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LIST OF SYMBOLS

h - height of ice surface
x - distance along ice surface
T - an increment of distance
() = lim lj‘-
Lo ], 0 ( ) dx
n
§(h)dh = probability that h lies between h and h + dh
°h - mean square roughness height
k - a parameter
T L] the wavelength of the surface
H - thickness of oil layer
A - difference in specific gravity of oil and water or
air
o] - density of oil
Q = rate of release of oil
r = radiué of oil pool
Smp = surface area of average pocket

Vap - volume of average pocket

Smax = average area covered by oil

uw = air friction velocity
| z - air roughness height
A - a parameter
¢4 - density of ith component of oil vapor
pﬂzo - density of water
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OIL SPILLS IN THE ARCTIC

INTRODUCTION

With the discovery of large oil reserves in the Arctic,
there naturally arises questions about the behavior of oil spil-
led, as it may change the fragile Arctic environment. To date,
there have been few 0il spills in the Arctic. Nevertheless, one
expects that tankers, pipelines and drilling will all contribute
to the oil spillage, much as happens in warmer waters. However,
as there is little in the way of a historical record of oil spil-
led in the Arctic, it is not presently possible to determine which

of these rources is the most significant.

The environmental concerns aroused by potential oil spillage
are founded broadly on two ideas. First, the characteristic
time for biological degradation in the high Arctic is believed to
be quite long, on the order of ten years. This means that 1if
spillage in an area is more frequent than once a decade, we might
expect permanent changes in the environment. Second, crude oil
is generally a dark color. If spilled on ice or tundra, it will
change the solar albedo of the area covered. Such a change in
solar heating is known to drastically change tundra. Of course,
there is also the toxic effeci of oil on flora and fauna - but
a discussion of such biological effects is beyond the scope of

this report.

There are a number of new features which arise in Arctic oil
spills. First is the role of ice. Sea ice has a variable den-
sity, ranging from perhaps 0.70 (gm/cc) to 0.91 (gm/cec), the
latter value being associated with old ice containing very little
btiné. The actual ice density depends on how the ice formed, and

its subsequent history.
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In contrast, the density of North Slope crude oil is 0.89.
After aging two weeks in the Arctic summer, this density rises
to about 0.95(1). Hence the oil can be either heavier or lighter
than the sea ice.

Suppose now that a large volume of oil is spilled in a lead.
Subsequent to the spill, the lead closes. On a hydrostatic argu-
ment, nne can say that if the oil is heavier than the ice, it will
be forced under the ice pack. The important idea here is that we

must consider both situations - oil under and over the ice.

A second new feature is that of surface roughness. 1t is
vell known(z) that sea ice is rough, and that the roughness
elements have a more or less random character, with "hills" and
"valleys'". These statistical properties of the Arctic surface
are extremely variable -~ the rms roughness height can be as
small as several inches or as large as several feet. Similar

(2)

statements can be made for tundra .

Roughness is important, because, if oil is spilled on a
rough surface, it will run down into the '"valleys" and remain in
these "pockets'. See Figs. 1 and 2. After oil spilled has stop-
ped spreading, its area is determined by the extent of these
pockets or puddles. Of course, the rough surface also modifies
the way in which oil spreads over the surface.

These effects may also be present if oil spreads under the
ice. In that case, puddles form at the high points of the ice-

water interface.

A third feature is the fact that crude oils are sticky, and
they stick to ice. This feature means that ice traps oil, pre-
venting jits free release and spread in the environment. Of course,

in che Arctic summer, the ice adjacent to oil can melt, and the

0il released. Hence one would expect that oil spilled in the
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Arctic would be cyclically trapped and released.

A fourth new feature has to do with how oil spreads on water.
This is a topic which {s fairly well understood(s). The new
feature in the Arctic situation is that the surface tension
spreading regime(l) is apparently ahsent. Thus, Arctic oil
spills do not spread to a thin film (driven by surface tension)

as do their warm water counterparts.

The purposes of this report are twofold. First, we shall
give a description of the short term history of an oil spill -
including the rate of spread, the area covered by the oil, and
the effects of leads. In each of these areas, our knowledge is
based upon a physically sound theory which successfully cor-
relates carefully controlled laboratory data, and what field
data is available.

Second,_ye discuss the evolution of oil, from a non-bio-
logical point of view. A model of oil aging is developed, and
its predictions compared with field olbservation., The stizkiness
of 0il on sea ice has been measured, and the results correlated
with a theory which predicts how thick a layer of oil can stick
to the ice in Arctic conditions.

From these studies we show that the evolution of an oil
spill in the Arctic is a much slower nhenomena than in temperate
waters. The area covered, even from a supertanker spill  1is
quite small, on the order of some few square kilometers. Thus

the technological problem of combatting Arctic oil spills is

much differen. than that in temperate water: it is not likely
that barriers will be useful or needed. A system with rapid
response time is not required. On the other hand, there seems
to be no presently known way to locate easily, much less remove,

é oil trapped under oil in ice.




2.

DESCRIPTION OF SPILL

In thi- section we give an analysis of the events immediately

following the release of 0il in the Arctic. To do this we must
develop a description of the rough ice surface. We shall con-
sider the ice to have an average height <h>, above sea level.

The actual height of the ice is then equal to

h(x) = <h>+ h'(x) (1)

h'(x) denotes the variable roughness of the ice surface.

Where h' is negative, 0il spilled will tend to accumulate.

The data on h' are typically gotten(3)

from a laser pro-
filometer mounted on an aircraft flying over ice. The signal
which results from such a measurement appears essentially ran-
dom. There seem to be no features which distinguish one area

of rough ice from another (nor should there be, on physical
grounds). If no statistical distinction can be made between
different areas of rough ice, then mathematically speaking the
random variable, h'(x) may be considered a stationary stochastic

function.

To study the pocketing of o0il on the rough ice surface,
one is lead to ask over what extent h' is negative, so as to

determine how large the pocket is.

But, the standard analysis of ice roughness amounts to com-

puting the power spectrum of h'. The power spectrum P is the

Fourier transform of the auto correlation function, (f 1is a dummy

variable)

<h'(x) h'(x+ 1)> = S, P(f)cos 2 f df (2)

-00
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We can make such a statement because, as no region of the sur-
face is statistically distinct from other regions, the average,

<h'(x) h'(x + 1)> only depends on T, Then P only depends on f.

Up to now, we have been discussing how one region of the
surface 1s correlated with another, located at an arbitrary
distance T away. However, the actual data are now more re-
strictive, as the aircraft flies straight while the profilometer
records surface roughness. For our application 7 is a distance

along the surface parallel to the flight path.

h'(x),h <0
<h:(x) hl(x + T)> where hl(x) = (3)

0 elsewhere

This is a major theoretical problem. In this report, we shall
(4)

only summarize the mathematical theory we have ceveloped

A detailed physical description of the results will be given.

It turns out that to relate (3) to (2), additional informa-
tion, beyond P(f) is required. Basically, we use the fact that
h 18 normally distributed, i.e. if 6(h)dh gives the fraction of
the time h will be between h and h + dh, then §(h) has the form

2
1 ~(h - <h>
exp ( 70 )
h

6(h) = (4)

2110h

Here, o, = <(h')2>, the mean square roughness height. Figure (3)
h

compares S §(1)dT against h for a suitable value of ©

he The
-0

solid line is the theory, and the points are field data from

reference (3),

]
As
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The remaining parameters which characterize the surface
are measures of the horilzontal scales of the surface. We have
found that the field data(3) fit a power spectrum calculated by
assuming

g

<h'(x) h'(x + 1)> = —Ds cog 2T (5)
1+ kt

provided suitable choices of k, T and 0_ are used. Figures (4,

h
5 and 6) show the comparison between field data and Eq. (5).

Physically, VE; is the roughness height. T is the horizontal

k-l/z

length of a given pocket. is the distance in which the cor-

relation between h'(x) and h'(x + T = x + k"llz) becomes negligible.

Suppose now that a surface, characterized by oh, k and T is
specified. Let oil be released on this surface. The oill spreads,

and we next proceed to estimate how fast the oil spreads.

There is little doubt that the oil spreads due to gravity,
Let capital H be the thickness of the oil layer, and A the dif-
ference in specific gravity between oil and water. Then the
driving force is

1 over ice
2n(pAgH)Hr where A = (6)

A under 1ce

as r is the radius of the oil pool at a time t,

After careful study of all available data, we have found
that the retarding force is a frictional one, as the oll reaches

new pockets. This frictional drag 1s concentrated at the leading
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edge of the oil slick. For radii less than r, the oil flows
over filled pockets of oil with essential.y no friction.

Because this pocket filling process is controlling the
rate at which the oil spreads, it turns out that the o0il spreading
rate is controlled by rate of release of the oil. For simplicity,
we shall assume an average rate of volume released, 0. Continuity

then requires that
mTH = Qt ¢))

The frictional retarding force is proportional to the 'area"

of the roughness ceen by the approaching oil, (<h:> =L /o,)

2 "h

2mr<h'>

The pressure drop experienced as the oil flows into new pockets
is proportional to, and 1is caused by the drag exerted by the rough
surface on the oil.

2
dr
P ('E?

where %% is the velocity of the oil at the leading edge of the
slick. Balancing the driving and retarding force gives

2w (pAgH)Hr ~ 2wr<hl> o ( =) (8)

12




dr

By using Eq. (7), we can determine that, as it ~-§, (the coefficient,

0.25 is determined empirically)

5 \I/6
r = 0.25 (2{3;) e2/3 (9)

Fig. (7) shows that this simple equation correlates both the
laboratory data(s) and field data(l)’(G). In working out calcu-
lations of how fast oil spreads over or under ice, Eq. (9) should

be used.

The laboratory data were gotten by building several random
rough surfaces whose characteristics could be fitted empirically
by Eqs. (4 and 5). Experiments were done both for oil spreading
under and over the ice surface(s).

011 spreading in a lead filled with water 1is easily treated
as are other spills over water(7). That is, there are several
phases of 0il spreading - inertia, viscous and finally surface
tension. There are standard formulae(s) which give the rates
of spread. However, there is one important modification which
arises in the Arctic; the surface tension phase of oil spread
is absent, because the net spreading coefficient is essentially
zero. This means that the motion ceases when the oil reaches

(1)

a certain thickness, on the order of lecm'~‘. Practically gpeak-

ing, then, Eq. (9) and those referenced(a) provide a method of

working out the spreading rate of oil spilled in the Arctic.

The spreading stops when either (a) the oil thickness on
water reaches about lcm, or (b) if the oil fills all the pockets
of the ice field. 1In the first case, the area of water covered

by o0il is simply proportional to the volume released:

Area = Volume/thickness (10)

S TR G,
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The situation is more complex in the second case., 1If the

rough 1ice data is fitted with Eq. (5), then Patuteau(a) shows
that the surface area of an average pocket, Smp, is
2
Smp = T (11)
and the average volume of a pocket 1is
272 1/2
Vmp = == (20,) (12)
n

Now the area that an oil slick will occupy depends simply on the
average number of pockets which can be filled with oil. Clearly
the total area covered must then be proportional to the volume

spilled, and inversely proportional to Vmp. The exact result(a)

is

) (13)

<smax> is the average area of a spill over or under ice.
For a random rough surface, Figs, (8 and 9) compare this result
with laboratory data. It is seen that there is fairly good

agreement with this result.

Using this result, we can estimate the area covered by an

oil spill on ice. Table I shows the results for a spill of

V=5 x 10S ft.3 (about 15,000 tons) for three sets of T, oy

(4)

gotten from Arctic data’ .

15
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TABLE I ]
T Oh Smp <smax> ?
115 fe. 2,295 fe.2  1.32 x 10% £e.2  7.29 x 10° £¢.2

200 ft.  1.016 ft.2 4 x 10° fe.2 1.24 x 10° £e.2

540 fr.  0.203 ft.2 4 x 10% f£e.2 2.78 x 10% £¢.2

If a super tanker full of oil, 150,000 tons, were spilled,
then for ice described in Table I, one gets areas ranging from
1/4 to 1 square mile as the area covered. Such small areas
should be contrasted with the Torrey Canyon experience - in that
case, the oil spread to some 300 square miles in area. On
Arccic ice, in contrast, the present study predicts a much

smaller area.

The calculations of <Smax> in Table I are based on one
dimensional spectra, and the assumption that the statistics are
the same in all directions on the ice surface. This is a crude
assumption, which was made because no two dimensional spectra
of ice field roughness are currently available. However, using
a varlety of assumptions of the asymmetry of ice roughness

elements does not change the result by much more than a factor

of three. é

Although there is very little field data on the character- }

(3) b
, 1t 1s approximately true ﬂ

istics of the under ice roughness
that the ice is in hydrostatic equilibrium. Jf we assume that

this is exactly true, then for the under ice surface, T is the

Sl e ~ e e il

same as that of the over ice roughness, and the roughness height,
JOh, is about seven times greater; as 1/7 of the ice is above

the mean water level. Thus, the mean pocket volume, Vmp, is

R g TN

seven times preater for the under ice surface. (See ref. 2)

18
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If we consider two cases, one in which a volume V of oil

is spilled over the ice, and another where the same volume is

i e r FEEAT A TR St B

spilled under the ice, then the above argument suggests that the
area <smax> of the oil under the ice is 1/7 that of the area

over the ice.

The hydrostatic assumption is too crude to permit the ac-~

curate estimate of this area ratio., But it is quite clear that

the Vmp, mean pocket volume, under the ice must be much greater

than over the ice.

All the results of this section may be summarized as follows:
At the end of the spreading phase of an Arctic spill, the oil
will be trapped either in a lead or on the ice surface; and the
area will be much less than what one would expect in temperate
climates. Practically speaking, we expect that a super tanker

spill will occupy at most about a square mile in area.

3. EVOLUTION OF OIL IN THE ARCTIC

In this section we consider what happens after the spilled

oil has ceased to spread. Then the o0il will elther be in pockets

above or below the ice surface, or in a lead, floating on sea

e R
Mt o o s 3

water. From a mechanical point of view, we are interested in

T

whether the o1l may migrate, over a long period of time, from

o

the origin of the spill. There are really only two potential 3

R LB )

causes for such migration. First, there is the slow increase
in o1l density with time - we refer to this process as aging.
1) the density of

et

In about two weeks, in the Arctic summer,

T

Morth Slope crude increases to 0.95, which is heavier than

o abi e auiie o baas da il o
SR bt R
T —

E virtually all Avctic ice.

Lo nes

In the Arctic summer, the dark oil on the surface of the

Lt ol il

ice absorbs enough heat to float in a pool of melt water. If 5

19
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a lead now opens; the oil will flow into it. If the lead then
closes, the oil will flow either under or over the ice depend-
ing on whether it is lighter or heavier than the surrounding
ice. In this sequence of events, the oil density determines

whether the o0il will flow under or over the ice.

The second major factor in migration of oil is the question
of whether oil sticks to ice or not. We have done a separate
experiment to determine the stickiness of North Slope crude and
diesel oil to sea ice, and find that substantial amounts of oil
stick to ice. 1In particular, this stickiness, discussed below,
apparently precludes the dispersion of oil under the ice by the

action of currents.

Because of these somewhat unexpected results, the evolution
of oil spilled in the Arctic will generally consist of an evapora-
tion of the lighter fractions, causing an increase in density.
Second, 1if the o0il is located under the ice, it will stick to
the ice. In the winter season,0il located over the ice will
stick to the ice also. In summer , the oil located over

the ice does not stick, but floats in a pool of melt water.

From this discussion, it is apparent that the evolution
of spill oil hinges on an analysis of how the density of the
oil changes with time, and how the oil sticks to the ice surface.

A. The Evolution of the Boiling Point Distribution

The purpose of this section is to develop equations
which describe the boiling point distribution of crude oil
as it ages on ice or water. We assume, firstly, that at all
times the oil is well mixed. That is, the concentration of
the ith component of o0il is always uniform throughout the

oil. The argument for this assumption goes as follows:

20
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If the oil spreads to a thin (1 cm) layer on water,

intermolecular diffusion will smear out any gradients of

T RS

concentration in a short time (1 day). On the other hand,
if the oil is pocketed in deep pools, the action of wind
will be to make waves on the oil surface which will mix the
oil, Even in the Arctic winter, when the oil on the ice

surface is frozen solid, we believe this will be a good

assumption because the time constant for evaporation in-
creases exponentially with decreasing temperature, whereas
the mixing time for oil is at most the time for character-
istic changes in the ice field, 1.e. less than a month.
The assumption is that this mixing process will

always have a time constant which is less than the time

constant for evaporation.

Second, we use a simple turbulent diffusion model,
based upon a neutrally stratified air flow over a rough
flat plate. There 18 no question that there will be de-
partures from neutral stability in the air flow over the

oil or the Arctic Ocean. However, these departures will

be unimportant near the rough surface, as there the rough-

R L N y N .

ﬁ g ness elements will dominate the mixing process, provided
] f there is an appreciable wind velocity(g). Under this as-
. X

F & sumption, the diffusivity at sea level is

E *®

: ku 2z

*
vhere z 18 the roughness height, u 1is the friction velocity

and k is Von Karman's constant, having a value of 4/10.

" To compute a flux we need to know the gradient of the

concentration of the oil vapor in the air, We argue that,

21
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due to the low rate of evaporation, there will be essentially

zero vapor concentration for heights greater than z. On the
other hand, due to the strong mixing induced by the rough-
ness elements, we must expect finite concentrations for
heights less than the roughness height. Hence, the length
scale for the concentration gradient is z. The flux is pro-

portional to the concentration times

Au*

Third, following Blockker(lo), we assume the oil, which
is a mixture of a large number of organic components, is
considered an ideal thermodynamic mixture. Although this
assumption is certainly untrue in detail, we expect that
the discrepancies caused by non-ideal behavior will not
cause any quantitative changes in the results. This assump-

tion implies Rauolt's law is valid.

In the same vein, the oil vapor of the ith species is
considered a perfect gas. The vapor pressure of the ith com-~
ponent over its liquid obeys a Clapeyron equation. These are
excellent assumptions because the temperatures of the vapors
are all low comared to the critical temperature for the

substances involved, and‘the gases are all dilute.

Finally, let us show that evaporation into the air
dominates dissolution of oil into the water. The mass flux
per unit area of the ith fraction of oil to the air is

%
cixu
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where ¢y is the density of the ith component of oil vapor
at the oil surface. The flux of the ith component to the

water is about

S, Au
DHZOiuw

where Si is the solubility of the ith component in sea

water.

* *
Now u, is much smaller than u . To see this, consider
the case where the o0il lies at the water-air interface. At

the interface, the turbulent stress is continuous. Hence

* *
u = y P

air
w

HEU

Using these results, the ratio of evaporation to air to flux

to wvater is

. !
S p
S’Hzﬂ i air

Typical values at 0°C are c, = 10-1 Pair? S, = 10—4 and

3 i i
pHZO/? 107,

air =

Hence the ratio is on the order of 30. We shall ignore dis-

solution of o0il into water.
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Consider now a mass of oil, containing 1 fractions,
each vith a molecular weight Mi’ The mass of each fraction
is w, The mole fraction, Xy depends on the number of moles

in the ith fraction, n,, as

i
i
x, = -f;i- (14)

The mass of the ith fraction is

NMixi - m (15)

Since the volume occupied by each fraction, V:L is related

to the density of each component as
mo= AV
it can be seen that the bulk density is -

v o IM,x, /oy

- (16)
o ZMixi

ol
[}

(11)

Raoult's law states that the partial pressure of

the ith component is proportional to its saturated vapor
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pressure P: and the mole fraction X,

The saturated vapor pressure is determined by Clapeyron's

equation

My
= e g (5 -

)] an
By

This equation relates the ith component to its boiling tem

[0
=3] =

B’ At TB’ the ith component has a saturated
vapor pressure of PB = 1 atmosphere. Here q is the latent

perature T

heat of vaporization and R, the universal gas constant.

