
■

AD-AOIO 186

AN INTELLIGENT TUTOR: ON-LINE DOCUMENTATION AND HELP
FOR A MILITARY MESSAGE SERVICE

Jeff Rothenberg

University of Southern California

Prepared for:

Advanced Research Projects Agency

May 1975

DISTRIBUTED BY:

mi]
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

-

n»

'-ECURITY CL«SSiri;»T|0N pr THIS PAGE '»»„n l>„m Enltrmd)

REPORT DOCUMENTATION PAGE
1 REPOBT NUMBEB

IS l/RR-74-26

2 COVT ACCESSION NO

« TITLE mnd Submit:

An Intelligent Tutor: On-line Documentation and
Help for a Military Message Service

1 AUTMO*'«,

Jeff Rothenberg

» PERFORMING ORGANIZATION NAME AND ADDRESS

USC/lnformation Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90291
CONTROLLING OFFICE NAME AND ADDRESS

Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington. Virqi lia 22209

U MONlTORlNG AGENCY NAME 4 ADDRESSo/ dlll'fnl Item C onlrolllnt Olllc»)

16 DISTRIBUTION STATEMENT 'of Ihl, Rtport,

READ INSTRUCTIONS
BEi-GRE COMPLETING FORM

i RECIF-lENT'S CATALOG NUMBER

42.
S TYPE OF REPORT » PERIOD COVERED

Research

• PtRFOPMINO ORO. REPOt'T NUMBER

I CONTRACT OR C.RANT NUMBF^r«;

DAHC 15 72C 0308

10 PROGRAM ELEMENT, PROJECT TASK-
AREA * WORK UNIT NUMBERS

ARPA Order *2223

'2 REPORT DATE

May 1975
'9 NUMBER OF PAGES

XT'
15 SECURITY CLASS, fo/ thtm rmporl)

'»• D.CLASSIFICATION DOWNGRADING
SCHEDULE

This document approved for public release and sale; distribution is unlimited.

. D D C
'7 DISTRIBUTION STATEMENT 'cl ihm mbilrtcl mrl»,md In Block 20. II dllltrtnl Irom Htporl) ffUj

-^

r-

■ ..

'» SUPPLEMENTARY NOTES

'9 KEY WORDS 'Conl/nu» on tmvrtm »Id» II n«c*««arv «nd Idtnllly by block number;

Author-language, computer-aided instruction, documentation, error reporting, help,
trial, tutorial, verbosity

20 ABSTRACT fConllnum on rtvtram »Id» II n»c»»»mry and Idtmlly by block numb»r)

(OVER)

DD 1 JAN 73 1473 EDITION OF 1 NOV SS IS OBSOLETE

S/N 0102-014-«^C 1 •
j SECURITY CLASSIFICATION OF THIS PAGE (Wh»n Dmlm Bnlfd)

 — —-

xnv CLASSlFlc«TioN OF TMIi P*Ot'H^,„ D«c« Entar«

20. ABSTRACT

J,

The m.l.tary message service proposed by ISI's InformaPon Automation project is
des.gned to provide full documentation, help, and error-reporting faciliMes on-line
The Tutor serves these functions by accessing a documentation (or Help) data base
wh.ch contains multilevel descriptions for every "semantic entitv" used in the
mterface between the service and the user. These descriptions are expandable with
respect to the amount and type of Information presented, as well as with «SMCf to
the user's level of proficiency and experience, as indicated by a User Profile The
Tutor also provides a facility for on-line computer-aided instruction. It can be
invoked explicitly by the user's request for help, or by the Command Language
Processor and User Monitor In response to unrecognized commands, inefficient
operation, or error conditions.

I(V

SECURITY CLASSIFICATION OF THIS PAOEfTWun Dmf Er,i;,d)

 , --■- -

»«••———"<

ARPA ORDl.K SO. 2223

I SI RR.74'26

\t,n l'>7'>

Jeff Rothenberg

An Intelligent Tutor: On-line Documentation and

Help for a Military Message Service

D D C

MAY 1975

D

1

M

II INFORMA TION SCIENCES INSTITUTE

ISIILHSITY OF SOITHERN CAUFORSIA JMT 4676 Admiralty Wkf/MmhuiM Rty/GJifoniki 90291

(2t))§22-nit

THiS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHCB 72 C OSOB ARPA ORDER
NO 2223 PROGRAM CODE NO 3D30AND3P1O

EWS AND CONCLUSiONS CONTAiNED IN TmS STUDY ARE THE AUTHORS AND SHOULD NOT BE iNTERPRCTED AS RFPRESENTiNG THE

•C IAL OPiNION OR POLICY OF ARPA THE U S GOVE ^NMENT OR ANY OTHER PERSON OR AGENC f CONNECTED WITH THEM

OCUMENT APPROVED FOF(PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

r

CONTENTS

Preface v

Summary rii

1. Introduction and Overview }

2. Levels of Detail Presented to the User 3

Verbosity ,1

Unobtrusive 4

Terse 4

Intermediate I

Verbose I

On-Lme Manual 6

Tutorial 6

Expert Advice 6

Sophistication 7

3. Varying the Le 'el of Detail Presented 8

Computer Naivete H

User Exper.ence »vith the Service 9

Total Time on tne Service 9

General Knowleage Level 9

General Proficiency 9

Familiarity with a Particular Feature

Recency 9

Frequency Oi Use and Performance iO

Repetitions of Help Requests M

4. Selection of Help II

Example Questions II

The Hypotheiizer 12

Tutor Functions 14

Help 14

Requested by the User 14

Suggested by the User Monitor in "Background" 14

Suggested by the CLP or User Monitor in "Real-time"

Errors IS

IS

 ..

iv

Introduction of New Features i5

New User of the Message Service 15

User Requests to Expand His Capabilities 15

User Trying to Do Something He Doesn't Yet Know Enough to Do 16

Documentation of This User's Service 17

On-lme Manual 17

Off-line Manuals 17

Translation Among Users 17

Error Reporting 17

Command Syntax Errors 18

Functonal Module Semantic Errors 19

System Errors 19

6. Tutorials 20

Environment 20

Control 20

Data Protection 21

Tutorial Language 22

Input 22

Output 22

Control 22

Appendix I: Help Data Base 25

Appendix II: The Tutor/CLP Interface 28

Appendix III: 'he Tutor/User Monitor Merface 30

References 31

-■■—•" '■ '

PREFACE

This report ,s one of a planned collection of reports that describes the current

status and plans of the Information Automation project. It is intended to be read

by ARPA personnel, Computer Science personnel, and military personnel interested

in computer-based messaee handling design and implementation. Specifically this

report describes the project element called the Tutor, whose purpose is to

provide integrated on-line ass.stance. documentation, and error reporting.

