factors of »? ^ 

>0 
J 

voltai J v 
avftam- 

TT 
rS-i. 10 %H '15 

K 

KQ.. 
KQH 

. 95 

.95 

. 85 

•1.0 

7. 0 

12. S 

. 62 6 

.8 10 

. 62 1 

. 6U) 

. 70 S 

.211 

. 207 

.17 1 

. iJ6 

. 5 52 

. 284 

.621 

. 62 5 

. 676 

1.01 

1,01 

1.02 

. 94 

. 92 

.83 

larger than unity,  while the remaining lactors nevertheless lead to 
an exceptionally low overall relative rotative efficiency of our model. 
However, we recall that Beveridge (1963a) by a different numerical 
procedure obtained values of   0.94    (in a submarine hull wake)   and 
1.0!    (in a ship hull wake)    for the   "rvcaaw"   factors of two wake- 
adapted propellers.   Hence the question,  whether or not a radially vary- 
ing (but circumferentially uniform) axial wake can be blamed for 
spuriously large values of relative rotative efficiency as argued by 
Teller (1951),  must be regarded as still open. 

In reply to Professor Telfer's next comment,   we do not want 
to argue whether the wave component of wake should be attributed tc 
the presence of the free surface or to the waves on the free surface. 
The fact is that any finite disturbance moving at or near the free sur- 
face will cause waves and hence wave wake.   In particular,   a propeller 
moving near the otherwise undisturbed free surface will also cause 
waves even in the abscnc e of a hull and thus experience a wave wake ; 
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this is what we have called the self-induced wave wake. Ambient 
waves caused by wind or moving objects other than the hull and pro- 
peller have not been considered in our paper. 

Professor Telfer's final  comment deals with the Hughes- 
Prohaska method of determining form factors and the value obtained 
for our model.   Taking the value first, we agree with him that if the 
two-dimensional plane friction formula is assumed to be 

C^     =     0.067(loginR 
FO x    810    n 2) 

then the "true" form factor for our model becomes   1.025 • 75/67 - 
1.15.   The length/breadth ratio of a flat plate equivalent to a sub- 
merged double model of our hull form would be   L /S ^ 5. 79 .   From 
Figure 10 of Hughes (1954) we find that the form factor of such a 
plate arising from three-dimensional edge effects would be about 1.11, 
which compares well with our value for the model.  We do not know 
how Professor Ttlfer derived his minimum value of   1.225 .   Turning 
now to the method itself, we have followed the Hughes (1963) idea as 
reflected in our Equations (7) to (11) because it is consistent with our 
data (see Figure 4) and the linearized theory of the wave resistance 
of thin ships.  In fact our Equation (B28) for the theoretical wave re- 
sistance can be shown to have the asymptotic representation : 

WH 
2048   ,,Z/r,. ^ 4     rt/_ 5,        ,   ir „ 4 

—r— (b  /S) F      + 0(F    )   ~ 3. 15 F 
Jjr n n n 

That the measured coefficient,   see Equation (12), is only about   1/4 
of the theoretical value may be explained by the fact that as   F  —>0 
the stern becomes almost totally ineffective in wavemaking,     - We 
agree with Professor Telfer that if extrapolation rather than analysis 
were our goal, the most direct and reliable method would have been 
to test geosims. 

To Professor Weinblum 

We are most grateful to Professor Weinblum for his kind re- 
marks ; the comparison with Dickmann's legendary work is almost 
too much of a compliment.   His reference to the work of Yamazaki, 
Nakatake and Ueda (1972) is very much to the point.   This is evidently 
the most comprehensive theoretical study of the complete interaction 
problem of hull, propeller and rudder published to date.  Due to the 
complexity of the problem we decided to restrict our study to the 
simpler hull-propeller system.   The interaction between propeller 
and rudder has been theoretically calculated also by Isay (1965) and 
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Brunnstein (1968). They identify two counteracting forces on the rudder 
in the slipstream : a thrust resulting from virtual angles of attack in- 
duced by the rotation of the slipstream, and a frictional drag due to 
the increased axial velocity in the slipstream.  Depending on the re- 
lative magnitudes of these two forces,  the net effect might be a de- 
crease or increase in the thrust deduction as compared to tho no- 
rudder case. 

We admit that our hull form has rather poor wavemaking 
properties so that the results may not be representative of ordinary 
ships.  As explained in Section 3. 1, an unusually high waterplane coef- 
ficient was necessary to produce appreciable thrust deduction effects 
without sacrificing thinness (L/B = 10), which seemed to be a prere- 
quisite for the application of wavemaking theory. 

Professor Weinblum caught us on a vulnerable formulation 
in Section 4 of our paper. Of course, it is a mattor of opinion whether 
or not a dominant wave component in the wake runs contrary to "com- 
mon belief" . However,  we accept Professor Weinblum's better jud- 
gement on this point. 

To Professor Eggers 

Processor Eggers has hit upon the most intricate point in 
our theoretical analysis ; the calculation of thrust deduction taking 
account of the wavemaking of the hull and the propeller.  Despite its 
misleading name thrust deduction is actually a rorce physically act- 
ing on the hull.   Therefore,  the conceptually ir.ost direct approach 
would be to compute it by Lagally's theorem as an integral over the 
source distribution of the hull,   sec Equation (B63). However,  as ex- 
plained in Section B. 7 we preferred an indirect but numerically more 
expedient approach involving the wave resistances of the hull and the 
propeller and a fictitious force & u^WP   induced by the hull on the 
propeller sources,   see Equation (B65).  Cur method thus involved in 
some cases the evaluation of relatively small differences of larp.e 
numbers.   This made us a bit doubtful of our results,   specially be- 
cause the wave component   tw   of the calculated thrust deduction frac- 
tion   (tp + tw)   changed its sign at about   Fn - 0. 23 ,  a feature we 
could not intuitively explain,  see Figure 30. 

