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1.0 INTRODUCTION 

In analyzing a physical system which is described by a 

system of differential equations, it is desirable to deter- 

mine the effects that variations in related system design 

parameters have on the system's transient response. If the 

governing differential equations are linear with constant 

coefficients, then an investigation of the effects of param- 

eter variations can be accomplished by examining the behavior 

of the roots of the associated characteristic equation. 

Requiring that the roots have negative real parts is both 

necessary and sufficient for stability (Ref. i). 

For example, consider a physical system described by 

the following equation: 

mx + 2h~ + k2x = 0 (i) 

where m, h, and k are non-zero design parameters. By letting 

x I = x (2) 

x 2 = 41 = x (3) 

Equation (i) may be rewritten as 

Xl = X2 

4 2 = H = - k2/m x I - 2h/m x 2 

which can be expressed as 

(4) 

(5) 

(6) 

This can be expressed in matrix notation as 

AX-- (7) 
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By assuming a solution of the form 

X = eA~ (8) 

Eq. (7) becomes 

(A-AI)Y = 0 (9) 

where I is the identity matrix. Equation (9) represents a 

system of linear homogeneous equations and has a non-trivial 

solution if the determinant of (A-AI) is zero. The deter- 

minant of (A-AI) is referred to as the characteristic equa- 

tion and is given by 

det(A-~I) = 12 + 2h/m A + k2/m = 0 (I0) 

If the roots of Eq. (i0) have negative real parts, then the 

system described by Eq. (i) is said to be stable. Hence the 

solution to the homogeneous differential equation can be 

determined by finding the eigenvalues of the matrix A. If 

the eigenvalues have negative real parts, then the solution 

is said to be stable. 

The coefficients of the characteristic equation are 

functions of the design parameters (m, h, and k). The 

effects of variations in these parameters can be investi- 

gated by examining the behavior of the roots of the charac- 

teristic equation. This process is generally referred to as 

a parametric study. 

The method presented herein was developed to investigate 

the effects that variations in aerodynamic parameters have on 

the transient response characteristics of an aircraft. The 

method, which is based on the movement of the roots of the 

characteristic equation, is presented in generalized form 

and is illustrated with simple examples. An example of the 

technique applied to investigating aircraft lateral stability 
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is also presented. For variations in one design parameter, 

the effects on stability are described using root locus. 

For simultaneous parameter variations, the effects on stabil- 

ity are represented using stability region maps. 

2.0 FORMULATIONS 

Consider the following characteristic equation of 

degree, n 

where 

n 
G --- ~ F i ( 5 ) h  i = 0 

1 

(ll) 

X = (Xl,X2, ... ,x£) (12) 

are d e f i n e d  a s  d e s i g n  p a r a m e t e r s ,  a n d  F i ( X )  a r e  r e a l  v a l u e d  

f u n c t i o n s  w h i c h  h a v e  c o n t i n u o u s  f i r s t  p a r t i a l  d e r i v a t i v e s  

w i t h  r e s p e c t  t o  X. N o t e  t h a t  ~ i s  a f u n c t i o n  o f  X, 

Cx k c~) } -- ~(~) (13) 

and is chosen such that G is identically zero. By taking 

the total differential of G, the following equation is 

obtained: 

dG = (~) 
_~m 
Pk 

~G • 

dA k + (~-~l)±m dx 1 

Pk 

where 

and 

+ . . o  ~G 

Pk 

n ~F. 
~G _- ~ ~(X i) , 1 < j < 
x~ ' -- - 

i-0 
wj 

~G_ ~ ix i-1 F i(5) 
i-1 

(14) 

(15) 

(16) 



AE DC-TR-75 -46  

As indicated, the partial derivatives in Eq. 
+m evaluated at a point (Pk) where 

~ m m m 
= (Xl,X2, ... ,x£,l k) 

(14) are to be 

(17) 

For a characteristic equation of degree (n), the expression 

for dG represents a system of n homogeneous linear equations. 

By rewriting Eq. (14), the following system of equations is 

obtained: 

1 

~'G 8G dx I ~G dx£ } 

1 
m 

~G 
= dx I +...+(x~) dx£} 

1 

dA n _ (~)pm { ~G ~G = (x~1) dx I +-..+(x~) axe} 
n ~m ~m 

n n 

(18) 

which can be expressed in matrix form as 

dR- Ad~ (19) 

where dA is a column vector of n components, dX is a column 

vector of £ components, and A is an n by £ matrix whose ele- 

ments are complex. In general, 

8G ~G - / (a--y) 

1 

and is complex whenever I i is complex. 

8 
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The system of linear equations described by Eq. (18) 

gives a linear approximation for changes in each root. It 

is valid unless 

1 

which appears in the denominator of the Ai, j element, 

vanishes. It may be shown that 

~G 

vanishes only when X i occurs as a multiple root of G. 

An equivalent way of obtaining the linear approximation 

is to expand the function (G) in a Taylor series about the 

point (~0) (Ref. 2). The first variation of G gives a linear 

approximation to the changes in the roots as a function of 

changes in the design parameters. The resulting linear 

system is again given by Eq. (19). 

By approximating dX by AA and dX by AX, Eq. 

= 

(19) becomes: 

(21) 

By specifying AX, the corresponding changes in AA may be 

determined. Equation (21) represents a system of linear 

equations which relate changes in each root as a function of 

changes in the design parameters. 

The characteristic equation (G) is an algebraic equation 

with real coefficients. As such, there are definite relation- 

ships between the coefficients and the roots. For a charac- 

teristic equation of the form given by Eq. (ii), the product 

of the roots is given by 

( -1 )  'n (X1X 2 " ' '  i n ) = F o ( 5 ) / F  n (X)  (22) 
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and the sum of the roots is given by 

-(~i + ~2 +'''+ ~n ) = Fn-I(X)/Fn(X) (23) 

Similarly, other relationships exist between the roots and 

remaining coefficients of G (Ref. 3). Either Eq. (22) or 

Eq. (23) can be used to determine the error in the roots 

introduced by using the approximation. This eliminates the 

necessity of solving the characteristic equation to estimate 

the error and provides a means whereby the approximating 

technique given by Eq. (21) can be optimized. The error 

estimate and the optimization are discussed later in conjunc- 

tion with the root locus and boundary mapping applications. 

The basis of the root movement technique is the system 

of linear approximating equations given by Eq. (21). The 

effects that variations in the design parameters have on 

each root of the characteristic equation are given as a 

weighted sum of the incremental changes in the design param- 

eters, where the weights are given by Eq. (20). The rela- 

tive weights assigned each incremental design parameter may 

be used to rank the design parameters according to relative 

importance for each root at a particular point. For systems 

containing a large number of design parameters, the ability 

to select only the most significant parameters for investi- 

gation is extremely useful. 

3.0 MODIFIED ROOT LOCUS 

As an application of the root movement technique, con- 

sider the problem of determining the effect of variations 

in one design parameter on a system's transient response 

characteristics. The effects of perturbations in one de- 

sign parameter may be completely described by examining the 

]0 
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movement of the roots of the characteristic equation. 

As the design parameter takes on values ranging from plus 

infinity to minus infinity, the roots of the characteristic 

equation move in the complex plane along trajectories such 

that the characteristic equation remains indentically zero. 

A complex plane plot of the trajectories of the roots is 

referred to as a root locus plot. By examining the root 

locus, the effects that changes in a particular design param- 

eter have on both the frequency and damping of each root may 

be described. 