The Information Automation (lA) project [1] is currently developing methods to

automate various information handling tasks, with particular emphasis on message

processing for military command, control, and communications [?]. The project is

sponsored by ARPA. and is an integral part of both the client's and ISI's overall

program to explore the utilization of computer technology and methodology m
military environments.

Other project elements are refe-red to where appropriate, but are not defined

herein, since they are described in detail elsewhere. For a more comprehensive

discussion of other project elements, the reader ,s referred to project

documentation noted in the references. The primary modules of .mportance to the

present discussion are the Command Language Processor (CLP) [3], the User
Monitor [41 and the Executive (Exec) [5].

__

VII

Preceding page blank

SUMMARY

The military message service provides full documentation, help, and
error-reporting facilities on-line.

The lA Tutor serves these functions by accessing a documentation (or Help)

data base which contains multilevel descriptions for every "semantic entity" (or

"term") used m tne interface between »he service and the user. These

descriptions are expandable with respect to the amount (verbosity) and type

(sophistication) of Information presented. They are expanded in accord with the

user's level of proficiency and exper.ence with the service, as indicated by a User
Profile.

In addition to purely ImAuM descriotions, the Tutor provides a tutorial facility

for on-line, computer-aided mstrution 'CAi), Tutorials allow the user to go off

and "try" things, with the service in „ protected mode.

The Tutor can be invoked explicitly by a request for help from the user, or by

tue Command Language Procesor (CLP), or User Monitor, in response to

unrecognized commands, inefficient operation, or error conditions.

The Tutor interacts with the CLP [3] and the User Monitor [4] to suggest to

the user ways he can improve his effectiveness with the service. These include

replacing command formt With alternate ones, suggesting alternate command
sequences, and creating new commands.

In the normal mode, the Tutor "hypothesizes" what help the user wants, and

allows him to "refine" or "correct" this hypothesis by asking explicitly for
something different.

The Tutor is conceived as an omnipresent helpful advir.er, always ready to

answer questions, moke suggestions, interpret errors, and explain problems. This

fa:ility is considered essential to the success of an on-line service in an end-user
environment.

■aaaa^^aa

/. INTRODUCTION /\ND OVERVIEW

The Information Automation (IA) project [11 is currently developing methods to

automate various information handling tasks, with particular emphasis on message

processing for military command, control, and communications [2]. The usefulness of

this on-line service depends partlv on how well the service itself can help its users. A

fully integrated on-line Help faci ty can greatly enhance the value of such a service.

Military users need a service they can use effectively, no matter how little or long ago
they were trained in its operation.

It is the purpose of the IA Tutor to help make the service usable by (and
understandable to) its end-users.

To perform its task, the Tutor handles four interrelated functions:

• Help

(answering the user's questions or offering advice)

• Introduction of new features

(e.g., when the user tries something for the first time)

• Documeniation

(for reference and review of things the user already knows)

• Error reporting

(to provide helpful, rather than cryptic, error messages)

All functions are handled uniformly, in that the user alwjys has the same options

(including various forms and levels of documentation) when interacting with the Tutor:
this interaction is referred to generically as "Help".

The term "documentation" is used to encompass all forms of information about the

service available to the user (including interactive forms such as tutorials).

It must be kept in mind that the Tutor is a facility for documenting and providing

help within the service. The actual documentation strategy can he specified only after

a particular target community has been studied in detail and jn actual command

language has been chosen for that community. Thus the Tutor is designed as far as

possible to access tables wlvch contain the actual documentation rather than embodying
documentation in code.

/.

r
INTRODUCTION AND OVERVIEW

The next sections of this document describe the forms of help the Tutor provides
across all functions. The functions listed above are then discussed in detail.

The final sections describe the logical structure of the Help data base, the interface
between the Tutor and other modules (including the Functional Modules) [r^, which
allows "table-driven" documentation, and the framework provided for writing Tutorials
(procedural documentation).

....

2. LEVELS OF DETAIL PRESENTED TO THE USER

The IA service is designed to present an interface which is tailored and adaptable to

its users. To this end, a User Profile is kept for each user (maintained jointly by the

User Monitor [4] and the Tutor), which records what Kinds of operations the user has

performed, how much on-line training he has received, and how well he performs

various functions.

One of the prime functions of this User Profile is to allow the Tutor to tailor the

help it provides to a particular user.

The next section expla.ns tne role of the User Profile m varying the Tutor's

responses to the user. This section describes how the Tutor module varies those

responses for users at different levels of expertise. The primary axes along which

responses vary are

• Verbosity (how much explanation is given)

• Sophistication (what kind of explanation is given)

The following applies to the Tutor module in all its functional capacities, whether

invoked explicitly by the user or initiated on the user's behalf by the service.

