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PREFACE 

The work reported below Includes the theses research of 

Stephen Wolfe,  Stephen O'Dea and Jean P. Patureau.    These students 

performed a significant amount of the work reported herein.    Their 

{research resulted in Masters theses completed in The Department of 

Mechanical Engineering, M.I.T., and available from the M.l.T. 

libraries. 
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OIL SPILLS IN THE ARCTIC 

1.  INTRODUCTION 

With the discovery of large oil reserves In the Arctic, 

there naturally arises questions about the behavior of oil spil- 

led, as It may change the fragile Arctic environment. To date, 

there have been few oil spills In the Arctic. Nevertheless, one 

expects that tankers, pipelines and drilling will all contribute 

to the oil spillage, much as happens in warmer waters. However, 

as there is little in the way of a historical record of oil spil- 

led In the Arctic, it Is not presently possible to determine which 

of these sources is the most significant. 

The environmental concerns aroused by potential oil spillage 

are founded broadly on two ideas. First, the characteristic 

tiine for biological degradation in the high Arctic Is believed to 

be quite long, on the order of ten years. This means that if 

spillage in an area is more frequent than once a decade, we might 

expect permanent changes in the environment. Second, crude oil 

is generally a dark color. If spilled on ice or tundra, it will 

change the solar albedo of the area covered. Such a change in 

solar heating is known to drastically change tundra. Of course, 

there is also the toxic effect of oil on flora and fauna - but 

a discussion of such biological effects is beyond the scope of 

this report. 

There are a number of new features which arise in Arctic oil 

spills. First Is the role of ice. Sea ice has a variable den- 

sity, ranging from perhaps 0.70 (gm/cc) to 0.91 (gm/cc), the 

latter value being associated with old ice containing very little 

brine. The actual ice density depends on how the ice formed, and 

its subsequent history. 

mm '   -      I '' llllMi 
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In contrast, the density of North Slope crude oil Is 0.89. 

After aging two weeks In the Arctic suimer, this density rises 

to about 0.95  . Hence the oil can be either heavier or lighter 

than the sea Ice. 

Suppose now that a large volume of oil Is spilled In a lead. 

Subsequent .to the spill, the lead closes. On a hydrostatic argu- 

ment, one can say that If the oil Is heavier than the Ice, It will 

be forced under the Ice pack. The Important Idea here Is that we 

must consider both situations - oil under and over the Ice. 

A second new feature Is that of surface roughness. It Is 
(2) 

well known   that sea Ice Is rough, and that the roughness 

elements have a more or less random character, with "hills" and 

"valleys". These statistical properties of the Arctic surface 

are extremely variable - the rms roughness height can be as 

small as several Inches or as large as several feet. Similar 
(2) 

statements can be made for tundra  . 

Roughness Is important, because, if oil is spilled on a 

rough surface, it will run down Into the "valleys" and remain in 

these "pockets". See Figs. 1 and 2. After oil spilled has stop- 

ped spreading, its area Is determined by the extent of these 

pockets or puddles. Of course, the rough surface also modifies 

the way in which oil spreads over the surface. 

These effects may also be present if oil spreads under the 

Ice. In that case, puddles form at the high points of the ice- 

water Interface. 

A third feature is the fact that crude oils are sticky, and 

they stick to ice. This feature means that ice traps oil, pre- 

venting Its free release and spread in the environment. Of course. 

In ehe Arctic summer, the Ice adjacent to oil can melt, and the 

oil released. Hence one would expect that oil spilled in the 
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Arctic would be cyclically trapped and released. 

A fourth new feature has to do with how oil spreads on water, 
(3) This is a topic which Is fairly well understood      .    The new 

feature in the Arctic situation is that  the surface tension 

spreadlnf» regime        Is apparently absent.    Thus,  Arctic oil 

spills do not spread to a thin film (driven by surface tension) 

as do their warm water counterparts. 

The purposes of this report are twofold.    First, we shall 

give a description of the short term history of an oil spill - 

including the rate of spread,  the area covered by the oil, and 

the effects of leads.    In each of these areas, our knowledge is 

based upon a physically sound theory which successfully cor- 

relates carefully controlled laboratory data, and what field 

data is available. 

Second, we discuss the evolution of oil, from a non-bio- 

logical point of view.    A model of oil aging Is developed, and 

its predictions compared with field observation.    The rtl^klness 

of oil on sea ice has been measured,  and the results correlated 

with a theory which predicts how thick a layer of oil can stick 

to the ice in Arctic conditions. 

From these studies we show that the evolution of an oil 

spill in the Arctic Is a much slower nhenotnena than In temperate 

waters.    The  area covered,  even from a supertanker spill,  is 

quite small,  on the order of some few square kilometers.    Tims 

the technological problem of combatting Arctic oil spills is 

much different than that in temperate water:    it is not likely 

that barriers will be useful or needed.    A system with rapid 

response time is not required.    On  the other hand,  there seems 

to be no presently known way to locate easily, much less remove, 

oil trapped under oil in ice. 
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2. DESCRIPTION OF SPILL 

In thi section we give an analysis of the events Immediately 

following the release of oil In the Arctic. To do this we must 

develop a description of the rough Ice surface. We shall con- 

sider the Ice to have an average height <h>, above sea level. 

The actual height of the Ice Is then equal to 

h(x) - <h> + hf (x) (1) 

h1(x) denotes the variable roughness of the Ice surface. 

Where h' Is negative, oil spilled will tend to accumulate. 

(3) The data on h1 are typically gotten   from a laser pro- 

fllometer mounted on an aircraft flying over Ice. The signal 

which results from such a measurement appears essentially ran- 

dom. There seem to be no features which distinguish one area 

of rough Ice from another (nor should there be, on physical 

grounds). If no statistical distinction can be made between 

different areas of rough Ice, then mathematically speaking the 

random variable, h'Cx) may be considered a stationary stochastic 

function. 

To study the pocketing of oil on the rough Ice surface, 

one Is lead to ask over what extent h' Is negative, so as to 

determine how large the pocket Is. 

But, the standard analysis of ice roughness amounts to com- 

puting the power spectrum of h' . The power spectrum P is the 

Fourier transform of the auto correlation function, ( f Is a dunsny 

variable) 

^'(x) h^x + T)> P(f)cos 2 f df (2) 

"   .^-wmi mm 



We can make such a statement because, as no region of the sur- 

face is statistically distinct from other regions, the average, 

^'(x) h'Cx + T)> only depends on T.    Then P only depends on f. 

Up to now, we have been discussing how one region of the 

surface is correlated with another, located at an arbitrary 

distance T away.    However,  the actual data are now more re- 

strictive, as the aircraft flies straight while the profilometer 

records surface roughness.    For our application T Is a distance 

along the surface parallel to the flight path. 

/V(x), h   < 0 
^'(x) h'Cx + T)>   where    h'Cx)    -  - (3) 

„0 elsewhere 

This is a major theoretical problem.    In this report, we shall 
(A) only summarize the mathematical theory we have developed      . 

A detailed physical description of the results will be given. 

It turns out that to relate   (3)  to  (2), additional informa- 

tion, beyond P(f)  is required.    Basically, we use the fact that 

h is normally distributed.  I.e.  if 6(h)dh gives the fraction of 

the time h will be between h and h + dh,  then 6(h) has the form 

t    .                                         , -(h - <h>)2 

ß(h)    -    - exp        -^—=-  
SK^- \      2ah [ (4) 

- <rhM2 

rh 

Here, a. ■ «^h') >, the mean square roughness height. Figure (3) 
h 

r compares   I    6(T)dT against h for a suitable value of a..    The 
'—00 

solid line is the theory, and the points are field data from 

reference (3). 
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The remaining parameters which characterize the surface 

are measures of the horizontal scales of the surface.    We have 

found th. 

assuming 

(3) 
found that the field data       fit a power spectrum calculated hy 

^'(x) h'(x+ T)>   -    Ji-5-   cos ^- (5) 
1 + kt 1 

provided suitable choices of k, T and o.   are used.    Figures (4, 

5 and 6) show the comparison between field data and Eq.   (5). 

Physically,     *o.   Is the roughness height.    T Is the horizontal 
-1/2 length of a given pocket,    k Is the distance In which the cor- 

-1/2 relation between h'(x) and h'Cx + T-x+k        ) becomes negligible. 

Suppose now that a surface, characterized hy a,, k and T is 

specified.    Let oil be released on this surface.    The oil spreads, 

and we next proceed to estimate how fast the oil spreads. 

There is little doubt that the oil spreads due to gravity. 

Let capital H be the thickness of the oil layer, and A the dif- 

ference In specific gravity between oil and water.    Then the 

driving force is 

2ir(pÄgH)Hr   where A 

'1 over ice 

A under Ice 

(6) 

as r is the radius of the oil pool at a time t. 

After careful study of all available data, we have found 

that the retarding force is a frlctlonal one, as the oil reaches 

new pockets.    This frlctlonal drag is concentrated at the leading 

i'i in 'iiii—'-MilÜlliiUl'^iliiwtii-iinii ir-w-^i...— ;....»-^... ■, '.,.    - ./.^^MäiimiMimämtiittaiiiM 



160 
1 1 

% =0.203326  ft2 

— 

140 

i 
^ 

k   * 0.009466 ft"2 

T  = 540   ft 
— 

120 

\ 

— 

100 

\\ 

— 

P 
■cr37J>  80 

h \\ 

■     DATA POINTS 
  MODEL 

60 !— — 

40 ■     V — 

20 — 

■ ^>%SIIIII^ 

—1 
0.01 

«r^f 
0.02 0.03 

FfG.4     EXAMPLE OF ONE-DIMENSIONAL POWER SPECTRUM 

jfiii-lllffiiifri^if'ffr jhTr-m imrr   11 M^M ^Wm*»,.   '■ I MmiliWHilttüüMt^ 
lifla.».;«.!?, .h.«..^.^.^..^.*.^».«^^^.-.. 



(rh   » 1.016   ft 

k  » 0.002786   ft 

T = 200 ft 

■   DATA   POINTS 

— MODEL 

0.01 0.02 0.03 0.04 

FIG. 5 EXAMPLE  OF  ONE-DIMENSIONAL   POWER 
SPECTRUM 

10 

m^mmUmm .«•MMiMiMMaH mm       i ".--■•-'■;' ■■■.-..-- ■- 



L   '" 1       1 " III 
36 

<rh »0.274596   m2 

33 F^-^ IB 

k    « 0.04075    m"2 
— 

30 
■ 

T  = 34.93  m — 

27 — — 

24 — — 

21 _ ■ ■\ — 

P      10 

■ DATA POINTS 
^8 — MODEL 

15 
■ 

— 

12 — 
■      \ 

— 

9i r 
^    ■ 

— 

6 - \^ ■ -J 

3 
^v                                 ■ 

i 1                 1 1       ,       1          —-^ 
1      1 

0.01     0.02  0J03     0.04    0.05    006 

-h ,/2 f 

FIG.   6     EXAMPLE OF ONE-DIMENSIONAL POWER SPECTRUM 

11 

i   i   T'lrimiimiiiiri ■U^^M......^.,.,,,     , ,m,;       --' -""- ■ 
^W»*^!     ■ V,^rtiv. 



edge of the oil slick.    For radii less than r,  the oil flows 

over filled pockets of oil with essentially no friction. 

Because this pocket filling process is controlling the 

rate at which the oil spreads, it turns out that the oil spreading 

rate is controlled by rate of release of the oil.    For simplicity, 

we shall assume an average rate of volume released, 0.    Continuity 

then requires that 

Trr2H   -   Qt (7) 

i 

The frictional retarding force is proportional to the "area" 
1  /— of the roughness reen by the approaching oil,   (<h^>    ■   •=• va.) 

2Trr<h|> 

The pressure drop experienced as the oil flows Into new pockets 

is proportional Co, and is caused by the drag exerted by the rough 

surface on the oil. 

A      2 

where   -r-   is the velocity of the oil at the leading edge of the 

slick.    Balancing the driving and retarding force gives 

Ar    2 

27r(pAgH)Hr - 2TTr<h^> p ( ^ ) (8) 
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dr 
By using Eq. (7), we can determine that, as jf - p (the coefficient, 

0.25 Is determined empirically) 

r - 0. '•« (^)1/6 
.2/3 (9) 

Fig. (7) shows that this simple equation correlates both the 

laboratory data   and field data^ ''^ . In working out calcu- 

lations of how fast oil spreads over or under Ice, Eq. (9) should 

be used. 

The laboratory data were gotten by building several random 

rough surfaces whose characteristics could be fitted empirically 

by Eqs. (4 and 5). Experiments were done both for oil spreading 

under and over the Ice surface  . 

Oil spreading in a lead filled with water is easily treated 
.(7) as are other spills over water That is, there are several 

phases of oil spreading - inertia, viscous and finally surface 

tension. There are standard formulaev  which give the rates 

of spread. However, there Is one Important modification which 

arises in the Arctic; the surface tension phase of oil spread 

Is absent, because the net spreading coefficient Is essentially 

aero. This means that the motion ceases when the oil reaches 

a certain thickness, on the order of 1cm  . Practically speak- 

Ing, then, Eq. (9) and those referenced   provide a method of 

working out the spreading rate of oil spilled in the Arctic. 

The spreading stops when either (a) the oil thickness on 

water reaches about 1cm, or (b) if the oil fills all the pockets 

of the Ice field. In the first case, the area of water covered 

by oil is simply proportional to the volume released: 

Area - Volume/thickness (10) 
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The situation is more complex In the second case. If the 
(4) rough Ice data Is fitted with Eq. (5), then Patureau   shows 

that the surface area of an average pocket, Smp, is 

Smp - T2 (11) 

and the average volume of a pocket is 

Vnp - 2T_ (2ah)
1/2 (12) 

IT 

Now the area that an oil slick will occupy depends simply on the 

average number of pockets which can be filled with oil.    Clearly 

the total area covered must then be proportional to the volume 
(4) spilled, and inversely proportional to Vtnp.    The exact result 

is 

^max"    "    S*Vjr2    (^) <13> 

<S      > is the average area of a spill over or under ice. 

For a random rough surface,  Figs,   (8 and 9) compare this result 

with laboratory data.     It is seen that there is fairly good 

agreement with this result. 

Using this result, we can estimate the area covered by an 

oil spill on ice.    Table I shows the results for a spill of 
5        3 V - 5 x 10    ft.    (about 15,000 tons)  for three sets of T, 0. 

(4) gotten from Arctic data      . 
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TABLE I 

T 0h Smp 

115 ft. 2,295 ft.2 1.32 x 10A ft.2 

200 ft. 1.016 ft.2 A x 10q ft. 

540 ft. 0.203 ft.2 4 x 10A ft.2 

<s     > max 

7.29 x 105 ft.2 

1.2A x 106 ft.2 

2.78 x 106 ft.2 

If a super tanker full of oil,  150,000 tons, were spilled, 

then for Ice described In Table  I, one gets areas ranging from 

1/4 to 1 square mile as the area covered.     Such small areas 

should be contrasted with the Torrey Canyon experience - in that 

case, the oil spread to some 300 square miles in area.    On 

Arcclc ice,  in contrast, the present study predicts a much 

smaller area. 

The calculations of <S      > in Table I are based on one max 
dimensional spectra, and the assumption that the statistics are 

the same in all directions on the ice surface.    This is a crude 

assumption, which v/as made because no two dimensional spectra 

of ice field roughness are currently available.    However, using 

a variety of assumptions of the asymmetry of ice roughness 

elements does not change the result by much more than a factor 

of three. 

Although there is very little  field  data on the character- 
(3) istics of the under ice roughness      , it is approximately true 

that the ice is in hydrostatic equilibrium.    If we assume  that 

this is exactly true,  then for the under ice surface, T is the 

same as that of the over ice roughness, and the roughness height, 

i^T", Is about seven times greater;    as 1/7 of the ice is above 

the mean water level.    Thus,  the mean pocket volume, Vmp, is 

seven times greater for the under ice surface.  (See ref.  2) 

18 
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If we consider two cases, one In which a volume V of oil 

is «pilled over the Ice, and another where the same volume Is 

spilled under the Ice, then the above argument suggests that the 

area <S  > of the oil under the Ice Is 1/7 that of the area 
max 

over the Ice. 

The hydrostatic assumption Is too crude Co permit the ac- 

curate estimate of this area ratio.    But It Is quite clear that 

the Vmp, mean pocket volume, under the Ice must be much greater 

than over the ice. 

All the results of this section may be summarized as follows; 

At the end of the spreading phase of an Arctic spill,  the oil 

will be trapped either In a lead or on the Ice surface;    and the 

area will be much less than what one would expect In temperate 

climates.    Practically speaking, we expect that a super tanker 

spill will occupy at most about a square mile In area. 

3.    EVOLUTION OF OIL IN THE ARCTIC 

In this section we consider what happens after the spilled 

oil has ceased to spread.    Then the oil will either be in pockets 

above or below the Ice surface, or in a lead,  floating on sea 

water.    From a mechanical point of view, we are Interested in 

whether the oil may migrate, over a long period of time, from 

the origin of the spill.    There are really only two potential 

causes for such migration.    First,  there is  the slow increase 

in oil density with time - we refer to this process as aging. 

In about two weeks, In the Arctic summer,        the density of 

Forth Slope crude Increases to 0.95, which is heavier than 

virtually all Arctic ice. 

In the Arctic summer,  the dark oil on the surface of the 

ice absorbs enough heat to float in a pool of melt water.    If 
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a lead now opens, the oll will flow into it. If the lead then 

closes, the oil will flow either under or over the ice depend- 

ing on whether it is lighter or heavier than the surrounding 

ice. In this sequence of events, the oil density determines 

whether the oil will flow under or over the ice. 

The second major factor in migration of oil is the question 

of whether oil sticks to Ice or not. We have done a separate 

experiment to determine the stickiness of North Slope crude and 

diesel oil to sea ice, and find that substantial amounts of oil 

stick to ice. In particular, this stickiness, discussed below, 

apparently precludes the dispersion of oil under the Ice by the 

action of currents. 

Because of these somewhat unexpected results, the evolution 

of oil spilled in the Arctic will generally consist of an evapora- 

tion of the lighter fractions, causing an Increase in density. 

Second, if the oil is located under the ice, it will stick to 

the ice.  In the winter season,oil located over the Ice will 

stick to the ice also. In summer    , the oil located over 

the ice does not stick, but floats in a pool of melt water. 

From this discussion, It is apparent that the evolution 

of spill oil hinges on an analysis of how the density of the 

oil changes with time, and how the oil sticks to the Ice surface. 

A. The Evolution of the Boiling Point Distribution 

The purpose of this section Is to develop equations 

which describe the boiling point distribution of crude oil 

as it ages on ice or water. We assume, firstly, that at all 

times the oil is well mixed. That is, the concentration of 

the ith component of oil is always uniform throughout the 

oil. The argument for this assumption goes as follows: 

20 

— ggginggdii—^tt|| 



HHHMNMWH 

T-|WI^",.llP|"iJJ.""PF,!T l'WW-J.»W,TOli|ii<.?y|^T»»w|il,,,|l,.WBI.W|Wv.,,,-,^^^ . 

^ 

If the oll spreads to a thin (1 cm) layer on water, 

Intermolecular diffusion will smear out any gradients of 

concentration In a short time (1 day).    On the other hand, 

if the oil Is pocketed in deep pools, the action of wind 

will be to make waves on the oil surface which will mix the 

oil.    Even In the Arctic winter, when the oil on the ice 

surface Is frozen solid, we believe this will be a good 

assumption because the time constant for evaporation In- 

creases exponentially with decreasing temperature, whereas 

the mixing time for oil Is at most the time for character- 

istic changes in the Ice field, i.e.  less than a month. 

The assumption is that this mixing process   will 

always     have a time constant which is less than the time 

constant for evaporation. 

Second, we use a simple turbulent diffusion model, 

based upon a neutrally stratified air flow over a rough 

flat plate.    There is no question that there will be de- 

partures from neutral stability in the air flow over the 

oil or the Arctic Ocean.    However, these departures will 

be unimportant near the rough surface, as there the rough- 

ness elements will dominate the mixing process, provided 
(9) there is an appreciable wind velocity      .    Under this as- 

sumption, the diffusivity at sea level is 

ku z 

where z is the roughness height, u is the friction velocity 

and k is Von Karman's constant, having a value of A/10. 

To compute a flux we need to know the gradient of the 

concentration of the oil vapor in the air. We argue that, 
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due to the low rate of evaporation, there will be essentially 

zero vapor concentration for heights greater than z.    On the 

other hand, due to the strong mixing induced by the rough- 

ness elements, we must expect finite concentrations for 

heights less than the roughness height.    Hence, the length 

scale for the concentration gradient Is z.    The flux Is pro- 

portional to the concentration times 

Xu 

Third, following Blockker   , we assume the oil, which 

is a mixture of a large number of organic components, is 

considered an Ideal thermodynamlc mixture. Although this 

assumption Is certainly untrue In detail, we expect that 

the discrepancies caused by non-ideal behavior will not 

cause any quantitative changes In the results. This assump- 

tion Implies Rauolt's law is valid. 

in the same vein, the oil vapor of the 1th species is 

considered a perfect gas. The vapor pressure of the 1th com- 

ponent over Its liquid obeys a Clapeyron equation. These are 

excellent assumptions because the temperatures of the vapors 

are all low cowared to the critical temperature for the 

substances Involved, and the gases are all dilute. 