Fortunately,   Professor Eggers recently suggested to us an 
alternative and analytically equivalent but numerically even more ex- 
pedient method based on the inverse flow principle. Since the longitu- 
dinal flow induced at the location   (x, z)   of a hull source by a unit 
propeller source at   (x™ R, 0)   is numerically equal to the longitudi- 
nal flov induced at the location (x  . R.O)   by a unit hull source at 
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(x, z)   in reverse   motion, our basic Equation (B63) can be written as 

ÄpRWH   '-   8^ r/      dR  /     R de|<T(R.e) 0" (x ,R^)| 
VH       '.r/Z 

where the arrow is supposed to indicate reverse motion of the hull. 
This formula is no more complex than our Equation (B64) for the fic- 
titious force    iuRurp   an^ Vet elegantly obviates any need for cal- 
culating differences of wave resistances.   Moreover,  by virtue of the 
fore and aft symmetry of our hull form we have 

«""(Xp.R.e)   =    -«"(-XP.R.G) 

so that the required inverse flow in the propeller plane is simply the 
"bow wake" already computed by us for other purposes.  Therefore, 
taking the circumferentially averaged propeller source strengths 
from Figure 29 and the circumferentially averaged bow wakes from 
Figure 6 we were easily able to recalculate our nondimensional thrust 
deduction ipRwH   anc* ^ence by Equation (B66) the thrust deduction 
fraction   (tp + tw)   for the three cases 70 =4.0,  7.0 and 12. 5.    The 
results turned out to be identical with our original calculations, thus 
providing a useful crosscheck and enhancing our confidence in the 
numerical analysis. 

To Dr.  Johnsson 

Our detailed discussion of relative rotative efficiency in 
reply to Professor Telfer will hopefully satisfy Dr.  Johnsson.   The 
reason we used wake wheels rather than Pitot tubes was simply that 
they happened to be available.   Moreover,  they provided an easy means 
of measuring both stern and bow wake.  Our calibrations (revolutions 
versus speed) were sometimes highly nonlinear,  specially for the 
larger diameters,  but always perfectly consistent and repeatable. 

To Dr.   Dyne 

Dr.   Dyne's critical discussion is very welcome,  specially 
in view of his own recent contributions to the subject referred to also 
by Professor Weinblum. 

Although we have not been able to fully verify the details of 
Dr.   Dyne's analysis,  we basically agree with him that the Hough and 
Ordway (1965) analysis applies strictly to lightly loaded propellers 
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and that his formula is likely to yield a better approximation to the 
source density of a moderately loaded propeller.  As we have provid- 
ed two complete sets of calculations,  one based on Dickmann's uni- 
form sink disk and the other on the Hough and Ordway generalized 
sink disk, and since Dr.  Dyne's approximation would lie between 
these two extremes, we do not consider it necessary to provide a 
third set of calculations at this time.   However,  it is interesting to 
observe that the reduced source strengths following Dr.  Dyne would 
lead to calculated values of the thrust deduction fraction   (t    + t   ) 
which are substantially lower than the measured value of   t ,  as is 
also the case in Dr.  Dyne's (1972) paper.   It is unlikely that such large 
differences can be attributed soleley to the viscous component   t    , 
This suggests that it would probably be necessary to invoke a mathe- 
matical propeller model involving finite chord length and finite blade 
number even for calculating such "simple" time-averaged effects as 
the thrust deduction.   Professor Weinblum's reference to Ivchenko's 
hypothesis that the discrepancy between calculated and measured 
thrust deduction might be due to unsteady effects is a valuable hint in 
this direction. 

Dr.   Dyne further suggests that the oscillations of the measur- 
ed thrust deduction with respect to Froude number observed in our 
Figure 30 might simply reflect random measuring errors.   We beg to 
disagree.  As explained in the paper (see Figure 23) the propulsion 
factors at the ship self-propulsion point were not determined from 
single runs but by least squares polynomial interpolation between 
five or more measurements at different loadings.  It is unlikely that 
such faired results would randomly produce oscillations with respect 
to Froude number in obvious correlation with the calculated wave re- 
sistance and wake. 

We agree with Dr.  Dyne that our theoretical wavemaking 
calculations probably represent upper bounds for the true magnitude 
of these effects in a real fluid.   Finally,  we regret that we are not 
contemplating a follow-up investigation of our wake by means of Pitot 
tut- :B as suggested by Dr.  Dyne,  but we would consider it a valuable 
extension if others working on this problem would care to do so. 
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SHEAR STRESS AND PRESSURE DISTRIBUTION 
ON A SURFACE SHIP MODEL : 

THEORY AND EXPERIMENT 

T. T.  Huang and C. H.   von Kerczel" 
Naval Ship Reeearah and Development Center 

Betheeda, Maryland,  U.S.A. 

ABSTRACT 

This paper presents the results of an experimental 
and theoretical investigation of the distribution of 
shear stres. and pressure on BRIAN BORU, a 20- 
foot model 01 a Series 60, Block 60, surface ship. 
Boundary layer calculations were carried out using 
the Cumpsty-Head-Smith momentum integral me- 
thod under the small crossflow assumption; the po- 
tential flow was obtained from slender body theory 
for zero Froude number. Surface shear stress and 
pressure distribution were measuredat sixty points 
on the hull ; the magnitude and direction of shear 
stress were determined from high-aspect ratio hot 
films and Preston tubes. Additional data on total 
resistance, sinkage, trim, and wave profiles on the 
hull are also presented. 

The experimental and theoretical results are com- 
pared for a range of Froude numbers(0.2<Fn^0,35) 
The present boundary layer computation is adequate 
for the ship model tested ( moderate block coeffi- 
cient) if the potential flow around the ship is accu- 
rately prescribed. The sinkage and trim, and wave 
profiles along the hull predicted by thin ship theo- 
ry are not in good agreement with the measured 
values. 

Preceding page blank 
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INTRODUCTION 

Since the contribution of Froude about a century ago, total 
ship resistance has been assumed to be composed of two separate 
and independent parts : ( 1) frictional resistance, equal to the resis
tance of an equivalent plank or flat plate of the same wetted area and 
length as the ship, and (Z) the remainder, called "residual" resis
tance. It has been a practical engineering solution to extrapolate tbe 
resistance measured on a model to that of a full-scale ship either 
(1) by assuming that the frictional resistance follows a Reynolds
number scaling law and that the residual resistance follows a Froude
number scaling law, or (Z) by using a form factor to distribute part 
of the residual resistance into viscous form drag. These phenomeno
logical assumptions have neve!" allowed one to predict by pure analy
tical means the resistance of a ship. 