The process of a one-dimensional parameter investigation 

is described as a modified root locus technique to indicate 

that the root movement approximation described in Section 2.0 

is used to generate the loci. 

To initiate the process, nominal values for all design 

parameters are selected, and then the characteristic equation 

is solved to determine the corresponding roots. That is, 

choose 30 and find A(X). The initial starting point is 

referred to as the base point, and the corresponding roots 

of the characteristic equation are referred to as the poles. 

The loci emanate from the poles and terminate at either 

infinity or at points in the complex plane referred to as 

zeros. The zero points are defined to be points in the com- 

plex plane where the roots of the characteristic equation 

cluster about as the parameter being investigated takes on 

values near infinity. For a characteristic equation of the 

form (G) given by Eq. (Ii), the cluster points or zeros are 

determined as the roots of the following equation: 

n ~F i (3) Ai 
[ ) -0 

i-o j 
(24) 

]i 
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where xj is the design parameter, and the partial derivatives 

are to be evaluated at the base point. 

Starting at the base point, the incremental changes in 

each root are calculated using Eq. (21), where the vector 

(AX) contains one non-zero entry corresponding to the design 

parameter being investigated. For example, if the xj design 
+ 

parameter is to be investigated, then AX has zero entries 

everywhere except in the jth position. The jth position of 

AX contains an entry corresponding to the incremental change 

to be given to xj. The incremental change is referred to as 

the step size. As noted previously, A is an n by I matrix 

with complex elements of the form given by Eq. (20), where 

the partial derivatives are to be evaluated at the kth point 

(P~) where 

= ,x , "'" , , ) (25) 

Notice that for an investigation of the xj parameter, 

o o xO, i, 
= (X ,X , "'" ,Xj, "'" , (26) 

where the superscript (0) is used to indicate the base point 

values of the other Z-1 parameters. By using the incremental 

changes found above for the roots, the roots at the k + 1 

point are defined as 

 k+l = + A k+l ¢27) 

In addition, the vector (X) at the k + 1 point is defined as 

~k+l = ~k + A~k+l (28) 

12 
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Having found ~k+l by using the approximation, the error in 

the roots may be estimated as follows. The relationships 

between the coefficients of G and the roots were previously 

mentioned in Section 2.0. If G is an nth degree polynominal 

of the form given by Eq. (ii), then an estimate of the abso- 

lute error in the product of the roots at the kth point is 

defined as follows: 

orrorol     n F? (Xk) 

Fn(%) l (29) 

Similarly, the error in the sum of the roots may be expressed 

as 

°rror ÷ ni 

If the error at the kth point is small, the above process is 

repeated to find the k+l point. However, if the error at 

the kth point is considered excessive, then G is re-solved 

to obtain a new starting point. The above process is then 

repeated. 

It is reasonable to expect that a variable step size can 

be used in determining the movement of the roots. With the 

availability of an error estimate at each step, optimization 

of the technique can be accomplished as follows. If the 

error at the kth point is larger than a predetermined toler- 

ance, then G is re-solved to establish a new starting point. 

If, in addition, the error determined at the k+l point is also 

excessive, then the step size is halved and G is re-solved to 

define a new starting point. If, on the other hand, the error 

at both the kth and k+l points is less than a predetermined 

]3 
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tolerance, then the step size is doubled prior to finding the 

k+2 point. The commitment not to alter step size unless the 

same error condition is encountered on two successive steps 

is intended to prevent racing; that is, constant doubling and 

halving. 

The tolerance used in determining whether or not the 

error is excessive is determined empirically. If the toler- 

ance used is liberal, then the trajectories of the roots will 

consist of linear segments which are piecewise continuous. 

Decreasing the permitted error tends to smooth the approxi- 

mated trajectories. While the smoother trajectories are a 

more accurate representation of the loci, the increase in 

computer time may not be justifiable. 

As stated earlier, the loci terminate at either the 

zeros or at infinity. This provides a convenient way to 

terminate the process. It is only necessary to require that 

each zero point contain a root of G within some acceptable 

distance of it. For example, the process can terminate at 

the kth point only if each zero has a root of G near it. 

As mentioned in Section 2.0, the system of approximating 

equations is invalid at multiple root points because the 

denominator term of Eq. (20) vanishes. In the complex plane, 

the multiple root points are seen to be those points where 

the roots go from complex to real or vice versa. At such 

points, the corresponding tangent vectors have infinite slope, 

and hence, the characteristic equation will generally require 

re-solving at least once. 
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Example I 

To illustrate some of the ideas discussed concerning 

the root locus technique, consider the following character- 

istic equation: 

G = 12 + FI(X)A + F0(X) = 0 (31) 

where the coefficient functions are 

and 

FZ(~)- x I - x 2 (32) 

F 0(5) = 0.25(x I + x 2) 

where x I and x 2 represent design parameters. 

the base point (~0) is 

~0 0 0 
= (Xl,X 2) = (3,2) 

At ~0, the roots of G are 

11=-0.5+j 
and 

12=- 0.5- j 

and are defined to be the poles (PI and P2)" The zero 

points corresponding to parameter x I are determined as 

the roots of the following equation: 

(33) 

Assume that 

(34) 

(35) 

(36) 

l ~F i (5) 
H- ~ ( ~x. ) li-0 

i-0 

~F o (5) 

= ( ~x I ) + ( 

=0.25+I 

~F 1 (5) 

~x1 ) ~0 

(37) 

15 
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Hence, there is one zero point at i = -0.25. The loci emanate 

from the poles (PI and P2) and travel to the zero and to 

infinity. The trajectories for Ii and 12 may be determined 

using the linear approximation given by Eq. (21). For this 

example, Eq. (21) becomes 

:- J P2 P2 - 

where 

= o o ), i)  (X 1 ,x 2 , 

(38) 

(39) 

~ 0 0 12 ) = (Xl,X2, (40) 

BG/@x I = i + 0.25 (41) 

BG/Bx 2 = -I + 0.25 (42) 

@G/BI 1 = 2 ~i + Xl - x2 

and 

@G/BI 2 = 2 12 + Xl - x2 

At the base point (~0), Eq. (38) becomes 

m m 

Al I 

A~ 2 

m 

(0.5+0.125j) (-0.5-0. 375j) 

(0.5-0. 125j) (-0.5+0. 375j) 
m m 

m 

Ax I 

(43) 

(44) 

(45) 

I0 
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Since Ax 2 is zero, Eq. (45) simplifies to 

AX 1 = (- 0.5 - 0.125j)Ax i (46) 

AA 2 = (- 0.5 + 0.125j)Ax I (47) 

In the complex plane, Eqs. (46) and (47) represent vectors 

tangent to the eigenvalue trajectories at the poles P1 and 

P2" By letting Ax I equal a step size of 0.i, an approxima- 

tion to the roots at ~i can be obtained as follows: 

+ A- o 

0 ] r01 00 1 + 

0 . 5 5  + 0 . 9 9 j  

~1 0 . 5 5  - 0 . 9 9 j  
(48) 

The error estimate at ~i may be computed using Eq. (29) as 

error = X 1 - "--4--- = 0.01 (49) 

For a tolerance of 0.i, the root locus shown in Fig. 1 was 

generated. Table 1 summarizes the computations. 

The root locus drawing shown in Fig. 1 illustrates the 

effects of increasing parameter (Xl) from its base value of 

3.0. By using the approximation with step sizes of dx I = 0.i 

and 0.2, it was necessary only to re-compute the roots once. 