Finally, let us show that evaporation Into the air 

dominates dissolution of oil into the water. The mass flux 

per unit area of the 1th fraction of oil to the air is 

c1Xu 

22 
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where c. is the density of the 1th component of oil vapor 

at the oil surface. The flux of the 1th component to the 

water Is about 

\0SiXu
V 

where S,   Is the solubility of the 1th component in sea 

water. 
* * 

Now u    Is much smaller than u .    To see this, consider 

the case where the oil lies at the water-air interface.    At 

the Interface,  the turbulent stress is continuous.    Hence 

Using these results,  the ratio of evaporation to air to flux 

to water is 

o -1 -4 Typical values at 0 C are c. ■ 10     p  .   , S,  ■ 10      and 

Pa/Pair " 103- 

Hence the ratio is on the order of 30.    We shall ignore dis- 

solution of oil into water. 
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Consider now a mass    of oil, containing i fractions, 

each vith a molecular weight M . The mass of each fraction 

is a. The mole fraction, x. depends on the number of moles 

in the ith fraction, n., as 

ni   ni 
xi ■  r  " 1^ (14) 

The mass of the ith fraction is 

NM1x1   -   in1 (15) 

Since the volume occupied by each fraction, V. is related 

to the density of each component as 

nl   "   PiVi 

it can be seen that the bulk density is 

l.V. ZMiXl/pi 

p   m    ^Mixi 
(16) 

Raoult's law states that the partial pressure of 

the 1th component is proportional to its saturated vapor 
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pressure P. and the mole fraction x 

P  - x P rl    xirl 

The saturated vapor pressure Is determined by Clapeyron's 

equation 

exp 
LRi( V 'J 

(17) 

This equation relates the 1th component to Its boiling tem- 

perature T_.    At T-, the 1th component has a saturated 
O a 

vapor pressure of Pn » 1 atmosphere.    Here q is the latent 
a 

heat of vaporization and R, the universal gas constant. 

Next, we relate the partial pressure P ,  to the density 

of the vapor about the oil,  c.  assuming the vapor to be a 

perfect gas. 

RT (18) 

Using (14)  and (18)  in combination we determine the 

rate of evaporation of the 1th component to be, for an 

exposed area A, 

dn, 

dt -   ( RT exp I RTB     V      T        J       N ) (19) 
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The solution of (19) gives n (t;T ) and N(t).  By equa- 
1    B 

tlons (14) and (15), this Is equivalent to knowing M(t) nd 

M.(ttT-). The evolution of the boiling point distribution 

Is normally represented in graphical form with one axis 

being the fraction having boiling temperatures higher than 

Tg, that Is 

*i    '   I /      Vl      C20) 

and the other axis being TD. fa. Is a dummy variable) is  o 

B. The Evolution of Density In an Oil with a 
Continuous Distribution of Boiling Points 

The purpose of this section is to extend the previous 

results to an oil of infinitely many components, each with 

a mole fraction dx. To do this, we must associate with 

each boiling point a molecular weight, M(T_), Of course, 

there is not a one to one relationship between molecular 

structure of each component of the oil. But it is not 

realistic to identify each of the large number of components 

in a typical crude oil. Figure 10 shows the relationship 
(12) 

M(T_) for various classes of hydrocarbons   . The solid 
o 

line shown is simple linear fit for the lower boiling points: 
l»i 

M(TB)    -    0.42(TB - 106*) (21) 

(Note that T- is absolute temperature) 
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Knowing the molecular weight, we now proceed to con- 

sider an oil with incremental mole fractions, dx(Tn,t). 
D 

The mass of oil is 

M 
■■!' 

MdX(TB) (22) 

where the integration is carried out over T . This conven- 

tion will apply below. 

The boiling point distribution may be defined, using 

Eqs. (22) and (20) as 

i: Mdx 

■      00 

(23) 

Mdx 

As the number of moles in each species is dn ■ Ndx, Eq.   (19) 

may be written 

fc-! 

B 

dx 
Xu Pj 

RT r exp l M^ < 

T - T, 
)]dx      (24) 

To evaluate Eq. (24) we need to know how q depends on T . 

Trouton's rule (see Ref. (10)) is that §=- is approximately 
B 

a constant - its value is near S.O. 
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Given b(TB, t - 0) and N(t - 0) Eq.   (23) may be used 

to compute x(T_, t ■ 0).    Eq.   (24) plus the constant, 
B 

j; dx 1. x > 0. (25) 

then specify how N(t) and (T_, t)  change with time.    This 

determines the evolution of b(T-,  t). 

The bulk density Is related to x by 

1 
P I 

j; 

Mdx 

Mdx 

If all fractions which have boiling points less 

than T'  have been evaporated,  then B 

Mdx 
P^> 

Recognizing that the density changes are always small, to 

a good approximation. In the range 50 C < T_ < 500 C, 

p(Tj) - p(T^ - 273°) + ( f^r ) (TJ - T^ (26) 
B 

where     &-   -   2.8 x 10"4 -SJ-, from Figure 11. AT, cc0K 
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For Kuwait crude Pdl - 273 ) 0.869. In figure 1 of 

reference (12) we find that, for Kuwait crude b(T-) is 
a 

approximately a linear function of T ;    rising from Oat 

50OC to 1 at  500OC. 

bd,,)    -    (!„ - 323oK)/450oK (27) 

By differentiating Eq.   (23)  and using this result, we 

determine that 

dx 
dT B 

A 
M * const (28) 

With this result we may invert Eq. (27) to find the density, 

Pj(T0)f of the fraction of oil which boils at T_. The re- 

suit, obtained by using Eqs. (24), (25), (26), and keeping 

only first order changes in Ap is 

Ap, 
pl(V " pi(Ti) + (Ap/AT) (T " V ; üT 

Ap(Tj) 

AT 
(29) 

Provided p(T') and b(TT)) are known for a given crude 
B a 

oil,  p. (Tn) may be determined in a manner analogous to the 
IB 

derivation of Eq.  (27). 

At this point, we see that if b(T_,  t - 0), N(t - 0) 
o 

and p(T4i t ■ 0) are given we may perform the following 

steps to obtain a solution to the problem.    First, PJ (TR) 
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is gotten from (T^, t - 0) and b(TB, t - 0). Second, 

Eqs. (2A) and (25) are solved to yield N(t) and x(T0,t). 

Third, b(TB,t) is evaluated using Eq. (23).  Fourth, p(t) 

is determined using Eq. (29). In this manner, the evolu- 

tion of the oil is specified. 

C. Calculations 

For the purpose of calculation, it is simplest to de- 

fine the characteristic time, T, as 

T(TB)  - 
Xu\A 

RT 
exp 

T - T 

RT. B 

(30) 

Figure 12 shows the behavior of the characteristic time for 

various points and various values of T.  In this figure Trouton's 

rule, qM/RT_ «= 5.0, was used. This chart shows the signifi- 

cant decrease in aging rate of volatile components as T, the 

ambient temperature. Is decreased. 

The first calculation we present is for a two component 

mixture. The lighter component has a boiling point of 200 C 

and the heavier, a boiling point of 400 C. For Morth Slope 

crude, about 25 percent of the oil has boiling points lower 

than 200 C and 25 percent has boiling points greater than 

400 C. The molecular weights at these boiling points are 

M1(200
OC) - 150, M2(400

oC) - 350 from Fipure 10. The den- 

sities are determined from Eq. (26) and p(T' - 273) - .89 
a 

to be P1  - .94, p2 -1,0, at T - 273. 
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Under these assumptions the equations of Section 3 take 

the simple form (from eqs. 14 - 20) 

nl + n2   "    N 

dn, 

dt T1     N 

dn2 

dT 
1_ 
T, N (31) 

By dividing one equation by the other, we obtain 

n^t - 0) )        -    ( n2(t - 0) (32) 

where the initial values, n1(t - 0) and n2(t ■ 0) are deter- 

mined by the assumption that both fractions have equal mass 

at t ■ 0: 

^lnl    ■    M2n2   ' 

which gives, for one mole of mixture at time t • 0, 

n^t - 0) 
M. 

M1+M2 '    n2<t " 0)    - M1 + M2 
(33) 
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The evolution for t > 0 Is determined by Eq.   (30);    hence 

t/T, 
J  n1(t - 0) 

dn n VT2 

By carrying out these Integrals It can be shown that both 

fractloi 

Ref. 2) 

fractions completely evaporate In the same time, t        (see max 

Snax   "    T2 n2(t - 0) + ^ n^t - 0) 

and 

4   "    Snax " Tl nl(t) " T2 n2(t) (34) 

Even though the n.  fraction evaporates much more rapidly 

initially. 

Figure 13 shows the boiling point distribution 

bO.    ; t) Vl 
B1 '     ' M1n1 + M^ 

bCr,   , t) 
V2 

B2  • M1n1 + M2n2 
(35) 
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The evolution of density, 

,»"1" •"'•"'•■ 

1 
P 

iu^ (36) 

Is shown on Figures 15 and 14. 

These results bear some discussion. On Figure 13 

notice that there Is a nearly linear decay In the light 

fraction, b., on a time scale T,. This decay produces a 

nearly linear Increase In density as shown In Figures 15 

and 14. The two component theory Is too crude to predict 

the exact shape of the density vs. time curve, as observed. 

To compare these results with observation (1,6) we esti- 

mate the area the oil sample will occupy,  and a typical, 

average value of u  .    Fairly good agreement Is obtained be- 

tween theory and observation If X - k/10. 

The time scale for the evolution of the density, T., IS 

about 10 days for T - 2730K (0oC), and about 14 days  for 

T ■ -17 C, the temperatures corresponding to summer and 

winter conditions.    Much larger variations In T.  are pre- 

dicted with variations In wind speed.    The prediction Is 

that during high winds,  the aging process accelerates.    This 

Is observed      .     (See Figure 15).    No account Is taken of the 

effect of snow cover, but when the oil was  covered with snow, 
.(6) 

the aging process stopped (See Figure 15 ). 

To account for the variation of T, with temperature, 

Figure 12 should be used.    Using Figure 13 we then can de- 

termine that,  for components boiling at 200 C,  the time 

constant T.  IS Increased from 10 days to 17 days when the 
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ancient temperature Is decreased to -20 C.    From Figures 15 

and 14, it Is clear that T.  Is the time to evaporate the 

lighter components of the oil.    Thus, we may say that In 

the Arctic winter,   the aging time for oil Is approximately 

doubled.    Since It  takes about 14 days for most of the lighter 

fractions to evaporate In the summer. It take about 1 month 

for the lighter fractions to evaporate In the Arctic winter. 

We can show that having a continuous distribution of 

fractions with various boiling points does not change the 

picture outlined here.    Differentiating Eq.   (24) with respect 

to I- produces an equation similar to Eq.   (31).    By analogy 

with the solution (34) for the two component model. It can 

be shown that the solution to Eq.  (24) Is 

' ■ '•   ]T   «V % it"1!. " ''    \   T<V % ltdIB 

Sine« N ||-   dIB 
B 

■3=-   dT. Is the moles In the fraction 
B 

whose boiling point  Is T_,  this result may be written as 
0 

t - t max 

T 

) dn(t, TB) 

which can be readily recognized as exactly analogous to 

Eq.   (34). 

Thus, we may conclude that each fraction of oil decays 

as described by the simple two component model.    Thus, 

Figure 12 can be used to predict the evaporation time of a 

40 

' -.^.,^-. ly^,.^..,...^,,* .■..,.^.  .^...A^..^..,^..^. .i;„^, , , 1 ... .„ta 
■        

M ■ ■    -*     i   ■- 



Pf" 
r 

W[iiii.!iiiiiiff!iipawimHi,iiiii....i|iwW 

component with an arbitrary boiling point, T_. 
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D.    The Maximum Size of an Oil Spill 

In this section, we summarize the results of Wolfe and 
(13) Houltv      .    The detailed report of this portion of the work 

has been written up as a separate paper, and is included as 

Appendix A. 

If one assumes that, over a long period of time, the 

oil, due to density changes, migrates under the ice, then 

the question arises, does the oil stick to the under ice 

surface?    To answer this question, an experiment was per- 

formed, in which sea water was frozen by a one-dimensional 

heat flux, thus simulating the Arctic situation.    Oil was 

injected under the ice,  and subsequent events were studied. 

The heat flux was maintained after the oil was injected. 

It was found that,  after some time,  the ice began to 

freeze under the oil.    If the freezing process continued 

long enough,  an inclusion of oil, in ice, was formed.    These 

results directly imply that if oil is spilled under the 

Arctic ice in the fall,  it will be frozen Into sea ice 

floes as an inclusion during the winter.     In this way, a 

mixture of oil and sea ice Is generated.     Such mixtures 

have been observed during the Chetabucktoe Bay spill. 

Based upon this laboratory verification, we expect that 

most oil spilled in the Arctic will end up as in a mixture 

of ice and snow. 

Another very interesting observation is that North Slope 

crude, at the temperature of freezing sea water, is a good 

insulator compared to the sea ice itself.    This was verified 

by measuring the temperature profile in the ice before and 
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(13) after the oil was spilledv  , This result means that the 

heat will tend to flow around the oil pocket under the ice, 

rather than through it. Near the edge of the oil pocket, 

the local heat flux will be higher than the average, and 

hence the ice will grow more rapidly there.  (The heat re- 

moved is balanced by the latent heat of freezing of sea 

water.) Before the oil pocket is completely included in 

sea ice, there will be a rim of ice around the pocket 

thicker than the average.  It may be that the existence of 

such a rim might be an aid to locating oil under the ice. 

(13) The most Important result of Wolfe and Hoult's 

work is an estimate of how much oil can stick to the under 

surface of the sea ice. To determine this, after the oil 

was injected into the freezing apparatus, the ice plug was 

removed, and the amount of oil remaining measured. A care- 

ful study was made of the various mechanisms by which a 

layer, of' thickness, 6, to stick to the under surface of 

the ice. 

It was found that the oil adhered to the Ice under sur- 

face. If Q/A is the heat flux flowing through the ice and 

oil, the thickness, 6, is given by the simple formula, 

6-8 watts (Q/A) 
-2 

In the Arctic winter, the heat flux through the ice is 

about 35 watts m . This gives a 6 of about 6.5mm. If crude 

oil is spilled from a supertanker, with a total volume of 
3 

113,000 m , the total area which could be covered by oil is 
2 

about 17 km (6 square miles). 
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This Is an upper bound, because undoubtedly some of 

the oil will be trapped In deeper pools. 

A.    SUMMARY 

It Is helpful to conclude this report by commenting on the 

practical application of the results of this work. The most im- 

portant result, which is substantiated by all the research to 

date, is that the oil in even a very large Arctic spill will be 

confined to a very small area due to natural processes. This 

simple, general, conclusion is supported by both the spreading 

and pocketing experiments as well as the studies on oil evolu- 

tion. 

As a corollary to this result, it seems clear that, unlike 

the situation in temperate waters, there is little incentive to 

promptly clean up large oil spills, as the area of the oil spill 

will not measurably Increase with time, while the oil remains 

in contact with sea ice. 

■ 
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APPENDIX A 

EFFECTS OF OIL UNDER SEA ICE 

1.     INTRODUCTION 

The discovery of oil on the Northern Slope of Alaska had 

raised many questions concerning the effects of oil spills In 

the Arctic Ocean and other Ice filled waters.    The handling 

and transporting of oil In sizable quantities always results 

In some spillage, the average spillage being on the order of 

0.13! of the quantity transported (Blumer, 1969, p. 6).     The 

North Slope borders on the Arctic Ocean which Is essentially 

ice locked for about nine months of the year (SEV Data Package, 

1970, p.  11).    Even during the summer months the permanent Ice 

cap remains within ten nautical miles of the shore  (SEV Data 

Package, 1970, p. 3A).    Any sort of waterbom transport of 

North Slope crude oil will create the possibility of spilling 

large amounts of crude oil under the ice. 

Granted that under ice oil spills are almost certain to 

occur if Arctic oil operations continue, it is Important to 

know how such spills can be contained and removed if the en- 

vironmental damage caused by them would be serious enough to 

warrant such action.    In the search for this information the 

first question to ask is how the oil spill behaves under the 

ice.    Much is known of how oil spreads on temperate waters, 

both from experimental and theoretical studies and from observa- 

tions of large scale disasters such as the Torrey Canyon and 

Santa Barbara Channel incidents.    Almost nothing is known of 

the behavior of an oil spill under sea lee.    The speed with 

which the oil spreads or the ultimate thickness to which It 

spreads are unknown.    The interaction between the oil and the 
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peculiar microstructure of the lower layer of the sea ice (see 

Weeks, 1966, pp. 173-178) Is also unknown. 

There has been a good deal of speculation concerning the 

way sea ice will Interact with trapped oil under It. Three 

principal nodes of behavior have been considered possible. 

(1) The sea Ice will entrap the oil causing the formation of 

a matrix of oil and Ice. 

(2) The ice will entrap the oil In a pool and proceed to form 

beneath It. 
'. 

(3)    The Ice will continue  to grow pushing the oil before It. 

(See Fig. 1).    Such a phenomenon Is difficult to observe In 

field experiments, so laboratory experiments were conducted to 

determine which of these phenomena occurred and to examine the 

phenomenon quantitatively,  if possible. 

2.     EXPERIMENTAL APPARATUS AND METHODS 

The principal function of the laboratory apparatus was to 

produce a nearly uniform vertical heat flux in a tank of sea- 

water.    The apparatus consisted of a 1.59 cm (5/8 Inch)  thick 

plexlglas    tank, 30.4 cm (12 Inch) square In cross section and 

1.06 m (3 1/2 feet) deep topped by a 30.4 cm square stainless 

steel cold plate.    The plate was connected by flexible tubing 

to a commercial refrigerating unit which circulated freon 12 

refrigerant at a set temperature  (+ 1.1 deg) down to -29 C. 

The tank was tapered 0.034 cm/cm to facilitate removal of the 

ice and was clad on all sides with 30.4 cm (12 Inch)  thick 

urethane foam insulation.    The insulation was installed In 

separate panels which could be removed to make visual observa- 

tions of the tank.     (See Fig.  2).    As a reasonable facsimile 
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of sea ice has been made In a cylinder of 14 cm diameter, 

(Lofgren and Weeks, 1969, p. 157)  the cross section of the 

tank was not a limiting consideration.    The convection patterns 

were presumed sufficiently small that proximity of the wall had 

no effect on circulation in the center of the tank.    At first 

an attempt was made to make the heat flux through the insulating 

walls very small in comparison with the heat flux through the 

ice when producing ice at Arctic rates.    This was not possible 

with solid insulating materials commercially available, so to 

reduce the effects of heat gain, ice was produced at somewhat 

faster rates than is typical for Arctic conditions in late 

winter. 

The quantities measured during the experiments were the 

temperature distribution In the ice and water,  the salinity 

of the water beneath the ice, the depth of growth of the ice 

and the amount of oil Injected under the ice.    Temperature was 

measured with a bridge of copper-constantan thermocouples. 

The salinity of the water beneath the ice was measured by the 

use of a specially designed, totally submerged hydrometer. 

The depth of growth of the ice was determined by measuring the 

depth as seen through the tank with a ruler.    The growth ve- 

locity of the ice was computed by noting the time that each 

thickness measurement was made and calculating the arithmetic 

mean velocity between successive measurements. 
I 

As a substitute for seawater solar salt was dissolved in 

| tap water until a salinity of approximately 30 o/oo was achieved. 
I 

This was used at the start of each experiment, but salt rejec- 

tion by the ice increased the salinity of the water to between 

35 and 40 o/oo by the time oil was placed under it.    Two types 

of oil were used.    No.  2 diesel was chosen because it is readily 

available and because it is a common marine fuel which may be 

! 
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subject to large scale spills. The other oil used was a North 

Slope crude oil. 

Each experiment was started with an Initial plate temper- 

ature of -29 C until a few centimeters of Ice formed. Then the 

temperature was set to the temperature at which the experiment 

was to run. When the Ice reached a depth between 12 and 16 cm, 

oil was Injected through the bottom of the tank from a plenum 

chamber using compressed air to supply the driving pressure. 

Except in a few trial runs, enough oil was added to completely 

cover the lower surface of the ice. The average thickness of 

the oil layer ranged between 1 and 2.6 cm. The oil was allowed 

to remain until some ice began to form on its lower surface. 

This took 12 - 24 hours in most cases.  The experiment was then 

terminated and the ice cube removed. 

In order to determine the extent to which oil became en- 

trapped in the ice or adhered to its lower surface, the lower- 

most 2.5 cm of the ice block was sawed off, and the slab of 

Ice was melted.  Tne dimensions of the slab were noted before 

melting. The oil and water obtained were collected in a grad- 

uated cylinder and measured. Because the technique for measure- 

ment of the adhering oil is so crude, the limits of uncertainty 

for this data are rather wide. 

Since the porosity of sea ice increases markedly at tem- 

peratures near the melting point, an attempt was made to see 

if there was any marked change in the mode of oil entrapment 

as the ice melts.  The existing apparatus could not actually 

simulate the melting of sea ice as it occurs in the ocean be- 

cause the tank had a finite heat gain from the laboratory 

although there is no similar source of heat in the sea. Never- 

theless, the experiment was conducted.  After the completion 

of an experiment performed in the usual manner, the temperature 
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of the cold plate was raised to -1.4 C, and the ice was allowed 

to melt. Temperature profiles were recorded every two hours 

and visual observations of the Ice were made. 

A more detailed description of the experimental apparatus 

methods Is available In Wolfe, 1972, pp. 14-22. 

