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PREFACE

The Ninth Symposium on Naval Hydrodynamics continues in all aspects the
precedent, established by previous symposia in this series, of providing an inter-
national forum for the presentation and exchange of the most recent research re-
sults in selected fields of naval hydrodynamics. The Symposium was held in Paris,
France on 20-25 August 1972 under the joint sponsorship of the Office of Naval
Research, the Ministére d'Etat chargé de la Défense Nationale and the Ass: ciation
Technique Maritime et Aeroanutique.

The technical program of the Symposium was devoted to three subject areas
of current naval and maritime interest. These subject areas are covered in the
Proceedings in two volumes:

Volume 1 — The Hydrodynamics of Unconventional Ships
— Hydrodynamic Aspects of Ocean Engineering
Volume 2 — Frontier Problems in Hydrodynamics.

The planning, organization and management of a Symposium such as this is
an undertaking of considerable magnitude, and many people have made invaluable
contributions to the resolution of the myriad of large and small problems which
invariably arise. The Office of Naval Research is acutely aware of the fact that the
success of the Ninth Symposium is directly attributable to these people and wishes
to take this opportunity to express its heartfelt gratitude to them. We are particu-
larly indebted to Vice Admiral Raymond THIENNOT, Directeur Technique des
Constructions Navales, Ministére d'Etat chargé de la Défense Nationale, to Professor
Jean DUBOIS, Directeur des Recherches et Moyens d’Essais, Ministére d’Etat chargé
de la Défense Nationale, and to Monsieur Jean MARIE, Président de I’ Association
Technique Maritime et Aeronautique, who provided the formal structure which
made this joint undertaking possible. The detailed organization and management
of the Ninth Symposium lay in the capable and competent hands of Vice Admiral
Roger BRARD, Président de la Academie des Sciences, and Rear Admiral André
CASTERA, Directeur du Bassin d’Essais des Carénes, who were most ably assisted
in this endeavor by the charming Madame Jean TATON. Throughout the long days
of planning and preparation the experienced and practical counsel of Mr. Stanley
DOROFF of the Office of Naval Research provided continuous guidance which
contributed in an immeasurable way to the success of the Ninth Symposium on

Hydrodynamics.

RALPH D. COOPER
Fluid Dynamics Program
Office of Naval Research
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OPTIMUM SHAPES OF BODIES IN FREE SURFACE
FLOWS

Th., Y. Wu
California Institute of Technology
t Pagsadena, California, U.S.A.
] and
Arthur K. Whitney

Palv Alto Research Laboratory, Lockheed Aireraft Corp.
Palo Alto, California, U.S.A.
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ABSTRACT

The general problem of optimum shapes arising in
a wide variety of free-surface flows can be charac-
terized mathematicallybyanew class of variation-
al problems in which the Euler equation is a set of
dual integral cquations which are generally nonli-
3 near, and singular, of the Cauchy type, Several ap-
! proximate methodsarediscussed, including linear-
. ization of the integral equations, the Rayleigh-Ritz
3 method, and the thin-wing type theory. These me-
4 thods are applied here to consider the following
: physical problems :

! (i) The optimum shape of a two-dimensional plate
planing on the water surface, producing the maxi-
mum hydrodynamic lift ;

(ii) The two-dimensional body profile of minimum
E}, pressure drag in symmetric cavity flows ;

(iii) The cavitating hydrofoil having the minimum
: drag for prescribed lift,

Approximate solutions of these problems are dis-
cussedunder a setof additional isoperimetric cons-

traints and some physically desirable end condi-
tions,

Preceding page blank
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Wu and Whitney

I. INTRODUCTION

The general problem of optimum shapes of bodies in free-
surface flows is of practical as well as theoretical interest. In ap-
plications of naval hydrodynamics these problems often arise when
attempts are made to improve the hydromechanical efficiency and
performance of lifting and propulsive devices, or to achieve higher
speeds of operation of certain vehicles. Some examples of problems
that fall under this general class are illustrated in Figure 1, The
first example is to evaluate the optimum profile of a two-dimensional
plate planing on a water surface without spray formation, and produc-
ing the maximum hydrodynamic lift under the isoperimetric cons-
traints of fixed chord length ¢ and fixed wetted arc-length S of the
plate. The second example depicts the problem of determining the
shape of a symmetric two-dimensional plate so that the pressure drag
of this plate in an infinite cavity flow is a minimum, again with fixed
base-chord £ and wetted arc-length S . The third is an example
concerning the general lifting cavity flow past an optimum hydrofoil
having the minimum drag for prescribed lift, incidence angle a ,
chord length / and the wetted arc-length S, In these problems the
gravitational and viscaus effects may be neglected as a first appro-
ximation for operations at high Froude numbers. Physically, there is
no definite rule for choosing the side constraints and isoperimetric
conditions, but the existence and the characteristic behavior of the
solution can depend decisively on what constraints and conditions are
chosen, Mathematically, it has been observed in a series of recent
studies that the determination of the optimum hydromechanical shape
of a body in these free-surface flows invariably results in a new class
of variational problems. Only a very few special cases from this
general class of problems have been solved, the optimum-lifting-line
solution of Prandtl being an outstanding example.

There are several essential differences between the classic-
al theory and this new class of variational problems, First of all, the
unknown argument functions of the functional under extremization are
related, not by differential equations as in the classical calculus of
variations, but by a singular integral equation of the Cauchy type,
Consequently, the "Euler equation' which results from the consider-
ation of the first variation of the functional in this new class is also
a singular integral equation which is, in general, nonlinear. This is
in sharp contrast to the Euler differential equation in classical theory.
Another characteristic feature of these new problems is that while
regular behavior of solution at the limits of the integral equation may
be required on physical grounds, the mathematical conditions which
insure such behavior generally involve functional equations which are

1112
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difficult, and sometimes just impossible, to satisfy,

Because of these difficulties and the fact that no general
techniques are known for solving nonlinear singular integral equations,
development of this new class of variational problems seems to require
a strong effort, Attempts are made here to present some general re-
sults of the current study. Some necessary conditions for the existence
of an optimum solution are derived from a consideration of the first
and second variations of the functional in question. To solve the re-
sulting nonlinear, singular integral equation several approximate
methods are discussed. One method is by linearization of the integral
equation, giving a final set of dual singular integral equations of the
Cauchy type. When the variable coefficients of this system of integral
equations satisfy a certain relationship, this set of dual integral
equations can be solved analytically in a closed form ; the results of
this special case provide analytical expressions which can be exten-
sively investigated to determine the behavior of a solution near the
end points. Another approximate method is the Rayleigh-Ritz expans-
ion ; it has the advantages of retaining the nonlinear effects to a certain
extent, of incorporating the required behavior of the solution near the
end points into the discretized expansion of the solution, but the method
is generally not convergent. A third approach depends on a thin wing
type theory to describe the flow at the very beginning, a variational
calculation is then made on an approximate expression of the physic-
al quantities of interest. These mathematical methods will be discuss-
ed and then applied to three problems described earlier, While the
results to be presented should be considered as still preliminary,
since exact solutions to these problems have not yet been found, it is
hoped that this paper will succeed in stimulating further interest in
the development of the general theory, and, in turn, aid in the resolu-
tion of many hydromechanic problems of great importance.

II. GENERAL MATHEMATICAL THEORY

To present a unified discussion of the general class of op-
timum hydromechanical shapes of bodies in plane free-surface flows,
including the three examples (i) - (iii) depicted in Figure 1, we as-
sume the flow to be inviscid, irrotational, and incompressible, taking
as known that the physical plane z = x + iy and the potential plane
f=9¢ +iy correspond conformally to the upper half of the para-
metric = £ +in plane by the mapping that can be signified sym-
bolically as

f =¢ +iy = v(!:cl....cn). (1)
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where » is an analytic function of { and may involve geometric
parameters c, , ... Cp, 80 that the wetted body surface corresponds
to 1=0%, ' |§ <1, and the free surface, to 5= 0%, l&] >1 .
Specific forms of the function v ({) will be given later, but our pur-

pose at this time is merely to illustrate the type of nonlinear varia-
tonal problem that arises.

Description of the flow is effected by giving the parametric
expressions f = f({) and w=w (¢{),

w(¢) = -log(df/dz) = r+ib (2)

being the logarithmic hodograph, The boundary conditions for w may
be specified either as a Dirichlet problem, by giving

+ . _ () (given for [£| <1) ,
r = Re w(&¢ +i0) = 0 (|£| >1) , (3)
or as a Riemann-Hilbert problem,
; = Im w(¢ +i0) = B (E) ('EI <l) ’ (4.‘)
© = Re w(f +i0) = 0 (J¢| >V . (4b)

The formulation of the w problem is completed by specifying a con-
dition at the point of infinity, say

w—0 , (|z|-°°), (5)

and by prescribing a set of end conditions, which are generally on ]
r ( E) ) as |

rerny = o, (6)

3
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or similar ones. The end conditions are usually required on physical
grounds in order that the fluid pressure is well behaved at the end

points § = % 1, at which the free boundary meets the wetted body
A surface.

4 The solution to the Dirichlet problem (3), (5), (6), i.e.

Sl aaci s do e

1
w(f) = ¢ /lt('—’;’—‘ riy =0, ()
-1

and the solution to the Riemann-Hilbert problem (4), (5), (6), given

i by
w(t) =_1”z_l)l/z /l B (t)dt (8a)
ir 5 (l_ti) l/Z(t_ 0
with
1
/1 (f(:;c;tlh = L (8b)

are equivalent to each other, as can be readily shown. Here, the func-
tion (¢? - 1)7¢ is one-valued in the { -plane cut from { = -1 to

{ =1, On the body surface, we deduce from (7), by applying the
Plemelj formulas, that

1
Ble) = -2 flf‘;’;" 1 (el L@
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where the integral with s
value, and also defines t
denoted by H,[r] .

ymbol C signifies its Cauchy principal
he finite Hilbert transform of F(t), as

From this parametric d

escription of the flow we derive the
physical plane by quadrature

¢
~w({) df
z(§) = [le a5 ¢ (10)

With the solution (7) - (10) in hand, we see that the chord [ |
wetted arc-length S, angle of attack a , as well as the drag D, lift
L, etc. can all be expressed as integral functionals with argument
functions T (¢) and B(%), which are further related by (9).

ll. THE VARIATIONAL CALCULATION

The general o
mization of a physical
al of the form

Ptimum problem considered here is the minj-
quantity which may be expressed as a function-

1
Io[r. ﬂ:cl. ...cn] = ,/1 FO(I‘(E).ﬁ (£).E;cl..cn)dE

(11)
under M isoperimetric constraints
1
IZ[rvB;Clo-.-Cn] = /l Fl(rlatf;clpn-t cn)d£ =A£
(12)

where Al's are constants, f - 1,2,... M.
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The original problem is equivalent to the minimization of a new func-
tional

M
'r 1 Bicy.nc] =1 - ;’r“z - A ()
=1

where kg 's are undetermined Lagrange multipliers.-

T ————

We next seek the necessary conditions of optimality., Let
I'(t) denote the required optimal function which, together with its
conjugate function B (%) given by (9), minimizes I [T, 8] We
'r further let & T'(¢ ) denote an admissible variation of T (¢),
which is Holder continuous, satisfies the isoperimetric constraints
(12) and the end conditions (6). The corresponding variation in i
B (¢) is found from (9) as

T

3 ,
'_~ 58(¢) = -Hg[sr] ( |&] <1). (14) j
T! { the functional I due to the variations 6 I' .%
j and 6 8 is 3
! i
? = d . & . £
% Al iIfr+ ér, B+ B,cn+6cn] 1fr,8;c] 4
| (15) :
: where dc.'s are variations of parameters c,. For sufficiently i
small |6 l‘l , |5 ﬁl and l6 cnl , expansion of the above integrand in
Taylors'series yields

. 1 2 1
& Al = “+—z_: 1 +—3—: 631 L S (16)
where the first variation 4§81 and the seco tion 621 are

1
51 = [) [F. or +F866]d£+6cn/

(8F/ ac_)dE, (17)
1 n

1117

bt & o Wil it s - fo kel - el ks e T R e S s b - PR r——




Wu and Whitney

e

1
= 2 2
§°1= fl[rrr (6r)+zr”araﬁ +Fﬁ8(éﬁ)] df + dc dc

2

1
2
3 F
[; dc_ dc dé (18)
n m

+ cross product term between 6cn and éTl or 48,

e i e L Lo ol o ol LG et allhhERe il il Sadiulone -

in which the subindices denote partial differe: tiation. The variations

81, 8%1... dependon 6l aswellason T . For I tobe mini.
mum, we must have

s1(r,sr] o, (19)

s21[r,sr] > o, (20)

in which 8 and 8 8 are understood to be related toI' and 8T b'y
(9) and (14). Relation (19) assures I to be extremal, and with the
inequality (20), I is therefore a minimum,

w~ow, substituting (14) in (17) reduces it to

1 1
51 = [1 {F, +H [Fg J}or(&)ae + sc_ LaF/acndf a7y

after inter-changing the order of integration, which is permissible
under certain integrability conditions (see Tricomi 1957, § 4.3)
which will be tacitly assumed to hold, Since the variations &I (&)

3
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and 48c, are independent and arbitrary, the last integral in (17)'

and the factor in the parenthesis of the first integrand must all vanish,
hence

1
/:1 OF(F(E).B(i).E;cl--.cn)/acjdf =0 (j=1,...n),

(21)

1
] | Fg (T(t), B(t) ©)
Fp (D(E) B(E)E) = -H [F] - v, T I

(22)

The nonlinear integral equation (22) combines with (9) to give a pair
of singular ategral equations for the extremal solutions. This is one
necessary condition for I [I‘] to be extremal ; it is analogous to the
Euler differential equation in the classical theory. Presumably, cal-
culation of the extremal solution I' (¢) from (22) and (9) can be
carried out with )\, ... A)g regarded as parameters, which are
determined in turn by applying the M constraint equations (12).
While we recognize the lack of a general technique for solving the
system of nonlinear integral equations (9) and (22), we also notice
the difficulty of satisfying the end conditions (6), as has been expe-
rienced in many different problems investigated recently. The last
difficulty may be attributed to the known behavior of a Cauchy integral
near its end points which severely limits the type of analytic proper-
ties that can be possessed by an admissible function T ( ¢) and its
conjugate function 8 (¢).

Supposing that these equations can be solved for T (¢; Sy
Cor onn cn). we proceed to ascertain the condition under which this
extremal solution actually provides a minimum of I[I']. From the
second variation 821 we find it is necessary to have

1

/( alr / acjz)de;o : (23)
-1
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1
2 2
/:l [Frr (sr) +zFrBarsﬂ+FM(aa) ] dé>0. (243)

By substituting (14) in (24a), interchanging the order of integration
according to the Poincaré-Bertrand formula (Muskhelishvili, 1953)

wherever applicable, it can be shown that (24a) can also be written
as

(24b)
1

1
f g(¢) (s1)% ag + 4 / fh—(tH'm 8r(t) 3T(£)dt
-1 b -1 -1

d¢ 2 0

where

g(E) = Frr +Fﬂﬁ » h(¢)

F” + HE[FFB] .

If we suppose that F 0 Fl‘ﬂ 5 Fﬁ are Holder continuous, and
consider a special choice of 6 ’'which vanishes for |£- £°| >e
bounded (|6l‘|< B) and is of one sign for If - Eol < ¢, where
is any interior point of (-!,1), then it can be shown that the first
term on the left side of (24b) predominates, hence a necessary con-
dition for (24 b) to hold true is the inequality g(¢) > 0, or

EO

Fop * F“ >0 ( |z| <1) . (24c¢)

This condition is analogous to the Legendre condition in the classical
theory,

The preceding illustrates the method of solution of the ex-
tremum problem by singular integral equations. We should reiterate
that the integral equations are nonlinear unless F is quadratic in T

1120

oy

ke A

Al

T AT o )




TR, T T

Optimum Shapes of Bodies in Free Surface Flouws

and B . No general methods have been developed for the exact so-
lution of nonlinear singular integral equations. Further, it may not
always be possible to satisfy the condition I ( X 1) = 0, which are
required on physical grounds. With these difficulties in mind, we pro-
ceed to discuss some approximate methods of solution,

IV. LINEARIZED SINGULAR INTEGRAL EQUATION

The least difficult case of the extremal problems in this
general class is when the fundamental function F[l‘ h B] is quadratic
in T and B, thatis

F(I‘.B,E;cj) = al‘z+2bl‘ﬁ +cBZ+2pF +2qB8, (25)

in which the coefficients a,b, ... q are known functions of { and
may depend on the parameters €y eev Cn. It should be stressed that
the above quadratic form of F can generally be used as a first ap-
proximation of an originally nonlinear problem in which F is trans-
cendental or contains higher order terms than the quadratic. With this
approximation the integral equation (22) is then linearin I’ and 8 ,
and reads

al +bB +p=-Hg[bl +cB +q] ( |E|<1), (26)

which combines with (9) to provide a set ot two linear integra!
equations, both of the Cauchy type. The necessary condition (24c),
obtained from the consideration of the second variation, now becomes

a(¢) +c(t) > 0 ( lEg)<1). (27)

For the present linear problem (regarding the integral
equations) two powerful analytical methods become immediately use-
ful, First, the coupled linear integral equations (9) and (26) can
always be reduced to a single Fredholm integral equation of the second
kind, When the coefficients a(£ ), b( £) and c(# ) of the quadratic
terms satisfy a certain relationship, the method of singular integral
equations can be effected to yield an analytical solution in a closed
form,

(i) Fredholm integral equation
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By substituting (9) in (26), we readily obtain

a(£) T (&) - v(&)H [r]+ B, [br] - Hy [c(tn[r]]) =
= -n,[q) - ps) .
Upon using the Poincaré-Bertrand formula (with appropriate assump-

tions) for the last term on the left side of the above equation, there
results

1

fa(£) + c(£)} T () + /K(t»E) F(t)at = -H, [a] -»(£)
-1
(28a)

where

K(t, ) = = (t) 5 Blk) ; ¢—5(5u'— (28b)

. (s-t) (s-%) °
This is a Fredholm integral equation of the second kind, with a regul-
ar symmetric kernel, for which a well-developed theory is available.
(ii) Singular integral equation method
When the coefficients a,b,c, satisfy the following relation-
ship

a(e) + c(t) > 0, b(¢) = b, L@a)'/% b ccomst, (29)

the system of equations (26) and (9) can be reduced in succession
to a single integral equation, each time for a single variable, and
these equations are of the Carleman type, which can be solved by
known methods (see Muskhelishvili 1953), yielding the final solution
in a closed form,

In the first step we multiply (9) by b, and subtracting it

1122
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from (26), giving

L al/? ® (£) = H, fcl/zd’t] + w(E)
' i (30a)
( 1] <1,
% where
® (&) = a2 it cl/zﬁ , W(E)=-H£[q]-p(f)-
- (30b)

After this Carleman equation for 4>i is solved, a second Carleman
equation results immediately upon elimination of B between the ex-
pression for ¢+ and (9). The details of this analysis are given by

Wu and Whitney (1971)., These analytical solutions are of great interest,
since in their construction there are definite, but generally very li-
mited degrees of freedom for choosing the strength of the singularity,
or the order of zero, of the solution T (¢{)and B(t) at the end
points £ = X ], Itisinthis manner that the analytical behavior of
the solution T (&) and B(¢) can be explicitly and thoroughly
examined. This procedure will be demonstrated later by examples.

T QL P Ty S - T

oo o

V. THE RAYLEIGH-RITZ METHOD

The central idea of this method, as in classical theory, con-
sists in expansion of T ({) and (%) in a finite Fourier series

m
I‘m(E)= 2 -yksinko, (€=cos0 ,0 <0 <x) (31a)
k=1

m

Bm(E) = Z 7kcosk0 . (31b)
k=1

This expansion is noted to satisfy (9) automatically, The functional
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1 [ r,s ] is now an ordinary function of the Fourier coefficients
Y
k ]

i e S

"
[ F(r ' Bm' cosa;c1 cn)sm0d0

I [F’B;cl' LI ) Cn]

R e

1(71. TR SR ICIIRTE cn). (32)

For I to be extremum, we require that

n
(=]

a1/ 6‘yk (k 1, ... m) , (33)

and

]
(=)

(v
!

a1l / ch l, ... n) . (34)

These (m + n) equations together with M constraint equations (12)
determine the m coefficients N e YTme P parameters ¢y,...
.+ €4, and M multipliers Ay , ... ). It should be pointed out, i
however, that the coefficients y) 's and parameters c;'s generally '
appear in the expression for I(y,c;) in a nonlinear or transcendent-
al form, making their determination, by algebraic, numerical means
or otherwise, extremely difficult even when their number is moderate-
ly small, such as three or move.

The preceding general theory will be further discussed and
clarified with several specific examples in the presentation of this
study.

Y
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DISCUSSION

Ernest O, Tuck
University of Adelaide
Adelaide, Australia

At a meeting like this it might seem strange to ask about
existence and uniqueness solutions to mathematical problems but I
think it is possibly relevant here. I wondered if the authors know in

their examples whether they can expect a solution, on either physical
or mathematical grounds ?

REPLY TO DISCUSSION

Arthur K. Whitney
Palo Alto Research Laboratory, Lockheed Aireraft Corp.
Palo Alto, Califormia, U.S.A.

That is one of the unresolved questions in this minimisation
technique, we simply do not know the answer at this point. If it arns
out that solutions to the exact nonlinear equations do not exist, this
still does not invalidate solutions by the approximate methods. It may
mean, however, that as we take more and more terms in the appro-
ximate solutions, these solutions do not converge. An existence proof,

especially a constructive existence proof, would be very much desi-
rable,
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DISCUSSION

William B. Morgan
Naval Ship Research and Development Center
Bethesda, Maryland, U.S.A.

In connection with your third examples, how do you plan to
determine the point of separation on the suction side of the foil when
the leading edge is blunt ?

REPLY TO DISCUSSION

Arthur K, Whitney
Pale Alto Research Laboratory, Lockheed Aireraft Corp.
Palo Alto, California, U.S.A.

These problems are formulated as inverse problems, so you
know the point of separation in all cases, That is, if [ ({) is given as
the dependent variable, the hodograph variable is then determined and
the physical plane, including the shape of the wetted foil surface, is
given by a quadrature.

REPLY TO DISCUSSION

o . Theodore Y. Wu
Caiiformia Institute of Technology

Pasadena, California, U.S.A.

May I add a few comments to Dr. Morgan's question ? For
the lifting problem, I think we can also impose two conditions as iso-
perimetric constraints for a fixed chord and a fixed arc-length. These
constraints may provide a good method to overcome the difficulty due
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to unknown position of the separation points, Suppose we start with

K = 0 (K being defined as the ratio of the wetted arc-length to the chord
length minus 1, or K =S/i{ -1), then we know that at K = 0, the
two end points of the cavity boundary would be of the type of fixed de-
tachment, at which point the curvature of the free streamline is sin-
gular, As K is increased by giving more arc-length to the body pro-
file, we hope the profile can be expanded in such a way as to arrive
at the required optimum shape. When K reaches a certain positive
value, one of the end points of the optimum profile would firts reach
the state of smooth detachment (in the sense that the local curvature
of the free streamline will be equal to that of the body at the detach-
ment), Near this critical point (K = K. say) and from then on
(K>K.) Ithink other physical quantities such as the viscous effccts
and the physical condition,that the pressure on the body remaine now-
here less than the cavity pressure, must be thoroughly examined from
the final results predicted by the theory. This proposed procedure is

to be carried out in the future study, Would this answer Dr. Morgan's
question ?

DISCUSSION

Vsevolod V. Rogdestvensky
Shipbuilding Institute
Leningrad, U.S.S.R.

I think you have done very interesting work, but there are
many questions in this problem. In order to decide the problem in ge-
neral, it is necessary to make good tests. I should like to ask, have

you any comparison with experience ? Have you any experimental
data ?
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REPLY TO DISCUSSION

Arthur K. Whitney
Palo Alto Research Laboratory, Lockheed Aircraft Corp.
Palo Alto, Califormia, U.S.A.

No, we have not tested any of these optimum shapes experi-
mentally,
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HYDRODYNAMIC CAVITATION
AND SOME CONSIDERATIONS
OF THE INFLUENCE OF FREE GAS CONTENT

|
|

Frank B. Peterson
Naval Ship Research and Development Center

Bethesda, Maryland, U.S.A.

ABSTRACT

Hydrodynamic cavitation inception on an axisymme-
tric body with a 5-cm diameter was measured in a
standard water tunnel. Particulate matter and free-
gas bubble size distributions were directly measur- i
ed immediately upstreain of the bodies with a high- 3
speed holographic technique and related to calculat-

ed bubble trajectories, Discrimination between par- w
ticulate matter andgas bubbles was possible for dia-
meters larger than 0.0025 cm. Inception was mea-
sured acoustically and high-speed movies at 10, 000 :
frames per second were taken to verify the type of ]
cavitation present. The influence of headform sur- ’
face chemistry was studied using plastic, copper,
and gold -plated bodies with and without various types
of colloidal silica coatings. Physical surface charac-
3 teristics were checked with scanning electron mi-
' croscopy.

T PR,

.

All cavities observed in the water tunnel tests were
approximately hemispherical in shapeand translated
along the headform surface, When the results were
compared with previously reported tests in a high-
speed towing basin, it was concluded that the mea-
sured free stream gas bubbles in these standard test
facilities did not significantly contribute to the nu-
cleation of cavitation when acoustic detection was
used, Other recent research is summarized that de-
scribes the de novo production of stable hydrophobic
particulate in water through the mechanismof aera-
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tion, These particulate are felt to have a major role
in the cavity nucleation process.

INTRODUCTION

Over the years there has been continued discussion about the
role of the air content in water on the cavitation inception process,
Typical recent surveys on the subject have been by Eisenber 0l*,
Holl [2] , Knapp [3] , Plesset [4] , and van der Walle [Sﬁ .
Much of the discussion has been concerned with the determination of
the nature of the '"nuclei' that are attributed to the onset of a vapor
cavity. At the present time, no conclusive results have been reported
that fully explain the relative importance of the free stream gas
bubbles, the unwetted (hydrophobic) solid particles and the gas trap-
ped in crevices on the test body. Presumably, each of these postu-
lated nuclei sources will contribute to the formation of cavitation,
with various degrees of relative importance. The actual importance
of each during any given test will be dependent on the fluid and body
characteristics and the pressure and velocity fields,

What is presently needed is a series of definitive tests that
would elucidate the role of the various types of nuclei as a function
of the various controlling parameters. Before this series of tests
can be performed, an adequate physical understanding must be deve-
loped to recognize and plan a definitive experiment, It is the aim of
this paper to assist in extending the presently available knowledge
on the cavity nucleation process in hydrocynamic cavitation. Since
the available literature on cavity nucleation has been surveyed by
many writers, the contribution of the present paper will be concer-
ned principally with the recent work performed at the Naval Ship
Research and Development Center (NSRDC). The results of other
investigators will be considered and compared to the extent that their
work has a bearing on the interpretation of the observed phenomena,

The recent cavitation research at NSRDC has been concerned
with developing a better understanding of the role of the free and dis-
solved gas content on hydrodynamic cavitation, The emphasis of the
work reported here will be concerned with the importance of gas bub-
bles in the free stream for the type of cavitation occurring on one
headform shape at one velocity in a water tunnel. By restricting the
test conditions in this manner, changes in parameters such as the

* References are listed on page 1156,
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free stream turbulence, body boundary layer characteristics, and
body pressure distribution are minimized, Specific studies were
performed to evaluate the importance of headform surface nuclea-
tion sources. Surface treatment procedures were designed to reduce
the surface nucleation capability of the body. In this way the role of
free stream nuclei could be more clearly defined. The actual gas bub-
bles and solid particles just ahead of the headform were recorded
by high speed holography. The path and stability of the bubbles as
they passed over the body were determined analytically, These cal-
culations were necessary to determine through what cross-sectional
area upstream of the body all bubbles must pass if they are co con-
tribute to the visually observed cavities on the body. The inception
condition was measured acoustically and high speed movies were ta-

ken to verify the type of cavitation present. The headforms tested it

consisted of several bodies each of plastic (Delrin)* and metal {(copper
and gold plated copper) materials, Cavitation tests on several bodies
of the same material gives a check on the surface machining accura-
cy and the material variety assists in evaluating the role of surface
originating nuclei, The results of these water tunnel tests were com-
pared with previous tests of the same bodies in the .igh speed towing
basin, The significant aspects of the towing basin are that essential-
ly no free gas bubbles are present and the turbulence levels are very
low. From all of these studies the importance of free gas bubbles on
acoustically measured cavitation inception can be evaluated for at
least the headforms tested.

In the interest of introducing into the cavitation literature re-
cent research results from other disciplines pertinent to cavity nu-
cleation, a review of this work will also be given, Specifically, these
results demonstrate a mechanism by which stable hydrophobic parti-
cles can be produced in water by the process of aeration.

EXPERIMENTAL FACILITIES, INSTRUMENTATION, AND PROCE -
DURE

All of the experimental studies were carried out in the standard
test facilities at NSRDC [6). The cavitation inception studies to be
reported here were performed in the 12-inch water tunnel using normal
tap water filtered to remove particles larger than 25 um. Deaeration
was accomplished by passing the water through a standard design pac-

* Delrin, Acetal Resin, manufactured by E.I. Dupont de Nemours
and Co., Wilmington, Delaware.
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ked column desorber. The test body used throughout the work was
from the series tested by Rouse and McNown[?i This is the same
series from which the headform used for the ITTC comparative tests
was selected [8]. The bodies tested had a minimum pressure coeffi-
cient, CPm&n , equal to 0, 82, a diameter of 5 cm, and were installed
in the water tunnel as shown in Figure !, An axisymmetric headform
was selected as the test body for several reasons, First, inception
measurements are relatively straight-forward, because the body is
stationary and it is easy to manufacture with a high degree of accu-
racy., Secondly, vortex cavitation is not present,

Cavitation inception was detected acoustically for all of the

results presented here. The measurements were made by locating

a hydrophone inside the headform on its axis, Details of the equip-
ment and operational characteristics can be found in references (9]
and [l 0]. The noise level of the facility was determined for a tunnel
pressure slightly above that corresponding to a cavitation inception
number, ¢, , equal to 'CPmin . The associated electronics were then
adjusted so that all cavitation noise exceeding the tunnel background

level would be indicated, The cavitation inception number o;, is
defined as

Py -P,
_;_pr 2

where Py, and V,, are the upstream pressure and velocity respecti-
vely, p is the density, and P, the water vapor pressure. The cri-
teria for the actual inception was selected to be one acoustic event
per second, The technique of acoustic detection of inception will be
considered in more detail later in this paper,

g =

The test procedure used in the water tunnel studies was to in-
stall the headform and then deaerate the water to the desired total
dissolved gas content, This dissolved gas content was measured with
a standard van Slyke apparatus, All tests were run at a free stream
velocity of 9.1 meters per second. The test section pressure was
adjusted in stages to produce a range of cavitation conditions as mea-
sured acoustically. When the cavitation inception pressure was rea-
ched, a series of holograms were made of the bubbles and solid
particles in the water just upstream of the body. High speed photo-
graphy at 10,000 frames per second and 20 microsecond exposure
time were also taken for selected runs at the inception conditions.
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BUBBLE TRAJECTORY ANALYSIS

Implicit in all discussions on the role of free stream gas bub-
bles in the cavity nucleation process is that they will be transported
into a sufficiently low pressure region to be available to nucleate the
cavity. The mere existence of gas bubbles in water is not in itself
sufficient to conclude a knowledge of their importance, For this
reason the bubble trajectory and its radial dynamics must be evalua-
ted. When this information is combined with the bubble size and
population information, then a better understanding of the importance
of these bubbles can be developed.

The trajectory of a bubble in a flow field with large pressure
gradients has been considered by Johnson and Hsieh [l l] » Hsieh
[12] , and Schrage and Perkins [l 3] . The governing equations de-
rived by these authors can be reduced to essentially the same form
and contain the following assumptions:

1. The flow field is axisymmetric,

2. The bubble remains a sphere throughout its trajectory.

3. The filuid is assumed to be inviscid for the purpose of the
flow velocities and pressures

4, The bubble is assumed to be sufficiently small so that the
flow field is not affected by the presence of the bubble,

5. The fluid is not taken to be inviscid with respect to the
bubble, i,e., the bubble experiences a drag dependent on
the relative velocity between bubble and fluid (see ref. 14).

6. Diffusion of gas and heat transfer through the bubble wall
are negligible,

The equation for the dynamics of bubble radius, r ., can be
shown to be

d°r 3 fdr.\2 I 26 rd 25
b b bo
" o= = —|P _+(P_-P_+—)— -— - P(x,y)}| (1)
ba2 2 \at oLV TV ;

o b b

where
t is time,
p is the fluid density,

Pv is the vapor pressure of the fluid,
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o a subscript denoting a value at the initial bubble position,
6 1is the surface tension of the fluid,

P(x,y) is the external pressure of the fluid at (x, y),

(x,y) refers to the location of the bubble in Cartesian coordi-

nates,

The vector equation of motion for the bubble moving in an axisymme-
tric flow field, can be written as

—
2 3 du _ 1 N g
pT ‘l’l'b d_t = Tp CD rrb G-u) IV-\.\' (Z)
dr
4 b, ~—
2 3 - —nrd 2 -
erbVPf 3 1rrbVPg + 27p e, (v-u)

where U is the vector velocity of the bubble

- dx -~ dy -~
=3 'tae o
3,3 are unit vectors in the x, y directions, respectively,
V is the fluid velocity vector = v i+vy,

CD is the drag coefficient, (see reference [14] )e
1=’f is the pressure due to flow, and

Pg is the pressure due to gravity.

Using these equations, Schrage and Perkins [l 3] compared their
analytical prediction of the bubble path with experiments in both
rotating water and glycerin and obtained excellent agreement,

A numerical study was carried out at NSRDC where the potential
flow field around the headform was combined with equations 1 and 2
to determine the trajectory and radial dynamics of a free stream gas
bubble. The description of the pressure and velocity field around the
body was determined through the use of a computer program for po-
tential flow around an axisymmetric body [l 5]

The most important aspect of these calculations was the deter-
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mination of the region upstream of the body in which the bubbles
would have to be located in order to produce cavitation. The results
of the numerical calculations are shown in Figures 2 - 4 as the local
pressure coefficient, Cp , experienced by the bubbles along the
bubble trajectory. Figures 2 and 3 show the situation for a typical
cavitation inception condition experienced in the 12 inch water
tunnel with a metallic body. The bubble screening effect is easily
seen, The 25 um diameter bubble does not experience as low a
local pressure as the 50 um diameter bubble when they both start
at the same point upstream. Correspondingly, the 25 um bubble
does not pass as close to the body as the 50 um bubble and does
not strike the body as soon.