This occurred in the vicinity of the multiple root at X =-1.28. 

In sketching the approximated trajectories for Ii and X2, the 

circle symbol is used to represent the approximated ~ value. 

The vector drawn from each symbol is the tangent vector com- 

puted at the X value corresponding to that symbol. 

17 
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By using a negative step size, the root locus showing 

the effects of decreasing parameter x I from its base value 

of 3.0 may be generated. Figure 2 shows both the approxi- 

mated and actual trajectories for this case. In a similar 

manner, the root locus showing the effects of increasing and 

decreasing parmater x 2 may be generated. Table 2 summarizes 

the computations. 

Imaginary 
Pl 

Approxzmated • Trajectory~ 1 / 

f TrajectOrYzl 

• q '  - w 
-2.0 - ] .5 ~ - 1 . 0  -0.75 -0.5 -0.25 

~,\  _~-Ae,na~ ,.~ 
Approximated ~2 ~Y" TraJectory 
T r a j e c t o r y ~  

1 .  O0 

0.75 

O. 50 

0.25 

- R e a l  

-0.25 

-0.50 

-0,75 

-1.00 

Figure 1. Root locus showing the effects 
of increasing design parameter X 1 
from the base value. 

Figure 2. Root locus showing the effects 
of decreasing design parameter xl 
from the base value. 

Z 1 

-0.5O -0.25 

P2 "coo.~o~ 

Imagxnary 

~.~Approx;mated 
~ ~1 Trajectory 
O,7fi 
O. 50 

• . 

-o.~5-o.5 ']~-1~o -1.=5 
.-0.25 / 

- - 0 . 5 0  / 

" 0 " 7 5 ~ A p p r o x i m a t e d  

~ ~2 Tra3ectory 

18 



AE DC-TR-75-46 

Table 1. Summary of Computations used in Obtaining Figure 1 

Tangent Tangent Approximate Actual 
Xl x2 Vect°r(Al) Vect°r(A2) Roots Roots 

3.0 

3.1 

3.2 

3.4 

3.7 

4.1 

4.5 

4.7 a 

4.0 

4.9 

5.0 

5.2 

2.0 - 0 . 5 - 0 . 1 2 5 j  - 0 .5  +0.125j  - - 0 . 5  + 0 :) 

2.0 - 0 . 5  - 0 , 1 5  J - 0 . 5  +0.15 J - 0 . 5 5  +0.99:) - 0 . 5 5  +0.95:) 

2.0 -0 .5  -0 .18 J -0 .5  +0.18 J - 0 . 6  +0.97:) - 0 .6  +0.95:) 

2.0 - 0 . 5  -0 .24 J -0 .5  +0.24 "l - 0 . 7  +0.93:) - 0 . 7  +0.9 :) 

2.0 - 0 . 5  -0 .35  :) - 0 . 5  +0.35 :) -0 .85  +0.84J -0 .85  +0.85J 

2.0 - 0 . 5 - 0 . 6  j -0.5 +0.6 j - L o s  +o.~6J -1.05 +0.63j 

2.0 -0.5 -1.4 j -0.5 +1.4 J -1.25 -+0.36:) -1.25 -+0.25J 

2.0 0.87+0 :) -1.87+0 "l -1 .35  +0.08:) - 0 . 9 5 , - 1 . 7 5  

2.0 0.56+0 :) -1.56+0 J - 0 . 8 6 , - 1 . 9 4  - 0 . 9  , - 1 . 9  

2.0 0.5 +0 J -1 .5  +0 :J - 0 . 8  - 2 . 1  - 0 . 8 5 , - 2 . 0 5  

2.0 0.33+0 J -1.3 +0 :) -0.75,-2.25 -0.8 ,-2.2 

2.0 - - -0.68,-2.51 -0.72,-2.48 

aRe-started approximation at x I - 4.7. 

Table 2. Summary of Computat ions used in Obtaining Figure 2 

Tangent Tangent Approximate Actual 
Xl x2 Ve°t°r{Xl) Vect°r(A2) Roots Roots 

3.0 2.0 -0 .5  +0.125j  - 0 .5  +0.125 j  

2.9 2.0 - 0 . 5  - 0 . 1  j - 0 . 5  +0.1 j -0 .45  +1.01 j  

2.8 2.0 - 0 . 5  - 0 . 075 j  - 0 .5  +0.075J -0 .40  + l . 02J  

2.7 2.0 -0 .5  -0 .05  J - 0 . 5  +0.05 j -0 .35  + l .03J  

2.5 2.0 -0.5 -0 J -0.5 +0 j -0.25 +1.04j 

2.3 2.0 - 0 . 5  +0.05 j - 0 . 5  -0 .05  j -0 .15  +-l.04~j 

2.1 2.0 -0 .5  +0.10 j - 0 .5  -0 .10 j -0 .05  +1.03 j  

1.7 2.0 -0 .5  +0.2 :) - 0 . 5  -0 .2  :J +0.15 +0.98J 

1.5 2.0 - 0 . 5  +0.253 j  - 0 .5  -0 .253J +0.25 +0.94:1 

1.3 2.0 - 0 . 5  +0.34 J -0 .5  -0 .34  J +0.35 -+0.89j 

I.i 2.0 -0.5 +0.43 j -0.5 -0.43 J +0.45 -+0.82~ 

0.9 a 2.0 -0.5 +0.62 J -0.5 -0.62 j +0.55 +0.73~ 

0.5 2.0 -0.5 +1.4 j -0.5 -1.4 J +0.75 +0.36j 

0.3 a 2.0 +0.95+0 j -1.95+0 J +0.85 +0.8 j 

0.2 2.0 +0.63+0 j -1.63+0 J +0.37,+1.43 

0.1 2.0 - - +0 .31,+1.59 

-0 .50  ± 0 3 

-0 .45  +1.013 

-0.40 t1.023 

-0 .35  +1.033 

-0 .25  +1.033 

-0.15 +1.033 

-O.05 +1.013 

+0.15 ±0.953 

• +0.25 +0.90~ 

+0.35 +0.84j 

+0.45 +0.76J 

+0.55 +0.65J 

+0.75 +0.25J 

+0.47, 1.23 

+0.39,+1.41 

+0.33,+1.57 

aRe-started approximation. 
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4.0 STABILITY REGION MAPPING 

4.1 INTRODUCTION 

An investigation of the effects of variations in one 

design parameter is illustrated using the root locus tech- 

nique described in Section 3.0. The effects of parameter 

variations on both the frequency and damping may be obtained 

directly from the root locus plot. Since it is conceivable 

that the loci will change for different base points, general 

conclusions concerning these effects as obtained from the 

root locus should be made only after considerable analysis. 

The inability to generalize is a major disadvantage of 

root locus. Stability region maps provide a more complete 

analysis of the effects of parameter variations. For the 

example used in Section 3.0, a two-dimensional stability map 

completely describes the effects that parameter variations 

have on transient response. This example is illustrated at 

the end of the section. 

For an nth degree characteristic equation given by 

Eq. (ii), the effects of simultaneous variations in the x i 

and xj parameters on stability may be represented by a sta- 

bility region map. A stability region in the xi,x j plane is 

defined to be the set points (xi,xj) within the plane which 

will result in the roots of the characteristic equation 

having negative realparts. The region's boundary is 

defined as the set of points which will result in at least 

one root of G having a zero real part and the other roots 

negative. Stability region maps serve to isolate the region 

of stability about a given base point. 