3. EXPERIMENTAL OBSERVATIONS AND RESULTS 

3,1 Sea Ice Growth Rate 

A steady state approximation to the flow of heat from 

the sea water to the cold plate may be used. The rate of 

formation of ice equal to the rate of heat flux divided 

by the heat of formation of the Ice, as shown below. 

Q/A 

PlceL 
(1) 

Since the thermal conductivity of the Ice Is essentially 

constant over the range of temperatures encountered, and 

the flow of heat Is uniform upwards, the temperature 

gradient In the Ice is constant. Since the cold Ice sur- 

face is at the top of the sea water, the "sea" Is well 

mixed and of uniform temperature approximately equal to 

the llquldus temperature of a NaCJ- and water solution of 

concentration 35 o/oo. 

The temperature data can be nondlmenslonallzed and 

normalized by dividing the temperature difference between 

the local temperature and the water temperature by the 

53 

y*Mi***mi*ä**iM*ml**m',., •       .-,... .,  --'—^^-'-^^--  



iwrwww H^|.i)IIIKi^.liiiinliW|lnili(.iT||i yi^.npinH     I.IIII,,,,^»,,,.^!!,,,,.^.,,, 
' "g'""'^1 ' UHWWl1 HWiPUPPHi "TW«!»'»»»!!,   ll^|!!!>|lff|y|llK.H||liT>T«TlP-TC^r.ro^., 

total temperature difference between the water and the 

cold plate. 

T - Tw 
T - T plate       w 

Distance is normalized by measuring the distance from the 

lower surface of the ice to the thermocouple and dividing 

this by the total thickness of the ice. 

z/h 

All of the temperature data obtained before the addition 

of the oil is shown plotted in this manner in Fig. 3. It 

demonstrates that within the limited of experimental error, 

the temperature gradients are uniform and that the resistance 

of the thermal boundary layer at the ice-water interface Is 

negligible. 

The heat flow from the warm laboratory to the test cell 

retards the rate of formation of ice below that predicted by 

Eq. (1) above. The rate of heat gain by the ice tank from 

the lab should be nearly constant for all growth conditions, 

and thus the rate of formation should approach that given 

by Eq. (1) for high rates of growth. The available temper- 

ature and growth rate data may be nondlmensionalized and 

normalized by dividing the product of the heat of forma- 

tion of ice and the measured growth rate, pLV, by the heat 
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flux out through the ice as predicted by Eq. (2). 

Q/A 
k. (AT), 
Ice   Ice 

Ice 
(2) 

This dlmensionless growth rate is plotted as a function of 

the heat of formation and growth velocity product, pLV, 

divided by the calculated heat gain per unit area through 

the walls of the tank and is displayed in Fig. 4. Note 

that the value of the dinenslonless parameter pLV/[k(AT)/h] 

drops noticeably below unity when the ratio pLV/(0 . /A) 

is about 150/1. The area of the tank walls is about 15 

times the area of the cold plate. As expected, the growth 

velocity deviates significantly from Eq. (1) when the ratio 

of pLV to the total heat gain is abou^ 1/10.  The large 

error bars on each data point are due primarily to the 

large uncertainty in the measurement of the rate of growth. 

3.2 Mode of Oil Entrapment 

The actual method by which the crude and diesel oils 

are trapped in the sea ice is a combination or modes (A) 

and (C) shown in Fig. 1. The bulk of the oil Is pocketed 

in a pool below the original ice sub-surface while more 

sea ice proceeds to grow under it. A small amount of 

oil does rise into the pores of the skeletal layer, and 

Into small, vertical shafts which rise from the lower 

surface of the ice. These shafts may be air bubbles sim- 

ilar to those that form in fresh water ice due to the in- 

ability of air entrained in the water and rejected upon 

freezing to escape beyond the advancing ice front (Weeks 
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and Assur, 1969, p. 8).    The total amount of oil contained 

in these air bubbles is small in comparison to the amount 

of oil that adheres to the lowermost inch of the ice  (see 

below).    During the ice melting experiment, a considerably 

greater amount of oil rose into the ice, especially into 

the air shafts.    In some instances it reached as high as 

8 cm above the lower surface of a 13 cm thick block, yet 

the volume of oil trapped in this manner was still small, 

amounting to no more than 1/150     of the volume of the ice. 

The presence of the oil pool has a significant effect 

upon the heat transfer through the ice.    The simple model 

of heat transfer through sea ice described above is a uni- 

form solid of constant conductivity between two constant 

temperature regions, one at the liquidus temperature of 

seawater and the other at the ambient temperature of the 

air, or in the experimental case, the cold plate.    As  the 

oil has a thermal conductivity that is considerably lower 

than that of the ice, its presence acts as an insulating 

layer, impeding the flow of heat and reducing the temper- 

ature drop across the ice. 

The temperature data obtained after the oil was placed 

under the ice may be nondiroenslonallzed in the same manner 

as was done for the data taken with ice only.    The origin 

for the vertical axis remains at the lower surface of the 

original ice block.    As a result temperature measurements 

in the oil and below are expressed as negative numbers. 

The thickness of the ice before the oil was added is used 

to normalize distance, but the total temperature drop 

across the ice and oil is used to normalize temperature. 

The normalized temperature distribution are shown plotted 

in Fig. 5 for all temperature measurements taken after 
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the oll was In place. 

As can be seen In Fig. 5, the temperature In the Ice 

Is linear at all times after the addition of the oil ex- 

cept for the case of Experiment 9, In which the tempera- 

ture of the plate was high enough that the heat gain by 

the tank caused the water temperature to rise continuously. 

In the four other cases In which temperature profiles 

were measured, the temperature gradient In the Ice remained 

constant, but decreased In magnitude from Its Initial value 

as shown In Fig. 3 through Intermediate values to the final 

value. The temperature distribution In the oil could not 

be determined directly, since the oil layer was between 

1.3 and 2.5 cm thick and the thermocouples were spaced 

2.54 cm (one Inch) apart In the bridge. It Is clear that 

temperature gradients In the oil were much larger than 

In the ice. 

Whereas clearly the heat transfer through the Ice Is 

that of solid body conduction, the mode of heat transfer 

In the oil pool is not obvious. It should be noted In 

Fig. 5 that for all of the crude oil experiments, the 

ratio of the temperature drop across the oil to that 

across the oil and Ice Is the same, 0.6. This ratio Is 

Independent of the thickness of the oil pool, which varies 

between 1.3 and 2.5 cm (in dlmenslonless units, (z/h) , 

-0.097 and -0.189).  For the dlesel oil the ratio of the 

temperature drop across the oil to the total temperature 

drop across the oil and ice is 0.3. This behavior is not 

In accordance with the theory of static heat conduction. 

The thermal conductivity of most petroleum distillates is 

only a very weak function of temperature, and over the 

range of temperatures considered, the thermal conductivity 
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of the liquid fractions of petroleum changes less than 3%. 

(Wolfe, 1972, Appendix I). Within the limits of precision 

of tils experiment, it may be considered constant. For 

constant thermal conductivity, the thermal resistance of 

a solid conducting heat in one direction is h/k, and thus 

the temperature drop across the solid is proportional to 

its thickness. For two solids conducting in series, the 

ratio of the temperature drop across one to the temperature 

drop across the other Is (h./h»)(k./k.) . This is clearly 

not the case for the ice block and oil pool. 

It is not proper to assume that ehe mode of heat 

transfer in the oil pool is by conduction alone. At the 

temperature involved, the crude oil is indeed highly 

viscous, but further examination is necessary to deter- 

mine if it may be considered a solid body. The diesel 

fuel is quite fluid; it is entirely possible that con- 

vection cells could form and reduce the thermal resistance 

of the oil layer below that predicted by static conduction 

theory. The Nusselt number is the dimensionless ratio 

which compares the ratio of the convective heat transfer 

coefficient, K, to the conductive heat transfer coefficient, 

k/h. For free convection betv/een plane, horizontal sur- 

faces, the Nussclt modulus may be defined as 

Nu = K h/k (3) 

The Nusselt modulus can be shown to be a function 

of the Grashof number and the Prandtl number, defined 
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by relations, 

Gr = agiAT) h3 (A) 

?r    =   c y/k (5) 

provided that the mode of heat transfer is free convec- 

tion only (Kreith,  1965, p.  333).    When a normal fluid 

whose density decreases with Increasing temperature is 

placed between plane surfaces and cooled from above, 

convection results.    This convection is commonly described 

in terms of the Rayleigh number which is the product of 

the Grashof and Prandtl numbers, GrPr.    When this dimen- 

slonless variable is less than about 1700, no convection re- 

sults, and heat is  transferred by static conduction only. 

When GrPr is between 1700 and 42,000 convection is in the 

peculiar cellular manner known as Benard cell convection. 

Irregular turbulence results at values of GrPr Higher than 

42,000  (Eckert and Drake, 1959, p.  328).    For values of 

GrPr less than 1700,  the Nusselt modulus is by definition, 

unity.    Benard cell convection may be adequately correlated 

as a function of Nusselt modulus by Eq.   (6),  (Eckert and 

Drake,  1959, p. 328). 

Nu   -    0.107  (GrPr)0,3 (6) 
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The Nusselt number for the oil pool, can be expressed 

In terms of the measured parameters of the experiment. 

For one dimensional heat flow, the ratio of the thermal 

resistances of the oil to the Ice Is equal to the ratio 

of the temperature drops across the Ice and across the 

oil, respectively. Since the value of the thermal re- 

sistance of the oll, K .., is expressible in terms of 

known parameters, (AT)  , (AT) .., k.  , the Nusselt num- 

ber of Eq. (3) may be evaluated by Eq. (7). 

klce holl (AT)lce 
m k .. h,   (AT) ,. {7) 

oil ice x 'oil 

The Rayleigh number shown above has been evaluated for 

each of the experiments in which temperature profiles were 

measured. The Rayleigh number for the diescl oil measure- 

ment was about 22,000 while GrPr for the crude oil data 

ranged between 770 and 9700. A log-log plot of the Nusselt 

number as a function of Rayleigh number is shown in Fig. 6. 

The data conforms reasonably well to the standard relation- 

ship of Eq. (6) which is sketched. Although the data could 

be fitted better with another power law, it would be unwise 

to do so, since so few measurements have been made. The 

deviation from Eq. (6) may simply be due to errors in 

measurement since the data from which it was derived ex- 

hibits substantial scatter for relatively low Rayleigh 

numbers (Eckert and Drake, 1959, p. 331). Furthermore, 

Nusselt numbers less than unity must be attributable to 

errors in measurement. 

As temperature measurements could not be made for 

all experiments, the heat flux through the ice after the 
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oil Is in place must be estimated from the  temperature of 

the cold plate only.     It was observed that  the temperature 

drops across the oil and Ice were constant fractions of 

the total temperature drop between the cold plate and the 

sea water.  Irrespective of the thickness of the Ice or of 

the oil but dependent upon the type of oil.    That  this Is 

expected can be shown from the equations for one dimen- 

sional heat conduction.    The expressions for the flow of 

heat through the Ice and oil can be written in terms of 

the thermal reslstences and temperature drops In the 

system. 

h, v    ' ice Ice 

(AT) total 

ice      1^ 
k.      + K ice      — 

(8) 

The linear temperature gradient in the ice is expressible 

in terms  of the Nusselt number by substituting Eq.   (3) 

into Eq.   (8)   and rearranging. 

(AT) 
ice 

(AT) total 

ice    oil  1 
1 + k  ..  h.      Nu oil    ice 

(9) 

The expression for the Rayleigh number is 

GrPr   ■ 
cp3 gß  (AT)  ho

3 

(10) 
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For constant properties of the oil and for small variations 

In (AT),  the Raylelgh number is pronortlonal to the cube of 

the oil thickness.     Equation (6)  shows the Nusselt number 

is proportional to  the 0.3 power of OrPr.    Therefore, for 

small variations in (AT) and In the fluid properties, the 

approximate equality Nu ■> Constant 

Substituting this in Eq.   (10) 

(li  ..) Is valid, oix 

(AT) ice 
1 + 

klce 

<W ice 

(11) 
Constant 

It can be seen that for small variations In h.     ,   (AT). ice'   v    'Ice 
is a nearly constant fraction of   (AT) ,.    The thickness 

of the ice in the experiments ranged between 13 and 17 cm. 

It is therefore reasonable to consider that the ratio of 

the temperature drops  (AT)      /(AT)  is the same  for all 

experiments as it was for those in which the temperature 

profiles were measured.    In all subsequent calculations 

involving the heat flux through the ice after the oil is 

present,   (AT).    /(AT) will be taken to be 0.4 for the 

crude oil experiments and 0.7 for the dlesel oil experiments. 

3.3    Thickness of Oil Adhering to the Ice 

Upon removal of the ice block from the tank,  some of 

the oil remained with the Ice, either trapped in the porous 

ice structure or adhering to the lower surface,  while the 

bulk of the oil remained In the original oil pool.    The 

coating of dlesel oil was fairly uniform but,  the crude 
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oll was quite uneven in Its adherence to the Ice.    It some- 

times coated the ice in a continuous layer of uneven thick- 

ness, but in other cases it separated from the ice in 

patches, which were clean of oil (except for the oil in 

the interstices of the sketetal layer).    A photograph of 

an ice block after removal from the tank following a 

typical crude oil experiment Is shown in Fig.  7.    Although 

the oil does not adhere to the lee In an even layer, an 

equivalent thickness of the oil layer may be calculated 

by dividing the total volume of oil measured after melt- 

ing the ice samnle by the area of the subsurface of the Ice 

sample.    It va? difficult to determine visually to what 

extent the oil was trapped in the Interstices of the ice 

and to what extent it simply adhered to the outside.    Most 

of the oil appeared to be confined to the lowermost 0.5 cm, 

although a section of Ice this thin could not be sliced, 

it is certain that all but slight traces of the oil was 

contained within the lowermost 2.5 cm of the ice.    The 

traces above this level were due exclusively to the presence 

of the air bubbles. 

The details of the mechanism by which oil adheres to 

the ice are neither simple nor obvious.    From physical 

considerations it  is possible to infer that the process 

of oil adhesion is both local and steady state.    The ad- 

hesion phenomenon can not reasonably be expected to de- 

pend directly on any properties of the ice far away from 

the ice-oil Interface.    Thus the thickness of the ice or 

of the oil pool,  the absolute temperature of the cold 

plate,  the rate of growth of ice below the oil pool or the 

flow field within the oil pool can not be expected to in- 

fluence the thickness of the adhering layer of oil, 6. 

67 

mmmm 
~- " '-■- -■ 



n 
! * ,^ 

V < 

.1 

,>-^*■-■ 

•    J  ••• ' ' 

4    ' &,~. ~^'jf_. i ft   !*'~~*~' V,   ., 

•Y 

■I 

*) W.- -A.. 

FIGURE  7. PHOTOGRAPH   OF AN  ICE  BLOCK 
UPON REMOVAL   FROM THE TEST 
CELL AFTER  A TYPICAL  CRUDE 
OIL  EXPERIMENT. 

68 

  ■^^. ''■^ *■-'■-'■'-'-"-"-•' 



The oll thickness may depend upon the geometry of the Ice 

subsurface, the bulk properties of the ice and oil at the 

interface, the surface energy of the Interface, and the 

heat flux through the interface. 

That the adhesion process is steady state may be in- 

ferred from the fact that there were no transient effects 

taking place upon removal of the ice from the tank. At 

this time, all temperatures were In accordance with those 

predicted by static, one dimensional heat conduction. 

There was no discernable advance of the Ice front after the 

oil was placed under the ice, and there was no observable 

change in the amount of oil entrapped after thp steady 

state temperatures were reached. There was no trend in the 

adhesion thickness measured as a function of the time it 

remained under the ice. 

The properties of the ice and oil at the interface 

which might be of significance are the viscosity of the 

oil, the buoyancy of the oil, the mechanical properties of 

the ice and the interfaclal energy of the ice and oil. 

Since the ice does not fracture or deform as a result of the 

oil adhesion, its mechanical properties could be of no ef- 

fect on 6. Since the oil is not in motion when the lower 

surface is removed, the viscosity of the oil could not be 
j 

of Influence on 6. The heat flux throup;h the interface is 
j 

a function of the steady state thermal conductivities of 

the ice and oil, but not of the thermal diffusivity which 

specifies the transient conduction properties of the ma-^ 

terials. The interfaclal energies of the ice and oil can 

be described in terms of a bulk property known as the ad- 

hesion coefficient. 
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In the simple theory of adhesion,  the work necessary 

to create an additional unit surface may be expressed In 

terms of an adhesion coefficient, w, which has the same 

dimensions as surface tension.    The simplest theory for 

adhesion coefficients relates them directly to surface 

tension, 0. 

Vv + as/v " aa/8 (12) 

In which a /    and o  ,    are the common surface tensions a/v s/v 
usually measured for liquids or solids, i.e.  the energy 

needed to create a unit surface in a vacuum, and the 

term o  #    Is a measure of  the interfaclal energy per unit s/ s 
surface of interface between the adhesive and the substrate 

(Skelst',  1962,  p.  38).    Although such quantities are simple 

to state in principle,  they are not easy to measure.    How- 

ever, it is true for both water and petroleum derivatives 

that the surface tensions do not vary appreciably over the 

range of temperatures encountered in this experiment. 

Therefore, a preliminary estimate of the surface tensions 

nay be found by using the tabulated values for the surface 

tension between oil and air, and water and air  for a   , ' a/v 
and a  i    respectively, and the tabulated values  for the 

interfaclal tension between oil and water for a  ,  . a/s 
(Wolfe, 1972, Appendix I).    Whether this value is accurate 

or not does not preclude  its use in evaluating the Im- 

portance of the adhesion coefficient.     Surface  tension is 

a strong function of the materials interfacing each other 

and only a weak function of the local  temperature.    Care 
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was taken to Insure that the sea Ice and oil used In the 

experiments were of the same composition as they would 

be In the Arctic. Thus, no matter what the actual value 

of w, it can be expected to be the same value In the field 

that it was in the laboratory. 

Elementary physical considerations have reduced the 

list of parameters which may be of influence on 6 to the 

buoyancy, pAg, the adhesion coefficient, w, the heat flux 

through the ice, 0/A, and the geometric properties of the 

interface characterized by the intersticlal spacing of 

the dendrites. (Weeks, 1966, p. 175). The intersticlal 

spacing is a function of the velocity of growth of the ice 

before the oil is in place and is specified by Eq. (13) 

.-5 
ao - 3.95 x 10 -V/dh/dt      (SI units)      (13) 

(Assur and Weeks, 1963, pp. 97-98). Since the diameter of 

the pores of the skeletal layer is roughly constant, the 

volume of the skeletal layer filled with water can be ex- 

pected to get larger as a becomes smaller. Any entrap- 

ment phenomenon that is dependent on fillinp, the pores of 

the skeletal layer with oil would be expected to produce 

larger values of 6, as the growth velocity of the ice be- 

fore the oil is added becomes larger. In fact just the 
t 

opposite occurred. Less oil adhered at  higher growth 

velocities. 

i 
Dimensional analysis  can be  used to determine  the 

relationship between the heat  flux throuph the ice,   the 
j; 

buoyant  forces on the oil and the  adhesive  forces on the 

71 

mtmitatitiiäimimiMiaudiM,,, „■■ n--^. „.„■,.,.,,.■ _„,......        iiMiiniiiliiiliüilliaitB^toittb 



oll.    If the thickness of the adhering oil Is presumed to 

be a function of heat  flux and buoyancy only, the Buckingham 

PI Theorem Indicates that only one dlinensionless grouping 

can be formed,  and that Is Invariant for all values of 

density and heat flux.    That dlmenslonless variable Is 
2 2 1/3 

6I(pAg) g/(Q/A)   ]       .    Since density Is the same In the 

Arctic as In the laboratory, the experimental values of 6 

should be extrapolated to field conditions by considering 6 
2/3 to be a linear function of  (Q/A)      .    By similar reason- 

ing if the adhesion thickness is considered to be a func- 

tion of the adhesion coefficient, the heat flux through 

the ice and oil,  and the acceleration of gravity,  the only 
2    2 dlmenslonless grouping possible is 6(Q/A)  /w g, and it 

must be invariant.    Since w is the same in the Arctic as 

in the experiment,  the experimental values of 6 are ex- 

pected to be directly proportional to (Q/A)     . 

A dimensional log-log plot of the adhesion thickness, 

6, as a function of  (Q/A) was made in order to reveal which 

power law predominates.     (See Fig. 8).    As can be seen from 

the plot, within the limits of nrecislon of the experiment, 

the data conforms to a power law of the form 

C(Q/A)"2 (14) 

This indicates that within the limits of precision of this 

experiment,  the data correlates as a function of the dl- 
2    2 nensionless parameter 6(Q/A)   /w g, and is therefore de- 

pendent upon the heat   flux through the ice and oil,  and 

the value of the adhesion coefficient alone.    The  limits 
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of precision of the experiment are not very good.    The 

coefficient, C, of Eq.   (14) may be evaluated within a 

factor of 2 or 3 at best.    The "best" power law approxi- 

mation to the data shown In Fig. 8 was drawn freehand and 
3 -1 yields a value of C which is 8 m w    .    The equations for 

the limits of uncertainty of the data are also of the form 

of Eq.   (14) and yield maximum and minimum values of C which 
3 -1 are 16 and 3 m w    ,  respectively.    Equation (14) may be re- 

written In dlmenslonless form 

A - M*y 
2 

W  R 
(14a) 

The dlmenslonless constant A has a best value of 330 and 

may vary between 110 and 660 due to the uncertainty of the 

data. The adhesion coefficient, w, has been taken to be 

0.05 n n . 