Figures 5 and 6 show the variation in bubble diameter for some
of the bubble sizes considered. None of the bubbles experienced ex-
tremely rapid growth rates. For the range of bubble trajectories
considered, all the bubble wall velocities were less than 0.1 meter
per second., Once a bubble touched the body, the numerical method
is of course not valid. However, it appears reasonable to assume
that when the bubble touches the body, its translational velocity may
decrease sufficiently to permit further volume increase. On this basis
it was concluded from Figures 2, 3, 5, and 6, that all bubbles would
have to be initially within the cross-sectional area of radius 3,75 mm
upstream from the 5 cm diameter headform for them to produce
cavitation, For the purposes of further discussion, the bubbles out-
side this area are assumed not to contribute to the cavitation on the
body.

The question still to be resolved is whether the bubbles that
strike the body will in fact actually produce a vaporous cavity. Be-
fore discussing this aspect of the rroblem, the numerical calcula-
tions of the bubble trajectories over the same body with the same in-
ception coefficient, o; , but at a pressure approximately 3.4 times
higher, should be considered. Figures 4 and 7 represent a typical
inception condition when the same headform was tested in the high
speed towing basin [16] . The experimental results from the basin
were essentially the same as those obtained in the water tunnel and
therefore the same o; was used in the calculations. The interesting
result ie that for the higher speeds in the bauin, the bubble trajector-
ies are slightly further from the headform and therefore the bubble
diameters are correspondingly smaller. If the bubble strikes the
headform, it strikes further downstream. From this result it can be
concluded that if given identical bubble size distributions, then the

rate at which bubbles produced cavities should be directly propor-

tional to the velocity of the body in the basin or conversely, the up-
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stream velocity in the water tunnel. This conclusion assumes that

the viscous effects, such as boundary layer separation, do not in-
fluence inception. Further discussion on boundary layer separation
will be deferred until later, Following the same reasoning, if the body
size had been changed, then the number of freestream bubbles cavita-
ting per unit time would vary directly with the square of the ratio of
the body diameters,

The key to all of the preceding discussion on bubble screening
is whether in fact the free stream gas bubbles are responsible for
cavitation, The remainder of this paper will be concerred with expe-
riments specifically planned to extend our understanding of the role
of gas content in water.

VARIATION OF FREE GAS CONTENT AND BODY SURFACE QUALITY
A. Criteria for Cavitation inception

The commonly accepted criteria for the onset of vaporous ca-
vitation is when a cavity grows ""explosively', with the local pressu-
re less than or equal to the vapor pressure (e. g. [17] ) and is ge-
nerally considered the only true cavitation. On the other hand, gase-
ous cavitation can occur at pressures either greater or lower than
vapor pressure, with gas diffusion into the bubble possibly important
and the growth rate of the bubble considered something less than
"explosive', However, these definitions are not specific enough for
the purposes of the discussion here to delineate when in fact a cavity
is growing "explosively', This problem was apparent to Hsieh [12]
when he calculated bubble dynamics in the bubble trajectory. None of
the bubbles he considered had what could be considered "explosive'
growth, butin fact had a bounded maximum size. Therefore Hsieh
arbitrarily defined a bubble to be cavitating when its diameter reach-
ed a certain minimum 'visible''size.

On the basis of the trajectory and bubble diameter calculations
in the previous section for the NSRDC headform, it is felt that only
bubbles actually striking the body could nucleate a vaporous cavity,
This assumption is based on the observation through high speed pho-
tography that the cavities appeared hemispherical in shape from the
time of their first observation and translated along the body surface
during both the growth and collapse. The "visible" size criteria is
not applicable here since once a bubble strikes a body, the calcula-
tions are no longer valid and in fact the visually observed cavity
growth could correspond to gaseous cavitation, Since all of the cavi-
ties observed in these studies were observed to be translating along
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the surface, it is particularly important to have some means of di-

i scriminating between vaporous and gaseous cavities. If the cavity is
truly vaporous, and grows '"explosively', then the collapse should
also be far from equilibrium with the local pressure field and should
produce noise. This definition has been used by innumerable investi-
gators. For headform studies, Saint Anthony Falls Hydraulic Labora-
p tory (SAFHL) [18] , [19]) and NSRDC have regularly been using
the acoustic radiation as the criteria for inception,

It can be shown that the velocity of cavity collapse for nominal-
ly hemispherical cavities scales approximately as the square root of
K the pressure difference across the cavity wall [ZO] : [2 l] , Thus, if
. one assumes that the shape of the cavity during collapse is essentially
the same for slight changes in this pressure difference, then the col-
lapse velocities also would only experience slight changes. On this
basis it will be assumed in this paper that the noise produced by the

collapsing cavities will not be significantly affected by small changes

E in the pressure of the water tunnel,

When the acoustic impedence between the water and the head-
t form material is changed, then the amplitude of the noise detected by
1 the hydrophone will be affected. As one would expect, the peak noise
F:‘- amplitude will vary over a finite range. This has been experimentally

] shown by Brockett [10] for a headform made of Delrin which is a good
| impedence match to water. When the headform material is a metal,
such as copper, then there is a poor acoustic impedence match and
one would expect to detect a lower peak noise amplitude from the col-
lapsing cavity. This material influence cannot be entirely cancelled
out by adjusting the detection threshold of the electronics on the basis
of background noise, Therefore, it is expected that the DELRIN head-
forms will indicate cavitation at a somewhat higher water tunnel pres-
sure than for a metal headform. This aspect is not of significant con-
cern here because direct comparison of the cavitation inception num-
ber, o5, for the two types of materials is not intended. The most im- 3
1 portant concern is to determine how variations in the free gas bubble
: distributions affect the inception on a headform of the same material.

R A A

B. Free Stream Bubble Size and Distribution Measurements

The microscopic gas bubbles immediately upstream of the
headform at inception conditions have been measured with a high
speed holographic technique. This technique was selected because
it appeared to be unique in its ability to (1) make direct measure-
ments with no calibration required, (2) discriminate between bubbles
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and solid particles, and (3) record both bubble size and spatial di-
stribution in a large liquid volume instantaneously. A mathematical
analysis of the complete holographic process for bubbles and solid
particles is given in Appendix A, The schematic representation of
the holographic equipment at the water tunnel is shown in Figure 8,
The resulting holograms obtained in these studies recorded the
bubbles and solid particles contained within a liquid volume 5 cm in

| diameter and 15 cm long. A small magnified view of a hologram

¥ for 2-25 um diameter wires and many bubbles and solid particles,
is shown in Figure 9. As shown in Figure 10, typical exposure du-
ration was 10 nanoseconds, The hologram is then used to produce
the 3 -dimensional image of the contents of the original volume. This

i volume was scanned with a traveling microscope and the size and
location of the bubbles and solid particles recorded, Figures 11 and
12 show the appearance of a bubble and a solid particle as the micro-
scope is moved away from the focussed position, For the optics u- A
sed in these studies, it was determined both analytically and experi-

mentally that 25 um diameter was the smallest bubble size that

could be reliably distinguished from a solid particle for the optical i

configuration used. Smaller bubbles could have been distinguished 3

if different optics had been used but a sacrifice in the fluid volume 3
3 recorded would have been necessary. The smallest size possible E
, would have been approximately 10 um diameter because of the na- :
' ture of this type of holographic process. Conclusions to be made ﬂ
1 later in this paper will show that the additional effort to measure 5
: smaller sizes was not merited. Typical bubble and solid particle 1

size distributions are shown in Figure 13, 3

A comparison can be made between the number of measured
bubbles calculated to strike the body and the total dissolved gas con- s
tent of the water. This is shown in Figure 14 along with the corre- E
sponding ¢, and the headform material, High speed photography has :
shown that for a dissolved gas content referred to test section pres- ,
sure, a/a g+ of 1.45 and ¢; = 0.61, approximately 1000 tran- 3
sient hemispherical cavities per second were visible on the headform, '
However, when a/ayc.= 0.22 and o; = 0.48 and there were only
on the order of 10 visible hemispherical cavities per second on the
headform. These observations are in general agreement with the cal-
culated nuinber of bubbles that would strike the body. The most si-
gnificant result apparent in Figure 14 is that for changes in a/a TS |
around the saturation condition, very large changes in free gas con-

tent will occur with very little change in ¢, . It appears that al-
3 though o; is less than ICPmm , the visible cavities do not produ-
ce a significant amount of noise when they collapse., The small diffe-
1 rence noted between metallic and plastic bodies is attributed to the

e
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large difference in acoustic impedence between the materials as pre-
viously discussed in Section A, Brockett [9] , [10] has also obser-
ved, during studies with the same shape headform, that not all visible
cavities produce noise. It should again be noted that the estimated rate
at which bubbles struck the headform did not include bubbles less than
25 um in diameter. Therefore, the estimates are to be considered
low. In any event, it certainly appears that there were a sufficient
number of bubbles available to account for the number of visible cavi-
ties observed photographically, When the dissolved gas content of the
water was reduced, some filtering of the water also occurred. Howe-
ver, it can be seen from the particle size distributions in Figure 13
that when the gas bubble content of the water was reduced by over a
factor of 10, little change occumed in the number of solid particles
present, At this point no conclusions can be made concerning the
effect of the presence of the solid particles in the water on the nucle-
ation process. If they have a density greater than that of water, then
they may have a trajectory which tends to direct them away from the
low pressure region of the body. If their density is approximately that
of water, then one would expect that these solid particles would have
trajectories corresponding to the streamlines. In any event, it is
clear that a large number of solid particles were always present and
for the sake of completeness their size distributions are presented
here.

When the dissolved gas content, a/a Ts » was reduced below
approximately 0, 6, the number of gas bubbles were so few it became
impractical to manually scan the image volume with a microscope.
However, inception measurements were made and these are given in
Table 1. The results indicate that the addition of new water into the
tunnel may have had some effect, but the statistics are inadequate to
verify this point. From the data one can also see that the typical de-
crease in cavitation inception number, s; , occurs as the dissolved
gas content is reduced. Based on the previous discussion, however,
it is not readily apparent what type of nuclei are most affected by this
change and further discussion of this result must also be deferred.

C. Modifications to the Surface Characteristics of the Headforms

Nuclei originating from gas trapped in crevices on the body
surface have been postulated as one source of cavitation nuclei. There
is sufficient experimental data available to show that under certain
circumstances this type of nucleus can be a significant factor in cavity
formation on a body [l] 0 [2] . [ZZ] . Therefore, the possibility
exists that this nucleus source may have been a factor in the experi-
ments reported here, Studies were carried out to evaluate this factor
in two ways, First, headforms were plated with gold to minimize sur-
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face irregularities and corrosion, Second, an attempt was made to
increase the wettability of the solid in order to promote wetting of
microscopic crevices by the water,

Electron probe microanalysis of the gold plated copper head-
forms was carried out, In the secondary electron mode of operation
no copper x-rays were found that would have indicated a pore in the
plating. Although resolution was limited to 1 um, experience with
gold plated materials of this type leads us to suspect that no pores of
smaller size were present,

A scanning electron microscope was used to study the surface
features of both the plastic (DELRIN) and metallic (gold plated) bo-
dies, The most significant surface feature on the gold surface was
the scratch shown in Figure 15, All surface scratches were less than
0.5 um across and shallow. All protuberances appeared to be less
than 0.2 um. The plastic surfuce shown in Figure 16 can best be
characterized as consisting of 2 series of shallow scratches, the width
of which are larger than the typical surface roughness element,
High speed photography gave no macroscopic indication that cavities
repetitively occurred from any single location,

The gold plated bodies were coated with 1% colloidal silica and
the plastic headform surface coated with a positive sol also of 1%
concentration, This procedure is described in detail in Appendix B,

The results of studies on various surface treatments can be
summarized as follows :

[

Gold plating a copper headform to give a smoother surface
did not change o, ,

b. Colloidal silica coating on the gold plated surface did not
change o,

c. Use of a positive sol on the plastic headform did not
change 9

It is concluded from these studies that cavity nucleation was
not significantly affected by roughness elements or from gas trapped
in hydrophobic crevices on the solid surface of the headforms.

D. Boundary Layer Separation

Separation of the boundary layer could have a strong influence
on the local velocity and pressure distribution of the headform. As is
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well known, separation can occur in both laminar and turbulent
boundary layers. In both cases, the separation will take place down -
stream of the minimum pressure point on the surface in the region of
a positive pressure gradient, A relatively crude experiment was per-
formed using a fluorescent oil film on the headform surface [9] g
[16] . The result indicated that separation occurred at an X/D = 0,5,
for velocities below 4.2 meters per second and a water temperature
of 10°C. This is in agreement with tests performed at the California
Institute of Technology with a hemispherical nose headform [23] c
There, laminar boundary layer separation was also found to occur
downstream from the minimum pressure point., From the high speed
movies of the headform in the 12 inch water tunnel it was found that
many bubbles were already visible at the minimum pressure point,
This same result was apparent in the experiments run in the high
speed basin and reported earlier [16] . On the basis of this discus-
sion it is felt thai boundary layer separation, if present, occurred
sufficiently downstream to be of negligible influcnce on the inception
observed in the experiments.

E. Comparison Between Water Tunnel and High Speed Towing Basin
Cavitation Studies

In order to clarify the role of the free stream gas bubble in
the cavitation nucleation process occuring in the water tunnel tests,
it is worth while to compare results with those obtained in the high
speed towing basin at NSRDC. As previously reported [l 6] , these
same headforms were mounted on a strut and tested in the towing
basin, The prodedure was to wait at the end of the basin for 45 mi-
nutes prior to each run. In this period of time the basin water became
very smooth and high speed photography was possible through its sur-
face. It was found that the incipient cavitation number varied between
0.6 and 0.8. The higher values were again typical of the plastic
(DELRIN) headforms and this is attributed to the difference in acou-
stic impedence between the metal and plastic. In the towing basin the
inception velocity was also determined with a hydrophone inside the
body. Unlike the water tunnel tests, these acoustic results were found
to agree with the high speed photography.

From the data on the buoyant rise of bubbles in water [14] ,

it can be estimated that a bubble 4 um in diameter will rise 270 mm

in the 45 minute period. Larger bubbles will rise correspondingly
faster. By any one of a number of theories for gas bubbles in water
(e.g., [24] ., [25] ) it can be shown that bubbles smaller than 4 um
in diameter should have dissolved completely in a matter of minutes,
This is supported by the experimental evidence of Liebermann [26] 5
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Thus it appears that the probability of bubbles existing in the towing
E basin water immediately prior to a run, is extremely remote.

Now, if in fact free stream bubbles are necessary for cavita-
E tion inception, then a dichotomy exists between the basin and the wa-
t‘ ter tunnel studies. The measured free stream bubbles in the water
tunnel canaccart for the visually observed cavities but not the acou=
stic determination of cavitation inception. The towing basin acoustic
determination of inception agreed with the basin high speed movies and
the water tunnel acoustic inception determination. As already pointed
out, the probability of free gas bubbles existing in the basin water is

extremely remote although the dissolved gas content was approximat-
ely 100 percent saturated.

o A A

1
k.

"

On the basis of these studies, it appears that the free stream
bubbles contributed to the production of the visibly observed cavities
;i on the headforms but were not necessary for the generation of those 3
cavities that produced acoustic radiation during collapse. Just as b
numerable investigators have concluded before, the results of the
‘ studies reported here can also best be explained by the existence of ':,1
¢ a hydrophobic particle with gas trapped within a crevice ( [27] - [29]).
] There has been a considerable amount of research performed by in-
vestigators in other research disciplinesthat has significantly increas-
ed the plausivpility of this postulated nucleation mechanism. Within the 1
cavitation literature available to this writer, it appears that these :
new related research results have not been discussed. Therefore, the
next section will deal specifically with this related research.

STABLE HYDROPHOBIC PARTICLES IN THE WATER

The concept of cavity nucleation by a hydrophobic particle in water has ]
long been the subject of considerable discussion. The basic hypothesis
is that a small quantity of gas is ‘rapped in a crevice of a particle and
stabilized by the surface tension of the water because the particle it-
self is hydrophobic. This theory was first advanced by Harvey, et al
[27, 28, 29] and has most recently been reviewed by Apfel [30] . A
number of recent experimants have been carried out that indicate the
hydrophobic particle may play an important role in the cavity nucle-
ation process in water [30 - 33] . In keeping with the nature of this
paper, a survey of the literature on this subject will not be attempted
but rather only those references most pertinent to the discussion will
be considered. One of the most detailed experiments was carried out
by Greenspan and Tschiegg [32:] with an acoustically excited cylindric-
al resonator. They found that the cavitation threshold for unfiltered
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water increased significantly as the dissolved gas content was reduced.
However, after filtering the water through an 0.2 um f{ilter, the
threshold was then essentially independent of the air content for un-
dersaturated water. For organic liquids, the threshold was high and
was not affected by filtering, Hayward [3 l] used a "tension mai o-
meter'" to produce a tension in the liquid of 0.15 bar. Various li-
quids were tested by measuring the number of bars prepressuriza-
tion a sample would have to be subjected before it could withstand the
0.15 bar tension in the device. Nine organic fluids, including a
water-in-oil emulsion, were tested and all were found to withstand
the test tension with no prepressurization required. Of the liquids
tested, only water was affected by the prepressurization and Hayward
concluded that only water contained cavitation nuclei capable of sta-
bilization, A further result was that distilled water (of unstated qua-
lity) and polluted river water both required approximately the same
level of preprersurization. These experimental results are consider-
ed typical of the efforts directed toward understanding the role of the
particulate in the cavity nucleation process,

In the case of hydrodynamic cavitation where the body is mo-
ving in a stationary fluid or conversely, a fluid is moving past a
stationary body, an important consideration is how these hydrophobic
particles are produced and why they remain suspended in the water,
As has been pointed out by Plesset [4] » ‘¢ the solid particles have
densities in the range of 2-3 gm/cm3 , then their radius must be
on the order of 0.0l um to remain suspended in quicvscent water, On
the other hand, unwetted particles of this size would require a tension
on the order of approximately 100 bar to nucleate cavities.

Before this subject of the Harvey r.10del of cavitation nuclei is
pursued further, some recent oceanographic research pertinent to
this subject should be considered. Sutcliffe, et al [34] have found
that aeration of filtered sea water will produce a suspension of inso-
luble organic particles. Some of these particles eventually settled
out after aeration but most always remained in suspension, A signifi-
cant amount of this particulate was larger than the 0.43 um pore
size of the filter. It was found that large surface-active organic mo-
lecules adsorb at the air/water interface of the bubble to produce a
monomolecular layer. This layer can be aggregated into insoluble
organic particles by folding into polymolecular layers to form colloi-
dal micellae or by collapsing into fibers. Coalescence of these colloi-
dal particles then produce a semistable suspension of organic mate-
rial, Riley [35] has confirmed the Sutcliffe, et al, work by also
producing through aeration insoluble particulates from the dissolved
organic matter in the sea, He also found that the aggregates will in ~
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crease in size by coalescence or further adsorption and eventually
become indistinguishable from natural aggregates. The longest di-
mension of typical newly formed aggregates was on the order of
25 um,

Wallace and Wilson [36] have shown the effectiveness of
concentrating dissolved organic compounds as particulates through
aeration. They found that for their test protein solution of 5 parts per
billion, aeration gave almost 100 percent recovery of the compound
in the form of particulate.

This is typical of the concentration of dissolved organic com-
pounds in seawater. The sum of these compounds, however, can
reach the part per million range.

Similar results have been found by uther investigators not
specifically studying the de novo particulate production in water. For
example, Liebermann [26] found in the course of studies on the so-
lubility of air bubbles in water that the contamination at the interfac-
ial boundary between the air and water had no effect on the diffusion
of air into the water. After the addition of many organic compounds
and surfactants to the water, he stated that ,.., 'no laboratory con-
dition could be found in which the rate of bubble diffusion was signifi-
cantly altered.'" Lieberman also showed thzt when a bubble in multi-
ple distilled water collapsed on a chemically clean surface, a micro-
scopic amount of residue remained. When the pressure was reduced
to 1/4 bar, the residue quite frequently nucleated another bubble,

In another series of experiments on the diffusion of gas out of
a bubble, Manley [37] found results similar to Liebermann, In this
work, also, bubbles collapsing in distilled water left a small deposit
of impurity,

From the above discussion, it is apparent that in the typical
cavitation test facilities, there should be no difficulty in producing
particulate capable of cavitation nucleation. These can remain suspen-
ded in quiescent water and can readily be produced whenever at least
some degree of aeration of the water takes place,

CONCLUSIONS

The general objective of this work was to develop a better un-
derstanding of the role of the free and dissolved gas content in water
on the nucleation of hydrodynamic cavitation. The means by which
this was accomplished was to use only one type of body, a headform,
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in the natural existing environment of standard test facilities with
emphasis on the measurement of flow conditions and the control of
headform surface condition, Thir simple body produced only discrete
cavities translating along the surface. From these results and a com-
parison with the pertinent literature certain conclusions can be in-
ferred,

_ The results substantiate what other investigators have found

, in that a very precise definition of inception is necessary. When noi-
3 se is used as an inception criteria, then it was shown that free gas
bubbles were not specifically needed for the nucleation of the noise
producing transient cavities under discussion in this paper. Hydro-
phobic particles can function as an adequate source of nuclei,

3 The dissolved gas is important because it can affect, through
the mechanism of diffusion, the amount of gas trapped in hydrophobic
- particles for a given pressure history of the water, Conversely for a

; given dissolved gas content, changes in the normal pressure history
of the water will also affect the ability of these hydrophobic particles
to nucleate cavities. For the experiments reported here, body surface
nucleation of cavitation was not considered « significant influence. If
a material such as teflon is used which is hydrophobic and known to
be porous on a microscopic scale, then surface nnclei could in fact

be the controlling source.

New stable nuclei can be generated in the typical test facility
water whenever a gas/water interface is produced because of local
adsorption at the interface of dissolved organic material. In a water
tunnel this could occur during the filling process, by the introduction
of locally supersaturated water or even during the deaeration process.
In both water tunnels and towing basins this could occur during the
actual tests where bubbles of one form or another are produced. In
any event, the persistance of these hydrophobic particles can be ex-
pected unless very special water treatment procedures are followed,

If either 2- or 3- dimensional boundary layer separation
occurs, o; may be affected but the type of cavity nucleus initially 1

responsible may not be important if an attached cavity eventually
forms,

For flow fields to cavitate when nuclei mobility across stream-
lines is required - such as a vortex - then the free gas content of the ]
water can be expected to be of prime importance. But here again,
care must be taken to specifically define whether cavitation is based :
on visual or acoustic observations, 1
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If scaling of cavitation inception from a model to a prototype
is required, then the detailed properties of the flow field must be
considered in conjunction with a consideration of the type of nuclei
controlling the inception process,

The essential aspect of these conclusions are of course not
original in this paper, but it was the attempt of this paper to add addi-
tional physical basis for their validity.
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APPENDIX A

ANALYTICAL EVALUATION OF THE HOLOGRAPHIC PROCESS FOR
A BUBBLE

When a light beam is incident on a bubble, some of the light
is reflected at the first surface, However, a significant amount of
light is refracted at the first surface and eventually passes out through
the bubble. In Figure Al, several rays are shown. As shown by Davis
[38] » ray 2 gives the largest contribution to the transmitted energy
for 0° <0< 40°, This information will be used to represent the light
passing through the bubble in the following calculations.

In order to differentiate between a bubble image and an opaque
spherical particle image, the light transmitted through the bubble
must be observed. Thus, the holographic process must be evaluated
to determine how the transmitted light can be expected to influence
the holographic reconstruction of the bubble image. The general
method will be an extension of the method used by DeVelis et al.,
for solid particles [39] .

The wave equation in vector form

1148




Cavitation (Influence of Free Gas Content)

= 2y(x
V() = 82vixt) (1A)
c2 3,2

describes the propagation of optical monochromatic radiation, where

-
V(Xt) = wle T CF
and ¥ (;.) is the complex amplitude.
Physically, the wave amplitude will vary as

= -iwt
Re {¥(x)e b,
If the operations on V(:—c., t) are linear and only the long time average
is required, then the physical quantity is the real part of the final
expression. Thus, for our application, the wave equation can be
transformed to the Helmoltz equation

2 2 %
(v + k) ¥ (x) = 0 (2A)
2r w 8
where the wave number k = — = . Here we have applied the
restriction that the radiation is essentially monochromatic, The so-

lution of equation (2A) can be written in integral form with G(F:-;c)
the appropriate Green's function,

@ = ff @Bz [et] T om

—

where v (¢)
t= £ o+ 0], ¥

gA(E) . on the surface s, and
xi + vyj

with i and 7 unit normal vectors,

S is a plane perpendicular to the Z axis and its outer normal is in

the direction of negative Z , The Green's function for this case is
ikr

G(?;) = 4 xr

where r =\/ 22 +|§_' x|2 .
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Using the paraxial approximations, Z >> ?-;I , and the Fraunhofer
(i.e., far field) approximation k|£|2 &~ 0, then it can be shown
that

22
- : s - 2 — -'k rd —
¥(x) = i:z et K g /224[8(5) T ¥4T (4a)

The boundary conditions, g(?) » 8elected to represent the bubble
are

—

g(8) =g (B) + g (0 + g, @
8(?) = l-D(?) + uzeikrg"2 /21 e-a|?|2
- 1, I—ﬂé—f’ol
where D(E){= B (5A)
0, IEINTl

The first 2 terms of (5A) represent an opaque object andthe3rd term
is an equivalent to a lens with a negative focal length {, attenuation
factor a , and Gaussian transmittance distribution, The use of a
negative lens is an approximation to ray 2 of Figure 1A, It is assu-
med here that a uniform plane wave is incident on the object plane

(®).
Substituting g, (?) in equation 4A gives
¥ @ = e, (64)

i.e., a plane wave,

The second integral gives V2 Gc') when g, (_E’) is substitut-

ed into 4A. For a circular disc of radius I?;l:[o ;
q . a2
q,zz;:) s ‘f° o2 lke /?'ZJ1 (kplo/2Z) (74)

where p= Fc’l
The third integral ¥, (;') can be shown to be
. i 2 - _: q
e1kz e1kp /22 . q‘,pze ic, Jc

2
WJG") = -ig WP, (8A)
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By combining terms,

. 2 .02
ij - -ic, e1kze Cyp . icy e“:‘:" (9A)
where
ak
Cl =]
2zV a? +  (k/21)2
. S, 2
¢ = 2T aanr (%/22) (10A)
c; = tan”’ (k/2fa)
- k 2
°4 T 21 2 7 /20 */22)
k
s = 2zt %

It should be noted that equation (8A) was evaluated with the assi-
stance of reference [40] . Thus the complete wave amplitude di-
stribution in the X plane, a distance Z away from the object

plane, _E", is

-

2 . p 2 Y
wm - ezkz [l +1_£;o_ exkp"-’/ZZ 3, (kplO/Z) _i‘:1e-c2 pe-icaetcsP] (11A)

Since both photographic emulsions and the human_’eye are square law
detectors, the quantity actually measured is ¥ (x) \p(;) * the intensi-
ty.

. 2o

sin(kp?/22) J, (kpho/Z) + (Lo/p)? Jf (kolo/Z)

-Chp? .
- 2¢e 2P mn(c3 -Cspz) (12A)

2l -c, p?
_TO C1J‘ (kplo/Z)e Car COB(kpz/Zz + Cy- CSPZ)

= 2
+c e 2¢,p
For photographic emulsions it has been found that after proper ex-

posure and processing the emulsion density will vary linearly as fol-
lows,
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D = $log 10 Ii
D = log,, (Ii / It)'
where é = constant
Ii = incident intensity
It = transmitted intensity
1
Now, since wave amplitude varies as w...(l)z
1 L
2 _ 2
then (li) = (Ii / It) = ‘l'i /\I!t

and for a unit aniplitude incident wave, q;t = Ii - 8/2
If 8 is positive a photographic ''negative' is produced, Conversely,
if 8 is negative a photographic ''positive' is produced,

The holographic process has been analytically described for
the production of the hologram, If on the hologram a plane wave is
incident, then we have the same analytical situation previously de-
scribed., The new boundary condition is the variation in amplitude
of the incident radiation,

A-[w(;hr Gﬂ - 8/2

where ¥ ¥ * is given by eJuation (12A) and A is the plane wave
amplitude outside the hologram diffraction pattern. (W¥ *)-%/2 has
the form (1-X)%and if |X| < 1 and sufficiently small, taking
only the first 2 terms of a series expansion gives

Y

A - (¥¥*) ~A - -—g- X (14A)

Thus, the use of the integral solution to the Helmholtz equation, (4A)
with the boundary condition given in (14A), will result in an image
of the original object,
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From equation (4A) it is apparent that the wave amplitude in
the hologram plane is essentially a Fourier transform of the wave
amplitude distribution in the object plane. With appropriate change of
sign, the process of going from the hologram plane to the image
plane is just an inverse Fourier transform,

The evaluation of the image intensity distribution has been
performed numerically, Thus, by the use of a computer program,
the influence of hologram size, emulsion signal to noise ratio, and
many other factors can be studied analytically. The effects of either
the holographic process or the test facility can be estimated prior to
the actual physical measurement. The following constants were
used in the calculations for Figures A2 - A4,

Z = 100,00 mm

1
k =  9045/mm
Lo = 0.03 mm
a = 1,0
P = 7 (i.e., the limit of integration)
f = «0.3mm
a = 1080
] = 4
A = 4

As the image focusing distance, Z, , is changed from 99,7 mm
to 100.0 mm and then to 100.3 mm, it can be seen in Figures A2
through A4 respectively, the focusing property of the hologram.
When Z, equals 100.0 mm, then the bubble and opaque sphere shape 1
are in focus, The light passing through the bubble produces an in-
terference pattern within the bubble outline. For Z, equal to
100.3 mm, the bubble shape is no longer in focus, but the apparent
point source of the light passing through the bubble is in focus, This ;
is the distinguishing property of a bubble image in contrast to that 1
of an opaque sphere, ]

p—
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APPENDIX B

APPLICATION OF COATINGS TO THE HEADFORM

As a result of a previous study at NSRDC, [22] , it was
concluded that through the use of the principles of surface chemistry,
the number of cavity nucleation sites on the solid surface could be
significantly reduced. In order to assist in evaluating the role of
free stream originating nuclei, it was necessary to determine whe-
ther or not surface nucleation sites were contributing to acousti-
cally measured cavitation inception on the headform,

The underlying objective of the surface coating procedure was
to enhance the wettability of the solid on a microscopic scale, The
coating selected was one formed by the application of colloidal silica,
Ag is well known, [41] , amorphous silica has a very low interfa-
cial surface energy in contact with water, This is basically because
the atomic structure of water is quite similar to silica, When silica
dissolves in water, the process involves simultaneous hydration of
the Si0, surface and depolymerization. This leads to the formation
of monosilicic acid,

(5i0,) _ + 2m (H0) = m Si(0H),

From monosilicic acid colloidal particles of silica can be produced,
On the surface of each particle a monolayer of water is chemisorbed
that can only be removed.by heating a dried surface to 600°C. Itis
also known that these particles will have a negative charge in an
alkaline medium.

The concept of the coating process is to utilize this negative
charge and the colloidal particle dimensions to microscopically coat
a solid surface. The surface selected was gold that was recently
plated on the headform. The headform was flushed with spectro-
scopically pure acetone and then cleaned in a special chamber with
steam produced from a potassium permanganate solution. Following
cleaning, a 1 percent solution of colloidal silica® was put in the
chamber and a positive potential applied to the headform, The head-

* Ludox SM, Colloidal Silica, manufactured by E.I, Dupont de
Nemours and Co., Wilmington, Delaware.
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form was dried in the chamber and then removed. When a small
quantity of water was applied to the surface, it immediately spread

and then appeared to dry as a film, Later applications of water also
spread over the surface,

Plastic bodies made of Delrin were also coated with colloidal
silica., However, since the plastic has a weak negative charge na-
turally occuring on the surface, a special positively charged colloi-
dal silica®*was used. After cleaning the surface and applying the

positive sol, the water also spread over the solid surface and appear-
ed todry as a film,

Both the plastic and the gold plated bodies were then immersed
in a container of water distilled from a potassium permanganate
solution to minimize organic surfactant material from contaminating
the coatings, The bodies were installed underwater while still in the
pure water of the container. The test results comparing the coated
with the uncoated bodies are given in Table 1,

** Positive Sol 130M, manufactured by E.I. Dupont de Nemours and
Co,, Wilmington, Delaware.
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TABLE 1. ACOUSTIC INCEPTION ON HEADFORMS
(V = 9.1 meters per second; Acoustic event rate = 1 per second)

RUN HEADFORM COATED "%lca.“ o REMARKS
1 cv NO 132 L NEW TUNNEL WATER
2 cv NO ) 02 SAME TUNNEL WATER AS RUN 1
3 cu NO M 81 SAME TUNNEL WATER AS RUN 1
4 cv NO M 57 SAME TUNNEL WATER AS RUN 1
L] cv NO 8.5 54 SAME TUNNEL WATER AS RUN 1
L} cu NO 22 A3 NEW TUNNEL WATER
7 AU NO 140 66 NEW TUNNEL WATER
L] AU YES 1% 54 SAME TUNNEL WATER AS RUN 7
L AU YES 220 00 NEW TUNNEL WATER
10 AU YES ® 56 SAME TUNNEL WATER AS RUN 9
" AU YES 145 L)) SAME TUNNEL WATER ASRUN 9
17 AU NO 150 50 NEW TUNNEL WATER
13 DELRIN NO 108 70 NEW TUNNEL WATER
" DELRIN NO 88 0 SAME TUNNEL WATER A8 RUN13
18 DELRIN NO 162 N SAME TUNNT . WATER AS RUN 13
1 DELRIN NO 21 L NEW TUA'NFL WATER
” DELRIN NO “ o4 SARY- . NNEL WATER AS RUN 15
18 DELRIN NO 182 13 SAME Tu.'NEL WATER AS RUN 16
1 DELRIN NO L] 08 §£°'t ¢ INEL WATER AS RUN 15
20 DELRIN YES 118 72 SAME T .NNEL WATER AS RUN 16
2 DELRIN YES N .10 SAME ° . NNEL WATER AS RUN 16
22 DELRIN YES 42 58 SAME TUNNEL WATER AS RUN 15
2 DELRIN YES n 58 SAME TUNNEL WATER AS RUN 15
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OF TEST CHAMBER
T SCALE: Y& = 10"

AGURE 1. MODIFIED 12" WATER TUNNEL
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DISCUSSION

Carl-Anders Johnsson
Stateng Skeppsprovningsanstalt
Géteborg, Sweden

In this very interesting paper the author discusses the diffe-
rent mechanisms proposed throughout the years as responsible for
cavitation inception. One of his conclusions seems to be that, for the
type of experiments referred to, nuclei trapped in crevices of hydro-
phobic particles could play the main role in the nucleation process
leading to cavitation inception,

A counsequence of this reasoning would be that the role of free
stream nuclei is not so important as has been assumed during the last
years, The dissolved gas content is important however as it can af-
fect the amount of gas trapped in the hydrophobic particles.