Stability region maps may be refined to provide addi- 

tional information concerning the roots. Lines of constant 
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damping may be constructed within the region using the root 

movement technique. In addition, information concerning the 

oscillatory frequencies is available. 

A stability region in the xi,x j plane encompassing a 

stable base point (~0) may be obtained using the root move- 

ment approximation given by Eq. (21). The method used in 

obtaining the stability region is to find a point (~1) on 

the boundary where at least one of the roots of G is zero 

and the other roots are negative. Once a point on the 

boundary is found, the approximation is used to find other 

points on the boundary in a manner such that the boundary 

is traversed. 

4.2 REGION BOUNDARY 

The first point on the boundary (~I) is found by varying 

only one parameter. If x i represents the axis of abscissas, 

then Axj is set to zero and Ax i is used to vary x i negatively 

from its base point value until the boundary or a predeter- 

mined limit is found. In the approximation given by Eq. (21), 
+ 

AX contains zeros everywhere except in the ith position. 

The ith position of AX contains the negative of the step size. 

Beginning at the base point, the incremental changes in each 

root are calculated and are used to modify ~. If any of the 

roots have become positive, then a point near the boundary 

has been found. However, if the new roots are all negative, 

then the approximation is used to determine another incre- 

mental root change. The above process is repeated until a 

point on the boundary is found. 

The process of finding the first point on the boundary 

is similar to the modified root locus technique described in 

Section 3.0. The only difference is in where the process is 

terminated. As in the root locus technique, a variable step size 
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is used where the step size is adjusted according to the 

criteria established in Section 3.0. The first point on 

the boundary is referred to as ~i, where 

~_  ,~00 ~ o o 
"'',Xi,''',xj,''',X ) (5O) 

where the superscript (0) refers to the base point values. 

At the point (~i), assume that the real part of the kth 

root vanishes and that the other n-i roots have negative real 

parts. The linear approximation at ~i is then 

Al I 

A12 

AX k 

=-(BGIBxi/BGIBI) Bxi- (BGIBxj/BG/BI) AX. (51) 
- ~ ~ 

=- ( BGIBxi/SGISX ) Axi- ( BGI Bxj/BGIBI) ÷lAX j (52) 
P21 P2 

=- ( ~G/Bxi/BG/B l ) ~iAxi - (3G/Bxj/BG/BI) Pk IAxj 

Aln =-(BG/Bxi/BG/BX) IAxi-(BG/~xj/SG/81) IAx j 

n n 

where 

~ o o ~ o,~ 
Pk = (x ,x ,''', ,''',x ) 

(53) 

(54) 

(55) 

Since Re(Xk) is zero at ~i, the homogeneous equation for 

Re(Alk) represents a vector in the xi,x j plane which is tan- 

gent to the boundary at ~i. By moving along this vector, new 

points on the boundary may be found where Re(l k) remains zero. 

The objective is to traverse the boundary in a clockwise 

22 



manner keeping the base point (~0) to the right. 

this, Eq. (53) is rewritten as 

Re(AA k) = alAX i + a2Ax j 

Im(AXk) = blAX i + b2Ax j 

where 

A EDC-TR-75-46 

To achieve 

(56) 

(57) 

8G ~G ~G Im (~) Re (~--~-.) Re (~) + Im (~--~-.) 
1 1 

al = 2 2 (58) 
~G ~G Re (~-~) + Im (~--[) 

~G (~) + ~G Im(~) Re (~--~.) Re Im (x~.) 

a 2 - ~ ~ (59) 
~G 2+ Im(~)2 Re (~-~) 

8 G (~) Re ( ~--~7. ) Im ( ~-~T. ) Re 8G 8G - Im 

bl = 1 1 2 2 (60) 
8G Re(~) + Im(~--~) 

and 

~G 8G ~G ~G Im (~-~-[.) Re (~--~) - Re (~--~.) Zm (~--~) 

b2 = ~ 2 ~ (61) 
~G +Im (~) Re (~) 

where all partial derivatives are evaluated at pl k" From the 
point (pl), a second point on the boundary (p2) may be found 

by moving along the tangent vector given above by Eq. (56). 

From ~i, ~2 is determined by letting either Ax i or dxj in 

Eq. (56) equal the step size and then solving for the other 

Ax required to satisfy the homogeneous equation. 

The slope of the tangent line is used to determine which 

Ax term is to be solved for. If in the xi,x j plane, x i 
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represents the axis of abscissas, then for tangent lines whose 

slope magnitude is greater than one, the ~xj term should be 

adjusted by the step size and the Ax i term should be solved 

for. The step size may be negative or positive depending on 

the direction of travel. 

By using the tangent vector corresponding to the zero 

root, successive points on the boundary are found. At each 

new point found, the error in the approximation is computed 

using Eq. (29). By using the criteria concerning step size 

adjustment, the step size may be altered as additional points 

on the boundary are determined. 

Since a stability region may be infinitely large, limits 

on the design parameters are imposed to restrict the stability 

region search to a finite area in the xi,x j plane. If either 

parameter exceeds a limit as the boundary is traversed, then 

the mapping along that direction is discontinued. A new 

point on the boundary is found by searching along the limit 

line. By imposing limits on x i and xj, the resulting stabil- 

ity region is confined to lie within a rectangle formed by 

the limit lines. 

Example II 

To illustrate the method of boundary mapping, consider 

the following example: 

G = ~2 + Fl(~ )~ + F0(5) = 0 

where 

FI(X) = x I - x 2 

(62) 

(63) 

F 0 ( ~ )  = 0 . 2 5 ( x  I + x 2) (64) 

X = (Xl,X 2) (65) 
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The base point is given as 

Let x I represent the axis of abscissas and x 2 represent the 

axis of ordinates. Assume that the first point on the 

boundary (~I) has been found using the root locus technique 

and is given as 

1 0 
= (Xl,X 2) = (2,2) 

At ~i, the roots of G are 

(67) 

X1 = 0 + j 

A .2=  0 - j 

The approximating equation, Eq. (21), becomes 

(68) 

(69) 

AX 1 

AX 2 

=-  ( ~ G / ~ x z / S G / ~  X) 

= - ( ~ G / ~ X l / ~ G / ~ X )  

~lAXl-(  ~G/~x2/~)G/~)X ) Ax 2 

~lAXl-(SG/Sx2/~G/8X) Ax 2 

(70) 

(71) 

÷i After evaluating the partial derivatives at P , the above 

equations become 

(0 .25  + j )  ( 0 .25  - j )  Ax 2 
AXI = - 2j AXl - 2j 

AI 2 = (0.2529- ~) Ax I + (0.25 29+ ~) Ax 2 

(72) 

(73) 

Since both X 1 and X 2 have a zero real part at ~i, either 

e q u a t i o n  may be used to  d e t e r m i n e  ~2. By u s i n g  the  AX 1 
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equation and rewriting, the following equations 

obtained: 

are 

Re (Al I ) = - 0.5dx I + 0.5Ax 2 

Im(AXI) = 0.125Ax I + 0.125Ax 2 

(74) 

(75) 

Requiring that Re(AX I) = 0, Eq. (74) represents a vector 

tangent to the boundary at ~i. Since the slope of the 

tangent vector is one, let Ax 2 equal the step size of 0.1 

and solve for Ax I. This may be summarized as follows: 

Re(AX I) = - 0.5Ax I + 0.5Ax 2 = 0 

Ax I = Ax 2 = 0.i 

(76) 

(77) 

This defines a new point on the boundary as 

~2 = (x2,x~)= (2.1,2.1) 

The approximated roots at p2 are determined by 

(78) 

where d~ 1 is determined using the AX given by Eq. (77). 

approximated roots at ~2 are then 

A1 = 0 + 1.025j (80) 

X 2 = 0 - 1.025j (81) 

The error estimate at ~2 may be computed as follows: 

2 2 
error- 

I cI 02s~ ci 02s~ - 1.0sl = 0 c84~ error 
l l 

(79) 

The 
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Beginning at ~2, additional points may be found by repeating 

this process. If the computed error estimate at any point is 

determined to be larger than 0.i, then G is re-solved to 

provide a new starting point. 