Equation (14) may be used to r xtrapolate the measure- 

ments of this experiment to actual Arctic conditions with 

an error factor of between 2 and 3. As shown below, such 

extrapolation can be used to give an upper bound to the 

extent to which an oil spill can spread in the Arctic. 

The correlation of the experimental data shown above does 

not yield a great deal of insight into the physical mech- 

anism by which the oil adheres to the Ice. It does indi- 

cate that the mechanism Is related to the Interfacial 

energies of the oil and the ice, rather than to the geometry 

of the surfaces or the other bulk properties of the oil. 

In general, the phenomenon of adhesion Is poorly understood, 

and a detailed examination of the actual mechanism involved 

74 

^mmttitmmätm 



is beyond the scope of this work. 

It remains to explain the fact that almost no oil 

was observed to adhere to the ice during one of the crude 

oil experimfints.    This occurred during the coldest experi- 

ment run with a crude oil sample in which the steady state 

temperature gradient in the ice after oil injection was 

86.6 deg m     and the mean temperature of the crude oil was 

-14.5 C,  (well below the pour point for North Slope crude 

oil of approximately -A C) .    Upon removal of the ice block, 

the oil sheared neatly awav from the ice at the ice-oil 

interface.    The oil appeared to be frozen, and was the con- 

sis^fincy of ice cream.     It may be that when the oil freezes, 

the mechanism of oil adhesion Is altered because the oil 

behaves as a solid,  instead of a  liquid.    If the block of 

oil is sufficiently heavy,  its weight could cause it to 

break away from the ice at the ice-oil interface, because 

this is the weakest point  in the composite ice and oil 

structure.    Such an observation is not of much practical 

significance since temperature gradients of this magnitude 

rarely occur in natural sea ice. 

4.     CONCLUSIOMS AND PRACTICAL APPLICATIONS 

Three important conclusions can be drawn from these experi- 

ments concerning the behavior of crude oil when trapped under 

sea ice.     First,  the mode of entrapment of the oil has been 

conclusively determined.     Second,  the effect of the presence  of 

an oil pool upon the growth rate of the ice and upon its  tem- 

perature distribution has been determined.    Third,  an order of 

magnitude estimate of the maximum extent to which oil can 

spread under Arctic ice can be deduced from the measurements 
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of the thickness of the adhering oil layer. 

The experiments have conclusively determined the mode by 

which oil Is entrapped under a growing sheet of Ice.    The ex- 

tent of the oil's entrapment In the Ice-brine matrix has been 

shown to be negligible.    Even when the porosity of the Ice In- 

creases markedly during premelt conditions, the volume of oil 

entrapped remains small.    Also,  it has been shown that the Ice 

does not In any way grow through the oil.    The oil is neatly 

pocketed by the ice as more ice proceeds  to form under It.     In 

the absence of currents under the ice, even the large pockets 

of oil which might form in the  larger recesses of the ice sub- 

surface can be expected to be entrapped as a whole.    Knowledge 

of this behavior should have significant  impact on the design 

of equipment and procedures to clean up oil spills under Ice. 

The presence of an oil pool under the ice causes a marked 

change in the temperature distribution In the ice because the 

oil pool acts as an insulating layer between the cold air and 

the relatively warmer sea water.    The temperature distribution 

in the ice can be calculated by a one dimensional analysis  for 

oil pools whose widths are large In comparison with their depths. 

The exact procedure for such a calculation would depend upon  the 

quantities which are easily measurable in a given oil spill. 

If,  for example,  the temperature distribution in the ice above 

the oil were desired, and the known parameters were the thick- 

ness of the ice before the spill, h      -,   the thickness of the 

oil pool,   the thickness of the ice under the oil pool, h.     -, 

and the temperature of  the upper ice surface,  then by presuming 

the heat flux uniform,   the  temperature difference across h,     _ 

could be calculated by the  following relation 

(AT) icel 

(h.     ,/k.     )  (ATK   , , icel    ice total 

icel 

Ice 

1 
K 

ice2 

Ice 

(15) 
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The difficulty with this procedure Is that the thermal resistance 

of the oll, 1/K, is dependent upon the temperature drop across 

It In accordance with Eqs. (3) through (6) , and Is thus dependent 

on (AT).  and (AT)   .. Since Eq. (15) is non-linear and not 

explicit In (AT).  it must be solved by some sort of iterative 

procedure, such as simple trial and error, but it can be solved, 

since all the necessary governing relations have been defined. 

The distribution of temperature in the ice block is linear, so 

the temperature gradient may be readily calculated to determine 

the rate of growth under the ice. Also, this approach may be 

extended to cover cases in which additional thermal resistances, 

such as those due to snow cover or the thermal boundary layer 

of the air, are present. The effects of radiative heat trans- 

fer from the ice surface also may be Included. In a converse 

procedure, the thickness of an oil pool under the ice may be 

inferred from measuring the thickness of the ice and the tem- 

perature gradient within it. Whether such calculations are of 

practical import remains to be seen. 

The experiments which measured the effective thickness of 

adhering oil layer, 6, can be used to give an upper bound esti- 

mate of the extent to which an oil spill under Ice can spread. 

It can be shown that the acceleration applied to the oil layer 

by currents under the ice is much smaller than the acceleration 

due to gravity applied to the oil layer when it is lifted from 

the tank prior to slicing. The shear stress applied to a plane 

surface In turbulent flow can be expressed in terms of the fluid 

density, the free stream velocity, and a friction factor which 

Is a function of the surface roughness and nearly independent 

of Reynolds number. (Rohsenow and Choi, 1961, pp. 76-78). 

Cf | U
2 = pU*2 (16) 
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The acceleration applied to the fluid can be defined in terms 

of the friction velocity, U , as follows 

*2 
8drag " V (17> 

Where the mean roughness height,  e,  is  the approximate eddy size 

at the surface.    For a roughness height of 0.5 ra,  a current ve- 

locity of 0.5 ra s      (approximatelv 1 knot)  and a friction factor 

of 0.04,   the effective acceleration is calculated by Eqs.   (16) 
-2 and  (17) to be 0.01 m s    , which is very small in comparison with 

the acceleration due to gravity.     Thus,  attempts  to calculate 

the maximum area over which the oil spreads by using the effec- 

tive oil thickness measured in these experiments will be quite 

conservative. 

The effective  thickness of the oil adhering to the ice, 6, 

determines the extent to which a given volume of oil will spread 

according to the relation 

Volume of oil ,,_* 
 1                                          (18) 

It has been shown that 6 is a function of  the heat  flux through 

the ice in accordance with Eq.   (1A).    Thus  from knowledge of the 

growth conditions of the ice and  the volume of oil spilled, the 

area over which  the oil spreads can be determined.     For example, 

typical mid-winter conditions for the Northern Slope would be 

characterized by the presence of first year sea ice approxi- 

mately 1.5 m thick with an air temperature of -150c. 
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(SEV Data Package,  1970, p. 11).    Ignoring the effects of con- 

vectlve and radiative heat transfer at the ice-air boundary and 

assuming that no snow cover is present, the heat flux through 
-2 the ice can be calculated to be approximately 35 watts m    . 

Since this calculation is performed to determine the maximum 

spread of the oil,  the thickness of the oil, and thus its ther- 

mal resistance, will be very small in comparison with that of 

the 1.5 m thick ice.    The heat flux through the oil and the ice 

can be considered to be the same as for the ice alone, 35 watts 

m    .    From Eq.   (14), 6 is calculated to be 6.5 mm with a maxi- 

mum value of 13 mm and a minimum of 2.5 mm.     If crude oil spil- 

led is from a supertanker of 100,000 metric tons capacity, the 
3 total volume of oil will be 113,000 m , and from Eq.   (18) the 

2 total area over which it will spread will be a maximum of 45 km 
2 

(17 square miles),  a minimum of 9 km    (4 square miles)  and a 
2 

"best" estimate of 17 km    (6 square miles).     Even the largest 

of these values is considerably smaller than the area over which 

such a spill would spread in temperate waters.    Similar calcula- 

tions can be performed for the conditions of a particular spill, 

in accordance with the local Ice thickness and temperature con- 

ditions . 

It should be pointed out that all of the above conclusions 

apply to conditions typical for first year sea ice.    Multl 

year ice is generally of much lower salinity and different com- 

position due to the fact that brine drains from it.    Because it 

is older, its history is less certain and because it occurs 

primarily in the permanent  Ice pack.  It has often been deformed 

and distorted by the large forces within the ice cap.    Yet from 

the physical analysis of the oil adhesion phenomenon, none of 

the above differences between new and old ice should affect the 

ultimate thickness to which the oil can spread.    In mid-winter 
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the lowermost edge of the old ice will be composed of new Ice 

which has Just formed. The heat flux will be substantially 

lower because the old ice is thicker, and thus Eq. (14) will 

predict larger values of 6 than would occur for new ice under 

similar weather conditions. 
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APPENDIX B 

EXPERIMENTAL DETERMINATION OF THE EXTENT OF AN 

OIL SPILL ON ARCTIC ICE 

1.  INTRODUCTION 

In 1968, oil was discovered on the North Slope of Alaska. 

Since the world supplies of oil arc dwindling and the prices 

rising, this oil must be used If the present standard of living 

is to be maintained at a reasonable cost. This means that the 

crude oil must be shipped to a place where It can be refined, 

and whether supertanker or pipeline Is used, the oil will have 

to travel over the rough surfac s of the Arctic. A small frac- 

tion of all oil shipped Is spilled. In order to deal with this 

environmental problem It appears necessary to gain an understand- 

ing of how oil spreads on or under Ice. This understanding must 

come in two parts:  first, the process of spreading must be 

understood and the time for spreading determined; and second, 

the final size of the oil pool must be determined. 

Initially, an inertial spreading law was proposed to explain 

the first problem.  Using this theory the rate of spread could 

be scaled using the volume released and a gravity term. The 

spread would be Independent of the surface characteristics. In 

order to solve the second problem, one must take into account the 

characteristics of the ice surface, namely its roughness and the 

random nature of this roughness. If this is done, the answer 

to the problem will be determined In a statistical way. This 

problem was studied by Patureau. The purpose of this thesis 

is to test the above theories by conducting experiments on a 

laboratory scale model and comparing these results with field 

data. Since the inertial theory was unable to correlate all 
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the data, another theory was derived from the results of known 

data. 

The experimental apparatus and procedure will be studied 

In detail in Section 2.  Since the results of Paturcau are ex- 

pressed in terms of parameters derived from the power spectrum 

of the surface, this section also described the apparatus and 

procedure used to determine the power spectrum of the experi- 

mental surface. In Section 3, the details of Patureau's final 

size theory and the spreading theory derived from the experi- 

mental results will be discussed, along with the assumptions 

and limitations.  Section 4 will present the results in the 

form of correlations between theory and experiment, an explana- 

tion of the derivation of the spreading theory, sources of 

error, and the conclusions of the study. 

2.  EXPERIMENTS 

i In planning the experiments, the characteristics of Arctic 

ice were first studied.  Since earlier work indicated that the 

spreading was gravity-inertia dominated it was decided to con- 

struct an apparatus that could dump a known volume of 'oil' at 

a fast rate. 

To obtain dynamic and geometric similarity, certain param- 

eters were then established and values determined. These are: 

te - <^<h"^1/2<h"> > 500 

1/80 above ice 

1/20 below ice 

N ■ number of pockets >> 1 

A « density ratio <.2  (under only) 

8A 

a^^^^^.^^.aHMM«^^........!..., ^^M^*^^., ,.  ^ _      .„ „^^^^—^..,J,. 



•""»"*'W"i(ppiWWWi'''WS"wWW'!'"'WW^ ■wi'i'wwuF1' '«»'"«mji 

With the exception of Re,  the conditions are all well net.    In 

the case of the Reynolds number, a desire to use fluids that 

could be used easily, would not destroy plexiglas    and would 

provide agreement with the other parameters led to a relaxation 

of the restriction.    Water for the over ice experiments provides 

an Re of a little more than 400 and kerosene for the under ice 

case provides an Re of about 100.    This is believed to provide 

sufficient turbulence to satisfy the theory. 

A schematic of the spreading experiment apparatus is shown 

In Fig. 1.    This figure should be referred to if any questions 

arise. 

The rough surface itself was built by epoxying various 

aizes of rocks to a plywood board in a random fashion.    The 

surface was then painted white with black concentric circles. 

When used In conjunction with a dyed fluid, the spread is easily 

observed and photographed.    The size of the surface, and there- 

fore the size of the tank, is 4' x 4*.    It was felt that this 

size tank would offer a large enough surface to be statistically 

significant and yet small enough to be easily handled. 

In order to scale the laboratory model to a real spill, one 

should consider that a real spill would be on the order of 10 

cubic feet and the Arctic roughness height is on the order 

of 1*.    The roughness height of the experimental surface is 

about 1/10 Inch.    This means that the 4* x 4* surface cor- 

responds to about 500 x 500 in the Arctic. 

The tank is made of plexiglas    to allow the spread to be 

easily observed and photographed.    The frame was designed to 

allow for rotation of the tank when conducting under ice experi- 

ments.    This was necessary because if the tank were filled in 

a horizontal position the pockets in the surface would trap 

air and make the experimental results meaningless. 
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To record the progress of each experiment a Bolex 16mm 

camera with a lOmm lens and a variable time base was used. 

Since this lens needs a focal length of around nine feet to 

get a large enough field to cover the apparatus, it was decided 

to use a mirror. The camera was then run at a known speed, 

usually 20 fps, to record the spread. The developed film was 

then examined frame by frame to determine radius versus time 

and the final size. 

To measure the surface a frame was made from 1" x 1" angle 

iron (see Fig. 2) and marked in 1/4" increments. The elevation 

of the surface, was then measured every 1/4" with an accuracy of 

1/32". The distance below a fixed line, the frame, was re- 

Corded by hand and then transferred to computer cards. The 

variance and the power spectrum were then calculated by the 

program shown in Fig. 3. The quarter inch spacings were chosen 

as a compromise between accuracy and ease of measurement. 

To test the isotropy assumption, traces were taken in per- 

pendicular directions and then their power spectra compared. 

This is explained in Section 4. 

The frame is believed to affect the spectrum only in the 

wavelength ranpe greater than ten inches. If this is true, and 

there are no indications otherwise, then the imperfections in 

the frame will have no effect on the results. 

For the over ice experiments, the fluid used was water 

dyed with food coloring. Soap was added to reduce the surface 

tension and the 'oil' was placed in the cannister. The appara- 

tus was then leveled very carefully- to prevent the fluid from 

running'off to one side. Problems were encountered in this 

tree. Once the experiment was ready to start, the Camera was 

started and the stopper pulled. This released the oil at a 
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10 T(1)=0. 
S(1)=0. 
00   11   1=1,NT0I 
T(1)=T(1)+H(I) 

11 S(1)=S(1)+HII)*H(I) 
LGMXP]=LGMX+l 
Fd) ^T(l) 
G(1)=S(1) 
00   12   LAG=2,LGMXP1 
KK=NTüT-LAG+2 
T(LAG)=T(LAG-1)-H|LAG-1) 
F(LAG)=FILAr,-l )-H(KK) 
S(LAG)=S(LAG-1)-H(LAG-1)«H(LAG-1) 

12 G(LAG)=GILAG-1)-H(KK)*H(KK) 
DO 15 LAG=l,LGMXPl 
C(LAG)=0. 
KKl=NTnT-LAG+l 
DO 13 1=1,KK1 
IPLLAG=I+LAG 

13 C(LAG)=C(LAG)+H|I)*H(IPLLAG-1) 
RLTMLG=M70T-LAG+] 
W(LAG)=CILAG)/RL1'-LG 

14 AUTnCn(LAG)=(RLT^LG-CILAG)-FILAG)«T(LAG))/ S0RT((RLTML 
1G*G(LAG)-FILAG)*KLüG) ) =M RLTMLG^S I LAG )-T ( LAG ) *T ( LAG ) ) ) 

15 CONTINUE 
WRITEi IWRIT,903)Ai'TnC0 
DO   17   LAG=1,LGMXP1 
SPECES(LAG)=0. 
DO   16   I=2,LGMX 
RLGMX = LGiMX 
ANG1=(LAG-1)*(I-]) 
ANGl = AMGls::3. lM6/eLGr--X 

16 SPECES(LAG)=SPEC'1S(LAG) + 2.*W( I )*CnSIAMGl) 
ANG2=LAG-1 
ANG2 = AIMG2*3.1^16 

17 SPECEStLAG)=SPECE-S(I.AGJ+W( 1 )+W(LGMXPl ) ^COS ( ANG2 ) 
WRiTEdwRiT.gnajSppC^s 
SMSPECI1 ) = .5A=;:SP = f:eS( I ) + .A6*SPECFS(2) 
SMSPEC(LGMXPl) = St^CeS(LGNX)=:--.^6 + .5A--;=SPECES(LGMXPI) 
00 18 LAG=2,LGMX 

18 SMSPEC(LAn)=(SPECKS(LAG-1)+SPECES(LAG+1M«.23+.54*SPEC 
lES(LAG) 
WRITE( Um IT, 903 )S^SP»-C 

FIG. 3   COMPUTER   PROGRAM TC  DETERMINE   POWER 

SPECTRUM 
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fairly fast rate. In order to determine the amount released, 

the fluid level In the cannister was measured before and after 

the release. 

The underwater experiments were considerably more difficult. 

The experiment had to be set up in such a way that no air pockets 

remained in the tank and no kerosene escaped the feed lines con- 

necting the tank to the cannister. To do this, water was first 

placed in the cannister to a level that would prevent the kero- 

sene from getting into the feed lines. Then, enough kerosene, 

which was dyed using enamel paint, is added to fill the can- 

nister. The rough surface was then placed on the tank and the 

tank was almost completely filled and then tilted to allow the 

air to escape from the pockets. The filling of the tank was 

completed in this position. When all the air escaped out the 

top and the tank was full, it was rotated back to a horizontal 

position and leveled.  Since there was sufficient pressure in 

the tank to cause the surface to deflect at the center, water 

was bled off in an attempt to ensure that the surface was flat. 

Some degree of error was probably caused by this deflection. 

Once the tank was leveled and the pressures equalized, the ex- 

periments proceeded in the same way as the over ice experiments. 

To check for the presence of viscous effects, experiments 

were run with glycerin-water and kerosene-oil mixtures. These 

experiments are described in the Sub-Appendix. 

3. THEORY 

The theory that governs the spreading was developed as 

a result of data from the experiments described in the last 

section and the available field data. The steps taken in de- 

riving the theory are described in Section 4. In this section 
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Che theories will be explained In simple terns and the analyti- 

cal expressions derived. 

In determining what will happen to oil spilled in the Arctic, 

two cases must be considered. In the case of a pipeline break- 

age, the oil will spread over Ice and tundra. In the case of a 

supertanker accident, the oil will probably spread under the Ice. 

This happens because Arctic Ice has a specific gravity of about 

0.8 and North Slope crude has a specific gravity of about 0.9. 

Therefore, at an Ice-water Interface the nil will, on hydro- 

static considerations, tend to spread u^der the ice. The spread- 

ing in both cases follows the same theory and the results differ 

only by a factor determined by the density ratio of water and 

oil. For either a pipeline break or a supertanker accident, 

the maximum rate of oil released will be about 1.5 x 10 cubic 

feet per day. 

Patureau's theory states that pockets in the ice are filled 

to the roughness height, <h~>, and it was shown experimentally 

that the value of the viscosity is not important (see Sub-Appendix 6-1) 

This means that as pockets in the ice are filled additional 

fluid flows over the filled pockets frlctlonlessly and the drag 

can act only at the edge over an area proportional to the radius 

multiplied by the roughness height. When attempting to correlate 

the laboratory data for over and under ice and the field data, 

it was found that the data would not scale with the volume re- 

leased. By forming dimensional plots described in the next 

section, it was shown that the rate of spread for a given sur- 

face could be scaled using the rate of oil release, Q. Since 

the size of the final pool depends upon various statistical 

parameters, one can see that for a given volume and surface 

there wlii be an average pool size and an associated variance. 

In order to determine the accuracy of the averages, Fatureau 
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developed an expression relating the standard deviation of the 

size with the average size. 

Figure A shows a sketch of oil being released on a rough 

surface with a roughness height <h">.    The driving force Is 

gravity, which causes a pressure at the outside edge of the 

spill.    Thus, 

F    ~ pA ~  (pAgh)hr (1) 

Since 

h2    iSÜL 
^    r4 

(2) 

the gravitational force from Eq.   (1)  can be expressed as 

Fg - PA, iSf (3) 

The pressure drop caused at '■he outer edge as the oil flows 

will be 

dp - Cf pU (4) 
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where C, Is a friction coefficient of order one. Since the area 

over which the drag acts is the roughness height, <h'>, times r 

the retarding force becomes 

Fr -  pU r <h"> (5) 

Replacing U in Eq.   (5) with r/t and setting Eq.   (5) equal to 

Eq.   (3)  gives 

pAgÄ!i,p4<h-> 
r t 

(6) 

After some algebra,  this becomes 

.12! 
a/6 

I   -s^-      ] t 
<h'> 

2/3 
(7) 

This can be non-dimensionalized by defining a scaling length 

r     -    <h > (8a) 

and a scaling time 

t     - u-rm 

gQ 
(8b) 
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To obtain an expression for the final size and the associ- 

ated standard deviation additional assumptions must be made. 