The prediction of total ship resistance depends on our 
ability to calculate the potential flow and turbulent boundary layer 
flow around ship hulls. The calculation of the potential flow not only 
provides the wave resistance, but also provides the "outer" flow for 
the boundary layer computation. At present, the potential flow about 
a givl:n hull has bee n solved only approximately (e. g., Michell thin 
ship theory and -slc1tdcr !ihip theory). It is w~ll known that thin ship 
lht!ory fails fl>r the flow a round the bilges and on flat bottoms of 
ships, Lunde 1 , a nd slender ship theory overpredicts the e ffect of 
the wa ves , Tuck 2 • More accurate methods for predicting the poten
tial flow a round surface ships arc not available. We can, however, 
calculate the potentia: flow about deeply-submerged bodies and about 
ship~; at zero Froude number (e. g., the submerged "double model"). 
This can be done accurately by the Doualas-Neumann 3 computer pro
gram, and approximately by the slender-body computer program of 
Tuck and von Kerczek4 • As will be demonstrated, this program 
yields an adequate approximation of streamlines and pressure dis
tributions on "slender" ships at very small Froude number for the 
boundary layer calculations. The calculation of the boundary-layer 
flow in the context of the submerged double model can serve to deve
lop and to test the boundary layer calculation methods. Furthermore, 
this computation may provide a aood approximation of the boundary 
layer flow around a ship hull at low Froude number, especially in the 
vicinity of the shoulder and bilge. 

The present status of three-dimensional boundary layer 
calculation methods is somewhat better than the ship potential flow 
theory. Several computation methods have been developed recently : 



Shear Stress and Pressure Distribution on a Ship Model 

(1)   the "differential methods" of Bradshaw5 and Nash6   ; and   (2) 
the momentum integral methods of Cumpsty and Head     , and Smith** . 
The differential methods use the Reynolds boundary layer equations 
and transport equations for the Reynolds stresses.  These methods 
are numerically complex and have not yet been applied to fully three- 
dimensional flows such as over a ship hull.   The momentum-integral 
methods are fairly simple extensions of two-dimendional momentum- 
integral methods.   The extension is carried out in the natural setting 
of streamline coordinates.  The main assumptions are :   (1)   skin- 
friction in the streamline direction is related to the streamwise 
boundary-layer velocity profile in exactly the same way as in a two- 
dimensional flow,    (2)   the crossflow velocity profile is simply 
related to the streamwise profile by an empirical formula, and   (3) 
the auxilliary equation is the three-dimensional extension of the two- 
dimensional equation with exactly the same empirical auxilliary func- 
tion as in two-dimensional flow. A straight forward computation 
scheme based on these assumptions has been developed 7,8,9    _ 
Landweber10   has criticized the use of momentum-integral methods 
for three-dimensional flows because of the assumptions made for the 
skin friction and crossflow velocity profile,   especially when cross- 
flow occurs along streamlines which have changes in the sign of 
geodesic curvature.  For a ship of moderate block coefficient where 
the crossflow is generally small 11'1Z ,   the usual momentum-integral 
methods can be expected to lead to useful results.  A computation 
scheme proposed by Lanweber,  using a differential method or inte- 
gral-vorticity equations in principal-curvature coordinates,  has yet 
to be developed. 

A few previous attempts at ship boundary layer calculations 
invariably employed momentum-integral methods.   The early attempts 
of Wu13 and Uburor1*,   consisting simply of the application of stric- 
tly two-dimensional methods along waterlines, account only for pres- 
sure gradient effects and are not reliable since the equally important 
effect of streamline convergence and divergence is neglected.  Gadd12 

used a modified form of the Cumpsty-Head-Smith method and inclu- 
ded the effect of streamline convergence and divergence,   but the 
method was applied along watorline? instead of the streamlines.   The 
error incurred due to departure of streamline direction from water- 
line direction is difficult to assess, but may be significant in the 
bilge area.   However, Gadd makes calculations for cases for which 
he has some experimental data and obtains fair agreement. 

Webster and Huang15 made calculations similar to Gadd's. 
They used Cooke's16 method for three-dimensional boundary layers 
and Guilloton's'7  method for the potential flow.  Their calculations 

1965 



Huany and von Kerazek 

show mainly the effect of the wave-induced pressure gradients since 
Guilloton's potential flow method cannot be used to trace,  accurately, 
the streamlines on the lower half of the hull surface.   Thus,   their 
results are restricted to boundary layer characteristics along 
streamlines on the hull near the free surface. 

Finally,  von Kerczek1^ has applied the Cumpsty-Head-Smith' 
method and the slender body potential flow program of Tuck and von 
Kerczek4  to calculate the boundary layer on a double hull of the 
LUCY ASHTON corresponding to the experiments of Joubert and 
Mrtheson      .  von K'^rczek^   found that the effect of streamline con- 
vi rgence and divergence is of overriding importance.   Computed 
skin friction coefficients are in good agreement with the measured 
values.   The present study uses von Kerczek's1^  computer program 
to compute the boundary layer for BRIAN BORU,   the series 60 
block 60 model at zero Froude number.   The computed results are 
compared with experimental data at Froude numbers equal to 0.22, 
0. 28,  and 0. 32.   These coj.iparisons are a first step towards deve- 
loping a boundary layer computation method for a ship at arbitrary 
Froude number. 

Shear stress distributions on the ship hull at arbitrary 
Froude number has been measured by Steele2-5 (Tanker Model), 
Steele and Pearce21   (High Speed Linear),  and Tzou       (Series 60 
block 60 model).  All of these shear stress measurements were along 
waterlines only and considerable oscillation of the shear stress along 
the waterlines was noted     '      .  In none of these experiments was 
shear stress direction measured. 

In the present study we use hot-film and Preston tubes 
located at sixty points on the hull to measure the shear stress dis- 
tribution on BRIAN BORU at various Froude iiumbcrs.   The probes 
were located along four zero Froude number streamlines and along 
one waterline (14% draft).   The direction of shear stress was deter- 
mined by the hot-film shear probe.   In addition,   pressure distribution, 
total resistance,   trim,   sinkage,  and wave profiles were also mea- 
sured for a range of Froude numbers.  A completely-detailed set of 
experimental ship resistance data is collected and presented.  Avai- 
lable theories are compared with the corresponding experimental 
data.   Only the boundary layer computation method will be described 
briefly in the next section.   The other theories will be used without 
derivation. 

CALCULATION OF THE TURBULENT BOUNDARY LAYER 

We calculate the turbulent boundary layer on the ship hull 
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by the method of Cumpsty and Head 7   and Smith8   with the addition- 
al assumption of smalf crossflow.  A complete description of the 
method is given in References (7)   and (8)   and a description of its 
application to ship hulls in Reference (18).   We will only reproduce 
the final formulas here. 