VERBOSITY

Depending on User Profile criteria described below (Chapter 3), the Tutor module

may initially respond to the user at any of the following levels (if the initial level

provides insufficient help, succeeamg levels will be tried until the full gamut has been

run):

1. Unobtrusive

2. Terse

3. Interr.-.odiate

4. Verbose

5. On-line manual

6 Tutorial

7. Expert advice

This continuum of verbosity is discussed below. The examples pivon are meant to

be illustrative only. They do NOT represent the actual command interface language,

—

LEVELS OF DETAIL PRESENTED TO THE USER

since this is only specified for a particular user communitv after detailed study. In all
examples, capitalized words are t-rms the service knows about. The user can
selectively ask for more information on any one of these terms (see Chapter 4 below).

The example used below is the hypothetical command form:

TRANSMIT (MESSAGE-NAME, [to] ADDRESSEE-LIST)

Unobtrusive

When ar experienced user who is already familiai with the system in general and
with the feature in question (as indicated by the User Profile) makes a careless or
typographical error, he does not want to be interrupted by half a page of explanation
about something he already knows. In some cases the CLP can actually correct these
errors and continue. In others, the Tutor is called, and it may ignore the mistake
entirely, or at most ask the user to ,-ppeat whatever he was trying to do by means of a
M?" or simply repeating the origin il prompt.

Example:

Tht user types the error

TRANSMIT (REPORT 1\

The Tutor either just beep,,, or types back

"TRANSMIT (REPORT 1 ?"

Note that this mode of response MMM occur for a naive or inexperienced user.

In addition, this response can never result from a request for help by the user, but
only from trivial error conditions.

Terse

3ased on the User Profile, the Tutor module chooses terms the user knows, and
accesses a previously written sentence fragment (generally a few words). This is really
just an expanded prompt.

The message service supports a number of different language forms for each
command as described in [4]. The Tutor module always looks at what language fern is
being used so that the "terse" help provided always corresponds in style to the

LEVELS OF DETAIL PRESENTED TO THE USER

particular form. This means, for instance, that if the larguage form in quest.on nas a

three-word prompt, the Tutor responds with more than that. The Help data base and
language forms (prompt'., Keywords, etc.) are 'ntegrated so the user never has to use
multiple terminologies.

Example:

The user hits the HE' key after typing

TRANSMIT ^F'LOORTl.

The Tutor responds with

"TRANSMIT [sends]

(MESSAGE-NAME [repo-tl], [to '])"

Intermediate

This is intended to be a brief (one or more sentence) explanation in English (as
opposed to the "fragments" used in the terse form).

Example:

The user asks for more than the terse response above and gets

"TRANSMIT sends a MESSAGE to a LIST of ADDRESSEES (or to a single
ADDRESSEE). It is entered as:

TRANSMIT (MESSAGE-NAME, [to] ADDRESSEE-LIST)"

Verbose

This response hegms to provide some context and may be on the order of a
paragraph.

mmmmi^^^Kmmmi^^^m^m^^^m^m^^^^mmmrrmmmmm

LEVELS OF DETAIL PRESENTED TO THE USER 6

Example:

The verbose form of the above example might be

"The TRANSMIT command sends a MESSAGE to a LIST of ADDRESSEES (or to a
single ADDRESSEE). The MESSAGL NAME is the first ARGUMENT. The second
ARGUMENT is either a single ADDRESSEE, as in

TRANSMIT (REPORT, [to] J6)

or a LIST of ADDRESSEES, separated by commas, as in

TRANSMIT (MLM0,[to] Col. Jones, J6, John Smtth).

MESSAGES are sent out to all ADDRESSEES at the same „me."

On-linr Manual

Essentially, this provides all necessary context, relevant concepts, cross-reierences
etc. It is basically stored text. However, the Tutor provides the usei with v,ays to'
select what he wants to see (see Chapter 4 below), so that he need not read through
large se-tions of the manual. (No example is given, since there is generally a large
amount of text available in the on-line manual.)

Tutorial

This is a mixed procedural-textual mode which leads the user through a sequence of
explanations,.questions, tests, examples, and tr.als. It is discussed m more detail in
Chapter 6.

Note that there is a "procedural" aspect to all user interactions with the Tutor, since
the user can always select and control what help he gets, even when it is simple text.
The tutorials merely carry this procedural aspect further.

Expert Advice

Th.s is not a facetious last resort: The user may have questions which require
human intelligence to :nswer. In such cases, the user is referred to one of several
human experts for further help. People he knows (indicated in the User Profile) are
given preference if they satisfy the "expert" criterion.

LEVEL! OF DtTAIL PRESENTED TO THE USER 7

In a large installation, it may oe effective to maintain one or two experts on-lme

who can commumcate with users in trouble. Such exptr | would require access to the

tools for interpreting the user's context, history. Profile, etc.. normally used by the
Tutor.

SOPHISTIC/1TWN 'act.« categories)

For documentation purposes, the service i: organized around "semantic entities"

which mclude ail commands, data-type names and other terms used m the service (see'

Aopendix I). Each of these is documented under several standard headings called

access categories" (see Appendix I). These categories are designed to provide an

ordered sequence of increasingly sophisticated explanations. An unsophisticated user

may simply want to know what some comr.and does, whereas a sophisticated user may
want to know its side-effects or the context m which it works.

The jser can explicitly ask for information via any one of these categories (see

Chapter 4). Otherwise, the Tutor est.mates h.s sophistication via me User Profile (see

Oap; r 3) and provides him with documentation from the appropriate categories.

The next section d-scnbes l^w the Tutor selects the level of detail to oe presented
to the user.

3. VARYING THE LEVEL OF DETAIL PRESENTED

The previous section described the varying levels of detail which the Tutor can

present to the user. This section deals with how the Tutor selects the appropriate

level- for a given user. The statistics referred to below , re gathered and maintained

by the User Monitor. The techniques for gathering them, ?nd the data structures kept,
are described in [4].

For each access to the Help Data Base (new Help request, expansion of Keywords in

a previous Help response, etc.) the User Profile is consulted for the user's history on

the semantic entity in question, and appropriate documentation is selected. The

parameters used for varying the Tutor response to a particular user are given below:

• Computer naivete (user experience with '.omputers)

• User experience with this service

• Frequency of use and performance on some particular feature
• Repetitions of a request for help

Each of these measures is discussed m turn below.