Next, we relate the partial pressure Pi to the density
of the vapor about the oil, ¢y assuming the vapor to be a

perfect gas,

P.M

11
¢, = ——' RT (18)

Using (14) and (18) in combination we determine the
rate of evaporation of the ith component to be, for an

exposed area A,

*
dn Au P_A qM T-T n
1 * '8 1 B i
dt - g exe RT, (=) §) @9
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The solution of (19) gives ni(t;TB) and N(t). By equa-
tions (14) and (15), this is equivalent to knowing M(t) nd
Mi(t’TB)° The evolution of the boiling point distribution
is normally represented in graphical form with one axis
being the fraction having boiling temperatures higher than
T;, that is

1 E N
= my - = Myxy (20)
L1

*
and the other axis being T;. ITB is a dummy variable)

The Evolution of Density in an 0il with a
Continuous Distribution of Boiling Points

The purpose of this section is to extend the previous
results to an oil of infinitely many components, each with
a mole fraction dx. To do this, we must associate with
each boiling point a molecular weight, M(TB). Of course,

there is not a one to one relationship between molecular

- structure of each component of the oil. But it 18 not

realistic to identify each of the large number of components
in a typical crude oil. Figure 10 shows the relationship
M(TB) for various classes of hydrocarbons(lz). The solid

line shown is simple linear fit for the lower boiling points:
9,
2 M(TB) = 0.42('1’B - 106°) (21)

(Note that Ty is absolute temperature)
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Knowing the molecular weight, we now proceed to con-
sider an oil with incremental mole fractions, dx(TB,t).
The mass of oil is

Tﬂ
M = N g MAX(Ty) (22)

where the integration is carried out over TB. This conven-

tion will apply below.

The boiling point distribution may be defined, using
Eqs. (22) and (20) as

B
b(T,,t) = o (23)

Too
j Mdx

T

As the number of moles in each species is dn = Ndx, Eq. (19)

may be written

T

d ’ x“"“’B ’ o, r T

at N dx = - RT A exp [ RTB ( T Yldx (24)
Tl Tl

To evaluate Eq. (24) we need to know how q depends on TB.
Trouton's rule (see Ref. (10)) is that %%— is approximately

a constant - its value is near 5.0.

28
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Given b(TB’ t = 0) and N(t = 0) Eq. (23) may be used
to compute x(‘l‘B, t = 0). Eq. (24) plus the constant,

T
J “ dx = 1, x>0, (25)

T

then specify how N(t) and (TB, t) change with time. This
determines the evolution of b(TB, t).

The bulk density is related to x by
[- ]
1. ‘; _Mdx
P 1. P(Tp)
Tao
Mdx
T

If all fractions which have boiling points less

than TI'B have been evaporated, then

TH T“
1 Mdx Mdx
p(Tg) ' Py (Ty) ..

Recognizing that the density changes are always small, to
a good approximation, in the range 50% < TB < 500°C,

' ' - o ) v o
p(Ty) = o1y = 273%) + ( Kgg ) (T} - Ty) (26)

where —2—%.— - 2,8 x 107 i’:—, from Figure 11.
B cc K
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For Kuwait crude D(Té = 273%) = 0.869. In figure 1 of
reference (12) we find that, for Kuwait crude b(TB) is
approximately a linear function of TB; rising from 0 at
50°C to 1 at 500°c.

b(Ty) = (T, - 323°K) /450K (27)

By differentiating Eq. (23) and using this result, we
determine that

—_— - - % » A = const (28)

With this-result we may invert Eq. (27) to find the density,
pi(TB)’ of the fraction of oil which boils at TB. The re-
sult, obtained by using Eqs. (24), (25), (26), and keeping
only first order changes in Ap is

Api Ap(Té)
py(Tg) = py (T;) + (bp/AT) (T - T 555 = TR (29)

Provided p(Té) and b(TB) are known for a given crude
oil, pi(TB) may be determined in a manner analogous to the
derivation of Eq. (27).

At this point, we see that if b(TB, t = 0), N(t = 0)
and p(Té, t = 0) are given we may perform the following
steps to obtain a solution to the problem. First, pi(TB)

31
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is gotten from (Té, t = 0) and b(TB, t = 0). Second,
Eqs. (24) and (25) are solved to yield N(t) and x(TB,t).
Third, b(TB,t) is evaluated using Eq. (23). Fourth, p(t)
is determined using Eq. (29). In this manner, the evolu-
tion of the oil 1is specified.

C. Calculations

For the purpose of calculation, it is simplest to de-

3 fine the characteristic time, T, as

AN e s

. Ty = —% L
[, Au P A N (LM(T-TB)
' RT P RT,

(30)

Figure 12 shows the behavior of the characteristic time for
various points and various values of T. In this figure Trouton's
rule, qM/RTB = 5,0, was used. This chart shows the signifi-

cant decrease in aging rate of volatile components as T, the

ambient temperature, is decreased.

% The first calculation we present is for a two component
mixture, The lighter component has a boiling point of 200°¢C
and the heavier, a boiling point of 400°C. For North Slope

; crude, about 25 percent of the oil has boiling points lower
than 200°C and 25 percent has boiling points greater than 1

] 400°C. The molecular weights at these boiling points are
| M;(200°C) = 150, M,(400°C) = 350 from Figure 10. The den-
sities are determined from Eq. (26) and p(Té = 273) = .89
to be Py = 94, Py = 1.0, at T = 273. i
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Under these assumptions the equations of Section 3 take
the simple form (from eqs. 14 - 20)

t\l+n2 = N
b S|
dt T N
b R D
dt T, N (31)

By dividing one equation by the other, we obtain

n, B n, 2
( m A ;2—(?-_-‘0—)' ) (32)

where the initial values, nl(t = () and nz(t = 0) are deter-
mined by the assumption- that both fractions have equal mass
at t = 0:

Mjny, = Mpn,,

which gives, for one mole of mixture at time t = 0,

ni(t=0) = 2 !
1 M T n,(t =0) = m (33)
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The evolution for t > 0 is determined by Eq. (30); hence

/ n, (t) dn, oM T/
t/t, = - — (n, +0,(0)) ( —=7 )
1 J\ aem | 2 75 (0)

By carrying out these integrals it can be shown that both
fractions completely evaporate in the same time, tmax (see
Ref, 2)

thax = T2 nz(t =0) + T nl(t = 0)

and

t =t~ nl(t) - T, n,(¢) (34)

Even though the n, fraction evaporates much more rapidly

initially.

1

Figure 13 shows the boiling point distribution

L g |

DT 3 b)) fm il
B Hny + M0,

Myny
Bz 2 Mlnl + Mzn2

(35)
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The evolution of density,

1 1
- = —_—— ——
= (36)

is shown on Figures 15 and 14,

These results bear some discussion. On Figure 13
notice that there is a nearly linear decay in the light
fraction, bl, on a time scale T This decay produces a
nearly linear increase in density as shown in Figures 15
and 14. The two component theory is too crude to predict
the exact shape of the density vs. time curve, as observed.

(1,6) we esti-~

To compare these results with observation
mate the area the oil sample will occupy, and a typical,
®
average value of u . Fairly good agreement is obtained be-

tween theory and observation 1f A = k/10,

The time scale for the evolution of the density, Ty is

about 10 days for T = 273% (OOC), and about 14 days for

Tw -17°C, the temperatures corresponding to summer and
winter conditions. Much larger variations in Tl are pre-
dicted with variations in wind speed. The prediction is

that during high winds, the aging process accelerates. This
is observed(6). (See Figure 15). No account is taken of the
effect of snow cover, but when the oil was covered with snow,

the aging process stopped(G). (See Figure 15).

To account for the variation of 3] with temperature,
Figure 12 should be used. Using Figure 13 we then can de-
termine that, for components boiling at 200°C, the time
constant T is increased from 10 days to 17 days when the

37
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ambient temperature is decreased to -20°C. From Figures 15
and 14, it is clear that T is the time to evaporate the
lighter components of the oil. Thus, we may say that in

the Arctic winter, the aging time for oil is approximately
doubled. Since it takes about 14 days for most of the lighter
fractions to evaporate in the summer, it take about 1 month

for the lighter fractions to evaporate in the Arctic winter.

We can show that having a continuous distribution of
fractions with various boiling points does not change the
picture outlined here. Differentiating Eq. (24) with respect
to Ty produces an equation similar to Eq. (31). By analogy
with the solution (34) for the two component model, it can
be shown that the solution to Eq. (24) is

T& T&
t-NI T(r,) X | a1 - N 1(r,) - | ar
T B 3TB t B B 3TB t B
1l 1
ox on
Since N ==— dT, = <=— dT_ is the moles in the fraction
BTB B BTB B

whose boiling point is TB' this result may be written as

T

et -‘[T T(Ty) dn(t, Tg)
1

which can be readily recognized as exactly analogous to
Eq. (34).

Thus, we may conclude that each fraction of oil decays
as described by the simple two component model. Thus,

Figure 12 can be used to predict the evaporation time of a
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component with an arbitrary boiling point, TB'

The Maximum Size of an 01l Spill

In this section, we summarize the results of Wolfe and
Hoult(13) The detailed report of this portion of the work

has been written up as a separate paper, and is included as

Appendix A,

If one assumes that, over a long period of time, the
0i), due to density changes, migrates under the ice, then
the question arises, does the oil stick to the under ice
surface? To answer this question, an experiment was per-
formed, in which sea water was frozen by a one~dimensional
heat flux, thus simulating the Arctic situation. 01l was
injected under the ice, and subsequent events were studied.

The heat flux was maintained after the oil was injected.

It was found that, after some time, the ice began to
freeze under the oil. If the freezing process continued
long enough, an inclusion of oil, in ice, was formed. These
results directly imply that if oil is spilled under the
Arctic ice in the fall, it will be frozen into sea ice
floes as an inclusion during the winter. In this way, a
mixture of oil and sea ice is penerated. Such mixtures
have been observed during the Chetabucktoe Bay spill.

Based upon this laboratory verification, we expect that
most oil spilled in the Arctic will end up as in a mixture

of ice and snow.

Another very interesting observation is that North Slope
crude, at the temperature of freezing sea water, 1s a good
insulator compared to the sea ice itself. This was verified

by measuring the temperature profile in the ice before and

41
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after the oil was spilled(13). This result means that the

heat will tend to flow around the oil pocket under the ice,
rather than through it. Near the edge of the oil pocket,

the local heat {lux will be higher than the average, and
hence the ice will grow more rapidly there. (The heat re-
moved is balanced by the latent heat of freezing of sea
water.) Before the oil pocket is completely included in
sea ic;, there will be a rim of ice around the pocket
thicker than the average. It may be that the existence of
such a rim might be an aid to locating oil under the ice.

The most important result of Wolfe and Hoult's(13)

work is an estimate of how much o0il can stick to the under
surface of the sea ice. To determine this, after the oil
was injected into the freezing apparatus, the ice plug was
removed, and the amount of oil remaining measured. A care-
ful study was made of the various mechanisms by which a
layer, of thickness, §, to stick to the under surface of
the ice.

It was found that the oil adhered to the ice under sur-
face. If Q/A is the heat flux flowing through the ice and
oil, the thickness, §, is given by the simple formula,

P (Q/a) 2
watts Q

E In the Arctic winter, the heat flux through the ice is

:l about 35 watts m-z. This gives a 6 of about 6.5mm. If crude
oil is spilled from a supertanker, with a total volume of
113,000 m3, the total area which could be covered by oil is
about 17 km2 (6 square miles).
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This is an upper bound, because undoubtedly some of

the oil will be trapped in deeper pools.

SUMMARY

It is helpful to conclude this report by commenting on the
practical application of the results of this work. The most im-
portant result, which is substantiated by all the research to
date, is that the oil in even a very large Arctic spill will be
confined to a very small area due to natural processes. This
simple, general, conclusion is supported by both the spreading
and pocketing exneriments as we'l as the studies on oil evolu-
tion.

As a corollary to this result, it seems clear that, unlike
the situation in temperate waters, there is little incentive to
promptly clean up large oil spills, as the area of the oil spill
will not measurably increase with time, while the oil remains

in contact with sea ice.
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APPENDIX A

EFFECTS OF OIL UNDER SEA ICE

INTRODUCTION

The discovery of oil on the Northern Slope of Alaska had
raised many questions concerning the effects of oil spills in
the Arctic Ocean and other ice filled waters. The handling
and transporting of oil in sizable quantities always results
in some spillage, the average spillage being on the order of
0.1% of the quantity transported (Blumer, 1969, p. 6). The
North Slope borders on the Arctic Ocean which is essentially
ice locked for about nine months of the year (SEV Data Package,

1970, p. 11). Even during the summer months the permanent ice
cap remains within ten nautical miles of the shore (SEV Data
Package, 1970, p. 34). Any sort of waterborn transport of
North Slope crude oil will create the possibility of spilling

large amounts of crude oil under the ice.

Granted that under ice oil spills are almost certain to
occur if Arctic oil operations continue, it is important to
know how such spills can be contained and removed if the en-
vironmental damage caused by them would be serious enough to
warrant such action, In the search for this information the
first question to ask is how the oil spill behaves under the
ice. Much is known of how oll spreads on temperate waters,
both from experimental and theoretical studies and from observa-
tions of large scale disasters such as the Torrey Canyon and
Santa Barbara Channel incidents. Almost nothing is known of
the behavior of an oil spill under sea ice. The speed with
which the oil spreads or the ultimate thickness to which it
spreads are unknown. The interaction between the oil and the
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peculiar microstructure of the lower layer of the sea ice (see
Weeks, 1966, pp. 173-178) is also unknown.

There has been a good deal of speculation concerning the
way sea ice will interact with trapped oil under it. Three

principal modes of behavior have been considered possible.

(1) The sea ice will entrap the oil causing the formation of

a matrix of oil and ice.

(2) The ice will entrap the cil in a pool and proceed to form
beneath it.

(3) The ice will continue to grow pushing the oil before it.

(See Fig. 1). Such a phenomenon is difficult to observe in
field experiments, so laboratory experiments were conducted to
determine which of these phenomena occurred and to examine the

phenomenon quantitatively, if possible,

EXPERIMENTAL APPARATUS AND METHODS

The principal function of the laboratory apparatus was to
produce a nearly uniform vertical heat flux in a tank of sea-
water. The apparatus consisted of a 1.59 cm (5/8 inch) thick
plexiglas tank, 30.4 cm (12 inch) square in cross section and
1.06 m (3 1/2 feet) deep topped by a 30.4 cm square stainless
steel cold plate. The plate was connected by flexible tubing
to a commercial refrigerating unit which circulated freon 12
refrigerant at a set temperature (¥ 1.1 deg) dowm to -29%.
The tank was tapered 0.034 cm/cm to facilitate removal of the
ice and was clad on all sides with 30.4 cm (12 inch) thick
urethane foam insulation. The insulation was installed in
separate panels which could be removed to make visual observa-

tions of the tank. (See Fig. 2). As a reasonable facsimile
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of sea ice has been made in a cylinder of 14 cm diameter, !
; (Lofgren and Weeks, 1969, p. 157) the cross section of the |
? tank was not a limiting consideration. The convection patterns ;
were presumed sufficiently small that proximity of the wall had

no effect on circulation in the center of the tank., At first

an attempt was made to make the heat flux through the insulating

walls very small in comparison with the heat flux through the
ice when producing ice at Arctic rates. This was not possible
with solid insulating materials commercially available, so to

reduce the effects of heat gain, ice was produced at somewhat

faster rates than is typical for Arctic conditions in late

;
]
:

winter.

S

The quantities measured during the experiments were the
temperature distribution in the ice and water, the salinity
of the water beneath the ice, the depth of growth of the ice

and the amount of o0il injected under the ice. Temperature was

o agan

measured with a bridge of copper-constantan thermocouples.
The salinity of the water beneath the ice was measured by the :
use of a specially designed, totally submerged hydrometer. ;
The depth of growth of the ice was determined by measuring the %
depth as seen through the tank with a ruler. The growth ve- 1
locity of the ice was computed by noting the time that each ;
thickness measurement was made and calculating the arithmetic é

mean velocity between successive measurements.

As a substitute for seawater solar salt was dissolved in

tap water until a salinity of approximately 30 o/oo was achieved.

This was used at the start of each experiment, but salt rejec-
tion by the ice increased the salinity of the water to between
35 and 40 o/oo by the time oil was placed under it. Two types
of 0il were used. No. 2 diesel was chosen because it is readily

available and because it is a common marine fuel which may be

. |




subject to large scale spills. The other oil used was a North
Slope crude oil.

Each experiment was started with an initial plate temper-
ature of -29°C until a few centimeters of ice formed. Then the
temperature was set to the temperature at which the experiment
was to run., When the ice reached a depth between 12 and 16 cm,
01l was injected through the bottom of the tank from a plenum
chamber using compressed air to supply the driving pressure.
Except in a few trial runs, enough oil was added to completely
cover the lower surface of the ice. The average thickness of
the oil layer ranged between 1 and 2.6 cm. The oil was allowed
to remain until some ice began to form on its lower surface.
This took 12 - 24 hours in most cases. The experiment was then

terminated and the ice cube removed.

In order to determine the extent to which oil became en-
trapped in the ice or adhered to its lower surface, the lower-
most 2.5 cm of the ice block was sawed off, and the slab of
ice was melted. Tne dimensions of the slab were noted before
melting. The oil and water obtained were collected in a grad-
uated cylinder and measured. Because the technique for measure-
ment of the adhering oil is so crude, the limits of uncertainty

for this data are rather wide.

Since the porosity of sea ice increases markedly at tem-
peratures near the melting point, an attempt was made to see
if there was any marked change in the mode of oil entrapment
as the ice melts. The existing apparatus could not actually
simulate the melting of sea ice as it occurs in the ocean be-
cause the tank had a finite heat gain from the laboratory
althougﬁ there is no similar source of heat in the sea. Never-
theless, the exéeriment was conducted. After the completion

of an experiment performed in the usual manner, the temperature
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of the cold plate was raised to -1.4°C. and the ice was allowed

to melt. Temperature profiles were recorded every two hours H

b T S K e

3 and visual observations of the ice were made. !
{ A more detailed description of the experimental apparatus |
g i methods is available in Wolfe, 1972, pp. 14-22.
% 3. EXPERIMENTAL OBSERVATIONS AND RESULTS g
3 4
3 3.1 Sea Ice Growth Rate E
y ‘
E ; A steady state approximation to the flow of heat from A
5 ; the sea water to the cold plate may be used. The rate of g
; E formation of ice equal to the rate of heat flux divided
. | by the heat of formation of the ice, as shown below. 3
:
v = YA (1) 4
P, L j
ice 4

Since the thermal conductivity of the ice is essentially

constant over the range of temperatures encountered, and
E : the flow of heat is uniform upwards, the temperature

gradient in the ice is constant. Since the cold ice sur- ?
]

iy
v manmerrrny

1 face is at the top of the sea water, the "sea" is well
E‘ mixed and of uniform temperature approximately equal to
the liquidus temperature of a NaC{ and water solution of

concentration 35 o/oo.

The temperature data can be nondimensionalized and

i normalized by dividing the temperature difference between

DI IS

R

the local temperature and the water temperature by the

SEAC L

53

R T T R T (W W SR !




R AR Sl ol i ilh by e sttt A S o M a1y o i 11 i Mo ™y
R a b b S i el et o oy AR L AN " "
il i i i By BRI 0  8 i Lo d L LK Ul i U il i 0 porey s

total temperature difference between the water and the

cold plate.