I will show a slide, which may give some support to this con-
clusion, The slide shows photographs of the free bubbles in the test
sections of the two tunnels at SSPA during tests similar to those de-
scribed in the paper.

The same body was tested in the two cases and can be used
for estimating the bubbles sizes. The test conditions are the same in
the two cases :

water speed 7.5 m/s, o= 0.3, a/a = 0.1

and the water taken from the same storage tank. The upper photograrh
shows the test section of the new large tunnel ; the lower that of the
smaller tunnel. The difference in bubble spectrum is quite large and is
of course due to the large difference in the pressure history for the
water entering the test section in the two cases.

The point is that the same inception cavitation number of

o, = 0.45 was observed visually in the two cases., This might
incdicate that the influence of the free bubbles is not important,

* # &
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DISCUSSION

Edward Silberman
t St. Anthony Fails Hydraulic Laboratory
Minneapolis, Minnesota, U.S.A.

I want to comment on two points. I would agree that the free
stream nuclei, which are very important, need not be gas bubbles in
the usual sense that we may think of them as having uncontaminated
interfaces between gas and water. I made observations about 25 years
ago (1), using a microscope, of bubbles being dissolved under pressure
in a rotating apparatus. This was in connection with resorption pro-
blems that we were working on at that time to get rid of bubbles in
water tunnels, I was measuring time rate of change of diameter of
single bubbles generated by cavitation. In watching these bubbles I
found that a relatively small number of those generated would not
disappear but instead would collapse on a thin, wrinkled, opaque skin,
I recorded this fact in the reference paper, although at that time it did
not seem important. When the pressure was reduced again these
bubbles would :xpand just like normal gas bubbles. I think this is per-
: tinent to what Peterson said, and enables us to treat nuclei as though
] they are gas bubbles, I believe that what is left in the water could be
these bubbles with skins on them,

It should be mentioned that these bubbles in the rotating appa-
) ratus, when they appeared to be pure gas bubbles would be near the
center of rotation, but when they collapsed on a skin, their diameters
remained constant, and they would wander around in the centrifugal
pressure field without regard to the pressures indicating mean bubble
densities near that of water. Such bubbles could sustain themselves in
a towing tank for a long time - maybe indefinitely.

My second point refers to the implications in the paper that it
is necessary for the nuclei to touch the body in order to produce ca- :
vitation. I do not believe that this is correct. If you think about what [ ?

il

(1) SILBERMAN, E., "Air Bubble Resorption', Tech. Paper No, 1, 3
Series B, St. Anthony Falls Hydraulic Laboratory, 1949,
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said avout the possibility of the bubbles being of almost neutral densi-
ty, perhaps it is then very likely that such nuclei follow the stream-
lines or very close to them, It is our belief from work that we have
done more recently at our laboratory that bubbles following these
streamlines merely have to enter the low-pressure field of the head-
form in order to produce cavitation (1). Of course, more bubbles will
cavitate near the body than farther from it,

DISCUSSION

Serge Bindel
Délégation Générale 1 la Recherche Scientifique et Technique
Paris, France

( Translated from French)

I read with a great interest the paper presented by
Dr. Peterson and I must say firstly that I do not agree completely
with its last conclusion, When Dr. Peterson tells us that his paper is
a contribution among others about cavitation and that there is nothing
original in its conclusion, I frankly believe that he is too modest, In
fact this contribution seems to be very important in several respects.
First due to the nature itself of program, and to the quality of the
measurements. In particular, it seems to me that for the first time
the bubble spectrum in front of the test body has been measured, not
only the spectrum of free bubbles but also that of the solid particles
by means of an unquestionable method, here the holographic one. That
leads to estimate that the author's conclusions are based on serious
data and consequently that this paper is by no means negligible.

This point being reminded, I would like to make for my part
two series of remarks ; first on the analytical calculation of the tra-
jectories, It has to be pointed out what are the limits of such a cal-
culation ; it is based on some simplifying hypotheses, which are not
original, but thesc hypotheses are not completely valid, even far from
the body. As was shown for exa..ple by Foissey in a recent paper

(1) SCHIEBE, F.R., "Mecasurement of the Cavitation Susceptibility
of Water Using Standard Bodies', Proj. Rpt. No, 118,
St. Anthony Falls Hydraulic Laboratory, 1971,
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presented to Association Technique Maritime et Aeronautique (x),
using a singular perturbation method, the solution of the problem
cannot be reduced at not order to Stokes solution. Foissey showed in
particular that some terms, which are currently put in the equations
are not in fact correct, even far from the walls ; a fortiori close to
the body, in particular inside the boundary layer, since it would be
necessary to take into account the rotation of the bubbles and their
deformation, But the analytical calculation may have a qualitative
interest, namely to show the screening effect. Concerning this effect
it seems that there exists some discrepancy between the present re-
sults and those obtained by Johnson and Hsieh from the same hypo-
theses. For Johnssonand Hsieh, if my memory is good, the bubbles
are kept away from the solid hody and only the smallest ones starting
from the axis of the body can ycach it. On the contrary, Dr. Peterson
tells us that bubbles starting away from the axis can reach the body
and cavitate on it. I would like this point to be cleared.

My second sceries of remarks are relative to the respective
influence of the stream free bubbles and of the hydrop!.obic particles
as cavitation nuclei. When the air content in the water of the tunnel
is decreased, it is noted that the free bubbles are decreased in num-
ber and diameter but that the noise remains constant, and from this
it is concluded that hydrophobic particles are responsible for cavi-
tation, at least for cavitation noisc. I believe that this conclusion may
be true but that it is perhaps premature, It is indeed possible that the
bubbles which can be observed wher the air content is high are not
cavitation bubbles but gaseous bubbles or pseudo-cavitation bubbles,
that is bubbles filled with a great quantity of air, and leading to visual
but not noisy phenoniciia. The noise could be perhaps produced by
smaller free bubbles i. e. by true cavitation bubbles and not necessa-
rily by hydrophobic particles,

I believe that these considerations bring us back, as ever, to
that difficulty of defining incipient cavitation, This can be only defined
by its effects, either bubble growth, that is a visible phenomenon, with
the difficulty of making the distinction between cavitation and gaseous
bubbles, or an acoustical phenomenon that presents difficulty for an
analytical treatment. In the ITTC Cavitation Committee, we have had
serious discussion before reaching an agreement on the definition of

(x) FOISSEY, C., "Application d'une méthode de perturbation singu-
liere a 1'étude de la cavitation naissante.' Association Technique
Maritime et Aeronautique, session 1972,
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the term ''cavitation' itself, and now Dr, Peterson seems to question
it in his paper, That means that there is yet much work to be done,
For my part I am convinced that studies like that which was presented
here can bring a new light on this problem, and I hope that they will
pursued.

DISCUSSION

Luis Mazarredo
Escuela T.S. de Ingenierce Navales

Assoc.acton de Investigaeion de la Comstruccion Naval
Madrid, Spain

I want to thank Dr. Peterson for showing the results of his
very accurate experiments, Tests like these may give a real expe-
rimental basis and avoid the contradictory results we sometimes
found. This is for instance the case with the no influence of the sur-
face state which has been shown, Though this might be predicted,
since conditions in its crevices are permanent and ther~ is no input
(which would not be the case in a central propeller or in boiling) such
a confirmation is wellcomed. Since positive results are still more
interesting, may I ask Mr. Peterson wether he intend: to perform
tests, in the future, to check the magnitude of the influence of speed
on this transient phenomenon ?

REPLY TO DISCUSSION

Frank B, Peterson
Naval Ship Research and Development Center
Bethesda, Maryland, U.S.A.

In response to Mr. Johnsson's comments about his photogra-
phic bubble measurements, all I can say is that in vur work we tried
to differentiate between the visual and the acoustic measurements, If
we had in fact used the observations taken in high-speed photography
then we would have said that inception had occurred earlier when there
were more bubbles in the water. I think that might have been shown
on one of the slides I presented. But in spite of that we still, appa-
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rently, came up with the same general conclusion as to the bubble di-
stribution importance.

I should like to thank Professor Silberman for pointing out a
paper of his which was unknown to me. It is unfortunate since the

Navy Department apparently funded that work and I was remiss in not
seeing it in the literature,

I would like to say that all of this work can be considered a
conservative estimate in that I emphasised free gas bubbles must
touch the surface. If I gave looser bounds to the calculations and said
that the bubbles did not have to touch the surface but only had to reach
within a certain distance from the surface, in fact it would make the
case ] was presenting even stronger. As you may have noticed, the
actual bubble distri bution was not even used in this work. All we took
were the total number of bubbles observed, We did not even discrimi-
nate between bubbles that had an order of magnitude difference in size
because we felt it was not necessary to make the point,

On Mr. Bindel's comments, I should like to point out that we
could only discriminate between bubbles and solid particles larger
than 25 micrometres and the conclusion that bubbles were not impor-
tant at all was drawn by inference from the studies that we made in
the high-speed basin, The analytical calculations of the trajectory by
Foissey are not familiar to me but I think a comparison would be in-
teresting between the methods of calculation. I might say that the
paper pointed out that the calculations that I have used were compar-
ed with experimental measurements of hubbles in pressure gradients
in water and in glycerine and there was quite good agreement, sol
suspect that there may be a close agreement between the work of
Foissey and the calculation methods that we used. This work does
agree with the work of Hsieh. The equations used were essentially
the same., Perhaps it is unfortunate, but in the slide that I showed I
did not show that some bubbles would be drawn away from the body,
but given a pressure distribution on the surface - and in my case it
was different from that of Hsieh and Johnson - and give. different
bubble sizes, some bubbles would by the pressure gradients be.forced
away from the surface. I should like to reference the work of
Dr. Brockett at the Naval Ship Research and Development Center, He
has in a report correlated the noise produced by the collapse of the
cavity and the visual observation through high-speed pl.otography of
the collapse of the cavity on the surface. It has been shown that ba-
sically in the work on this body the cavitation that occurred on the
surface produced the noise and to the best of our information the
cavities that were further from the surface and did not touch the sur-
face, did not produce noise within the significant range of this work,
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It is very possible that for the pressures that we had in these tests,
the bubbles that were off the surface never really reached, or very
few of them reached, the region at the vapcur pressure of the water.

I am not sure of the extent of the work that will be carried
out, Professor Mazarredo, as far as the influence of speed is con-
cerned. The work requires a lot of effort and making detailed mea-
surements at various speeds in water tunnels could be significant,
but it is possible that the towing basin work which was done at a
speed twice as high may, at least for the time being, serve our pur-
poses of analysis,

I appreciate all of discussion and I'd like to thank all of you
for giving the pertinent and valuable comments,

* * »
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VORTEX THEORY
FOR
BODIES MOVING IN WATER

Roger BRARD
Barain d'Fessais des Carénes
Paris, France

ABSTRACT

This paper presents in a synthesized form old and
new results about the vortex theory for bodies mo-
ving in water, It is shown that the hydrodynamic
forces exerted on such a body can be derived from
the knowledge of a vortex distribution kinematical-
ly equivalent to the body, A method is proposed for
determining both the bound vortices and the free
vortices when the bound vortexdistribution is cho-
sen to be adherent to the hull surface. The total
vortex distribution is divided into two parts. The
first one consists of a volume distribution inside
the hull and of a vortex sheet on the hull surface.
The volume distribution is identical with the vor-
tex distribution due to the angular velocity of the
body. The sheet is determined by the condition that
this first part of the total distribution induces out-
side the hull a velocity null everywhere at every
time. This first part may be calculated once for
all. The second part consists of the free vortex
sheets shed by the body and of a bound vortex sheet
on the hull. It is equivalent to a normal dipole dis-
tribution whose density is the solutionof a Volterra
equation, The determination of the hydrodynamic
forces exerted on the hody is derived from the dy-
namical equilibrium of the fluid outside the body,
of the fluid inside the body and of the total bound
vortex on the hull. This system can be subdivided
into three systems : the quasi-steady system, the
system due tothe added masses and the system de-
pending on the history of the motion,
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This paper haa been written to suscitate new re-
searches in the field of the maneuverability and
control of marire vehicles,

INTRODUCTION

The vortex theory in incompressible, inviscid and homogene-
ous fluids plays a rule of importance in many chapters of Ship Hydro-
dynamics. However it is not systematically applied to all the problems
where it should be especially useful, This is the case of those relat-
ed to maneuverability and control of bodies which behave as rather
poor lifting surfaces because of their large displacement/length
ratios, The research reported in the present paper has thus been un-
dertaken with the purpose of determining how much help one can ex-
pect from the theory when dealing with such bodies in any given steady
or unsteady motion.

Indeed the question was not to draw up a new vortex theory,
but rather to extend known results relevant to fluid kinematics and
dynamics and to increase their generality and effectiveness,

The joined table of contents suffices to show the writer's
line of thought,

The startpoint is Poincaré's formula which sermits to deter-
mine the velocity in a closed domain when the vorticity inside that
domain and the velocity on its boundary are known. This leads to a
mathematical model where the hull surface is replaced by a fluid
surface moving without alteration of its shape, There exists an in-
finite class of vortex distributions kinematically equivalent to the
body. They only depend on the choice of the vorticity distribution in-
side the hull. The most interesting one is that which permits the ex-
terior fluid to be adherent to the hull, Inside the hull the absolute
fictitious fluid motion coincides with that of the body. From the point
of view of kinematics, one of the features of the theory is that the
total vortex distribution can be divided into two families almost inde-
pendent of each other. One consists of a volume distribution inside
the hull and of a vortex sheet over the hull, it is so calculated as to
induce outside the body a velocity which is null everywhere. It only
depends on the angular velocity of the body and can be determined
once for all for any given hull, The second family is the union of a
vortex sheet distributed over the hull and of the free vortices shed
by the hull. It is determined by the condition that the fluid inside the
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hull be at rest with respect to the body and by a complementary con-
dition expressing that the pressure is continuous through the line of
shedding of the free vortices,

Only the second vortex family has a physical meaning. But
both are necessary for determining the hydrodynamic pressure on
the hull. This is not really surprising since both the fluid inside the
hull and the bound vortex sheet over the hull must be in dynamical
equilibrium. A consequence is that the classical expression for the
force exerted by the flow on an arc of vortex filament which does not
move with the fluid cannot be readily extended to the case when this
arc belongs to the bound vortex sheet adherent to the hull, The
hydrodynamic pressure on the hull is expressed in terms which only
depend on the total vortex distribution. The dynamical problem is
thus completely solved for any given hull in any given motion what-
ever the incident flow may be.

The theory developed in the present paper is quite general,
Its application to practical ends does not seem to lead to insuperable
difficulties provided that reasonable assumptions can be made con-
cerning the position of the free vortex sheets with respect to the
body and the possible variation of that position with time. In any case,
it is shown in the last section that an older and less complete vortex
theory is still useful in maneuvering. Thus it is hoped that the pre-
sent one can guide the experimental and theoretical researches
which are to-day urgently needed.

I. A BRIEF SURVEY ON VORTEX THEORY

The vortex theory can be divided into four parts.

(i) The first part is, in fact, a chapter of Vectorial Analysis.
The vector V is the velocity of the fluid points in a certain fluid
motion at a fixed instant t and the vorticity @ is defined as

@= curl V = OAV. (1. 1)

The starting point is the Stokes Theorem, according to which
the flux of & through an open surface is equal to the circulation of
V in the closed circuit consisting of the edge of the surface. A con-
sequence is that no vortex filament can begin or end in the fluid. A
vortex filament is therefore a closed ring or its ends are located on
the boundary of the fluid domain, or at infinity. A consequence is
that the intensity of a vortex tube is a constant along the tube. The
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intensity of a flat tube or of a tube whose all transverse dimensions
are null can be finite, This is the case of the vortex tubes on a vortex
sheet and of the isolated concentrated vortex filaments.

Equation (1.1) can be solved with respect to V. Poincaré's
formula gives V when the vorticity is known, A particular case is
the Biot and Savart formula which expresses the velocity '"induced"
by an isolated vortex filament. A consequence of Poincaré's formula
is that the perturbation flow due to a body moving in an inviscid fluid
can be regarded as generated by a vortex sheet distributed over the
hull of the body and fulfilling the condition that the fluid adheres to
the hull. There is a kinematical equivalence between the body and
the vortex sheet.

(ii) The second part deals with the evolution of the vorticity with
time under the assumptions that the fluid is inviscid and that the
exterior force per unit mass is the gradient of a certain potential,
The basic theorems are due to Cauchy and Helmholtz., The intensity
of every vortex filament is independent of time and the vortex fila-
ments move with the fluid. This means that every vortex filament is
composed of an invariable set of fluid points. Lagrange's theorem
follows according to which the fluid motion is irrotational if its
starts from rest under the cffect of forces continuous with respect
to time (shock-free motions). This theorem seems to be contradict-
ed by the possible existence of vorticity in the motion of an inviscid
fluid, but the difficulty can be overcome by considering such a motion
as the limit of the motion of a real fluid when the viscosity goes to
zero, Although the second part of the theory is based on the Euler
equation, it only deals with fluid kinematics.

(iii) The third part of the theory concerns the dynamical interaction
between flow and vorticity. If the set of fluid points belonging to an
arc of vortex filament does not move with the fluid, this interaction
cannot be null, The concept of force ex .ted by the flow on every
bound arc of a vortex filament is now classical, Conversely, the set
of fluid points belonging to this arc exerts a force equal and opposite
on the adjacent sets of fluid points which proceed with the general
flow.

As it has been shown by Maurice Roy [l] , the system of
forces exerted by a steady flow on a body in a uniform motion can be
obtained in this way. This led to an important generalization of the
Kutta-Joukowski theorem., Later von Karman and Sears have success-
fully solved the problem for wing profiles in a quasi-rectilinear non
uniform motion [2] . The pressure distribution on such profiles
has been calculated by the present writer [3] . There exist now
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powerful methods of computing the pressure distribution on a wing
of finite aspect ratio in the same kind of motion (see, for instance

[4] ).

The case of bodies of high displacement length ratio in an
unsteady motion is sensibly more intricate than the casc of the usual
lifting surfaces and there was a nced for a general theory. Poincaré's
formula gives means for determining such a vortex distribution on
the hull and inside the hull that the fluid adhere to the hull, This
vortex distribution is kinematically equivalent to the bady. But it is
not the only vortex distribution with this property. Furthermore if
the motion of the fluid about the body is unsteady, any vortex distri-
bution kinematically equivalent to the body varies with time. Lastly
the theory would be without practical interest if it were not capable
to take into account the effect of the free vortices shed by the body
and that of an arbitrarily given incident flow, This paper gives an
answer to the problems arising from the afore-mentioned needs.

(iv) The fourth part of the theory concerns vorticity in viscous
fluid motions, but it does not fall within the scope of the paper,

11. POINCARE'S FORMULA
VORTEX SHEET

Lt )_, be a part of a certain surface, The two sides Zi ,
L‘_ ol L ar < distinguished from cach other, The unit vector n
normal to L is uniquely defined at cvery pnmt P of Z and in the
di{v(‘tiun from L(_ towards Li : We put PP nP(OO) ,
l’l’ -n ,(00) , l'i and P being the illl\'l’S(‘C[l()nb of np with

Ll and Z‘. respectively,  (Figure | and 2).

Let 241 , LL denote the bur[aa 'S dcscrll)(d by the points
Bil, P' such that PP' ~—-np. PP' -——np , respectively,
We suppose that a \ort(.x w is C(mtinuoubly dlstnbutcd between
i and Z ] w (M) is normal to 1, at every point M of each
scgment - P! P' . When €40, e (M) has a finite limit
T (P) tangent to V‘ Let é'P » 7p denote two unit vectors tangent
to Z at P, such thdt the directions (n’P , O.PJ r’p) make a right-
handed system, with 7 in the direction of  Tp. A line £ tan-
gent to T at cach of its points is a vortex filament of the limiting
distribution. Let $ .f be two lines ¥ clouse to cach other. Let
@ be a line orthogonal toithe: 3 *s, afa containing P. It intersects
;1“ P, . Wcmayput PB, =dod, For the limting distribution,
Tp d o is the flux of the vortex through the arca of the infinitely
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flat rectangle P; P_ P, P, andis therefore equal to the circula-
tion dI' of the veloc1ty V in the closed contour of this rectangle.

Consequently

[V(Pi)-V(Pe)] . dea = T (P). TPda = dI' (2.1)
or equivalently :

v (Pi) -V (Pe) = T (P) A n, (2.2)

Conversely, if the velocity V is discontinuous through a
surface Z and if the jump is tangent to Z o then the above
formula defmes a vortex sheet ( Z , T } with Tp = np /\[V(P ) -
- V(P, )]

The expression (2.1) is the local intensity of the "vortex
ribbon'' located between £ and o‘f . Itis a constant along the rib-
bon if no vorticity & ' coming from the regions outside Z joins the
distribution _'L over ). . We will see in the next Section that the
opposite case'is frequent,

POINCARE'S FORMULA

We consider in the fluid a closed surface S with a tangent
plane at every point, Let Dy D, be the interior and the exterior
of S. The unit vector n normal to S is in the inward direction.
The interior side S; of S is considered as included in D;, and
the exterior side S, as included in D,

The time t is fixed.

The velocity V is supposed continuous and twice continuously

differentiable within D; . Let A be a vector function of its origin
M and defined by

Koo = ff]| Sie-en; 00

1192

et e et i it D s 2l r e kit e ot e e ekt it g b e




.

-

TR Y

T T T ——— = o e e i et ot b Bl B et

§oroes

Vortex Theory for Bodies Moving in Water

We use the classical formula

curlcurl;\. = VdivA - AK

2 32
where A 1is the Laplace operator: A = V' = Z , and V
PR P Q2

th t the system of Jtanulara 8
e operator 5)11 : ey e syste rectang xe

ox,
O(x1 v Xy x3) being right- handed By Poisson's formula :

-V (M) if M e D,

0 if M ¢D
e

Furthermore it is easily seen that

n AV —e, 1
curl A - [/ MM' L ds(M') + ]'jﬂ w]éi};\d/[') dDi (M')] b
i

(div V) ,
div A ﬂ MM, ds(M') + ﬁﬂ[) 'Trxdr)i (M')].

1

Consequently :

(M AV )y it
Sl [41{[/5 '”"LTM'M1 SS(AY) 4ln_[ﬂ; :4(:44') & (M')]
(m. V) (divV) ,
+ grad —ﬂ MM'—I dS(M ) +‘l—”/] ‘-—W—.Ld—dDi(M')] S
D

i

(2. 3)
) ;V (M) if M €D,
0 if M ¢Dg
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This is the Poincaré formula.

Let us suppose that the fluid is incompressible., The triple
integral in the second term is not necessarily null for sources with
a density ¢ =div V could be distributed through D;. The double
integral in the second term represents a source dutribntion over S

with the density ¢ (n : ) _+ There is a jump of V through S.
Its normal component n (\7 - V i) = - (EV) . According to (2.2)
its tangential jump from Z‘ is that due to a vortex sheet

over S, with the vorticxty _1_ ™ A V)
Poincaré's formula solves the equation
W= VAV

with respect to V when the vorticity & and divV are known
inside D;i, if, furthermore, V is known on ;.

Biot's and Savart's formula - (Figure 3)

Let us suppose that all the points of S are at infinity, that
div V=0 and that & is null everywhere except in a very thin tube
g with a transverse area >~ . Letus suppose that the measure of
goes to zero, while 750 —»T . The vorticity reduces to a vor-
tex filament_?wnh the mtennty T tangent to . Let ds denote
the element of arc of

Then Poincaré's formula gives

V(M) = curl—/MM, ds(M') = curl 5' /_.‘;dh.d(:lld") 2 (2.4)

This is the Biot and Savart formula which gives the velocity induced
at M by the vortex filament ythe intensity of whichis T .

A._?? = 0 except on _g, there is a velocity potential &

except on . Let Z be an open surface whose edge coincides
with and T the unit vector normal to Y. . oricnted in the posi-
tive direction with respect to the arc ds of . Une has

-T

V= v® withd

l ]
So O dX (M), (2.5)

1194

N e s

s ainloima i st

S S =

NP —




Eaouis el e Bail e At
. - o

Vortex Theory for Bodies Moving in Water

® is therefore generated by a distribution of nurmal dipoles overZ i
with the constant density I' . Of course, ¢ is not single-valued,
If C is a closed circuit intersecting Z at P and surrounding £
one time, then the circulation of V in that circuit is

[ Va2 T(©:-0@®)-0F)-T. (@6
C

Application to vortex sheets

Let us consider the part 3 z of a vortex sheet. The contri-
bution of & Z to the velocity V s given by

5V = cufl 4’”// T:A":d) dX (M) 2.7)
5%

III. VORTEX DISTRIBUTIONS KINEMATICALLY EQUIVALENT TO
A HULL SURFACE

Let Z denote the hull surface of a solid body completely
submerged in an unbounded, incompressible fluid at rest at infinity.

Let Vg denote the velocity of the body and Q E its angular velocity.
One has

w = \_/. = 2 o
wE curl E Q E

Let D; - resp. D, - be the interior - resp. the exterior - of 2 , and
i te the two sides of Z . For convenience, Zi @ Di and
Ee c De. The unit vector normal to E is in the inward direction.

et V denote the velocity of the fluid inside D,. One has

nVE z nVon) . (3.1

Poincaré's formula applied to ‘—;E inside D_ gives :
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AV ) -
curl[ 411/2 MME': M d 2 M) +-———‘//:/ NN dDi(M')]

n d . Ehlll dz(M )] . VE lfM!Di,
gra MM’ T o ifM ¢D_.

The same formula applied to V inside D, gives :

(5 AV) s — (0. V)pge
curl[;:ﬂ MM:\AedZ(M')] + grad 41”‘,/] MMh:I £ dZ(M')
3 >

0 if MCDi

-

vV (M) if MCDe

Adding these two equations and taking into account the boundary con-
dition (3.1), we get

. (M)
A curl [/’Thihhd/{' ') +ﬁ/n WdD (M )] =
i

% v.2)

VE (M) if MCDe

V(M) if MED, ,

where

. ~ i N (3.3)
T (M) = -7, A[V(M'e) - VE(M')] on) .

This shows that the vorticity distribution
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(Z —) + (D UE)’( R 0+)| (3-4)

is kinematically equivalent to the body inside D, and generates
inside D; a fictitious motion identical with the mouon of the body.
The relative velocity VR = V - V' fulfils the condition

VR =0 on Zi . (3.5)

Therefore, the vortex sheet (Z —-) allows the fluid to be
adherent to the solid wall Z of the body. “This gives the image of
a very thin boundary layer which the real boundary layer would reduce
to if the fluid viscosity u were going to zero,

It is easily seen that curl V = 0 inside De , 80 that
V = V . @ inside D,

® Dbeing the unique solution of the Neumann problem with the boun-
dary condition

For the sake of brevity, let us put :

— = (M')
- 1 T(M') - R WE ,
J(M) = “//Z VT d)_(M"), JE(M) = = '[ﬂ T dDi(M ).
D

i (3. 6)

The components of JE are continuous and continuously dif-
ferentiable xnsxde D; + D (and harmonic within D ) Those of J
and of curl J are dxscontmuous through Z because

1197
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R 4+ — T(M) + — T(M') 2 o 42, (M) .
an ¢

It follows that

curl J (Me)

curl J (M.) = (3.7)
ol g :_;__(E’AT’)M +—4—'"//cur1M Thd("‘&) dY) (M)
2

Equation (3.2) expresses that

curl f(M) =V

£ (M) - curl j.E (M) when M describes Di 3 (3.8)

and therefore entails

Iy
@At
5 (n

)M +Tl;[/C\ArIM%d Z(M') = T"E(M)‘Curl T;(M)n MCZ
z

curl [ B (M) - curl JE (M)] = 0 within Di ,

>
1]
T e T P

div [VE (M) - curl JE (M)] = 0 within Di

the difference Vg - curl J. is within D; the gradient of a harmonic

potential, and, for (3.8) to be satisfied everywhere inside Di' it
suffices that it be satisfied on Zi . Thus :

(3.8) <—>(3.9)
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Vortex Theory for Bodiee Moving in Water

Consequently, T has to be determined by (3. 9) and the
complementary condition

—
nT

0 ony). . (3.9

Equation (3.9) is_a vectorial Fredholm equation of the 2nd kind. It

is singular since T = A n, A being a constant, is a solution of the
homogeneous equation

-;—(1_1./\ Ty * q—l;/‘/'zcurlM Thm',) as (M) = 0.

For (3.9) to have solutions, it is necessary and sufficient
that its right side - say B (M) - be orthogonal to T on),

/[K.B 4 = 0 (3. 10)

z

This requirement is fulfilled because VE and curTJE are divergen-
celess inside D;. Hence, if T' is a particular solution of the com-
plete equation (3.9), the general solution is

g

T = T + A7,

—

But n T' = const. = m on Z , 2nd therefore

—

T =T -mn (3.11)

is the only solution which fulfils both (3, 9) and (3.9'") (1)

(1) The proofthat (3. 10) is sufficient and that n. T' = const. on Z
has been omitted because it is possible to substitute for (3.9) a scalar
equation which does give rise to no difficulty (see Ch. VI, eq. (6. 6').
An equation similar to (3.9) has been considered by J. Delsarte [5) in
the case of a fluid motion inside a closed vessel. In Ch. V, we will
deal with an equation (5. 7) analogous to (3. 9) and (6. 6').
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T being determined in that manner, the veloc1ty 'z gene-
rated by the vortex distribution - on Z and w = wp inside Dj
is equal to VE within Dj Therefore, as the jump of v through
Z is purely tangential, one has n V' = n VE on 2 and V'
evidently coincides with the velocity V of the 1rrotat10nal fluid mo-
tion inside D, .

The above results can be extended to the case when there
exists inside D, some incident flow of velocity V . It suffices to

replace VF‘ by VE - Vo into the right side of (3. 9) The resulting
velocity is

. . VE inside Di 0

v inside D
e

If Do were bounded by solid walls and (or) a free surface,
one would have to add singularities distributed beyond the boundaries.
These singularities would be linear functionals of T and therefore
T would be found on the right side of (3.9) too.

Furthermore, it is seen that the incident flow V _ could be
due totally or partly to free vortices shed by the hull itself. In such

cases, the right side of (3. 9) would depend upon the history of the
motion of the body,

Various remarks

(i) It is to be noted that the vo;'ticity inside D; could be chosen
. - 1 (M)
; . . T —— SH\vV) A '
arbitrarily. Jg should be replaced by =y vivi dD; (M)

The possibility condition __(}. 10) would still be fulfilled. And, for the
same reasons as above, T would still be determined uniquely by

(3.9) and (3.9'). But, 1n51de D, , the resulting velocity could no
longer be identical with VF

In all the cases, the resulting velocity v onz -i.e,
between )., and Y e -isgiven by

V (M) =—;—[V(Me) + V(Mi)] (3. 12)
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Vortex Theory for Bodies Moving in Water

(ii) ~When T is determined so that V(Mi) = VE(Mi) , the jump
of V - Vi through Z is equal to VR(MQ) , and

Ve (M)

[H]

1 —
—Z—VR (}de) on Z g

T is perpendicular to VR on Z and the edges of the vortex-ribbons
on Z are orthogonal to the streamlines € of the relative motion
over e
If, furthermore, no free vortices are shed by the hull,
these edges make closed ringssf on Z . (Figure 4). Let do be
the element of arc of a particular streamline . The intensity of
the vortex ribbon between two rings &L , & close to each other is

dI'(M) = (Me) de (M ). (3.13)

VR .

(iii) If 3=0 inside D;, then dI' is a constant when M
describes & , and the fluid motion inside Dc and inside Di
depends on the velocity potential

3 1

& (M) -%[/ rM) 5— —;d):(lw), (R = MM')
Z M

This potential is generated by a normal dipole distributions. T is
determined up to an additive constant,

If a’#o inside D;, then, dI' is no longer a constant
between & and ¥ ; ds Leing the clement of arc of & , one has

Azl‘do:' ds = -« n do ds
aaas

The same phenomenon happens in the case of the vortex distributions
(Di . 2 UE) + (Z ,_T.) - see Section V, Figure 5.1,
€
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IV. FREE AND BOUND PARTS OF A VORTEX SHEET

EULER'S EQUATION IN A MOVING SYSTEM OF AXES

The fluid is assumed to be inviscid, incompressible and
homogeneous, Consfequently, its mass density p is independcent of
position and time.

Let Z be the hull surface of a body moving in the fluid.

Let €', S denote two right-handed systems of axes, S'
is at rest and the fluid motion with respect to S' is said the '""abso-
lute'" motion of the fluid. S rmoves with the body and the motion
with respect to S is said the ''relative' motion, The subscript R
refers to the relative motiaon, F is the absolute exterior force ;
v, @ =curlV and 7 =%¥- are the absolute velocity, vorticity
and acceleration, The instantaneous motion of S with respect to S'
is termed the'entrainment'motion. It consists of the addition of a_
rotation about a certain axis 3 and of a translation parallel to a

If O and M are two points of S, the entrainment velocity Vg(M)
of M can be expressed as

VE(M):VE(O)+ Q.. A OM,

where g is the angular entrainment velocity.

The relative velocity of a fluid point P located at M at the
instant t is

— - —- . V
Vo (B) = V(p) - V()
One has
¥ s P 20 AV
(P) = (yp tvg+ e VR p
~ - vV - o _-20
SR curl VR w 2 E

and the exterior force ?R per unit mass in the relative motion is

1202
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given by

14
"
o1
]
~|
]
o
=
>
<i

Let p be the pressure., The Euler equation in the system S can be
written in the form :

| v .
d e, . F o - (F-7T .20 -
o~ P Fpoq (F-7p-28 p AVp)
3V
R — — 1 2
o + AV +\"—v =
[Bt “R "R & R)]
- VL 1,2 1 2 2
o ooy, - — vV =
. Fo=3 GAVE V(Z R)+2V(9Er).(4.1)

where r is the distance from the axis &

We suppose that F = 77/', and put

Py = p-P% v Py =pél (4.2)

ps and py are the hydrostatic pressure and the hydrodynamic pres-
sure respectively, Equation (4.1) becomes

} _ Vv P J 2 1,2 2 .
7 Vpd S w/\VR v (ZVR)+ V(ZQEI). (4.1")

FREE AND BOUND VORTICES

From the Euler equation in the system S' of axes, namely :

— = - — = - —- A = f
=ees : SAV -9 V)
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it follows that

curl ( + SAV) = 0.

