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LATE STAGE OF RAYLEIGH-TAYLOR INSTABILITY

by

David H. Sharp* and John A. Wheeler+

ABSTRACT

When a nearly fiat fluid surface z = o is subject to a small

sinusoidal distrubance of the form SZ = Sz. cos kx and when gravity -

or an equivalent acceleration field - acts on the fluid in such a

sense as to destabilize the surface, then the irregularities grow

exponentially with time in the regime of small amplitudes where

linear theory applies (Rayleigh). At larger amplitudes linear

theory does not apply and the gas or magnetic field on the other

side of the interface penetrates linearly with time into the fluid

in the form of fingers or bubbles (G. 1. Taylor). Considered here

is the subsequent stage of successive mergers between these fingers

to make larger and faster moving fingers. A primitive and tenta-

tive analysis of thIs merger process suggests the conclusion that
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the advance of the leading - and growing - fingers relative to ths

position of the ideal interface is described by an acceleration

which is of the order of 1/50 of the acceleration responsible for

the instability. Observations are not available to check this

conclusion, which however gives some indication of what effects to

look for when experiments like those of Lewis and Allred and Blount

are pushed into the regime of very high accelerations. To the

extent that the statistical analysis is valid, it suggests that

under the conditions assumed, a free slab of fluid cannot be

accelerated to more than roughly 50 times its own thickness with-

out suffering breakthrough.

I. INTRODUCTION AND SUMMARY

Magnetic fields can be envisaged today with a strength

so great (much more than 10 gauss) that the resulting magnetic

pressure can accelerate a metal object to a high velocity. We are

concerned here with a situation where the field is so intense

(field energy per unit volume of the order of heat of fusion per

unit volume or B/106gauss) that the metal becomes liquid and

the conditions are at hand for the development of Rayleigh-Taylor

instab!.lity with perturbations in the interface between magnetic

field and liquid of ever increasing magnitude. Under the extreme

conditions that can be envisaged no way presents itself to hold

down this instability.

The surface tension of metal (Section II) is high but the
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13 c/e2
accelerations considered are so extreme -10 (oR )

that surface tension prevents only the growth of those instabili-

tie: whose reduced wavelength A=l/ar is of the order of - I

cm or less. The idea is discussed co increase the effective surface

tensicii by covering the surface with an alternating laminar struc-

ture composed Lf two fluids of high mutual surface tension, thus

enhancing the effective surface tension by a factor proportional

to the nimber of lamina. However the factor of stabilization

achievable in this way is not great enough to prevent the growth

o' interface irregularities with reduced wavelengths of micrometer

and greater magnitudes.

An alternative idea is discarded in the present context with-

out discussion: to reduce the rate of growth of interface dis-

turbances4:ith ;t less than some specified value A , by inter-

posing between the principal metal and the magnetic field a layer

with thickness - z , in which the density falls off smoothly

from that of the principal metal to very small values(3 ). We limit

attention to metal sheets so thin that this approach is not feasible.

Viscosity is a third effect which acts to inhibit the growth

of Taylor instability, but a simple analysis shows that, in the

extreme circumstances here considered, viscosity is ineffectual in

diminishing the rate of growth of instabilities of reduced wave-

length = lOc6 or less.

In the absence of any effective way to inhibit them Taylor

instabilities will grow beyond the small amplitude regime of
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exponential rise(l, 2) and beyond the regime of formation of

spikes and fingers - and linear rise of these fingers or bubbles-

considered by Taylor (4 ) and will come into a third regime where

larger bubbles grow by capture of smaller ones (Fig. 1). An attempt

is made in Section III at an order of magnitude statistical

analysis of this late phase of Taylor instability. In default

of relevant experimental information about the details of this

late stage the theoretical analysis is necessarily uncertain. In

so far as the simplified assumptions and approximations used in

Section III are valid, they would suggest that the heads of the

bubbles, or fingers, eat their way through the liquid with an

effective acceleration -relative to the ideal interface- of the

order of 1/50 of the bulk acceleration of the fluid itself. In

other words under the conditions assumed it is concluded that it

is impossible to propel a sheet of fluid metal to more than rough-

ly fifty times its thickness without breakthrough. This estimate

should be taken not as a reliable guide for the design of a pro-

pulsion system but as an indicator for the kind of observations

and measurements that might be attempted in future experiments.

In so far as the statistical analysis of Taylor instability

has any validity it provides a new approach to an old question:

How far does it pay to go in trying to produce an ideal surface

in an effort to reduce Taylor instability? The analysis of this

point (Section IV) suggests that it is impossible ever to approach

so close to ideality that further improvements are without

4I
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Air at low pressure

[ Air at hioh pressure
)Sla of iouid

rr at 
w re s r

I
i, ! A ir at lo w pressur

C "Bubbles'

"Curtains"
and "Spikes"

Fig. 1. Later or "non-linear" phase of Taylor instability (-c
compared and contrasted with the earlier "linear"1 phase (A --oB). In
the linear phase., the shorter is the reduced wave length X~ of a qis-
turbance, the greater is its exponential rate of rise:c'.= (g/Az)*f.
This law of growth ceases to be valid, however, when the amplitude
of the disturbance has become comparable with ;t . Also the shape
of an initially exactly sinusoidal disturbance of the surface
ceases to be sinusoidal when it has grown into the non-linear
regime.
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significant pay off. On this account electro-polishing is briefly

recalled as one technique by which to improve the smoothness of

a surface.