T-T
%*
T = /

T - T
plate w 3

Distance is normalized by measuring the distance from the
lower surface of the ice to the thermocouple and dividing
this by the total thickness of the ice.

z = z/h ;

All of the temperature data obtained before the addition

of the oil is shown plotted in this manner in Fig. 3. It
demonstrates that within the limited of experimental error,
the temperature gradients are uniform and that the resistance
of the thermal boundary layer at the ice-water interface is

negligible.

The heat flow from the warm laboratory to the test cell

retards the rate of formation of ice below that predicted by
Eq. (1) above. The rate of heat gain by the ice tank from
the lab should be nearly constant for all growth conditions,
and thus the rate of formation should approach that given
by Eq. (1) for high rates of growth. The available temper-
ature and growth rate data may be nondimensionalized and
normalized by dividing the product of the heat of forma-
tion of ice and the measured growth rate, pLV, by the heat
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flux out through the ice as predicted by Eq. (2).

k, (AT) »
Q/A = _ES.;E‘._T_.i_‘lE (2) |
ice

This dimensionless growth rate is plotted as a function of
the heat of formation and growth velocity product, pLV,

divided by the calculated heat gain per unit area through
the walls of the tank and is displayed in Fig. 4. Note §
that the value of the dimensionless parameter pLV/([k(AT)/h]

drops noticeably below unity when the ratio pLV/(anin/A) ﬁ
is about 150/1. The area of the tank walls is about 15
times the area of the cold plate. As expected, the growth ﬁ

velocity deviates significantly from Eq. (1) when the ratio 1
of pLV to the total heat gain is about 1/10. The large
error bars on each data point are due primarily to the

large uncertainty in the measurement of the rate of growth.

3.2 Mode of 0il Entrapment

The actual method by which the crude and diesel oils
are trapped in the sea ice is a combination cr modes (A)

and (C) shown in Fig, 1. The bulk of the oil is pocketed

in a pool below the original ice sub-surface while more

s ]

sea ice proceeds to grow under it. A small amount of

oil does rise into the pores of the skeletal layer, and

into small, vertical shafts which rise from the lower

e

1 surface of the ice. These shafts may be air bubbles sim- i
E ilar to those that form in fresh water ice due to the in- ]
3 ability of air entrained in the water and rejected upon ;
freezing to escape beyond the advancing ice front (Weeks
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and Assur, 1969, p. 8). The total amount of oil contained j
1

in these air bubbles is small in comparison to the amount

of oil that adheres to the lowermost inch of the ice (see i

below)., During the ice melting experiment, a considerably

k. Sl

greater amount of oil rose into the ice, especially into

the air shafts. In some instances it reached as high as

8 cm above the lower surface of a 13 cm thick block, yet
the volume of oil trapped in this manner was still small,

th

amounting to no more than 1/150  of the volume of the 1ice.

The presence of the oil pool has a significant effect
upon the heat transfer through the ice. The simple model
of heat transfer through sea ice described above is a uni-
form solid of constant conductivity between two constant
temperature regions, one at the liquidus temperature of
seawater and the other at the ambient temperature of the
air, or in the experimental case, the cold plate. As the
o0il has a thermal conductivity that is considerably lower
than that of the ice, its presence acts as an insulating
layer, impeding the flow of heat and reducing the temper-

ature drop across the ice.

The temperature data obtained after the oil was placed
under the ice may be nondimensionalized in the same manner
as was done for the data taken with ice only. The origin
for the vertical axis remains at the lower surface of the
original ice block. As a result temperature measurements
in the oil and below are expressed as negative numbers.

The thickness of the ice before the oil was added is used
to normalize distance, but the total temperature drop
across the ice and oil is used to normalize temperature.
The normalized temperature distribution are shown plotted

in Fig. 5 for all temperature measurements taken after

58




‘NOILH3ASNI 110
4314V NOILNGIY1SId 3JHNIVHIdWNIL SSITINOISNINWIA S JHN9Old
Vs Z
0] 80 90 0 20 o R ~
_ _ _ _ X 7 331 20 SSINOML y
A
+ 3NOJOWY3IH L 40 NOILISOd = Z
G 321 GNV_ 10 STOHOV
_l=0 Mv 3ON3YI 4410 3HNLVHIANIL =1V
JUNIVY3IAN3L H31vm ,v3S, =ML
a g © 34N LVH3IdWIL Vo0 =1
A
8 v—t0 9/6 ¢¢ Gl O 110 30nNYD
9/1 69 bl A710 13S310
u 2/ 86 €1 o
X + ¢€/2 6¢ el Yl A0
b/ b 1 o)
a xX 8190 wg 1l 6 (RS
o v/ 211 6 4
v o} v/1 €l 6 ]
X e m. -SHH @3SdV113  dX3  08BWAS
o @ o ° —80
™ o ° d
%o o WI0L( | )
o Mi-1 ol




T

e e

Gl s o iy

AT T S e

ERERa s o i
o

the oil was in place.

As can be seen in Fig. 5, the temperature in the ice
is linear at all times after the addition of the oil ex-
cept for the case of Experiment 9, in which the tempera-
ture of the plate was high enough that the heat gain by
the tank caused the wate: temperature to rise continuously.
In the four other cases in which temperature profiles
were measured, the temperature gradient in the ice remained
constant, but decreased in magnitude from its initial value
as shown in Fig. 3 through intermediate values to the final
value. The temperature distribution in the o0il could not
be determined directly, since the oil layer was between
1.3 and 2.5 cm thick and the thermocouples were spaced
2.54 ¢m (one inch) apait in the bridge. It is clear that
temperature gradients in the oii were much larger than

in the ice.

Wh;reas clearly the heat transfer through the ice is
that of solid body conduction, the mode of heat transfer
in the o0il pool is not obvious. It should be noted in
Fig. 5 that for all of the crude oil experiments, the
ratio of the temperature drop across the oil to that
across the oll and ice is the same, 0.6. This ratio is
independent of the thickness of the oil pool, which varies
between 1.3 and 2.5 cm (in dimensionless units, (z/h),
~0.097 and -0.189). For the diesel oil the ratio of the
temperature drop across the oil to the total temperature
drop across the oil and ice is 0.3. This behavior is not
in accordance with the theory of static heat conduction.
The thermal conductivity of most petroleum distillates is
only a very weak function of temperature, and over the

range of temperatures considered, the thermal conductivity
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of the 1liquid fractions of petroleum changes less than 37%.
(Wolfe, 1972, Appendix I). Within the limits of precision
of tl’'s experiment, it may be considered constant. For
constant thermal conductivity, the thermal resistance of

a solid conducting heat in one direction is h/k, and thus
the temperature drop across the solid 1s propertional to
its thickness. For two solids conducting in series, the
ratio of the temperature drop across one to the temperature
drop across the other is (h1/“2)(k2’k1)' This is clearly

not the case for the ice block and oil pool,

It is not proper to assume that che mode of heat
transfer in the oll pool is by conduction alone. At the
temperature involved, the crude oil is indeed highly
viscous, but further examination 1s necessary to deter-
mine 1f it may be considered a solid body. The diesel
fuel is quite fluid; it 1is entirely possible that con-
vection cells could form and reduce the thermal resistance
of the oil layer below that predicted by static conduction
theory. The Nusselt number is the dimensionless ratio
which compares the ratio of the convective heat transfer
coefficient, K, to the conductive heat transfer coefficient,
k/h. For free convection between plane, horizontal sur-

faces, the Nusselt modulus may be defined as

Nu 3)

"
|
=
~
~

The Nusselt modulus can be shown to be a function

of the Grashof number and the Prandtl number, defined
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by relations,

3

Cr = ﬂﬁiégz_ll_ (4)
\V]
Pr "= ¢ p/k (5)

provided that the mode of heat transfer is free convec~
tion only (Kreith, 1965, p. 333). When a normal flui&
whose density decreases with increasing temperature is
placed between plane surfaces and cooled from above,
convection results. This convection is commonly described
in terms of the Rayleigh number which 1is the product of

the Grashof and Prandtl numbers, GrPr. When this dimen-
sionless variable is less than about 1700, no convection re-
sults, and heat is transferred by static conduction only.
When GrPr is between 1700 and 42,000 convection is in the
peculiar cellular manner known as Bénard cell convection.
Irregular turbulence results at values of GrPr Higher than
42,000 (Eckert and Drake, 1959, p. 328). For values of
GrPr less than 1700, the Nusselt modulus is by definition,
unity. Bénard cell convection may be adequately correlated
as a function of Nusselt modulus by Eq. (6), (Eckert and
Drake, 1959, p. 328).

Nu = 0.107 (Grpr)°:3 (6)
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The Nusselt number for the oil pool, can be expressed
in terms of the measured parameters of the experiment.
For one dimensional heat flow, the ratio of the thermal
resistances of the oil to the ice is equal to the ratio
of the temperature drops across the ice and across the
oil, respectively. Since the value of the thermal re-
sistance of the oil, 5011, is expressible in terms of

ice’ (AT)oil’ kice
ber of Eq. (3) may be evaluated by Eq. (7).

known parameters, (AT) , the Nusselt num-

k1ce hoil ice
v )

oil Mce (81559

(AT)

Nu

The Rayleigh number shown above has been evaluated for
each of the experiments in which temperature profiles were
measured. The Rayleigh number for the diesel oil measure-
ment was about 22,000 while GrPr for the crude oil data
ranged between 770 and 9700. A log-log plot of the Nusselt
number as a function of Rayleigh number is shown in Fig. 6.
The data conforms reasonably well to the standard relation-
ship of Eq. (6) which is sketched. Although the data could
be fitted better with another power law, it would be unwise
to do 8o, since so few measurements have been made. The
deviation from Eq. (6) may simply be due to errors in
measurement since the data from which it was derived ex-
hibits substantial scatter for relatively low Rayleigh
numbers (Eckert and Drake, 1959, p. 331). Furthermore,
Nusselt numbers less than unity must be attributable to

errors in measurement.

As temperature measurements could not be made for

all experiments, the heat flux through the ice after the
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oil 1s in place must be estimated from the temperature of
the cold plate only. It was observed that the temperature q
drops across the oil and ice were constant fractions of :

the total temperature drop between the cold plate and the

s

sea water, irrespective of the thickness of the ice or of
the oil but dependent upon the type of oil. That this is
expected can be shown from the equations for one dimen-

sional heat conduction. The expressions for the flow of

heat through the ice and o0il can be written in terms of

b o o s

the thermal resistences and temperature drops in the E
system. ?
_tce a7y - fszEEEEl. (8) ;
h ice h, 3
ice ice 1 ‘

k + K

ice ~—

The linear temperature gradient in the ice is expressible
in terms of the Nusselt number by substituting Eq., (3)
into Eq. (8) and rearranging.

(4T1)

(AT)ice total 9)

kicc hoil_}_

k h

1+
oll “dce HE i

The expression for the Rayleigh number is

S iray i

g co’ g8 (A1) h >
: GrPr = = (10)
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For constant properties of the oil and for small variations
in (AT), the Rayleiph number is pronortional to the cube of
the oil thickness. Equation (6) shows the MNusselt number
is proportional to the 0.3 power of GrPr. Therefore, for
small variations in (AT) and in the fluid properties, the
approximate equality Nu = Constant , (hoil) is valid.
Substituting this in Eq. (10)

oD, ., - — ()

“ece
l+-—Cnh . Consgtant
(koil) ice

It can be seen that for small variations in h , (AT)
ice ice

is a nearly constant fraction of (AT) Tne thickness

of the ice in the experiments ranged ﬁ:t:ien 13 and 17 cm.
It is therefore reasonable to consider that the ratio of
the temperature drops (AT)ice/(AT) is the same for all
experiments as it was for those in which the temperature
profiles were measured. In all subsecuent calculations
involving the heat flux through the ice after the oil {is
present, (AT)ice/(AT) will be taken to be 0.4 for the

crude oill experiments and 0.7 for the diesel oil experiments.

Thickness of 0il Adhering to the Ice

Upon removal of the ice block from the tank, some of
the oil remained with the ice, either trapped in the porous
ice structure or adhering to the lover surface, while the
bullke of the oil remained in the original oil pool. The
coating of diesel oil was fairly uniform but, the crude
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0il was quite uneven in its adherence to the ice. It some-
times coated the ice in a continuous layer of uneven thick-
ness, but in other cases it separated from the ice in
patches, which were clean of oil (except for the oil in

the interstices of the sketetal layer). A photograph of

an ice block after removal from the tank following a
typical crude oil experiment is shown in Fig. 7. Although
the oil does not adiiere to the ice in an even layer, an
equivalent thiclkness of the oil layer may be calculated

by dividing the total volume of oil measured after melt--
ing the ice samnle by the area of the subsurface of the ice
sample. It was difficult to determine visually to what
extent the oil was trapped in the interstices of the ice
and to what extent it simply adhered to the outside. Most
of the oil appeared to be confined to the lowermost 0.5 cm,
although a section of ice this thin could not be sliced.

it is certain that all but slight traces of the oil was
contained within the lowermost 2.5 cm of the ice. The
traces above this level were due exclusively to the presence

of the air bubhbles.

The details of the mechanism by which o0il adheres to
the ice are neither simple nor obvious. From physical
considerations it is possible to infer that the process
of oll adiiesion is both local and steady state. The ad-~
hesion phenomenon can not reasonably be expected to de-
pend directly on any properties of the ice far away from
the ice-oil interface. Thus the thickness of the ice or
of the oil pool, the absolute temperature of the éold
plate, the rate of growth of ice below the o1l pool or the
flow field within the oil pool can not be expected to in-
fluence the thickness of the adhering layer of oil, 6.
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FIGURE 7. PHOTOGRAPH OF AN ICE BLOCK
UPON REMOVAL FROM THE TEST
CELL AFTER A TYPICAL CRUDE

OIL EXPERIMENT.
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The o1l thickness may depend upon the geometry of the ice
subsurface, the bulk properties of the ice and oil at the
interface, the surface energy of the interface, and the

heat flux through the interface.

That the adhesion process is steady state may be in-

ferred from the fact that there were no transient effects

d
i

taking place upon removal of the ice from the tank. At
this time, all temperatures were in accordance with those

predicted by static, one dimensional heat conduction.

s e AR L N

There was no discernable advance of the ice front after the
oil was placed under the ice, and there was no observable

change in the amount of o0il entrapped after the steady

4
il

state temnveratures were reached. There was no trend in the
adhesion thickness measured as a function of the time it

remained under the ice.
The pronerties of the ice and oil at the interface

which might be of significance are the viscosity of the
oil, the buoyancy of the oil, the mechanical properties of

the ice and the interfacial energy of the ice and oil.

Since the ice does not fracture or deform as a result of the
; 0il adhesion, its mechanical properties could be of no ef-
E fect on §. Since the oil is not in motion when the lower

surface is removed, the viscosity of the 0il could not be

of influence on §. The heat flux through the interface is ]

a function of the steady state thermal conductivities of

; the ice and oil, but not of the thermal diffusivity which

specifies the transient conduction properties of the ma-
terials. The interfacial energies of the ice and oil can i
be described in terms of a bulk property known as the ad- :

: hesion coefficient,
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In the simple theory of adhesion, the work necessary
to create an additional unit surface may be expressed in
terms of an adhesion coefficient, w, which has the same
dimensions as surface tension. The simplest theory for
adhesion coefficients relates them directly to surface

tension, O.

Vo= Oy Y %y " %l (12)

in which Oafv and os/v are the common surface tensions
usually measured for liquids or solids, i.e. the energy
needed to create a unit surface in a vacuum, and the

tern ca/s is a measure of the interfacial energy per unit
surface of interface between the adhesive and the substrate
(Skeist, 1962, p. 38). Although such quantities are simple
to state in principle, they are not casy to measure. How-
ever, it 1is true for both water and petroleum derivatives
that the surface tensions do not vary appreciably over the-
range of temperatures encountered in this experiment.
Therefore, a preliminary estimate of the surface tensions
may be found by using the tabulated values for the surface
tension between oil and air, and water and air for oa/v

and os/v respectively, and the tabulated values for the
interfacial tension between oil and water for oa/s'

(Wolfe, 1972, Appendix I). Whether this value 1is accurate
or not does not preclude its use in evaluating the im-
portance of the adhesion coefficient. Surface tension is
a strong function of the materials interfacing each other

and only a weak function of the local temperature. Care
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was taken to insure that the sea ice and oil used in the
experiments were of the same composition as they would

be in the Arctic. Thus, no matter what the actual value
of w, it can be expected to be the same value in the field

that it was in the laboratory.

Elementary physical considerations have reduced the
1l1st of parameters which may be of influence on § to the
buoyancy, pAz, the adhesion coefficient, w, the heat flux
through the ice, 0/A, and the geometric properties of the
interface characterized by the intersticial spacing of
the dendrites. (Weeks, 1966, p. 175). The intersticial
spacing 1s a function of the velocity of growth of the ice
before the oil is in place and is specified by Eq. (13)

a, = 3.95x 107>/ /aR7dE (ST units) (13)

(Assur and Weeks, 1963, pp. 97-98). Since the diameter of
the pores of the skeletal layer is roughly constant, the
volume of the skeletal laver filled with water can be ex-
pected to get larger as a_ becomes smaller. Any entrap-
ment phenomenon that 1is dependent on filling the pores of
the skeletal layer with oil would be expected to produce
larger values of 6§, as the pgrowth velocity of the ice be-
fore the oil 1s added becomes larger. In fact just the
opposite occurred. Less oii adhered st higher growth

velocities.

Dimensional analysis can be used to determine the
relationship between the heat flux through the ice, the

buoyant forces on the o0il and the adhesive forces on the

11

Mol s e g . CTRPPRCR TR

el i,




T T T XY

oil. If the thickness of the adhering oil is presumed to
be a function of heat flux and buoyancy only, the Buckingham
Pi Theorem indicates that only one dimensionless grouping
can be formed, and that is invariant for all values of
density and heat flux. That dimensionless variable is
6[(pAg)2g/(Q/A)2]1/3. Since density is the same in the
Arctic as in the laboratory, the experimental values of §
should be extrapolated to field conditions by considering §
to be a linear function of (Q/A)2/3. By similar reason-
ing 1if the adhesion thickness is considered to be a func-
tion of the adhesion coefficient, the heat flux through

the ice and oil, and the acceleration of gravity, the only
dimensionless grouping possible is G(Q/A)Z/wzg, and 1t

must be invariant. Since w is the same in the Arctic as

in the experiment, the experimental values of § are ex-

)
pected to be directly proportional to (Q/A) ~.

A dimensional log-log plot of the adhesion thickness,
8, as a function of (Q/A) was made in order to reveal which
power law predominates. (See Fig, 8). As can be seen from
the plot, within the limits of precision of the experiment,

the data conforms to a power law of the form

§ = c(/a)? (14)

This indicates that within the limits of precision of this
experiment, the data correlates as a function of the di-
mensionless parameter G(Q/A)Z/wzg, and is therefore de-
pendent upon the heat flux through the ice and oil, and

the value of the adhesion coefficient alone. The limits
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of precision of the experiment are not very good. The
coefficient, C, of Eq. (14) may be evaluated within a
factor of 2 or 3 at best. The 'best' power law approxi-
mation to the data shown in Fig. 8 was drawn freehand and
ylelds a value of C which is 8 wow L, The equations for
the 1limits of uncertainty of the data are also of the form
of Eq. (14) and yield maximum and minimum values of C which
are 16 and 3 maw-l, respectively. Equation (14) may be re-

written in dinensionless form

2
A= SN (14a)

v

The dimensionless constant A has a best value of 330 and
may vary between 110 and 660 due to the uncertainty of the
data. The adhesion coefficient, w, has been taken to be

0.05 n m L.

Equation (14) may be used to ¢xtrapolate the measure-
ments of this experiment to actual Arctic conditions with
an error factor of between 2 and 3. As shown below, such
extrapolation can be used to give an upper bound to the
extent to which an oil spill can spread in the Arctic.