In the following we have non-dimensionalized with the follow- 
ing units : half the ship length,   L/Z ,   for length,   the ship speed,  V , 
for velocity,  and    PU   /2   for stress,  where   U   is the (dimensional) 
inviscid velocity at the edge of the boundary layer.   Let   0, ,  and 6 ,*, 
be the momentum and displacement thickness of the streamline com- 
ponent of the boundary layer flow,   where 

11 
J  o 

U u dN 
J o 

-rr)dN ;i) 

N   is the coordinate normal to the body,    U     is the inviscid velocity 
at the edge of the boundary layer,    u   is the boundary-layer time- 
averaged velocity component in the streamline direction and   i   is the 
nominal boundary layer thickness.   The relationship between ö^, ö'   , 

and  Cf,   = r   ./(PU   /2) where  T is the wall shear stress in the 
streamline direction is determined by assuming small crossflow and 
integrating the approximate momentum-integral equation 

4^   +   Öii(2 + H)lf"S--   VKi   =   ctl("n.H)    (2) 
s      (in 

and the auxilliary rate-of-entrainmcnt equation 

d(gnG)   +  %1G(f-^ .K,) 
da da 

F (G) (3) 

along the streamlines,   where a is the arc length parameter along the 
streamlines.   In equations   (2) and   (3)   K,   is the geodesic curvature 
of the equipotential line,    H = Ö j . /4,* is the shape factor    and       G 
is the parameter   (   d  - 'i^/ö^and   F   is the empirical rate-   of- 
entrainment function.   The empirical correlation of   F   to   G   to   H   is 
given by Standen 23 a s 
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F(G)   =   0. 0306 (G - 3.0) 

G 

-0. 653 

1. 535 (H - 0.7) "2•7,5 +3.3 

The skin friction coefficient   C,.    is given by the two-dimensional 
formula 

4 

Q Ho+1 

0.0146 (—-) 
„ o 

108lO (2R fll1 
)  [f^lO^ff,,^0-4343] 

H0     =     1.475/lOg10    Röii      + 0.9698 

Q       -     0.9058 - J. 818   log      H 

(4) 

Q       =     Q ( H    ) 
o o 

where   R^    rR
L

U
s
9||    and   R^ r VL/2 c (recall U8 an.H  »j ,    are 

non-dimensional). 

This is Granvilir'a formula and is an extension of the Von 
Karman; -Schoenherr flat-plato skin-lrictiun formula tu flows with 
a  iiri'ssure uradii-nt.   This  skin friction formula was chosi'n over 
others,   lor instance- the Ludweig-Tillman formula,   because it is 
more accurate; at high Reynolds numbers.   With the Mager       profile 
assumptions for the crossflow,   the crossflow momentum integral 
equation is transformed into an equation for the angle   /3   that the 
shear stress makes with the streamline direction.   Then   ß   is de- 
fined by 

tan   ß    - 
iZ 

ft 

where   Cf^ =    TW2/(PU2/2)   and   T w2   i« the wall shear stress in the 
crossflow (e.g.   normal to the surface streamlines) direction. 

The shear stress magnitude is then given by 

Cfm     =     s/TTtTn2 
ß 
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ß remained less than about 8.5° on all streamlines except in 
sonne local regions near the stern on the keel and waterline.  Here 
the transverse section curvatures are very large and the boundary 
layer approximation is not valid anyway. 

Note that equations (2) and (3)   correspond to the axisymme- 
trie boundary-layer momentum-integral equations for a body of 
revolution with local radius    r   if   r   is defined by 

1 dr 
da 

-K. 

The dominant three-dimensional effect on slender ships is simply 
the streamline convergence and divergence represented ty the equi- 
potential line geodesic curvature K, ^ 

Any potential flow that supplies the streamlines and invis- 
cid velocity distribution thereon can be used with equations (3) and 
(4),   but we have used the very simple zero Froude number,   slender- 
body potential flow theory given by Tuck and von Kerczek^   in con- 
junction with the surface equation for the hull described in von 
Kerczek and Tuck        .   This combination seemed to give fairly good 
results for the LUCY ASHTON when compared to the double-model ig    r 

experiments of Jou.ert and Matheson. We used exactly the same 
procedure for the Series 60 block 60 calculations and will compare 
the results to model experiments in a towing tank.  The extension 
of the Tuck-von Kerczek ^     slender-body potential flow program to 
include free-surface effects is underway.   We have used the zero 
Froude number potential flow because of its availability and the ex- 
pectation that wave effects on the boundary-layer flow will be rela- 
tively minor on the lower portions of the hull.   This calculation will 
serve mainly to illustrate the suitability of the Cumpsty-Head- 
Smith   >°   boundary layer method for moderate block-coefficient 
hulls. 

THE MODEL, EXPERIMENTA L SETUP, AND PROCEDURES 

The ship model used was a 20-foot Series 60,  block 60, 
wood model.   The name "BRIAN BORU" was given to the model as a 
counterpart to the British research ship model "LUCY ASHTON". 
A  photograph of the model is shown in Figure 1.   The body plan is 
shown in Figure 2.   A  slight hull modification aft of station 18 (which 
preserved sectional areas) was made to accommodate a propeller 
shaft used earlier for propulsion and vibration experiments.   This 
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model has been tested by many of the towing tanks in the world as a 
standard vibration model.   The streamlines on the "double model" 
were computed by Douglas-Neuman    and slender-body 4   potential 
flow methods.   In Figure 2 good agreement between the streamlines 
computed by each method is noted.   The slight difference in stream- 
lines plotted is due mainly to the fact that the starting points in the 
two computations are not exactly the same. 

A coordinate system   O'x'y'   with its origin in the undis- 
turbed free surface and another coordinate system   o x y z   fixed in 
the ship are used.   Both are right handed coordinate systems moving 
with the steady velocity of the ship.   The plane   o'x'z1   is on the un- 
disturbed free surface,    o'x'   is in the direction of the ship motion 
and   o'z'   is upward.   The plane   oyz   contains the midship section, 
plane   oxz   the center plane section and the plane   oxz   the design 
water plane.   The locations of the shear probes and pressure taps in 
the   oxyz   coordinate system are tabulated in Table 1.   The reference 
length used to non-dimensionalize all lengths is L/2 where   L   is the 
length between perpendiculars.   When the model is tested in the free- 
to-trim condition,   the two coordinate systems are no longer coinci- 
dent.   Wc denoted the vertical distance from the axes o'x to ox by  h(x) 
(positive above the undisturbed free surface).   The sinkage is defined 
as     - [h(-J) + h(l)]/2, trim by bow by   - [(hH) - h(lj and trim angle 
by tan   "1   [(-h(4) t  h(l))/Lj . 