At

Taking into account the continuity equation, one obtains the
basic Helmholtz equation

d4 v, | g (1)
a ) = (G .V Vv (4.3.)
This equation entails the following consequences :
(i) If ¥ and the boundary conditions are continuous with res-
pect to time, and if the fluid starts from rest, then
W=0 everywhere at every t,
(ii) Every vortex filament is made of an invariable set of fluid
points,
(iii) The circulation of the velocity in any closed fluid circuit is

time-invariant,

According to consequence (i), the absolute fluid motion should
be irrotational everywhere. This explains why the concept of velocity
potential is of importance in the motions of inviscid fluids. However,
this consequence does not hold if there exist regions where F is not
the gradient of a potential This is obviously the case when the
fluid is submitted to the condition of adherence to solid walls.

For this reason, the vortices existing in the motion of an
inviscid fluid about a set of solid bodies have to be considered as ori-
ginating on the surfaces of these bodies. Thus every vortex filament
is made of two sets of fluid points : one of these two sets is at rest

with respect to the surface of a solid body, the second one is free and
moves with the fluid,

(1) This equation holds if the fluid is not incompressible, provided
that
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Vortex Theory for Bodies Moving in Water

BEHAVIOR OF THE FREE PART OF A VORTEX SHEET

Let dE be the set of fluid points belonging to an element
d Z of a vortex sheet. The sheet begins or ends on the surface Z of
a body moving in the fluid. Its bound part is located between the in-
terior side Zi and the exterior side Ze of 3 and the relative
velocity Vg of every fluid set belonging to this bound part is null,
On the contrary if dE belongs to the free part Z ¢ of the vortex
sheet, it moves with the relative velocity VR inside the sheet. Let
Z £ir Z fe denote the two sides of Zf , T be the unit vector normal
to Y ¢ in the direction from Y fe towards 2, i, and let ¢ be the

infinitely small thickness of the sheet. The vorticity inside the sheet
is @ ¢ = Ti with

T, (M) = F A [VR M) -V, (Mi)] .
==, € . &
Mczf’MMi_nM 2P MM = B

and the relative velocity of the fluid point located at M is

= 1

Vi, (M) <o [VR M) + Vg (Mi)]

Since there is no exchange of matter between the sheet and the adjacent
fluid sets

- VR(Me) = ny e VR(Mi) = ny, . VR(M) = 0. (4.4

Let ?R(dE) be the momentum of dE in the relative motion. We have

v
d o R
=T (@E) = edzf
e VR(Mi)]. VR(Mi) -[E’M.V;{(Me)].VR(Me) dZ( (4. 5)
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Furthermore, as the pressure does not depend on the axes, we have,
by the momentum theorem

oy

< T @E) - M[pd (M) - pd(m)]dZ (M) .

This quantity is null because of (4.4) and e =+0,
Consequently

TP AT

TR

Pg (M) = py (M) . (4.6)

Hence the pressure is continuous through the free vortex sheet.

4 For the sake of simplicity, let us suppose that we deal with
. only one moving body.

We also assume that we deal with one vortex sheet only. The

vorticity generated by the body is thus concentrated inside that vortex
3 sheet.

The absolute velocity V in the domain D! really occupied
by the fluid can be divided into three components:

- the velocity 3 mduced by the vortex distribution
(D, 29 g) + (X, —T ) which permits the fluid located

;’ between) ; and 3" to be at rest with respect to the hull;

3 - the velocity Vo of some incident flow,

1 - the velocity Vf due to the free vortex sheet shed by the
body.

According to Section III, we have

o 2T (M) 1
7,4V, = curl /]Th(d’ﬁle(M'uT‘rﬂ—ﬁEM,—dni(M') ,«

i

2 T(M)
} f__[/ — o X (M)] (4.7)

ik A
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with the boundary conditions

<
=
i
<

_.d i g M) -V (M) - Ve (M) on Zi

. (4. 8)
_.M' 0 on E .

-]
-

g
1

Vo is due to causes located outside Z: e and one may consider that
there exists a velocity potential ®, such that

V =9V &
o] [0}

at least in the region of DJ close to z: e and inside D; + Z

Vd + Vf is irrotational outside ). + Zf . Therefore, M
and M; being given on fi and f; » respectively - with
MeM; = iy (0+), one can find a path starting from M; and arriving
at M, sothat V be irrotational everywhere along this path, Putting

(]

V = v, (4.9)

we obtain, by integrating (4, 1) along the path :

M M
Py (M)-p (M) = - p(%%) e-%p(v;) .

i i

(4. 10)

One has

T (M= -5 A [VR (M) -V, (Mi)]
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Consequently

i‘.f(M) A VR(M) = VR(M) A B’M A[VR(Me) -VR(Mi)]

- _%-KM [v; (M,) - v; (Mi)] (4.11)

Thus, when the relative motion is steady, _ff(M) and VR(M) are

colinear, and both are in the direction of the bissectrix of the angle
(VR (Me) . VR (Mj)).

If the relative motion is unsteady, |VR (M) | and IVR (M)
are no longer equal to each other and therefore the direction of T(M
is no longer that of the bissectrix.

Equation (4.10) expresses the dynamical equilibrium of any
part of a free vortex sheet,

DEFINITION OF THE FORCE EXERTED BY THE FLOW ON AN
ELEMENT OF THE BOUND VORTEX SHEET ADHERING TO A
MOVING BODY

Let us consider now a set dE of fluid points belonging to the
element d Y of the bound vortex sheet.

We have

d
VR (M) = 0, and —d{f (dE) = 0.

But the expression for d T (dE) does not reduce to Lpd(Me) - Pd(Mi)]
np d ) , for, because of the adherence of the fluid t j» aforce

- de—r is exerted by the element d 2 of the hull surface on dE.

The equilibrium of dE requires :

—

0 =%_I.(dE) = ~d L+ [Pd M) - p, (Mi)] ?fMdZ (4.12)

s i o
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Conversely, the equation
—_
"Z ] [pd M) - p, (Mi)] Ay, 42 (M) (4.13)
—_
shows that the fluid sets adjacent to dE exert the force dfT on

the set dE.

V. THE STRUCTURE OF THE VNRTEX SHEETS GENERATED BY
A MCVING BODY

Two cases will be studied in the present Section,

(i) One free vortex sheet only is shed by the body,
(ii) Two vortex sheets are shed by the body.

In the first case the fluid motion is irrotational everywhere
outside the body, except through the free vortex sheet Zf . In the
second case, if the fluid motion is unsteady, vorticity is necessarily
distributed in a certain volume downstream from the body.

A - STEADY MOTION IN THE CASE OF A UNIQUE FREE VORTEX
SHEET

We can define on Z such a vortex _L that each of the two
vortex distributions £

o, 28 )+&1) (s

9,
9.

be complete and that they sum up to the total vortex distribution

—e

—.' T
(X, 55+ (0 6.2)

—

—

= T
9. (Di.ZQE)+(2,_;£)+(ZI,¢—f) (5.3)
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The vortex family (Di, z_n’E) + (= .%)

The new vortex distribution (5.1) will be chosen so that the
velocity

. = 20 (M)
V'(M) = curl 41’/] T}vﬁx,)dz(M') + curl 4—1'//]0 -—%dDi(M')

z ] (5. 4)

-

be identically null inside D, . Inside D;, V' is the velocity of a

—-

fictitious fluid motion due to a certam force F + F' per unit mass
(determined in Section VI), One has :

curl V' = stE inside D, . (5. 5)
The condition
ViM) = 0 if ME D, (5. 6)

is obviously cquivalent to the condition

v (Me) = 0 on Ze. (5. 6')

The fictitious fluid motion defined by V' is one of the fluid
motions which could exist inside the vessel bounded by Z i if the
body were at rest.

(5.6') means that

g(M')
curl /]T (M") dZ(M )= - curl 7 jq/ M M' dDi(M')on Ze

1210
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Because of the discontinuity of the left-hand side through 2 , this
equation can be written in the form :

% .. AT'(M) + c:url—”//’rlr (M) dZ(M') =

: ZQE (M"
'
- curl 4"/1 MeM, dDi (M') . (5.7)
i

where M is located on Z .

This is a Fredholm vectorial equation of the 2nd kind which
is quite analogous to (3.9) in_spite of the fact that the condition to

be verified concerns the side s of 2 instead of the side .

First one observes that this equatxon is singular, since the
left hand side vanishes when T' (M) = Af) ., A being a constant,
The right-hand side must therefore satisfy a possibility condition,

[/ 'E(Me). [curl 4—’1;[/ T};;“;fd') a2 (M’ )] dZ(Me)

> z
. % My ) -
_MD div curl [/ MM dZs (M’ )] dDe(M) = 0,

e

one must have

4')
/] M) . [curl%'/]]’ g dDi(M’)] dZ(Me) - 0. (5.8)
D
> i

This condition is obviously fulfilled since the latter expression is
equal to
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20 _(M")
. ] E v
div curl —_— 4 (M')] dD (M)
ff/De [ "//[Di i s

It follows, as in the case of (3.9), that the solutions of (5.7) are

T - T =¥
T' (M) Tl (M) + ng 5.9
pith ; Tf'l = constant onz '

—

1
herefore that there exists one, and only one, vortex I which
is tangent to E: and satisfies (5.7). <

One has

T' (M) = - n), A[V-(Me) - V-(Mi)] = Ty AVI(M,) ond .  (5.10)

At each point M on Z (nM g OM 0 "M) areiu'ee unit vec-
tors making a rxght -handed system ; 0 is normal to in the inward
direction, and 7 is in the direction of T'. The lines €' tangent to
¢' and the lines &€’ tangent to 7' determine on two systems of
orthogonal curvilinear coordmatea, the arcs o' on €' and s' ond
being oriented in the direction of 9 and 7 respectively.

Let us consider (Figure 5. 1) two lmesw (a ) and
&' ) close to each other and two lines €' (s ), g Il' + ds'). The
flux dl of the vortex L through the area M M, e Miz Mil is
€
equal to V'(M e M d7' (where do' =o,' - 0,'). Through the area

M‘l ML M’2 M' , it is equal to2 V'(M') OM' do' = dT' -Tn'de' ds’

. —e A o
with ds' = s', -al Hence e aoI(u,())— -wn= -ZQE .n. This

results from the fact that the vortex ribbon whose edges are$l’ ('))

and &€ (o' 2) loses, between ¢’ (s’ y) and e’ (s' 2) , vortex ﬁlamenu

entering D; .

The‘;f's are closed rings, sincc the ends of any segment of

1212




e o e S e e

Vortex heoru for Bodies Muoving in Water
3

l a vortex filament 28 E interior to Di necessarily belong to the
same line &€ '

4 —o

i The vortex family (% T ) + (3¢, —(—-

} The wvelocity V" induced by this vortex distribution is given
b by

(T - T, T (M)
Vi (M) = curl[ ﬂ MdZ(M)+—g 1O dZ(M']

2 (5.11)

T T YT

V" is irrotational eyerywhere except on Z and on Ef ., On Ee 5
one has V"(M ) = (V Vo) Me and, on Z V"(M ) = (VE-V'-VO)Mi
Accordingly :

V"(Me) - V"(Mi) = VR(Me) + V'(Mi) v (5.12) ~

Y

—

, 6 _denote two unit vectors on Z 7 (M) being in n_the di-
of (T T )M' » so that the three dxrectxons (-, '} , 7))
right-handed system. It follows that 6 (M) isin the direc-
] VR(Me) + V'(M;). The curves @ tangent everywhere at ¢
1 the vortex filaments & on z define a system of orthogonal co-

] ordinates ( o , 8) increasing in the directions of % and 7 , respec-
1 tively,

-

A £ 5

We may consider V' as generated by a normal dipole distri-
bution on Z + Zf . Let # and u ¢ denote the density of the distri-
butions onz and Z , respectively. We have :

[ vt = 9", 9= ¢d+ ¢f’vd= V@d,vfz'VQf, 1
(M) == womr) -2 a2 (M)
¢d T 4.5 i T_—M
>
N
& M =—J u o i 42 (M) (5.13)
f
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Let Zf + 2 f, » denote the two sides of Zf ., At on X ¢
being in the dirkction rom ), fz towards 2[1. One has

AV e WA

u(M) = <bd(Me) - cbd(Mi) ' nf(Mf) = ¢I(M£Z) - ¢f(Mf1) ;

ok _dr . N v = .
? ﬁ- a e with drI' = [VR(MC) +V (Mi)] . 8 (M) d g ,
h
| R T N 13 - )
5o~ B with dr, = V(Mfz) V(Mfl) - § [Mydo =
f
: = [VR(Mfz) - VR(Mfl)] 0,M)d ¢ ¢ (5.14)
[ Let (B denote (Figure 5.2) the intersection of 2 with 2 f.

Two parts , and Zz of Z are adjacent to each other along $
The part ) y corresponds to ) ¢ and the part Zzto s

Let u,,
H, be the determination of 4 on 2. and

respectivefy. Let
"’ff. ) ;{'°. ;be three vortex filament ; intersecting 33 at the same

; point B° and located on 2, 21 . Zz » respectively,

Similarly, ;:0 £ £‘ , &, intersect 93 at the same point B

1 and ¥;, ¥, &, intersect T3 at B', The points B and B are
chosen in opposite directions with respect to B°, Thus ¥ { belongs

1 to the vortex ribbon L, the edges of which are ¥ ¢»f'¢. Simi-
larly ;P;’ belongs to the vortex ribbon L, and £3
ribbon L2 » the edges of L1 being i
are £2 i .

to the vortex
y+ 50, while those of L

; 2+ Let My, M{ be the intersection points with 3 ¢,
:ff of the surve c@ intersecting &7{ at My. Let us define in a
similar manner the points M, and M{ on ;81 and ﬁ‘ » and the

points MZ 3 M'2 on :52 and 382

We now suppose that Mf" p M‘; and M‘é are chusen so that

M{B° = O(n), M B® = O(n), M; B, = O(n),

(5.15)

7 being a small length that we shall finally equate to zero.
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Vortex Theory for Bodies Moving in Water

Let I' " (C) be the circulation of V" in some closed circuit
C.

We consider the following circuits :

C® : M° M?° M, M° M’ M M° ,
ez fz fl el 11 12 ez

C, : M M' M M M
1 el el fl fl el !

L i L e

C. M M! M M M 0
i i i iy iy i
C M M., M M M .
f f, f) £, £, f
C M M' M! M M
e ) e e e e
1 We have
F r'(*) =o, r (Cl) =0, rv (Cz) =0, rv (Ci) = 0.
! (5. 16)
The first equality gives
["’d(Mez’ - oqp)] + [o0n; ) - *;)| *["’d‘Mi,’ - 000 )]
= O(n)
& or, equivalently
3
§ M) = M (M3) - w (M) + O(7 ) (5.17)
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The other three equalities (5.16) give :

V"(M;> MM + V'(M:) MM, = O(n),
: 1 1
4

s Sl S

ViM: ) MM, + V(M) MM = o(n),
2 2
3
1 -V (Mi ) MlMl -V (Mi ) M'ZMZ = O(n) ,
1 2
" by adding these new equalities, we obtain after (5.12) :
4 [VR(MeX) + VvV (Mil)] - MM+ [VR(MeZ) +V (Miz)] MZMZ =

i

rcy)+ o(n)

The left member is equal to T "(Ce) + O(7); we have thus :
I "(Ce) = T "(Cf) + O(n). (5.18)

, But I' "(C,) is equal to the flux of LU

Se the edge of which is C.- We may take

through any open surface

S = rectangle M M' M' M. + S
e e el i 1l 1

+ rectangle M Me Mi M! (5.19)
) 2 %2 2 &

where S, is any open surface the edge of which is the contour
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We can takg,fg; S, a surface entirely located within Dj . Therefore
the flux of -TT—— through S, isnull. Let V, be the unit vector
normal to the first rectangle so that the three directions M, M ,nl,

"l make a right-handed system and let v—, be the unit vector normal
to the second rectangle such that the three directions M, M_ , 1

— € 2
v, also make a right-handed system. The vectors v1 y 40, 2 are
tangent to i, ° at MJ andto %2 at M% , respectively, and
both are in the direction towards B° . Hence:
[ - —"
F"(C):[areaM M M M |. 3. (T¢T) 5
e e e i i 1 M
1 1 1 1 1
T-T
+ |larea M' M M. M! Ly ( ) T
¢
[ 2 %2 % ‘z] . M,

The intensities dl‘1 of the vortex ribbon L‘ and dl‘2 of
the vortex ribbon l“z are given by

r - T - —.0
dl‘l = | area Me M Mi' Mi . ?l (_T. - T) -,
! 1 1 h 1
] T .5
dr, = [area M' M M M = (L Yy .
2 I e, e, i, A 2 € M2
respectively,
Hence
r (Ce) = I‘l o vy- Tl) + dI‘z el Vz. rz).

Similarly, v ¢ being the unit vector normal to the rectangle
Mf1 M'1 Mf Mfz and such that the three directions Mf Mf
ng, vy make a right-handed system, we have :

1217




-

f f

I‘"(Cf)=[areaM MMM ] . (=T
R

We have thus :

r"(c,)

(T, 7y)
where dl"f is the intensity of the vortex ribbon Lg.

According to (5.18), it is seen that

— = = _ 7 =
dl‘l.( Vl.rl)+dl'2.("2. TZ)-drf.( ‘- "i). (5.20)

Let Bf‘ ; B[1 be the points derived from B, B' by the trans-
lation '+ T ng (B) and Bf . Bf those derived from B, B'

by the translation - = (B) Let Z denote the surface whose
edge is the contour Bf Mfl Mf Bf and Z the surface whose
edge is the contour sz Bf M' Sxmllarly let Z be the
surface bounded by the contour ﬁ Ede B Bf and Ze the
surface bounded by the contour M, M) B} Bf‘ S¢ the srface
bounded by the contour Cy and S, 2the shirfade boiinded by the contour

Ce . The surface

. , , ,
+Ze1+ 21 t 8 +% +Ee2

— = -*'
is closed and the flux of L4 ¢ L through this surface is null. As it
is equal to+ (dl‘1 +dl,-dlg)if Vg rf = +1 andto (dl‘1 + dl‘z -
- dIy) if vy T = -1, we have

dr, + dr, = ar, (5.21)

By comparing with (5.20), we obtain

— — - — — — —

-1 < Voo T, F Ve Tg (5.22)
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This shows that :

If Lf starts from BB', then both Ll and L2 end at BB' ;

If Lf ends at BB', then both I..1 and LZ start from BB'.

Consequently, every vortex filament :ff can be considered as the
union of two free vortex filaments & f‘ and ‘&,Pf" , %; and ¢ .f1
being two complementary arcs of the same vortex filament f
similarly £2’ and ;E; belong to the same vortex filament £2 .
:21 and £2 are closed?

When n goes to zero, (5.17) becomes
uf(B ) = pz(B ) - ul(B ). (5.23)

According to (5.22), if 7f. 7ot 1, then -o.‘ is in
the direction from af,' towards .;8‘ ’ 70’2 in the direction from &€

towards 8,' and § ¢ in the direction from ¥ ; towards £ . If
2 f {

vg - 7 - - L the dircections of §, , %, and 0f arc opposite to the
preceding oncs. Thus, from B to B', the variations of l'l, l‘2 and l‘f
are

Ll
+

ar, = 0, -1y (L) - Fluy ey - # (L] T du Jupper

L sign if

, N T 4 Ve Te= +1
dr, = 1,85 -1,y = F (L)) - wy (L) |- Taw, V0TS
L . lower

sign if
du V. -
f Vf ff: °l)

(B 2

f

) 1 = t
arg = @ -l - t[uely - nd) |-

As it was to be expected, (5.21) and (5.23) are therefore equi-

valent.

Fig. 5.3 sketches the configuration of a vortex ribbon when
there exists only one free vortex sheet.

This case is that of a wing with a finite aspect ratio. % is
the trailing edge of the wing.

1219
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Let us suppose that the wing is in a uniform motion of trans-
lation and that the relative motion is steady., Figure 5.3 shows the
general configuration of the vortex distribution. The free parts of
the vortices are closed at infinity downstream from the wing. (In the
figure the concentration of the free vortices around the edges of the
free vortex sheet is neglected). The second frontier between), and
Z consists of the bound part of the vortex filament shed at the junc-
tion of the leading edge with the trailing edge. The sumz1 +ZZ
does not cover entirely the wing surfacez: . The vortices located
on 23= (X o ZZ) contain no free arc ; they make closed
rings entirely located on 3

Let J),, denote the intersection of )Y {, Wwith Pl e, and fBe
that of Y. f wilh > e> These two curves ard infinitivel)1 close to 2
. The relative velocity Vp is tangent to ,.Be at every point
8;1 and to ey atevery point BS_ . These two points can be
considered as belonging to z f; and to E % respectively, Thus
VR (Bél) - Vg (B*) and Vg (B°) - Vg (B;z) are equal and orthogonal
tof¢. ' But | VR (Bg )| = | VR (Béz) l because the pressure is con-
tinuous through the free vortex sheet as shown in Section 4. Con-
sequently VR (B°) = 0. Hence ¥ { is orthogonalto B . ¥,° and
x ° also are orthogonal to since they are orthogonal to &R on
1’2:21 and on Z.Z respectively. Furthermore the intensitics dI, =
R(Bg,). BB' and dI, = - Vg (B, ) BB' are equal. Hence, as
shown by Maurice Roy. 2

dr, = dr =—%—d[‘ (5.24)

1 2 f

Of course, this relationship does no longer hold when the motion is
unsteady,

B - STEADY MOTION IN THE CASE OF SEVERAL SHEDDING
VORTEX LINES

One case of several free vortex sheets is sketched in Fig. 5.4
which represents the lower half of a double model the two halves of
which are the images of each other with respect to the (X, Y) -
plane. The (Z, X) - plane is the longitudinal plane of symmetry of
the hull. The fluid is unbounded. The body is in a uniform motion of
translation in the positive x-direction and the fluid motion is sup-
posed to be steady. The drift angle a = (Ox, OX) is positive, so
that the starboard side is the pressure side and the port side is the

1220
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Vortex Theory for Bodies Moving in Water

suction side. The transverse cuts of the hull are V or U - shaped,
the radius of curvature of the U's is small.

Experiments show that, if a is not too great, then the re-
; lative streamlines on the port side ), are less inclined on the
(X, Y) plane than those located on the starboard side Z . Let IS1 ,
E E‘.2 00 aKor be a sequence of points on the lower half-stem, On 21 5
E the relative streamlines coming from the E,'s leave the hull at
3

a
4
E
i

points S; located either on the lower half-stern-post or on the keel,
in the (Z, X) - plane. Onz2 , the relative streamlines leave the
hull at points Sy also located either on the lower half-stern-post or
on the keel. But the points S, located on the stern-post are below
the points S, , and the points S located on the keel are upstream
of the points S, . Consequently, the two streamlines arriving at a
point B on the keel (or on the stern-post) come from two different
points E. The relative velocities on these two streamlines are equal
at B, but their directions differ. This entails the shedding of a free
vortex filament from B .

Thus there exist three surfaces Zf . One, denoted Zfo , is
generated by the free vortices shed along the keel ; the second one,
denoted Zf is the mirror image of Zf ; the third surface, denoted

{ is generated by the free vortices shed along the stern-post Zi
is its own image (Figure 5.5).

ki i e S S

1 Let B ' denote the complete stern-post S SS, and B, ,’B‘
3 the keel and its image, respectively. Every free vortex filament
¢ starts either from the upper half of ' or from 3 and goes
at infinity downstream from the body. Because of the steadiness of
the rmnion, ¥ ¢ coincides with a relative streamline. Consequently,
Zf. is nearly parallel to the (X, Y) - plane. So does the upper i
1

cdge of Zf . The said vortex filament & { comes back from infinity ‘
towards the body and reaches it either on the lower half of R or on ]

PIPRSPISTET

o ]

The start point B, of%ff and its end B, are mirror images.
Let e£1 be the bound vortex B, B, on 21 and ;ﬂz the bound vortex
B, B, on Z 2+ As the relative velocity on Ze is greater than on
3 gez , the intensity dIy of the free vortex ribbon starting from the
] body between two points By , By and arriving on B B, is equal to
the difference dIy - dI;, , dI} being the intensity of the bound
vortex ribbon L, onz1 starting from B B, and arriving at
B, Bfl » while dI’, is that of the bound vortex ribbon L, onZ

2
starting from B B, and arriving at B, B;
dlf = dl‘l -dl‘2 (5.25)
1221
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1

Hence (5.24) does not hold.

L ' Let C denote a closed contour around the stern post, Let

F Zf denote_the port side of Z{ and Zf its starboard side. C

intersects ¢ at MI'Z1 at M1 and at M_, . The circula-

4 tion of the fluid velocity VU in that circuit i3 null. ilence, if all the

g points of C are close to the stern-post

’-_ 0=1d"M; ) - & (M ) [+ oM, ) - &M ) JednM_ ) - (M, )

] f f i e e i

1 1 2 1 1 2 2

1 where

1

g -1// 3 !

3 " = u (M) o 42 (M)

4r f an_ | M' f

1 fo +Zfo M

:

E -1'/[ 3

r +o— u(M') . d 25 (M)

4r Z, f anM, MM

i {

4

4

1

1 -1 1

" M // MMy O e dZ(M') (5. 26)

L L4 " (\nM' MM

] 21 EZ

4 ' ' 1

If the normal to Ef is in the direction from Zf to Zf » we obtain

2 1

: #i(B) = K, (B) - u (B), (5.27)

1 M, being the determination of u on Zl » while Hy is its determi-

nation on

1 Similarly, by taking ©n, on Zf » in the positive z -di- 4
1 4

i
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rection and, on Z fo in the negative z-direction, it is easily found
that

for B ontgi>
for B onz

ue(B) = u, (B)- u, (B) (5.28)

Equation (5.23) holds in all the cases.

Let us consider two values a. , a. of a , with a >a
The dissymmetry of the flow is more strongly marked foru2>a L
The part of free vortices coming from  and arriving onZ‘B o 18
greater in the second case than in the {irst one, while the part of
those coming from the upper part of ‘B' and arriving on the lower
part is smaller, This entails a2 rapid variation with a of the posi-
tion of the lift, that is of the y-component of the hydrodynamic force
exerted on the body,

It has been assumed that the line ‘B is in the (Z, X) plane,
In fact, if the bottom is flat, the line fB becomes a curve with »osi-
tive values of Y. However this phenomenon cannot alter seriously
the velocity induced on the hull by the vortex distribution.

One among the advantages due to the substitution of a normal
dipole distribution for the vortex distribution is that one needs not
know exactly the direction of the free vortex filaments.

When a is too large, the relative streamlines on 22 tend to

pass from ZZ to 21 and separation occurs on the suction side. In
such case, the above considerations do not hold.

C - UNSTEADY MOTIONS IN THE CASE OF A UNIQUE FREE VORTEX
SHEET

Let us consider a point M on Z ¢ at time t, andlet CB ¢’
denote the position of ¢ at t'< t. Let P be the fluid point located
at Mg at t. The condition

t

B, (t') M, = / Ve (Bo7 ) dr (5.29)
t|

e 0 el ol
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with Bg (t') infinitely close to a point B e 'Bt , determines the time
t' at which P has left 'B . It may happen that the position of B on
depends on t'. In that case, B can be defined by its abscissa
¢g on . During the time interval (t', t' + dt') a free vortex
ﬁlament of denslty dy1dy I'  is lying on a . closed contour Bf B¢ Cq
Cf Bf , with B¢ Bf =dy (B) and B4Cy = VR (Bg, t' ) dt'. At t,

this vortex filament is lying on the closed contour Mf Mg N¢ Nf Mf :
where

t :

Y vV (P d N. = V_(M dt' i
Baai= gPhr)dr . M N = Vo(M, t) dt', :
tl

We have therefore

t
i
1 3 . .
d[‘f (Mf , t) = /_S: dalf(aB(r),r) dr (5.30) .
t ‘;
!
or equivalently,
3 t
: d i
{ duf(M’ , t) / 3N, d, (nz ul) aB(r),rd' (5.31)

i t!

If B is independent of t'

» then we obtain by integrating from one of
the edges of £

A |
: |
]

HMgyt) = (s, -u)) - (u, -m )
] £y Vo 27 Vg
t (5.32) ]

' with B(t)M, - VR(P, r) dr
1 .

In the latter case, the support of the vortex sheet is generated by the
relative trajectories of the fluid points leaving (‘B at t'< t.
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D - UNSTEADY MOTIONS WITH SEVERAL VORTEX SHEETS

As shown in Subsection B, a double model in a uniform
motion of translation in a direction VE parallel to the (X, Y) -
plane of symmetry, sheds three free vortex sheets starting from the
keel‘% , from its image o and from the stern-post, respec-
tively,

We consider below a body which could not be necessarily a
double model. Its stern-post is denoted S,S S ; its stem is the arc
EL4EE ; the segments E,S, and E_ S, are parts of straight-lines.
The origin O of the axes O X Y Z moving with the body is in the
middle section, the X-axis containing the points S and E, and
the Z-axis being in the longitudinal plane of symmetry of the body
(See Fig. 5.6).

At a given instant t', there are between two points BOBB
on the keel E S  (or on the lower stern-post), two bound vortex

ribbons, one on the port side 4 , with the intensity dX (Bt}
and the other one on the starboard side 22 , with the intensity
dX (Bo , t'). These two vortex ribbons end along the same arc

Byig ox B ot on the upper keel E1 S1 (or on the stern). The posi-
tion ofB‘ depends on B, hence on the abscissa X of B,
and pouxf:fy on t',

In the interval (t', t' + dt'}), the incren;ents of the intensities
of the twg bound vortex ribbons are dt' dX ( )B,t V
dt' dX ( )Bt . If they are not equal to each other a free
vortex nb on 1s shed. It begins on the segment Bl Ble ¢t and
ends at B, B‘ ; the points with subscript e are mfuutely close
to B, Lt B'1 ¢ Bo ; B' . For the sake of brevity, we con-
sider this free vortex ribbon ds an arc of frec vortex filament
Ble,t' Bge' With the intensity

82
' —_— -7
dt' dX e (T 'z)Bo.t'
The fluid point P which was at Ble ¢t attime t', isatime t !

at a position Ix, ¢ In the system of axes moving with the body

t 1
= v/ " " .
BT, /t' Vo (P ) der (5. 33) .
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Similarly, the fluid point P which was at Boe at t' isat t ata
point Ix ¢ and

_— t — ,
B°e Iy o t Vg (Pt) ar (5. 34)

The fluid points which were at t' on the arc Boe Ble,t' infinitely
close to BoBl,t' areat t onanarc Jy Iy 4. Let t, be the
time of the beginging on the unsteady motion, We suppose that the
y-component of V has on the arc B,;,c B‘e , a constant sign (po-
sitive) during the time interval [t ,t) (Fig. 5. 65. But it might occur
that this sign changes at times t| , t; ,... We also suppose that this
sign does not depend on the abscissa X of B, . The most general
case is still more complicated and will not he examined in this paper.

The points IX, + describe a line starting from IX,to and
ending at Boe . Similarly the points Jx, ' describe a line starting
from Jy. to and ending at Ble,t . These lines generate a surface
Zfo and a surface Zfl , respectively. The arc Jx.t' IX y+ 8ene-

i It q 0 q
rates a surface Sy beginning at JX,to IX,to and ending on the arc
L .
Bo, Ble, ¢ The arc I'—Z'nto So, is one of the edges of Zfo and the
arc J.£.to SOe is one of the edges of Zfl . The fluid points which
2 '

were at t' on s°e Sle describe a surface Zf when t' varies from
t, to t. On Z , at t' , we had on the port side Zl a bound vortex
filament of intensity dx l‘l (X,t') on the arc BOBl,t" and on the
starboard side ZZ a bound vortex filament of intensity dy I (X, t')
with the support B| ,: B, . During the interval (¢', t'+dt') the
variations of these two intensities are dy dy I') (X,t') and
dyr dx I (X, t'). It is because they are not equal to each other that a
free vortex is shed. At t' the support of this free vortex is Ble t'BO

e
and its intensity in the direction from B)

o to B,_.,e is equal
to dy dx[l‘] (X,t') - FZ (X,t')] . Because the intensity of a free vortex
is time-invariant, the intensity of the free vortex filament whose sup-
portis Jy ¢ IX ¢! is at t also equal to d;, dx [l‘1 (X,t') - I‘Z(X.t')] .
The closed contour B°e Ble,t Jx,t' IX,t' B°e is thus the support

of a free vortex filament of intensity d,: dy [[‘l (X,t') -Fz (X.t')] 5
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Vortex Theory for Bodies Moving in Water

Let%(t') denote this free vortex filament, On the arc Ble ¢! Ix t!
N '

we find the union of the vortex filamems_%( (7) shed during the in-
terval [to » t') . The total intensity of that union ont' JX.to B,

e,t
thus varies with Jy ., . At Jy |, itis equal to s d, dy [rl (X, t')

-0 (X, t')] = dy [F] (x,t') - FZ (X, t')] and it is in the direction towards
Ix to * Similarly we have a union of vortex filaments on the arc
Ix, to B, ;its intensity at Iy ,i is equal to dy [rl (X,t') - (X, t')]

and it is in the direction towards Bo

Let us consider a point My on Zfo . It is one of the points
Ix ¢+ . It belongs to the trajectory of a fluid point P which was at an
anterior time t' ata certain point B, . Hence, Mfo being given,
Boe and t' may be considered as determined functions of Mg and
7 . . lo
t . The same is true for any point My onzfl and any point M} on
Z; » and also for any point M which is at t on a vortex filament

_%{(t') .

We have supposed that the arc Bg, B) ot is infinitely close
to the arc B,B; , on port side Zl and nevertheless that Vg on the
arc B°e Ble ¢ is not tangent toz . This implies a contradiction of
the same natire as that encountered in the scheme relative to a steady
flow about a wing of finite thickness. We have seen in the latter case
that the relative velocity on the wing is tangent to its trailing edge and
we however assumed that the free vortices leave the wing in a direc-
tion orthogonal to this edge. In the present case, the distance of the
arc By, Ble : from the arc B, B | is not really null, for the boun-
dary layer is’'not infinitely thin. The contradiction seems to be an in-
eluctable consequence from the assumption that the fluid is almost
inviscid,

We now drop the subscript ¢ and consider that the support
of the vortex filament_%( (t') attime t is the closed contour BB, t
Ix,t Ix, ¢t Bo - Thearc B,B|  is bound while the three others are
free. The intensity of this vortex filament previously determined is
dy dx [1} (X, t') - I, (X,t')]. The quantity dx[rl (x,tv') -T, (X,t')] is
positive for the frce vortex to be shed from port, but its variation
with t' may be positive or negative.