The correlation of the experimental data shown above does
not yield a great deal of insight into the physical mech-
anism by which the oil adheres to the ice. It does indi-
cate that the mechanism is related to the interfacial
energies of the oil and the ice, rather than to the geometry
of the surfaces or the other bulk properties of the oil.

In heneral, the phenomenon of adhesion is poorly understood,

and a detailed examination of the actual mechanism involved
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is beyond the scope of this work.

It remains to explain the fact that almost no oil
was observed to adhere to the ice during one of the crude
oil experim:nts. This occurred during the coldest experi-
ment run with a crude oil sample in which the steady state

temperature gradient in the ice after oil injection was

86.6 deg m-l and the mean temperature of the crude oil was

—14.S°C., (wvell below the pour point for North Slope crude
0oil of approximately -4°¢c). Upon removal of the ice block,
the oil sheared neatly awav from the ice at the ice-oil
interface., The oil appeared to be frozen, and was the con-
sistency of ice cream. It may be that when the oill freezes,
the mechanism of 0il adhesion is altered because the oil
behaves as a solid, instead of a liquid. If the block of
oil 1is sufficiently heavy, its weight could cause it to
break away from the ice at the ice-oil interface, because
this is the weakest point in the composite ice and oil
structure. Such an observation is not of much practical
significance since temperature gradients of this magnitude

rarely occur in natural sea ice,

CONCLUSIONS AND PRACTICAL APPLICATIONS

Three important conclusions can be drawn from these experi-
ments concerning the behavior of crude oil when trapped under
sea ice. First, the mode of entrapment of the oil has been
conclusively determined. Second, the effect of the presence of
an 0il pool upon the growth rate of the ice and upon its tem-
perature distribution has been determined. Third, an order of
magnitude estimate of the maximum extent to which oil can

spread under Arctic ice can be deduced from the measurements




of the thickness of the adhering oil layer.

The experiments have conclusively determined the mode by
which oil is entrapped under a growing sheet of ice. The ex-
tent of the oil's entrapment in the ice-brine matrix has been
shown to be negligible. Even when the porosity of the ice in-
creases markedly during premelt conditions, the volume of oil
entrapped remains small. Also, it has been shown that the ice
does not in any way grow through the oil. The o0il is neatly
pocketed by the ice as rmore ice proceeds to form under it. TIn
the absence of currents under the ice, even the large pockets
of oil which might form in the larger recesses of the ice sub-
surface can be expected to be entrapped as a whole. Knowledge
of this behavior should have significant impact on the design

of equipment and procedures to clean up oil spills under ice.

The presence of an oil pool under the ice causes a marked
change in the temperature distribution in the ice because the
oil pool acts as an insulating layer between the cold air and
the relatively warmer sea water. The temperature distribution
in the ice can be calculated by a one dimensional analysis for
oil pools whose widths are larpge in comparison with their depths.
The exact procedure for such a calculation would depend upon the
quantities which are easily measurable in a given oil spill.

If, for example, the temperature distribution in the ice above
the oil were desired, and the known parameters were the thick-

ness of the ice before the spill, h the thickness of the

icel’

oil pool, the thickness of the ice under the oil pool, hiceZ’

and the temperature of the upper ice surface, then by presuming
the heat flux uniform, the temperature difference across hicez

could be calculated by the following relation

(hicellkice) (AT)

total
(A1) = (15)
el hicel 1 hice2
kice K kice

76

erafiT g iy

o e i 2




The difficulty with this procedure is that the thermal resistance
of the oil, 1/K, is dependent upon the temperature drop across j
it in accordance with Eqs. (3) through (6), and is thus dependent
on (AT)ice and (AT) Since Eq. (15) is non-linear and not

total’
explicit in (AT)ice it must be solved by some sort of iterative

¢ e Netacers et

f

! procedure, such as simple trial and error, but it can be solved,
E g since all the necessary governing relations have been defined.

! The distribution of temperature in the ice block is linear, so
the temperature gradient may be readily calculated to determine
the rate of growth under the ice. Also, this approach may be %
extended to cover cases in which additional thermal resistances,

W such as those due to snow cover or the thermal boundary layer
of the air, are present. The effects of radiative heat trans-~ i
fer from the ice surface also may be included. 1n a converse !

procedure, the thickness of an 0il pool under the ice may be

inferred from measuring the thickness of the ice and the tem-

perature gradient within it. Whether such calculations are of

practical import remains to be seen.

The experiments which measured the effective thickness of
] adhering o1l layer, 6, con be used to give an upper bound esti-
E mate of the extent to which an oil! spill under ice can spread.
| It can be shown that the acceleration applied to the oil laver
by currents under the ice.is much smaller than the acceleration

due to gravity applied to the o0il layer when it is lifted from

the tank prior to slicing. The shear stress applied to a plane
surface in turbulent flow can be expressed in terms of the fluid
density, the free stream velocity, and a friction factor which
is a function of the surface roughness and nearly independent

of Reynolds number. (Rohsenow and Choi, 1961, pp. 76-78).

v - §0? = out? (16)
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The acceleration applied to the fluid can be defined in terms
*
of the friction velocity, U, as follows

gdrag " e a7)

Where the mean roughness height, €, is the approximate eddy size i

at the surface. For a roughness height of 0.5 m, a current ve-
locity of 0.5 m s-1 (approximately 1 knot) and a friction factor 3
of 0.04, the effective acceleration is calculated by Eqs. (16)

and (17) to be 0.01 m 3"2, which is very small in comparison with

the acceleration due to gravity. Thus, attempts to calculate

the maximum area over which the o0il spreads by using the effec- i
tive oll thickness measured in these experiments will be quite i
conservative. %

The effective thickness of the oil adhering to the ice, §,

determines the extent to which a given volume of oil will spread

according to the relation

A e Volumeaof oil (18) i

It has been shown that § is a function of the heat flux through
the ice in accordance with Eq. (1l4). Thus from knowledge of the
growth conditions of the ice and the volume of o0il spilled, the 3
area over which the oil spreads can be determined. For example,
typical mid-winter conditions for the Northern Slope would be

characterized by the presence of first year sea ice approxi- 1

mately 1.5 m thick with an air temperature of -15°¢, 4
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(SEV Data Package, 1970, p. 11). Ignoring the effects of con-

vective and radiative heat transfer at the ice-air boundary and

assuming that no snow cover is present, the heat flux through
the ice can be calculated to be approximately 35 watts m-z.
Since this calculation is performed to determine the maximum
spread of the oil, the thickness of the oil, and thus its ther-
mal resistance, will be very small in comparison with that of
the 1.5 m thick ice. The heat flux through the oil and the ice
can be considered to be the same as for the ice alone, 35 watts
%2: 'Brom Eq. (14), § is calculated to be 6.5 mm with a maxi-
mun value of 13 mm and a minimum of 2.5 mm. If crude oil spil-
led is8 from a supertanker of 100,000 metric tons capacity, the
total volume of oil will be 113,000 m3, and from Eq. (18) the
total area over which it will spread will be a maximum of 45 km2
(17 square miles), a minimum of 9 km2 (4 square miles) and a
"best'' estimate of 17 kmz (6 square miles). Even the largest

of these values is considerably smaller than the area over which
such a spill would spread in temperate waters. Similar calcula-
tions can be performed for the conditions of a particular spill,
in accordance with the local ice thickness and temperature con-

ditions.

It should be pointed out that all of the above conclusions
apply to conditions typical for first year sea ice. Multi
year ice is generally of much lower salinity and different com-
position due to the fact that brine drains from it. Because it
is older, its history is less certain and because it occurs
primarily in the permanent ice pack, it has often been deformed
and distorted by the large forces within the ice cap. Yet from
the physical analysis of the oil adhesion phenomenon, none of

the above differences between new and old ice should affect the

ultimate thickness to which the oil can spread. In mid-winter

ronr
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the lowermost edge of the old ice will be composed of new ice
vhich has just formed. The heat flux will be substantially
lover because the old ice is thicker, and thus Eq. (14) will

predict larger values of § than would occur for new ice under

similar weather conditions.
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APPENDIX B

EXPERIMENTAL DETERMINATION OF THE EXTENT OF AN
OIL SPILL ON ARCTIC ICE

INTRODUCTION

In 1968, o1l was discovered on the North Slope of Alaska.
Since the world supplies of oil are dwindling and the prices
rising, this oil must be used if the present standard of living
is to be maintained at a reasonable cost. This means that the
crude oil must be shipped to a place where it can be refined,
and whether supertanker or pipeline is used, the oil will have
to travel over the rough surfac s of the Arctic. A small frac-
tion of all oil shipped is spilled. In order to deal with this
environmental problem it appears necessary to gain an understand-
ing of how oill spreads on or under ice. This understanding must
come in two parts: first, the process of spreading must be
understood and the time for spreading determined; and second,
the final size of the o0il pool must be determined.

Initially, an inertial spreading law was proposed to explain
the first problem. Using this theory the rate of spread could
be scaled using the volume released and a gravity term. The
spread would be independent of the surface characteristics., 1In
urder to solve the second problem, one must take into account the
characteristics of the ice surface, namely its roughness and the
random nature of this roughness. If this is done, the answer
to the problem will be determined in a statistical way. This
problem was studied by Patureau. The purpose of this thesis
is to test the above theories by conducting experiments on a
laboratory scale model and comparing these results with field

data. Since the inertial theory was unable to correlate all
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the data, another theory was derived from the results of known 3

data.

The experimental apparatus and procedure will be studied

in detail in Section 2. Since the results of Paturcau are ex-

pressed in terms of parameters derived from the power spectrum

S R .

of the surface, this section also described the apparatus and
: procedure used to determine the power spectrum of the experi-
4 mental surface. In Section 3, the details of Patureau's final
size theory and the spreading theory derived from the experi-
] mental results will be discussed, along with the assumptions
; and limitations. Section 4 will present the results in the

form of correlations between theory and experiment, an explana-

e vl o o Gk

f tion of the derivation of the spreading theory, sources of

error, and the conclusions of the study. :

2, EXPERIMENTS

v In planning the experiments, the characteristics of Arctic

ice were first studied. Since earlier work indicated that the
spreading was gravity-inertia dominated it was decided to con-

struct an apparatus that could dump a known volume of 'oil' at

a fast rate.

To obtain dynamic and geometric similarity, certain param-

eters were then established and values determined. These are:

(Ag<h'>)1/2<h—>
\Y

& 1/80 above ice
<h > o

> 500

Re

B ]

1/20 below ice ]
| N = number of pcckets >> 1

A = density ratio <.2 (under only)

]
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With the exception of Re, the conditions are all well met. In
the case of the Reynolds number, a desire to use fluids that
could be used easily, would not destroy plexiglas and would
provide agreement with the other parameters led to a relaxation
of the restriction. Water for the over ice experiments provides
an Re of a little more than 400 and kerosene for the under ice
“case provides an Re of about 100, This is believed to provide
sufficient turbulence to satisfy the theory.

A schematic of the spreading experiment apparatus is shown
in Fig. 1. This figure should be referred to if any questions

arise.

The rough surface itself was built by epoxying various
gizes of rocks to a plywood board in a random fashion. The
surface was then painted white with black concentric circles.
When used in conjunction with a dyed fluid, the spread is easily
observed and photographed. The size of the surface, and there-
fore the size of the tank, is 4' x 4'. It was felt that this
sizg tank would offer a large enough surface to be statistically
significant and yet small enough to be easily handled.

In order to scale the -laboratory model to a real spill, one
should consider that a real spill would be on the order of 105
cubic feet and the Arctic roughness height is on the order
of 1'. The roughness height of the experimental surface is
about 1/10 inch. This means that the 4' x 4' surface cor-
responds to about 500 x 500 in the Arctic.

The tank is made of plexiglas to allow the spread to be
easily observed and photographed. The frame was designed to
allow for rotation of the tank when conducting under ice experi-
ments. .This was necessary because if the tank were filled in
a horizontal position the pockets in the surface would trap

air and make the experimental results meaningless.
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To record the progress of each experiment a Bolex 16mm ;
camera with a 10mm lens and a variable time base was used.
Since this lens needs a focal length of around nine feet to
get a large enough field to cover the apparatus, it was decided j
to use a mirror. The camera was then run at a known speed,
usually 20 fps, to record the spread. The developed film was é

then examined frame by frame to determine radius versus time f

and the final size,

To measure the surface a frame was made from 1" x 1" angle
iron (see Fig. 2) and marked in 1/4" increments. The elevation
of the surface was then measured every 1/4" with an accuracy of
1/32". The distance below a fixed line, the frame, was re-
torded by hand and then transferred to computer cards. The
variance and the power spectrum were then calculated by the
program shown in Fig. 3. The quarter inch spacings were chosen

as a compromise between accuracy and ease of measurement.

To test the isotropy assumption, traces were taken in per-
pendicular directions and then their power spectra compared.
This is explained in Section 4.

The frame is believed to affect the spectrum only in the
wavelength ranpe greater than ten inches. If this is true, and
there are no indications otherwise, then the imperfections in

the frame will have no effect on the results.

For the over ice experiments, the fluid used was water
dyed with food coloring. Soap was added to reduce the surface
tension and the 'oil’ was placed in the cannister. The appara-

tus was then leveled very carefully- to prevent the fluid from

running off to one side. Problems were encountered in this 3

T

area. Once the experiment was ready to start, the camecra was

started and the stopper pulled. This released the oil at a }
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T(1)=0.

S(1)=0.
00 11 1=1,NTOT
TY)=T(1)+H(T)

11 S(L)=SCL)+H(T)*H(T)
LGMXP]=LGMX+]
FU1):T(1)
6G(1)=S(1)
00 12 LAG=2,LGMXP]
KK=NTOT-LAG+2
T(LAG)=T(LAG-1)~H(LAG~1)
FILAG)=F(LAG=-1)-H(KK)
S(LAG)=S{LAG-1)-H(LAG-1)*H(LAG-1)

12 GILAG)=G(LAG-1)-H(KK)*H(KK)
DO 15 LAG=1,LGMXP]
C(LAG)=0.
KK1=NTOT-LAG+1
DO 13 I=1,KK1
IPLLAG=T1+LAG

13 C(LAG)=C(LAG)+H(1)=H(IPLLAG-1)
RLTMLG=NTOT-LAG+)
WILAG)=C(LAG)/RLTI+LG

15 CONTINUE
WRITE(IWRIT,.903)A1iTOCO
DO 17 LAG=1,LGMXP1
SPECES(LAG)=0.
D0 16 I1=2,LGMX
RLGMX =L GMX
ANGl=(LAG-1)%:(1-1)
ANG)1=AMG1#3,1416/RLGHMX
16 SPECES(LAG)=SPECFSILAG)+2. %W 1)=COSIANG])
ANG2=LAG-1
ANG2=ANG2%3,141A
17 SPECES(LAG)=SPECES(LAG)+W ({1 )+W({LGMXP1)=CNS(ANG2)
WRITE(IWRIT,Q03)SLKCFS
SMSPEC(1)=,54%=SP=CEFS{1)+.66%SPECES(2)

DO 18 LAG=2.,LGMX

1ES(LAG)
WRITE(IWRIT,903)SMSPHC

FIG. 3 COMPUTER PROGRAM TC DETERMINE POWER
SPECTRUM

14 AUTOCO(LAG)=(RLTMLG*C(LAG)=FILAG)*T(LAG))/ SORT((RLTML
1G*G(LAG)-F(LAG)*F(LAG))*(RLTMLG*S(LAG)=-T(LAG)*T(LAG)))

SMSPEC(LGMXP1)=SrFCES(LGMX),46+,54%SPECES{LGMXP])

18 SMSPECILAG)=(SPECHSILAG=1)+SPECES(LAG+]1))*,23+.54%SPEC

P T PTY
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fairly fast rate. In order to determine the amount released, }
} the fluid level in the cannister was measured before and after

the release.

ot p oo ca

The underwater experiments were considerably more difficult.

The experiment had to be set up in such a way that no air pockets

ST S NESES

remained in the tank and no kerosene escaped the feed lines con-
necting the tank to the cannister. To do this, water was first
placed in the cannister to a level that would prevent the kero-

sene from getting into the feed lines. Then, enough kerosene,

t- which was dyed using enamel paint, is added to fill the can-
i nister. The rough surface was then placed on the tank and the
. tank was almost completely filled and then tilted to allow the

air to escape from the pockets. The filling of the tank was
completed in this position. When all the air escaped out the
top and the tank was full, it was rotated back to a horizontal
’ position and leveled. Since there was sufficient pressure in
t the tank to cause the surface to deflect at the center, water
was bled off in an attempt to ensure that the surface was flat.
Some degree of error was probably caused by this deflection.
Once the tank was leveled and the pressures equalized, the ex-

periments proceeded in the same way as the over ice experiments.

To check for the presence of viscous effects, experiments
were run with glycerin-water and kerosene-oil mixtures. These

experiments are described in the Sub-Appendix.

3. THEORY ;

The theory that governs the spreading was developed as

PR RENR A

a result of data from the eiperiments described in the last
] section and the available field data. The steps taken in de-
! riving the theory are described in Section 4. In this section
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the theories will be explained in simple terms and the analyti-
cal expressions derived.

In determining what will happen to oil spilled in the Arctic,

two cases must be considered. In the case of a pipeline break-

age, the oil will spread over ice and tundra. In the case of a
supertanker accident, the oil will probably spread under the ice.
This happens because Arctic ice has a specific gravity of about

Lakn St

0.8 and North Slope crude has a specific gr.vity of about 0.9,
Therefore, at an ice-water interface the ~il will, on hydro-
static considerations, tend to spread uvider the ice. The spread- ,
{ag in both cases follows the same theory and the results differ 3
only by a factor determined by the density ratio of water and

0il. For either a pipeline break or a supertanker accident,
the maximum rate of oil released will be about 1.5 x 105 cubic

feet per day.

Patureau's theory states that pockets in the ice are filled
to the roughness height, <h™>, and it was shown experimentally
that the value of the viscosity is not important (see Sub-Appendix B-1).
This means that as pockets in the ice are filled additional
fluid flows over the filled pockets frictionleéély and the drag
can act only at the edpe over an area proportional to the radius
multiplied by the roughness height. When attempting to correlate
the laboratory data for over and under ice and the field data,

it was found that the data would not scale with the volume re-
leased. By forming dimensional plots described in the next
section, it was shown that the rate of spread for a given sur-
face could be scaled using the rate of oil release, Q. Since
the size of the final pool depends upon various statistical
parameters, one can see thaé for a given volume and surface
there wiil be an average pool size and an associated variance.

In order to determine the accuracy of the averages, Patureau

91




e T L e e A

S i

A Rt b b s i el D i o e o
y.x e

developed an expression relating the standard deviation of the

size with the average size.