Provisions were made for sixty interchangeable shear probes 
and pressure laps spaced evenly along a total of four zero Froude 
number streamlines,   designated by   A,   B,   C,  and D,   on the double 
model,  and along a waterline   E (14% draft).   These probes have to be 
mounted flush to the hull surface.  At each location a one-inch dia- 
meter teflon mounting plug was sunk into the hull with its axis paral- 
lel to the normal of the ship surface,  and its face flush with the ship 
surface,  the surface of the plug was carefully polished to follow the 
original contour of the hull.   The hot-film shear probe penetrated the 
plug and was fastened by four screws.   The depth and angle of the 
probe with respect to the hull were adjustable.  A photograph of this 
arrangement is shown in Figure 3.  The depth of the probe with res- 
pect to the surface was carefully set to protude less than 0. 002 inches 
out of the hull surface by using a flat face pressure transducer as a 
probe-protuberance feeler.   Preston tubes and static pressure taps 
were piaced on the hull through the same mounting plugs.   Dynasco 
pressure transducers were used to measure the pressure from the 
Preston tubes or the pressure taps.  Seven-channel   DISA   (Franklin 
Lake,  New Jersey) constant temperature anemometers    were used 
for the hot-film shear probes which were manufactured by Lintronics 
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Laboratory (Silver Spring,   Maryland).   The use and calibration of the 
shear probes is given in the Appendix.   The electrical output of the 
calibrated transducers was digitized,  averaged for 100 seconds,  and 
analyzed in various dimen sionless forms using an Interdata computer. 
The results were printed out immediately after each experiment.   At 
each Froude number the model was first run free to trim.   This trim 
condition was then fixed for subsequent runs at the same F     . 

The total resistance was routinely measured by a floating 
girder and a block gage.   The trim and sinkage were measured using 
two potentiometers located at FP and AP,   and wave profiles were 
traced along the hull using   a   colored pencil  and then measured. 
These provided a complete set of experimental data for BRIAN BORU. 

RESULTS AND DISCUSSION 

The experimentally measured wave profiles along the hull, 
sinkage and trim,   total resistance,  and pressure and shear stress 
distributions at various FroL le numbers will be presented and com- 
pared with relevant theories and numerical results. 

(I)   Wave profiles .ilong the hull.   Photographs and a dimen- 
siimless plot of wave profiles along the hull  it six different Froude 
numbers .ire shown in Figures 4 and S,   r---.pectively.   Figure 6 shows 
the nieas'ired profiles at    Fn -  0. iZ and 0. £H   compared with the 
profiles predicted by (juil loton's method.   Although the forward quar- 
ter of tin- predicted wave profiles on the model compare favorably 
with the measured profile,   the agreement becomes poorer downstream. 
The prediction not only overestimates the magnitude of the last trough, 
hut also misses the location (phase). 

U) Sinkage and trim.   The measured sinkage and trim com- 
pared with the first-order thin ship theory cornputed by Yeung   are 
shown in Figure 7.   The measured values of sinkage are all smaller 
than that predicted.   However,   the measured sinkage and trim coeffi- 
cients agree rather well with the calculated values using the zero 
Froude number,   slender body'^'or Douglas-Neuman^'theoretical pres- 
sure distribution.   It should be noted that the measured trim does not 
vary with Froude number as much as that predicted.   Since the sin- 
kage,  and trim and the wave profiles predicted by the thin ship theory 
are not in good agreement with the measured values,   the thin ship 
theory may not be suitable for this model which has a flat bottom and a 
moderate block coefficient.   No further comparison of experimental 
data with thin ship theory is attempted. 
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(3) Total and residual resistance. The measured total resis- 
tance and the residual resistance, Cp = C~, - Cp , are shown in Fi- 
gure 8,  where the 1957   ITTC   friction line was used to determine 

28 Cp  for all of the data.   The other data of the geosims by Todd    ,  and 
by Tsai and Landweber J<) (parent hull without stern modification) are 
also shown.   The 6-,   10-,   and 14- foot models were tested in the 
Iowa Tank.   The   Cp   of the   10- and 14- foot models is higher than 
that of 6- and 20- foot models.   The 20 model was tested in  NSRDC 
basin I and II.   However,   reasonable agreement for the 6- and 20- 
fcot models is noted.   The   Cj   of the present  20- foot model was 
measured in NSRDC bafin   I and II   by a floating giider and a block 
gage.   Turbulence stimulation, a row of studs,   1/8-inch in diameter, 
0. 1-inches in height,  and   1-inch in spacing was used ir. one of the 
tests.   No significant difference in   C-r.   with the turbulence stimulator 
was found    The discrepancy in   C.-.'s   among the four present tests is 
less than 2%. 

(4)   Pressure distribution.   If the flow is assumed irrota- 
tional,   then the Bernoulli equation in the   o'x'y'z'   coordinate system 
is 

p i r   ?       ?,       21     p 
p       -    Vv-X.    - uz'   ♦   -^     [   Vx'   +      ^y    +      ^z'J     .—a- 

where   V    is shii> spc«'d,   Pa    is the atmospheric pressure and   ^   the 
|)e rlu rl>a tiim potential.   We define the pressure coefficient by 

P-(Pa-   >.') 2V.x.    .[,J+     V^    *j] 

'' ,V2/2 V2 <6) 

which yields   Cp    -  1    at the stagnation point where   ^V  = V   and 
^y   =   ^f/  =   0.   If the linearized free-surface boundary condition is 

used,  at any waterline below the undisturbed water surface   'f   reduces 
to^Mx',  y',  z'^exp (gz'/V^^x'.y', z' = 0). From Equation (6) we 
have 

C U +   h) ("(zHi)g 

'    Snt    ""[—t 
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where    s" is the wave height in the   oxyz   coordinate system and   h 
is the distance between   o'x'   and   ox. 

The measured   C     along streamlines   A,B,C,  and D,  and 
along waterline   E   and the corresponding approximate   C     computed 
from Equation (7) and for the double models are shown inTigure 9. 
As shown in Figure 9-e the wave approximation (Equation 7) is in 
good agreement with measured values near the free surface (14% 
draft) for the three Froude numbers tested.   However,  this approxi- 
mation is not valid near or on the ship bottom. On the after half of 
the flat ship bottom the measured   C      is in general close to the   C 
predicted by the double model (Figure 9-a   through   9-c), and the 
effect of the surface wave (Froude number) there is small.   However, 
some effect of waves (Froude number) on   C„   on the forward half of 

P the ship bottom is noted.   It should also be noted that   Cp   near the 
keel (streamline A)   at a   Fn = 0. 22   is very close to the   C_   predict- 
ed by the double model.   Figure 9-b shows the   C_   of the double model 
model computed by the Douglas-Neuman theory3 and slender body 
theory ''''8   Close agreement between the two computations iu the 
middle of the ship is noted. 