To make easier the drawing, the angles between B, IX, ¢
and the longitudinal plane of symmetry has been considerably magnifi-
ed in Fig. 5.6, Furthermonre, one observes that, if the minimum
value of X on the keel is necessarily equal to -3 (for 5,5, plays
the role of the ordinary trailing edge of a wing), its maximum value
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can be less than —xi-

At time t, the surface SX generates a volume Wt when
X increases from -1-2‘— to its maximum value. We therefore deal with
a three-dimensionc] wake Wt , which was not the case in the preceding
sections A,B or C. Within W; a vorticity wf is continuously distri-

buted. The vector &((M) is tangent to the arc Jx,t Ix, ¢ which pas-
ses through M,

K A
The total velocity V; induced by the vortex filaments.Z y(t')
at a point M located inside or outside W; is given by Poincaré's or
Biot-Savart's formula_:

{_ﬂ T (P) ﬂ (P)
V(M) = curl dE (P) +— (P)

| ‘1' (P) & (P)

+ ‘2—._ ; —M ﬂz {P} ¥ — IPM t } (5. 35)
= t

—y

The velocity Vg is irrotational outside (Wt + its boundaries), It is, in
particular, irrotational within D; . The other vortex distributions to
be considered are the distributions

.l.'
@2 () SRS B (5.36)

The velocity V' induced by% is null outside the hull, and
curl V' = z?zE within D . (5. 37)

The vortex distribution_@ consists of ring vortices on Z Each
ring is made of two arcs B oBl,t on &, and B B, on 22. The
intensity of the ring is a constant dx Z(X t) along the ring. On an
arc B,B) | located on the part2,, of 2 , there exists the vortex
filament of intensity dy I (X t) already consxdered in formula (5. 35)
- sce integral extended to . The vortex dxstnbutxongz is equiva-

lent to a normal dipole distribution (Z, 4, ™). It generates a velocity
2 and one has

(Vg - V) -’\7f - V; within I , (5. 38)

where Vo is due to some incident flow on the body. Outside the body,
the total velocity is

V(M) = V(M) + V(M) + V(M) (5. 39)
Let us put T/’f 2 V¢f (outside W, + its boundaries) (5. 40)
1228
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[ Vortex Theory for Bodive Moving in Water

To calculate $¢ » one can observe that a vortex filament
,7(: ) is equivalent to a uniform dijole distribution on any open sur-
( face the edge of which coincides with_%(t'). For that surface we may
take the surface SX. y+ consisting of the five following parts :

[ ]
} (i) The panZl(x) onl behind the arc B B i
I ,

(ii) The part of Z interior to the contour S 1 1 BS ;
fo °-§'=,t'x,t' oo

: (iii) The part of Zf interior to the contour SlJ L J Bl . Sl ;

J 1 -5-.t' X,t' o (5.41)
(iv) The partof), interior to the contour I §s J I ] ;
{ _L. t' o 1l _h t! _% t! X
1 2 2 ? 3
(v) The part of the surface §' generated by the arc Jx t'IX ¢!
E» when X varies from -3 to the value X de‘ining the vortex g
f1lament_%((t ). i

On this surface let us select a unit vector ¥ nnrmal to it ; for instance, i
Vison I | inthe outward direction with respect to the hull, On the
fiftt part of Sy , V' is thus directed toward Zl , etc. Let M*, M- 3
be two points mhmtely close to each other, M* being on one side of 1
the surface and M~ on the other one so that M_M' is in the direction ]
of V. The circulation of the velocn(y induced by £%(t') ina circuit

starting from M?*, tyrning around x(t') and endmg at M~ is equal
to the intensity of_J X1 and equal to the density of the normal dipole 4

distribution on the surface, Hence the velocity potential due to the g
dipole distribution is 1

d, dy Py (M) = i—' d, dy [1 (X,t!) - T, (X, t ]ﬂ; aiM MM,ds(M) (5. 42)
X, t!

e

The total potential outside W, and its boundary is

max X ’
®(M) // d ,d ”x,t'(M)' (5. 43)

)
According to (5.41) the contribution from Zl

1 -3 1
L ﬁ—l (X,t) - G‘x")] M.'a_nM' M a2 (M) (5. 44) |
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]
this notation recalls that any point M' on Z belongs to an arc
BoB) ¢ » the abscissa X of B, being at t a functionof M,

\ Let us consider a point Mfo » Mf; or M} on 2{0 ,Zfl or
Zf . For instance M; determinesa pair(lx, t') and it belongs only to
o

the vortex filaments.Z( (7) for r<t' (Mg,) . The contribution from
Zfo is thus :

. d 1

‘ (r, -r,) - ds(M, ). (5.45)
i_- //Z V2 e SM, MM O

: o 5 £s A

t
The contributions from Zf and Ef have analogous expressions.
Lastly the contribution from the fifth part of SX, ¢ is given by

t
3 : B ) ]
afl 2. « -1 S —Las(My)  (5.46)
-/;o t[[s(' ot : & X(M', t') BVM' MM

Remark -

- The considerations of the present Subsection involve the im-
] plicit assumption that the positions of the lines &4, o ©on the hull
are independent of time. This may be untrue if the amplitude of the

unsteady motions is great, and also if a strong separation occurs.

- It is also to be pointed out that several free vortex sheets
can exist without a rotational wake Wt . This is, for instance, the
case of biplanes. Each of the two wings gives rise to one vortex sheet

and one deals with horseshoe free vortex filaments on each vortex
sheet.

VI - EQUATIONS DETERMINING THE TWO VORTEX FAMILIES (1)

The fluid motion about the given body depends on the hull geo-
metry, on the own motion of the body and on the incident flow on the
body. The hull geometry is referred to a system S of axes moving

with the body. The fluid motion is referred to a system S' of axes
fixed in space,

(1) See foot note on the following page.
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S' is chosen as to coincide with S at a certain L.e to - As

to is arbitrary, it is possible to express the fluid motion in term of
the hull geometry,

_'Iv‘t.e theory of chapter V. A, applies at any time t. The fluid
velocity is defined in the whole space. We have :

’ . v[dﬁd(M'.t)+¢>f(M'.t)]+Vo(M'.t) if MeD_
1 V(M',t) = -
v[cbd(M',t)+q(Mv,t)]+vo(M',t)+V'(M',t)
1 = E(M"t) if M€Di " (6.1)
In this formula 70 is the velocity of the incident flow, We have :
F 70 = V(bo on Ev and inside Ze: (6.2)
2T _(t)
Piner 1 L {{Thpr, 0 , I E , s
V'Y(M ,l)—(l“‘lT,'/ M'P’ dZ(P)’ '4—"/':/]‘ ‘T.P—'——le(p) .
. D, 3
) i :
with V' (M', 1) 0 i M'.l)‘_,Tn"V' _ unzi : (6. 3) ;
ValM' 0 =0 (M0, T (Mry) = VO (M,
) - ' 4)_0 ! ' i
¢d(M ) t) -/gp -'-)WP' MP! dZ(p )
- Dy . "'
d (M, 1) - [uf(P 1) S, W 4 (P), (6.4)
Zf

i el

(1) For the sake of sim
also in Section VII eit
sheet,

plicity, it will be assumed in this Section and
her that there exists only one free vortex
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Within Dj , curl V' = curl -\;E . There exists therefore a velocity
potential®; , such that
- - a¢] -

‘ V.-V = ith s 2.V o (6. 5)
3 E" -v<bl , wit é-;-- n, E on i .

since —n. ?, = 0 and ".i’.. = -;‘A[V'(M;) -v'(Mi'.)]z (; VI)M on Zi'
i

This potential is then the solution of a Neumann interior problem. d
We can put

i ] - -1 G(P',t) '
® (M, 1) = 4”/]‘\;: ST dX(P', t) (6. 6)

with

1 t l ] a l ) - =~ T 1)
—Za(M,t) -—47'/];(1’,:) FM_' P,—MdZ(P,t)-(n.VE)M'.(t6.6)

T YT TR

Qe P TS

Eq. (6. 6') is singular, but the condition [| 7. VE d2=0is satisfied

at every t and @) is determined up to an additive constant within D; .
Eq. (6. 6') replaces Eq. (5.7), and it is much simpler.

Let uy , u, , uy denote the components on the moving axes 7
S of the velocity Vg (0) of their origin O and u, , ug , ug those ;
§ of their angular velocity 2 . Accordingto (6.6) and (6.6'), we ;
may write :

e A

1] Mo\

; ® (M, ¢ ) = by (M () (6.7)

In this formula, M is the point moving with the body which coincides
1 with M' at t=t,. The ¢ 1j 's only depend on the hull geometry
L and on the position of the system of axes S with respect to the body,

Furthermore, it follows from the second equation (6. 1)

that
A
¢d (Mi, to) = tbl(Mi', to) e cbo(M', to) = tbf(M'. to).
with M'el and M'M'i z ?x'M (0+). (6. 8) {

Consequently, the density u of the normal dipole distribution on Z
which generates @dis the solution of the regular integral equation :
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Vortex Theory for Bodies Moving in Water

S' is chosen as to coincide with § ata
ty is arbitrary, it is
the hull geometry,

certain time t, , As
possible to express the fluid motion in term of

The theory of chapter V. A, a

Pplies at any time t. The fluid
velocity v is defined in the whole spa

ce. We have :

. V[¢d(M'.t)+ ¢f(M',t)]-6:V°(M',t) if MeD_
_V'(M',t) =]

V[<bd(M',t)+d}(M'.t)]+vo(M’,t)+V'(M',t)
=VE(M',t) if M, (6.1)

In this formula Vo

Vo = vcbo on Z(‘ and inside Z

is the velocity of the incident flow. We have :

e’ (6.2)

. . 2 _(t)
VY{M', 1) = curl TL/ '?N(’l?P"l) dZ(P') 4 —41—"/'[/‘ ME':P' dDi(p')
)X >

with  VI(M',6) 0 it Mo | TV - 0 onzi :
.

(6. 3)

Vd(M',t) = V‘b‘I(M',l) ; V[(M',t) 5 Vd)f(M',t),

®, (M, 1) =%P'-‘>T"n M.‘p. a2 (PY),
2 P!

® (M, 1) - ]uf(P',t) %' M*,‘p, de(p-), (6. 4)

Z

(1) For the sake of simplicity, it will be assumed in this Section and

either that there exists only one free vortex
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]
1 1 d 1
gy 1 y i ' 9 d P'
) (M', to) 4"/LF(p » to) anp' ™M z (P')
(6.9)
| 3 ' - ! - ' . ]
! =@ M, t) - D (M, t) - B (M, ) i
F Let us consider the following three particular cases : i
4 - i
] Case a - Vo =0 ; no free vortex is shed by the body.
Y
L‘ -
According to (6.7) and (6.9) we obviously obtain :
5 3
! = . e 6.1
w(M', ot ) T (M) u. (t) (6.10) .4
F; Cageb - V = 0; QE(t) =0, VE (0) = constant ;
3
h the fluid motion is steady with respect to the body. Hence, the support 1
of the free vortex sheet is close to the surface generated by half ]
F straight lines starting from the curve in the direction of -VE(O). !
i At P fixed with respect to the body and located on the generatrix 1

starting from B, we have

uf(P) = (w, - ul)B, (('»-10)b

By and u, being the values of ¥ in the vicinit o[‘gon the parts
Z‘ : 22 of Z adjacent to each other along . To determine
4 on z a complementary condition is needed. Since the pressure

p is necessarily continuous through the free vortex sheet

2 ¢ this
condition expresses that p is continuous on Z e throug}% .

]
i
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Case ¢ - Vo = 0 ; the motion of the body consists ci a

translation nearly uniform with small variations
of VE(O) and S_I'E

In that case, the support of the free vortex sheet Z ¢ is
practically the same as in case b. This case will be studied in some
details in the next Section.

VIl - HYDRODYNAMIC FORCES EXERTED ON THE BODY

The case a previously defined (Section VI) can be subdivided
into two cases, a, , a, according as the motion of the body is uni-
form or not.

Case a - The body is in uniform motion

Since VO is null inside D, and no free vortex is shed by
the body, the flui%;notion is steady with respect to the system of
axes S, Hence B =0 inside D,, and in this domain, Euler's
equation at

d g e R
T D ST
reduces to
1 1 1 2
— v SO 2
) Py TE w/\VR v (2 VR)
1 2 2 1 2
- v(— 9 T s i
(Z E T > VR)mnde D,

We have therefore

a T P A 2
5 pd(Me) o E T (Me) -3 VR(Me) + constant on Ze (7. l.)al

The system Z of hydrodynamic forces exerted on the body consists

1234




Vortex Theory for Bodies Moving in Water

of the elementary forces [pd(Me) ny d E(M)] . This may be writ-
ten in the form :

R AR TR % T aZon] 2,
[ where

VM) - —; [VR(Me) + VR(Mi)] - —;— VM) (. 3)

A oo e i 2 St

This relative velocity is calculated inside the bound vortex sheet by
using the vortex distribution ; it can be considered as the incident
velocity on the element of bound vortex filament —T—( ¢ dY") which
is at rest with respect to the body.

=

The equilibrium of the set E of fluid points located inside
D; requires

l g - 1 2 2 1

— = - =V (— @ 3

# Pg E Z " T (7.4), i

This gives g
a2l e !

= — ' 3

pd(Mi) > E T (Mi) + constant on Zi (7.4 ;1 ;

The system of forces exerted on the set E' of fluid points
bglonging to the bound vortex sheet is thus

S - [‘P‘MJ iy - PIM) 7y dZ(M)] - [ pT(M) AV (M) dE<M)]

(7. S)al

T

Finally we have :

% : % - i‘.c (7.6),,
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where

2 -
c: ™ QE r (C); (7-7)al

il

]
'?

m being the mass of E, and T(C) the vector orthogonal to the axis
A of the helicoidal motion of the body with its origin on 4 and its 3
4 end at the center C of the domain D; . F is thus the centrifugal ;
3 force exerted on the set E of {luid points, i.e. the centrifugal force )
acting on the fluid mass ""displaced' by the body.

Case az-

This case differs from case a, in that VE(O) and (or) Q E
g may depend on time.

a
(1.4), does no longer apply if dTE- 70 for

1 -
1 dQ
) curl v = 2

: E dt ' (7. 8)a2

and - Vg cannot be identificd with—=—Vpg . The equilibrium of the
set E of fluid points therefore requires that the expressions for the
absolute force per unit mass be different inside D, and inside Dj .
If F-V /i/ denotes the expression of that force inside D, , its

: expression inside D; is F + F', and we must have

1 . d = :
v ' - ' ' Sl t : i

pd(M ,to) F'(M ,to) 0 VE(M .to), with

d?ft dv’ V. :

=~ ' = R t = | — k

4 curl F'(M', to) 2 m curl 3t (M', to) curl 3t (M, to) :
i inside Di (7. 9)a i

1 Since

VM, t) -VE(M-.t) = -V O (MY,

AV

F' = —a-t— (M',t°)+ vy I(M"to)
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and

l v ' - a®l 1 a d T 1 '
i pd(M 'to) - -VW(M 'to) * (F—t -?t) VE(M 'to) * VWI(M 'to)

(7.10)
or "2

_l ' =1 - ) ' _l_ 2 2 '
o Pg(Miit) = -0 & (Mt ) +( g T )M‘,to t¥ (Mt ) on Zi

’ (7. 10 )az

The unknown function ¥, has to be determined by the condition that

1 ' .lQZ 2 7.1
= pd(Mi,to)reducetoV 2( Er), (7. l)a

2

when case a, reduces to case a,

This implies that ¥, is harmonic inside Di'

Since

& (M), t) = JZ ui () @ (M)

1 the derivative - aat P (M}, t,) contains two kinds of terms. The

terms of the first kind are those due to the variations of the u; '
when the rotation of the system S of axes is ignored. Let us de

8
note

L) @ M)

the sum of the terms of the first kind, The terms of the second kind
are due to the fact that M; is fixed on i» while M] is fixed in
the space referred to the fixed axes S'. Consequently they sumup to

“Ve (M, ), ve, (M, t).
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We thus obtain :

2 (Mi', to)

1 Ve (Mi' v t) . ve, (Mi' ; to).

(7. IZ)a

& a)

This expression ‘akes the same values in both cages aj and
a, providethhat in the tﬂxiform motion of the body corresponding to
case a,, Vp(0) and @ g be identical at to with those of the real
ron-uniform motion. Since ¥, is harmonic within Dj, itis uniquely

determined in that domain by (7.12). We have

%pd(Mi"to) - Zj:&j(to) d5(M) +% 9::(:0) ’Z(Mi'to) on Zi

(7. l3)a

2

Now, let us consider the velocity potential & inside D .

Euler's equation gives, after (4.1'),

1

_l. 1 = _@ ' — 92 2 ' 1 2 '
P PgMrtg) = SE MLt ) g 22 ) rPue ) 7 VRMLt) on X

At e’ T2

By comparing with (7, 1), . we obtain
1

_ai(M',t) =0 on 2 in case a, .
at e o e !

————————ee.

In cases a] and az, we have

o= @ inside D ,
d e

and according to (6.7) and (6. 10), :
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¢d(M;, to) = d>d(Mi. to) + u(M',to) = %-:uj(to) [olj(Mi) + uj (M)] onZe

(7. l7)a

Hence, with the above notation, we have :

-g—cb (M'.t ) = Z (t )[¢ (M )+ u, (M)] S VE(ML"O)'V%(M;"O)

t
(o}

The second term on the right side only depends on the instan-
taneous velocities. It is the same in cases a, and a| for equal velo-
cities VE(O) and @ E - But, in case a,, the first term on the right

side is null ; the term on the left side is null also by virtue of (7. 15)al
Hence we obtain :

a—at- ® (ML,e )= Zj&j(to) [¢ (M) +u M)] (7.18),
I.et us put
dE'T - pT(M) A '\'iR (M) d 2 (M) (7.19)

The system of forces exerted on the bound vortex sh-et is
that of the elementary forces

]

[( Pg(M st ) - p (Mt )) B'M. a2 (M';‘]

(7. 20)a

[- pz;aj(to) b M) 7 aZ (M)] : [dF'T].

The system of forces exerted on the set E of fluid points
is that of the elementary forces
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[pd(Mi" to) KM'dE(M')] :[ =0 Jzaj(to)d’ lj(Mi) —n.M

*‘zl‘ ﬂ:: rZ(M) h‘M) a2 (M)] (.21,

-F¢ [-o? 30t ) & (M) aMd&w] .

X
®
n
[=]
!
- -
—_
)
L)
Q

. (7.22),
[-,.@l 8(t) (M) + uJ.(M))a‘MdZ(M)] :

N

J

we see that the final expression for ‘ae system of hydrodynamic
forces exerted on the body is as follows :

% } k%.s. "’.fa ' (7'23)a

q. s. is the '"quasi-steady''system . forces and % is that due to
the sc called "added masses™.

Case b -

This case is a limiting one, involving the assumption that the
motion of translation of the body became uniform atatime t consi-
derably anterior to the present time t, . Since Qg =0, one has

% = F (7.24)

But 4 cannot reduce to a torque because of the effect of
the free vortex sheet.
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Carec -

The x'-axis is taken in the direction opposite to the mean
velocity V'E of the origin of the system of axes moving with the body.
Let uf be the absolute value of the x'-component of Vi,: . The sup-
port of the vortex sheet may be considered as generated by half
straight lines starting in the positive x'-direction from a certain
linegon z: . Let P; and Bj denote two points on the same gene-
ratrix, B} being infinitely close to . We put & = IB{ Pfl . Let
© = - 00 be the time of the beginning of the motion of the body and
t, the present time.

If the fluid motion were steady as in case b, one would have
He(Py, t,) = Mf(B L to). Because it is unsteady, one has

uI(P'.to) = #f(B},to) f aaf uf(B;. r)dr . (7.?.5)c

-®

For reasons which will be elucidated later, we put

( ' . = t - & ' .
pf(Pf,to.O"') uf(BI,to) uf(Pf,to.0+)

' b oot') = ' = né ' 4 ot 3
,,f(Pf, tito t') uf(Bf, to) uf(P bEit -t ), with (7. 26)c

3 ' ¢!
0 if &< uE(tot)

t -t -
(o]

'E
-
or

f’

5“(P to;to-t ) =

', if t ¢!
Hf(Bf r)dr i E>uE(tot)

One sees that, if uy(B,t) is a conctant in the time interval (t',t ),
then u f(Pf, teys to-t') is equal to that constant at t,, provided

£ <uf(ty-t'). For £> uf(t,-t'), then u ¢ at P} still depends at
time t, on the variations of ug(B},t) for t < t'. In particular, the
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{luid motion would be steady at t, if , f(Bf. t) were constant during
the infinitely large interval (-, t).

One may write

' 5 - -1 1 . 1 '
o, (M bt i 04) = “_// uf(Pf. t, 04) anlp. W} dX (Pf). (7.27)c
z, i

This expression 1s the velocity potential due to the normal dipole
distribution on £

The expression

I~

oy -
Lae}

6¢I(M"to ; to-t') =%1r//;: Mf(pt"' to : to-t') EL M'P! dz f(Pi")

p P (7. 28)
(o

is the difference between the true expression of ¢>f(M',t° ; 0+) given
by (7. 27)c and that which would be reached at t, if the motion of
the body had been uniform in the interval (t', ty),the velocities

VE(O) and @ g during this interval being constant and equal to those
of the real motion at to -

Obviously :

' . -t! - ¢!
acbf (M.to, to t') — .0 when t0 t

+ 00 (7. 29)c

$(M, t, i + 00 ) is the limit reached when t' ———- 02 . This
limit defines the steady case b when Vg(0) and g are constant
(Bince t'<t,) and equal to the velocities which determine u (B4 t,)
and u ¢(Pp, t ) = H¢(By, t,) for every ¢ > o,

The difference

$& M, t ; 4o ) = (Mt +o0 ) - (Mt ;04) (7.30),
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L is the deficiency of & ¢, that is the difference between the ¢ ; deter-
mined in the steady case for the present velocities VE(O t ) and
) ( o) at t, and the true ¢ in the real motion at t;

Let B'e1 and Béz denote two points infinitely close to B},
but located on Zel and ) ' respectively. We have
2

uf(B;. t) = (B, to) - u(B;_,. t); (7.31)c
2 1

4 is the solution of the integral equation

" ] l ] l 1
- h (Mt ) -ijf(p.to) %P' S d 2 (P')
=@ (M}, t ) - (Mt ;0+), M' being on >, (7.32)_

We have

6
1 - E t .
pMLe) = Tl ) w (M) -G (M5 04)) (7.33),

gbeing a linear and homogeneous functional the argument of which
is the function @ ¢ (M', b 4 0+) : it may be written in the form

G (Mt 04) =//Z KM, P) & (Pe 5 04) a2 (P). 0 (7.330) 3

Let us substitute (7. 27) into (7.33)c and take into account
(7.26) and also the condition

() K is the resolvent kernel of equation (7. 32)c.

i abl ccahe ot

1243

- 1 e ™ e Lo E = S g oty g g Lb aait binn sl b dag oo s g L
R T, ; ; i i sy




e e e T PR P I
Brard
[ - '
p(B, ,t)=p(B, ,t). (7.34)
1 2
Then we obtain for determining #¢(B}, t,; 0+) a Volterra integral

equation. This shows that the fluid motlon at time_t, does depend
not only on the present velocities VE(O to) and Q E(to), but also on
the history on the motion during the whole interval t < t,.

Let us consider now the system ‘% of hydrodynamic forces
exerted on the body. We readily obtain

'fd =fT'-'§C+Z +,_7§’ (7.35)_

where

% = [df",i,] =[ - p T(M) AVR(M) dZ(M)];

= i 2 - 1 o2 2
- = - Q = — Iy
Fy pRZ T dDi] E’Z () (M.t ) nMdE(M),

L-pl;-aj(:o)w (M) 4w () ) R dZw)]

A\

p-

:p%% O Mt 5 04)) T dZ(M')]. (1.36)_

A\

The definition of [dF 1 and of ya are exactly the same
as in formulas (7.20), and (7 2), , respectively., But the system
of forces [dF' ] does not coincide with that defined in case a. This
is due to the effect of potential cb ¢ on potential @ 4. On the con-
trary, the systems of for cesy coincide in both cases if the sys-

tems of the six accelerations u ) are identical.

Lct? denote the system of forcesVT evaluated at t,
under the assumption that VE(O) and Q@ g coincide with VE (o, t )
and g(ty) in the time interval (t',t,), with t'<« t, . Then the
difference
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;% - % -y,r = [di";l',] - [dF,’r] (7.37)

is the deficiency of %T due to the deficiency % defined in
(7.30)c .

For the sake of simplicity, the true system §¢ g of hydro-

dynamic forces acting on the body is very often replaced by the esti-
mate

% =;%‘r SUEC £ (7.38)_

The system kYT - ftc is called the quasi-steady system of
forces :

For "Fr - Fo 0.3,
The error involved in the substitution of %’ for ?d is
Pa "y T s K S (7. 40)
Like ‘_% ,‘yba represents an inertial effect, but due to the free

vortex sheet only.

Let us assume, for example, that a jump of VE(O) and Q@ E
occur in the infinitely small interval (t; - 0, ty), and that these two

velocities remain constant for t > t, . It follows from the third
equation (7.26). that

' . =
6;:{ (Pf vt 0+) 0 for every & . (7.4I)c

Hence the free vortex sheet is not immediately altered. But,
one has :
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l '
MP] dX (P} (7.42)_

.5__d>f(M Jt; 04) -—[[—a—u\B' Yih—d’

y'T at t  has the same components as at t, - 0.% is null at t,

but the system of forces necessary for creating the jump is infinite.
Furthermore, at t, +0, (/a is generally finite. Of course, when

t + 00 , the deficiency _§ y calculated by taking into conn-
deration the new velocities VE(O) and 9 E tends to zero ;

a
also tends to zero and

imie & - Ao (7.43)_

The effect of.%’ may be considerable. For instance, it has
been shown that the jump of the lift of a wing with an infinite aspect
ratio is at t;, + 0 equal to half the difference between its final value
and its value at ty - 0 (See [2] , (3] ).

THE ORIGIN OF THE FORCES EXERTED BY THE FLOW ON A
BOUND VORTEX DISTRIBUTION

The above considerations started from the idea that a dyna-
mical relationship necessarily exists between the hull of a moving
body and the vortex distribution satisfying the adherence ccndition on
the hull surface.

Another viewpoint is that any vortex filament which does not
move with the fluid is necessarily submitted to forces exerted by the
adjacent sets of fluid points,

The proof is classical, It is sufficient to summarize it.

et -%e a vortex ﬁlament,_% its bound part, ds, an
arc of_g)‘. Let O _genote the imiddle of the arc ds1 , 0z an axis
in the direction of ds,, and r , @ , z a system of semi-polar
coordinates. Let D' denote the domain

D'=[r.0.z:0<réR. 020(21,‘z|<%dsl].
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Hence D' does not include the arc ds, . We consider the relative
motion of the fluid with respect to the system of axes just defined. The
velocity may be written in the form

vV =V V'-8V')+ sV,
vR Vo+(v sV?')

where V defines some incident flow, V' is the velocity induced by
_(/and 6 V' that induced by the part ds, of y Let dE' be the
set of fluid points inside D', and dE, the set of fluid points belonging
to ds, . One easxly sees that the momentum T (dE|) is null, and,
therefore, that, I (dE') being the momentum of dE',

i_. ] __d_ ] - I (o1 Ola
o TW@E') = ——1(dE +dEl)-/]' p Vg (V) ds';

(7' is in the outward direction, and S' is the boundary of
(D' +ds).

One readily obtains :

lim d . 1 hee
-—pTl v
0 dt I(dE) 2 A i dsl ' (7. 44)

—e

where TI' is the intensity OIZ = T. _i.s , i, being the unit

8
vector tangent to ds and V the finite incident velocity on the arc
ds,
V. = V. + V' - V!
i o

On the other hand, by the momentum theorem, one has

4 1(dE') = -dF' + -pnds',
Tat T 5
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where - dFf is the force exerted on dE' by dE, . From Euler's
equation (4.1), we have inside D':

-

Lov, - -—&-(curIV)A(V v V) V[T + T2
Py dt ° i 2o '

This gives, when R—-0, pg=- » Vi . aV‘ + constant on S, and

lim 3 T@E) = -dF’ % pT A ¥, ds (7.45)

d‘y‘;r = -oFA ¥ ds (7.46)

di?'lr is the force exerted on the arc ds, of the bound part
31 of & by the adjacent sets of fluid points. The force vanishes
with V;, that is when the arc dai1 moves with the fluid.

Formula (7.46) is of practical interest when the vortex dis-
tribution equivalent to the hull is replaced by a unique concentrated
vortex and a suitable distribution of sources or normal dipoles on the
hull surface.

This formula does not imply that the fluid motion around the
bound arc of the vortex filament is steady, If T varies with time, one
has to consider that another vortex filament &', of intensity d T ,
appears in the time interval (t, t + dt). &’ is distinct from & although
their supports have a common part ; the free part of &’ does not coin-
cide with the free part of <

Let us consider now a flat vortex tube inside the bound vortex

sheet over a hull 3, . This tube has a thickness ¢ , a width do
Let ds, be the element of arc of the tube. Applying (7.46), we have
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=y = - v S - A v
dFT pTAV, d.lM [ F(M).dc M] VR(M)dBlM

= e (TAVY ,, dZ(M) (7.47)

because

VR(M) = lim Vi (M) .
delo

—

We know that, if the motion is unsteady, dF4y must be re-
placed by dFr . However there exists no contradiction, The term
-p = -p which appears when\}be vortex tubes belong to a sheet
comgg from Ehe integration of -~ through the sheet. When the
vortex tube is isolated, there is no i-syntinuity of V on the surface
S' and the contribution of the termyp in the integration of pVp
on §' is O(R'ds}), thus negligibly s%all. This is not the case when
one deals with a sheet.l)

CASE OF A HULL EQUIPPED WITH MOVABLE APPENDAGES

The treatment of the problem arising from the presence of
such appendages obviously depends upon their position with respect to
the hull. When the axis of the rudder coincides with the edge of the
stern, this rudder may be regarded as a part of the hull, The shape of
the hull varies with time. At each instant t there is however a vortex
sheet adhering to this hull, The method of Section VI therefore applies
in principle. But separation may occur at the leading edge of the rud-
der because of lack of continuity, Furthermore the effect of the vis-
cous boundary layer is never negligible in this region.

When the rudder (or diving plane) is at some distance from
the hull, the rudder behaves as a lifting surface with a small aspect
ratio. Because of the thinness of the rudder, the concept of the "in-

terior" of the rudder becomes meaningless and the thin wing theory is
to be used,

(1) By using (7.46) one can simplify the expression of the fictitious
force F' inside D; when dQE £0 - See [13] Chapter 111, B, art. 9.
dt
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VIII - THE APPLICATION FIELD OF VORTEX THEORY IN SHIP
HYDRODYNAMICS

GENERAL -

It has been seen in the preceding Sections that the vortex
theory applies to any body moving in water whatever its motion may
be. The methods to be used in practice may considerably vary with
the shape of the hull, the motion of the body, the boundaries of the
fluid dcmain, To perform the calculations, it may be advantageous to
substitute normal doublet distributions for vortex distributions because
a regular scalar Fredholm equation then replaces a vectorial singular
Fredholm equation. This is why the vortex distribution kinematically
equivalent to the body has been divided in Sections V and VI into
two parts, one of them being equivalent to a normral dipole distribu-
tion, When the motion of the body cunsists of a pure translation, the
vortex theory leads to computations which are not moi: tomplicated
than those involved when source distributions are used ; they are even
simpler when the distribution of the pressure over the hull is needed.
This can be of interest when there exists an incident unsteady flow.
The theory extends to the case when there exists a free surface, at
least when the condition on the free surface is linearized. Neverthe-
less, some difficulties are to be expected when the hull pearces the
free surface. It is necessary to close the vortex filaments by their
mirror images with respect to the plane of the free surface at rest,
This can lead to difficulties analogous to those encountered in the case
of the Zero-Froude number approximation when the hull is replaced
by a normal dipole distribution [6, 7]

One of the main features of the theory developed in the pre-
sent paper is that it includes the case of bodies which are neither thin,
flat nor slender. However, to the knowledge of the writer, the vortex
theory is still used only in cases of thin lifting surfaces. There is
thus a need for more general methods and one of the purposes of this
paper is to give means to extend the field of applications.

In this Section the present field of application is briefly out-
lined. Yet the problem of maneuverability and control of marine vehi-
cles is examined in a more detailed manner, for progresses in that
domain seem to be strongly needed.

D'ALEMBERT'S PARADOX

There exist many proofs of this theorem., The following one
may be of interest,for it clearly explains the physical meaning of the

1250




il s

(i Ak Lok ool cteal & it i i Pt bt € 0 il d

Vortex Theory for Bodiee Moving in Water

hypothesis required for its validity.

The body moves with a constant speed VE in an unbounded,
inviscid fluid at rest at infinity, One supposes that no separatiog, oc-
curs and that no vortex sheet is shed by the body. Let (3., 1) be
the vortex sheet which allows the fluid to adhere to the sidu Z : of
the hull. The vortex filaments & are closed rings on 2 . They are
orthogonal to the relative streamlines @ . Let i, be the unit vector
tangent to a line & in the direction of T, and iy the unit vector
tangent to a line € in the direction opposite to the relative velocity
VR . A vortex filament & is defined by the curvilinear abscissa a0
of its intersection with a line ? o chosen once for all. The intensity
dT  of the vortex ribbon located between two vortex filaments
£ (o,) andef ( o, + d g, ) isa constant. One has :

dr = T.isda =7(a)da=7(ao) dao. (8.1)

and the absolute velocity of the fluid is

o _ 1 T(M') .
V(M)A«urlT'/‘/Z MWdZ(M)-

bow >
‘ ! ds(M')
curl - 4’*[8;:1.“(00)(160 / _M—W . (8. 2)
¥ (a.)