Figure 3 is the stability region computed for this exam- 

ple using the method of tangent vectors. At the point (5,5), 

the search along the upper boundary was terminated and a new 

point on the boundary was found at (5,-5) by searching along 

the x I limit line, x I = 5. Table 3 summarizes the computa- 

tions used in obtaining Fig. 3. 

x2 t 
5 . 0  

4 . 0  

3 . 0  

2 . 0  

1 . 0  

- 1 . 0  

- 2 . 0  

- 3 . 0  

- 4 . 0  

- 5 . 0  

x 1 

Figure 3. Stability region map for Example II. 
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Table 3. Summary of Computations used in Obtaining Figure 3 

x I x 2 

Approxi- 
Tangent Tangent mate 

Vect°r(X 1) Vect°r(X2) Roots 
Actual 
Roots 

2.0 

2.1 

2.2 

2.4 

2.6 

3.0 

3.4 

4.2 

5.0 

5.0 

4.9 

4.8 

4.6 

4.4 

4.0 

3.6 

2.6 

1.8 

1.4 

1.0 

0.6 

0.2 

0.I 

0.05 

0.15 

0.25 

1.15 

2.0 

2.1 

2.2 

2.4 

2.6 

3.0 

3.4 

4.2 

5.0 

-5.0 

-4.9 

-4.8 

-4.6 

-4.4 

-4.0 

-3.6 

-2.6 

-1.8 

-1.4 

-I.0 

-0.6 

-0.2 

-0.I 

0.05 

0.15 

0.25 

1.15 

(-0.5 AXl+0.5 ~x 2) (-0.5 aXl+0.5 ~x 2) - 

(-0.5 AXl+0.51 ~x2) (-0.51&Xl+0.51&x 2) 0 ~1.025j 

(-0.501dXl+0.501Ax 2) (-0.5 ~Xl+0.5 &x 2) 0 ~i.05 J 

(-0.5 AXl+0.5 Ax 2) (-0.5 AxI+0.5 Ax 2) 0 ~1.1 j 

(-0.5 AXl+0.5 ~x 2) (-0.5 ~Xl+0.5 Ax 2) 0 ±1.15 j 

(-0.5 AXl+0.5 Ax 2) (-0.5 ~Xl+0.5 Ax 2) 0 ~1.24 j 

(-0.5 AXl+0.5 Ax 2} (-0.5 AXl+0.5 &x 2) 0 ~1.32 j 

(-0.5 AXl+0.5 Ax 2) (-0.5 AxI+0.5 Ax 2) 0 ~1.47 J 

_ - o tl.61 j 

(-AxI-AX 2) (-0.98AxI+I.O3Ax 2) - 

(-AxI-AX2) (-0.98AxI+I.O3Ax 2) 0,-9.8 

(-~Xl-AX2) (-0.98AxI+I.OIAx 2) 0,-9.6 

(.AXl-AX2) (-0.98AXl+l. O2Ax 2) 0,-9.2 

(-AXl-AX2) (-0.97AxI+I.O3Ax 2) 0,-8.8 

(-AxI.AX2) (-0.97AXl+I.O3Ax 2) 0,-8.0 

(_AxI-AX2) (-0.97AXl+l. O3dx2) 0,-7.2 

(-&Xl-AX2) (-0.96AxI+I.O4Ax 2) 0,-5.6 

(_AxI-AX2) (-0.93AxI+I.OT~x2) 0,-3.6 

(_AxI-AX2} (-0.91AXl+l. O9~x2) 0,-2.8 

(_AxI-AX2) (-0.88AXl+l.12Ax 2) 0,-2.0 

(_Axl_Ax2) (-0.79AxI+I.21Ax2) 0,-1.2 

(-&Xl-~X2) (-0.37~xI+I.63Ax 2) 0,-0.4 

(_AxI-&X2) (-0.25AxI+2.25Ax 2) 0,-0.2 

( -0 .5 AXl+0.5 Ax 2) ( -0 .5 AXl+0.5 ~x 2) - 

( -0 .5  &Xl+0.5 Ax 2) ( -0 .5 ~Xl+0.5 ~x 2) 0 ±0.394j  

(-0.5 ~Xl+0.5 ~x 2) (-0.5 ~Xl+0.5 Ax 2) 0 ~0.46 j 

(-0.5 AXl+0.5 ~x 2) (-0.5 AxI+0.5 ~x 2} - 

0 +- 1 j 

0 + 1 . 0 2 4 j  

0 t 1 .048j  

0 + 1 . 0 9  j 

0 t 1.14 j 

o t  1.22 j 

0 - + 1 . 3  j 

o t  1.48 j 

o t  1.58 j 

0 , - I 0 . 0  

0 , -  9 . 8  

0 , -  9.6 

0 , -  9.2 

0 , -  8.8 

0 , -  8.0 

0 , -  7.2 

0 , -  5.6 

0 , -  3.6 

0 , -  2.8 

0 , -  2 . 0  

0 , -  1.2 

0 , -  0.2 

0 , -  0.2 

o t o.316j 

0 + - 0 . 3 4  J 

o t o . 4 1  j 

o t o.75 j 
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4.3 REGION CHARACTERISTICS 

The stability region's boundary was defined to be the 

set of points within the plane where at least one root of 

the characteristic equation is zero and all other roots are 

negative. Within the stability region, the roots behave in 

a manner predictable by the tangent vectors. Lines of con- 

stant damping, constant X, and constant frequency may be 

constructed. For a parametric study of a system containing 

two design parameters, a two-dimensional stability region 

map completely describes the effects of parameter variations. 

To illustrate the information which can be obtained 

concerning the stability region, consider the previous exam- 

ple. As indicated in Table 3, the tangent vectors coincide 

along the upper boundary. This could be expected since both 

roots have a zero real part along this part of the boundary. 

On the lower boundary, however, the tangent vectors are not 

equal, and only the vector corresponding to the zero root is 

used to map the boundary. By using the vector corresponding 

to the non-zero root, other points within the region may be 

obtained which yield no change in the non-zero root. For 

example, at the point (i,-i), the non-zero root is 

X 2 = - 2.0 (83) 

The corresponding tangent vector is 

Re(AX 2) = - 0.88Ax I + 1.12dx 2 (84) 

Requiring that Re(AX2) equal zero and that Re(AAI) be nega- 

tive will yield a point within the region where X 2 remains 

-2.0. By continuing to use the tangent vector for X2, addi- 

tional points may be obtained where X 2 is a constant -2.0. 