(5)   Shear Stress Distribution.   The local shear stress coef- 
ficicnt is dofinod as   C^ -  r w/ (^V   /2),   a vector tangent to the hull 
surface.   The shear stress magnitude and the angle of the probe 
relative to the waterline; for points on the ship side and to the buttock 
lines for points on the ship's bottom were measured by rotating the 
probe- to three angular positions (0,± O ).   This can be used to compute 
tin- magnitude and angular position of shear stress vector on the hull. 
This information along with the direction cosines of the waterline or 
buttock line tangents and the surface normal calculated from the sur- 
face equation 26 ,   were sufficient to decompose the shear stress 
vector into three components (C,     >   C^        ,   Cff    ) relative to the 
body axes (x,  y,   z, ).   The measured direction cosines of   Cf     rela- 
tive to the (x,   y,   z) axes are shown in Figure 10 at the high and low 
Froude numbers of the experiments.  Note that these direction cosines 
do not vary much with Froude number except near the station of 
maximum wave slope (i.e.,  between   x =   -0.7   and   -0.5). 

In Figure 11 we present the measured and calculated distri- 
butions of Cfx  along various streamlines and on waterline   E.   Note 
that the agreement between experiment and calculation is better at 
low Froude numbers and is fairly good on streamline A for the entire 
range of Froude numbers of the experiment.   In these cases,  wave 
effects were at a minimum and this indicates that the Cumpsty-Head- 
Smith boundary layer calculation is adequate for moderate block- 
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block-coefficient hulls at small Froude numbers. Crossflow effects are 
very small throughout.  The main discrepancy is near the stern and in 
the region of maximum wave slope.  The discrepancy near the stern 
is due to a combination of inadequate boundary layer theory, poor 
pressure distribution prediction,  and poor body-geometry fitting by 
the surface equations there.  Improvement of prediction techniques 
for this region requires special attention. In the region of maximum 
wave slope, we find that the calculated shear stress magnitude and 
the measured shear-stress magnitude agree fairly well,  so that the 
differences between   Ciw   measured and   C< calculated shown in >i        mcaaurcu cum     y->jv 

Figure 11 is mainly due to differences in streamline direction at 
zero and finite Froude nimber. 

In the last graph of Figure 11 we have included the calcu- 
lation of   C,      along waterline   E   of Webster and Huang1^   .  Here 
the pressure gradient effects on the boundary layer due to body geo- 
metry and the waves are very small,  and thus there is little diffe- 
rence from flat plate values except very near the stern and near the 
maximum wave slope.  An interesting observation is that the Webster- 
Huang15   calculation seems to have not predicted the effect of the 
wave satisfactorily.  This effect is mainly due to change in the shear 
stress direction in accordance with the streamline direction.  Webster 
and Huang 15   used Guilloton's 17   potential flow method to calculate 
the inviscid velocity on the ship surface.   Due to the rather crude 
approximation of the body and the potential flow,  accurate stream- 
lines and consequently accurate values for streamline convergence 
and divergence are not obtained.  The present calculation is also not 
expected to predict the shear stress near the free surface since the 
effect of the free surface is neglected in the potential flow computa- 
tion.   From these considerations it seems that it is very important 
to obtain an accurate discription of the potential flow streamline and 
pressure distribution in order to adequately calculate the proper 
magnitudes of the shear stress components (C,     ,   C«     ,  C,    ). 

It also should be noted that both the present computation 
and the computation of Webster and Huang15    overpredict   Cj(    near 
the stern.  It is not possible to predict thick boundary layer ciarac- 
teristics near the stern by these methods. 

CONCLUSION 

Comparison of the measured pressure and shear stress 
distributions,  trim and sinkage,  and wave profiles along the hull of 
BRIAN BORU at various Froude numbers with various theories and 
boundary layer calculations allows the following conclusions to be 
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drawn: 

1. The aiaka1e aad trim, aad the wave profllea alGal the 
hull predicted by thiD ahlp theory are not ill 1ooc1 a1reemeat with the 
meaaured valuea. Thill ahlp theory ia not aatiafactory for ahlpa 
havilll a flat bottom aad a moderate block coefficient. 

Z. The meaaured pre .. ure cllatributlGDa Gil the after half 
of the ahlp bottom are rather cloae to thoae computed Gil a double
hull model aad ahow little eUecta from wavea (Froude number). Thill 
ahlp theory doe• not pve a 1oocl appradmatlGD of the now ill thla 
repGil. Near the free aurface the pre .. ure cllatributlGDa behave like 
a UaeariHCI wave, which a1reea with the thiD ahlp appradmatlGD. 
The nowa near aDd Gil the forward half of the ahlp bottom are aUect
ed by the combiaatlGD of the free aurface wave• &Del the detalla of 
the ahlp 1eometry. A new phyalcal model ia needed ill order to pre
cllct the now ove I' the after half of the hull. 

3. The meaaured ahear atreaa vector• at aelectecl point• 
Gil the model ahow that the ahear atre .. vector• are ori•tecllll 
nearly the aame cllrectlGD aa the local atreamllllea iacllcatllll, aa haa 
been fculld prevlcualy, that bouF.clary layer croaafiow ia aman Gil 
moderate block coefficient hlall forma. Althca&~h the local ahear 
atre .. value• depart little from eqgi.alent flat plate ftluea, the 
tread of the departaare ia fairly well precllctecl by the Oampaty-Heacl• 
Smith boulldary-layer calculatlGD method with the aman croaafiow 
aaaumptlGD, eapeclally alCJ81 at~eamliaea where wave eUecta are 
ne1li1ible. Thla lllcllcatea that bowaclary layer calculatlGDa carried 
out alGDI the atreamlillea, taklDi into accca&Dt preaaure 1ndienta 
&Del atl'eamlille cGDverleDce or cllnr1ence, uellli momentaam illtelral 
method• caa be quite uaeful. It h importaat, however, to develop aa 
accurate potential now calculatlGD method• aDd method• for calcu
latllli thick boulldary-layer approachllli aeparatlGD. 
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APPENDIX 

EXPERIMENTAL TECHNIQUES FOR MEASURING MAGNITUDE AND 
DIRECTION OF SHEAR STRESS 

In order to determine the shear stress vector distribution 
on the hull,  it is necessary to measure the distribution of the magni- 
tude of the shear stress vector T W and its angle Ü with respect to a 
convenient direction on the ship hull.   Two useful measuring devices 
are considered in this Appendix : the flush-mounted hot-film shear 
probe,  and the Preston tube and the directional Preston probe. 