(ad

The relative velocity is V§ = V. VE . Thus the hydro-

dynamic force on the part (d2_ ) of the vortex distribution is
¢

T d;FT + di'FT » with

1 2

a
"
"

aF; = - pT (M) A (- V) 42 (M),
1

aF = - pT(M) AT (M) dX (M).
2
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The system of forces a?Fr. is that of the forces exerted by
the vortex distribution on itself and is therefore equivalent to zero.
Also the systems of Iorces(% D ; of the general theory are
equivalent to zero. Consequently the system of the hydrod_m.amic
forces exerted on the body reduces to that of the forces d'fT . This

gives the general resultant U
| ';
1 ‘:Hd = pﬂ T (M) A VE dZ (M) ;
E )Y i
and the resulting moment with respect to a given point 0 : 1
g P g P
: = OM A|T v i
f_ , ;://;: M A[’I‘(M) A E(M)] a X (M)
. - |
Since ds{(M) = 0, one has
(o) _
S bow - . ]
g'id “t’/ V(e ) de ds(M) = (8.3) 1
E o o 3
stern Lo )
o

Furthermore :

{ ﬁ’(d 7// {'T(M) [VE . Bﬁ] -V [cm. _'I"(M)]} 42 (M)
r >

bow
} = -pVE 2 (ao)daO/ oM. dqE(Mm)

stern i(ao) 4
bow

Hf y (oo)dﬂo/ (V. . OM) ds (m)
stern ;g(ao) '

bow

=;fy (ao)daof (V. OM) &&" (M) . (8. 4)
stern (o )

This term is not null, at least in general,
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Vortex Theory for Bodies Moving in Water

Equation (8.3) expresses the d'Alembert paradox. If free
vortices are shed by the body, then (8.3) is no longer verified, ‘Rd
has two components ; one of them is a lift and the other one is the
"induced resistance'’.

KUTTA -JOUKOWSKI'S THEOREM -

The first version of this theorem concerned wing profiles in
a uniform motion of translation, with Vo = 0. The wing is an infinite
cylinder and its profile ¥ is its intersection by a plane normal to
the generatrices. The problem can be considered as the limiting case
of that of a wing, when the aspect ratio of which tends to infinity.
When the aspect ratio is finite, the relative velocities on the two
sides e EZe of the wing near the trailing edge are equal and
oppogite. This follows from tire continuity of the flow between 2,4,
and and between 2,5  and Zf . Hence, in the case of a wing
profile, one must have VR.. = 0 at the trailing edge B . This is the
Kutta condition which determines the density of the vortex sheet on

3 . that is the ratio % on the contour € of the profile.

The Kutta condition holds when the motion is unsteady,

The theory developed in the preceding Sections applies to
wing profiles. But because one deals with two-dimensional motions,
the concept of complex velocity potential can be used and leads to
considerable simplifications, In particular, one can associate a vor-
tex distribution and a source distribution on the skeletton of the hull
to obtain the desired profile shape (‘) g

(1) The determination of the exact distribution of the velocity at the
leading edge requires some care [8] c
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WING PROFILE IN A QUASI-RECTILINEAR, NON-UNIFORM
MOTION

This problem has been considered by many authors and fi-
nally solved by von Karman and Sears in 1938 [2] . These authors
gave the correct form of the Volterra integral equation for the total
circulation ' around the profile. They showed, in particular, how
the circulation behaves following a perturbation in form of a step
function occurring at time t, . The response time is long and appro-~
ximately corresponds to a path equal to 15 times the chord, but the
effect of the total virtual masses is considerable and the lift at time
to + 0 is half its final value. In [3] the writer has completed the
calculation in order to obtain the pressure distribution on the profile.

UNSTEADY THREE-DIMENSIONAL MOTION OF A WING WITH A
FINITE ASPECT RATIO

There now exist methods for solving the previous problem
in the case of a thin wing of finite aspect ratio when the amplitudes
of the deviations from a uniform motion of translation are small,
Dat and Malfois [4] have given a linearized theory using an accele-

ration potential ¢ = V¥ e ist with
ist
Ve -V gi+isw for ® = ¢/'° '

VE being here in the negative x-direction. The pressure P is
given by

The component in the vertical direction of the velocity is

W = w e LSt With w = _L——[[ K(x 'E; Y-’l)&P(f.'l) dfd" ]
4xpVE

wing
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where 6 p is the pressure difference between the two sides of the
wing. The difficulties due to the singularity of the kernel have been
overcome by the authors who obtained a very good agreement between
' calculated and measured values of & p for harmonic motions.

s i

PROPELLER THEORY

: The determination of ‘e steady and unsteady forces acting

1 on a propeller is a problem of importance (efficiency, risk of cavita-
tion, vibrations, noise, etc...). We just mention it for it is beyond
the purpose of the present paper,

SHIP MANEUVERABILITY THEOPY

v il O it g

A first step in the mathematical maneuverability theory con-
sists of the determination of the buund vortices when the relative mo-

3 tion is steady. This problem ha - been considered by P, Casal in his

Thesis dissertation for a shipata constant drift angle in the horizontal

| plane and for a ship in a forced turning motion in the same plane(1).

i Several drastic simplifications were made :

1
(i) The waves generated by the ship are neglected. Thus one ‘
deals with the Zero-Froude-number approximation,

3 (ii) The ship is assumed to be infinitely thin ; the heel angle is l
] ignored.
i
(iii) The free vortex sheets are attached to the hull along the keel

and its :nirror image with respect to the plane of the free
surface at rest.

e Sand b

(iv) The free vortex filaments rtart in the direction of the bis-

F sectrix of the angle betw.en the local velocity of the body on
g the keel and the keel line.

In fact, becanse of the errcrs due to the first three assump-
tions, the fourth one is essentiaily used for the determination of the

(1) Casal's Thesis w: s *ritten 20 years ago when the author was
staying as s-ientist at - '¢c Bassin d'Essais des Carénes (Report Bas-
sin d'Essais des Ca~“nes - 1951) and published much later [9] .
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behavior of the curves giving the density of the bound vortices in the
plane of symmetry of the ship (y = 0). Let £ denote the reduced

abscissa —X__.  the origin of the moving axes being at the center of
the plane y'= 0,

The integral equation of the problem expresses that the velo-
city induced by the total vortex distribution is tangent to the plane

y = 0. We give below the density f ( £ ) of the circulation. In the
case of an oblique translation, one has :

/

f£(¢&) = "Z—Vl‘e:ana ¢ (&) with

A

3 draft/length ratio, a = drift angle, and

€
1

5 (1 -¢t)+0.4e 0.4(1 - ¢ ), 6 = Dirac function

In the case of a gyration of radius R about an axis

projection on the plane y = 0 is at the abscissa
one has :

whose orthogonal
;= 2R gin a
J©

rVL L

I(E): 2 ‘Ww(f)v

v(t) = (l-EJ)G(l-E)-l.

Figures 8.2 and 8.3 show the graphs of ¢ in the first
case and in the second case respectively,

The force Y and the moment N with respect to the z-axis
(vertical upwards) are

| 2 L L L
Yy - L ; = == n
SV™ xe¢ cos a[‘\ sina + B T C v ‘ZR.]' €= C (Ej)

[3°]

N = - psv i = — — f— =
3 2 L§ coso:li‘\l sina B] 2R Cl ZRIZR" C] = C(fj) .
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A, B, A1 ,» B, are constants relatively close to unity,
and C, C, are functions of ¢ ;. As . is practically invariable,
1 Ny J
C and C, may also be considered as constants,

In fact all the coefficients depend on the hull shape and must
be experimentally determined. Let - & , L & bethe y-compo-
nent and the moment of the hydrodynamic force exerted on the rudder,
M, the added mass for the double model calculated by neglecting the
free vortices effect for a non-uniform motion in the y-direction,

and I, the similar inertial moment in a non-uniform rotation about
the z-axis. We put:

1 L o L
M= PS5 me ko M =52 55

I 42 h
I+1 = (M+Mo)(7) e

1

Furthermore, because the circulation can never take immediately
its asymptotic value corresponding to the steady motion defined by
the present values of @ and 3R the present value of Y is not
given by the above expression, but by Y - Y2 . Similarly the hydro-
dynamic moment is not N, but N - Nz . Yz and Nz are the defi-
ciencies due to the history of the motion,

Finally the equations of the unsteady motion are as follows :

b+ Y
L L da _ L L Ll 2
K2R "M 2v @ A B RYC R ‘zn 1, <2
?SV!(
¢+&
L d , L L L b L/2
N —_ —) = - —_ - — —_—t —
2v Par 3RV A 9By 2R 6 \ZRI ZR 1 2
—Z—PSV T e
Let
S=AB+AB - Ak

One sees that in a steady motion, the ratio ZLR is given by

® L L L
A )— @ +AC) L _.|
(B ) =T e SRt A C+AC) =R |ZR
2
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If S >0, this equation has one and only one,root. If S < 0, there

exist three roots for small values of pSV’rt ; and, in particu-
lar, for & =0. Let (—R—-\ ; (ZR ) and (—-|-—)3 be the
three roots with (Za )y < ( 2n )y < (—), . Itis to be expected

that the steady motion is unsta

(-

This is confirmed by the study of the equations of the un-
steady motion when Y, and N2 are neglected. After a perturba-
tion, the stable steady motion is reached again without oscillation,

When one takes into account Y, and N, , thatis the terms
depending on the history of the motion, one sees that, if § > 0, the
steady motion is still stable, but, after a perturbation, it may occur
that the transient motion be oscillating. It may even occur that no
straight motion be possible for P equal to zero ; the head is cons-
tant in the mean, but it is continuously oscillating,

Oscillating motions in calm water are th:refore a conse-
quence of the delayed circulation around the s' .p. They appear when
the ship has to proceed a long path before the circulation becomes
close to its asymptotical value.

In spite of the rather rough assumptions involved in Casal's
theory, it appears that this theory is qualitatively in good agreement
with experiments, except for what concerns the position of the result-
ant force in the oblique translations. According to the above expres-
sions for Y and N when R = , this force should intersect the
plane of symmetry at a point practically invariable and locatcd inside
the ship. Experiments on models show, on the contrary, that this
point can be located ahead of the bow for very small angles of attack.
Then,when the angle of attack increases, the { of thi s point rapidly
decreases and, finally, takes a value rather close to that assigned by
the theory.

The explanation of that discrepancy seems to be that the
free vortices are shed along the stern-post and rnt along the keel line
when a is very small. Because self-sway motions are very undesi-
rable, attention is to be paid to this point. That is alsn for this rea-
son that we have indicated above the existence near the how of a very
strong vortex represented, in a first approximation, by a & -function,

In the past, the wanted maneuvering qualities mainly con-
cerned the characteristics of the motions at large rudder angles.
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Some cases of course unstability had been stated, but regarded as
rather exceptional and the behavior of the ship in transient motions
was not a prior matter of concern, The situation became quite a dif-
ferent one with submarines achieving very high speeds. A dynamic
stability in the vertical and horizontal planes of motion are required,
and an automatic pilot system is used for performing combined ma-
neuvers in both planes.

Surface vessels such as big tankers also need remarkable
maneuvering qualities ant to that end, they are also equipped with
automatic steering systems.

Nevertheless, the automatic control of the ship does not
solve all the difficulties involved in maneuvering. One can even say
that, from a certain point of view, it gives rise to new problems.

The writer has described some years ago some among the
methods used at the Bassin d'Essais des Carénes for studying ex-
perimentally the case of submerged bodies, determiniug the coef-
ficients of the equations of the motion and predicting the real motion
of the full scale vehicle [IO] . Ina recent paper [l l] , M.Gertler de-
veloped analogous virws on the purpose of this type of matched ex-
perimental and mathematical researches.

However powerful this way may be, it leads to the introduc-
tion in the equations of motion of much too many coefficients and per-
haps in an unappropriate manner. This situation does not favour the
prcgress of the knowledge of the fundamentals in maneuverability. In
[12] , the writer drew the attention to the time response to a maneu-
ver and the risk of erroneous interpretation of ¢ perimental results.
The writer is of the opinion that new purely the retical researches
are needed. Casal's thesis has been given as an example to base this
opinion. The present paper has been inspired by the same line of
thought.

CONCLUSION

Although the Vortex Theory plays an important role in many
Chapters of Ship Hydrodynamics, it does not seem to be used in all
the cases where it could really be fruitful, It is so when one deals
with the Ship herself.

Several explanations of the rather reluctant attitude of the
Naval Architects with respect to the application of vortex theory to
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ship hulls could probably be found. A fact is that an arc of vortex fi-
lament does not generate a velocity potential and in practice the re-
presentation of the hull by a source distribution can be simpler than
its representation by a vortex distribution. However the vortex theory,
which allows the tluid to satisfy the physically meaningful condition of
adherence to the hull, certainly offers mathematical models closer to
the reality than those drawn from the other types of hull representa-
tion, Furthermore, it leads more rapidly to the determination of the
distribution of the pressure and of the velocity on the hull surface.

The present paper is therefore an attempt to explain the
{undamentals of the vortex theory and of its application to the kine-
matics and dynamics of bodies moving in water.

After a brief survey on the various aspects of the vortex
theory in inviscid fluids (Section I), one will find in Section II the
Poincaré formula which permits the calculation of the velocity in a
fluid domain when the vorticity inside the domain and the velocity on
its boundary are known, and in Section III the application of Poincaré's
formula to the determination of vortex distributions kinematically
equivalent to any given ship hull. The class of these distributions is
infinite. Each consists of a volume distribution inside the hull and of
a surface distribution over the hull. The volume distribution can be
chosen arbitrarily, The surface distribution associated with it is de-

termined by means of a singular vectorial Fredholm equation of the
second kind.

Section IV gathers material to be used later to solve the
dynamical problem.

Section V is devoted to the study of the structure of the vor-
tex distribution which permits the fluid to adhere to the hull surface.
The surface distribution is the sum of infinitely flat vortex tubes call-
ed here '"vortex ribbons'. The vorticity inside the hull is twice the
angular velocity of the body. Thus, if the angular velocity is not null,
the intensity of each vortex ribbon is not a constant along its length,
Furthermore, if free vortices are shed by the hull, some of the vor-
tex ribbons do not close on the hull. To overcome the difficulties aris-
ing from these circumstances, the vortex distribution generated by the
body is divided into two distinct families almost independent of each
other. One consists of the volume distribution and of the surface dis-
tribution associated with it so that the velocity induced by this first
family outside the hull be null. The second family consists of a vortex
sheet entirely located over the hull when no free vortex-sheet is shed
by the hull. In the opposite case, it includes the free vortex-sheets.
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As shown in Subsection D, it may also include a volume vortex dis-
tribution in the wake when the motion is unsteady,

Section VI deals with the integral equations determining
the two families of the total vortex distribution. The singular vectorial
integral equation related to the first family can be replaced by a sin-
gular scalar Fredholm equation for a Neumann interior problem. It
can be solved once for all whatever the body motion may be., The in-
tegral equation for the second family reduces to the scalar regular
Fredholm equation of the second kind for a certain Dirichlet interior
problem when the fluid is unbounded and at rest at infinity. In the
most general case it becomes a Volterra equation expressing the so-
lution in terms depending on the history of the motion.

Section VII is devoted to the study of the system % of
hydrodynamic forces exerted on the body. As stated before the total
vortex distribution determines inside the hull a fluid fictitious motion
which coincides with the absolute motion of the body. For this kine-
matical condition to be compatible with the dynamical equilibrium of
the fluid, it is necessary to introduce a certain systerm of fictitious
forces per unit mass inside the hull,

The system L% of hydrodyhamic forces exerted on the body
at t, can be written in the form

‘%z‘%.s. +-(/f B !%‘*%

where L%_ s. 18 the quasi-steady system of forces, that is the sys-
tem to which (4 would reduce if the motion of the body were
uniform in a large interval (t',t,). ﬂ is the system due to the so-
called added masses ; it is independent of the free vortices shed by
the body. There exists a difference between the structure of the free
vortices at t; and at t = + o0 , the latter being evaluated under the
assumption that the motion of the body is uniform to t > t,. This
difference affects both the bound vortex distribution on the hull and
the 1nc1dent velocity on it, It entails the term - 6% . The last term

a is an inertial effect due to the partial derivative T+ at tg
of the bound vortex sheet. % reduces at t,+ 0 to Cz o (tg -0)
+/‘ (to + 0) if the body motion is uniform ior - A<ty -0 and

for t > ty, + 0, but discontinuous between tg - 0 and t,.
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Section VIII consists of a brief synopsis of the present appli-
cations of the vortex theory to ship hydrodynamics with somewhat
greater emphasis on ship maneuverability, Attention is drawn to
Casal's thesis about this problem. Casal's theory certainly involves
too drastic simplifications and some among the conclusions are unac-
ceptable. First, a ship cannot be considered as infinitely thin, and
even if such an assumption could be accepted in a first approximation,
3 it would be necessary to satisfy the boundary condition on the whole
1 surface of the longitudinal plane of symmetry of the ship. It is still
necessary to resort the empirical or semi-empirical methods. But,
in the writer's opinion the part devoted to theory is really unsuffi-

g ot

3
4
i
p
4

cient. |
|
1 The purpose of this paper was to prompt researches in that 1'
’ direction, ;
3
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Figure 5.3
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Figure 5.4 - Half-model in oblique translation (positive drift,
permanent motion),

The streamlines of the relative motion are more inclined towards
starboard than towards port, The lines ending on a same point of the
longitudinal contour SS,E, do not have the same direction, hence
the shedding of free vortices along SS E .

En streamlines starting points on the stem,
S;x end point of the starboard streamlines,
S;; end point of the port streamlines.
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NOMENCLATURE

1. OPERATORS

_ D d d —
1 v = (axl , ﬁz , Bx3 ), {the axes X0 Xy X, make a right
; handed system).
4
a = VZ Laplacian operator
?". A Symbol of vectorial multiplication,
2. VORTEX FILAMENTS AND VORTEX SHEETS
_V Vortex filament
d E Element of area of a vortex sheet
Ze'zi The two sides of Z
€ Infinitely small thickness of the vortex sheet
- r . : .
‘ n Unit vector normal to the sheet in the direction from Ze
r towards Zi
v Velocity of a fluid point
; <@ Curlof V
— = -— -
T Limit of ¢ w whene—0 ; T = (T - ?') + '_I"' in sections V,

VI, VII,

!

Unit vector tangent to Z in the direction of T

V(P ) - V(P ), (or V(M ) - V(M }) : jump of v through 2 from
P €t P (or ¥rom Me to M,), P (or M ). P {or M, ) be-
longmg to Z Z b respectwely

T:=-n A[V(Me) - V(Mi)] ]
g Line on Z orthogonal to the_%u

it . ] q 2 3 2
2 r Circulation of V in a closed circuit
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ar Intensity of a flat vortex tube on Z, the width of the tube
being do .

— N

dI' = drI' .77

3. GEOMETRY AND KINEMATICS

Z Hull surface
F Di o De, Interior, exierior of 2 respectively
r D'e Domain occupied by the real fluide : D'eC De
-—p
* \Y% Absolute velocity of a fluid point
- VR Relative velocity of a fluid point : velocity with respect to
F: axes moving with
VE Velocity of a point fixed with respect to the moving axes
QE Angular velocity of the moving axes
Zf Surface supporting a free vortex sheet
—
Vo Incident velocity on Z
®, Cbo Velocity potentials : V=t®ifcurl V=0, Vo =V¢o
@ = curl v
:’)R = curl VR
g (with or without accents) : line on Zalong whichzf is at-
tached toz J
- ;
Vd Velocity induced by the bound vortices 9
- |
Vf Velocity induced by the free vortices 1
1
?‘; Vector ? on Zf ;
ar, dr on 2,
u Density of a normal doublet distribution over the hull surfacez
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B Density of a normal doublet distribution over the free vortex
sheet 2{
_Z Vortex filament on Zf
] g+ O Velocity potentials generated by the narmal doublet distri-
bution on Z, Zf respectively
_’
‘ v Velocity ipduced inside D, by the vortex family (D, , z'ﬁE)
- T!
+ (., T=T) insections V, VI and VI,
g — =
! o, Velocity potential defined inside D, such that V_ - V' =V¢i
é (Sections VI and VII)
: 4. DYNAMICS
p Mass density of the fluid
- . . —
F Exterior force per unit mass : F =vll
e =
I - . A : E v!
F Additional exterior force inside D, if —— #0; F' = --—
i dt ot
P4 Hydrodynamic pressure
—

]
Hydrodynamic force exerted by the flow on an element dz;
of a bound vortex sheet or on an element of arc of a vortex
filament which does not move with the fluid

System of hydrodynamic forces exerted on the vortex sheet
(

¥ .0
[§
System of hydrodynamic forces exerted on the hull

System of inertial forces inside Di

System of complementary forces pF dDi inside Di

System of forces -pé%) wdL (M) on Ze

M,

System of forces -p'?(M) VR (M) a2 (M)

System of forces due to the added masses when there exists
no vortex sheet
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Estimate of % when the deficiency affecting be is neglect-

ed

-
/ ﬂ(/f'i y Estimate of% when the deficiencices affecting

a
o :
de and be are neglected

e
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DISCUSSION

Peter T, Fink
University of New South Wales
Kensington, Australia

The principal message of Admiral Brard's paper is that we
should take bound vorticity more seriously, and although I like the vor-
tex ribbons I cannot make up my mind about them before trying some
examples. | want to make a contribution concerned with the problem
of modelling shed vorticity, particularly when there are sharp edges
fixing separation at known positions. Figure | is an example of a la-
boratory simulation of a section of a ship heaving at its moorings,
with no forward speed. A student, Mr. W, K. Soh, and myself are de-
voting ourselves to potential flow modelling of (in this case) bilge keel
separations and [ think therec is something of more general interest in
this which I should like to speak about,

In two-dimensional flow such problems can, of course, be
transformed to the case of a flat plate moving normal to itself in ar-
bitrary unsteady motion, For practical calculations it is usually ne-
cessary to replace the vortex sheet by discrete vortices and one might
expect the calculation to be straightforward, using Kutta conditions at
the edges, the Kelvin Theorem to ensure that the total circulation re-
mains constant and the condition of zero force on each vortex in the
standard classical vay., This certainly works quite satisfactorily for
lifting aerofoils with unsteady motion in two dimensions, However, for
a blade moving normal to itself the circulation is always zero, so that
the Kelvin theorem does not help and a degree of arbitrariness has to
be injected. The arbitrariness is required because the Kutta condition
will not give both the strength and the position of the first of the vorti-
ces one is going to put in. Figure 2 is an example which shows a plate
of unit length moving towards the left, in this case five seconds
after an implusive start, that is, when the motion is still largely iner-
tial. Fresh discrete vortices have to be added to give the picture shown
here and in one of the carlier attempts they were added at constant
intervals of time ; and not long after a degree of zigzagging developed,
as shown. My attention was drawn to the fact that Professor Birkhof’
had issued a warning about this sort of procedure over ten years ago.

Figure 3 shows the improvement when the time intervals are
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not equal but are chosen so as to make the distance travelled by the
nth shed vortex equal to the separation of the first vortex from the
edge, but there is still some zigzagging. The real problem of this
kind of discretisation is that when the discrete vortices are spaced too
clogsely, when they get close to cach other, they indulge in a planetary
motion about each other ; and if they are spaced too far apart you will
not get the velocity field right and the shape of the sheet will not deve-
lop properly,

Figure 4 shows our current recipe for this sort of situation,
and that is that after each step of the calculation one moves the vor-
tices to approximately equidistant positions while maintaining the
centre of vorticity of the whole lot in the correct position,

Figure 5 shows a coi.parison with the only exact solution
known to myself, von Wedemayer's, The circles on that graph, using
the equispacing recipe, seem to give excellent agreement for the de-
velopment of circulation with time for the vorticity shed {rom one of
the edges, The total circulation shed into the stream is, of course,
zero, and that is onc of the big troubles in this game,

Figure 6 shows what can be done with this method. Here a
plate has completed one half cycle of oscillatory motion no~mal to it-
self and Figure 7 shows the disposition of the vorticity after a com-
plete cycle. I will not bother you with estimates of force associated
with this kind of thing or conformal transformations, but I would like
to pass to the last example,

This shows the case of a plate, Figure 8, a bit like the earlier
one, growing in length vertically while moving normal to itself, We
have applied that solution to slender lifting surfaces of arbitrary plat-
form (arbitrary, that is, while still remaining slender) and camber and
we seem to get rather better results for that type of lift surfaces with
leading edge vortex separation than the results obtained over the years,
first by Legenare here and then by Brown and Michael and others, So
we are not completely put off by Birkhoff's warning and I would recom-
mend our particular recipe for calculating the development of vortex
sheets, although we have not, naturally, got anything on uniqueness
for the results,

We are now working on a number of configurations of interest
where there are sharp cdges to fix the separation, such as that shown
in the first picture, and also on others, where non-linear lift pheno-
mena occur,
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REPLY TO DISCUSSION

Roger Brard
kasgin d'Essais des Carénes
Faris, France

Professor Fink has presented a number of examples of great
interest, but, in general, not connected at least directly with ship
manoeuvrability problems, that is with the main purpose of my paper.
For instance, the first case mentioned by Professor Fink is essential -

ly related to the damping effect of a bilge keel on the rolling motion of
a ship at zcro speed,

The concept of vortex sheet does not apply in two-dimensional
motions except in some cases like that of a flat wing in an unsteady
motion of small amplitude in the direction perpendicular to the veloci-
ty of the incident flow at infinity (KArmin-Sears problem). Vortex
theory in inviscid fluid does not permit to predict the growing and the
shedding of vortices in the vicinity of the edge of a flat plat moving in
a4 direction perpendicular to its plane, This phenomenon is dependent
on the viscosity. The theory however applies provided comple-
ment:ry conditions be added to precise the mathematical model, The
considerations developed by Professor Fink could have been the sub-
ject of u separated paper to this Symposium,

The case of a lifting surface with separation at the leading
edge scems to be similar to that of the A wings, I suggest to Pro-
fessor Fink to compare his method to those used at present by the
Office National d'Etudes et de Recherches Aérospatiales (ONERA).

An ONERA -rceport is quoted in the list of references oint to my paper,
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i DISCUSSION

V.N. Treshchevsky
Kryloff Research Institute
Leningrad, U.S5.S.R.

Professor Brard has presented a very interesting paper here,
I think it is very important and relevant, especially in cases where
non-stationary hydrodynamic characteristics are discussed for ship
constructions for instance, which are very difficult for calculation,
From the other side the experimental data in this case is connected
with insticable errors, 3o mutual correction with theoretical and ex-
perimental data seems to be necessary.

I must say that work in this direction has been carried out in
the USSR under the connection of professors Fedayevsky and Polyakoff,
The analysis of investigations shows that the choice of a proper scheme
g for decision ground equations, is very important because the initial
equations for vortex density are singular.

In this connection my first question is, what methods of prac- :
tical calculations were used and, particularly, whether the decision 1
corresponds to a definite class of functions, and if so what kind of
class is used here ?

L el de

Another question concerns the structure of the vortex sheet
behind and near the body. I want to ask whether in case of a wing the
mentioned structure supposed in the sheet will correspond to Sears or
Birnbaum represgentations or is it an original one ?
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REPLY TO DISCUSSION

Roger Brard
Basgin d'Essais des Carénes
Paris, France

In repiy to Dr. Treshchevsky's comments, I would like to
draw his attention to the fact that the equation giving the vortex dis-
tribution on the hull is not singular when the motion of the body con-
sists of a pure translation, If no free vortices are shed, the vortex
distribution on the hull is equivalent to a normal dipole distribution,
The density of the latter distribution is yielded by a regular Fredholm
equation expressing that the interior determination of the velocity po-
tential coincides with c¢x + constant, if the body moves in the x-direct-
ion with the spced c. Hence one deals with the Fredholm equation for
the Dirichlet interior problem,

If the angular velocity of the body is not null, then the total
vortex distribution on the hull is the sum of two distributions, The
cquation giving one of them is regular, The other one is singular, But
it is possible to show that the irregular vectorial cquation is equi-
valent to 4 scalar Fredlbolm equation for an interior Neumann problem,
The solution ot this ¢quation is much simpler, This point has been
omitted in ghe preprint of my paper, but it will be included in its final
version,

When iree vortices are shed, a point of importance is to de-
termine the position of the shedding line. It may occur that several
shedding lines exist simultancously. The problem would be under-
determined if no account were taken for the condition concerning the
continuity of the pressure on the hull through each of the shedding
lines.

It is also to be pointed out that, if the shedding line is unique,
then the vortex distribution on the hull given by the regular Fredholm
equation and the free vortex distribution can be combined in such a
way that they can be replaced by normal dipole distributions, This
probably leads to important simplifications,

When une deals with a wing of finite thickness, the method

using the acceleration potential does not apply in a simple manner,
except, perhaps, if one can combine source and vortex distribution,
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DISCUSSION

John P, Breslin
Stevens Imgtitute of Technology
Hoboken, New Jersey, UsS.A.

Admiral Brard has certainly given us an exhaustive treat-
ment of vortex representations, and | think he has made an excellent 1
point that this approach to ship problems has been largely neglected, j
I just wanted to make a point here of an intuitive character, b

! He points out on page 1255, regarding Casal's theory - which,
3 as | recall, is a vortex thcory for the lateral force and moment on a
ship, which is considered to be quite thin, that while the lift force ob-
tained from this theory is quite reasonable, (and I believe was in agree-
ment with low aspect ratio theory if one takes twice the draft divided .‘
by the length as the aspect ratio of an equivalent wing) there is a dis- k
9 appointment in that the position of this lateral force does not coincide 3
with the observations obtained when one measures the lateral force
and static yawing moments on ship models. In that case, when one
divides the moment by the force the result is a lever arm which is
greater than the half length of the ship., In any event, this so-called
point of application of the lateral forces is often off the ship, It seems
to me, most of us are aware that if you take a body revolution - the
spheroid is the classic example - it has a zero lateral force in an in-
viscid fluid but it has a very definite moment, say, about its mid-
length called the Munk moment. It is my feeling that ships may be
neither fish nor fowl, they are neither bodies of revolution, nor are 1
! they flat lifting surfaces to which the lifting vortex theory could be ex- !

pected to apply in all respects, In particular, if we think of the ship 4
as a modification of a body revolution, that is that the central portion
looking at it side on, together with its zero Froude number reflection
on the water plane, can be described as a body of revolution plus flat
surfaces fitted into the bow and stern representing the sharp bow and
the sky in the region of the stern, then we should expect that it would
be necessary to account for the combined effect of these fin areas or
to treat the body as a body revolution with fins fore and aft. This pro-
blem, then, has to be solved theoretically, This, I should think, would
then exhibit some of the body revolution characteristics in its moment
and without disturbing particularly the rather excellent agreement that
one obtains from small angles with the vortex theory.

vy
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REPLY TO DISCUSSION

Roger Brard
Bassin d'Fssals des Carénes
Faris, France

I agree with Dr, Breslin that a real ship is not reducible to
part of a vertical plane and that, for this reason, Casal's model does
not give the exact features of the flow about a ship.

I think, however, that many points of Casal's approximate
solution are of interest. The existence of a concentrated bound voriex

near the stem seems to me in qualitative agreement with experiments.

The fact that, in the case of a ship in translatory motion at small

angle of attack, the lateral force is often located ahead of the stem
could be explained by the velocity induced on the stern by the strong
vortex filament to which the said concentrated bound vortex belangs.

One of the drawbacks of Casal's model is that the boundary
condition on the hull is satisfied only on a horizontal segment at equal
distance from the two horizontal edges of the longitudinal plane of
symmetry, Furthermore the solution does not fulfill the pressure

continuity condition through the free vortex sheets in the vicinity of
the shedding lines.

I am not so optimistic as Dr, Breslin about thin wing theory
with an aspect ratio of . 2, One of the advantages of Casal's theory is
that it is an approach for taking into account the fact that the so-called

trailing edge is a very short part of the true shedding line (often less
than 20%).

In conclusion | would like to thank warmly the discussors,
Their valuable remarks will give me the opportunity to improve in
some places the initial version of my paper,
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ON THE VALIDITY OF A GENERAL SIMILARITY
HYPOTHESIS FOR JET AND WAKE FLOWS*

Leo Fink and Eduard Naudascher
{ Iniversity of farlsruhe
Karlsrune, Germainy

ABSTRACT

The validity of a new analytical approach by which
the development of any free-turbulence shear flow
in an incompressible fluid is predicted through the
use of a general similarity hypothesis, has been
tested by applying it to laminar jets in uniform un-
confined streams, Because of the lack of experi-
mental data, the analytical solutions derived for
plane and axisym unetric jets in coaxial parallel flow
were compared to corresponding solutions based on }
coordinate-type perturbation expansions. The sa- !
tisfactory agreement obtained in all cases suggests
strongly that the new similarity analysis is a valid
’ approach which, if used with suitable turbulence
hypotheses, will also predict successfully the cha- :
racteristics of any turbulent jet and wake flows, '

e e T

INTRODUCTION

Jets and wakes are the most common examples of free shear
flows, Since the foundation of the boundary-layer theory by Prandt!
in 1904, they have been the subject of numerous investigations both
| analytical and experimental, Nevertheless, reliable solutions are
' restricted so far to simple cases like free jets in stagnant fluids or
small-deficit wakes. On the other hand, it is just the more complex
flows like jets in external streams which are of special interest with
respect to applications in fields ranging from Aerodynamics to Civil
and Chemical Engineering. The reasons why there are no common

it it ot e i
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solutions are twofold, First, there is the closure problerm in the
equations of motion, if the flow is turbulent. And second, even if one
of the widespread effective-viscosity assumptions has been introduc-
ed to describe the structure of turbulence, there is the difficulty in
handling the partial differential equations,

In the following, we shall deal solely with methods designed
to overcome the latter difficulty. There are several well-established
methods to solve the parabolic partial differential equations of the
boundary-layer type. In the last decade, some powerful methods for
numerical treatment of the governing equations were put forward
{c.pg., see Ref. [l] }. Further, the application of the generalized
Galerkin-Ritz Method (i, e., the G-K-D method) has proven to be very
useful [2] , although this method has not yet reached perfection.

In this paper, we shalluse the well-known integral method
combined with suitable similarity transformations as initially propos-
ed by von KArman., The advantage of this method lies in the relatively
simple, closed-form deduction of approximate solutions, which in
most cases are good enough for engineering purposes. Moreover, the
method is very helpful when applying numerical procedures to flow
situations complicated by special boundary conditions or by density
stratification etc,, because it allows to predetermine special features
of the solutions like e, g., the behavior in the asymptotic ranges.

A disadvantage of integral methods, if used in combination with
the conventivnal similarity assumptions and the corresponding sim-
plifications, is the fact that they can rarely be extended to flow confi-
gurations which differ from those for which the assumptions and sim-
plifications were designed. This may partly explain why not much
progress has been achieved in this field since the classical works of
Tollmien (1931, small deficit wake [3] ) and Schlichting (1933, frece
jet in stagnant surrounding [4] ).