The first of  these assumptions equates  the average of a sample 

from the surface with the ensemble average over the whole sur- 

face.    This assumption has no real relevance to experimental 

procedure.    Next It Is assumed that the elevation of points on 

the surface are normally distributed about some mean.    This 

assumption is In fair agreement with the experimental surface 

(and good agreement with the real ice surface) which actually 

is closer to a lag-normal distribution.    Under this assumption, 

the roughness height, <h >, and the variance of the height, a. , 

can be related by the simple equation: 

/O  \1/2 

2 Try 

Thirdly,  it is assumed that pockets In the ice surface are filled 

to the roughness height  (see Fig.  5).    The level assumption has 

no real justification save that it eases the calculations,    The 

accuracy of this assumption can only be determined by experiment. 

The fourth main assumption Is that the number of pockets filled 

is always large enough to give a statistically meaningful result. 

This assumption Is well satisfied.     It was  further assumed that 

the pockets assumed a rectangular shape  (square in the case of 

an Isotropie surface).    This was done strictly for computational 

reasons.    For the purpose of this thesis the surface will be as- 

sumed lso';roplc and the spill will be circular.    The isotropy 

assumption will be shown to be a good assumption by comparing 

the power spectra along perpendicular paths of the experimental 

surface.    Lastly,  it was assumed that a two-dimensional power 
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RELEASE 
RATE = Q 

FILLED 
POCKET 

RADIUS 
Q      DRAG   ONLY  AT 

Q     LEADING  EDGE 

FIG.   4    SECTION OF OIL   SPREADING ACROSS  A 

ROUGH   SURFACE 

(ONLY  0 OUT OF   2v SHOWN  FOR   EASE ) 

t h(x) 

<h> -0 

ONE "POCKET ■I 

EXPECTED  VALUE * 

FIG.   5    AVERAGE LONGITUDINAL   DIMENSION  OF 

A   POCKET 
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spectrum could be formed as the product of two-dimensional 

spectra. This assumption has no mathematical Justification, 

but even If it were poor, no real error In the results would 

appear. The procedure for determining the power spectrum, 

which Is done by computer, is explained in the experimental 

section. 

The final results of the theory are expressed in terms of 

parameters which are derived from the statistics of the ice 

srrface. The first of these is the variance of the roughness, 

o.. Next are two parameters k and T derived from the power 

spectrum of the surface. For a one-dlraensional spectrum, T 

is the wavelength of the peak of the spectrum and k is deter- 

mined from the following equation: 

?(±) 
2TT 

T72 exp (- 
-2TT .   , , 2TT 

j-) cosh ( 
Tk l/2

; 

Tk T72
J (10) 

To meet the requirements of the theory, the product kT should 
2 2 

be greater than 50, or, in the two-dimensional case (kT ) should 

be greater than 2500. From (kT") , an additional parameter, 0, 

can be determined from Fig. 6. (See eq 22) 

Following the assumpcion that the oil fills the pockets 

to the roughness height on the average, we get the equation 

<V> - <S  > <h > 
max 

(U) 

or, for a normal distribution 

<V>    -    <S 

from £q.   (8). 

/a   \1/2 

(12) 

96 

H^Uttttaal to,.ii'-i min A>I» Jr IMI [IWLJL.U^LJILLIIJLJJ. i 



To non-dimensionalize the results, Patureau introduced the con- 

cept of the  'most probable pocket'  size,       ,  that is, the most 

common size for a pocket on the ice.    Defining the surface area 

of a most probable pocket as 

S        -    T2 

mp (13) 

and the volume of a most probable pocket as 

mp 
T2 2<2V 

1/2 

(1A) 

we find the following dinensionless equation from Eq. (12) 

<S   > 
max 

mp V3/7   v' 
V_ 

mp 
(15) 

To provide a measure of the accuracy of the above equation, 

an expression for the variance of the surface area, a  , was 

derived.  This expression Is obtained by considering the pockets 

in the ice to be filled sequentially and independently.  For 

ease of understanding, the derivation will be for the one- 

dimensional case. This can then be easily extended to the two- 

dimensional case. 

Since the pockets each have a volume variance, V , and 
a mp 

a length variance X  and since they are filled independently, 

the total variance V will be expressed as the sum of the 
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variances of the pockets filled: 

NO. (16) 
mp 

The total length of the average one-dimensional spill, <X     >, 
luflX 

is equal to the length of a mean pocket, X , multiplied by the 

number of pockets filled, N. 

<X  > - NX 
max     mp <") 

■ (¥ 'v " I r*) \ (18) 

Using Eq. (16) 

( mp / 
SS. ]   NO 
V I        V mp 

(19) 

or 

1/2 

(C)N 1/2 n      1/2 av 
mp 

(19a) 

In dimensionless form, this becomes, using Eq. (16) 

1/2 

X 
mp 

Ax A 
l  wax \ 

\ mp / 

1/2  o. 
1/2 

mp 

mp 
(20) 
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In the two-dimensional case, one finds 

a1'2 As >\ s    [  max ] 

mp    \ mp / 

1/2 

(21) 

Where the proportionality constant can be defined as 

0 
A    \1/2 

(22) 

with 6 as shown in Fig.  6.    It is seen that 0 depends only upon 
2 

the product kT .    This yields 

0l/2 /<s      ^1/2 
 s 0 j     max 
S "    Ö\S 

nip v   mp 
(23) 

which is the result presented by Patureau. 

4.     RESULTS 

Figures 7 and 8 show the power spectra for surfaces 1 and 

2 respectively.     The isotropy assumption can be checked by com- 

paring the spectral points determined from paths taken per- 

pendicularly.    The  two directions are distinguished by the use 

of open and closed symbols.     By noting that  there is little 

difference between  the two directions, one can see that the 

isotropy assumption is a good one.    Also shown on these figures 

•re oh, k, T and 0. 
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T 1 

0h 
.a .048 m.2 

T - 5.33 in. 

k - 8.26 in."2 

e " .25 

.5 

A (in.) 

FIG.7   POWER SPECTRUM vs WAVELENGTH FOR 

SURFACE 1 
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10' 

P(f) 

^r in.) 

10' 

10 

o 
a 

16 

or.  - .053 in.' 

T   - 2.67 in. 

FIG. 8    POWER SPECTRUM vs WAVELENGTH FOR 

SURFACE 2 
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Figures 9 and 10 show that the data for the final pool size 

for surfaces 1 and 2 respectively is in good agreement with 

Patureau's theory.    The values of the scaling area and scaling 

volume arc shown on the figures, where S      and V      are  as calcu- 
mp     mp 

lated in Eqs. (13) and (14). The solid lines on the graphs are 

the average of the final size from Eq. (15). The dashed lines 

on either side represent one standard deviation on each side of 

the average and were determined from Eq. (23). On these graphs, 

the open symbols represent over ice runs and the filled symbols 

indicate under ice runs. It appears that the under Ice pools 

are slightly smaller. This could ba within experimental error 

or could be caused by a slight deflection of the rough surface 

caused by water pressure. Water was bled from the tank in an 

attempt to remove the deflections, but some error is anticipated. 

Using the inertlal theory to correlate the laboratory data 

led to two distinct groups, over and under ice, with intercepts 

differing by about a factor of two. Additionally, the over ice 

data did not correlate well with the data from Claeser and Vance. 

In order to determine the proper scaling laws, a series of dimen- 

sional graphs were made. Since the radius in the laboratory data 

appeared to grow approximately as the time to the one-half power, 
1/2 

it was decided to calculate r/t   for all laboratory and field 

data. These values were then plotted against volume released, 

release rate, gravity, and roughness height. Figure 12 shows 
1/2 

r/t   as a function of volume on the left side and release 
1/2 

rate on the right. It can be seen that r/t " cannot be de- 
l/2 

scribed as a function of volume but that r/t   does vary ap- 

proximately as the release rate to the one-third power.  Once 

a rough power law for release rate was known, additional correla- 

tions were tried. USIUR the results of these crossplots and the 

viscosity experiments, the theory described in Section III was 

derived. 
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Figure 13 shows the dimensionlens radius versus dimension- 

less time for both over and under Ice cases using the results 

of Section 3. Also shown on this graph is field data from 

Glaeser and Vance   and McMinn  . The raw laboratory data 

that make up this figure is given along with the dimenslonless 

values In Sub-Appendix B-3. The equation that best describes the 

line in Fig. 13 is: 

r - .25(AgQ2/<h">)1/6 t2/3 

The under ice data shown in Fig.  13 is plotted after allow- 

ing for a starting time.    It was found that in the under ice 

case there was a significant lag between the time the stopper 

was pulled and the actual beginning of the spread.    This was 

due to the time for the kerosene to fluat up through the water 

to the surface.    This starting time was found to be about 1.5 

seconds  (see Sub-Appendix B-2). 

For the  field data, the roughness heights are not known. 

Thus,  the field data was fit to the solid line in Fig. 13 by 

adjusting the value of the roughness height.    In some cases, 

this led to a value of the roughness height that appears either 

too large or too small. 

However,  the experiments were run in small areas with dif- 

ferent kinds of surfaces (snow covered, windswept ice, etc.), 

so effective roughness heights for these experiments could vary 

greatly. 

To expand the results of the laboratory experiments, one 

must know the characteristics, particularly the roughness height, 

of the Arctic ice.    From laser profllometer traces taken in areas 

of high spill potential it has been determined that the rough- 
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nees height varies greatly but is seldom less than three centi- 

meters or greater than 60 centimeters. The size of a spill would 
4 

be on the order of 10 cubic meters. Figure 14 shows how the 

final radius of a spill varies with the roughness height and 

the total volume released. For an average volume and roughness 

height the final radius will be on the order of 300 meters. 

i  i 
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SUB-APPENDIX B-l 

Since the Reynolds Numbers of the under Ice and over ice 

experiments differ by a factor of about five and the starting time 

of the under ice and over ice data differ by about 602,  it was 

decided to test for viscosity effects.    This was done by increasing 

the viscosity of the over ice fluid (soap and water) by the addition 

of glycerin and by increasing that of the under ice fluid (kerosene) 

with SAE 30 wt. oil.    The viscosity of the new fluids was measured on 

a Tag Saybold viscometer.    The figures for the viscosities of the 

various experiments are shown in the table below.    Changing the 

viscosity of the water by a factor of five and the viscosity of 

kerosene by factors of two and four had no real effect on the 

fluid spread. 

The Reynolds nunber below is defined as: 

Re /^Zo 

For the over ice experiments with Just water, the Reynolds number 

was about A00 and for the kerosene only under ice experiments, the 

Reynolds number was about 80. 
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SÜB-APPEIIDIX B-l 
(continued) 

Fluid Exp. 
No. 

Saybolt 
Viscosity 
(Seconds) 

Kinematic 
Viscosity 
(Centistokes) 

Temp. 

CF) 

Water 
& 

Glycerin 
15.16 42.8 5.1 78 

Kerosene 
& 

Oil 
17 44.0 5.5 65 

Kerosene 
& 

Oil 
18 57.8 10.0 68 

Re 

80 

40 

20 
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SUB-APPENDIX B-2 

In Che case where the kerosene was released under the rough 

surface, there was a delay between the time the stopper was pulled 

and the time that the fluid started to spread.    This  'starting 

time* was found by extrapolating the radius versus time curve to 

zero radius.    Since the radius varies approximately as the square 

root of the elapsed time, a graph was constructed using the radius 

as the ordinate and the time squared as the Absissa (see Fig.  13). 

By extrapolating, the starting time was found to be about 1.5 

seconds. 
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SUB-APPENDIX B-3 

Below la the raw data for the laboratory experiments along with 

the non-dimensionalized values: (in cgs units) 

Run 1 Over Surf. 1 Run 2 Over Surf, . 1 

Q - 88 V - 90 max 16.5 Q - 270 V - 218 r  ■ 
max 2i 

r r t t r r t E 
10.5 121 .70 2550 12 138 .5 2595 

12 138 1.1 4005 13 150 .65 3375 

14 161 1.5 5460 15 

17 

19 

173 

196 

219 

1.0 

1.45 

2.0 

5190 

7525 

10.380 

Run 3 Over Surf. 1 Run 4 Over. Surf. 1 

Q - 190 

r 

V - 

r 

99 

t 
max 

t 

18 Q - 

r 

123 

r 

V - 104 

t 

r  - 
max 
t 

17 

11 127 .65 2840 10 116 .60 2110 

13 150 .80 3490 13 150 .85 2980 

15 173 1.3 5680 14 162 1.05 3690 

Run 5 Under Surf. 1 Run 6 Under Surf. 1 

Q - : 22. ,5 V - 144 
'max- 18 Q - 21 J V - 126 

'max " 18-5 

r r t t i r t t 

10.5 121 3.1 2890 9.3 110 3.0 2800 

12 138 4.3 4010 12 138 4.3 4015 

13 150 5.5 5130 13 150 5.1 4765 

15 172 7.0 6525 15 172 6.5 7940 
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SUB-APPENDIX B- 3 
(contlnued) 

Run 2. Under Surf. 2 Run 8 Under Surf. 2 

Q - 21.9  V -153 W " 19-5 Q - 20.6 V - 99 WiS 
r    r t t r r t t 

10    105 3.7 3030 9.0 95 2.8 2210 

12    126 5.6 4585 12 126 5.3 4185 

15    158 8.8 7207 15 158 8.8 6952 

Run £ Under Surf. 2 Run 14 Over Surf. 2 

Q - 22.5  V - 117 w-^ Q - 180  V - 126 r««v " 20 

r     r t t r r t t 

9     95 3.8 3155 12 126 .6 2230 

12    126 4.2 3490 14 147 1.0 3710 

14    147 5.9 4900 15 158 1.25 4640 

Run 15 Over Surf. 2 Rue i 14 Over Surf. 2 

Q - 180   V - 135 r  - 19 
max  — Q - 180  V - 126 r«-« ' 19 max  — 

r     ? t £ r if t E 

10    105 .4 1480 10 105 .4 1460 

13    137 .75 3180 12 126 .55 2040 

15    158 1.1 4660 14 147 1.05 3900 

Run 17 Under Surf. 2 Run 18 Under Surf. 2 

Q - 14.4  V - 126 r  - 
max Q - 20.0 V - 180 r   - 

max «to 
r    r t £ r 

Aw 

r c t 

10    105 3.5 3600 10 105 2.8 3540 

12    126 4.9 5080 12 126 3.8 4810 

15    158 6.5 6730 15 158 5.8 7340 
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APPENDIX C 

STATISTICAL APPROACH FOR DETERMINING THE 

EXTENT OF AN OIL SPILL OVER A ROUGH  SURFACE 

1.     INTRODUCTION 

As one seriously thinks of using the crude oil discovered 

In the Arctic Slope, no matter which means of transportation 

will be adopted,  It appears that some understanding; of how oil 

would spread on the Ice Is of major Importance. 

This problem cannot be dealt with as a classical oil spill 

on a plane surface because the characteristic feature of an 

Arctic Ocean Ice surface Is Its roughness.    Moreover, field ob- 

servations show that such a surface can be regarded as formed 

of   "pockets" of different sizes, some of them beinj» Intercon- 

nected.     One can easily see that the oil will ston spreading 

abruptly after having filled a certain number of pockets.    The 

goal of  this work Is to determine the final size of the pool 

as a function of the amount of oil released. 

It is clear that the geometry of  the 'pockets" previously 

introduced Is entirely related to the local variations in the 

ice surface altitude;    it can therefore be determined by func- 

tions h(x,y) defined in an arbitrary plane coordinate system 

xy as the elevation of the ice surface above a reference level; 

most often in the rest of this work,   these functions will be 

referred to as roughness height.    A simple way to record informa- 

tion about these variations in the elevation is to take airborne 

laser profilometer traces   .    Such data were obtained by the U.S. 

A profiler operating from a plane records the phase delay be- 
tween transmitted  to the ground and  reflected laser beam li^ht, 
thus measuring the altitude variations along straight lines and 
yielding a random output signal. 

Preceding page blank 
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Navy in the Beaufort and Chuckchi Seas. There is no doubt, 

when examining any of these traces, that the major character 

of the ice roughness is its randomness (Ref. [3]). Releasing 

the sann amount of oil V at different locations on a randomly 

rough ice surface would result in different values for the 

measurement of the oil pool final size. Clearly, we must then 

formulate our problem in a statistical way, namely: the extent 

to which oil would spread has to be determined In terms of a 

certain number of statistical parameters characterizing the 

ice surface where the spill occurs. An analytical treatment 

of the profilometer traces can provide us with h , the mean 

value ofjthe roughness height h, a. , the variance of h, equal "'."_. 2 n 
to (h - h) , and the auto-correlation function of h. We will 

see in the course of this work that these quantities are suf- 

ficient to give an answer to our problem, provided certain 

simplifying assumptions are made. 

With no more field data than those just introduced, it is 

unlikely, however, that we should end up with an elaborate and 

complete description of the oil spreading phenomenon. This 

paper will only aim at determining the first two statistical 

moments of the oil pool final size - i.e., its average value 

and its variance - both in cases when the spreading follows a 

privileged direction (so called "one-dimensional") and when it 

doesn't (two-dimensional). 

Section 2 will Introduce and discuss the basic assumptions 

necessary to set up a simplified model of the phenomenon, where- 

as Section 3 will give a general mathematical expression for 

these quantities in terms of the field data available, namely: 

h, o. and the auto-correlation of h. 

The bar denotes an average over a sample. 
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In Section 4, we will be concerned with applying the pre- 

vious results to certain Ice surfaces where field data Is avail- 

able, thereby Involving the modelling of the auto'Correlation 

function of h or, more exactly of Its cosine Fourier transform. 

Finally, In those specific cases examined In Section IV, a 

simple power law will be derived, relating the first two stat- 

istical moments of the final size of the oil pool In a dimension 

less form. 

2. BASIC ASSUMPTIONS 

If the ice surface where the spill occurs Is being con- 

sidered as randomly rough, it is clear that we cannot have a 

complete definition of the function h relevant to that specific 

spill, which is what would be necessary to yield a single, defi- 

nite value for the oil pool size in that case. 

A way of overcoming this difficulty Is to retain a certain 

number of statistical properties of h met by different possible 

"realizations" of the ice surface. These properties are then 

regarded as "ensemble averaged" over all those realizations and 

generally consist of a certain number of locally defined stat- 

istical moments and correlation functions of h. These quantities 

provide a certain amount of information common to any ice surface 

realization that belongs to the ensemble. Obviously, the smaller 

this number, the more random is the surface and, when the num- 

ber of such properties goes to infinity, the Ice surface tends 

to be perfectly defined and therefore no longer random. In 

other words, since we are talking about ensemble averages, all 

A "realization" of the ice surface verifying certain statistical 
conditions is an actual, observed surface such that It meets the 
previous conditions. 
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f)ie realizations are becoming Identical. The Idea Is thus to 

have locally defined functions that give statistical Informa- 

tion on a whole ensemble of possible realizations of the ice 

surface. 

In the present case, the only statistical data we have is 
_ _ 2    ————— 
h, O. ■ (h - h) and h(P)h(P*) where the bar denotes an average 

pver a specific "realization" of the ice surface and where P 

and P* denote any two different points of that surface. Since 

these data are "space averaged" and therefore not locally de- 

fined, we are lead to make an ergodic hypothesis, assimilating 

77 and <. .> averages. Our random surface is now characterized 

hy <h>, ah - <[h - h ]2> and h^MP') but clearly, this is 

not sufficient since nothing is said about the aspect of the 

surface. 

There appears our second assumption, related to the stat- 

istics of the roughness height h: we will suppose h is normally 

distributed.  If 5(h) denotes this distribution, we have im- 

mediately: 

I  (h - <h>)2 \ 
X        2*H   j «(h) -  — exp <- v" ,„  '  ) (1) 

Vva. 
n 

5(h)dh represents the fraction of time that h will be found be- 

tween h and h + dh. It does not seem possible to prove this 

assumption by any physical argument since the natural processes 

that make the ice grow are extremely Intricate and not thoroughly 

known. Therefore, we have to verify in each case that this is 

not too- far from the observed distribution;  this was done as 

T  
Lett ensemble and space averages are equal. 
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an example on Fig. 3 where the Gaussian curve   /   ö(T)dT Is 

plotted against h and Is compared to corresponding data points 

measured on a real surface.    It appears that the Gaussian ap- 

proximation Is In relatively good agreement with observations. 

The third assumption concerns the way the oil would  fill 

the "pockets" of which the Ice surface Is formed and more pre- 

cisely, up to what level.    Since the ice relief Is random, the 

answer to this question Is unlikely to be unique.    Most probably, 

a large number of different levels would appear, corresponding 

to more or less "open"' or "closed" pockets.    However,  to keep 

the problem feasible, we have to account only for an average 

uniform level of the oil pool, which Is another way to say that 

all the "pockets" are Interconnected.    Moreover, it seems a 

reasonable assumption -at least most simplifying - to say that 

this uniform level is the same as that of <h>.    No observations 

exist so far to confirm such a point and the reason why we 

chose this level is that any other one would have been even 

more arbitrary and would have lead to more intricate mathemati- 

cal derivations. 