(I)   Hot-Film Shear Probes 

The principle of the hot-film shear probe is that skin fric- 
tion is a function of electrical current required to maintain a metal 
film at the constant temperature placed on the hull surface31,3   .   The 
output of the hot-film anemometer is a nonlinear power function of 
shear stress.   The ideal response of the hot-film is that the output of 
the instrument is directly proportional to the shear stress measured. 
This ideal response can be accomplished by processing the nonlinear 
output from the anemonneter through a linearizer which is commer- 
cially available (e.g.   DISA type 55D15 linearizer).   The functional 
relationship between the output of the linearizer and the shear stress 
is obtained through calibration,  and slight nonlinear response is 
tolerable.   Most commercial anemometers and linearizers can be 
adjusted to achieve almost perfect linearization. 

Hot-film shear probes designed and built by Ling    'were 
used in this study.   A  strip of platinum film about   0. 1mm   wide and 
0. 8 mm   long is fused under high temperature to the polished end of 
a pyrex rod   0. 1-inch   in diameter and   1-inch   long.  Figure Al 
shows the outputs of a hot-film anemoineter and linearizer before 
and after the test versus the shear stresses measured by a Preston 
tube.  A special wall-jet calibration facility,   in which the wall shear 
stress on a flat wall two feet from a 1/2 inch jet can be varied from 
0 to 0. 5 psf, was built for this study.   This facility using towing basin 
water (not to vary chemical properties and temperature),  is essent- 
ial for the proper calibration of the hot-film shear probes.   The dir- 
ectional response of the hot-film shear probe is calibrated by rotat- 
ing the hot-film element with respect to the flow direction.   Typical 
results are shown in Figure A2.   The directional response is propor- 
tional to cosine   Ö   up to 0 - 65 degrees.   The difference between a 
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misaligned probe is also shown. Since the angular response is a 
cosine function,   the angle between the maximum shear stress and a 
reference line,  0 can be obtained by rotating the probe   i 6   with 
respect to this line,  i. e. , 

H   - (e) 
tan Ü   =   12  

H/w, 
(Al) 

where (e)+fl    is the output when the probe is rotated at an angle equ. 1 
to ± ^   respectively.   The values of  0 used in the study were 45 deg. 
and 30 deg.   depending upon the angle of the shear stress vector with 
respect to the reference line.   The film on the probe element was 
aligned parallel to the waterlines for points on the ship side and 
parallel to the buttock lines for points on the ship bottom.   The angle 
between the maximum stress and the reference line is obtained 
through Equation (Al).   The magnitude of the shear stress along the 
reference line and the angle fl   , along with the direction cosines of 
the waterline and buttock line tangents and the surface normals cal- 
culated from the surface equation" were sufficient to decompose 
the shear stress coefficient vector   Cf  into the components (Cfx , 
Cfy ,   Cjz),   relative to the body axes (x,  y,   z). 

One of the difficulties in usinq the hot-film shear probe is 
mounting the probe perfectly flush to the surface.  As shown in 
Figure A3,  the response is very sensitive to the probe protuberance. 
In order to keep the accuracy within 5%,   the probe protuberance 
should be kept within   0. 002 inches.  This was accomplished by using 
a flat face pressure transducer as a probe feeler. 

(2)   Preston Tube and Directional Preston Probe 

The Preston method of measuring skin friction in the turb- 
ulent boundary layer makes use of a circular pitot tube resting on 
the wall.   The Preston tube pressure,   together with the static pres- 
sure at the same point,   permits the computation of the skin friction 
at that point.   The use of the Preston tube is based on the assumption 
that the tube lies within the law-of-the-wall region of the boundary 
layer.   In this study we limit the diameter of the Preston tube to 
less than 15% of the boundary layer thickness in order to satisfy this 
assumption.   The calibration of a Preston tube reported by Landweber 
and Siao 33 ,    by Patel 34   ,   and many others is shown in Figure A4. 
The Preston tube used was also calibrated in a   1-inch   pipe flow. 
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The present calibration is in good agreement with references (33 
and 34). 

Patol       also found that a Preston tube can be used with 
acceptable accuracy (maximum error of 3 percent) if the pressure 
gradient parameter is limited to the range   -0. 005 < v/(p\i. \ ) 
dp/dx<0.01     where   dp/dx   is the pressure gradient along the flow 
direction and   Ur = ^TW/P     is the shear velocity.   The validity of 
using a Preston tube in boundary layers wi:h large crossflows is not 
known.  However,  it is believed that the crussflow on the present 
ship model is rather small (the crossflow angles calculated are all 
less than 1 5 deg. ). 

The directional response of the Preston tube has been cal- 
ibrated and is shown in Figure A5.  It is not practical to rotate the 
Preston tube flush on the three-dimensional ship hull and therefore 
the Preston tube is not used for measuring the angular position of 
the shear stress vector.   The three-tube directional Preston probe, 
as shown in Figure A6,  has very good directional response.   One 
drawback of the Preston tube and the directional Preston probe is 
that several of them can not be used close together because they 
will not only cause an increase in the ship model resistance but will 
also have an interference effect on the downstream probes (see 
Figure A7). 
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TABLE   I   -   PROBE   LOCATIONS  ON   THE  MODEL   HULL 

STREAMLINE A STREAMLINE C STREAMLINE D 

No. X/L/2 Y/L/2 Z/L/2 No. X/L/2 Y/L/2 Z/L/2 No. X/L/2 Y/L/2 Z/L/2 

1 -0.900 0.0109 -O.O798 24 -O.9OO 0.0120 -O.0350 41 -0.800 0.0287 -0.0246 

2 -0.800 0.0167 -O.O952 25 -0.700 0.0462 -O.0506 42 -0.600 0.0696 -0.0409 

3 -0.700 0.0085 -0.1056 26 -0.600 O.064i« -O.O651 43 -0.400 0.1046 -O.0635 

I. -0.600 0.0039 -0.1067 27 -O.5OO 0.0721 -0.0871 44 -0.200 0.1203 -O.0854 

5 -O.'tOO 0.0022 -0.1067 28 -0.400 0.0660 -0. 1028 45 0.006 0. 1241 -0.0939 

6 -0.200 0.0020 -0.1067 29 -O.3OO 0.0608 -0.1066 46 -0.200 0.1204 -O.O888 

7 -0.100 0.0019 -0.1067 30 -0.200 0.0249 -0.1067 47 -0.400 0.1078 -0.0733 

8 0.100 0.0019 -0. 1067 31 -0.100 0.0543 -0.1067 48 -0.600 0.0616 -0.0495 

9 

10 

II 

0.200 

O.iOO 

0.600 

0.0019 

0.0020 

0.002^ 

-0.1067 

-0.1067 

-0.1067 

32 

33 

34 

0.000 

0. 100 

0.200 

0.0689 

0.0537 

0.0542 

-0.1067 

-0.1067 

-0.1067 

49 -0.800 0.0439 -0.0277 | 

WATERLINE E 

50 -O.9OO 0.0128 -O.OI50 

12 0.800 0.0046 -0.1067 35 0.300 0.0555 -0.1067 51 -0.800 0.0294 -O.OI50 

13 0.900 0.0087 -0.08
r' 36 

37 

38 

0.400 

0.500 

0.600 

0.0585 

0.0585 

0.0641 

-0.1067 

-0.1067 

-O.O792 

52 

53 

54 

-0.500 

-O.3OO 

0.100 

0.094! 