There exists a close relationship between the flows treated by
Tolliien and Schlichting and the laminar free jet in a unifurm stream
to be treated in this paper : in that part of the field where the velocity
in the jet is an order of magnitude larzer than the free stream velo-
city, the flow can be treated approximately like a free jet in other-
wise quiescent fluid, On the other hand, at some distance downstream
from the flow origin, the excees ve'ocity along the center-line becomes
small in comparison with the velocity of the external flow, irrespec-
tive of the initial strength of the jet, because the excess-momentum
flux is distribut:d over an ever-increasing diffusion zone ; in this re-
gion the same approximations as in wake flows should hold true.
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Since with the classical similarity assumptions, these approximations
lead to different equations, predictions for general free-jet problems
can be obtained in the asymptotic ranges at best, To overcome these
deficiencies, different suggestions have been made. For example,
Wygnanski and Fiedler [5] succeeded in solving the equation of motion
with the help of the conventional similarity assumptions for the special
case of a general laminar free jet with tailored pressurc¢ gradient in
the outer stream. Unfortunately, the solutions are mainly of academic
interest, because such special cases are seldom realized in practice.

To obtain solutions for the development of any free-turbulence

3 shear flow in an incompressible fluid, the senior author has derived a

! new, n:ore general similarity analysis [6] . Through the formulation
of similarity functions based on three 1ynamic scales, mean flow as
well as turbulence characteristics were "hown to have a strong ten-
dency toward self-preserving profiles even for such flows as the tur-

] bulent wake of a self-propelled body and turbulent jets in moving

E‘ coaxial and cross streams, All solutions were satisfactorily verified

by comparison with experimental data [7, 8] g

The key part of the new similarity analysis is the replacement
of the conventional velocity-type representation of the mean flow field
by a momentum-type description. It is the main purpose of this paper
to provide further evidence of the validity of this assumption. In order
to achieve this, the new approach is applied to flows, for which the
similarity assumption suffices to produce solutions without the intro-
duction of unreliable hypotheses concerning the structure of turbulence.
As flows to be described we have chosen laminar jets in uniform un-
contined streams. In this way, we are not only able to performa cru-
cial test of the key assumption of the new theory ; at the same time,
we can obtain more reliable predictions for the case of unconfined la-
minar free-jet flow, and this not only in the asymptotic ranges but in
the transition region as well, which is of most practical interest.

W

THEORETICAL ANALYSIS

From the observation of a jet developing in a uniform coflowing
stream, one is led to accept that the flow can be separated in an irro-
tational outer flow (potential flow) and a shear zone extending only
slowly in the lateral direction. Since this narrow zone, which is domi-
nated by large lateral velocity gradients, is characterized by a boundary- 1
layer type of flow, the governing Navier-Stokes equations can be appro-
: ximat/ 1 for large Reynolds numbers b'- the boundary-layer equations
] given by Prandtl, The same simplifications hold also for all other per-
tinent transport equations, This procedure has been repeatedly verified

1287 i
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by experiments for related flow configurations, so that it can be as-
sumed valid in this case as well,
wt .

If the local Reynolds number IR = is large , but not
exceeding the critical one, the stationary flow of an incompressible,
isothermal fluid which is not affected by external forces is represent-
ed by following set of equations :

duy)) , dvy))
oy

3x 0 (i)
du o du_ 13p . -ialr/e) du
b Ve P ETSRe T Y TE with 71/p =S (2a)
1 dp _ _
A (2b)
t=0, v=0 at y=0 and

du, 1 dp
= = —Le = o
T=0, u=U U, B B for yzyo

where x and y are Cartesian coordinates (x in the direction of
flow, measured from the geometrical origin of the flow) and u and
v are the velocity components in the x and y directions, respecti-

vely., For plane symmetry, j =0, and for axisymmetric conditions,
j=1.0 (see Figure 1).

Integration of Eq. 2a first over a lateral distance y; and
then with respect to x between the boundaries x' and x in conjunc-
tion with the boundary conditions

dy, 1 d
T=0, u=U,, U"jdx:: -—p.i’% for Y 2Y,

For definition of symbols, see Nomenclature,
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and the continuity equation yields
Yo x Yo o

2 . ) di, J J
f(u -Cpulyidy + / d_: uy"dy - U, | y'dy } dx = H const  (3)
0 0

x' 0

provided the flow origin is excluded from this control volume. With
u=leg + uy one obtains for unconfined tlow (dU, /dx = 0)

Yo
2 ; J
(ud + udL“)y dy = H (4)

0

This partial differential equation can be reduced to an ordinary dif-
terential equation by substituting the following similarity transfor-
mation

-
2 o . o= y/ f(x)
(ud + udbx) (U (x) +U (x)Uw) f(n), with U U%x) (5)
which was introduced by Naudascher [6]
Some algebraic manipulations yield the condition
K
(et —I}i with 1 = /fn]dn = const (6)
1
0

It should be remarked that in deriving Eq. 6, the momentum equa-
tion does not require further simplifications or restrictions as

long as the special form of similarity expressed by Eq.5 is adopt-
ed.

To solve for the velocity and length scales U"(x) and/ (x)
one must look for an additional information, The energy equation is
chosen here, following the example of Wieghardt [9] and Liepmann
and Laufer [lO] . After substituting the same boundary-layer a,»pro-
ximations as in the equation of motion, the energy equation becomes

230, du_1ap . -j3lyr/e)
u ot qu— -uT(\T+ uy =% (7)
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Integration over a lateral distance Yo yields with u = Ut uq

% Y0

g 0 > . | Yo 3 , Bud g .
—— M i ,J e i J J =
dx [ / L-o(ud + udL-o)y dY + P [ ud(ud + udLuo) y dY] + V‘/‘(ay ) y dy 0
0 0 0 (8)

As was done with Eq. 4, this integral relationship can be reduced by
substituting the similarity transformation (Eq. 5). In regard to the

integration to follow, it is useful to rewrite the governing differential
equations in dimensionless form :

from momentum equation :
Zy! v?
o) h T )

from energy cquation :

S g o

- i

" |

';] 0 3

d l’)J Y / 14V _j -‘
—f=) LY fq/1+4f==nlay .
) ]

d(x F)j)K()j VZ i o !

770 i
j-1 2 3
ot BN dt/dn) _ ig, - g (10)
UwO.\ 6. 1+V ;
IV l+4f—2 :
Vv

Combining Eq.9 with Eq. 10 leads to the ordinary differential equa-

tion
"0 . B "o 2
3 a 14 & .
d ¢ l+4f“\ 'IJdn = 4 1 f1+V !df{dn! 'IJd'I
d(x/0.) 2 U6, 2 1+V
J 0 \' ) \'% 0 ]+4f—2

A (11)
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which, because of the structure
| "o

E av d(x./()j) = fkt [v , /fl (n) P‘(\’)dn]

0

involves elliptical integrals and thercefore cannot be solved in closed
form. The main difficulties arise from the substituted terms for uy
and aud Dy in Eq.8. In order to get at least an approximate solution
of the problem, it seems reasonable to replacc these terms by some
less complicated expressions.

By inspecting Eq. 5, one can easily realize that there arc
tvvo asymptotic cases included in the new similarity transformation,
namely QUy ‘U< 1.0 (strong jet flow) and U®/Ug<l.0 (weak jet flow
of the wake type). For these asymptotic cases, the postulated simi-
larity of momentum reduces to mere similarity of defect velocity,

TR T RS N ST Sl ¢ ViR Ly v ] o Ty

uy
wNE g (n) with 7 y[ (12)

which is equivalent to the conventional similarity assumption. If this
expression is used along with Fq.5, Fq.8 becomes

n
0

IZ ;—[fgnjdn
1 ijU j

-1
2 _av__ gy . 0 :
1.1 dxP)  H <(T‘> i o1 m (3)
31 j] J

dg i J
I3 /(W) n dn
0

If solved simultaneously with Eq.9, this equation yields the general
solutions

A

*

While this paper was prepared, Eq.1! was solved by a Runge-
Kutta-procedure for various forms of the similarity function f(n).
It was found that no inconsistencies arise from the introduction of
. the new similarity transformation (Eq.5 in the integral form of the
1 energy equation. Thus it can be concluded that Eq. 5 is fully compa-
' tible with the governing equations, The numerical solutions display
the same featurcs as do the closed-form solutions, which are des-
cribed in this paper. Full details will be given in a subsequent re-

port.
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for plane flow (j - 0) and axisymmetric flow (j - ) ), Trespectively,
The constant of inte

gration was obtained from the boundary condi-
tion x/6; —» x,./0: i U /U%4 0, which defines the virtual kine -
J 0

matic origin. The value of XQ '0J~ must be determined from expe-
riments,

Now the growth of the length scale 4 (x) can be determined

from the momentum equation (Eq. 9) and Egs. 14 and 15 after eli-
munation of the parameter V Usa /U*.

All analytical solutions are pre

sented graphically in Figures
2 tuo 7. They show the following pe

neral characteristics:
a) For small distances from the flow origin,

one obtains the verified
asymptotic laws for the free jet in othe

rwise stagnant fluid, that is

s U x !
'L.._ ¢ (a’ —) Uc? s ( 9 )
1
0 for j 0 and forj =1
_‘?__. . _X_ 2/3 _[._ [ =t (_X_ :
o ~ig) 0 - )
0 (( 1 1

b) Far downstream, the solutions converge toward the well-known

power laws of the respective wake flows, that is
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U ' U x |
v < g o < (g )

for j =0 and 1 forj =1
‘/2
1

I S (== 4= (BE e
8, 8, ) 8,

This twofold asymptotic behavior suggests the conclusion that the
presented solutions render also reliable predictions in the transition
region, In any case they are superior to the conventional similarity
solutions, which display correct behavior only at one limit.

Unfortunately, there are no data available to check the va-
lidity of the derived solutions by experiments, However, a compa-
rison is pussible with the analytical investigation of laminar coaxial
jet flows by Wygnanski [10,11] . Wygnaneki starts with the same
governing equations (Eqs. | and 2). But instead of a similarity as-
sumption, he uses a coordinate-type perturbation expansion for the
plane- and axisymmetric jets in stll surroundings (Figures 6 and 7).
A comparison of Figures 2 and 6 reveals that the two solutions can
be made identical by mere translation, This fact allows one to es-
tablish a correlation between the definitions of streamwise coordi-
nates used in this paper and by Wygnanski. The difference for in-
termediate distances x between the solutions in Figures 4 and 7
arise mainly because of the fact that the integrals I1 , 12 , 13 are
not constants but take different values at the two asymptotes ''free
jet in stagnant fluid"” and 'small-deficit wake''.

CONCLUSIONS

Approximate solutions have been derived for the decay of the
maximum axial excess velocity and the growth of the characteristic
length scale of laminar plane- and axisymmetric jets in uniform
infinite streams. In contrast to the conventional notion that there
exist no similarity solutions for free shear flows with more com-
plicated boundary conditions, the laminar coaxial jet was successful-
ly treated by a new similarity assumption, for which the conventional
velocity-type representation of the flow-field is replaced by a mo-
mentum -type description. The solutions derived with the aid of the
momentum and energy equations, both simplified by the boundary-
layer approximations, were found to apply over practically the whole

range of axial distances, excluding only the immediate proximity of
the flow origin,
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This satisfactory agreement suggests strongly that the phy-
sical approach involved is sound, One is thus led to the conclusion
that the momentum-type similarity characteristic is a more signifi-
cant parameter for flow description than the classical mean-velocity
types, and that the corresponding new approach should prove promis-
ing in the analysis of turbulent flows as well. There is no reason to
abandon the powerful tool of integral methods as long as they are
combined with suitable similarity assumptions. Indeed, as was shown
in Refs. [6] and [8] , this method yields satisfactory results for
a variety of non-elementary free-turbulence shear flows even though
the turbulence hypotheses used in these cases were far from being

elaborate. .:'
NOMENCLATURE
f,g similarity functions !
H value of excess momentum flux

L, 12, I.J definite integrals of the similarity functions ;
J exponent (equal to zero for plane flows and equal to 4

unity for axisymmetric flows)

length scale characteristic of the width of the shear

Zz0ne .
p pressure a
]
ud ]
IR local Reynolds number [R = —— |
1
u, v axial, lateral velocity 1
;
U, velocity in the outer stream :
, §

ud excess velocity ud = u - Uy
u* velocity scale, chosen as maximum excess velocity 3
v ratio Uy /U* 1

X, Yy Cartesian coordinates

A
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virtual kinematic origin

lateral distance, greater or equal to the width of the
shear zone

small perturbation parameter

transformed lateral distance "0 = yo/£
1

momentum thickness Gj = (U_HZ‘—) AR
L]

kinematic viscosity
density of fluid

sh.ear stress
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DISCUSSION

Paul Lieber
University of Califormia
Berkeley, Califormia

How do you account physically for the superiority of the
momentum similarity law as compared to the velocity similarity law,
if I understood your statement ?

REPLY TO DISCUSSION

Leo Fink
niversity [ Karlsruhe
Karlsruhe, Germany

If you substitute the conventional hypothesis in the diffe-
rential form of the boundary-layer equation, you obtain a contradic-
tion, and if you substitute the new hypothesis into this equation, you
will not find any incompatibilities. This is perhaps the explanation
why this new hypothesis works better than the old one. One other rea-
son you can put forward is that these types of flow are mainly govern-
ed by the momentum equation because the momentum flux is a cons-
tant 1:; these cases. Therefore, if the momentum equation is not
violated by any of your assumptions, you have described the flow bet-
ter than if you used the conventional hypothesis,.
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VELOCITY DISTRIBUTION AND FRICTION FACTORS
IN FLOWS WITH DRAG REDUCTION

Michael Poreh and Yona Dimant
Tecmion = Ierael Institute of Technology
Haifa, lsrae’

ABSTRACT

A simple descriptive model, based on van Driest's
mixing length £ = ky [1 - exp (-y*/A*)] with a va-
riable damping parameter A%, is proposed to re-
present the effect of linear macromolecules in di-
lute solutions on the wall region in boundary layer
flows., Measurements used to support an elastic
sublayer model for drag reduction are shown to be
in better agreement with the proposed model. A
relation between At and parameters of the poly-
mer solution and the flow identified by Virk (1971),
is derived for the range where Virk's correlations
are valid, The maximum drag reduction appears
to be associated with an asymptotic value of A*,

INTRODUCTION

The ability of minute quantities of high molecular weight poly-
mers to reduce the turbulent skin friction and thus to decrease the drag
of underwater bodies, has excited many investigations of the phenome-
non of drag reduction, Theoretical efforts to explain the mechanism of
drag reduction have not been very successful, probably because drag
reduction is affected by an interaction between the molecules and the
time-dependent, non-linear turbulent flow near the edge of the viscous
sublayer. On the other-hand, experimental and semi-empirical studies
have succeeded in documenting many features of simple drag reduction
flows and describing them in approximate phenomenological models.

The earlier descriptions of such flows employed a two-layer
model to describe the mean velocity profile (Meyer 1966, Elata et al
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1966); a viscous sublayer where u* = y* (1)
and a log region where P
+ +
= 2
u =A logy +B_ +4u (2)
+ . + - ™
where A, = 5.75, B, = 5.5, u =u/V,y =yV/vandV

is the shear velocity. The term Aut , which describes the upward shift
of the log protile in the conventional law of the wall representation,

was empirically related to the shear velocity and polymer characterist-
ics by the equations

g
[
"

a log (V'/V.cr) V> V:r (3a)

o 0 = -

Au s V< Vcr (3b)
where vc.r is the shear velocity at the onset of drag reduction and a
is a concentration dependent parameter.

Virk and Merril (1969) correlated measurements of the onset
of drag reduction in "thin" solvents by the semi-empirical relation

(maf‘/?)cr = 2J2Z Q. (R/Rg) (4)

where Rg is the polymer radius of gyration in dilute solutions, 2 a
non-dimensional constant characteristic to the polymer species-
solvent combination, R is the radius of the pipe, Re the Reynolds
number based on the mean velocity and diameter, and f Fanning's
friction coefficient.

integration of u’ over the area of the pipe yields an expres-
sion for the friction coefficient f. At high Reynolds numbers and small
to moderate values of Au+ , the contribution of the sublayer to the
integral of ut* is negligible, yielding for V '>V:r the equation

12 = 12 . LN
1/f anlog (Ret'<) bn + a log (V' Vcr)NZ (5)

Where a, > 4.0 and by >~ 0.4. Plotted on Prandtl coordinates,

f®2 versus Ref', Eq. (5) gives straight lines which intersect the
Newtonian line (a= 0) at (Ref"z)cr » where V* = VJ. This result
has been supported by numerous independent pressure-loss measure-
ments at large Reynoids numbers for small values of Au*. The data
deviates from Eq. (5) at large values of Au*, where Au* seems to
reach a maximum value (Seyer and Metzner 1969, Whittist et al 1968)
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as well as near (Refvz) D where a smooth transition from the
Newtonian curve to the polymer solution. curve is observed,

The effect of the transition region between the viscous sub-
layer and the log region, was first considered by Poreh and Paz(1968)
The velocity in this zone was approximated by the following log law

+ + +, + +
u o=y Inly/y; )ty (6)

+
where y, , the 'thickness' of the viscous sublayer, was assumed to

be proportional to the "thickness" yJ'* in the two-layer model

yl+ = 0.43 yj+ (7)

and the value of vy * was determined by the intersection of Eqs. (1)
and (2). When Au*= 0 and Yj+ = 11,6 Eq. (6) reduces to

+
ut = 5.0 1 y - 3.05 (8)

which had been used by von Karman to describe the buffer zone in
Newtonian flows, The model has been used successfully to relate heat
transfer characteristics to friction losses in dilute polymer solutions.
The effect of the buffer zone on the {riction coefficient was found,
however, to be negligible.

Recently, Virk (1971) proposed a new 3-layer model to de-
scribe the velocity distribution in drag reducing fluids. He termed the
transition between the viscous sublayer and the log region - elastic
sublayer and proposed to describe it by a universal logarithmic law

+ +
u = Am In y + Bm (9)

where Ap ~11.7 and By~ -17.0. The "edge' of the viscous sub-
layer y,* is given by the intersection of Eqs. (1) and (9). The "edge"
of the elastic sublayer, is given by the intersection of Eqs. (9) and

(2). The relation between au*  and the thickness of the elastic layer
is given by

+ Ap +, +
Aut = (A -5%) Iy /vy, ) (10)
+
Thus, when Au becomes small the elastic sublayer deminishes.
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Except for small values of R+(R+= RV®%,) and large values of
Au*, the contributions of both the viscous and elastic layers to the
integral of ut are small (see table 3, Virk (1971) ). In these cases,
the details of the sublayer are insignificant and Virk's model gives
the same friction coefficient as the model of Meyer and Elata. Virk
termed this case - the polymeric regime. (Note that the last term in
Virk's friction factor relation for this regime, Eq.(12) in Virk (1971),
is identical to Aut in Eq. (10).

In the other extreme case where the elastic sublayer be-
comes large and the contribution of the log region to the integral of
u?t is negligible, the friction coefficient is describved by a universal
law obtained by integration of (9),

1/§%2 = 19,0 log (Ref) - 32.4 (11)
Equation (11), termed the maximum drag reduction asymptote, de-

scribes reasonably well the maximuin values of drag reduction ob-
tained in many investigations at small values of R* .

A very similar, but slightly more complicated 3-layer
model, has been offered independently by Tomita (1970).

Virk's analysis of data in the polymeric regime has yielded
an additional contribution. He has correlated semi-empirically the
dependence of the slope of the straight lines in Prandtl's coordinates,
which are described by Eq. (5), to identifiable polymeric parameters.
Defining a fractional slope increment A in Prandtl's coordinate sys-
tem, which is proportional to a in Eq. (2),

A- (sp- s) /s, =a/\/ zsz (12)

Where Sp is the slope with polymers and S, = A = 4.0 is the

Newtonian slope, Virk showed that

a~a/ \/32 = K (S c/M)P n¥? (13)
where A is Avogadro's number 6. 02 x 1023. C concentration as a
weight fraction, M molecular weight, N number of backbone chain
links and K a characteristic constant of the species-solvent com-
bination. The parameter A appears as well in an expression which
Virk derived theoretically for the turbulent strain energy of the ma-
cromolecules.

S
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Virk's correlations describe a large volume of the data in the
polymeric regime and in the maximum drag reduction regime. It
should be noted, however, that the correlations proposed for the two
regimes are not related. The equations proposed for the polymeric
regime are unaffected by the details of the elastic sublayer, whereas
Eqs.(9) and (11) proposed for the maximum drag reduction regime,
are independent of the polymer propertics, Thus, it appears to the
authors that the correlations do not prove the existence of an elastic
sublayer, which is described by a universal law and is fundamentally
different in character from the corresponding layer in a Newtonian
fluid. We shall show that this transitional zone in dilute polymer so-
lutions is similar to the conventional buffer zone in a Newtonian fluid
by deriving the entire velocity profile in the wall region for both cases
using van Driest's mixing length model.

/

ky [1-exp(-y'/a"] (14)

letting A+ be a function of the polymer-solvent properties and the shear.
The model which gives a continuous velocity distribution can be easily
applied to other boundary layer flows and to problems of heat transfer
and diffusion.

e =

A MODEL FOR CALCULATING THE MEAN VELOCITY DISTRIBUTION

T ——

In analogy to the damping of harmonic oscillations near a wall,
van Driest (1958) proposed that the turbulent mixing length near a
witll be described by Eq, (14) where A* = 26 is a dimensionless uni-
versal constant for smooth boundaries and k = 2. 3/4‘\n = 0.4, There
is some doubt whether A; and Bp are truly Reynolds number inde-
pendent. Coles (1954) for instance, suggests that Ay slightly inc-
reases at low Reynolds numbers. Accordingly, the shear stress ina
E turbulent pipe flow. given by 7 = p ( v+ £2|du/dy| ) du/dy, can be
described by the equation

T zl + k2y+2 |du+/dy+ |01 - exp(-y+/A+) ]lidu+/dy+ (15)

+
where 7 = 71 /-rW end 1,=pV 2 . Equation (15) may also be written as 1

+ + 1
d 2 3
- 4 (16) =
dy 1 +\/ 1+ 4x2yt2 - exl)(-)'+/t‘\+)]21+
In order to find the mean velocity profile, van Driest used the constant J
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. . + q :
shear approximation, namely r = Tar ©r 7 =1, Denoting the veloci-
ty obtained in this manner by u, , one can write that

+
2
due. . (17)
dy

LoV eyt 20 - expl(-y /A"))?

Integration of Eq, (17) gives for large values of y+ the log law

u, = k™llIn yt+ B (Eq.2) where the value of B is a function of
A* . Very close to the wall, where exp(-y%/A*) ~ 1, the solution
of Eq.(17) is uf = y¥(Eq.1). A comparison with measurements in
Vewtonian fluids (van Driest 1958) shows that the velocity profile
obtained from Eq.(17) is in good agreement with measurements in
the sublayer, buffer zone and the log region in zero pressure gra-
dient boundary layers and pipe flows. A deviation of the data from
the log law is observed in the outer region of the flows.

We have already seen that the effect of drag reducing addi-
tives is to change the value of B in the log law, It is therefore na-
tural to examine the possibility of describing the velocity distribu-
tion in such “ows by the integral of Eq. (17) with values of A+
larger than 26, We have also seen that the contribution of the velo-
cities in the viscous sublayer and the buffer zone to the calculation
of the friction or drag coefficient in the polymeric regime is small,
Thus the proposed model would be useful only if it can describe the
velocity distribution near and in the maximum drag reduction regime.
Now, the maximum drag reduction regime corresponds to large va-
lues of A* and small values of RY, andonesees fromEq.(17) that its
asymptotic solution for small values of R*/A*is given by u* - y*
Since we do not expect the velocity at any point in the pipe to exceed
the velocity given by the parabolic distribution in a laminar flow,

ut = oyt - yverh, (18)

one has todisqualify this solution,The reason for the failure of this so-
lution is of course theassumption t=r_ which is valid only close to
the wall. We shall show later that although the error introduced by
this assumption in Newtonian flows is small, it is large for small
values of R¥A%. In view of this difficulty, we shall modify van
Driest's solution by taking into account the variation of the shear
stress in the pipe as well as the different character of the flow near
the center of the pipe.

The proposed model for drag reducing flows in pipes assu-
mes that the velocity distribution is composed of two parts
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u = u + u (19)

The first part, describing the law of the wall, is given by the solution
of Eq. (16) with r*= 1 - y¥R* , namely

+
gy, 2(1-y/R) (20)

dy+ 14V 1+ 4x2 y+ 2h - exp(-y+/A+)]2(1 -Y+/R+)

. +, 4+
It is easy to see that the limit of Eq.(20) for small values of R /A
is

+ +
dul+/ ay’ = 1-y'/R? (21)

which describes the parabolic velocity distribution (18). This result
implies that u2+ , which is zero near the wall, has to vanish iden-
tically for small values of R+/A+. In other words, the deviation from
the law of the wall has to decrease as the region where the damping is
effective increases. This condition is satisfied by the following equa-
tion proposed for uz+

w," = L [1- cos(ry'/RT)] [1- exp (-2RVAN]  (22)

where I = 0,67 is a universal constant for pipe flows. The value of
I1 has been determined so that the Newtonian friction factor at

Re = 5.10% would satisfy Eq. (5) with a = 0, a, =4.0 and h,; =0.4.
Note that for large values of R*’/A"’, which is always the case if

A%t = 26, the exponential term in Eq. (22) vanishes and u; becomes
identical to Coles' Wake Function.

Undoubtedly, many other schemes can be used to describe the
deviation of the velocity profile near the center of the pipe from u;*
and its dependence on A", As we shall see later the relative contri-
bution of ué" is very small and thus any consistent model which
complies with the boundary conditions would be satisfactory, The choice
of Coles'Wake Function is justified mainly for convenience in future
applications of the model to boundary layer flows,

DISCUSSION AND COMPARISON WITH EXPERIMENTAL DATA
A clear distinction between the new model and the constant

shear approximation used by van Driest, is the dependence of the
velocity profile on R*. Both u"" and u2+ are functions of R* and
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it is not possible to describe u* as a function of y+ and A' alone.
We have plotted in Fig. | numerically computed distributions of u{” 0
ut and ut for A% =26 and AY = 300% We see that the various
velocity distribution curves for RY = 10.000 are practically the same
at small values of y¥R*. The maximum difference between % and
u1+ is about 5% for A = 26 at the center of the pipe and only half of
it for A* = 300. This indicates of course that the contribution of the
uz"‘ is relatively small. Another interesting observation is that the
differences at this value of R* , between ut and u: can be hardly
noticed, They are better distinguishedin Fig, 2 where velocity defects

ur;ax Suite, u+max“u+ and u+max’ uo+ are plotted. Note that at center

of the pipe dut/dy* = 0 whereas du,*/dy* # o.

We have also shown in Fig, 1 the distribution of u+ for
R = 1000 and R*= 100. We see that the differences between the
velocity profiles for R* = 10,000 and R* = 1000 are small, Prac-
tically the same profile is also obtained in the Newtonian case for
RY = 100; however, the velocity distribution for R* = 100 and
A* = 300 does not coincide any more with the other profiles which
have larger values of R+/A+. The velocity distributions according to
the various models for R* = 100 are plotted separately in Fig,. 3, We
see from this figure that the difference between u% and u(‘," for
A = 300, is large. Note that the velocity u* near the wall merges
with the parabolic equation u* = y*(1 - y¥/2R*) whereas u} is
tangent to the ut = y* curve and goes above the paraboli: profile,
We have also plotted in this figurec Virk's ultimate profile Eq. 9),
Virk's profile is quite close to u? but it also gives at one 1 *wion
slightly larger velocities thanin a laminar pipe flow,

Measured velocity distributions are compared with the calcul-
ated profiles of u* in Figs. 4 - 7. The values of A* were chosen
arbitrarily (The data is taken from Virk (1971), Fig.3, using the same
symbols to denote the various entries.) The agreement with the data
is very good. Ir particular the velocity profiles in the maximum drayp
reduction regime, Figs. 6 and 7, describe the measurements much

better than the velocity profiles proposed by Virk's elastic sublayer
model.,

+
* A computer program for the calculations of u and { is available
on request from the authors,
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FRICTION FACTORS AND RELATION TO POLYMERIC PROPERTIES

The dependence of the friction factor f ¥ on Reff2 asa
function of A% |, has been obtained numerically and plotted in Fig. 8.
One sees that at large values of Ref2 the variation of fV2for constant
values of A% is described by a logarithmic law, The Newtonian case
A%t = 26 coincides wilu the line describing the equation 2= 4,0
log Ref'? -0, 4, Integration of the theoretical limit of Eq. (19) for small
values of R*/A% gives the laminar friction law,

f = 16/ Re (23)

Several data points appearing in Fig. 1 of Virk (1971), near

Ref 2 = 200(R*- 70), are quite close to Eq. (23). However, the avail-
able data at larger values of Ref'2 indicate that the values of A+
obtained so far in dilute polymer solutions are bound by At = 350,

At the polymeric regime, as defined by Virk, an approximate
relation between A* and the polymeric properties can be found using
Virk's correlations, At large values of Ref'R , where the friction
factor curves for different values of A% are described by parallel
lines, Au? is uniquely related to A+, From Fig. 8 it was found that
at this range

st A7 = 40 1og (A+/An+ +4)-28 (24)

At small values of Ref® the relation between Au+ and A+ depends
on the values of Ref2 , however, if Aut(A*%)is measured along
straight lines originating at Ref%2>1000 and having slopes which do
not exceed the slopes recorded in actual measurements, the deviation
from Eq. (24) is less than 5%,

The relation between A+ and the shear stress can now be
obtained from Eq.(3). This equation is composed of two expressions ;
for V¥< V¢ and for V*>V% . It is suggested that a better descrip-
tion of the variation of Au* 1is obtained by the single equation

aut = (@/4) log 1+ (V'/V:r)‘t] . (25)

Equation (25) deviates from Eq. (3a) at V*s ZVC: by less than 3%
and is practically zero for V*< V{ /2. The values of V. according
to Eq. (25) should be determined by the intersection of the straight
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line (3a) with the Newtonian profile, which is exactly the procedure
used by Virk, It follows from Eqs. (24) and (25) that

4 ]a/lboﬁ 4

A /An = 5 [1+ v"/v;r) (26)

where a is related to the polymer properties by Eq. (13).

We have used Eqs. (26) and (12) to calculate the variation
of £°¥2 versus Ref® for solutions of the polymers AP-30 and Guar
Gum. (Estimated values of the critical shear and molecular properties
are given by Whitistt et al (1968) and Virk (1971), table 5). The calcul-
ated curves for the three solutions, and curves for constant values of
A% are compared with the measurements of Whitistt et al (1968) in
Figs. 9 - 12, At - rnall and moderate values of V*/V¢, the agreement
between the data .nd the theoretical calculations (solid lines) seems
to be satisfactory even for small values of Ref¥2 ., The agreement is
not surprising as it merely reflects the adequacy of Virk's correlat-
ions and the slight improvement due to the use of the continuous
equation (25) rather than equations (3a) and (3b). The phenomenon of
maximum drag reduction, however, appears now in a different light,
One sces that when V*/VZ, becomes large, the data deviates from
Eq. (26) and seem to be correlated with curves of constant A*, The
measurements in the concentrated polyox solutions and the smaller
pipe-diameters seem to be bound by the curve A%t = 350, which is
close to Virk's maximum drag reduction asymptote in the range
Ref 2 < 1000, However, the deviation from the lines which are calcul-
ated using Virk's polymeric regime correlations, and the approach to
the maximum value of A* , do not occur only near the maximum drag
reduction asymptote, It appears that for each solution, there exists
a maximum value of A* (or Au?) approximately independent of the pipe
diameter. Only when R*% is small the curves coincide in a limited
region with Virk's maximum drag reduction asymptote (11). This
evidence is not manifested in Virk's model which predicts drag reduc-
tion values of the order of 90% for very large shear rates. Itis also
interesting to note that the measurements of drag reduction with alum-
inium distearate in an organic solvent shown in Fig., 12 (McMillan et
al, 1971) exceed the maximum drag reduction curve and appear to
reach values of A% = 600,

In the absence of a theoretical raodel for drag reduction
mechanism there is no way at present to determine whether the asymp-
totic value of A% is determined by properties of the particular poly-
mers used, experimental limitations, a dependence of drag reduction
on the existence of a minimum level of turbulence necessary to deform
the macromolecules in solution, degradation or other causes.
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CONCLUSIONS

It has been shown that the effect of linear macromolecules in
dilute solutions on the flow in the wall region, can be described by 4
van Driest's mixing length model with a variable damping parameter )
A*t. If the Reynolds number of the flow R* is large, the constant ;
[ shear approximation used by van Driest can be used. When Rt/A*t is i
E not large, it is necessary to take into consideration the variation of ‘,.1
the shear stress with the distance from the wall, The velocity distri- E
3 bution in the outer region is modified in this case using Coles' Wake ;
] Function multiplied by a factor. The factor decreases as the damping
i action of the molecules increases. Although the model does not ex-
4 plain the damping mechanism it suggests a similarity between flows k
with and without polymers, which is not present in the elastic sublayer
model. The model does not explain the nature of the maximum drag
reduction asymptote either, however, it is pointed out that the maximum
drag reduction curves for a given polymer might be associated with a

S RS A e G b e ook dei kst e it gl e

maximum value of the damping parameter At
!
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DISCUSSION

Thomas T. Huang
Naval Ship Research and Development Center
Bethesda, Maryland, U.S.A.

The authors are to be congratulated on providing 2 most
detailed velocity-profile model for the turbulent flows with drag re-
duction, However, the empirical fundamental equations (equations
(3) and (4) are applicable to poor drag reducers, for example guar
gum, at certain concentration and shear ranges. It would be more
appropriate to put down the limitations of these equations and to indi-
cate that the results derived here are valid only within these limita-
tions, I have three other comments of a minor nature.

The maximum drag reduction 2symptote stated in equation
(3) and used to compare with the experimental result is not in good
agreement with our experimentation. The Virk first formula agrees
better with our data and if you use the Virk first formula (JFM 1967)
there is very little difference between the Virk model and the present
model, i, e. within the accuracy of experiments.

Second, the optimal concentration to reach the maximum drag
reduction is found by us to be a function of shear stress and thickness
of boundary layer divided by kinematic viscosity. The effect of the
scale dues play an important role in this respect. Once drag reduc-
tion reaches this maximum value the results arrived at here are no
longer valid. This limitation is suggested to be stated in the paper.

The present model does not offer any advantage for predic-
ting drag reduction, Nevertheless, it may be more suitable for dif-
fusion and heat transfer prediction, as authors stated. In this appli-
cation, more definite experimental results would serve the field more
than empirical calculation based on bold a ssumptions,

1324

e

o e e

T

T S




Flows with Drag Reduction (Veloeity and Friction)

DISCUSSION

Jaroslav J. Voitkounsky
Shipbuilding Institute
Leningrad U.S.5.R.