Similarly, constant X lines for different X's may be constructed. 
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Figure 4 is a detailed stability map for Example II 

showing the construction of several constant X lines through- 

out the region. It is interesting to note that each constant 

X line is tangent to a parabola which corresponds to zero 

frequency. The parabola consists of multiple roots and 

serves to separate the stability region into two areas. The 

area bounded above by the region's upper boundary and below 

by the multiple root parabola contains points where the roots 

are complex. The area bounded above by the multiple root 

parabola and below by the region's lower boundary contains 

points where the roots are real. 

The shaded area shown in Fig. 4 contains those points 

within the region where the roots are complex. Within the 

complex zone, lines of constant damping may be constructed 

using the tangent vectors. For example, at the initial base 

point (3,2) the roots are 

XI=- 0.5+ j (85) 

X 2 =- 0.5 - j (86) 

The corresponding tangent vectors are 

Al I = (0.5+O.125j)Ax I + (-0.5-0.375j)Ax 2 (87) 

AX 2 = (0.5-O.125j)Ax I + (-0.5+0.375j)Ax 2 (88) 

Since the real parts of X 1 and X 2 are equal, either equation 

may be used. Using Eq. (87) and rewriting give 

Re(AX I) ~ 0.5Ax I = 0.5Ax 2 (89) 

Requiring Eq. (89) to be zero will yield other points within 

the region where the real part of X 1 and X 2 is -0.5. Figure 4 

shows several lines of constant damping which were constructed 
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5 . 0  

4 . 0  

3 . 0  

2 . 0  

x 2 

C o m p l e x  
R o o t s  

D a m p l n g  - 0 

D a m p l n g  = - 0 . 2 5  

D a m p i n g  = - 0 . 5  

D a m p i n g  = - 0 . 7 5  

D a m p l n g  = - 1 . 0  

Z e r o  F r e q u e n c y  

1 . 0  

= - 0 . 5  

0 
3 . 0  4 . 0  5 . 0  

= - 0 . 2 7  

x 1 

- 1 . 0  

- 2 . 0  

= - 0 . 1 3  

- 3 . 0  

)x ,= - 0 . 0 5  

- 4 . 0  

- 5 . 0  

Figure 4. Detailed Stability Region Map for Example II 
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using the tangent vectors. The lines of constant frequency 

were constructed using a tangent vector corresponding to the 

imaginary part of Eq. (87). For example, at the point (3,2), 

Xm(Al I ) = 0.125Ax I - 0.375Ax 2 (90) 

Requiring Eq. (90) to be zero will yield other points where 

the complex part of X remains constant. 

4.4 THREE-DIMENSIONAL REGIONS 

Two-dimensional stability regions were determined by 

permitting only two design parameters to vary. Three- 

dimensional maps can be obtained by generating a series of 

two-dimensional maps for different values of a third param- 

eter. The map obtained in this manner consists of a series 

of contour curves and is just a repetition of the two- 

dimensional process. 

5.0 EFFECTS OF PARAMETER VARIATIONS ON 
AIRCRAFT LATERAL STABILITY 

5.1 INTRODUCTION 

The equations of motion governing an aircraft may be 

linearized such that they form two independent sets of equa- 

tions pertaining to longitudinal and lateral motion (Ref. 4). 

The linearized equations are ordinary linear homogeneous 

differential equations whose coefficients are functions of 

various aerodynamic and inertia factors. As mentioned previ- 

ously, the solution to such a set of equations is exponential 

and an investigation of stability can be performed by ana- 

lyzing the eigenvalues of the coefficient matrix. 
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A computer program using the root movement technique 

has been written to investigate the effects of variations 

in the aerodynamic factors on the lateral stability charac- 

teristics. The characteristic equation which is used (Ref. 5) 

is in body axis and is of the form: 

G = X4+F3 (X) X3+F2 (5) ~2+F 1 (5) ~+F 0 (X) (91) 

where 
= , ) 

(Cy8 ,~p,~ r,C£8,C£p,CEr,Cns, Cnp Cn r (92) 

The exact form of the characteristic equation used is given 

in Appendix A. 

5.2 ROOT LOCUS 

The effects of parameter variations of any element in 

X are accomplished using the modified root locus technique 

described in Section 3.0. In the root locus routine, only 

one parameter is to be investigated, and hence, there is 

only one non-zero element in the vector (AX). The sparseness 

of the A~ vector enables one to investigate only the appro- 

priate column of the matrix (A). For example, if the third 

element of ~ is to be investigated, then A~ contains zeros 

in all positions except the third. This requires that only 

the third column of A be evaluated for such an investigation 

and eliminates a considerable number of useless computations. 

The computer output from the root locus investigation 

is the value of the roots at prescribed increments of the 

parameter. If the initial base point is stable, then the 

values of the parameter and the roots are printed at the 

first point of instability. In addition to the tabulated 

data, the program has a printer plot routine which provides 

a graphical display of the movement of the roots in the 

complex plane. 
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In addition to tabulating and plotting the roots at 

specified increments of the design parameter, the forms of 

the zero equation and its roots are tabulated. The zero 

equations for each of the nine aerodynamic terms are obtained 

by applying Eq. (24) to Eq. (91). These equations are given 

in Appendix A. 

5.3 STABILITY REGION MAPPING 

Two-dimensional stability region maps can be obtained 

using the procedure described in Section 4.0. As mentioned 

previously, a point on the boundary is defined to be a point 

in the xi,x j plane where at least one of the roots of the 

characteristic equation has a zero real part. Corresponding 

to each zero root, there exists a tangent vector of the form 

Re(Al k) = alAX i + a2Ax j (93) 

Requiring Eq. (93) to equal zero will yield another point in 

the xi,x j plane where X k remains zero. In Eq. (93), Ax i and 

dxj are unknowns and al,a 2 are computed using Eqs. (58) and 

(59). Since Eq. (93) has two unknowns, it is necessary to 

specify one and then solve for the other. The quantity 

specified is referred to as the step size. To determine 

which dx term in Eq. (93) is to be specified and which is 

to be solved for, it is necessary to examine the possibil- 

ities which may occur at a boundary point. Figure 5 illus- 

trates the possibilities which exist. In addition to knowing 

the tangent vector slope, it is necessary to know the 

required travel direction. The direction of travel is 

always such that the stable region is to the right of the 

directed line segment (PPI)" In Fig. 5, the direction of 

travel is shown to be positive for each possibility, where 

positive travel is defined to be the direction of increasing 

ordinate values. For negative travel, the stable zone would 

be opposite that pictured. 
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Figure 5. Tangent vector possibilities. 
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The solution to Eq. (93) then provides a new point (~i) 

÷I on the boundary. At P , the error in the roots is determined 

using Eq. (29). If the error is excessive, then Eq. (91) is 

re-solved and the step size is halved. 

If only one root has a zero real part at the boundary 

point, then its corresponding tangent vector is used to 

determine a neighboring point where the root remains zero. 

However, if more than one root is zero, then the various 

possibilities which arise must be analyzed and the proper 

tangent vector selected. Note that, for a pair of complex 

roots with zero real part, the corresponding real tangent 

vectors are equal, and hence, there is only one equivalent 

tangent vector. 

If at a boundary point there are two different tangent 

vectors corresponding to zero roots, then the possibilities 

may be divided into two classifications according to slope 

signs. If the two tangent vectors have opposite slope 

signs, then the correct vector and travel direction may be 

determined by examining the magnitude of the slopes. The 

various possibilities which exist are illustrated in Fig. 6. 