COMPUTER NAIVETE

This is an initial measure of expected receptivity to the service, based on the

categorizations of users (determined bv pretesting) described in Cnapter 5 of Ref. [4].

Users who have been exposed to computers previously are le^s "conputer naive", and

are likely to be more receptwe (unless their expenences were bad, m which case they

may be less receptive). In any given target installation, there might be several levels of

users with respert to computer naivete (da.a processing personnel, clerks, generals,

etc.), and there- would be several corresponding initial Profiles for these classes of
users.

The Tutor module will initially have a single Help data .ase used for all users

(though later implementations may develop different documentation for each class of

user). This information will fe used by the Hypothesizer (descr^td below m Chapter

4) to deterrrfine how "deep" Into a gtven explanation the Tutor module should go for a

ftrst response to a given user. For example, computer naive users are given tutorials

on new topics in preference to simpler documentation which might be enough for a

computer programmer using the service for the first time. In addition, computer naivete

(sophistication) conditions the Hypothesizer's selection of an access category whenever
the Tutor is describing a term to the user.

VARYING THE LEV^L OF DETAIL PRESENTED

USER EXPKKIKNCE WITH THE SERVICE

This will be measured along several axes as per stat.stics Kept by the User Monitor
(see [4]):

Total Time on the Service

Th.s modifies the computer naivete measure, under the assumption that the longer

the user has been exposed to the service, the more familiar he is with it and t^ more

sophisticated he is ,n its use. It is a coarse measure, since the user may have -.pent
three months performing relatively few Kinds of tasKs.

General Knowledge Level

This is measured Dy the fullness of the Transaction Relative Ft-quency Distribution

Matrix (TRFDM) (Chapter 1 i of [4]), for which the User Monitor Keeps several

measurer.. It is combined with the cer's total time on the service to produce an
estimate of his level of expenenre.

General Proficiency

V* User Monitor similarly Keeps performance measure- over the entire transaction

matrix (see Chapter 11 of Ref. [4]). which md.cate how well the user does in general

with the service. This tells the Tutor module wh 4 to expect when introducing a user to
something new, and how liKely he ir to maKe mis aKes.

Farxiliarity with a Particular Feature

The Tran-.aftion Training Slatistics (TTS) file ir, the Usor Profile proviaes a measure

Of the us.-s Kujwledge level of a ?,ven feature, along with an mdication of how much

previou- help has been provided (e.R., whether or not he h«a had a tutonal on this

subject). In general, the Tutor rrcdue tries not to give the use- a verbose explanation

for something he probably Knows about. Not. tnat this H overndden when the user
repeats a request for help, indicating that he wants to see more.

Recency

All the "Knowledge-levei" and "familiarity" information the Tutor accesses about the

user is tempered by a time axis, so that if the user has been on leave for three months

he is not still expected to remember things he Knew intimately before his leave This is

provided free by the User Monitor to some extent, since it Keeps statistics within a

■' - "•■""" '

VARYING THE LEVEL OF DETAIL PRESENTED 10

sl.ding wmdow of time wh,ch fends to 'orget old h,sfory; however, the Tutor can also

look at time stampc associated with when 'he user last did somethmg.

FUtQUENCr OF USE AND PKHFOKM/ISCE

Thosi mersures in the TRFDM glve a good indica::on of what kind of help to

prevki*. Just as important, they can tell the Tutor when it is v.dikply that the user is
in doubt about comethmg, -d th.r ,d0 impr0ve the Tutor,s hyp0theses „ t0 what the

user wants help with.

REPETITIOSS OF HELP REQUESTS

In general, if the user stftl for help twice m a row, h probably does ,wt want to

set the same thing Nric«. If the first response (e.g.. to n -penenced user) was a

terse description, the second response should contain rno.e Cctail. (There is an

important exception to thi- . especially for vtrbose OL outs (on the order of a screenful

of text or more), the user will frequently Went to redisplay what he has just seen in

order to reread it. The service-wide REDO command will be used for th.s purpose by

the Tutor unless the Screer Control Module [3] supports «Oma way to scrcl back what

has already appeared or th» screen.) This increasing help 'ermmates eventually, since

there is only a finite depth to the help offered, but tne Tutor always reaves that the

user nanu more help. The ultimate level is to refer the user to a person who can
provide further help.

11

4. SELECT 10S OF HELP

The essence of the TVor module is to be helpful. This requires that the user be

able to iraeract with the Tutor to get the kind cf Jp he needs. Before it can help the

user, the Tutor must know uihui he needs help with, what kind of help he needs (what

he wants to know about it), and how much help he wants. In addition, the user must

always be abie to find out lion; to get the help he needs (that is, how to tell the Tutor

what he wants).

The Tutor prefers to be active in this interaction, asking the user questions to

ascertain what he wants --ather than having to deal with arbitrary free-form inputs from

the user. However, the user i? always m control.

EXAMPLE QUESTIOHS

The following examples should give some idea of the kinds of questions the user

needs answered These are examples of questions the user may have, not of the actual

forms he might use in asking them. (These forms are dependent on the command
language.)

1. Explain something specific:

"Explain term x"

"What would happen if I did x ?"
"What does ABORT do (now) '"

"What does command "q" do ,"

"What are the side-effects of domg x '"

"Does x have the effect z ?"

2. Explain current state:

"What do you (the Tutor) want ?" (wnen interrupted because of some error during

command input)

"What's wrong with what I did (e.g., how did I get here [into Tutor])?"

"Why did the service produce that last output (e.g. "[confirm]") ?"

"What aid I just do (or what did ! do 3 commands ago, or what have I been doing)?"

"What are my options at this point ?"

"What would happen if I did this (what I'm about to do) ?"

-

SELECTION OF HELP 12

3. Ixplam how to do something;

"How can I abort (or undo) what I just did (or something else) '"

"Whe »tflfl do I need to do to go on from here ?"