The fourth hypothesis reads as follows:    we will always 

assume throughout this study that the number of "pockets" in 

volved In an oil  slick is very large;    in other words,  the 

ratio of the volume V released to the mean volume of a pocket 

Is large;    this will allow us to give a statistical answer 

for the final  size of the oil pool.    This assumption may be 

considered as valid in so far V is generally large  (10,000 to 

50,000 m    for the crash of a supertanker)  and also the ice 

roughness is such that a big pocket contains many small ones 

and so on;    therefore, even if the slick occurs In a big one, 

the numbers of pockets Involved will always be large. 
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These four assumptions obviously cannot lead to a sophisti- 

cated model since they mainly reflect our lack of Information 

about Ice topography In the Arctic Slope. Moreover, the general 

mathematical results obtained from this model won't be the 

unique approximate solution to the oil spreading problem since, 

for instance, another frequency distribution for h could have 

been selected - log-normal particularly -, or another height 

of the oil pool level could have been chosen. Nevertheless, 

the simple model we can thus build provides us with a first 

understanding of how oil spreads over a statistical surface. 

3. MATHEMATICAL ANALYSIS 

The first four subsections will be concerned with a two- 

dimensional study whereas subsection 3.5 will briefly state 

the results for a one-dimensional case. 

3.1 Problem 

We suppose no privileged direction in the ice sur- 

face, at least for the scale of the roughness we are in- 
+ 

terested in  .    Therefore, the ice topography is determined 

by a two-dimensional function h(x,y) describing the vari- 

ations of the surface altitude with respect to a reference 

plane.    The origin of the coordinates x and y is taken at 

the point of oil release and the reference level is chosen 

so that: 

<h(x,y)>   -    0 (2) 

It has been shown that big pressure ridges do appear with 
certain definite orientations. 
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There again, <h(x,y)> denotes the ensemble average of 

h(x,y) where the averaging ensemble consists of the many 
lee surface realizations that can be observed In the region 

one considers.    From our hypothesis, <h(x,y)> does not de- 
pend on x and y and therefore has to be Identified to the 
•pace average h(x,y) of h(x,y)  over the realizations of 
the Ice surface themselves. 

2 
By the same token, a.   ■ <h (x,y)> Is the variance of 

h(x,y) calculated over the whole ensemble.    Hence,  the 
frequency distribution of h(x,y), assumed to be Gaussian, 
la Independent of any direction and Is given by Eq.   (1). 

A proper Investigation of the actual ice topography 
can   provide us with a two-dimensional auto-correlation 

function defined as: 

nt.n)   -   <h(x + 5, y + n) h (x,y)> (3) 

We can thus pose the two-dimensional problem in the 
following terms:    In a region of the Arctic Ocean where 

2 
we know 0.   • <h (x,y)> and "KCn), a volume V of oil is 
released at point x - y ■ 0.    What will be the total area 
covered with oil and also, what will be the final geo- 
metrical aspect of the pool? 

The general mathematical answer will consist of the 
first two statistical moments of the oil pool size in 

'By building a two-dimensional grid of laser profilometer 
traces. 
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terms of V, a. and ^(Cn), along with a dissymmetry factor 

expressing the most probable ratio of the longest dimen- 

sion of the pool to the smallest one. 

3,2 Dissymmetry of the Final Oil Pool 

As we do not allow any dissymmetry In the frequency 

distribution of h(x,y), the final shape of the slick will 

be influenced by the aspect of the "pockets" themselves 

In the plane xy.  In general, the Ice surface Is not Iso- 

troplcally rough. It follows that If Xx and Xy are the 

ensemble averages of a pocket dimensions In the x and y 

directions respectively, the ratio y of Xx to Xy can be 

called "dissymmetry factor" since it provides a rough 

idea about the final pool aspect. 

From Sub-Appendix C-l, it appears that V» is given by: 

(4) 

Now, let us Imagine how oil would spread from point 

of release. Since the volume V is supposed to be very 

large, the shape of the pockets Is not important at the 

beginning and the slick would propagate circularly. But, 

after this initial phase, one can assume that the geometri- 

cal aspect of the pockets would influence the final shape 

of the oil slick. 

Considering a laser profilometer trace that passes 

through the origin of the coordinates x and y, it is clear 

from our ergodic hypothesis that the statistics of the 
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roughness height remain the same all along the trace.    It 

follows that the origin of the coordinates is a geometric 

center of symmetry for the pool shape.    Moreover, in order 

to simplify further calculations, we assume that the re- 

sulting oil pool is rectangular, x       and y        being the 6 r ft        »   max 'max 0 

x-dlrection and y-direction dimensions respectively. 

Therefore, it follows that: 

max 

'max 
■ y ^ unity, in general 

Obviously, when the ice surface is truly Isotropie, y is 

unity and the final pool is a square in our assumption. 

3.3 First Two Statistical Moments of the 
Oil Pool Final Size 

As was suggested at the end of the last sub-section, 

the oil pool is likely to be symmetric with respect to the 

point of release i.e., the origin of the coordinates. 

Hence, defining h (x,y) and h~(x,y) such that h - h + h~ 

and: 

h"(x,y) - 0 when h(x,y) ^ 0 

h~(x,y) - h(x,y) when h(x,y) < 0 (5) 

:■ 

• I i 
■: 

we can introduce v(x,y) as the volume held by the ice sur- 

face - under the third assumption of Section 3 - within a 
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rectangle of dimensions x and y.    Then: 

r2   47/2 

/      h"(x,y) dx dy (6) 

-y/2 

This Is a mathematlc definition and, evidently. It does 

not account for the fact that the oil-air Interface must 

be horizontal when edge pockets are not completely filled 

up to the average uniform level;    this fact Is Illustrated 

on the sketch, Fig.  1 for the one-dimensional spreading. 

It follows that the mathematical extent of the oil is only 

slightly different from the real one:    at most within a 

pocket.    Since we made the assumption of a large number 

of pockets, we can define x       and y       as the x-dlrectlon r     .     ' max •'max 
and y-dlrectlon maximum extents of the final pool when a 

volume V of oil Is being released over a specific realiza- 

tion of the Ice surface;    namely: 

x /2        y_/2 

(7) 

x     /Z        y       1 max 'max 

'    / J        h'(x,y) dx dy 
-x      /2      -y     II max 7max 

Or, Introducing the area S       defined as: 

S •    x       y (8) max nax 'max 
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Relation (7) becomes; 

- - I    h"(x,y) dx dy 

Js 
* max 

(9) 

As the function h Is everywhere continuous, we can 

also write relation (9) as: 

h'(x,y) dx dy - [Smax - <Stnax>]h"(y,p) (10) 

<S  > 
max 

where point (y.p) belongs to the surface (S   - <S  >); 

h (y»p) Is exactly the average of h taken over the sur- 

face (S   - <S  >). 
max   max 

We now assume that: 

h'(y,p) i <h"(C,n)> (11) 

This cannot be justified In general. Therefore, Eq. (11) 

is more valid as this surface becomes large since, when 

the averaging sample gets large enough, the average of h 

approaches h"(C,n), hence <h~(C,n)> from our ergodlc hy- 

pothesis. An "a posteriori" verification will thus be 

possible. 

Then, taking the ensemble average of (10) and making 

use of the previous approximation, we obtain the first 
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statistical moment of the pool size, namely: 

<S  > » 
max 

<h"a,n)> 
(12) 

To determine the second moment, let us first notice 

that 0 , the variance of S   and o the variance of 
s max    v 

V(<x  >, <y  >) are related.  By definition: 
max   'max 

0  " <(S   - <S  >) > 
s      max   max (13) 

[. v    i   max   max       max   max >} 

From relations (10) and (11), it comes out that; 

J h"(x,y) - V 

<S      > max 

>   '   <<s
mav - <s

mav>)2> <h'(?.n)2   (15) max max 

Or: 

Og <h"(C,n) > (16) 

132 

-   — - ■-1'—-: ■■-•■  - -■ ■ -■     I  ■«HiMiHl-—-^ -  tfrU^fla-MiTBiiniin ■ 



Therefore, computing o   In Sub-Appendix C-2, we end up with: 

<x      >//2    <y      >//2 
max max max max 1%        ^       ~l 

'       <h"<t.n)2> J J L   -^       . 

P^-n]f-«.n)-S|« dn (17) 

From all previous calculations, especially relations 

(12) and (17), it appears that knowing <h'"(C,n)> and 

¥ (C.n) enables us to derive the average value <S  > and 
1/2 max 

the standard deviation o   of the total area covered 
s 

with oil, in terms of the amount V released. Furthermore, 

an idea about the dissymmetry in the aspect of the pool 

can be gotten from coefficient v.    This will constitute 

our answer to the two-dimensional problem posed in Sub- 

section 3.1, provided we can relate <h'(C,n)> and 1r(£;,n) 

to the available statistical data i.e., o. and H^Cn). 

This is the purpose of the next sub-section. 

3.4 Determination of h"(Ctn) and "(^,n) 

We now go into more detail about the distribution 

function 5(h) that was first mentioned in the Introduction. 

This function tells us that the probability h will lie 

between Y and y + dy is  6(Y)dY and therefore: 

r 6(y)d (18) 
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Assuming, as In our second hypothesis, that this fre- 

quency distribution is Gaussian with mean value 0 implies 

that h will be negative as many times as it is positive. 

Since Y Is the value taken by a stochastic function h,  it 

is also a stochastic variable.    Therefore, as we know its 

frequency distribution function 6(Y)> it is clear that the 

average of a stochastic quantity Q uniquely related to Y 

is expressed by: 

<Q> 
;< 

Q(Y)6(Y)d (19) 

If now we identify Q to the value of h"(x,y), it fol- 

lows from relations (5): 

Q ■ Y  when y 4 0 

Q - 0  when y > 0 (20) 

Then, substituting into Eq. (19) for 6(Y) and Q(Y): 

<h (C,n)> - 
/liar 

exp (i> (21) 

Or, performing the integration: 

<h a.n)>    -    -\/ or- (22) 
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Now,  to determine f"(^,n),we have to extend what we 

previously did for a one-dimensional distribution of h Co 

a Joint two-dimensional frequency distribution.    We end up 

With the following relation (see Sub-Appendix C-3 for details) 

*"(C,n)   - 

ll/2 
(^ - 40 

o 

2      1 (u    - y) erf (u) exp 

/ 2 v - A      v + 
>(23) 

where we have set for convenience: 

YO - no,o) 

V  -   m»n) (2A) 

It appears  (see relation (7)  in Sub-Appendix C-A)  that 

4*'(0,0) - y ^(O.O) which is consistent with the physical 

conditions at 4* - V   namely: o 

2 2 
4'(0,0)    -    <h2>    -    <(h+ + h")2>    -    <h+ > + <h" > 

+ 2<h+ h~>   -    2<h~ > (25) 

■MMMMIMIi 
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When assuming the statistics of h    and h   are the same as 

suggested by a normally distributed h.    The product h h 

must always be zero as can be seen by Eq.  (3). 

Furthermore, when £ or n tends to infinity, 4* (£,r)) 
0h tends to   or >  In compliance with the fact that h (x,y) 

and h (x + 5,y + n) are then no longer correlated.    There- 

fore, according to relation (22): 

<h~(x,y)h'(x +    ,y +   )>   -    <h"(x,y)><h"(x + £,y + n)> 

2 
<h (C,n)> V211 (26) 

We have therefore provided a means of deriving the statisti- 

cal quantities we need in Sub-section 3.3,  i.e., ¥ (£,n) 

and <h"(5,ri)>,_from_the field data generally available, 
— 2 

namely:    o.   -  (h - h)  , the variance of the roughness height 

and VCCn), its auto-correlation function. 

3.5    One-Dimensional Case 

We can imagine that in a particular region, the statistics 

of the ice roughness are almost one-dimensional;    that is to 

say,  the averaging ensemble consists here of traces parallel 

to this privileged direction we  denote by x.     Therefore,  the 

ensemble <h> and auto-correlatlon function are only func- 

tions of x.    And,  if h(x)  denotes the elevation  (positive or 

negative)  above the mean value of h taken along the trace 

(see Fig.  1),  we have from our ergodic hypothesis: 
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<h(x)> - Rx) - 0 

<h2(x)> - h2(x) - oh  variance of h       (27) 

and. KT) being the auto-correlation function of h(x): 

♦(T) <h(x)h(x + T)> - h(x)h(x + T) (28) 

From the previous considerations, it  follows that any 

actual surface profile parallel to x will be described by 

the statistical properties (27)  and (28). 

Now, suppose an oil spill occurs in such a zone, a 

volume V being released per unit width perpendicular to x; 
If the spill is wide enough, we can regard the spreading 
of oil as one-dimensional in the direction of x.    This is 
not completely unrealistic since narrow water leads bounded 
by large floes are fairly frequent in the Arctic Slope. 
Under these conditions, a large oil spill would first spread 
rapidly on water, thus creating this wide spill (V per unit 
width)  th&t would further spread over ice almost in a single 

direction perpendicular to the lead. 

We can then put our problem this way:    a volume of 

oil V per unit direction perpendicular to x is released 
at point x - 0.    What will be the maximum abscissa x max 
reached by the oil when it has come to a standstill? 

We will Just state the one-dimensional results since 

their derivation is quite similar to that of the two-dimen- 

137 

4  - - --■ -"■—■—    



ng iiWWii.l»n.inHP»i o/o JMIILI Mmi||iii.ni.ui|]Wim,wiwWpi.l i, |ijijiim)|»imiW!l«'i HillilillHIIWllipWjW wpupwwpw i   miimijn .i WIIHIIII.HHIIII ai 

sional study in the previous sub-sections.    A more detailed 

analysis Is given In Sub-Appendix C-5.    The first statistical 

moment <x     > of the oil pool final size Is found to be: 

<x     >   - max <h'(0> 
(29) 

whereas the second moment a   defined as: 

J     -   < fx       - <x      >12> x j_ max max (30) 

appears to be: 

a     - 
<h >    J 

<x     >/SI 
max — <x     > max 

/I 
- T        f (T)   " 2i    dT (31) 

Here again, ^'(T) and <h~> are related to IKT) and a,. 

through the relations: 

<h->   .    -     ^ (32) 

*"(T) (u2 - ^)  erf  (u) 

exp 

where:    ty m) 
*   -    ^T) 
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3.6   General Mathematical Results 

In this section, we have been able to give an analyti- 

cal expression for the first two statistical moments of the 

oil slick final size, resulting from a spill of volume V. 

Thus, when the oil spreading Is either one-dimensional 

(with a privileged direction) or two-dimensional (no priv- 

ileged direction),  the assumptions made In Section 2 enabled 

us to derive the ensemble average value of the pool size 

and its standard deviation, as well as a "dissymmetry factor" 

M characterizing the aspect of the slick (in the two-dimen- 

sional case only). 

These quantities are all determined In terms of 0. , 

the variance of the roughness height h,  and the auto-correla- 

tion function of h (either ^(T) or ^(^n). 

Namely: 

<x   > - ^i 
max ^ 

<[x       -   x       ]*> 1 max max J 

"<x      > 
_ max 

SI 
-  T MT) - 

<*>/# 

BW 

0. r 
dT 

>   1-dlm. 
case 

(34) 

where ^"(T)  is obtained by equation (15)  of Sub-Appendix C-3. 
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<s     >   - 
max 

v /n 

<x   >/& <y   >//ir max max 

0     -    <IS        - <S 
s max max 

>]2> m m r       r % J   J 
[<x    >      1 (<y    > max        , I   'max 
 ^   • n 
r si    J L ^ 

y - H (o.o) / ^ (o.o) 

* (?.n) - 2? dC dn 

2-dim. 
case 

(35) 

where 4*    Is obtained by Eq.   (18) of Sub-Appendix C-3. 

However, we have to point out again that these results 

do not constitute the unique answer to the general problem 

of oil spreading over an Ice surface since the basic assump- 

tions made In Sub-section 3.2 are quite limiting.    Never- 

theless, they can provide us with a first understanding of 

the possible effects of an oil slick. In an Arctic environment. 

4.     APPLICATION - SAMPLE  CALCULATIONS 

In this section,  the general mathematical results of the 

last section will be applied to a certain number of specific 

cases of Ice topography where the corresponding statistical field 

data Is available. 
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Both In the one and two-dimensional cases (for privileged 

and no privileged direction of spreading respectively),  the 

statistics, i.e.,  the first and second moments of the final 

size of the oil pool, have been determined in terms of o. , the 

variance of the roughness and ty, its auto-correlation function. 

We recall here that h stands for the variations in altitude of 

the ice surface with mean value 0. 

<h2> (36) 

WT) <h(x)h(x+T)> in the 1-dlm.  case (37) 

^UiH)    -    <h(x,y)h(x + e,y + n)>     in the 2-dim.  case (38) 

Then within a certain region of the Arctic Slope that can gen- 

erally be regarded as large compared to the area of an eventual 

oil slick, the ice topography obeys the statistics expressed 

either by Eqs.  (36) and (37) or by Eqs.  (36)  and (38) when the 

oil spreading phenomenon is one and two-dimensional respectively. 

Now, in order to give a numerical answer to a specific oil 

slick problem, we have to know a.   and either ^ or f character- 

izing that part of the Arctic Slope where the spill occurs, and 

that are the results of  field observations.    However,   the statist- 

ical properties of the permafrost relief are generally given in 

the form of a power density spectrum of the ice surface (Ref.  [3]). 

We must therefore use that kind of field data Instead of the 

auto-correlation function itself. 
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From the Wiener theorem In generalized harmonic analysis, 

it appears that the auto-corrclatlon function and the power 

density spectrum are related by a Fourier cosine transformation. 

Thus, if P denotes the power density spectrum of h,  it follows 

that: 

And: 

^(T) 

P(f) 

WO) 

■/ 
P(F) cos 27rfT df 

KT)  cos 2TrfT dT 

**> 

P(f)  df 

in the one- 
'dimensional 
case 

(39) 

VW 

P(U) 

7 
jp<£: 

ATT* 

P(U) cos (2TrU.X) dU 

+00 

I'CX) cos (2TrU.X)  dX 

^(O)    -    0h    ■        I    P(U)  dU 

in the two- 
dimensional 
case 

(40) 
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where U Is a frequency vector of components U. and U» and X any 

vector of the plane xy of components C and r\. 

Tlierefore, It Is clear that the Information wc need about 

the Ice surface statistics, i.e., 0.   and the auto-correlation 

function of h, Is contained in the power density spectrum P. 

The problem is now to build a continuous function P fitting the 

observed power spectrum as well as possible.    This is the object 

of the next sub-section. 

4.1   Modelling of the Power Spectra 

In order to make the mathematical analysis of Section 2 

applicable to any part of the     ice in the Arctic Ocean, 

we have to determine the parameters necessary to describe 

the most Important features of the ice surface statistics. 

A general answer to this modelling problem cannot be given 

here, even by increasing the number of such parameters 

since the actual data is far from being complete and re- 

liable.   Moreover, another problem is raised by the two- 

dimensional case of oil spreading since no corresponding 

field data - two-dimensional functions ^(C.n) - is available 

to date.    Therefore,  in order to obtain numerical orders of 

magnitude, we have assumed that a two-dimensional auto- 

correlation function ^(Cn)  can be regarded as the product 

of two one-dimensional auto-correlation functions.    Namely: 

nK,r\)    -   ah ^(5) i|»2(n) (41) 
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Theie is no evidence at all that this Is correct and It 

only appears as a fair and Indispensable assumption to treat 

the two-dimensional case.    Therefore, since the latter can 

be derived from one-dlmenslonal field data, this aub-sectlon 

will only be concerned with the modelling of the one-dlmen- 

slonal power spectra that directly come out by Fourier 

analyzing laser profllometer traces such as those mentioned 

In the Introduction.    The two-dimensional model will only 

be stated following the above assumption. 

There is no doubt that modelling P(f) or I|/(T)  is 

equivalent since the power density spectrum and the auto- 

correlation function are uniquely related through a Fourier 

transformation.     In fact,  from the few data examined - 

both i|; and P -,  It turns out that the shape of the spectra 

Is quite varying thereby making the choice of parameters 

difficult, whereas the form of WO seems to remain pretty 

much the same;    It Is,  therefore, easier and perhaps more 

reliable to propose a model for WO and then take its 

Fourier transform.    Since this function presents observed 

damped oscillations around a zero value and starts at 

i|)(0) - a.   (by definition of i|>), we think that two parameters 

k and T are sufficient to set up a consistent model.  Namely: 

*(T)    - 
1 + kt 

2 cos 2TT ;J (A2) 

where k is the inverse of a length squared and T has the 

dimension of a length. 
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However, as we mentioned at the beginning of this 

section, this is not the form under which field measure- 

ments generally appear.    Thus, we have to derive a model 

for the power spectrum P(f).    This can be done by taking 

the Inverse Fourier transform of the model for i|> and 

evaluating k and T from the power spectra.    It follows 

that: 

P(0 ühexp    /MVoshl^V^l/T - i cosni    i; 
/     \-IAJ 

TO, 
P(f)     -    -^ ■    exp   (-  | coshf   ) 

A \ W        \.A / 
£ < 1/T > 

P(f)    -    P(-f) (A3) 

i 

There exists a syrametry with respect to the origin and it 

Is therefore sufficient to consider only the positive  fre- 

quencies for which a peak in the power spectrum appears at 

F ■ 1/T.    In that case,  the normalization of the spectrum 

Is such that: 

P(f)  df (4A) 

which is equivalent to multiplying P(F) by a factor two 

in relation (43). 
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This relation constitutes the two-parameters model 

ve propose for the one-dlmenslonal power spectra.    When 

considering specific ice surface statistics, the parameters 

k and T can be determined by having the model fit exactly 

the observed intensity and frequency position of the peak 

on the power spectrum.    In other words, if f      is observed 

position of the peak, we have: 

no 

and k is the solution of the following transcendental 

equation: 

2TOh /  exp  f- )    -    exp  (- — ) coshf -2- J P(f    )    -    ^-expf-—Uosh   — (46) 

Figures 4 to 6 show one-dlmenslonal spectra modelled in 

this way.    Each figure is relevant to different ice surface 

statistics, i.e., different k's and T's;    the solid line 

shows the proposed model whereas the black squares represent 

the corresponding field measured spectrum.    It appears that 

the decaying of the spectrum is acceptably verified but, 

unfortunately,  the  lower frequency region, beyond the peak 

is not very well matched.    As the peaks of the power density 

spectra play a central role in our analysis, a point per- 

taining to their exact definition has to be raised here. 

t f 0.   is not a parameter in that model since    /  P(F)  df - a. 

for any k's and T's 0 
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As a matter of fact, the behavior of the power spectra 

for very low frequencies  (where the peaks lie most often) 

remain unclear.    These data generally come out by Fourier 

analyzing field measurements of the Ice surface variations 

In altitude.    We must notice that the recording device 

does not have an Infinite analyzing band-width and that In 

order to remove the variations In altitude of the plane 

which carries the recorder the data signal Is filtered 

through a hagh-band pass filter.    Therefore, we cannot 

rely on the Information at low frequencies provided by 

such methods,  and it would be necessary to set up a physical 

argument to account for the general aspect of the power 

spectra In the low frequencies.    This requires a thorough 

understanding of the Ice formation and life and has not 

been done to date.    Our modelling Is therefore restricted 

to such field measured power spectra that exhibit a well 

defined single predominant peak,  almost regardless of their 

behavior for frequencies less than the peak frequency. 