Similarly, if the two tangent vectors have the same slope 

signs, the correct vector and travel direction may be deter- 

mined by examining the slope magnitudes. Figure 7 illustrates 

the various possibilities which exist for this case. It can 

be seen that for the dual direction possibilities, the problem 

of determining the correct tangent vector corresponds to 

selecting the vector which is to the right of the last move- 

ment on the boundary. In both Figs. 6 and 7, V represents 

the last tangent vector traveled. At the point (~i), the two 

possible vectors are denoted V 1 and V 2. The shaded area 

represents the stable part of the region. 
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For anarbitrary shaped region, points on the boundary 

may be found where the tangent vector undergoes a change in 

slope signs. At such corner points, it is necessary to 

explore the region about the point to determine the correct 

travel direction. Figure 8 illustrates the various corner 

point possibilities. In Fig. 8, V represents the last vector 

traveled, ~nrepresents the corner point, V 1 represents the 

tangent vector corresponding to the zero root at point ~n, 

and P* represents an exploratory point. At P*, the charac- 

teristic equation is solved to determine system stability. 

By using the information acquired at the exploratory point, 

the correct travel direction along V 1 is computed. 

The stability region boundary was defined to be the set 

of points in the xi,x j plane where at least one of the roots 

of the characteristic equation has a zero real part. In 

actual practice, the defining roots are required only to be 

near zero. Hence, the set of points computed as the boundary 

lies within a band about the true boundary. Figure 9 illus- 

trates an arbitrary region where the true boundary is indi- 

cated by the solid curve. The broken curves indicate the 

boundary zone. 

It is possible in traversing the boundary to lose contact 

with the boundary zone. For example, at point Pi in Fig. 9, 

the tangent vector is denoted by V. By using the tangent 

vector, a point (P*) is determined which is found to lie 

outside the boundary zone. By re-setting to point Pi and 

decreasing the step size, a point (Pi+l) can be found which 

does lie within the boundary zone. 

Since stability regions may extend to infinity, realis- 

tic limits must be imposed on the region which is to be 

mapped. If a limit is encountered, the boundary search along 
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Figure 9. Arbitrary stability region map. 

x i 

the last direction is discontinued and a one-dimensional 

search is made along the limit line to determine a new point 

on the boundary. Figure 9 illustrates the procedure which 

is used when a limit is encountered. The arrowheads indicate 

the direction of travel. 

The boundary mapping is terminated when the perimeter 

of the region is traversed. This is indicated when the 

distance from the point (~n) and the starting point (~1) is 

less than a prescribed tolerance. If the point (~n) lies 

within the circle encompassing the starting point (~i), the 

mapping process is terminated. 
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5.4 PROGRAM OUTPUTS 

In the example presented, the following base point data 

were used and are representative of a typical twin-jet 

fighter aircraft (Ref. 6). 

Cy8 = - 0.5730 Cyp = 0.2460 CYr = 1.1060 

C£8 = - 0.1570 C£ = - 0.2170 C£ = 0.3050 
p r 

Cn8 = 0.0808 Cnp = 0.0 Cnr = - 0.606 

The additional aircraft and flight condition data used are: 

m = 1215.0 b = 38.41 S = 538.34 

I x = 29,950 I z = 169,538 

P/Po = 0.4485 q= = 87.8 

Ixz = 5,241 

V = 406.0 

= 15 deg 8 = 15 deg 

At the base point, the roots of the characteristic 

equation are: 

11 = - 0. 106 12 = - 0.496 

13 = - 0.18 + 1.71j 14 = - 0.18 - 1.71j 

and are referred to in the following discussion as the poles. 

The roots correspond to the spiral mode, the rolling mode, and 

the Dutch roll motion. The root locus plots s~own in Fig. i0 
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Figure 10. Sample root locus plot (C2~) obtained using 
the lateral stability computer program. 

t Real 

illustrate the effects that variations in several stability 

derivatives have on the lateral stability characteristics. 

The zero equations corresponding to each of the aerodynamic 

parameters are determined using Eq. (24) and are summarized 

in Appendix A. 

Figure ii illustrates a stability region map obtained 

using the computer program for the aerodynamic parameters 

(Cn8 and CZS). The base point is denoted ~0, and the first 

point obtained on the boundary is denoted ~i. The linear 

character of the boundary is a result of the coefficient 

functions of the characteristic equation being linear in 

Cn8 and CZS. The origin represents a multiple root point. 

Figure 12 illustrates constant I lines which have been 

constructed throughout the stability region. The I lines 

correspond to the spiral and rolling mode roots (~i and ~2 ) . 

It can be seen that the right part of the boundary represents 

the part of the region where the spiral mode becomes unstable. 
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Figure 11. Sample stability region map obtained using 
the lateral stability computer program. 
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Figure 12. Detailed stability map illustrating 
the spiral and roll roots. 
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The line of I = -0.37 represents a line of multiple roots. 

All along this line, the spiral and rolling mode roots are 

equal and become complex in the area shaded. 

Figure 13 illustrates constant frequency and damping 

lines for the Dutch roll roots. It can be seen that the 

left part of the boundary represents the points in the 

Cn8,C£8 plane where the Dutch roll roots become unstable. 

0 r- 
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Figure 13. Detailed stability map illustrating the Dutch roll roots. 

, , , - 3 . 0  

0 .5  

6.0 CONCLUSIONS 

The technique presented herein demonstrates a logical 

method for conducting a parametric study for systems which 

can be described by linear, constant-coefficient differential 

equations. A digital computer program has been written 

which applies the technique to determining how simultaneous 

variations in aerodynamic parameters affect the transient 

response characteristics of an aircraft. 
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As previously mentioned, the method and techniques 

described can be applied to an n th degree characteristic 

equation. A linearized five degree-of-freedom model is 

currently being developed to investigate variations in 

aerodynamic parameters. The five degree-of-freedom model 

simplifies to the three degree-of-freedom model previously 

described. 
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where 

F 3 (~) 

F 2 (~) 

F~ (~) 

Fo(~) 

APPENDIX A 
LATERAL STABILITY CHARACTERISTIC EQUATION 

G = 14+F3 (X) 13+F2 (X) 12+FI (X) I+F 0 (X) 

AEDC-TR-75-46 

=-Yv-Cl (Lp+C2Np+Nr+C 3Lr ) 

= Cl [Yv (Nr+C3Lr+Lp+C2Np) + (Ns+C3L8) (c°se-Yr) 

- (Ls+C2N 8 ) (sin~+Yp) + (Nr+C3Lr) (Lp+C2Np) C 1 

-G (Np+C3Lp) (Lr+C2Nr) ] 

= Cl{YvC 1 [ (Np+C3L p) (Lr+C2N r) - (Nr+C3Lr) (Lp+C2N p) ] 

+ (Ns+C3L B ) [CIY r (Lp+C2N p ) -ClCOS e (Lp+C2N p) 

- v~SinS-CiYp (Lr+C2N r) -Clsinu (Lr+C2N r) ] 

+ (Ls+C2N B ) [-YrCI (Np+C3L p) +ClCOSe (Np+C3L p) 

-v~COS 8+ClYp (Nr+C3L r) +ClSine (Nr+C3L r ) ] } 

= C2{v~COS8 [Nr+C3L r) (LB+C2N B) - (Ns-C3L8) (Lr+C2N r) ] 