0. 236 

0.1338 

-0.0150 

-0.0150 

-O.OI50 

STREAMLINE ß 

f) -0.900 0.0118 -O.0491 

15 -0.800 0.0270 -0.0573 39 0.800 0.0343 -0.0445 55 0.500 0.1195 -0.0150 

16 

17 

-0.700 

-0.500 

0.0422 

0.0361 

-0.073C 

-0.1053 

40 0.900 0.0145 -0.0326 56 

57 

0.700 

0.800 

O.O836 

0.O54O 

-O.OI50 

-O.OI50 

18 

19 

20 

-0.300 

0.000 

0.300 

0.0260 

0.0243 

0.0246 

-0.1067 

-0.1067 

-O.IO67 

58 -0.950 0.0122 -O.OI50 

ADDITIONAL POINTS 

59 -o.6oo|o. 1093 -0.0400 

21 0.500 0.0270 -0.1067 60 -0.100 0.1338 -0.0400 

22 0.700 0.0377 -0.0896 61 0.300 0.1308 -0.040 

23 0.900 0.0141 -0.0535 62 

63 

0.950 

0.950 

0.0090 

0.0042 

-0.0752 

-O.O25O 
L = 20 feet 
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Figure 3.     Photograph of Hot-Film Shear Probe and Mounting 
Plug 
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Figure 4.     Wave Profiles at Various Froude Numbc 
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Shear Stress and Pressure Distribution on a Ship ModeZ 
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Huang and von Kerczek 

DISCUSSION 

L. Landweber 
University of Iowa 

Institute of Hydraulic Research 
Iowa City, U.S.A. 

I am very pleased to see such a basic study of viscous cha
racteristic s of flow about a ship at nonzero Froude number. There 
have been too few such studies. As the authors realise, the method 
that they used to calculate the three-dimensional boundary layer on 
the ship is suitable only for fine formes, free of the cross flows, 
bilge vortices, secondary flows and separation. I hope that, in the 
continuation of their work, they will use methods which are suitable 
for fuller forms, possibly with separation, extending even into the 
thick boundary layer zone near the stern. 

I would like to call attention to a book on three-dimensional 
boundary layers, recently published by one of my colle gues at the 
University of Iowa, V. C. Patel. It is available only directly from 
him ; he is his own publisher. 

Concerning the potential flow, we at the University of Iowa 
have tried the technique that is used in this paper, that of Tuck
Kerczek, and some of our work on this method was reported at the 
Seventh Symposium in Rome. The method is a very attractive one. It 
appears to enable one to obtain the parametric equations of a ship 
form in a very compact way. Our exprerience has been, however, that 
the method cannot give a sufficiently accurate representation of the 
hull at the bow and stern, so that it could not be useful for obtaining 
source distributions or for calculating wave resistance, especially 
since, for wave resistance, the result is very sensitive to small 
deviations from the original form. It appears, however, that the me
thod is suitable for determining the streamlines at low Froude number 
and can serve as the basis for determining a streamline co-ordinate 
system for boundary-layer calculation, as the authors have shown. 

One results in the paper is not clear to me, and may be 
incorrect. On page 10 the authors give a separable form for the po
tential function. 

Their assumption is that the free-surface condition can be 
applied below the undisturbed water surface. 1 think that this result 
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Shear Stress and Pressure Distribution on a Ship MOdet 

is valid for two dimensions, not for three. 

The authors have shown some of our data for a family of 
series 60 geosims ranging in length from 6 to 14 feet. The results 
for the 14 feet model should be corrected for blockage, as we plan 
to show at the forthcoming ITTC in Berlin. 

The auth.,rs are to be congratulated on their very interes
ting and valuable paper. 

DISCUSSION 

John V. lfehausen 
Unive~sity of Catifo~ia 

Be~ketey~ Califo~ia~ U.S.A. 

Bruce Adee has recently made a computation which seems 
very similar to yours, except that instead of using the rigid free-
su rfacc boundary condition, he actually used the linearized free
surface boundary condition . I wonder if you have had a chance to com
pare your results with his, or if even he sent you a copy of his thesis ? 

REPLY TO DISCUSSION 

Thomas T. Huang 
Navat Ship Resea~oh and Devetopment Cente~ 

Bethesda~ Marytand~ U.S.A. 

lfe have not yet received a copy of Dr. Adee's thesis for 
comparison. 

I thank Professor Landweber for his kind suggestion. This 
is a complicated problem involving the free sudace boundary condi
tion and turbulent boundary layer. This topic would open many inte
resting investigations in the future. We shall take Dr. Landweber's 
suggestion very seriously. 
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Huang and von Kercaek 

Dr. Landweber's comment on page 10 is right, but the 
measurements show that the wave along the mid-ship is almost a 
two-dimensional wave. T he blockage correction is a very interes
ting problem which has to be considered. The 14-ft and 10-ft 
models appeared to need some blockage correction in the Iowa tank. 
It is interesting that the 6-ft model and the ZO-ft model agree very 
well. 

DISCUSSION 

Jean-Fran~ois Roy 
Bassin d'Essais des Ca~nes 

Paris., France 

Translated from French) 

All the results presented in this paper are very interesting. 
And especially, I think it is exceptional to know both distributions of 
pressure and shear stress on a hull. In such a case, I would have 
been t :mptcd to check, by integration, the values o£ the total resis
tance and its two components that have been measured by other means. 
May I ask the authors whether they did make such a verification. 
Thank you. 

REPLY TO DISCUSSION 

Thomas T. Huang 
Naval Ship Research and Development Center 

Bethesda., Maryland., U.S.A. 

Because of time, the actual integration of the pressure dis
tribution and shear stress distribution has not been done. We want 
to improve our computation methods for the potential flow as well 
as boundary layer first and the actual integration can be done if we 
have time, and probably will be carried out in the near future. It is 
not a major point of our paper. 
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