Figure 4 shows a sketch of o0il being released on a rough
surface with a roughness height <h™>, The driving force is
gravity, which causes a pressure at the outside edge of the
spill. Thus,

F8 ~ pA ~ (pAgh)hr 1)
Since
2
ne . (02) )
r

the gravitational force from Eq. (1) can be expressed as

3
r

2
Fg ~ plg L8 (3)

The pressure drop caused at *he outer edge as the oil flows

will be

dp ~ C, pU? (4)
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vhere Cf is a friction coefficient of order one. Since the area i
over which the drag acts is the roughness height, <h->, times r ‘

the retarding force becomes

Fr - pUzr <h™> (5)

Replacing U in Eq. (5) with r/t and setting Eq. (5) equal to :
Eq. (3) gives k

2 3
pAg .Qt__)_ ~p r_ <h-> (6)
3 2
T t
After some algebra, this becomes
2 1/6
r. (8L ) 23 Q)

<h >

This can be non-dimensionalized by defining a scaling length

® =
r = <h> (8a)
; and a scaling time
i . -9 1/4
N (8b)
gQ
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To obtain an expression for the final size and the associ-
ated standard deviation additional assumptions must be made.
The first of these assumptions equates the average of a sample
from the surface with the ensemble average over the whole sur-
face. This assumption has no real relevance to experimental
procedure. Next it is assumed that the elevation of points on
the surface are normally distributed about some mean. This
assumption is in fair agreement with the experimental surface
(and good agreement with the real ice surface) which actually
is closer to a lag-normal distribution. Under this assumption,
the roughness height, <h >, and the variance of the height, Opy s
can be related by the simple equation:

1/2

- 0h

Thirdly, it is assumed that pockets in the ice surface are filled
to the roughness height (see Fig. 5). The level assumption has
no real justification save that it eases the calculations. The
accuracy of this assumption can only be determined by experiment.
The fourth main assumption is that the number of pockets filled
is always large enough to pive a statistically meaningful result.
This assumption is well satisfied. It was further assumed that
the pockets assumed a rectangular shape (square in the case of
an isotropic surface). This was done strictly for computational

reasons. For the purpose of this thesis the surface will be as-

sumed iso:ropic and the spill will be circular. The isotropy
assumption will be shown to be a good assumption by comparing
the power spectra along perpendicular paths of the experimental

surface. Lastly, it was assumed that a two-dimensional power
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spectrum could be formed as the product of two-dimensional
spectra, This assumption has no mathematical justification,
but even if it were poor, no real error in the results would
appear, The procedure for determining the power spectrum,
which is done by computer, is explained in the experimental

section.

The final results of the theory are expressed in terms of
parameters which are derived from the statistics of the ice
snrface. The first of these is the variance of the roughness,
O Next are two parameters k and T derived from the power
spectrum of the surface., For a one-dimensional spectrum, T
is the wavelength of the peak of the spectrum and k is deter-

mined from the following equation:

1 i

=27 2m
P - T, (,mll2) Soel o P 10

To meet the requirements of the theory, the product sz should

be greater than 50, or, in the two-dimensional case (sz)2 should
be greater than 2500. From (sz) , an additional parameter, O,
can be determined from Fig. 6. (See eq 22)

Following the assumpcion that the oil fills the pockets

to the roughness height on the average, we get the equation
<V> = < > <h~
\' Smax h > (11)

or, for a normal distributién

1/2

"Oh
<V> = S\ 77 (12)

from Eq. (8).
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To non-dimensionalize the results, Patureau introduced the con-
cept of the 'most probable pocket' size,(7), that is, the most
common size for a pocket on the ice. Defining the surface area

of a most probable pocket as

S0 ® 12 (13)

and the volume of a most probable pocket as

2 . (20,)1/2
T 2 h
mp .2 (14)
L
we find the following dimensionless equation from Eq. (12):

i T AU E S as

S 3/2 Vv

mp T mp

To provide a measure of the accuracy of the above equation,
an expression for the variance of the surface area, os, was
derived. This expression is obhtained by considering the pockets
in the ice to be filled sequentially and independently. For
ease of understanding, the derivation will be for the one-
dimensional case. This can then be easily extended to the two-

dimensional case.

Since the pockets each have a volume variance, OVmp, and
a length variance oxmp and since they are filled independently,

the total variance °V will be expressed as the sum of the
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variances of the pockets filled:

o, = No, (16)
mp

The total length of the average one-dimensional spill, <Xmax

is equal to the length of a mean pocket, xmp, multiplied by the
number of pockets filled, N.

>’

<X > = NX (17)

v
m 18
mp

Using Eq. (16)

7 \2
m

Ox = (V-P-> No'v (19)

; mp mp

or

oMz (xm2> (12, 12 1543
x v v a

mp mp

1 1/2

.. oxl / : <xmax> : ,2 ova

t " \X 'V Gl
mp mp mp
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In the two-dimensional case, one finds

081/2 s > 1/2
S S 1)
mp mp

Where the proportionality constant can be detined as

1/2
0 = —VL“R (22)

with © as shown in Fig. 6. It 1s seen that O depends only upon
the product kTZ. This yields

081/2 <Smax> 1/2
S = 0\ (23)
mp mp

which is the result presented by Paturecau.

RESULTS

Figures 7 and 8 show the power spectra for surfaces 1 and
2 respectively. The isotropy assumption can be checked by com-
paring the spectral points determined from paths taken per-
pendicularly. The two directions are distinguished by the use
of open and closed symbols. By noting that there is little
difference between the two directions, one can see that the

{sotropy assumption 1is a good one. Also shown on these figures

are °h’ k, T and ©O.
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Pigures 9 and 10 show that the data for the final pool size
for surfaces 1 and 2 respectively is in good agreement with :

Patureau's theory. The values of the scaling area and scaling

volume arc shown on the figures, where Smp and Vmp are as calcu-
lated in Eqs. (13) and (14). The solid lines on the graphs are
the average of the final size from Eq. (15). The dashed lines 5
on either side represent one standard deviation on each side of

the average and were determined from Eq. (23). On these graphs,

T T P IS R W A TS

the open symbols represent over ice runs and the filled symbols

.
Sadiis . st oot

indicate under ice runs. It appears that the under ice pools

are slightly smaller. This could be within experimental error

= R

or could be caused by a slight deflection of the rough surface
caused by water pressure. Water was bled from the tank in an

| attempt to remove the deflections, but some error is anticipated.

Using the inertial theory to correlate the laboratory data
led to two distinct groups, over and under ice, with intercepts
differing by about a factor of two. Additionally, the over ice
data did not correlate well with the data from Glaeser and Vance.
In order to determine the proper scaling laws, a series of dimen-~
sional graphs were made. Since the radius in the laboratory data
appeared to grow approximately as the time to the one-half power,

1/2

it was decided to calculate r/t for all laboratory and field

data. These values were then plotted against volume released,
release rate, gravity, and roughness height. Figure 12 shows
t‘/t’.ll2 as a function of volume on the left side and release

/2
/2

rate on the right. It can be seen that r/t1 cannot be de-

scribed as a function of volume but that r/t1 does vary ap-
proximately as the release rate to the one-third power. Once

a rough power law for release rate was known, additional correla-
f tions were tried. Using the results of these crossplots and the
viséosity experiments, the theory described in Section III was

derived.
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Figure 13 shows the dimensionleas radius versus dimension-

less time for both over and under ice cases using the results

of Section 3. Also shown on this graph is field data from
Glaeser and Vance(s) and McMinn(6). The raw laboratory data

that make up this figure is given along with the dimensionless
values in Sub-Appendix B-3. The equation that best describes the
line in Fig. 13 is:

r = .25(hgQ2/<h>)1/6 ¢2/3

The under ice data shown in Fig. 13 is plotted after allow-
ing for a starting time. It was found that in the under ice
case there was a significant lag between the time the stopper
wvas pulled and the actual beginning of the spread. This was
due to the time for the kerosene to {fiuvat up through the water
to the surface. This starting time was found to be about 1.5

seconds (see Sub-Appendix B-2).

For the field data, the roughness heights are not known.
Thus, the field data was fit to the solid line in Fig. 13 by
adjusting the value of the roughness height. In some cases,
this led to a value of the roughness height that appears either

too large or too small.

However, the experiments were run in small areas with dif-
ferent kinds of surfaces (snow covered, windswept ice, etc.),

so effective roughness heights for these experiments could vary

greatly.

To expand the results of the laboratory experiments, one
3 must know the characteristics, particularly the roughness height,
of the Arctic ice. From laser profilometer traces taken in areas

of high spill potential it has been determined that the rough-
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]
ness height varies greatly but is scldom less than three centi- 4
meters or greater than 60 centimeters. The size of a spill would |
be on the order of 104 cubic meters., Figure 14 shows how the 3
final radius of a spill varies with the roughness height and %

the total volume released. For an average volume and roughness ;

height the final radius will be on the order of 300 meters.
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SUB-APPENDIX B-l

Since the Reynolds Numbers of the under ice and over ice
experiments differ by a factor of about five and the starting time
of the under ice and over ice data differ by about 60Z, it was
decided to test for viscosity effects. This was done by increasing
the viscosity of the over ice fluid (soap and water) by the addition
of glycerin and by increasing that of the under ice {luid (kerosene)
with SAE 30 wt. oil. The viscosity of the new fluids was measured on
a Tag Saybold viscometer. The figures for the viscosities of the
various experiments are shown in the table below. Changing the
viscosity of the water by a factor of five and the viscosity of

kerosene by factors of two and four had no real effect on the

fluid spread.

The Reynolds number below is defined as:

For the over ice experiments with just water, the Reynolds number
was about 400 and for the kerosene only under ice experiments, the

Reynolds number was about 80.
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Fluid Exp.
No.,

Water

& 15,16
Glycerin
Kerosene

& 17
011
Kerosene

& 18
0il

SUB~APPENDIX B-1

(continued)
Saybolt Kinematic
Viscosity Viscosity
(Seconds) (Centistokes)
42.8 5.1
44.0 5.5
57.8 10.0
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Temp.
(°F)

78

65

68

80

40

20

R




SUB-APPENDIX B-2

In the case where ﬁhe kerosene was releaaéd under the rough
surface, there was a delay between the time the stopper was pulled
and the time that the fluid started to spread. This 'starting
time' was found by extrapolating the radius versus time curve to
zero radius. Since the radius varies approximately as the square
root of the elapsed time, a graph was constructed using the radius
as the ordinate and the time squared as the Absissa (see Fig. 15).
By extrapolating, the starting time was found to be about 1.5

seconds.
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SUB-APPENDIX B-3

Below is the raw data for the laboratory experiments along with
the non-dimensionalized values: (in cgs units)

" R P L e it sl it s b o TS R s S s ot Sl M e S R st i il b B A L »
Rt okl TR L o . g et
T £ e R P A T L St BN et 2O . a

Preceding page blank

4
Run 1 Over Surf. 1 Run 2 Over Surf. 1 1
- - - - - - ;
Q=88 ~V 90 1:'““‘“.E 16.5 Q=270 V=218 T ax 24 !
r r t t T £ t t
10.5 121 .70 2550 12 138 3 2595 4
12 138 1.1 4005 13 150 «65 3375
14 161 1.5 5460 15 173 1.0 5190
17 196 1.45 7525
19 29 2.0 10.380
Run 3 Over Surf. 1 Run 4 Over. Surf. 1
Q= 190 ~V-99 tm§-1_8 Q=123 V=104 nax ~ 1L
r r t t r r t t
11 127 .65 2840 10 116 .60 2110
§ 13 150 .80 3490 13 150 .85 2980
E 15 173 1.3 5680 14 162 1.05 3690
1
)
& Run 5 Under Surf. 1 Run 6 Under Surf. 1
Q=225 Ve=14h r =18 Q=2.7 V=126 rm-18.5
: r t t t x 3 t t
10.5 121 3.1 2890 9.3 110 3.0 2800
12 138 4.3 4010 12 138 4.3 4015
13 150 5.5 5130 13 150 5.1 4765
15 172 7.0 6525 15 172 8.5 7940
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SUB~APPENDIX B-3

(continued)

Run 7 Under Surf. 2 Run 8 Under Surf. 2
Q=219 V=153 «r =195 Q=206 V=99 r =16
3 3 t t r 3 t t

10 105 3.7 3030 9.0 95 2.8 2210
12 126 5.6 4585 12 126 5.3 4185
15 158 8.8 7207 15 158 8.8 6952
Run 9 Under Surf. 2 Run 14  Over Surf. 2
Q=225 V=17 «xr =16 Q=18 V=126 «r =20
3 3 t t r r t t

9 95 3.8 3155 12 126 .6 2230
12 126 4.2 3490 14 147 1.0 3710
14 147 5.9 4900 15 158 1.25 4640
Run 15 Over Surf. 2 Run 14  Over Surf. 2
Q=180 V=135 r, =19 Q=180 V=126 r =19
r ¥ t 4 r 3 t t

10 105 b 1480 10 105 4 1460
13 137 .75 3180 12 126 55 2040
15 158 1.1 4660 14 147 1.05 3900
Run 17 Under Surf. 2 Run 18  Under Surf. 2
Q=144 V=126 oax ™ Q=200 V=128 «r =
r £ t t r £ t t

10 105 3.5 3600 10 105 2.8 3540
12 126 4.9 5080 12 126 3.8 4810
15 158 6.5 6730 15 158 5.8 7340
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APPENDIX C

STATISTICAL APPROACH FOR DETERMINING THE
EXTENT OF AN OIL SPILL OVER A ROUGH SURFACE

INTRODUCTION

As one seriously thinks of using the crude oil discovered
in the Arctic Slope, no matter which means of transportation
will be adopted, it appears that some understanding of how oil

would spread on the ice is of major importance.

This problem cannot be dealt with as a classical oil spill
on a plane surface because the characteristic feature of an
Arctic Ocean ice surface is its roughness. Moreover, field ob-
servations show that such a surface can be regarded as formed
of 'pockets' of different sizes, some of them being intercon-
nected. One can easily see that the oil will ston spreading
abruptly aftér having filled a certain number of pockets. The
goal of this work is to determine the final size of the pool

as a function of the amount of oil released.

It is clear that the geometry of the 'pockets" previously
introduced 1is entirely related to the local variations in the
ice surface altitude; it can therefore be determined by func-
tions h(x,y) defined in an arbitrary plane coordinate system
xy as the elevation of the ice surface above a reference level;
most often in the rest of this work, these functions will be
referred to as roughness height. A simple way to record informa-
tion about these variations in the elevation 1s to take airborne

laser profilometer traces*. Such data were obtained by the U.S.

1.

A profiler operating from a plane records the phase delay be-
tween transmitted to the ground and reflected laser beam light,
thus measuring the altitude variations along straight lines and
yielding a random output signal.
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Navy in the Beaufort and Chuckchi Seas. There is no doubt,
vhen examining any of these traces, that the major character
of the ice roughness is its randomness (Ref. [3]). Releasing
the sam? amount of oil V at different locations on a randomly
rough ice surface would result in different values for the
measurement of the oil pool final size. Clearly, we must then
formulate our problem in a statistical way, namely: the extent
to which o0il would spread has to be determined in terms of a
certain number of statistical parameters characterizing the
ice surface where the spill occurs. An analytical treatment
of the profilometer traces can provide us with H*, the mean
value of the roughness height h, oh, the variance of h, equal
to (h - E)z, and the auto-correlation function of h. We will
see in the course of this work that these quantities are suf--
ficient to give an answer to our problem, provided certain

simplifying assumptions are made.

With no more field data than those just introduced, it is
unlikely, however, that we should end up with an elaborate and
complete description of the oil spreading phenomenon. This
paper will only aim at determining the first two statistical
moments of the oil pool final size - i.e., its average value
and its variance - both in cases when the spreading follows a
privileged direction (so called "one-dimensional") and when it

doesn't (two-dimensional).

Section 2 will introduce and discuss the basic assumptions
necessary to set up a simplified model of the phenomenon, where-
as Section 3 will give a general mathematical expression for
these quantities in terms of the field data available, namely:

h, 0, and the auto-correlation of h.

h

'-F

The bar denotes an average over a sample.
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In Section 4, we will be concerned with applying the pre-
vious results to certain ice surfaces where field data is avail-
able, thereby involving the modelling of the auto-correlation
function of h or, more exactly of its cosine Fourjier transform.
Finally, in those specific cases examined in Section 1V, a
simple power law will be derived, relating the first two stat-
istical moments of the final size of the oil pool in a dimension-
less form.,

2. BASIC ASSUMPTIONS

If the ice surface where the spill occurs is being con-

sidered as randomly rough, it is clear that we cannot have a
complete definition of the function h relevant to that specific
spill, which is what would be necessary to yield a single, defi-
nite value for the oil pool size in that case.

A way of overconming this difficulty is to retain a certain

number of statistical properties of h met by different possible
1-

"realizations' of the ice surface. These properties are then

regarded as 'ensemble averaged" over all those realizations and
generally consist of a certain number of locally defined stat-
istical moments and correlation functions of h. These quantities
provide a certain amount of information common to any ice surface

realization that belongs to the ensemble. Obviously, the smaller

, this number, the more random is the surface and, when the num-
{ ! ber of such properties goes to infinity, the ice surface tends
to be perfectly defined and therefore no longer random., In

4 other words, since we are talking about ensemble averages, all

+A “realization' of the ice surface verifying certain statistical

conditions 1s an actual, observed surface such that it meets the
previous conditions.
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the rcalizations are becoming identical. The idea is thus to
have locally defined functions that give statistical informa-
tion on a whole ensemble of possible realizations of the ice

surface,

In the present case, the only statistical data we have is
h, o, = (h - E)z and h(P)h(P') where the bar denotes an average
over a specific 'realization" of the ice surface and where P
and P' denote any two different points of that surface. Since
these data are 'space averaged" and therefore not locally de-

fined, we are lead to make an ergodic hypothesis, assimilating

7% and <. .>+ averages. Our random surface is now characterized
ty <h>, oh = <[h - h ]2> and h(PYh(P') but clearly, this is
not sufficient since nothing is said about the aspect of the

surface.

There appears our second assumption, related to the stat-
istics of the roughness height h: we will suppose h is normally
distributed. If 6§(h) denotes this distribution, we have im-
mediately:

- 2
sty = —Lexp 4 Boh) (1
/Znoh h

8(h)dh represents the fraction of time that h will be found be-
tween h and h + dh. It does not seem possible to prove this
assumption by any physical argument since the natural processes
that make the ice grow are extremely intricate and not thcroughly
known., Therefore, we have to verify in each case that this is

not too far from the observed distribution; this was done as

q:1.13.. ensemble and space averages are equal,
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an example on Fig. 3 where the Gaussian curve ‘['G(T)dt is ]

plotted against h and is compared to corresponding data pointe }
measured on a real surface. It appears that the Gaussian ap- 1

proximation is in relatively good agreement with observations.

The third assumption concerns the way the oil would fill
the "pockets” of which the ice surface is formed and more pre- %

cisely, up to what level. Since the ice relief is random, the

7
answer to this question is unlikely to be unique. Most probably, %
a large number of different levels would appear, corresponding ;
to more or less "open' or 'closed" pockets. However, to keep :
the problem feasible, we have to account only for an average :

uniform level of the oil pool, which is another way to say that

all the ''pockets' are interconnected. !oreover, it seems a
reasonable assumption - at least most simplifying - to say that
this uniform level is the same as that of <h>. No observations
exist so far to confirm such a point and the reason why we
chose this level is that any other one would have been even
more arbitrary and would have lead to more intricate mathemati-

cal derivations.

The fourth hypothesis reads as follows: we will always

assume throughout this study that the number of 'pockets' in

volved in an oil slick is very large; 1n other words, the
ratio of the volume V released to the mean volume of a pocket
is large; this will allow us to give a statistical answer

for the final size of the oil pool. This assumption may be

considered as valid in so far V is generally large (10,000 to

50,000 m3 for the crash of a supertanker) and also the ice

P P AR

roughness 1s such that a big pocket contains many small ones

and so on; therefore, even 1if the slick occurs in a big one,

L e

5y o

the numbers of pockets involved will always be large.

R
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These four assumptions obviously cannot lead io a sophisti-
cated model since they mainly reflect our lack of information
about ice topography in the Arctic Slope. Moreover, the general
mathematical results obtained from this model won't be the
unique approximate solution to the oil spreading problem since,
for instance, another frequency distribution for h could have
been selected - log-normal particularly -, or another height
of the o1l pool level could have been chosen. Nevertheless,
the simple model we can thus build provides us with a first

understanding of how oll spreads over a statistical surface.

MATHEMATICAL ANALYSIS

The first four subsections will be concerned with a two-
dimensional study whereas subsection 3.5 will briefly state

the results for a one-dimensional case.