Let us now state the resulting model for a two-dimen- 

sional statistics.    Following the assumption we made earlier, 

we write: 

nt.n)   -   ah 1^(0 ^(n) (47) 

where ty. and ij/» are one-dlmenslonal auto-correlation func- 

tions, hence modelled by relation (42) with parameters k., 

T.  and k. respectively.    It follows that the corresponding 
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two-dimensional power spectrum is P(U)  such that: 

P(-)    "    ah P1(U1) P2(U2) 

where U.  and U- are the components of the frequency vector 

£ and P.  and P? are the two one-dimensional models cor- 

responding to the parameters kj.!.  and ^2*^2 resPectively* 

Namely: 

w 

P2(U2) 

 exp  [ ) cosh I \ 

^1 \Ai/       VTi^i/ 

 exp   [ ) cosh / \ 

^1 V^2 /           ^2^2; 

if VVV2 > 1/T 

(48) 

P^U,) 

P2(U2) 

■    exp   f-  \coshf   j 

^1      VTi^i/     \Ai/ 

■     exp   j jcoshi   — 

^2 \T2^2/ V^i 

if U1,U2  < 1/T 

(49) 

P(-U)     -    P(U) 

Here again,  P(U)   is symmetric with respect  to tne 

origin in the frequency plane.    Hence,  one needs only 

1A8 
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consider a half-plane (for Instance U. > 0), normalizing 

the power density spectrum so that: 

P(U) dU (50) 

which Is equivalent to multiplying P(U)  as expressed in 

Eqs.   (48)  and (49) by a factor 2. 

The overall aspect of such a power spectrum is given 

in Fig.  7.    Two peaks appear, corresponding to the two 

peaks of P.(U2).    As was said earlier, no comparison with 

field data Is possible due to the lack of the latter. 

In this section, a simple two-parameters model has 

been proposed for the one-dlmenslonal power spectra and 

is in good agreement with observations In so far as a real 

predominant peak appears In the measured spectra.    The two- 

dimensional model has been purely hypothesized as being a 

cross product of two one-dlmenslonal models.    The next sub- 

section will use these models to develop a concept of "most 

probable pocket" in the Ice relief. 

4.2    Concept of Most Probable Pocket 

In this sub-section, both In the one and two-dimensional 

cases, a "most probable pocket" will be defined as the "most 

apparent periodical relief" In the ice surface;   mathemati- 

cally, it will be identified with the negative part of the 

main term in the Fourier series expansion of the ice surface. 

Moreover, being the most characteristic feature of an ice 
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surface, this most probable pocket will be used to non- 

dimensionallze our further results. 

As soon as we have the power density spectrum P(w) of 

the function h, from harmonic analysis we know that: 

h(x) -    P(w) cos (wx) dw (51) 

with 2P(w) dw -  |F(w)|2 

w - 2irf 

It is then clear that we can approximate this function 

by an infinite Fourier cosine series which is nothing more 

than replacing the surface contained between the power 

spectrum curve and the frequency axis by an infinite num- 

ber of rectangles of width Aw and height P(w ) where w n n n 
is a circular frequency and P(w ) the value of the power 

spectrum at that frequency. 

Thus: 

h(x) - Z /2P(w ) äv    cos (w x - * ) (52) > n       n n n 

in the one-dimensional case 

by the same token: 

h(X) « I /2PIIJ )    U    cos (U .X - ^) (53) — —n     -n —n —     Tn 

in the two-dimensional case 
T See Ref.  4. 
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In these equations, the "approximately equal" symbol 

tends to an "equal" symbol when Aw - AU in the two-dimen- 

sional case - tends to zero, that is to say when the sum is 

replaced by an integral. 

The amount of randomness characteristic of any given 

realization of the ice surface among a particular statistics 

appears in the set of phases ^ that are regarded as com- 

pletely random variables. 

Now, in so far as the power spectrum decays fast enough 

when the frequency increases and decreases from its value 

at the peak, there is no doubt that the term corresponding 
1   2 f 

to the frequency position of the peak, w  - U , IT  in ^   ' r no  —no —no 
the two-dimensional case - in the Fourier series is pre- 

vailing over the other ones. 

Figures 4 to 6 show that such a fast decaying is con- 

firmed by field data when w increases, but this is not the 

case when w decreases since, as was already mentioned, this 

low frequency part of the spectra is not quite reliable. 

However, it seems intuitively reasonable to expect that the 

zero frequency values of the spectra have to be zero; In 

other words, in the Fourier expansion of h, terms with an 

infinite wave length should have zero amplitude because 

otherwise, this would mean that there exists points in- 

finitely far from the origin of the coordinates with non- 

zero roughness height. This is intuitively non-acceptable. 

A rigorous argument can only come out from a detailed 

discussion of the ice relief formation and evolution. This 

is beyond the scope of this analysis and we must be content 

t 1  2 
U , IT refer here to the two peaks of a two-dimensional 
-no -no r 

spectrum. 
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wtth the assumption that a real peak exists in every spectra 

and its frequency position and intensity explicitly appear 

on the field data. 

Thus, it follows that an even cruder approximation for 

h would be: 

h(x) a SlaT cos (w x - ü) n     no    no 
(54) 

in the one-dimensional case 

and 

h(X)  ? SzäT    cos (U1 .X - (j/1 ) h    I -no —       no 

+ cos  (uJn.X - / )] —no —       no l 
(55) 

in the two-dimensional case 

For the one-dimensional case, we can look at Eq.  (32)  as 

expressing h in terms of a superposition of sinusoids of 

period — and intensity /2P(w ) Aw .     Each sinusoid will K w -^ n        n n 
contribute - in proportion to its amplitude - to form the 

actual aspect of a typical one-dimensional profllometer 

trace verifying the statistics expressed in the power spec- 

trum P.    Then, Eq.   (54)  tells us that the greatest ampli- 

tude sinusoid,  and therefore that which most influences 

the shape of the real pockets,  corresponds to the frequency 
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of the peak.    Hence the notation "most probable pocket" 

refers to this particular term of the Fourier expansion 

of h.    This privileged pattern in the ice relief has a 

length Lmp equal to one period T of the sinusoid and a 

"volume" per unit width Imp equal to the area contained 

between a negative arch of the curve and the axis, namely: 

Lmp    ■      r w no 
(56) 

Lmp 

Lmp 

/2a.   cos (w    x) dx h no (57) 

negative integrand 

Or, integrating: 

Zmp    - 
/2ä7        T/ZOT n n (58) 

no 

By the same token,   for the two-dimensional case, 

Eq.   (53)  is an expansion of the Ice surface in terms of 

sinusoidal surfaces,  the most apparent pattern corresponding 

to the two peaks of  frequency vectors U      ■  (U    ., U    „) 

and ^no "  ^nol'  " Uno2)  as in ^   (55)'   (see Fl8,   7) * 
Analogous to the one-dimensional case,  the  "most probable 

pocket" has here a surface S      and a volume V      corresponding 
mp mp 
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to an increase of (Unol)'   In x and (U^)"    in y. 

Or more precisely: 

Air 
Smp   -   u       u 

nol   no2 
(59) 

Vmp //JOT   cos U1 .X + cos U2  .X    dX J      hi       -no — -no -J    — 

1 period In 

1 period in 

negative integrand 

Upon integration, this yields: 

8^5h 
^P    "   U   , U   , nol   no2 

(60) 

(61) 

Since they express the most important feature of the 

power density spectra - namely,  their peak -,  the "most 

probable pocket" dimensions will provide a good reference 

to non-dimensionalize our further results.    This concept 

of most probable pocket has also the advantage of giving, 

in a simple way (through Eqs.   (32)  and (53), a rough esti- 

mate of what the ice surface looks like. 
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4,3 General Mathematical Results of Section 3 
üsln^ the Modelled Spectra of 4.1 

With Eqs. (34) In the one-dlmenslonal case (35) In 

the two-dimensional case, we have obtained a relation 

between the first and second statistical moments of the 

oil pool final size, the auto-correlation function of h 

and the parameter a,   of the ice surface statistics. The 

purpose of this section Is to derive more simple relations, 

using modelled spectra, and non-dlmensionalize these re- 

sults with rtspect to the "most probable pocket". Thus, 

it will be shown that in their dimenslonless form, the 

second moment is proportional to the first one through a 

factor 6 only dependent on the non-dimensional group 
_2 2 2 

kf  (or kJc, T. T. In the two-dimensional case) for suit- 

able values of this group. 

4.3.1 One-Dimensional Case 

We recall here that if <x  > is the final 
max 

dimension of the oil pool and a    its variance, we 

have, from the mathematical analysis of Section 3: 

<x      >    -     (62) 

<x      >/t/2 _ 
max 

Sir J 
<x     > max 

SI 
- T 1(1) -] dx (63) 
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<p"(T) being obtainable from <KT) defined as: 

uh T 
WT)    -    G—5" cos 2* = 

1 + kTZ T 

(64) 

Through the relation (see Sub-Appendix C-4). 

fix)    -   F(i|»)    - 
2Tr(*o

2 - i|<2) 
172 ab 

(a   + b2) ^   - 2ab^ 

expi 5 S  ldadb (65> 
2(ti»z - n :) 

We can notice that, for k's and T's such that 

approaches zero within one period T - 

or one most probable pocket length lap - Eq. (63) 

we can i 

a. 2Tr 
_ h _ 

becomes: 

a     -    8Tr 
x 

Ljnp _ 

J  L ^    J Lh     . 
(66) 
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Since the integrand in relation (66) is a con- 

tinuous function of T. we can define T such that: 
o 

Sir Lrap 
<x      > 

max 

ft 
-  T 

MT0) 1_ 
211 (67) 

Now, from Sub-Appendix C-4, it it clear that 

will be positive between T » 0 and 
Lah   2il 

T T T T ■ T- and negative between 1 " T Bnd T ■ y;    hence: 

0 < T    < T/4 o (68) 

In so far as <x      > is large as compared to 7-1 max 6 r 4' 
we can rewrite Eq.   (67): 

8* . ^        ^ — Lmp a <x      > 
/2 «»ax 

(69) 

with ah 2ir 
(70) 
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Taking the square root of Eq. (69), It appears 

that the standard deviation of the oil pool final 
1/2 

size Is proportional to <x >      ,    This is in ac- nax 
cordance with the following physical argument.    Let 

V be the volume of a pocket per unit width, and 

let us split it into a "most probable pocket" volume 

plus a fluctuating quantity V1: 

Vt>*wn*,.** 

AV - Lmp <h > + V ,t (71) 

If a. is the variance of AV and Oy, that of 

V', we have obviously: 

0AV " V (72) 

Now that the total volume V of a spill is such 

that: 

N AV (73) 

Furthermore, all these pockets are statistically 

Independent If we assume that the correlation for h" 

goes to zero within an Interval Lmp. 

'Lmp is defined in  (56). 
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Therefore 

0V   "   N 0AV   "   N aV' (74) 

where ov Is the variance of the volume occupied by 

N pockets.    Since <x      > Is always of the form max 

<x     > max ■   N mp (75) 

we have from (74): 

v o„   -    <x      > —- V max   Lmp (76) 

1/2 
Fn    -»1/2 

is then proportional to <x      > max 
1/2 

as expressed in Eq.   (69). 

Now, let us show that a defined In relation 

(70) la Independent of <x      > for sufficiently large 

values of <x     >. max 

159 

aiia^tofi.^ o.,:.'... *. j,.. ■.,.»■■ ,,■...-■ ,i~.,^. 



Equation (66)  can be rewritten: 

[<x      >/^" - T] max 

[<x      >lJl - T ] max o 

(^"(T)/0h -^i-) dT    (77) 

<x      >lfi. - T 
the ratio     can be regarded as constant 

<x   >//r - T max o 

In so far T - T    remains small as compared to <x      > o max 
when T varies from 0 to Unp.    In other words,  since 

T    Is of order    mp/4,  a independent of <x      > is a 

reasonable approximation when the number of "most 

probable pockets" Involved in the oil spill is large 

(of order 10 or greater). 
2 

We can also show that, when kT   exceeds a number 

to be determined,  a only depends on the non-dimensional 

group kT : 

I|»"(T) '00    - 
2ir(*o

2 - i|;2) 
172 abexp 

(a2 + b2)^ - 2a14 

2(4,o
2 - ^2) 

dadb  (78) 
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Furthermore,  it appears that,  setting 

T     -    yLniP    "    YT (79) 

Y is almost a constant within a few percent; 

this result comes out  directly from a large number 

of numerical computations with different k's and T's 

and is not surprising since the overall shape of 

the functions    *■ - •^—   does not change very much 
h ^1 

(see Fig. 9). 

Then, 

*<v 1 + ky T 
^-^ cos Ziry (80) 

is only a function of kT . 

Hence,  from Eq.   (78) 

'{'"(T )    - ^(IKT ))    -    function of kT2 only (81) 

We have therefore shown that a depends on the 
2 non-dimensional group kT    only. 
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Non-dlmenslonallzlng Eq.   (69) with respect to 

the "most probable pocket" length Lmp, we obtain: 

1/2 

Lmp - -   e 
f<* >Y/2 
i    max   I 
\Liiip    / 

(82) 

with 

(83) 

We now determine the universal curve 6 versus kT 

for k and T's that verify the assumptions we have 

made In the previous derivations. 

The only one concerned with k and T tells us 

must decay to zero within a period [fill    iJ 
L0h 2ll 
T ■ Lmp.    From Sub-Appendix C-4, we know that this 

is equivalent to ipd)  going to zero within a period 
HO) T;    if we assume that <KT) 5T is a good approxi- 

mation for KT) equals zero, it follows that: 

lK0)/iKT) > 50 (84) 

We could have taken the same condition within two or 
more periods T;  the dependence of a on kT only would 
not have been changed, but a independent of <x  > 
could be questioned. However, the decaying to zero 
within a period seems to be in good accordance with 
field data. 
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or: 

• 

kT2 » 50 (85) 

We will therefore compute the curve 8 (kT ) 
2 

for kT   Z 50.    This is represented on Fig.  11. 
2 

We can notice that, when kT    goes to infinity, 

6 goes to zero.   This is not surprising since, 

when T ■ 0I,, a equals a constant divided by 

infinity and when k ■ «o, a equals zero times a 

constant;    in both cases,  6 is therefore zero. 

Knowing the k and T of a given ice surface 

statistics, we are now in a position to obtain 

the corresponding 8 (on Fig.   11)  and, with Eq.   (82) 

have got a single relationship between the two 

first statistical moments of the oil pool size 

x      ,  In their non-dimensional form, max' 
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4,3.2    Two-Dlmenslonal Case 

We recall that the two-dimensional size of the 

oil pool is S       and its variance o    such that: 
max s 

<s     >   -     (86) 

O     -    32TI 

<y      > 7 max 

_/2" 
- n 

1^ 
~ 2Tr dCdn (87) 

where ^"(^ri) is obtainable  from 4'(C,n) defined as; 

*(5,n) 
(i + k1£;2)(i + k2n2) 

cos 2vf- cos 2Tr— 
Tl 12 

(88) 
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Going through the same kind of derivations as 

we did for the one-dimensional case, and under the 

same conditions for k's, T's and S  , we will ob- max 
tain comparable results. 

Thus,  for k-,  k,, T. and T2 such that ^"(C.n) 

goes to 0 within the area T.  X T. and sufficiently 

large <S      >, we can write *       max ' 

.   * 
1/2 

Smp e 
<s     > 

max 
Smp 

a/2 
(89) 

0 being only a function of k. k, T.    T,     (if we 
2 2 i.    *    x      * 22 

neglect k. T.    + K» T.    compared to k1 k2 T-    T2 ). 

6 versus dimensionless group has also been deter- 

mined on Fig.   13,  and one notices that for 4* (C.n) 
2      2 to go to zero within the area T.  X T-, k.  k- T.    T, 

has to be greater than 2500 if we keep the same stan- 

dards as in the one-dimensional case for the meaning 

of "goes to zero". 

Therefore, knowing k., k-,  T.  and T2 of the two- 

dimensional statistics we are considering, we are In 

a position to obtain the corresponding 0 and thereby, 

we have got a simple y power law relationship be- 

tween the non-dimensional first and second statistical 

moments of the oil pool size. 
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Having three experimental power density spectra coming 

from different parts of the Arctic Ocean, we have attempted 

to Insert them In our parametered model described In Section 

4.1.    We obtained the following values for the parameters 

k and T    (see the modelled spectra on Figs.   4 to 6). 

IMMM 

j    T k 0h 

115 ft. 0.00378 ft."2 2.295 ft.2 

200 ft. 0.002786 ft."2 1.016 ft.2 

1  540 ft. O.OA075 ft."2 0.2033 ft.2 

© 
© 
© 

(90) 

Then, on Fig. 10, plotting the relationship between 

the two first moments of the oil pool size In the onc- 

dlmenslonal case for any of the three above statistics, 

we have compared the simple j power laws given by Eq.   (82) 

with the corresponding S's  (solid lines) to points obtained 

from the general mathematical model - Eq.   (34) - for dif- 

ferent volumes released V.    The agreement  is extremely 

good for any statistics, as well as It Is on Fig.  12 for 

the two-dimensional case;     in order to build two-dimensional 

statistics, we have made the following combinations of one- 

dimensional statistics:   ® + ®,@ + ® . © + @  and 

(D + ©  of Table (90). 

_ _  
We notice that kT    is always larger than 50 for all three 
statistics which allows us to use Section 4.3 analysis. 
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Therefore, In so far the conditions over k and T is 
2 1 

verified (kT I  50 for Instance), this r- power law re- 

lationship between the oil pool final size and its stan- 

dard deviation appears to be a very good approximation to 

solve our problem, both in the one and two-dimensional 

case. 

It might be Interesting to f.how a rough estimate of 

what these numerical results can be. Let us take a volume 
3 

V ■ 1000 ft. per foot width in our one-dimensional case; 

this yields the following figures for each of the statistics 

of Table (90): 

max 

 ► <x  > - 2487 ft.      a  1/2 - 480 ft. 
max x 

As to the two dimensional case, let us take a volume 
5        3 V ■ 5 X 10    ft.    which appears to be a reasonable size, 

even in case of a supertanker crash,  then, we obtain for 

the following combinations of one-dimensional statistics: 
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Such results for 0    and a   provide good evidence that 
X s 

our assumptions of Eqs.   (11) and (7,  In Sub-Appendix C5) 

ace valid.    We recall Chat in these assumptions, the 
1/2 1/2 average of h    over a length a or area a was identi- 

fied to h (£),  the average of h    over the whole reallza- 
1/2 1/2 tion of the surface,  on the ground that a or a was 

large enough. 

Since the correlation for h approaches zero within one 

"most probable pocket" dimension,  a length I-mp - or an area 

Smp in the two-dimension case - of the ice surface realiza- 

tion can be considered as containing all* the statistical 

characteristics of the entire surface.    Therefore, the 

average value of h    over a length Imp - or area Smp should 

not differ very much from <h (C)>. 