"How do I ask you (Tutor) a specific question ?"

"How can I perform ,ome cpei ation (not necessarily an execi table command) x ?"

The above groups of questions are handled as follov.s:

1. The user asks about MM term and then elects a particular aspect (access

category) of that term (e.g., the side-efuicts ot x)

2. The user asks about the special term STATE (synonyms: WHERE-AM-I, etc.). This is

explained under the categories: options, function, etc. (see Appendix I) which allow

asking various things about the current state. The CLP is consulted to produce

output for this term by looK'ng at what the user is m the process of doing (see

Appendix II). The user can also invoke a tutorial at this point to try proceeding in

the Protected Mode.

3. The user accesses the "how" cdtegory of the Help data base (see Appen)ix I), which

explairs how to proceed, or how to use a particular term if one is sjppiif d.

THE inPOTUESI/EH

The Tutor may be invoked either by tne user or by the service, as disco'.sed below

(see Chapter 5). In all cases, there exists an invocation context which coni'sts of the

recent transactions that had occurred between the user and service at the loment of

mvocaton. This includes /arioui aspects of the CLP"s "parse state" (SM App«nd:w it),

partially completed commands, emr conditions, User Monitor "susgestions", and recently

used names of relevant data i/pes.

Using this context, along with the User Profile, the Tutor prepares a hypothesis for

what the user wanted help with (even if the service invoked Help for the user). The

normal rnode 'or the Tutor is to prepare a hypothesis for what the user wants, at each

invocation and attempt to provide it. (The actual help presented is further conditioned

by the User Profile, as described above m Chapters 2 and 3.)

In addition to this "hypotnesizmg" capability, the Tutor provides a "uniform

framework of interactions whereby the i.w can refine, correct or ignore the Tutor's

hypotheses and ask for something different. By assumption, the Tutor never provides

verbose responses on the first invocation, so incorrect hypotheses will not be Overly

annoying. Whenever the user is m the presence of the Tutor, he has ceriam universal

Options:

tm^mmmmmrmim

SEL-CTION OF HELP 13

» Ask for help about some specific item, regardlesr of the Tutor's hypothesis

(either type the name of a term or oomt to one already displayed)

• Ask for options v.rsus explanation

This is not normally a Tutor function, since the CLP (see [3]) provides for showing the

user the legitimate values that he can 'ype for an argument, in response to a T (or

similar input). For example, if ti* user hts written (but not sent) messages named

REP0RT1, MEMO, and MUNITIONS STATUS, and ,hen he enters

"TRANSMIT (?"

the CLP responds with

"[MESSAGE-NAME]:

REPORT 1

MEMO

MUNITIONS STATUS."

However, the Tutor also provides thij option ,n case the user h,ts He.p by mistake

wher he reaHy meant T. (It is the intent of the serv,ce to be helpful and not to punish
the user for mistakes.)

• Refine the Tutor's hypothesis m tht tollowmg ways:

More local (e.g., argunwntl rath«r than commands)
Mce global

Refer to -„omethmg done earlier/later than

that hypothesized

Different access categcies

Get help with gett.ng Heip

• Expana the help shojvn

Whenever there i« documentation shown, whatever the le.e', the user can always ask

for more (or less) along each of several axes (-.ee Appena x n.

• More/less verbosity

• More/.ccs sophist.cation

• Different access rategory

• Expand any keywora shown in the currently displayed explanation

TUTOR FUfJCTONS 16

The mam problem here is one of the user's commur.eating with the Tutor abejt

whai he wants to know The major cases are as follows:

o. The user asks for an exc^nsion of something he knows, or something related to

what he Knows - this is the simplest case, since the Help data bese is hierarchical, with

the User Profile determining how deep the description goes. In this case the Tutor

modifies the Profile to allow greater depth of explanation. (Note that documentation

has both depth of explanation for any single item and breadth, which extends to related

items.)

b. The user asks aboui bomethmg he has heard of from another user - m this

case he will use terms that should be familiar to the service, except that user-defined

synonyms (and "macros") require that the Tutor ask whom he heard it from (to access

the proper private definition).

c. The user asks how to do something. That is, he asks for help by "function",

where the terms he knows may not correspond to service functions - this is not handled

in the general sense of English-language requests fo-" mformat on, as the service does

not support English sufficiently. The man approach is to present menus (see next

item).

d. The user selects the item, to Ke explained from a menu, which Cin zero in on

what he is looking for.

User Trying to Do Somrtliing !!<• Ducstx'l Vrl Know Enough to Do

It is unclear whether the CLP is even able to detect this case. If not, it may still

arise when the user begins something and then asks for help when he finds he can't

proceed, which should 'educe to case (c) above.

When the user tri?s a command (or a form of a command) he has never used before,

the CLP generates a warning to f-e Tutor. Bdsed on the User Profile (which refects

not only what commands the user knows, but also how mucn he likes to experiment) the

Tutor gives the user one nf several levels of warning, essentially asking if he wants

help before trying this.

This case is tricky, because a novice user may make a typographical error that

changes the simple command he wanted into some complex command he has never seen.

He must not be further confused by the Tutor asking if he really meant the complex

command. The only handle on this situation is the user's general level of knowledge (as

indicated by the User Profile). This can at best suggest that he really meant the

simpler command. Also included here are "ghost user" issues (an experienced user

TUTOR FUNCTIONS 18

It is imperative that c.ll errors of any Kind return control to a single responsible

party (namely, the CLP) which m turn invokes the Tutor. The Exec presides several

crucial facilities for allowing modules to report their status when an error occurs,

including an error-stack which the Tutor can mteri-ogate and a status-text area for each

process to record its current state (see [5]).

The Tutor requires of fach service module (including Functional Modules) that it

• Report all errors to a (non-Tutor) Error-Handler (which saves state as necessary

for possible recovery).