3.1 Problen

We suppose no privileged direction in the ice sur-
face, at least for the scale of the roughness we are in-
terested in*. Therefore, the ice topography is determined
by a two-dimensional function h(x,y) describing the vari-
ations of the surface altitude with respect to a reference
plane. The origin of the coordinates x and y is taken at
the point of oil release and the reterence level is chosen

so that:

<h(x,y)> = 0 (2)

$it has been shown that big pressure ridges do appear with

certain definite orientations.
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There again, <h(x,y)> denotes the ensemble average of
h(x,y) where the averaging ensembhle consists of the many
ice surface realizations that can be observed in the region
one considers. From our hypothesis, <h(x,y)> does not de-
pend on x and y and therefore has to be identified to the
space average h(x,y) of h(x,y) over the realizations of
the ice surface themselves.

By the same token, o " <h2(x.y)> is the variance of
h(x,y) calculated over the whole ensemble. llence, the
frequency distribution of h(x,y), assumed to be Gaussian,
is independent of any direction and is given by Eq. (1).

A proper investigation of the actual ice topography
clnf provide us with a two-dimensional auto-correlation

function defined as:
¥(E,n) = <h(x+ &, y+n)h (x,y)> (3)

We can thus pose the two-dimensional problem in the
following terms: in a region of the Arctic Ocean where
we know o, " <h2(x.y)> and Y(£,n), a volume V of oil is
released at point x = y = 0, What will be the total area
covered with oil and also, what will be the final geo-
metrical aspect of the pool?

The general mathematical answer will consist of the
first two statistical moments of the oil pool size in

fﬁy building a two-dimensional grid of laser profilometer

traces.
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terms of V, % and Y(§,n), along with a dissymmetry factor
expressing the most probable ratio of the longest dimen-
sion of the pool to the smallest one.

Dissymmetry of the Final 0il Pool

As we do not allow any dissymmetry in the frequency
distribution of h(x,y), the final shape of the slick will
be influenced by the aspect of the "pockets" themselves
in the plane xv. In general, the ice surface is not iso-
tropically rough. It follows that if Ax and Ay are the
ensemble averages of a pocket dimensions in the x and y
directions respectively, the ratio y of Ax to Ay can be
called "dissymmetry factor" since it provides a rough
idea about the final pool aspect.

From Sub-Appendix C-1, it appears that u is given by:

2y 2 1/2

y
o= {5 (0,0) [ — (0,0 (4)
{an / 13

Now, let us imagine how oil would spread from point
of release. Since the volume V is supposed to be very
large, the shape of the pockets is not important at the
beginning and the slick would propagate circularly. But,
after this initial phase, one can assume that the geometri-
cal aspect of the pockets would influence the final shape

of the oil slick.
Considering a laser profilometer trace that passes

through the origin of the coordinates x and y, it is clear
from our ergodic hypothesis that the statistics of the
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roughness height remain the same all along the trace. It
follows that the origin of the coordinates is a geometric
center of symmetry for the pool shape. Moreover, in order
to simplify further calculations, we assume that the re-
sulting oil pool is rectangular, X nax and P being the

x-direction and y-direction dimensions respectively.
Therefore, it follows that:
b3
max
Ymax

= u ¢ unity, in general
Obviously, when the ice surface is truly isotropic, u is
unity and the final pool is a square in our assumption.

First Two Statistical Moments of the
0il Pool Final Size

As was suggested at the end of the last sub-section,
the oil pool is likely to be symmetric with respect to the
point of release i.e., the origin of the coordinates.
Hence, defining ht(x,y) and h”(x,y) such that h = hT +h”

and:

h (x,y) = 0 when h(x,y) 2 0

h (x,y) = h(x,y) when h(x,y) <0 (5)

we can introduce v(x,y) as the volume held by the ice sur-

face - under the third assumption of Section 3 - within a
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rectangle of dimensions x and y. Then:

/2 +y/2
vix,y) = - h™(x,y) dx dy (6)
-x/2 -y/2

This is a mathematic definition and, evidently, it does
not account for the fact that the oil-air interface must
be horizontal when edge pockets are not completely filled
up to the average uniform level; this fact is illustrated
on the sketch, Fig. 1 for the one-dimensional spreading.
It follows that the mathematical extent of the oil is only
slightly different from the real one: at most within a
pocket. Since we made the assumption of a large number

of pockfts, we can define X ax and Ypax 28 the x-direction
and y-direction maximum extents of the final pool when a
volume V of 0il is being released over a specific realiza-

tion of the ice surface; namely:

/2

Xnax Y pax

/2

h (x,y) dx dy ¢))

-xmax / - . -ymax/ e

Or, introducing the area smax defined as:

(8)

X
mnax LIEX " max
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Relation (7) becomes:

V= - h™ (x,y) dx dy (9)

S
max

As the function h~ 1is everywhere continuous, we can

aleo write relation (9) as:

V = - h (x’Y) dx dy - [Smx - <smx>]h (u.D) (10)
<§ >
max
w?ere point (u,p) belongs to cye sufface (Smax - <Smax>);
h (u,p) 18 exactly the average of h taken over the sur-

face (S - <§  >),
max max

We now assume that:

h(u,p) = <h (E,n)> (11)

This cannot be juétified in general. Therefore, Eq. (11)
is more valid as this surface becomes large since, when
the averaging sample gets large enough, the average of h™
approaches h™ (§,n), hence <h (£,n)> from our ergodic hy-
pothesis. An "a posteriori' verification will thus be

possible.

Then, taking the ensemble average of (10) and making

"use of the previous approximation, we obtain the first
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4 statistical moment of the pool size, namely: 1
;

1

<§ > - — (12) |

3 <h (g,n)> ;
1

: To determine the second moment, let us first notice :

; that o, the variance of S and 0_ the variance of :

i 8 max \Y) ‘1

1 v(<x__ >, <y >) are related. By definition: 3

] max max

.

;:: o = <(8 - <8 >)2> (13)

: s max max

b | - - 2

1 % <IE’(<xmax>’<ymax>) <v(<xmax>’<ymax>)>] 2 8IS

From relations (10) and (11), it comes out that:

2

g 2
F, < fh‘(x.y) Svl e s - < 2B aTEm? as)

<S >
max

Or:

o, = o, < (gn> (16)
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Therefore, computing OU in Sub-Appendix C-2, we end up with:

< >IV2 <y >//2
max max

[0 - —.—16.__ / [ ‘ <xm8x> _
* arEn® /2
0 0
<y > - (o
[ — n:, Fy E,n) - —Z{I 4E dn a”n

From all previous calculations, especially relations
(12) and (17), it appears that knowing <h (£,n)> and
¥ (£,n) enables us to derive the average value <Smax> and
~ the standard deviation 031/2 of the total area covered
with oil, in terms of the amount V released. Furthermore,
an idea about the dissymmetry in the aspect of the pool

can be gotten from coefficient u. This will constitute

our answer to the two~dimensional problem posed in Sub-
section 3.1, provided we can relate <h (£,n)> and Y (£,n)
to the available statistical data i.e., o and Y(E,n).

This is the purpose of the next sub-section.

3.4 Determination of h (E,n) and (£,n)

We now go into more detail about the distribution
function 6(h) that was first mentioned in the Introduction.
This function tells us that the probability h will lie
between Y and Y + dy is 6(7)?7 and therefore:

4
[ §(y)d = 1 (18)

==g0
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Assuming, as in our second hypothesis, that this fre-
quency distribution is Gaussian with mean value 0 implies
that h will be negative as many times as it is positive.
Since y is the value taken by a stochastic function h, it
is also a stochastic variable. Therefore, as we know its
frequency distribution function 8(Y), it is clear that the
average of a stochastic quantity Q uniquely related to Y
is expressed by:

40

<> = f Q(y)8(y)d (19)

=00

If now we identify Q to the value of h (x,y), it fol-

lows from relations (5):

Q = y when yg¢0

Q = 0 when y>0 (20)

Then, substituting into Eq. (19) for 6(y) and Q(Y):

0
2
<h(E,n)> = —L— exp ( —Y—>dv (21)
’ /2noh 20h
-0
Or, performing the integration:
- O
<D (@€n»> = -/ 5 (22)

134

BV TP Yo

s W e K e

NPT




" g v v - i Y e I S b P (O G | b

T HIII  WA IVE VEA TR A M 0 8 8, e S 1 45 enree

Now, to determine ¥ (£,n), we have to extend what we
previously did for a one-dimensional distribution of h to 4
8 joint two-dimensional frequency distribution. We end up j
with the following relation (see Sub-Appendix C-3 for details):

3 1/2 ©
- ¥ o2 2 1
Y (€E,n) = m (u” = 3) erf (u) exp =
0

ldida

g ¥ o ¥ ¥+ Y
~-u du + (23)

Yo s W/ 4
where we have set for convenience: j
: 14
Y, = ¥(0,0)
4 ¥ = Y(E,N) (24)
.

It appears (see relation (7) in Sub-Appendix C-4) that
¥ (0,0) = %‘- ¥(0,0) which is consistent with the physical

conditions at ¥ = ‘Po namely:

f 2 2
' ¥(0,0) = a®> - <(h++h')2> = <ht >+ <>

S 2
+2<h h > .= 2<h > (25)
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When assuming the statistics of h™ and h' are the same as

suggested by a normally distributed h. The product h+h-

must always be zero as can be seen by Eq. (5).
Furthermore, when £ or n tends to infinity, Y (£,n)

o}
tends to i% » in compliance with the fact that h (x,y)

and h" (x + £,y + n) are then no longer correlated. There-
fore, according to relation (22):

<h (x,y)h (x + ,y+ )> = <h (x,y)><h (x + §,y + n)>

- 7>’ = o /om (26)

We have therefore provided a means of deriving the statisti-
cal quantities we need in Sub-section 3.3, i.e., Y (&,n)

and <h"(£,n)>, from the field data generally available,
namely: o, = (h -TDZ, the variance of the roughness height
and Y(E,n), its auto-correlation function,

One-Dimensional Case

We can imagine that in a particular region, the statistics
of the ice roughness are almost one-dimensional; that is to

say, the averaging ensemble consists here of traces parallel

to this privileged direction we denote by x. Therefore, the

ensemble <h> and auto-correlation function are only func-
tions of x. And, if h(x) denotes the elevation (positive or
negative) above the mean value of h taken along the trace

(see Fig. 1), we have from our ergodic hypothesis:
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<h(x)> = h(x) = 0

<h2(x)> = h(x) = °h variance of h (27)

and, V(1) being the auto-correlation function of h(x):

V(1) = <h(x)h(x+1T)> = hG)h(x + 1) (28)

VT SR AP

From the previous considerations, it follows that any
actual surface profile parallel to x will be described by

Ty

the statistical properties (27) and (28).

Now, suppose an oil spill occurs in such a zone, a
volume V being released per unit width perpendicular to X;
1f the spill is wide enough, we can regard the spreading
of oil as one-dimensional in the direction of x. This is
not completely unrealistic since narrow water leads bounded
by large floes are fairly frequent in the Arctic Slope.
Under these conditions, a large oil spill would first spread
rapidly on water, thus creating this wide spill (V per unit

ST AP R T 2T NI TR IR R,

width) that would further spread over ice almost in a single

direction perpendicular to the lead.

We can then put our problem this way: a volume of

oil V per unit direction perpendicular to X is released
at point x = 0. What will be the maximum abscissa X ax
reached by the oil when it has come to a standstill?

We will just state the one-dimensional results since

1 their derivation is quite similar to that of the two-dimen-
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sional study in the previous sub-sections. A more detailed
analysis is given in Sub-Appendix C-5. The first statistical
moment <xmnx> of the oil pool final size is found to be:

\J

X > m e (29)
s <h”(£)>
whereas the second moment ox defined as:
2
o -<[x - <x >]> (30)
x max max

appears to be:

<x >/VT
4 e X ax %
o, = zf L S V(1) -5z ldt (D)
- vZ
<h > B

Here again, ¥ (1) and <h > are related to Y(T) and 0

h
through the relations:

> - - Vo (32)

-}

PR W =Ly ers
T W u-z)er (u)

b + ¥
w+w ;,:7 S

where: o = y(0)

v = W1
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3.6 General Mathematical Results

-y

In this section, we have been able to give an analyti-
cal expression for the first two statistical moments of the
oil slick final size, resulting from a spill of volume V.
Thus, when the oil spreading is either one-dimensional
(with a privileged direction) or two-dimensional (no priv-
ileged direction), the assumptions made in Section 2 enabled
us to derive the ensemble average value of the pool size
and its standard deviation, as well as a "dissymmetry factor"
u characterizing the aspect of the slick (in the two-dimen-
sional case only).

These quantities are all determined in terms of ch'

the variance of the roughness height h, and the auto-correla-

tion function of h (either ¥(t) or Y(£,n).

Namely:
j
= > o vuin
max o
h
<x >//f
1-dimo
o - <[x - X ]2> = -§I- r case
x max max ah }
0
<xmax> 0h
— - 1] [V (T) - 5] dr (34)
Jz 27

vhere ¥ (1) 1s obtained by equation (15) of Sub-Appendix C-3.
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H
s > = YI2U )
max "0—[:
>//2' <y ax>//2-
2 m
Os = <[Smax - <Smax>] > = -o'——-alA
2-dim.
case
<xmx>
—DBX _gf- (e:n)-—Tr dg dn
2
2 2
= 0,0 [ L5 00,0 (35)
an 13 _

where ¥~ 1s obtained by Eq. (18) of Sub-Appendix C-3.

However, we have to point out again that these results

do not constitute the unique answer to the general problem

tions made in Sub-section 3.2 are quite limiting. Never-

i

* of oil spreading over an ice surface since the basic assump-
I theless, they can provide us with a first understanding of

|

the possible effects of an oil slick in an Arctic environment.

Qi ot 1o e B e it i

4, APPLICATION - SAMPLE CALCULATIONS

ko

In this section, the general mathematical results of the
last section will be applied to a certain number of specific
cases of ice topography where the corresponding statistical field
data is available,
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Both in the one and two-dimensional cases (for privileged
and no privileged direction of spreading respectively), the
statistics, 1.e., the first and second moments of the final
size of the oil pool, have been determined in terms of °h' the .

variance of the roughness and y, its auto-correlation function.

We recall here that h stands for the variations in altitude of :

the ice surface with mean value 0.

2

o, " <h™> (36)

é § V(1) = <h(x)h(x+T)> in the 1l~dim. case (37)
¥(E,n) = <h(x,y)h(x+ £,y + n)> 1in the 2-dim. case (38)

§ Then within a certain region of the Arctic Slope that can gen~
erally be regarded as large compared to the area of an eventual

g oil slick, the ice topography obeys the statistics expressed

é either by Eqs. (36) and (37) or by Eqs. (36) and (38) when the

oil spreading phenomenon is one and two~-dimensional respectively.

ﬁ Now, in order to give a numerical answer to a specific oil
slick problem, we have to know oh and either Y or ¥ character-
izing that part of the Arctic Slope where the spill occurs, and

that are the results of field observations. However, the statist-

ical properties of the permafrost relief are generally given in
the form of a power density spectrum of the ice surface (Ref. [3]).
! We must therefore use that kind of field data instead of the

auto-correlation function itself.
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From the Wiener theorem in generalized harmonic analysis,

it appears that the auto-correlation function and the power

density spectrum are related by a Fourier cosine transformation.

Thus, if P denotes the power density spectrum of h, it follows

that:

¥(1)

P(f)

v(0)

And:

¥(X)

P(V)

¥(0)

+ ~
- —[ P(F) cos 27ft df
L0
L ad
_ Vv(T) cos 27fT dT
2m
00
400
=2 4
400 e
= P(U) cos (2mU.X) dU
=00
400
. ¥(X) cos (2M0.X) dX
4m
=00
400
-0 = P(U) du
t -
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in the one~
}dimensional
case

(39)

in the two-
> dimensional
case
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vhere U is a frequency vector of components U1 and U2 and X any

vector of the plane xy of components { and n.

Therefore, it is clear that the information we need about
the ice surface statistics, i.e., % and the auto-correlation
function of h, is contained in the power density spectrum P.

The problem 1s now to build a continuous function P fitting the
observed power spectrum as well as possible. This is the object

of the next sub-section.

4.1 Modelling of the Power Spectra

In order to make the matlhiematical analysis of Section 2
applicable to any part of the ice in the Arctic Ocean,
we have to determine the parameters necessary to describe
the most important features of the ice surface statistics.

A general answer to this modelling problem cannot be given
here, even by increasing the number of such parameters

since the actual data is far from being complete and re-
liable. Moreover, another problem is raised by the two-
dimensional case of oil spreading since no corresponding
field data - two-dimensional functions ¥(§,n) - is available
to date. Therefore, in order to obtain numerical orders of
magnitude, we have assumed that a two-dimensional auto-
correlation function Y¥({,n) can be regarded as the product

of two one~dimensional auto-correlation functions. Namely:

Y(E,m) = o, ¥ (€) ¢, (41)
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There Is nuv evidence at all that this is correct and it

only appears as a fair and indispensable assumption to treat
the two-dimensional case. Therefore, since the latter can
be derived from one-dimensional field data, this sub-section
will only be concerned with the modelling of the one-dimen-
sional power spectra that directly come out by Fourier
analyzing laser profilometer traces such as those mentioned
in the Introduction. The two-dimensional model will only

be stated following the above assumption.

There is no doubt that modelling P(f) or Y(t) is
equivalent since the power density spectrum and the auto-
correlation function are uniquely related through a Fourier
transformation. In fact, from the few data examined -
both y and P -, it turns out that the shape of the spectra
is quite varying thereby making the choice of parameters
difficult, whereas the form of Y(T) seems to remain pretty
much the same; it is, therefore, easier and perhaps more
reliable to propose a model for Y(T) and then take its
Fourier transform. Since this function presents observed
damped oscillations around a zero value and starts at
y(0) = o (by definition of y), we think that two parameters
k and T are sufficient to set up a consistent model. Nanmely:

o
y(t) = ——h—7 cos Zn% (42)
1+ kt

where k is the inverse of a length squared and T has the

dimension of a length.
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However, as we mentioned at the beginning of this
section, this is not the form under which field measure-
ments generally appear. Thus, we have to derive a model
for the power spectrum P(f). This can be done by taking
the inverse Fourier transform of the model for ¢ and
evaluating k and T from the power spectra. It follows

that:

ﬂ
(e}
P(f) = -—-Eexp (m)cosh(z—“—>: £f>1/T
/K 3 ™k

7O,

P(f) = h, exp (- 2ns cosh 2Nt £<1/T p
k Tk, K
P(f) = P(-f) (43)

There exists a symmetry with respect to the origin and it
is therefore sufficient to consider only the positive fre-
quencies for which a peak in the power spectrum appears at
F = 1/T, In that case, the normalization of the spectrum

is such that:

P(f) df = O (44)

which 1s equivalent to multiplying P(F) by a factor two
in relation (43).
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This relation constitutes the two-parameters model
we propose for the one-dimensional power spectra. When
considering specific ice surface statistics, the parameters
k and T can be determined by having the model fit exactly
the observed intensity and frequency position of the peak
on the power spectrum. In other words, 1if fno is observed

position of the peak, we have:
T = l/fno (45)

and k is the solution of the following transcendental

equation:

270
h 2n 2T
P(f ) = exp (- =) cosh{ =— (46)
no vk T/E) (T/E)

Figures 4 to 6 show one-dimensional spectra modelled in

this way. Each figure is relevant to different ice surface
statistics, i.e., different k's and T's; the solid line
shows the proposed model whereas the black squares represent
the corresponding field measured spectrum., It appears that
the decaying of the spectrum is acceptably verified but,
unfortunately, the lower frequency region, beyond the peak
is not very well matched. As the peaks of the power density
spectra play a central role in our analysis, a point per-

taining to their exact definition has to be raised here.