The problem being discussed is of great interest, of course,
but it is very difficult for us. It is important to describe the pheno-
mena in the turbulent flow and in my opinion it is especially useful to
try to apply for it Prandtl's ideas about the ""Mischungsweg" (mixing
lengths). Such a method was used by the author and some years ago it
was used in the Soviet Union too. In particular the van Driest idea
about the construction of formulae for the mixing length was used. I
think it is a very useful method and the results obtained by the authors
are also very interesting.

I should be grateful if the author who presented the paper
could answer one question, What, in his opinion, is the prospect of
applying that method to the case of the rough surfaces because from
the application point of view it is a very interesting problem. Some
years ago in England these natural experimerts were carried out with
a natural ship and it is clear that the roughness of the surface of that
ship was of a high degree, and it would be very interesting to apply
this theory to a description of that phenomena.

DISCUSSION

Edmund V. Telfer
R.I.N.A.
Ewell, Surrey, U.K.

This is quite a fascinating paper and whilst it has many di-
verse applications I would like to ask the author for his opinion on
only one point. We have all been attracted by the possibilities of drag
reduction, but I would like to suggest that there are also immense ad-
vantages to be got by going in the opposite direction so far as ship
model experiments are concerned. When one considers the terrific
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wealth which has been wasted in all the experiment tanks in the world
by the intrusion of laminar flow affecting the accuracy of their results,
3 I wonder whether the question of doping the tank water with something
which will have entirely the opposite effect from that of the drag re-
ducing polymers should be considered. In other words, is there a

dope which could go into the tank water which would make the occu-
rence of drag reduction or laminar flow quite impossible ? If that
could be found, a lot of the quite arbitrary and, to many people, unac-
F ceptable devices currently in use to eliminate turbulent flow would be

1 avoided. I offer this thought sincerely to the author of this paper, and

would like to congratulate him on the way the paper was delivered and
on its content.

e

o

REPLY TO DISCUSSION :

Michael Poreh 1
Jeermion Israel Institute of Technology ;
Haifa, Tsrael 1

The concern of Pr. Telfer is well undcrstood, The presence t
of drag reducing agents in the towing tanks is favorable from the mo-
d- ling point of view. Dr, J. Hoyt has published an excellent review
paper in the Journal of Basic Engineering (June 1972) in which he dis-
cussed this problem, The uncertainty of the data which has been ac-
cumulated in the past is due to the fact that the drag reduction was 4
not controlled or recorded. Pr. Telfer suggests, if I have understood 3
correctly, to eliminate the effect altogether. I believe that this can be b
done by adding chemicals which will inhibit the growth of algae and ;
drag reducing bacteria as well as creating unfavurable conditions for §
the stretching of the molecules. However, the more difficult task of
maintaining a controled standard level of drag reduction in towing
tanks seems more attractive as it enables one to improve the simi-
larity in modeling ship motion,

xS ek AR

The interest of Pr, Voitkounsky in the effect of roughness is
natural.l have published a paper in the Journal of Hydronautics’in 3
which I proposed an approximate model for describing this effect. The .
work in the Soviet Union in this area is not known to me and I'll appre-

ciate if Pr. Voitkounsky will help me in receiving the papers he has
mentioned,

* (Jour. of Hydronautics, 4,4,0Oct. 1970)
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As to the remarks of Dr. Huang I would like to stress that
the model proposed is not based on Virk's data, In particular it is
not based on Virk's maximum drag reduction curves. The opposite,
our model suggests that one should not look for a universal maximum
drag reduction curve, Equations (3) and (4) are not the starting point
of the analysis and have only been used to obtain the correlation bet-
ween A%t and the polymer properties at the end of the paper. If
Dr. Huang feels that better correlations exist he can use them in-
stead, and the only equation that will have to be modified is Equation
26. Thus his conclusions as to the validity of the model are not ac-
cepted,
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OCEAN WAVE SPECTRA
AND SHIP APPLICATIONS

S s

o i

Ming-Shun Chang
Naval Ship Research and Development (enter E
Bethesda, Maryland, U.S.A. 4

ABSTRACT

This paper presents the results of two studies : one
dealing with the analytical representation of unidi-
rectional wave spectra, and the other dealing with
experimental determination of directional wave spec-
tra,

(1) A two-parameter wave-spectrum formulation
for determining the seakeeping qualities of ships was
evaluated by application to hindcast data for the
North Atlantic Ocean, Computations indicate thatthe
two-parameter representationdoes not properly dis-
tribute wave energy over the full range of wave fre-
quencies,

(2) An experiment was conductedinalarge seakeep-
ing basintoassess techniques for determining lirec- i
tional wave spectra from wave elevation measure-
ments obtained with sonic probe arrays. The mea-
surements were found to be sufficiently accurate for
analysis of the wave directions, when the direction-
al spectra are approximated by a ninth-order Fourier :
series.

e

INTRODUCTION

In order to describe the properties of ocean waves, one consi-
ders the seaway as a random process having a spectral representa-
tion, The spectrum of ocean waves is two-dimensional, and thus it is
a function of both wave frequency and wave direction, It is difficult to
obtain a directional wave spectrum, and in many applications the

Preceding page blank
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spectrum is considered to be a function of wave frequency only
with its direction arbitrarily specified. A commonly used represen-
tation of ocein waves is the Pierson-Moskowitz spectrum '), This
spectrum is a special case of a form suggested earlier by Bretschnei-
der r » The International Towing Tank Conference (ITTC) in 1969
[3]recommended a two-paramater idealized spectrum of the
Bretschneider form whenever statistical information on the charac-
teristic wave period and height was available and recommended the
Pierson-Moskowitz spectrum whenever such information was not
available. Because of the lack of confidence in wave period and height
data, the Pierson-Moskowitz spectrum has been widely employed as
the basis for evaluating ship performance in a seaway and in the de-
sign of marine structures,

For the study of long-term ship performance, Cummins [{']
suggested the use of the two-parameter idealized spectrum of the
Bretschneider form, This spectrum recommended by the ITTC has
been recently applied to North Atlantic hindcast wave data 5]. and
the results obtained were considered to be less than completely satis-
factory., These results showed that in the idcalized spectra the wave
energy was not properly distributed with respect to frequency, This
could result in serious errors in the prediction of ship motions. The
same conclusion is substantiated by more recent measurements of
ocean wave spectra 2 .

In modern ocean engineering, the need for knowledge of di-
rectional wave spectra is especially important, Several techniques
have been developed to determine the wave directions in the ocean.
Examples are the stereo-photographic method developed at New York
University [7]. the floating buoy method developed hy Longuet -
Higgins at the National Institute of Oceanography 8] and the array
method suggested by Barber and Pierson gf Despite these efforts
only a few measured 7] IS ,ﬁO] directional-wave spectra for the ocean
are available. Moreover, the accuracies of the measurements are
not known,

In an attempt to better assess the problem of determining di-
rectional wave spectra, it was decided to measure and analyse wave
data under controlled conditions., An experiment was conducted in the
Naval Ship Research and Development Center's seakeeping basin to
study the angular resolution associated with measured wave spectra,

* References are listed on page 1347
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The water surface elevation was measured by an array of sonic probes

and the directions of the waves were then estimated from those mea- ]
surements., The resultis indicate that the measurements obtained by E
the probes are indeed suitable for analyzing directional spectra. 1
However, the technique used in estimating the cross spectra between 4
different probes was not sufficiently accurate for determining the :
wave directions in the case where a regular wave train and an irre-
gular wave train are propagating at 90 degrees to each other.

This paper reports on the experimentally determined direc-
tional wave spectra and a study of the application of the two-parameter
wave spectrum model.

N

UNIDIRECTIONAL WAVE SPECTRA

One is aware of the variety of the ocean spectra, yet one must
establish some order in this chaos for practical application, For es-
timating the seakeeping qualities of ships, Cummins (%) proposed a
technique which makes use of a two-parameter wave spectruin of the
general Bretschneider form, This two-parameter spectral formu-
lation was studied by applying it to North Atlantic hindca st wave data

[5]. The analysis procedure and results are given below,

Let x(t; T, H'l[) ) be the response of a ship in a seaway
which has average wave period T; and significant wave height H‘/:‘ i
where t is time, If x is linear, its variance X(T1 'H1/3 ) is given
by

[\ -4
X(TI'HI/B) = E [xz(t; TI'H1/3)] = / Hxp(w) Sp(w;Tl,Hl/3) dw
0 (1.1)

e Briamad e e i e i e el Lo el R et o i e

where E[a] represents the average value of a, Sp(w) is the wave

spectrum, pr is the frequency response function of the ship and w 1
is the wave frequency. By the use of the wave spectrum form recom- >
mended by ITTCL), thatis

" 2

1 173 H

] 1 1/3
3 Sp(w) = Sp(w) a5 5/

le

-4
e-69l(le) (1.2)

where Slp(w) is the idealized two-parameter spectrum, The statis-
tics of the response X(T, »Hyjs ) are completely determined by the
statistics of T, and H1/3 if Hy, is a deterministic function. The
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long-term variance of response is

E[X(T).H )] = ff X(T\,H) ) p(T H, ) dT | dH . (1.3)
0 "o

where p(T, H‘b ) is the joint probability density function of T, and
H
3

Substituting equations (1.1) and (1.2) into (l.3), one has

o0
E[X(T],Hl/”] =[ Hxp(w) S3(w) dw (1.4)
0
where
S,(w) = / /S,I;(w;Tl.Hl/3)p(Tl.}11/3)dTldHl/3
(] 0 (1.5)

S;; is the averaged idealized spectrum by definition,

It is seen from cquation (1.4) that the long-term averaged
variance of the response X(T,, Hyq ) is the integral with respect to
frequency of the product of the frcquency response function and the
averaged idealized spectrum, Sp*. The averaged idealized
spectrum of the environment determines the long-term averaged
variance of the response for a given frequency response function of a
ship. In addition to the convenience in calculating the averaged long-
term ship responses, the two-parameter spectrum approach provides
a rapid method for estimation of the probability of short term average
ship response and its higher moments, If a probability diagram of
T, and H'h is constructed such that

N
n

P(T < a)
1

and

P(H

<
1}

1/3 < b;Tl)

where z and y are the two coordinates of the diagram and the P's
are the probability functions, then from (1.1) the probability distri-
bution of short-term ship response, P(X € a), is given by
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' P(X €a) f
. 0
0

1 g(Tl(z). Hl/3(z' Y))

=/ / dy dz
0 0

g(Tl'Hl/3) =a

P(T H) 3) dH, /5 dT,

8
o'\u

(T H) ) =2

p(H1/3;TI) p(T,) dHl/3 dT |

O\m

where

| BT 0, ) - /'"prw) Sp'(wiT ) H, 1) do
] 0

P(X < a) is simply enclosed by the two coordinate axes and the curve
of

= 1
g(Tl'Hl/3) =/ Hxplw) Sp (w;Tl,H‘/3)dw=a
0

The use of this diagram will be illustrated below,

G e e £ et s e i i SO

North Atlantic hindcast wave data which contains spectra hind-
{ cast at 519 points in the North Atlantic every six hours for a period
3 of one year, was selected to study the two-parameter spectral model,
: Spectra at 16 grid points were selected for this study. A total of

16 x 365 x 4 = 23,360 spectra were analyzed. T, and Hy, were
calculated for each spectrum by the use of the following formulas,
which have been proposed by the ITTC[

R SRRy LRI
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o0
/—:,—S(w) dw
T = 24,17 JO (1. 6)

1 26. 84 o
/ S(w)dw
0

T

Hyp s 4\/ /S(w)dw (147)

0

The statistics of T, and H1[J » p(Ty ,H,/y ), are then constructed
from these calculated values with equal weights. The averaged idea-
3 lized spectrum was calculated from equations (1.5), (1.2), and

f P(T1 AH\IJ )0 k.

R ——

The resulting averaged idealized spectrum was compared
with the averaged hindcast spectrum Sp(w) of those 23,360 spec-
tra ; that is

23,360

Z Sp;(e)

1 =1

.F..,..,(_n_...g
wn
>
o~
€
-
[}
o~
(V8
Wl
o
=)

where SPi(“’) arc the hindcast spectra. As seen in Figure 1, the
comparisons do not agree very well. In comparison to the averaged
hindcast spectrum, the idealized spectrum does rot contain enough
energy over both the high frequency and very low frequency range,
and is high for the middle frequency band. Figure 2 shows the pro-
bability diagram constructed from the statistics of T, and Hy; of
the hindcast wave data. For illustration purposes, Figures 3 and 4

1 show the corresponding purely imaginary family of responses which
4 result from assuming that

1
3
1
[
i

i _C .2 W2 g
s g(TI’Hl/B) * Too Hl/3(T1/Tl) exp(-ZTl/Tl)

where C and T,' are constants. The curves of response for a =0.1C
and 0.4C are shown in the figures. With T\ = 10 sec the probabili-
ty that the response would exceed 0.4C and 0.1C was estimated as
1 percent and 17 percent, respectively, by measuring the areas. The
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probabilitics were higher for the case of T, = 15 sec. These were
~ 1.5 percent and ~ 2] percent for a = 0.4C and 0, IC, respecti-
vely.

Recently, Webb Institute analyzed a group of wave records
measured at weather station I [6] Preliminary unpublished results
from these newly analyzed data indicate that the idealized two-para-
meter spectral form does not agrece well with the measured spectra.

Figure 5 illustrates how the wave energy is improperly dis-
tributed over the frequencies in the idealized spectrum when it is
compared against the measured wave spectrum, The solid curve in
the figure is the average measured spectrum calculated from some of
the recently analyzed spectraf . The other curves are the corres-
ponding average idealized spectra calculated from three different de-
finitions of T, as follows

er/ Sp(w) dw
0

T, = — =T,(1) ,
wSy (w) dw
0
(V-]
er ——I—Sp(w)dw
o “ 24,171
Ty s X S6.847 - T-Y) :
-
/5p(w)d ]
0
{
oo i
ﬁsp(w)dw 1172 o |
) 24,171
I ; J 22.248 = 1@
/ w Sp(w)dw
0

For an idealized spectrum, T, (1), T(-1), and T, (2) are the same
by their definition, However, for a measured ocean spectrum the va-
rious T,'s can be different. The differences reflect the departure of
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a measured spectrum from an idealized spectrum, By use of the dif-
ferent definitions of T, one will thus obtain the different correspo[gﬂ-
ing idealized spectra. The use of T, (1) is recommended by ITTCUJ.

Figure 5 indicates that all of the idealized spectra under-
estimate the wave energy for the high and low frequency band by a
factor of 1/2 and overpredict the wave energy for the middle fre-
quency band. The use of different definitions of T, has not altered
the result significantly , calculation base on T(-1) is slightly better
than that of the others, but is not significantly better. The probabi-
lity diagram was not constructed for measured spectra because of
the small number of the samples,

These differences in the energy distribution of the idealized
spectra and that of the measured spectra are consistent with the dif-
ferences found between the energy distribution of the idealized spec-
tra and the average hindcast spectrum shown in Figure 1. In both
cases the energy in the high and low frequency bands is underestimat-
ed by the idealized spectra, and in the middle frequency range it is
overestimated. This leads one to suspect the usefulness of the two-
parameter spectrum for approximating tl _ ocean environment, es-
pecially in studying the motions of platforms and buoys.

In spite of the bias described above, the parameterized spec-
trum apprcach has simplified the prodedured in calculating the sta-
tistical properties of the ship responses. The probability diagram
representation is a good tool to engineers, if the idealized spectrum
form is improved and the statistical bias is tolerable.

DIRECTIONAL WAVE SPECTRA

The motion of a ship in a seaway depends not only on the fre-
quencies of the waves, but also on the directions of the component
waves, The unidirectional spectrum discussed previously has little
use when the ocean waves do not propagate in a dominant direction.
Unlike the unidirectional wave spectrum, a directional wave spectrum
can not be obtained from a continuous record of wave elevation at a
single location on the sea surface, It requires knowledge of wave
elevations over an area of the sea, Due to this requirement
few measured directional ocean wave spectra are available fﬂﬁ]fm] .

The rapid growth of techniques for seakeeping analysis re-
quires a more accurate description of a ship's environment. In order
to make meaningful comparisons between the analytic results, basin
experiments, and full scale trials one has to establish the capability
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of measuring the directions of the ocean waves and generating direc-
tional waves in a seakeeping basin, In this section the result of pre-

| liminary work on basin-generated directional wave spectra is pre-
4 sented,

The elevation of the sea surface n is considered to be a
stationary and homogeneous random process in time t and space

X, respectively. In the linear theory the spectral representation of
n is given by

(67 - Re/[ JR X cat) oy 2.1)
-2

where ')‘E(x,l ,xz) is the position vector, with x, and x_ the two sur-

face coordinates ; k = (k cos@, k sin ) = (k k,) is the wave number
vector, with k = (k12 + k22 W2 and 6 = tPn 2 k,/k,

the wave num-

T,

ber and wave direction, respectively ; k, aud k, are respectively !

the wave-number components in the Xy and X5 d1rect1ons ; and 1
: d( K ) is the random vanable. Accordmg to/hnear theory the wave 3
f frequency, w , is given by w? g(k +k; 212 deep water, J
ﬁ In applications, one assumes that dE(?) satisfies the fol- .
1 lowing expected value condition 1
1
S(k)dk if k=% ;
! 1 - 3
4 —E [a8(R) dE(®) ] - (2.2) j

. 0 if kAR

1 where a bar denotes the complex conjugate,

In the above expression S( X ) is the directional wave spec- 1
trum. S(K)dKk can be interpreted as the mean-square value of 7
arising from wave elements which lie in the infinitesimal range of
wave number components (k k, + dk } and (k_, k, + dk, ). Knowing
the directional wave spectrum, 5( 4 ) , of the sea determmes the
composition of waves in all dircctions,

In applications it is usually necessary to parameterize S( R ).
A general representation of S(K ) is given by its Founer series,
By decomposing the directional wave spectrum §( K w o) ata given
frequency w, intoa Fourier series with respect to d1rect1on 8, 1
Longuet-Higgins 8] was able to relate the Fuurier coefficients to the
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cross spectra of the surface elevation and its space derivatives, The
floating buoy built at the National[lnstitute of Oceanography was de-
signed for this approach, Barber 8] related the Fourier coefficients
to the cross spectra of the surface elevations measured at several
points in space. However, in the latter case the relations become
more complicated and the lower order harmonic coefficients can not
be determined without assumptions regarding the higher order har-
monic coefficients,

From the Fourier representation of §(i;wo) witr espect
to the wave-number component k1 , Barber and Pierson 9j have
shown that §( ®; “’o) can be anproximated directly from an array of
probes which lies in a direction parallel to the x, coordinate. The
Fourier coefficients obtained from this approach have a one-to-one
correspondence with the cross spectra of measurements having space
separations of ¥ = (nD,0), n=1,2, ... N; where T is the separa-
tion vector and D is the fundamental separation of the probes. Thus,
from an array of probes which has separations D, 2D, ... ND, one
is able to approximate the directional spectrum up to the Nth har.
monic. The derivation of this is given below,

By multiplying equation (2,1) by the corresponding equation
for 1(t+ s, #+7¥) and taking the expected value, one has

B B ale+n3 4] =4 [fff 8 FennilR Gt n)]

(2.3)
- =D _ 7 i(w‘r-—l’t._l!)— -
. E[Qg(R)daE (v - e S(%)dk

where r is the time lag, Since the wave field is assumed stationar
as well as homogeneous, the correlation function E E) (t,R) n(t+ f,':?ﬁ‘xﬂ
in the above equation is a function of * and 71 only ; it is independent
of t and ¥X. If the correlation function is denoted by R(7,®), equa-
tion (2.3) can be written as

At - // Jilor = D3(F) &

(2. 4)
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(2. 4)

b
(]
s
=
{
>
=
o,
~
(4]
[
€
-
[+ 9
€
i i

where S(k,;w)dk1 dw=S(K)dk. The dependence of § on k, and
k, is replaced here by dependence on k, and w , making use of the
dispersion relation between k . andw Equation (2.4) relates
the directional wave spectrum S (E’) to the correlation function
R(7,?). In the above equation
wZ/
50,

S(kl;w) e " T dk is the

)
“"/g

Fourier transform of R(r, ) with respect to r and is called the
cross spectrum, which is denoted by Co(w) - iQ(w) . Thus,

R(r,?) = / [Co(wi?) - iQ(ui?)] ¢“" du (2. 5)

where

1
2
-w /g (2. 6)

# = /g = -
i ’ -ik . r _ - o
| / S\kl;w) e dk, = Co(wi?) - iQ(wi?)

Thus, if one represents the directional wave spectrum S(k, ,w) ina
Fourier series with respect to k1 D, where D satisfies -w2D g7
one can obtain the Fourier coefficients directly from equatfon (2. 6)
by their definitions, That is

w |
S(kl,w) = A0+ E : (An cos nle+Bn sin nle) (2.7)
n=1

where
] A =2 Co(w = (0,0))
- O 2 r 1 ’
(2. 8)
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A =—D"Co(w;?= (nD, 0) ) n=12, ...

% Q (w;? = (nD,0)) (2. 8)

By arranging the probes to measure wave elevations such that ono
can calculate the Co's and Q's upto ¥ = (ND, 0) , the coefficients
Ag: Al By, ... Ay, By can be readily obtained from (2.8) . The
relations in equation (2.8) are simple and they form the basis for
the experiments described below,

The accuracy of the approximation of equation (2.7) is de-
pendent on both the order N and the non-dimensional parameter
w’D/y . For given N and D the angular resolution, 6 _, is defined
as g = sin ! (——L/-) . Physically this is a measure of the width of
the angle overN\Bxff:hga narrow band wave-spectrum is spread. ¢

r
increases with decreasing w ; that is the angular resolution increases
with increasing wave length. On the other hand if N and w are given,
then ¢, increases with decreasing probe separation, D. For a spe-
cific experimental setup, D can be adjusted for optimum results,

As an example consider a narrow band directional wave spec-
trum which satisfies

k.+ Ak
i 1

"
k2l
E
-
Pty
5
1]
o
B
2

S(k sw)dk,

ki- Akl

L]
(=]

Otherwise

where C(w) is an arbitrary function of frequency w and 24k, is
the band width of the wave number k, . The directional spectrum can

then be represented by a delta function, 4 , and its Fourier represen-
tation is given by

S(k ;@) = C(w) Dé(k D -k D)

(-]
SS@nf Y :
e [7 + cos n(kl-ko)D (2.10)
n-=1
where n=1,2, ... The Nth order approximation gives
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N
?{ + Z cos n(k, -k ) D] (2.11)

n-=1

w
_7“
;{
1
S
E
-

At k, =k, the approximation S(k,;w) has its maximum value of
C{w)D ,1 " C(w)D, i,
== (T + N). At k1 - ko = ND ©one has S(kl;w)'z = (-E)
It is a factor of -1/(1+2N) smaller than the maximum value. The
approximation of equation (2.8) to the narrow band directional spec-
trum, equation (2.9) of kg = 0, is shown in Figure 6. From this
figure, one sees how a narrow-band directional wave-spectrum is
directionally spread out as a function of-“’--z- D in this approach, The
loss of accuracy, i.e., increase of spreading, with decreasing-%=D,
which has been discussed previously, is clearly shewn in the g
figure,

5
EXPERIMENT i

The basic approach described in the previous section was ap-
pli ed to the measurement of the directional spectrum of waves gene-
rated in NSRDC's seakeeping basin., Wave mecasurements were
taken with sonic probes, using three separate array configurations,
which are shown in Figure 7. For the linear arrzys, the fundamental
distance between the probes was 2.5 feet and the total array length ]
was 32.5 feet. This arrangement enables one to approximate the
Fourier series of the directional wave spectrum up tg the ninth har-
monic, This configuration was suggested hy Piex‘sonfﬂﬁ . The
reason this arrangement was used rather than the optimum array sug-
gested by Barberf'z],[”] is that in Barber's configuration the total ;5
array length would have been only 22.5 feet ; a greater length was
preferred. The linear array was arranged in two orientations
relative to the wave generators. In the first case the array was
mounted parallel to the West bank of the basin and at a distance of
100 feet from the bank, as shown in Figure 3. In the second case the ]
same array was rotated 45 degrees clock-wise to the North, The
third array consisted of a pentagon arrangement, and employed six ,
probes : one in the center and five outside forming an equilateral pen- 3
tagon, The sides were designed to be 10 feet long. The orientation
is shown in Figure 3.

I N

Ci i

it 2 et

The seakeeping basin has wave generators along both the West

and North banks and the wave generators on the two banks are operated ql
independently., During the study three kinds of directional wave fields i
were generated, These were : wave coming from West bank, waves '
{
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coming from the North bank and waves coming simultaneously from
both banks. Both regular and irregular waves were generated. The
periods of the regular waves were 1.6, 2,0, 2.5, and 3,0 seconds,
These wave periods correspond to waves with angular resolution of
less than 10 degrees up to 90 degrees, The irregular waves were
generated irom available random seaway tapes. These wave trains
had average wave periods ranging from 1.6 to 3,0 seconds,

Sonic probes operating at a frequency of 200 KH were mount-
ed approximately 20 inches above the still water surface. These
devices can measure the instantaneous water surface elevations with
grecat accuracy. From the digitized records, cross spectra were
calculated for all irregular waves. Wave amplitudes and wave phases
were calculated for the regular waves by means of Fourier trans-
forms, The directional wave spectra were then obtained by the use of
Equation (2. 8).

Some resulting directional wave spectra measured from the
linear array are shown in Figures 8 through 16. Figures 8 through
1l are for regular waves and Figures 12 through 16 are for irregular
waves, The curves for regular waves represent the directional spec-
tra obtained under several different conditions such as different
wave-maker dome air pressures, which are indicated in terms of
blower rpm , different directions, which are designated by N or
W for waves generated at the North and West banks, respectively,
and different wave combinations, The coordinates of the figures are
the normalized wave vector components in the direction parallel to
the array, and the normalized spectrum density

S(kl;w)

s’(kl;w) =S—A(“’—)—

where SA(w) is the average of the one-dimensional spectrum den-
sities obtained by the five probes. Since S(k,;w) is approximated by
a ninth order Fourier series, the normalized spectrum density
S*(k,;w) should be less than 9.5 as previously discussed. The theo-
retical maximum value of S§%(k,;w) depends on the wave conditions.
If a wave of a given frequency were generated at only one bank,
S*(ky;w) should have a maximum value of 9.5 in the direction in
which it was generated., For other directions, it will be less than

9.5 ., The actual value depends on the combination of the wave am-
plitudes gencrated at the two banks. The regular wave results as
shown in the {igures agree with this theoretical value very well regard-
less of the wave frequencies, wave amplitudes and the presence of
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{ waves coming from other directions. Figure 11 shows how the an-
gular resolutions varied with the frequencies of the waves, As dis- A
4 cussed previously, the angular resolution increases with increasing J
wave period and the theoretical value of S*(k,,w) is -0.5 atdi-
rection 0., (k, -kg) = ﬁ’ﬁ ; The measured angular resolution agrees
fairly well with the theoretical value, However, away from the peaks,
S*(ky;w) oscillated with a much higher value than one would expect,
especially for the wave periods of 2.5 and 3 seconds, The irregu-
‘ lar wave results do not agree as well with the tehoretical value,.

F Figure 12 shows the resulting directional wave spectra of irregular
wave trains generated at the North bank. It indicates that the waves

d were all coming from the North bank and the peak values of the spec-
F tra are between 6.5 and 8. In comparison with the regular wave

- mea surements of Figure 7, the peak value is decreased. However, as
; the tail value also decreases, one concludes that the mixture of the

, frequencies in the same direction does not affect the angular spread- 4
3 ing significantly.

ko ek el

Figure 13 shows the measured directional spectra under a ,
different wave condition, From it is concluded that there were long {
waves of period 2.5 to 3 seconds coming from the West and short
waves of period 1,6 seconds propagating to the South. The direc-
tional distribution of the 2.0 second period wave is meaningless,
However, the actual wave field was different from the one pictured
above. An irregular wave train was generated at the North bank and
a regular wave of period 2.5 seconds was generated at the West
bank, The loss of accuracies of the wave directions for the waves
with wave frequencies near that of the regular wave is clear. Figure
: 14 illustrates the same phenomena. For this case the period of the
3 regular wave was 2.0 seconds and the amplitude was smaller in [
comparison with the previous case. The loss of information on the
wave directions in this case was not as serious as in the previous
case, The presence of the 2,0 second period wave reduced the peak
value of the 2.4 second period wave but increased that of the 1.6
second period wave. Figure 15 shows the measured directional wave
spectra for the case of two low-amplitude irregular wave trains pro-
1 pagating at 90 degrees to each other. The directiona!l distribution of
1 the wa"e is reasonable.

WORTR R e

By examining the calculated cross-specira we found that the
method used in estimating the cross spectrum was responsible for
the errors which appear in Figures 13 and 14. Special care is neces-
sary when analyzing the directional wave ficlds in these cases. By the
use of a narrower frequency band-width, the result was improved ; it
is shown in Figure 16,
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The directional spectra obtained from the pentagonal arrange-
ment were not good and are not shown here. The measured phase lags
between the probes had the same accuracies as those obtained by the
linear array., However, as previously mentioned, the relations bet-
ween the Fourier coefficients and cross spectra are more complicat-
ed and thus, the results were not as good as those obtained from the
linear array method.

DISCUSSION

The result of the study on the idealized unidirectional spec-
trum indicates the necd for improvements in recommended spectral
forms in order to obtain a better prediction of long term ship motions.
The two-parameter spectral form underestimates the wave energy for
both high and low frequencies and overestimates the wave energy over
the wave frequency range of 0.1 cycle/sec. to 0.14 cycle/sec.
This has been illustrated in Figures 1 and 5,

T

For applications, one has not only to be aware of this limita-
tion associated with the idealized spectrum but also the varieties of
ocean wave spectra. For a hetter representation of the ocean environ-
ment, one needs to know not only the averaged wave period and wave
height but also other parameters, With more measured spectra a
data bank of wave spectra can be established on a digital computer
and stored on tapes for direct access, Such a data bank would even-
tually make idealized spectra obsolete. It would certainly be more ac-
curate than the idealized spectra and would contain samples of all of
the various ocean wave spectra.

The experiment on the directional waves suggests that the ac-
curacy of a measured directional spectrum depends more on the di-
1 rectional compositions of a wave field than on frequency compositions
' of the waves., This is demonstrated in Figures 11, 12 and 13, In order
to accurately measure the spectrum of a swell and wind waves combin- 1
ed sea, one has to usc a technique which can estimate a sharp peaked 3
cross-spectrum accurately, such as the narrow band process or the
time shift process|'¢ . However, it will require much longer re-
cords of surface elevation,

The linear array is a better probe arrangement than a penta- b
gon arrangement for the wave fields generated for this paper, How- 4
1 ever, a linear array does not allow one to separate the waves propa- j
gating in the direction left of the array from those of the right. Two
linear arrays may be neceded for the measuring of an actual wave field 3
in which waves propagate in an angle of more than 90 degrees .
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] The angular resolution illustrated previously can be improved
3 if one applies a weighting function to the Fourier coefficients, The
choice of the weighting functiot-n depends on one's taste, a< has been
discussed by Longuet-Higgins

e s

The separation D was 2.5 feet in the present experiment,
This separation can be adjusted to improve the long-wave angular
§ resolution, The choice of the D depends on the wave frequency range
lé’ in which one is interested, If one is only interested in the long waves
then one can chose a suitably large D such that—%~-D < r for all
frequencies in which one is interested. But in this case, the total
array length will certainly be increased, and the increase in the array
length can complicate the operations of the detectors. This has to be 3
considered in the choice of an optimum D ., By moving the probes
opposite to the direction of the waves, one can also improve the an-
gular resolution significa.ntly[’1 . It is applicable in an open sea
where the waves are considerably homogenious over a large area, It
may not be suitable for a model basin unless the basin is large and
the waves are very homogenious with respect to space.

Sl

The length of the wave records used for the above irregular
wave calculations are approximately one minute long., The accuracy
might have been improved if longer wave records had been used,

o d g B G-
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DISCUSSION

William E. Cummins
Naval Ship Research and Development Center
Bethesda, Maryland, U.S.A.

As originally scheduled, I was to be a co-author of this Paper
and I shorld to offer a word of explanation, Because of high pressures
in the Navy Department it was not possible for me to contribute to
this to the extent that would justify my name being on the cover. All
the work and most of the good ideas are Dr. Chang's. I will not dis-
sociate myself from any bad ideas, although I do not admit that there
are any in the Paper. Fortunately Dr. Chang was able to do an ex-
cellent job without me. She has started work in a very difficult field
which we nave all neglected, and which we must not neglect much
longer.

I shall say a few words about the first part of her paper on the
problem of standard spectra, which is something we have been fight-
ing over in the ITTC now for some six years. I expect there will be
a good deal of concern with it next month in Germany as well,

The more we learn the more we realise that we are in trouble.
We are using sea spectra in the United States Navy and we find
that we do not know enough to use them well, I would like to offer a
word of explanation on some of the troubles that Dr. Thang showed
where there were discrepancies at the two ends of the ""average"
spectrum, The average which was based on the fully developed spec-
trum tended to underestimate the ends, and in the middle it tended to
overestimate. . remember Bill Pierson warning us many times that
when he and Neumann and Moskovitz and the others who worked on
the fully developed spectrum, they based their theories on only 15
percent of the measured spectra available to them, 85 percent could
not be considered fully developed. So the naval architects who have
been using them, against this advice of the oceanographers, have
been concentrating on something that occurs about one time out of
seven.

If you have been to sea and looked with your eyes open you
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will realise that almost invariably what you see is a local wind sea
with a swellunderneath, The wind sea tends to be of relatively short
wave length. The swell comes from some distant storm ; it has been
through the filtering effect of distance, so itis a narrow band. Even
when you cannot see it with your eye the ship usually does see it. The
local wind sea is usually doing one of two things : it is either growing
or falling. So what you have is really a dumb-bell spectrum, You have
a swell here from somewhere else and a wind sea developed locally.
These are not taken account of in the fully developed spectra on which
we have been basing much of our worlk, yet they are very important
for the naval architect ; we cannot ignore them.

I was on a ship just two months ago. It was not a normal ship
but nevertheless it is an interesting case. The average wave height
on one day was about four feet. There was a swell about 300 feet
long for our 250 foot ship. We here heading into it. It was a quiet
day. The surface even glassy. The local wind sea was virtually zero
- and we slammed about 55 times per hour by count. The next day
we had a local wind sea about the same height ; a few white caps, not
much ; a lovely day. The waves were much shorter. It was an abso-
lutely wonderful day, because the ship was just alive in the water.
The ship behaved completely differen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>