• Define recovery procedures (if any) for each error (these are only of concern to

the Tutor in that it must be able to talk to the user about them).

• Define the semantics of the error and the recove'y procedures for the Tutor in

the same way that Semantic Primitives are defined by Functional Modules.

Errors arc explained to the user just as if he hao requested help on the subject--

that is, more explanation is always available, including advice from the Tutor on how to

cope with the error. This approach assumes that when an error occurs, the user

doesn't merely want to know that it occurred, but also wants to do something about it

(recover, circumvent it, etc.).

The Tutor does not consider its responsibi'ity to extend to error recovery per se.

That is, issues such as where control is retumed after an error is explained to tl e user,

how much of the original state is saved, etc. are not of direct concern to the Tutor.

Hjwever, the Tutor must explain such things to the user.

The three error types require somewhat different handling, as discussed below.

Command Syntax Errors (recognized hf the CLP)

This case involves the CLP, User Monitor and Tutor interaction (see [4] and [2]).

The details are contained in Chapter 9 of Ref. [4], which describes the User Monitor.

Basically the CLP detects and reports such errors, the User Monitor may offer

suggestions for what action to take, and the Tutor makes the suggestions \o the use..

The Tutor consults the User Profile here (as always) and avoids getting in the way of an

experienced user who is just making typographical errors. The help provided is

conditioned also by the sic»e of the CLP's processing of the command, wliich indicates

where the user made the mistaKS (or what the CLP dossn't understand).

TUTOR FUNCTIONS 19

When the user makes a mistake, the Tutor .nodule is responsible for advising him on

how to correct it or suggesting how he can perform the required action. This may

involve getting suggestions fiom the User Monitor (which may in fact have .nvoked the

Tutor). In order to get relevant suggestions, the Tutor may interact with the user to

determine, for instance, whether the problem involves the current command or the

response from the previous command. The Tutor then passes this information back to
the User Monitor to get an appropriate suggestion.

Functional Module Semantic Errors

These consist basically of semantic errors which the CLP cannot detect, such as

referring to a nonexistent message. The CLP/Functional Module/Tutor interfaces allow

the Functional Module to return an error to the CLP which the Tutor can explain to the

user m terms he understands. The definitions of functional module commands include

descriptions of error conditions and recovery procedures so that the Tutor can
communicate meaningfully with the user on this subject.

Syttem Errors

These mclude all resource conflict or limit errors (such as lack of file space,

unavailability of some device, etc.). In some cases, the user need never be informed of

the error, since the CLP can find a way around the problem and produce the result the

user wanted. However, in other cases the user must figure out his own solution; in

these cases, the Tutor must provide advice on how the user can recover. This is

greatly enhanced if all system limit-errors are guararteed to be "soft" so that the user
is warned before the limit is actually reached.

"

20

6. TUTORIALS

The topmost level of documentation contained within the service proper (not

including referring the u*'.i to an expert for advice) is the Tutorial. It is characterized

by being more procedu'al than the simpler forms of dod'mentation, even though it still

maKes use of previously written text elements. It als3 provides a special protected

envircrment for the user to "try" things without risk of erasing or sending messages by

accident. The Tutor module provides this environment indirectly, by conditioning the

actions of the CLP and Exec. The Tutor also provides a basic CAI ,?nguage [7] for
writing tutorials.

The intent of the tutorial facility is to provide a documentation mechanism which

makes the user more active (by responding to questions and trying things out) so that

he will overcome any reluctance to use the service.

ENVIRONMEST

The Tutor essentially dues two things to enable the Protected (or Tutored) Mode. It

insures return of control from the CLP and guards aga nst permanent modification of
data (via the Exec).

Control

The service is already assumed to return control to the CLP under all conditions.

The primary effect of this mode is simply to tell the Cl.P to return control to the Tutor

whenever the user executes a command in this mode.

The only real extension required by this mode is that the Tutor will want to time the

user's response and force control to return to the Tutor after a certain elapsed time,

regardless of what the user has done. (Even if the CLP not mally performs a similar

function, the Tutor may want different time limits for different commands, and has to be

able to set this tin.« explicitly.)

The user can escape from this mode by means of the ALERT-CLP function, (assumed

to be a single keystroke or control character) which always returns him to the top

level, where he can talk directly to the CLP.

Since the CLP is always parsing, whether the user is in the Tutor simply for help or

is in the tutored Mode, a legal command to the CLP is alway: recognized. It is at the

^^M^^HM^MH

TUTORIALS 21

CLP's discretion, based on its own interpretation of the User Profile, whether to perform

the command or not. For example, the ustr may have MMd for help on one command

and may suddenly realize he wants to perform some other command. Of course, he can

always get out to the CLP (by using ALERT-CLP), but if he simply types the legal

command, Ihi CLP (MM parses it and may just do ;'. if the user is a sophisticated one.

Otherwise, the CLP can either ignore the command, objet' to it, create a new invocation

of the Tutor to deal with It, or (normal case) simply rep-rt the action to the present

invocation of the Tutor so that it can deal with the spurious input m the context of the
original request for Help.

An exception to this discretion arises when the user is typing an answer to a

Tutorial's Input MATCH statement: in this case, the input must be passed on "quoted" by
the CLP (see Appendix II below).

Similar situations arise for commands the user has never typed before. These
issues are left to the discretion of the CLP.

Data Protection

In the Tutored Mode, the Exec allows the user to perform almost any function

without risk. (The ALERT-CLP function, for example, MM always remain enabled, so

the us^r can still perform a "dangerous" function (e.g., erase text or send a mes-.age

unintentionally) by first performing ALERT-CLP). For the majority of functions,

however, this mode protects the user from inadvertently deleting his own (or t lyone'

else's) messages, sending practice messages to his commanding of'icer, and the like.