-v~Sin8 [ (LB+C2N 8) (Np+C2L p)- (Lp+C3N p) (Ns+C3L 8) ] } 
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The design parameter zero equations are: 

~G/3x I =-A3+C l[x9+c3x6+x5+c2x8 ]A2+cI2[(xS+c3x5 ) (x6+C2x 9) 

- (x9+C3x6) (x5+C2x 8) ] 

8G/Sx 2 =-C l[x4+C2x7 ]A2+C2[-(xT+C3x 4) (x6+C2x 9) 

+ (x4+C2x 7) (x9+C3x 6) ] 

~G/~x 3 =-C l[x7+C3x 4]~2+C21[(xT+C3x 4) (x5+C2x 8) 

- (x4+C2x7) (x8+C3x 5) ] 

~G/~x 4 = C 1[c 3(cose-x 3)+(-sine-x2)]A2+c 1[c3{clx 3(x5+c2x 8) 

-ClCOSe [x5+C2x 8) -v~Sin8-Cl (x6+C2x 9 ) x 2 

-C 1 (x6+C2x 9 ) sine} 

+ {-ClX 3 (x8+C3x 5) +Clcose (x8+C3x 5) v-~OS 8 

+ClX 2 (x9+C3x 6) +Clsine (x9+C3x 6) } ] 

+C2v~[COS8 (I-C2C 3)x9-sin8 { (x8+C2x 5)-C 3 (x5+C3x 8) }] 
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~G/Sx 5 =-Ci~3+Ci [Xl+ClX9 (I-C2C 3) ] ~2+C2 [ClC3Xl (x6+C2x 9) 

-x I (x9+C3x 4) + (x7+C3x4) (x3-cos~) + (x4+C2x7) 

(-x3+cose) C 3 ] A+C 2 [-v~Sin8 {C2 (x4+C2x7) - (x7+C3x4) } ] 

~G/~x 6 =-CIC3~3+CI [C3 {Xl+C 1 (x5+C2x 8) }-C 1 (x8+C3x 5) ] l 

+C 2 [x I (x8+C3x5) + (x7+C3x 4) (-x2-sinu) 

+ (x4+C2x7) (C3x2+C3sins) ] 

(c2c3-i) ] 

~G/~x 7 = C 1 [cose-x3-C2sine-C2x 2] ~2+C 1 [ {x3C 1 (x5+C2x 8) 

-ClCOSS (x5+C2x 8 ) -v~SinS-Cl (x6+C2x 9 ) x 2 

-C 1 (x6+C2x 9 ) sinu }+C 2 {-ClX 3 (x8+C3x 5) +ClCOSe (x8+C3x 5 ) 

-v~COsS+Cl(X9+C3x6)x2+Cl(X9+C3x6)sine}]l 

+C2v~[COS8 (C2C3-I) x6-sin8 {C 2 (x8+C2x 5) - (x5+C3x8) } ) 
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aG/ax 8 =_ClC2~3 + [ClC2X1+ClC2 (ClX9+ClC3X6) _C 1 (ClX6+ClC2X9) ] ~2 

+ Ix 1{c I (ClX6+ClC2X 9) -ClC 2 (ClX9+ClC3X4) } 

+ (ClX7+ClC3X4) (ClC2X3-ClC2 coss)+ (ClX4+ClC2X 7) 

(-ClX3+ClCOSS') ] ~+ [-v~Sin8 {C 1 (ClX4+ClC2X 7) 

-ClC 3 (ClX7+ClC3X4) } ] 

~G/~x9 =_C1~3+ [ClX1+Cl (ClX5+ClC2X8) _ClC 2 (ClXs+ClC3X5) ] ~2 

+ [ClC2Xl (ClX8+ClC3X 5 ) -ClX 1 (ClX5+ClC2X8) 

+ (ClX7+CIC3X4) (-CiC2x2-ClC2sine) + (ClX4+ClC2X7) 

(ClX2+Clsinu) ] ~+ [~os8 {C I (ClX4+ClC2X7) 

-ClC 2 (ClX7+ClC3X4) }] • 
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b 

c£ 

c l  B 

C£p 

C£ r 

C n 

Cn 8 

Cnp 

Cn r 

Cy 

CY 8 

Cyp 

CY r 

Cl 

C 2 

C3 

Fi(X) 

Fy 

g 

NOMENCLATURE 

Wing span, ft 

Rolling moment coefficient, Mx/q=Sb 

Static derivative of rolling moment due to sideslip, 

Dynamic damping derivative in roll, 8C£/(~pb/2V) 

Dynamic cross-derivative of rolling moment due to 
yawing, 8Cz/(~rb/2V) 

Yawing moment coefficient, Mz/q=Sb 

Static derivative of yawing moment due to sideslip, 
~Cn/~8 

Dynamic cross-derivative of yawing moment due to 
rolling, 8Cn/(~pb/2V ) 

Dynamic damping derivative in yaw, 8Cn/(~rb/2V ) 

Side force coefficient, Fy/q=S 

Static derivative of side force due to sideslip, 

Dynamic derivative of side force due to rolling, 
~Cy/(~pb/2V) 

Dynamic derivative of side force due to yawing, 
~Cy/(~rb/2V) 

1 
2 

Ixz 
1 

IxIz 

Ixz/Ix 

Ixz/I z 

Characteristic equation coefficient function 

Side force, Ib 

Gravitational acceleration 
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I x 

Ixz 

Iz 

Lp 

L r 

L8 

Mx 

M z 

m 

Np 

Nr 

N B 

Pi 

P 

q= 

r 

S 

V 

X 

Moment "of inertia about longitudinal body axis, 

Product of inertia, slug-ft 2 

Moment of inertia about normal 'body axis, slug-ft 2 

Rolling moment stability parameter, (pSb2V/4I x) CZp 

Rolling moment stability parameter, (pSb2V/4Ix) CZr 

Rolling moment stability parameter, (pSbV/2Ix) C£8 

Rolling moment, ft-lb 

Yawing moment, ft-lb 

Airplane mass, slug 

Yawing moment stability parameter, (pSb2V/4Iz)Cnp 

Yawing moment stability parameter, (pSb2V/4Iz) Cnr 

Yawing moment stability parameter, (pSbV/2Iz) Cn8 

The ith pole is represented by a point in the complex 
plane which is given by the value of the ith eigen- 
value at the base point 

Design parameter values at the mth point, 
~m= (x~, m x2, ... ,x ) 

Design parameter values at the mth point and the 
value of the kth eigenvalue at that point 

Rolling velocity, rad/sec 

Free-stream dynamic pressure, Ib/ft 2 

Yawing velocity, rad/sec 

Wing area, ft 2 

Velocity, ft/sec 

Design parameter column vector, ~ = (Xl,X2,...,xz) 

Incremental design parameter column vector 

slug-ft 2 
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Yp 

Yr 

YB 

zi 

B 

e 

P 

Po 

Side force stability parameter, (pSb/4m)Cyp 

Side force stability parameter, (pSb/4m)CYr 

Side force stability parameter, (pSV/2m)CY8 

The ith zero point 

Angle of attack, deg or rad 

Angle of sideslip, deg or rad 

Angle of pitch, deg or tad 

Eigenvalue column vector, ~ = (XI,A2,...,An) 

Eigenvalues at the kth point, ~k (X~,A~, , n) = ... X k 

Incremental eigenvalue column vector 

Mass density of air, slug/ft 3 

Mass density of air, sea level, slug/ft 3 

Radian frequency 
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