(-]
*6h is not a parameter in that model since J[ P(F) df = o
0

for any k's and T's
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As a matter of fact, the behavior of the power spectra
for very low frequencies (where the peaks lie most often)
remain unclear. These data generally come out by Fourier
analyzing field measurements of the ice surface variations
in altitude. We must notice that the recording device
does not have an infinite analyzing band-width and that in
order to remove the variations in altitude of the plane
which carries the recorder the data signal is filtered
through a hagh-band pass filter. Therefore, we cannot
rely on the information at low frequencies provided by
such methods, and it would be necessary to set up a physical
argument to account for the general aspect of the power
spectra in the low frequencies. This requires a thorough
understanding of the ice formation and life and has not
been done to date. Our modelling is therefore restricted

to such field measured power spectra that exhibit a well
defined single predominant peak, almost regardless of their

behavior for frequencies less than the peak frequency.

Let us novw state the resulting model for a two-dimen-
sional statistics. Following the assumption we made earlier,

we write:
‘l’(C.n) - Oh 'Pl(E) '1’2(71) (47)

where *1 and wz are one-dimensional auto-correlation func-
tions, hence modelled by relation (42) with parameters kl'
Tl and k2 respectively. It follows that the corresponding
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two-dimensional powcr spcctrum is P(U) such that:

P = 0, P (V) P,(U,)

T
o

where U, and U, are the components of the frequency vector

1 2
U and Pl and P2 are the two one-dimensional models cor-

responding to the parameters kl’Tl and kz,T2 respectively.

T AT T e

Namely:

21U
P (U) = I oexp < 1> cosh (2" >
/El /iZl 'rl./El

if U 1Y, 2 1/T

2my
P,(U) = SR ( 2) cosh (n ) (48)
k) k, Tk, !

"

* Pl(Ul) . == exp (- 2N cosh -——-1-
/El 'rl./k‘l JEI
; if U UZ < 1/T>
P2(U2) = -l-exp ( S cos < 2 (49)
g »/EZ '1‘2/1?2 /EZ

-

P(-U) = P(U)

Here again, P(U) is symmetric with respect to tne

origin in the frequency plane. Hence, one needs only
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consider a half-plane (for instance U1 > 0), normalizing

the power density spectrum so that:

P(U) dU = © (50)

h

“1 >0

vhich is equivalent to multiplying P(U) as expressed in
Eqs. (48) and (49) by a factor 2.

The overall aspect of such a power spectrum is given
in Fig. 7. Two peaks appear, corresponding to the two
peaks of PZ(UZ)' As was sald earlier, no comparison with
ficld data is possible due to the lack of the latter,

In this section, a simple two-parameters model has
been proposed for the one~dimensional power spectra and
is in good agreement with observations in so far as a real
predominant peak appears in the measured spectra. The two-
dimensional model has been purely hypothesized as being a
cross product of two one-dimensional models. The next sub-
section will use these models to develop a concept of '"most

probable pocket" in the ice relief.

Concept of Most Probable Pocket

In this sub-section, both in the one and two-dimensional

"most

cases, a ''most probable pocket' will be defined as the
apparent periodical relief" in the ice surface; mathemati-

cally, it will be identified with the negative part of the

nmain term in the Fourier series expansion of the ice surface.

Moreover, being the most characteristic feature of an ice
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surface, this most probable pocket will be used to non-

dimensionalize our further results.

As soon as we have the power density spectrum P(w) of

the function h, from harmonic analytsi.s.'h we know that:

40
h(x) = P(w) cos (wx) dw (51)
0

with 2P(w) dv = IF(w)Iz

w = 2nf

It is then clear that we can approximate this function
by an infinite Fourier cosine series which is nothing more
than replacing the surface contained between the power
spectrum curve and the frequency axis by an infinite num-
ber of rectangles of width Awn and height P(wn) vhere v
is a circular frequency and P(wn) the value of the power

spectrum at that frequency.

Thus:

h(x) =

JZPans Bw_ cos (wnx - wn) (52)

oM 8

in the one-dimensional case

by the same token:

[}
h(_}g) LI /Z'P'm_ cos (pﬂ.l(_ - "’h) (53)
in the two~dimensional case
+See Ref. 4.
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In these equations, the "approximately equal" symbol ;
tends to an "equal' symbol when Awn - Agn in the two-dimen-

sional case - tends to zero, that is to say when the sum is

replaced by an integral.,

The amount of randomness characteristic of any given
realization of the ice surface among a particular statistics
appears in the set of phases *h that are regarded as com-

pletely random variables,

Now, in so far as the power spectrum decays fast enough
when the frequency increcases and decreases from its value
at the peak, there is no doubt that the term corresponding
1 t
to the frequency position of the peak, ML gno’ gio in
the two-dimensional case - in the Fourier series 1s pre-

vailing over the other ones.

Figures 4 to 6 show that such a fast decaying is con-
firmed by field data when w increases, but this is not the
case when w decreases since, as was already mentioned, this

low frequency part of the spectra is not quite reliable.

However, it seems intuitively reasonable to expect that the
i zero frequency values of the spectra have to be zero; in
E other words, in the Pourier expansion of h, terms with an

! infinite wave length should have zero amplitude because

E otherwise, this would mean that there exists points in-

: finitely far from the origin of the coordinates with non-
zero roughness height. This is {ntuitively non-acceptable,

A rigorous argument can only come out from a detailed
discussion of the ice relief formation and evolution. This

is beyond the scope of this analysis and we must be content

+,,1
yno. gﬁo refer here to the two peaks of a two-dimensional

spectrum.
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with the assumption that a real peak exists in every spectra
and its frequency position and intensity explicitly appear
on the field data.

Thus, it follows that an even cruder approximation for

h would be:
h(x) = /73; cos (whox - dho) (54)

in the one-dimensional case

and

h(X) = /%o [cos WX - )

+ cos (2’2‘0.5 - wioa (55)

in the two-dimensional case

For the one-dimensional case, we can look at Eq. (52) as
expressing h in terms of a superposition of sinusoids of

period %1 and intensity /ZPiwh) Awn. Each sinusoid will
n
contribute - in proportion to its amplitude - to form the

actual aspect of a typical one-dimensional profilometer
trace verifying the statistics expressed in the power spec-
trum P, Then, Eq. (54) tells us that the greatest ampli-
tude sinusoid, and therefore that which most influences

the shape of the real pockets, corresponds to the frequency
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of the peak, Hence the notation "most probable pocket"

refers to this particular term of the Fourier expansion
of h. This privileged pattern in the ice relief has a
length Lmp equal to one period T of the sinusoid and a
"volume" per unit width Zmp equal to the area contained

between a negative arch of the curve and the axis, namely:

I‘np - %—ﬂ— = T (56)
no
Lmp
Imp = - f »’Zoh cos (wnox) dx (57)
0

negative integrand

Or, integrating:

. /20h Tn/20h
Imp = - - - (58)
no

By the same token, for the two-dimensional case,
Eq. (53) is an expansion of the ice surface in terms of
sinusoidal surfaces, the most apparent pattern corresponding
to thg two peaks of frequency vectors g;o = (Unol’ UnoZ)
and yno - (Unol’ - UnoZ) as in Eq. (55), (see Fig. 7).
Analogous to the one-dimensional case, the 'most probable

pocket” has here a surface Smp and a volume Vmp corresponding
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-1 -1 ,
to an increase of (U ) ~ in x and (U  ,) = iny. .

Or more precisely:

4
Unol UnoZ

1 2
Vomp = -[/foh E:os Eno'z + cos _I_Jﬂo.!_{J dX (60)

1 period in
1 period in

negative integrand

Upon integration, this yields:

i 8/20h
i Vop = g (61)
nol no2

Since they express the most important feature of the

power density spectra - namely, their peak -, the "most

' probable pocket' dimensions will provide a good reference
) to non-dimensionalize our further results. This concept
of most probable pocket has also the advantage of giving,
in a simple way (through Eqs. (52) and (53), a rough esti-
] mate of what the ice surface looks like.
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4,3 General Mathematical Results of Section 3 ]
Using the Modelled Spectra of 4.1 -

With Eqs. (34) in the one-dimensional case (35) in )
the two~dimensional case, we have obtaiﬁed a relation %
between the first and second statistical moments of the
oil pool final size, the auto-correlation function of h_
and the parameter o of the ice surface statistics. The

purpose of this section is to derive more simple relations,

using modelled spectra, and non-dimensionalize these re-
sults with respect to the '""most probable pocket'. Thus,
it will be shown that in their dimensionless form, the
second moment is proportional to the first one through a
factor 6 only dependent on the non-dimensional group

2

sz (or klkz T1 Tz2 in the two-dimensional case) for suit-

able values of this group.

4,3.1 One-Dimensional Case

We recall here that 1if <xmax> is the final
dimension of the oil pool and oL its variance, we

have, from the mathematical analysis of Section 3:

L <x > = @- (62)
E max o

»; h

<x >V

| max . B _

t o, = 81 2% o1 ét) = %? dt (63)
1 V2 h
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¥ (1) being obtainable from Y(T) defined as:

W) = —0 7 cos 2T T (64)

Through the relation (see Sub-Appendix C-4).

.
8

*1 V@ = Fw = 1 —7z ||
)

3 2
2n(y,” - v

(a® + bd) b - 2aby

2

) dadb (65)
20, - ¥)

exp\ -

We can notice that, for k's and T's such that

IEL—(—T-)- - 1—] approaches zero within one period T -

% 2n

or one most probable pocket length Lmp - Eq. (63)

becomes:
FJ
Lmp
<x > -
f o, = 8n —Rax ¢ LO(T) -%—1—' ar (66)
V2 h
: 0
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i Since the integrand in relation (66) is a con-

tinuous function of T, we can define 'ro such that:

<x > w-(T ) 1
Ox = 87 Lmp ';f_x - ‘l’o -7.———0—' - 67
2 h

Now, from Sub-Appendix C-4, it it clear that

E’-—ST—)- - %—a will be positive between T = 0 and

%

T®= % and negative between T = % and T = -g—; hence:

T e e

0 < T, < T/4 (68)

T
In so far as <xmax> is large as compared to 7

we can rewrite Eq. (67):
i. 8n e > 69
‘g GoNE E Lmp « X ax (69)
; a
Y ()
i with o = —2% - ;_" (70)
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Taking the square root of Eq. (69), it appears

that the standard deviation of the oil pool final
size is proportional to <xmax>1/2' This is in ac-
cordance with the following physical argument. Let
V be the volume of a pocket per unit width, and

let us split it into a "most probable pocket” volume

|
!
]

plus a fluctuating quantity V':

e

AV = Lmp <h™>+ V' (71)

RSt S v AL

If °Av

V', we have obviously:

is the variance of AV and Oyt that of

av T % 2

Now that the total volume V of a spill is such
that:

i e e

V = NAV (73)

Furthermore, all these pockets are statistically
£ independent if we assume that the correlation for h

f goes to zero within an interval Lmp.

A
+me is defined in (56).
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Therefore
where ¢, is the variance of the volume occupied by

v
N pockets. Since <xmax> is always of the form

‘<xm > = Nmp (75)

we have from (74):

O’v.
Oy = %’ Tup (76)

Y 1/2
o 1/2 = y 3 is then proportional to <x >1/2
o <h™> Hax

as expressed in Eq. (69).

Now, let us show that a defined in relation
(70) is independent of <xmax> for sufficiently large

values of <x__>.
4 max
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Equation (66) can be rewritten:

Lmp
[<x  >/VZ -~-1] _
— max WM/, - 3 ar (1)
. [<x_ >/VZ - 1]
max o
0
<x >/V2 -1
the ratio —=2X can be regarded as constant

<x >/V2 -t
max 0

in so far T - ﬁb remains small as compared to <xmax>
when T varies from 0 to Lmp. In other words, since
T_1s of order mp/4, a independent of <x__ > is a

o max -——
reasonable approximation when the number of "most
probable pockets' involved in the oil spill is large

(of order 10 or greater).

We can also show that, when sz exceeds a number

to be determined, & only depends on the non-dimensional

group kTZ:

1

v (1) "ﬁ(‘P) - 173 abexp
2) ©

2n(y ? - ¥
(a% + bz)\pD - 2aby

dadb (78)
20,2 - v
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Furthermore, it appears that, setting

T, = YLmp = YT (79)

Ntk

Ee s Sl e

Y 1s almost a constant within a few percent;

this result comes out directly from a large number
of numerical computations with different k's and T's

and 1s not surprising since the overall shape of

(1 _ 17
3, T does not change very much

the functions
(see Fig. 9).

Then,
%h
W(To) = ————5 3 ¢cos 2my (80)
1+ ky T

is only a function of kTZ.

Hence, from Eq. (78)

¥ (To) = cﬁ?W(To)) = function of sz only (81)

We have therefore shown that a depends on the

non-dimensional group sz only.
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% Non-dimensionalizing Eq. (69) with respect to

H the "most probable pocket' length Lmp, we obtain:

E: ke
: ;
g f
%? oxuz <xnmx>)1/2

é ]
¥

&

with

g

\ /2

We now determine the universal curve 6 versus sz
for k and T's that verify the assumptions we have

made in the previous derivations.
The only one concerned with k and T tells us

[L—O(T) - %—{' nust decay to zero within a period+
h

T = Lpp. From Sub-Appendix C-4, we know that this

is equivalent to Y(T) going to zero within a period
T; 1if we assume that Y(T) = wgg) is a good approxi-
mation for Y(T) equals zero, it follows that:

K
¢

¥(0) /Y(T) > 50 (84)

+We could have taken the same condition within two or
more periods T; the dependence of a on kT only would
not have been changed, but a independent of <x__ >
! could be questioned. However, the decaying to zero
within a period seems to be in good accordance with
field data.
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KT? 3 50 (85)

We will therefore compute the curve 6 (kTZ)
for sz 2 50, This 1is represented on Fig. 11,
We can notice that, when sz goes to infinity,
0 goes to zero. This is not surprising since,

when T = @, o equals a constant divided by
infinity and when k = ®, a equals zero times a

constant; in both cases, 0 is therefore zero.

Knowing the k and T of a given ice surface
statistics, we are now in a position to obtain
the corresponding 6 (on Fig. 11) and, with Eq. (82)
have got a single relationship between the two
first statistical moments of the oil pool size

X __, in their non-dimensional form.
max
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4.3.2 Two-Dimensional Case
We recall that the two-dimensional size of the 4
oil pool is § and its variance 0_ such that: :
max 8 1

v/2n (86)

0 0
<y > -
_max n !_é.g.ﬂ)_ = ;_ﬂ. dEdn (87)
V2 h

where ¥ (£,n) is obtainable from ¥(§,n) defined as:

%h
¥(En) = ——y 5
(1 + K ED (L + k,yn%)
cos 21\'5—- cos 2m- (88)
T T
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Going through the same kind of derivations as
wve did for the one-dimensional case, and under the
same conditions for k's, T's and smax' we will ob-
tain comparable results.

Thus, for k;, k,, T, and T, such that ¥7(E,n)
goes to 0 within the area Tl X T2 and sufficiently

large <S__ >, we can write
max

081/2 <Snax> )1/2
Smp S Smp (89)
2 22
© being only a function of kl kz T1 T2 (1f we
2 2 2 12
neglect k1 '1‘1 + K, T2 compared to k1 k, T, T, ).

' © versus dimensionless group has also been deter-

mined on Fig. 13, and one notices that for ¥ (£,n)
2 =2
to go to zero within the area Tl X Tz, kl kz T1 T2

has to be greater than 2500 if we keep the same stan-

dards as in the one~-dimensional case for the meaning

of ‘''goes to zero'.

Therefore, knowing kl’ k2, T1 and T2 of the two-~
dimensional statistics we are considering, we are in
a position to obtain the corresponding O and thereby,
we have got a simple %-power law relationship be-

tween the non-dimensional first and second statistical

moments of the oil pool size.
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4,4 Results

[
1
¢
i

3 Having three experimental power density spectra coming
from different parts of the Arctic Ocean, we have attempted
to insert them in our parametered model described in Section
% 4.1, We obtained the following values for the parameters

k and T* (see the modelled spectra on Figs. 4 to 6).

Sredliin re st

 §

r. 'a‘:. - 'i
;, 4
. ’ “ °h

115 fe. | 0.00378 £e.” 2.295 6.2 | (D ;

200 £e. | 0.002786 fe.”> | 1.016 ££.2 |

. 540 fr. |  0.04075 fr.” 0.203 £e.2 | (@ :
4' (90)

Then, on Fig. 10, plotting the relationship between
the two first moments of the oil pool size in the one-
dimensional case for any of the three above statistics,
we have compared the simple —;‘-power laws given by Eq. (82)
with the corresponding 6's (solid lines) to points obtained
from the general mathematical model - Eq. (34) - for dif-
ferent volumes released V. The agreement 1s extremely

b good for any statistics, as well as it 1s on Fig. 12 for

the two-dimensional case; in order to build two-dimensional

&. statistics, we have made the following combinations of one- q

dimensional statistics: @ + @,@ + @ ,@ + @ and ﬂ
i @ + (@ of Table (90).

*We notice that sz is always larger than 50 for all three

statistics which allows us to use Section 4.3 analysis.
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Therefore, in so far the conditions over k and T is

verified (KT” > 50 for instance), this 7
lationship between the oil pool final size and its stan-

power law re-

dard deviation appears to be a very good approximation to
solve our problem, both in the one and two-dimensional

case.

It might be interesting to thow a rough estimate of
what these numerical results can be. Let us take a volume
vV = 1000 ft.3 per foot width in our one-dimensional case;
this yields the following figures for each of the statistics
of Table (90):

@ — <« > = 1458 fc. o M - 304 te.
@—> <« > = 2497 f. o M - 40 .
@—> <« > = 5560 . o M? - 615 .

As to the two dimensional case, let us take a volume
v=5X 10S ft.3 which appears to be a reasonable size,
even in case of a supertanker crash, then, we obtain for

the following combinations of one-dimensional statistics:
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Such results for ox and 08 provide good evidence that
our assumptions of Eqs. (11) and (7, in Sub-Appendix C5)
are valid. We recall that in these assumptions, the

1/2 1/2

average of h  over a length ox or area O was identi-

fied to h (£), the average of h over the whole realiza-

tion of the surface, on the ground that oxllz or 081/2 Y/

as

large enough.

Since the correlation for h approaches zero within one
"most probable pocket" dimension, a length Lmp - or an area
Smp in the two-dimension case -~ of the ice surface realiza-
tion can be considered as containing all’ the statistical
characteristics of the entire surface. Therefore, the
average value of h™ over a length Lmp - or area Smp should

not differ very much from <h (£)>.

Hence, it comes out that for V such that the standard
deviation of the oil pool is much less than a "most probable
pocket", the assumptions are no longer verified, thereby
making the lower part of the curves Ox versus <xmax> - or

0_ versus <§_ > - less trustworthy.
8 max .

CONCLUSION - SUMMARY - DISCUSSION

In this study, the two first statistical moments of the

oil pool resulting from a spill of volume V have been deter-
mined in terms of O the variance of the roughness height h
and the auto-correlation function of h, both when the spreading
is one-dimensional (one privileged direction) and when it {is

T e ——

two-dimensional (no privileged direction).