This mode is made somewhat tncky (for the service) by the requirement that when

the user tries scmethmg m the Tutored Mode it should perform as far as possible as it

would if he were not m th,s mode. The alternative is to simulate the results and

pretend to the user that the service has done what he asked, but this is avoided

wherever possible in the belief that sooner or later thu leads to discrepancies between

how the service appears to the user when he is "in" as opposed to "out" of the Tutorea
mode.

The Exec provides this protection by catching all "dangerous" commands whenever

the Tutored Mode is on, and either copying any text that gets changed or simulating the
action of the command, as approp-iate.

TUTORIALS 22

TUTORIAL LANGUAGE

The tutorial language is intended to run in the environment described above. It

provides facilities for creating interactive lessons.

The language is described under three types of facility: Input, Output, and Control.

Input

Pattern matching is provided to allow a lesson-writer (author) to specify fairly

flexib'e allowed responses in a MATCH statement. The basic technique is to match

Keywords provided by the author. These can be AND'ed, OR'ed, or required in

sequence. Sequences may allow other words to be embedded (the default) or not.

Initia ly, this facility will be kept as simple as possible, while providing the power to

build patterns to match reasonable sets of inputs.

In addition to alternate terms and synonyms allowed by the author of the tutorial,

\h*i service thesaurus (which supplies synonyms for terms' and user synonyms (from

the User Profile) will be automdiically accessible for matrnmg, unless the author turrs

this feature off.

(When spelling correction is available elsewhere in the service, it will be provided

here also.)

Output

The author can provide explic.t output and he can also access the full Help data

base for output. This allows lessons to make use of the Help documentation for their

Own purposes. When this is done, the author can select all axes (verbosity,

sophistication, etc.) explicitly, can invoke the normal Tutor processes for selecting on

the basis of the User Profile, and can enable or disable the normal facility for the user

to interact with the Help documentation (expanding, etc.).

Zantrol

When the author provides a responre to be matched, several things happen. The

user's response (whether it matches or not) is saved in an optional string-variable

supplied by the author. Tne MATCH statemei.t either succeeds or fails, and a

MATCH-switch is set for later tasting, indicating whether the last MATCH succeeded or
failed.

TUTORIALS 23

The author thus has the option of splitting up possible response cases into different

MATCH statements or separating them later on the basis of the saved response. In

addition to the matching condition, tht author can supply a time limit so that the match

taili, if the user does not respond quickly enough.

• A conditional (testing the MATCH-switch) is provided for program flow control.

• The TRY command allows the user to go off to the CLP and try something in the

Tutored mode, while setting a tiM limit after which control returns automatically to

the Tutor.

• The tutorial language is embedded m BLISS (the implementation language). Lessons

can be written with minimal knowledge of BLISS, while computation and additional

facilities are available to sophisticated authors. The intent of this language is to

permit qualified CAi authors or service designer/implementer: to generate tutorials

quickly and effectively.

This CAI capability rounds out the Tutor's repertoire of interactive instruction and

'■telp facilities.

Pr2:::::g pa^e blank
25

APPENDIX I: HELP DATA HASE

The basic form of the Help data base can be visualued as a four-dimensional cube,

each of whose axes divides the total documentation space into several discrete levels.

The entire service is documented in terms of "semantic entities" which can be

thought of as one axis of tne 4-cube, Some of these entities are "semantic primitives"

which are defined independently (that is. using "pure" English), wh.le some are defined
in ,erms of other ent.ties.

The semantic entities include

1. All commands and arguments (data-types,

2. Alternate names for entities, given by the thesaurus (see [3])

3. Error-condition terms

4. Terms concerned with dialogue forms

5. Terms for inter nai service concepts

6. External user concepts (described m terms of the service)

7. Names of user-defined synonyms and macros (when the user defines a macro or

synonym for himself, he is asked (by the CLP) to supply a short description for

his own use at a later time, which the Tutor adds to the data base 'or that user,

to allow documenting extensions to the transaction matnx.

Each semantic entity is documented by a 3-cube of documentation elements,
defined below.

For an/ given semantic entity, documentation can be expanded along thr
additional axes:

as

ee

• Verbosity

• Sophistication

• Context

MM-^^MMiB

APPENDIX I 26

These axes are discussed in turn, li should be noted that the hypercube is a

logical model rather than an implementat on. The actual documentation will not contain

as many discrete "packets" as implied by the 4-cube concept.

VERBOSITY

This has aire.-dy been discussed above. Documentation is a mixture of noise

(descnpti e) words which are "pure" English, and keywords (semantic-entity-lames)

which can ue expanded recursively to generate verbosity as needed.

Included in this continuum (as its top levels) are Tutorials and expert advice.

sopinsTic/irios

For each semantic entity, documentation is organized into several categories of

"access", which the rser can ö^k for explicitly. In addition, these categories are given

an oraermg, M that the Hypothesizer can select the appropriate otegory depending on

the user's sophistication (as given by the User Profile)

The categories defined initially are

f'unnion

Describes the basic use or meaning of the term. For a command, this is just the

overall function performed by the command.

//otc to Use

Explains how to invoke functions and how to use data types properly.

Form

This discusses the various forms of dialogue available fo- commands or data types.

In order to insure consistency, this documentation is actually written once for each

dialogue form rather than once for each command, and the description of a i'orm is

phrased in terms of the command the user is inquiring about.

Options

This describes more advanced uses o. commands, options in specifying data types,

etc.

■ ■—■— I.I —

w « ^m^^mi^mmmim^mm

APPENDIX I 27

Side-effect»

Discus:es the less Dbvious effects of commands, or implications e(the use of a term

with respect to the rest of the service.

U»et

Discusses where a term appears (what a command is used for, where a given dati

type is used, etc.). This shades over into Conjeri below.

CONTEXT

This is logically an additional axis of documentation for each entity, but it is

provided by a separate access catego-y which explicitly mentions relevant contextual

and background information. Since the user can selectively expand items of a

description shown to him, this allows a menu-like exploration of context information.