Hence, it comes out that for V such that the standard 

deviation of the oil pool Is much less than a "most probable 

pocket",  the assumptions are no longer verified,  thereby 

making the lower part of the curves o    versus <x      > - or x max 
0   versus <S      > - less trustworthy. s max J 

5.     CONCLUSION - SUMMARY - DISCUSSION 

In this study, the two first statistical moments of the 

oil pool resulting from a spill of volume V have been deter- 

mined in terms of a. , the variance of the roughness height h 

and the auto-correlation function of h, both when the spreading 

is one-dimensional (one privileged direction) and when it is 

two-dimensional (no privileged direction). 
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These results have Chen been developed and simplified In 

compliance with a two-parameter (k,T) model proposed for one- 

dimensional statistics as long as their power spectrum exhibits 

a single predominant peak.    If P(f)  is the modelled spectrum, 

we have: 

P(f) 
•/ 

P(f)    -    J^llexp   /^ ^-Vosh^Vf f < X/T 

& \ T*1c/ \<fc  / 
(92) 

T Is nothing more than the inverse of the frequency position of 

the peak and k is determined by the intensity of the spectrum 

at that peak, through the transcendental equation: 

P(|)    - 
21^ 

ft 
exp 2n ( jcosh (93) 

Two-dimensional statistics have been regarded as character- 

ized by a product of two one-dimensional power density spectra, 

therefore,  their modelling Is quite similar to that of the one- 

dimensional case. 
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A "most probable pocket" that could be physically defined 

as the "most apparent periodical relief" In the Ice surface has 

been Introduced both In the one and two-dimensional case.    Math- 

ematically, It Is Identified to the main term In the Fourier 

series expansion of the ice surface. 

if = is the frequency position of the peak in a one-dimen- 

sional spectrum and (U    ^ U    2),  (U^, - u
no2)  the positions 

of the peaks   .n a two-dimensional spectrum (see Fig.  7), the 

dimensio'      -f this "most probable pocket" are its size and 

volume: 

Length Lmp    - 

"volume"      Imp    -    — 
T^ 

one dim.  case 
(94) 

area 

volume 

Smp    - 

Vmp 

T1T2 

8/207 

41T* 

ünol üno2 

ünol Uno2 

>    two dim.  case 

(95) 

The first statistical moment of the final size of the oil 

pool - namely x        in the one-dimensional case or S        in the r '    max max 
two-dimensional one - has been determined and then non-dlmen- 

slonalised with respect to the "most probable pocket" size: 
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<*    > max             V 
linp              Lmp 

<S      > 
max .    v 

Smp 

\/ll   m   JL.2_ 
V   ah np     /r 

.   JL   \/ll   .   JL 
Smp    V   O. Vmp 

V       4 
Vmp '"572 

(96) 

A simple j power law relationship between the non-dimen- 

sional first and second moments of the pool size has been de- 

veloped with a slope 0 -        In the two-dimensional case - 
2 2      2 depending only on the dlmenslonless group kT    - k. k. T.    T. 

In the two-dimensional case - that characterized the modelled 

spectra.    Namely,  If a    Is the variance of x        and a    that 

ofS«ax: 

1/2 
x 

Lmp 

Al/2 

see Fig.  (10)  and (11) (97) 

1/2 
as 
Smp e <s max 

Smp see Figs.   (12)  and (13) (98) 

Therefore, suppose we are given the volume V of oil released 

and the parameters which characterize the region of the Arctic 

Ocean where the spill takes place:    k and T In the one-dlmen- 

slonal case or k., k-, T.  and T? In the two-dimensional one, 

along with the variance a.   of the roughness height;    we are then 
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in a position to predict the final size of the oil pool as well 

as its standard deviation.    Furthermore, In the two-dimensional 

case,  an Idea about the dissymetry of the pool can be gotten 

from the quantity y,  the ratio of the dimensions of the rectangle 

limiting the pool.    With relation (4): 

(2Tr/T2r + 2 k2 

Uir/^r + 2 kj 

1/2 

(99) 

We have to notice here that this rectangular shape 

x       X y       surely does not represent the real aspect of an oil max       max 
pool.    The latter is much closer to an ellipse - a circle in the 

case of a truly Isotropie surface - and it follows that the size 

computed under this assumption can result in a 13% underestima- 

tion of <x     > and <y      >.    The computations relative to an max max 
ellipse, although quite intricate,  can be performed but,  in 

view of the precision obtained on the statistical field measure- 

ments, we did not deem it worthwhile. 

The limitations for the use of these power law relationships 

between the first two moments of the pool size (Eqs.   (97)  and 
2 

(98))  are concerned with the value of kT    and <x      > - <S      > 
2      2 ,nax max 

and k. k« T.    T.    In the two-dimensional case - namely: 

kT2 » 50    or    k. k2 Tj2 T2
2 i 2500 (100) 
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<x max 
Lnp 

<S      > 

Lmp (101) 

These conditions,  described In some detail In Sub-section 

4.3 do not Influence more general results as those of Eqs.   (3A) 

and (35) which are valid for any power spectra model. 

Also,  an Important point to understand Is the actual be- 

havior of the power spectra at very low frequencies since It 

has been here purely hypothesized, as was also the two-dimensional 

statistics,  for there is no evidence at all that a two-dimensional 

power spectrum should be the product of two one-dimensional ones. 

To conclude this study, we can say that the previous analysis 

yields simple and useful results as to the prediction of oil 

spreading over a rough surface of ice;    but, since the modelling 

of the power density spectra has been developed from a limited 

quantity of data, a strong experimental ground is required to 

completely justify this proposed model. 
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^THIS AREA = V 
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FIG. I    GENERAL ASPECT OF ONE REALIZATION   OF 
THE PROFILE 

vm 

LTAX) 

<rx>=0 

ONE "POCKET" ZEROS OF rY(X) 

EXPECTED VALUE X, 

FIG. 2    AVERAGE  LONGITUDINAL  DIMENSION OF 
A POCKET " 
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SUB-APPENDIX C-l 

In this appendix, we will determine the "dissymmetry factor" 

defined as the ratio 

' 

Xx 
(i) 

where Xx and Xy are the average dimensions of a pocket In the x and 

y directions respectively. 

Let us consider an actual laser profllometer trace parallel to 

the x direction.    Let r (x)  denote the elevation of Ice above the 
x 

mean level < h(x) > ■ 0. Considering an ensemble average over all 

the traces parallel to x, we can write: 

< r (x) > - 0. 
x        h 

(2) 

And: 

< rx(x + 0 rx(x) > - m,0) (3) 

Using our third hypothesis concerned with the way pockets are filled 

by oil, we can see that Xx corresponds to the average distance 

separating two zeros of the function r (x)   (see Fig.  2).    r (x)  Is 

normally distributed from our second hypothesis and, since 
dr 
4— is linearly related to r (x), It also holds a Gaussian dlstrl- 
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button.    Hence, the vector 

r«(x)l i 
dx (x) 

Is normally distributed. 

Therefore, If p(a,6,x) represents the probability that: 

a < r (x) « a + da 

drx e « ^(x) ^ e + de (4) 

we have: 

p(a,e,x)    -   ^ hi"1 exp (- y   ||a e||   H-1 
(5) 

where: 

W^) 

M 

(0,0) (6) 

see Ref.   1. 
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Relation (5)  can easily be reduced to: 

p(a,8;x) 
(-Y    Y' )"1/2 

o    ^o 
2Tr exp (7) 

in which we have set  for convenience: 

2 
ft v 

^0 3C2 

*   - y(o,o) 
o 

(8) 

Now,  let us find the probability that  r (x) has a zero between x 

and x + dx;     in the Interval, all the cross-sections of the possible 

realizations of the ice surface are regarded as straight lines. 

At first, we will derive the probability  for r (x)  to have a 

zero with positive slope.    For this  to happen,  a and 6 have to be 

x + dx 

related by the  inequality 

(clearly shown on the sketch 

beside): 

-Gdx < a < 0 
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Then, the probability for r (x) to have a zero between x and 

x + dx with a positive 6 is: 

•   0 

/ dO I p(a,e, x)da 

0   — 

And, the probability density for this happening is: 

d(Ax) 
de  / p(a,e,x)do 

-eAx Ax - 0 

which reduces to: 

(-e) p(-eAx,e,x) de 

Ax - 0 

or: 

e p(o,e,x) de (10) 
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By the same token, the probability density for r (x) to have a 

zero between x and x + dx with a negative slope Is: 

-  / e p(o,e,x) de (ii) 

Adding relations (10) and (11), we obtain IT(X), probability 

density for r (x)  to have a zero between x and x + dx: 

ir(x)    - |e| p(o,e.x) de (12) 

Using relation (5) and Integrating, It comes out: 

n(x) 

Uli 

.   1 L  !&£ 
.1/2 

(13) 

The Integral of TT(X)  over a unit length gives the number of expected 

zeros per unit of a x-dlrectlon since the Integral from -» to +• 

obviously gives the total number of zeros. 

Therefore, Xx,  the average distance between two zeros of r (x), 
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can be approximated by: 

Xx Tr(x) (14) 

All that has been done for profllometer traces parallel to the 

x-directlon could be done  for traces parallel to the y-dlrectlon 

simply by introducing the  function r (y), analogous to r (x). y x 
Going through the same kind of calculations as the previous ones, 

we would end up with: 

vl/2 

ty    -    w   I-   Tjn- (15) 
no. 

It follows that vi defined in relation (1)  is given by: 

*■£■($-/ ac2 

a/2 
(0,0) (16) 
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SUB-APPENDIX C-2 

The goal of this appendix Is to calculate 0    defined as: 

u( u max max max max       ' 
> (1) 

where: 

x/2      y/2 

u(x,y)    -    - / /     h''(u,u)  du du 

-x/2 - y/2 

(2) 

Expanding the square In Eq.   (1), we obtain; 

u max max max max 

<0(<x  >, <y  >)> + <u(<x  >, <y  >)>' 
max   'max        max •  max 

(3) 

or: 

2 2 
0,,    -    <u (<x      >,  <y      >)> - <u(<x      >,  <y      >)> (4) U max        7max max  *     'max ' v ' 
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Making use of Eq.  (2), we have: 

<x     >     <y     > max max 

<vr( x       ,    y       )> max *    'max 
■    < 

<xJ^>     <y^> max max 

h"(x1,y1)h"(x2,y2)dx1 dxj dyj^ dy2> (5) 

Since ensemble averages commute with linear operations, we can 

write: 

<0 (<x     >,  <y      >)>    - max '    'max 

<x     >     <y     > max 'max 

max 'max 

<h (Xj^.y^h (x2,y2)> dxl dx2 dyj^ dy2 

Or,  Introducing the auto-correlatlon function ^"(Cn): 

v'it. n)   -   <h"(x + e, y + n)h"(x,y)> 
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It comes out that: 

<u (<x     >, <y     >)> w v   max '    7max 

<x     >   <y     > max        'max 

Y      rr 

<xJJ>    <y JJ> 
max       'max 

T(|x2 - x1|,|y2 - y1l)dx1 dx2 dy1 dy2 

(6) 

Introducing the new variables: 

C -  |x2 - Xj^ 

n - |y2 - yj (7) 

we obtain: 

<x  >//? <y  >//! max '    'max 

<ü (^max^ ^max^  " 16 

/ 

<x >    <y > __max_ _ c  _max_ . n ^^ ,n)dC dn 

(8) 
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From relation (2), It is clear that: 

«u^* >. <y >x>2 - <s._>2 <h"(C,n)>2 - V2    (9) max   max max 

We also notice that: 

• 

<x  >//r <y >//Z 
max      max 

<s >2 <h~(?,n)>2 
max    x*' " 

16 
/ 

<x  > 
max 

/I 
•-i 

<y  > 
max 

/2 
- n 

a, 
^d^ dn 

Therefore, from Eqs. (4), (8) and (9), we end up with: 

"/ 

<x >//!    <y      >lJl 
max     'max 

<x  > 
max 

- 4 
<y   > 
max 

- n 

\r^> - j dCdn (10) 
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SUB-APPENDIX C-3 

In this appendix, IJ/~(T) In terms of ^(T) will be derived. 

fix)    - <h (x)h"(x + T)> 

IKT) - <h(x)h(x + T)> (1) 

where h (x) Is defined In relation (5) 

At first« we introduce the following uctations: 

h(x)    -    a h"(x)    -   a" 

h(x + T)   -   b h"(x + T)    -   b' (2) 

Let D(a,b,T)be the first Joint probability density of the couple 

(a,b).  D(a,b,T) dadb represents here the percentage of times that 

h(x) will lie between a and a + da while h(x + x) lies between b 

and b + db. 

Then, from our second hypothesis, D(a,b,T) is Gaussian with 

mean value 0, and can thus be written: 

D(a,b,T)    -    ^iMl^exp  (-I'llrllM^Hrll) 
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where 'll'll     "    H«       HI (4) 

and M Is the second moments matrix: 

M 

<a > 

<ab> 

<ab> 

<bfc> (5) 

From the definition of IKT) , It Is obvious that: 

<b2>   -    <a2>    -    i|>(0) (6) 

and 

<ab>    -    ij;(T) (7) 

in other words, M depends only on t. 

The mean value of a stochastic quantity Q Is uniquely related 

to the couple of stochastic variables  (a,b) Is perfectly defined as 

soon as we know the Joint frequency distribution of the latter,   I.e., 
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D(a,b,T). 

It is: 

<Q> Q(a,b)  D(a,b,T)  dadb (8) 

Or, when Identifying Q with the product a b 

Q   -    a b ab      when      a and b < 0 

0      when      a or    b » 0 (9) 

and, substituting for D(a,b,T): 

a"b"      -    ^"(T)    - 
2TT(I|) 2 - *2) o 

172 

(a    +b )  ty    - lahty 
ab exp V-     5 ^  Jdadb        (10) 

2(^ - /) 
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In which ve have set for convenience: 

|: 

% t|»   -   \|;(T) 

HO)    -    t (ID 

Introducing the new variables x and y such that: 

a - x - y 

b - x + y (12) 

Equation (10) becomes, noticing that the Jacoblan of the trans- 

formation Is 2: 

*"(T) 2      JTJ   (   dx   1   (x2-y2) 

Tr(^2 - i) 
0 0 0 

ext *0 + 'I' ^0 " *> 
jdy (13) 
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s t 

And, making use of the error function defined as: 

erf (x) - ih- dt (1A) 

we end up with: 

iTCT) 

1/2 
2      1 (u    - |) erf (u) 

exp 
(.u2^V    +   vi (15) 

We notice that for the two-dimensional auto-correlation function 

*~(Cfn),  the result is exactly similar to Eq.   (15). 

"(C.n)   -  <h"(x,y)h"(x + {■, y + n)> 

n^.n)   ■   <h(x,y)h(x + ^ y + n)> (16) 
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■   • 

With the notation: 

f0 - no,o) 

*(5.n) (17) 

we have: 

* (e.n) 
(*   - y) o 
Tr(H'   + 4») o 

nl/2 

(u2 - i) erf (u) 

expl du   + o 

4^ t 
(18) 
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UP 

SUB-APPENDIX C-4 

■ 

The purpose of this appendix Is to examine the behavior of 

f(T) 
From relation (15) of Sub-Appendix C-3, we have: 

*"(T) 
i (»0 - 10 
1T(«|>0 +   *) 

|)  erf (u) exp 

(i) 

We can split the integral into two parts: 

2      1 (u    - ±) erf (u) exp - u 
2^o^ du I1+I2 

(2) 

where: 

/   / 2      1 
2 ^o " ^ 

) erf  (u) exp   ^-u    ^17^  ldu 

^    -    "n 
/   (u2 - f) exp f-u 

2 *o - ^ du (3) 
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with: 

2  1 /  2 ^o " *\ 
(u - ^) erf (u) exp f- u ^ ^ . Idu 

k  » 5   ___     (4) n 

(u - -) exp f- u ^—^ )du 

k is perfectly defined since the two above Integrals are 

convergent. 

Since erf(z) as defined in Section 3 approaches unity when z 

tends to infinity, k tends to 1 when n approaches infinity. 

I, - k (J + K) 
i    n 

where: 

2    /  2 ^o " * 
J -  | u ^p (- u j-f-j  ld" 

K -  | ^ exp f- u j-^  )du 

7.04 

■^ ■  ■   - —^—-~-^i^^-: 



After some algebra, It follows that: 

.'V 

■ 

h    -    \    < 
3   *o+*        /^     2*0"* exp | - n 2  i'o-y %+ * 

+    2» \/5 (^ + no 

ÖJT -* ) 
erfc n 

»Q-* 

^ + ^ (5) 

here, erfc(z) Is the complementary function of erf(z) 

1.    T *0 

When T - 0, ij; - i|)   and therefore relation (5) of Sub- 

Appendix C-l becomes: 

-   k 
3   V* 
2 ' *0 - * 

exp   - n 
2 V-f 

*      2i|>     \/n    *o + 

+ ry-$ V16' ^ - 
*-1» (6) 

having n Increase to Infinity, It follows from (1),   (2),  (3) and 

(6) of Sub-Appendix C-l that the only remaining non zero term Is: 

f(0) 
(^0 - *)3 

1/2 

2ii»   \/rl \ + * 
y   - (p    Vl6 ^ 

^o-* 

a/2- 

i»- * 
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f(0)   -   ^  "   j^0) (7) 

2.    T -•■ » 

We have to go back here to relation  (10)  of Sub-Appendix 

C-3, namely: 

^"(T) 

2Tr(^o
2 - ij;2) 

172 ab 

(a    + b )ij;o - 2ab4j 
exp^ 5 5   V dadb 

2(^ - f) 

X -^ « is equivalent to have ij) -»■ 0 since,  at infinity, IJ;(T) 

is zero. 

Hence,  integrating the above relation for ^ ■ 0,  one easily 

obtains: 

*"(")    -    ö^ 2Tr 2TT 
(8) 

which is not surprising since, for an infinite T, h (x) and 
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h'(x + T) are no more correlated and therefore: 

<h'(x)h"(x + T)> - <h"(x)> <h'(x + T)> 

- <h-(x)>2 - ^ 

The aspect of a typical ^"(T)  IS sketched on Fig.   8. 

3,    application 

For numerical computation of ^"(T)   from ^(T) ,  It la Interest- 

ing to notice that: 

n ■ 3 In relation  (3)  of Sub-Appendix C-l Is highly sufficient 

since: 

erf(3)    -    0.99990 = 1 

Implying k3 - 1. 

*"(T)  - 
(*0 - *)• 

iröir + V) 

1/2 

(u    - 1/2)  erf  (u) 

exp /    2 *o - A,     +   "'o + ' 
« 3(i|»o + ij>) 

+    2M   - i|0 

irrir-«fcV3\/^* + ^ 

(9) 

^o_ 
^o 

i 
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SUB-APPEND;X C-5 

The purpose of this appendix Is to give some details  on the 

derivations relative to the mathematical analysis of the one-dlmen- 

slonal case.    Thus,  the first statistical moment <x      > of the pool max 
extent and Its variance a will be determined In terms of a. , the x h 
variance of the roughness height and »KT) the auto-correlatlon of 

the latter. 

We Introduce the notations h (x)  and h (x) such that 

i .1," i m, ■»n»». 

■ 

■ 

H(x) - h (x) + h"(x) (1) 

and 

h+(x) - h(x) when h > 0 

h+(x) m 0 when h 4 0 

h'(x) a h(x) when h < 0 

h"(x) B 0 when h ^ 0 (2) 

We define u(x), amount of oil per unit width that would fill the 

pockets between abscissae 0 and x: 

U(x) h"(0 dK (3) 
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The extent of the pool, x      .  for a given realization of the max 
Ice profile Is such that: 

X«ax 

/ 
V   -      I        h'(5)  dC <«) 

If <x      > denotes the ensemble average of x      , we can always 
max 6    max' ' 

write Eq. (4) as: 

<x  > max 

/ 

- v -  /   h-(0 d5 + (x^ - <xnax» h-(0  (5) 

since h" Is a continuous function of x; C corresponds here to a 

point of the profile where: 

<x  > * £*x .„ (6) 
max      max 

As was done for the two-dimensional case and with the same limitations, 

we assume that: 

h"(0    -    <h'(0> (7) 
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Equation (5) Is then written: 

<x  > 
max 

- V - 

/ 

h"(C) dC + (x^ - <x  >) <h~(0>    (8) max   max 

Taking the ensemble average of Eq. (8) and noticing that this 

kind of average commutes with linear operations: 

" V " <h"<«> <xmax> 
(9) 

Then: 

<x  > 
max 

<h"(0> 

(10) 

To derive the variance a of x  , defined as: 
x    max 

a -  <(x  - <x >) > 
x       max   max 

(11) 

we come back to Eq. (8) and write It as: 

<x  > 
.max 

1/ h (5) d£ + V > 

*1 4 

<(xMX - ^  >)Z> <h-(5)>Z (12) 
max   max 
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Or: 

u x a..   -   a   <h"(Q>2 (13) 

where a. is the variance of the volume U (<x     >): 0 max 

o.   -    <|o(<x      >)    -    <u(<x     >)>|2> (14) to(<x      >)    -    <u(<x     >)>1 max max    J 

Also, expanding Eq.   (14): 

0.   -    <U2(<x      >)>    -    <x      >2 <h"(0>2 (15) U max max 

From Eq.   (3),  it is clear that 

<x     > max 

// '■ 

<u2(<xmax>)   -   <   ||        *  <  n  in) J-  in 

•// 

<x       > max 

<h (Oh (n)> d^ dn 

0 

<x       > max 

If       ^"(U - n|) d^ dn (16) 
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where    ^ (T) Is the auto-correlatlon for h . 

Making Che following change of variables: 

.:, 

T  -   U -n| 

e -   k + nl (17) 

We end up with: 

<U (<x     >)> max 

.max 

l|»"(T)   dx (18) 

Noticing that: 

<x      >2 <h"(0>2 
max 

<x      >/^" max 

-    A 
^       Px     >       1 aK 

dT (19) 

and using Eqs.  (13) and (15), we obtain: 

<x     >/SI max 

0-4 
x 

px      > 
wax T *     (T)   > dT (20) 

i|>~(x)  In terms of ^(x)  Is determined in Sub-Appendix C-3 

(Eq.   (15)) while the value of   h"   has already been determined in 

terms of ah in Eq.  (22) of Appendix C. 
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