TN ST Sy
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These results have then been developed and simplified in
compliance with a two-parameter (k,T) model proposed for one-
dimensional statistics as long as their power spectrum exhibits
a single predominant peak. If P(f) is the modelled spectrum,

we have:

210
P(E) = — exp Qzlf cosh —2-"—)1f £ > 1/T
/k vk T’k

2m0
P(f) = —D exp (- 2—"—)aoah<-z-lf->if £ < 1/T (92)
vk ™k %k

T is nothing more than the inverse of the frequency position of
the peak and k 18 determined by the intensity of the spectrum
at that peak, through the transcendental equation:

210 . .
P(% - exp (- ﬂ-)cosh 275 (93)
7k Tk Tk

Two~dimensional statistics have been regarded as character-
ized by a product of two one-dimensional power density spectra,
therefore, their modelling is quite similar to that of the one-

; dimensional case.
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" that could be physically defined

A "most probable pocket
in the ice surface has

as the "most apparent periodical relief"
Math-

been introduced both in the one and two-dimensional case.

ematically, it 1is identified to the main term in the Fourler

series expansion of the ice surface.

1
If,—r'

sional spectrum and (Unol’ UnoZ)’ (Unol’

position of the peak in a one-dimen-
- unoZ) the positions

is the frequency

of the peaks .n a two-dimensional spectrum (see Fig. 7), the
dimensio ~f this "most probable pocket" are its size and
volume:

Length Lmp = T T
T/iE; > one dim. case
"volume" Imp = = (94)
4’ )
T
area smp = T,T, * T .U
nol "no2 } two dim. case
8/20h
volume Vmp = 0
nol no2 ) (95)

The first statistical moment of the final size of the oil

pool - namely X in the one-dimensional case or § in the
max max

two~dimensional one - has been determined and then no
"most probable pocket' size:

n-dimen-

sionalised with respect to the
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A simple %'power law relationship between the non-dimen-
sional first and second moments of the pool size has been de-
veloped with a slope 6 - in the two~dimensional case -

depending only on the dimensionless group sz -k, k, T 2p2

1k T T

in the two-dimensional case - that characterized the modelled

spectra. Namely, if 0_ is the variance of x and 0_ that
X max 8

of S___:

max

) 1/2 & 5 1/2
x max

Cap = B — see Fig., (10) and (11) 97)
1/2 s »>\/2

ag

-;5—:;5 -@ —S—:El see Figs. (12) and (13) (98)

Therefore, suppose we are given the volume V of oil released
and the parameters which characterize the region of the Arctic
Ocean where the spill takes place: k and T in the one-dimen-
sional case or kl’ k2’ T1 and T2 in the two-dimensional one,

along with the variance % of the roughness height; we are then
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in a position to predict the final size of the oil pool as well
as its standard deviation. Furthermore, in the two-dimensional
case, an idea about the dissymetry of the pool can be gotten

from the quantity u, the ratio of the dimensions of the rectangle
limiting the pool. With relation (4):

1/2

2
(2r/T,)" + 2 k
2 2 (99)

2
(Zﬂ/Tl) + 2 kl

We have to notice here that this rectangular shape
X ax X Yaw surely does not represent the real aspect of an oil
pool. The latter is much closer to an ellipse - a circle in the
case of a truly isotropic surface - and it follows that the size
computed under this assumption can result in a 13% underestima-

< > >.

tion of X ax and <ymax The computations relative to an
ellipse, although quite intricate, can be performed but, in
view of the precision obtained on the statistical field measure-

ments, we did not deem it worthwhile.

The limitations for the use of these power law relationships
between the first two moments of the pool size (Eqs. (97) and

(98)) are concerned with the value of sz and <x > -<§ >
max max

and k, k, T ¢ '1‘22 in the two-dimensional case - namely:

17271

kT? 3 50 or k k, 'rlz 1,7 3 2500 (100)
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<§ >
max =, _max . (101)

These conditions, described in some detail in Sub-section
4,3 do not influence more general results as those of Eqs. (34)

and (35) which are valid for any power spectra model.

Also, an important point to understand is the actual be-
havior of the power spectra at very low frequencies since it
has been here purely hypothesized, as was also the two-dimensional
statistics, for there is no evidence at all that a two-dimensional

power spectrum should be the product of two one-dimensional ones.

To conclude this study, we can say that the previous analysis
yields simple and useful results as to the prediction of oil
spreading over a rough surface of ice; but, since the modelling
of the power density spectra has been developed from a limited
quantity of data, a strong experimental ground is required to

completely justify this proposed model.
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SUB-APPENDIX C-1

In this appeudix, we will determine the "dissymmetry factor"
defined as the ratio

AX
L v (1)

‘'where Ax and Ay are the average dimensions of a pocket in the x and
y directions respectively.

Let us consider an actual laser profilometer trace parallel to
the x direction. Let rx(x) denote the elevation of ice above the
mean level < h(x) > = 0. Considering an ensemble average over all

the traces parallel to x, we can write:

< ri(X) > = 0 (2)

And:

< rx(x + &) rx(x) > = Y¥(g,0) (3)

Using our third hypothesis concerned with the way pockets are filled

by oil, we can see that Ax corresponds to the average distance

g ibidabac

separating two zeros of the function rx(x) (see Fig. 2). rx(x) is

normally distributed from our second hypothesis and, since

r
§;§ is linearly related to rx(x), it also holds a Gaussian distri-

e et
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Ay
bution. Hence, the vector
r (x)
drx
a—'(x)
is normally distributed.
Therefore, if p(a,6,x) represents the probability that:
a < rx(x) € a+da
drx
€ 5(x) ¢ 6+d6 (4)
we have:
1 -1 -1
p(a,60 = 3= M e - 2 Jao] w{%) (5)
{
where:
¥(0,0) 0
M =
. 2
4
0 -5 0,0 (6)
12
*see Ref. 1.
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Relation (5) can easily be reduced to:

s i, o iSadec

-1/2 '
-Y_ Yy) 2 2
& )
Pa,Bix) = —5——%  exp (-gy— + 77 @)
o o 4

in which we have set for convenience:

Now, let us find the probability that rx(x) has a zero between x

and x + dx; 1in the interval, all the cross-sections of the possible

realizations of the ice surface are regarded as straight lines.

At first, we will derive the probability for rx(x) to have a

zero with positive slope. For this to happen, a and 6 have to be

j/,’/f related by the inequality
x x + dx (clearly shown on the sketch

beside):

-0dx < a <0




iempamtatioy ’,'Mﬁ‘;".
i &

i

) MBI \} ¥ " 4o =
i "-"‘Mf':’ym:i» LRt ‘(—'W gt g LA U Ll e gt L g i s
Ny 5 o : Y "

Then, the probability for rx(x) to have a zero between x and

x + dx with a positive 0 is:

8
(=)

do p(a,8,x)da

o
b

And, the probability density for this happening is:

0
4 _ | a8 (a,8,x)da
a(bx) pla, 0,
0 -0Ax Ax = 0

which reduces to:

o (-8) p(-64x,8,x) do
0 Ax = 0

or:

8 p(0,6,x) dé (10)
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By the same token, the probability density for rx(x) to have a
zero between x and x + dx with a negative slope is:

- 6 p(0,06,x) d6 (11)

b

Adding relations (10) and (11), we obtain m(x), probability
density for rx(x) to have a zero between x and x + dx:

m(x) = le| p(0,6,x) do (12)

Using relation (5) and integrating, it comes out:

4
o

2|

yo \1/2
m(x) = L (- —§2i> (13)

The integral of m(x) over a unit length gives the number of expected
zeros per unit of a x-direction since the integral from - to +=

obviously gives the total number of zeros.

Therefore, Ax, the average distance between two zeros of rx(x),
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can be approximated by:

1/2
Ax = -—1 = 7 |- i) (14)
m(x) v{n

All that has been done for profilometer traces parallel to the
x~-direction could be done for traces parallel to the y-direction
simply by introducing the function ry(y), analogous to rx(x).
Going through the same kind of calculations as the previous ones,

we would end up with:

1/2
Ay = T \=- (15)

It follows that u defined in relation (1) is given by:

Ax 3% 3% e
Yy b4
R vl — (0,0) / —5 (0,0) (16)

on of
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SUB-APPENDIX C-2

The goal of this appendix 1is to calculate OU defined as:

2
< | < >, < ) - <u(< >, < > >I >
O * u( *nax ' Ymax ) u( Xnax ' max )

where:

x/2 y/2
u(x,y) = - f h (u,v) du dv
-x/2 - y/2

Expanding the square in Eq. (1), we obtain:
2 .
= <Y< > >)> - < >, < >)>
% v( Xpax”® Tmax ) ZU(q{max * “Vmax )

2

<wl{<x >, < >)> + <w(<x >, < >)>
( max °’ ymax) ( nax ° ymax)

or:

. 2 2
g = <y(< >, < )> - <u(< >, < >)>
v v( Xnax® ymax) u( X nax”? ymax)
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Making use of Eq. (2), we have:

<x > y >
nmax nax
2 2
(\)z(x y )> = <
max ' “max
_ <xmax - <ymax>
2 2

h (xl,yl)h (xz,yz)dx1 dx, dy1 dy,> (5)

Since ensemble averages commute with linear operations, we can

write:

<x > <y >

max max

2 2

2
< > < >} =

T e Il
<x > <y >

- max - max

2 2

<h (x5,5)h (x,,y,)> d_, dx, dy, dy,

Or, introducing the auto-correlation function Y (E,n):

?-(E.n) = <h*(x + §, y + b (x,y)>
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it comes out that:

<x > <y >
max max
) 2
2
(x> Yoax)> | f [ f f
- <xmax - <ymax>
2 2

w-(lxz - x1|o|Y2 = yll)dxl dxz dyl dy2

(6)
Introducing the new variables:
€ = I -xl
n o= |y, -yl (¢)
we obtain:
: <?gmax>//2- <ymax>/v’f
2
V) (<xmax>’ <ymax>) = 16 f J
0
<xmax> <ymax>
-£ - n| ¥ (£,n)dg dn
/Z /z ’
(8)
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From relation (2), it is clear Lhat:
W2 2 - 2 2
<\“(<xmx>' Ynax"? " Spax’ <h (§,n)> L/ )
We also notice that:
<xmax>//2' <ymax>//f
2 - 2
< > <hT(Em>* = 16 f
0
<x > <y > g
max max -n Thdﬁdn
V2 V2
Therefore, from Eqs. (4), (8) and (9), we end up with:
<xtnax>/'/2_ <ymax>//2_
<xmax> <ymax>
o, = 16 - -n
2 2
0 0
- %
¥7(E,n) - o | ddn (10)
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SUB-APPENDIX C-3

In this appendix, ¥ (1) in terms of Y(T) will be derived.

P (1) = <h (x)h (x + 1)>

Y1) = <h(x)h(x + 1)> (1)

where h (x) is defined in relation (5)

At first, we introduce the following notations:

h(x) = a h™(x) = a

h(x+ 1) = b hK(x+1T) = b (2)

Let D(a,b,T)be the first joint probability density of the couple
(a,b). D(a,b,T) dadb represents here the percentage of times that
h(x) will lie between a and a + da while h(x + T) lies between b
and b + db.

Then, from our second hypothesis, D(a,b,T) is Gaussian with

mean value 0, and can thus be written:

D(a,b,T) = 21-1-[- |M|-1 exp (- % - =l ik "r") (3)
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where t||r" - 'la bl'

and M is the second moments matrix:

<a > <ab>

<ab> <bh >

From the definition of Y(1), it 1is obvious that:

<H™> =m <g'"> = w(O)

and

<ab> = Y(1)

in other words, M depends only on T.

(4)

5)

(6)

¢))

The mean value of a stochastic quantity Q is uniquely related
to the couple of stochastic variables (a,b) is perfectly defined as
gsoon as we know the joint frequency distribution of the latter, 1i.e.,
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D(a,b,T).
It is:

Q@ = qQ(a,b) D(a,b,T) dadb (8)

Or, when identifying Q with the product ab

Q = ab = ab when aandb <0

9)

O when aor b20

and, substituting for D(a,b,T):

1

ab = y @) =

172
a2 - v

(a2 + bz) Y - 2aby
ab exp \- 5 °2 dadb (10)
) 2y, - ¥)
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in which we have set for convenience: 1

e o

o= ()
Yoy = y (11)

o

RIS

Introducing the new variables x and y such that:

a = x-Yy

b = x+y (12)

Equation (10) becomes, noticing that the Jacobian of the trans-

formation is 2:

- yz)

V(1) = | a
; 2 172 X (x
“(Wo -y)

L X - 4 3
ex wo ra wo = dy (13) 1

P TP, N
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And, making use of the error function defined as:

! x
2
erf (x) = —Z-[e-t dt (14)
/n
0
we end up with:
4112 T
_ W -V
Vo 5w W - ert
0
v - v+
27 o
exp \- u — Jdu + (15)
( Vo * *’) Wi b

We notice that for the two-dimensional auto-correlation function

y™(£,n), the result is exactly similar to Eq. (15).

Y(E,m = < (xy)h (x+E y+n)>

¥(E,n) = <hix,y)h(x + &, v+ n)> (16)
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With the notation:

Vo = ¥(0,0)

Y = ¥(&,n)

we have:

1/2
(v -w3

Y (g,n) = ;(%o—m (uz - %) erf (u)

0

) ( 2 \rnh) \y°+\y
expl- 4 m——z Jdu +
?4+T 4/1'1"1’0
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SUB-APPENDIX C-4 |
r
The purpose of this appendix is to examine the behavio: of
QR
E From relation (15) of Sub-Appendix C-3, we have:
% :
F - |
¥ 3 1/2 i
b - (q’o -V 2 1 '4
i v = T E W 3 (u* - 3) erf (u) exp :
] [+] ’
i 4 |
. z
|
2 "’o - ¥ wo + v ;
- u m du + (1)
o 4/ v,

We can split the integral into two parts:

NP N T

s

v -V
I = (uz-%-) erf (u) exp _“zi;—ﬁ du = Il+12 %

T T T T q T
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4
]
i
with: {
o
- 4
(u2 - l) erf (u) exp (-~ u2 EZL——:E du i
2 vy o+ j
0 1
n {
kn - = (4) j
(u2 - l) exp (- u2 BEL:::{ du
Zo T T
o
1
;

kn is perfectly defined since the two above integrals are

convergent,

Since erf(z) as defined in Section 3 approaches unity when z

tends to infinity, kn tends to 1 when n approaches infinity.

I2 - kn (J + K)
4
where: © 1
v, =¥ s
J = u exp [-u du
v, *V
] n i
-m ‘=
K = l-exp = u2 Wo i~f du
2 v o+
o
n
!
| |
;
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After some algebra, it follows that:

v+ v, -V
3 Y 2 7o
12 = kn i-wﬂ‘p('n ¢°+¢'>

Ty, + V) L
=7 V3t vy oo Ve (@

here, erfc(z) is the complementary function of erf(z)

1. 120

When T=0, ¢ = wo and therefore relation (5) of Sub-~
Appendix C-1 becomes:

° ° v, (6)

having n increase to infinity, it follows from (1), (2), (3) and

(6) of Sub-Appendix C-1 that the only remaining non zero term is:
o -

i - )3 1/2 w
Vo e | |nev VE ( >

.
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'i
3
5 i
3 ;
- v 1 :
;; V) = 5= = 3 ¥(0) )
% ‘
Ej :
r 2, T+® %
i We have to go back here to relation (10) of Sub-Appendix {
? c-3, namely: i
; © 1
1 - 1
. 2 2
2n(y, - V)
e 8 \,

(a2 + bz)wo ~ 2aby

expy - 7 5 dadb
29, - ¥9) 4
)
| ?
g {!
; T + « is equivalent to have y + 0 since, at infinity, ¥(T) 5
1 is zero. f
f Hence, integrating the above relation for § = 0, one easily i
g obtains: 3
: ) .
= 0 h
‘ P (o) = T T (8) |
| |
3
which is not surprising since, for an infinite T, h (x) and '
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- a

h™(x + 1) are no more correlated and therefore: j

| "é

; i

y - - - - :

<h”(x)h (x + T)> = <h (x)> <h (x + T)>

w 1

- 2 0 \

m <h (x)) T i

:

:

The aspect of a typical y (1) is sketched on Fig. 8. 1

¥ :'

1 £

3. application "
E For numerical computation of v (1) from Y(1), it is interest-

{

§ ing to notice that:
n= 3 1in relation (3) of Sub-Appendix C-1 is highly sufficient

3 since:

erf(3) = 0.99990 =

N R r, ~

implying k = 1.
3

[ 112
| V) = w - w) fuz - 1/2) erf (u)
"

v v+ Y 3W_+¥)
2 7o o o
exp(u ——-—wo = > + v + 2(‘1'0 ) W
: o
9 ‘1’0 -wo o wo K o )
E exp< wo_‘_ ‘P + 2(¢o‘¢’)\, wo —_— erfe 3\" wo+—‘5
9 -
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the latter.

) = hx
W) = 0
h (x) = h(x)
h(x) = 0

pockets between abscissae 0 and x:

Preceding page blank 209

; x
v(x) = - [
0

t SUB-APPEND/X C-5

when

when

when

when

The purpose of this appendix is to give some details on the
derivations relative to the mathematical analysis of the one-dimen-
sional case. Thus, the first statistical moment <xmax> of the pool
extent and its variance ox will be determined in terms of Uh' the

variance of the roughness height and Y(T) the auto-correlation of

We introduce the notations h+(x) and h™(x) such that

H(X) = h'(x) + h () (1)

h>0

h<o

h >0 (2)

We define u(x), amount of oil per unit width that would fill the

h™(§) dg (3)
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The extent of the pool, X ax’ for a given realization of the

ice profile is such that:

X
max

vV = h™(E) dE (4)

o

1f <xmax> denotes the ensemble average of X ax® Ve can always

write Eq. (4) as:

»;4 ) <x >
3 max

v - f RO+ G - ) WO (5)
0

|
|
|

b s

since h~ is a continuous function of x; & corresponds here to a

point of the profile where:

aabise

<xmax> e Es xmax (6)

As was done for the two-dimensional case and with the same limitations,

o R oy S Y

we assume that:

: h(§) = <h (E)> (7

{
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4 Equation (5) is then written:
:
|
Er
E | Fax”
| -V - f h7(E) dE+ (x . - <x > (D> ()
= 5
: Taking the ensemble average of Eq. (8) and noticing that this
" kind of average commutes with linear operations:

-V = <hT(E)> <x > (9)
tl Then:

mﬂr
o

<h”(£)>
To derive the variance 0_ of x__, defined as:
x max’ -

2
l‘ cx - <(xmax - <xuw.x>) > (11)

we come back to Eq. (8) and write it as:

<x >
max o 2
! <[f h_(E) dE + ‘] > = <(xmax - <xmax>)2> <h-(g))2 (12)
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Or:

S O]
o, = o <h(E)>

where OU i8 the variance of the volume v (<xmax>):

2
0, = <[u<<xm>) . <u(<xm>>>] >
Also, expanding Eq. (14):
2 y 2
o, = <v (<xmax>)> - <xmax> <h (§)>
From Eq. (3), it is clear that
<x >
.. max
2 s -
wWwix > o= < ff h (E)h (n) d§ dn>
0
<x >
max
- [f <h"(E)h(n)> dE dn

0
<x >
max
- f[ ¥ (|& - n|) d€ dn
0
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where w'('r) 1s the auto-correlation for h .

Making the following change of variables:

T = |g-n]
o = |g+n| (17
We end up with:
<x >//f
2 “Xnax -
W (<x >)> = 4 —_— =1 Y (1) dT (18)
max /2-
Noticing that:
<x  >/V2
2 _ - 2 e Xax %h
<xmax> <h (§)>" = 4[ —/?— -T ﬁ'd‘l’ (19)
0

and using Eqs. (13) and (15), we obtain:

>/V2

< .
ex <xm.ax> - c,h
Ux = 4 —/2_-—— -1 {v (1) - ITt dt (20)

; ¥ (1) in terms of Y(T) is determined in Sub-Appendix C-3
1 (Eq. (15)) while the value of h~ has already been determined in
terms of % in Eq. (22) of Appendix C.

Gt oo
b A

N S i S o =
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