■■■

/IP PEN DI X 11: THE TUTOR/CLP INTERFACE

Rules are supplied by the Tutor which allow the CLP itself to ask the Tutor to

supply the u^er with help on a particular semantic entity when it detects a problem.

The CLP (ana Exec) supply several functions for the Tutor which provide access to

the parse state (the CLP's partial recognition of the command the user typed) and the

invocation context (all those names and operations which the user has recently

referenced).

In ail cases, the CLP returns the immf» of a semantic entity (command, argument data

type, etc.) which the Tutor can look up in the User Profile to determine appropriate

responses based on the user's experience with that term.

The returned item also carries with it an indication of status (completed

correctly/incorrectly, incomplete, etc.).

The Tutor is also able to ask, for any partially completed command:

"What are you expecting" (waiting for, allowed successors, etc.)

Each of the fohowing functions takes an argument <item> which can be

command

subcommand

argument

module/service

<context-name data-type>

(The latter allows asking for the last reference to something of a particular data

type, e.g., the last message read, the last date specified, etc.).

The access functions are

last (completed) <item>

current (in progress) <item>

previous <item>

mm

APPENDIX II 29

"Levels" are defined as going op from arguments or subcommands toward higher
level commands, and the following are al^o provided:

next <'tem> up

next <item> down

<item-» at level n

The CLP P3,ses inputs typed to the Tutor, just as it does for any service module.

Several case-, are worth distinguishing, however, since the user may type non-Tutor
commands when m the Tutor.

Uter Types Tutor Commands

This is a normal case, where the user types some command to the Tutor itself (e.g.,

asking for a description of some term). The CLP merely parses the command and
passes it on to the Tutor.

User Types a Legal Non-Tutor Command

Here the user m.iy be trying to execute some non-Tutor command, ignoring the fact

that he is "m" the Tutor. (Of course, he can always get out of the Tutor with the

ALERT-CLP or ABORT functions, but he may not bother with them). The CLP parses this

command, recognizes it as legal and noi for (he Tutor, and decides, at Ml own discretion

(on the basis of the User Profile) whether to honor it (aborting the Tutor) or not. If

not, the CLP alerts the Tutor to the fact that a non-Tutor command has been entered.
(This is similar to case "b" below.)

User Types to a Tutorial Language Input (M/1TCU) Statement

a. pure text (CLP ignores it)

b. legal command

This last ca.e represents a tutorial asking the user a queston whose answer is a

legal non-Tutor command. The Tutor must in this case alert the CLP to pass the input

on as text to the Tutor (effectively "quoting" K) without executing it, but the CLP can

also perform some cursory parsing to let the Tutor know if the command would have

been correc'. (In this mode then, the user must use the ALERT-CLP or ABORT functions

to exit the Tutor and again speak directly to the CLP in order to execute a non-Tutor
command.)

APPENDIX III. THE TUTOR/VSER MONITOR INTERFACE

It is the Tutor's job to maintain the Transaction Training Statistics (TTS) file in the

User Profile. This file is updated each time the Tutor helps the user, and it contains a

history of what kind of help (and how much) the user has received for each semantic
entity (noi just commands).

Dialogue Remedy

When the User Monitor determines m real time that a dialogue element is ineffective

(e.g., leading to poor performance), it notifies the Tutor, which taKes action as f' ws:

First, the Tutor must determine whether the user was having trouble with the

response from the previous command or with tne input for the current command. This

is done by a simple procedure: the Tutor ask- the user.

The algorithm for determining what remedy to suggest in either case is given in

Chapter 9 of Ref. [4], and .s performed by the Usei Monitor itself.

in the case of "background" determination of inefficient dialogue elements, the Tutor

is concerned with the combined results of ;he User Monitor's measures of frequency,

performance, and knowledge (the Tutor maintains this last statistic itseif in the Profile).

Whenever a dialogue element comb'.ies low values for knowledge and [Frequency

cr Performance] tie Tutor attempts to provide more training.

In addition, the mean and variance of performance alone are examined with re.--«!ct

to changing the dialogue form of a command or splitting it into two commands (se. [4j),

and Recurrent Dialogue Sequences are examined with respect to suggesting compounds

(macros) to the user. Note that the actual macro-building facility is provided by the
CLP, not the Tutor proper.

3.

REFEHENCES

1. Oestreicher. D. R., j. F. Heafner, J. G. Rothenberg, CiMMift 4 Uscr-Oriom.d
Co mmamcatiom Service, presented at ACM Annual Conference, San Diego Calif
November 1974.

3.

5.

6.

Elhs. T. 0.. L. Gallenson. J. F. Heafner, J. T. Melvm, A Plan for Consolidation

and /lnto,r„„on of Miluary Trlcromnmmrmions on ()al,„, USC/Infornvüion
Sciences Institute, ISI/RR-73-12, May 1973.

Abbott. R. J.(/] Command Language Processor for Flexible Interface Design,
USC/lnormation Sciences Institute, ISI/RR-74-24, January 1975 .

Heafner, J. F., /] Methodology for Selectiug and Refining Man-Computer

Languages to Improve User's Performance, USC/lnformation Sciences Institute
ISI/RR-74-21, September 1974.

Mandell. R. L, An Executive Design to Support Military Message Proce.in*
Under TKNtX, ISI/RR-74-25 (in preparation).

Tugender. R., 0. R. Oestreicher, Basic Functional Capabilities for a Military
Message Processing Service, ISI/RR-74-23 (in preparation).

Rubin, Sylvan, "A Simple Instructional Langucge," Computer De-isions, Nov 1973
p. 17-18. '

BIBLIOGRAPHY

1. Gngnetti, Mario C, Gould, Laura C, Bell, Alan. Hausmann, Cathy; Passafiume

Joseph J.. Mixed-Initiative Tutorial System to Aid Users of the On-line System

(MLS). Semiannual Progress Report (Phase I). Bolt Beranek and Newman, Inc. May
15, 1974. '

_aM^Ma