II. THE MINOR EFFECTS OF SURFACE TENSION AND VISCOSITY IN

INHIBITING TAYLOR INSTABILITY AT HIGH ACCELERATION

When a fluid of density o and surface tension o- is

plastered smoothly on the ceiling of a room a small disturbance

in the surface

will grow exponentially in time in accordance with the formula
z= zoo ect (2)

or

Ez wZ cel"± (3)

In a more complete discussion one allows for the effect

of surface tension or (erg / cm2 ):

C2 = gk - ( o-p )k3 (4)

or the effect of viscosity (dynamic, ? , g/cm sec; kinematic,

7/= ?/,P, cm2/sec) or both in inhibiting the growth of the

disturbances (5,6)

Expe-iments have confirmed the expected effect of surface

tension. There is no reason to doubt that the expected effect

of viscosity will appear when appropriate experiments are

performed. Both effects one would like to increase dramatically

6



if by so doing the growth of Taylor instability were effectively

inhibited.

TABLE I. Reduced wavelength Xcr above which disturbances on
water and copper are unstable against exponential growth of
small amplitude disturbances. From Eq (li) of text, K*, I';T: ('TJ'P')-

Acceleration H2 Cu

Surface pension 73 (20°C ) 1103 (ll310C)
(g/sec)

Acceleration in lO9 cm/sec2  1O9 cm/sec2
Case I

3kc., -r 2.7 x 10-4cm 3.6 x IO cm

Acceleration in 1013 cm/sec2  lO13 cm/sec2

Case II

10-62.7 x cm 3.6 x lO-6 cm

The effective surface tension is non-isotropic when the push

comes from a magnetic field with lines of force running in the

y-direction parallel to the surface (yz-plane). From Faradayts

picture of tensions acting along the lines of force it is clear

(Chandrasekhar( 6)) that this tension augments the natural surface

tension,
-1 1/17" CjS5 Ba

o = : , + B .7' '
lJ~o s (5)

for surface irregularities

gz g Co (yY) (6)

whose circular wave number k = (o, k ) points exclusively along

7



the magnetic lines of force. Under the conditions of interest

here the magnetic fields are so strong, the augmentation of surface

tension is so great and the stabilization thereby achieved io so

marked that surface disturbances running in this direction will

be disregarded. On the other hand, when the disturbance is

described by a vector k running in the x-direction the magnetic

lir.s of force in effect behave like separate bundles of rubber

tubing, every other bundle being raised and intermediate bundles
depressed by the perturbation. In this case the magnetic field

provides no assistance in stabilizing the surface and the effective

surface tension is to be identified with the surface tension of

the metal alone. To this extent it is irrelevant that the accelera-

tion is brought about by a magnetic field instead of a gas. In

another respect the difference is significant. In the magnetic

case the pattern of spikes and bubbles will bp drawn out along the

magnetic lines of force in such a way as to create not spikes

and bubbles but crests and troughs. However, the cross section

of these topologically different types of irregularities we envisage

to be not greatly different. Consequently, the factor -v I/.o

in the statistical analysis of bubble growth is thought to be

changed somewhat in absolute value but not in general import when

one goes from the bubble case to the magnetic case. Therefore

the bubble theory developed in Section III will not be revised

on this account, and in most of the ensuing discussion the aniso-

tropy will be disregarded, that is the Taylor instabilities will

8



be treated as if they arose from pressure by a gas. This is pre-

sumably the case in which experiments can be carried out, to judge

from the work of Lewis (T ) and Allred and Blount(8 ) where, however,

the accelerations were too small and the surface tension too great

to allow opportunity for the later amalgamative phase of Trylor

instability to develope. In contrast, for the accelerations listed

in Table I the natural scale of dimensions for the first bubbles

is so small that macroscopic observations will reveal, not these

first bubbles, but only the much larger ones that arise from them

by many generations of merger.

In principle, one can greatly increase the effective surface

tension operative at t.±e interface between two fluids, A (magnetic

field) and C (molten copper), by replacing the simple interface

by a composite interface (Fig. 2) built out of many thin lamina

of liquid C and another liquid B (a plastic, for example),

according to the pattern...AAAACBCB ...... CBCCCC. Ordinarily such

a structur3 is difficult to produce and even after being produced

will disappear through the mechanism of formation of drops and

rearrangement into a structure such, for example, as

.... AAAABBBCCCCCCC....

Fabrication and preservation of the laminar structure would

seem much simpler in the case of a solid metal sheet which is

destined to be converted into a liquid only at the time of sudden

buildup of a powerful magnetic field Just above its surface. Let

the homogeneous metal sheet be replaced by a metal sheet of laminar

9
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Fig. 2. Increase of effective surface tension at interface between
C and A by interposition of many thin lamina of a third substance,
B.
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structure produced by alternate electroplating in two electrolytes

of very different constitution or otherwise. Let the two substances

be so chosen that their interracial tension is as large as possible.

Then the effective surface tension of the entire molten metal

sheet with respect to deformations of reduced wavelength of

the order of the foil thickness or greater has been increased by

a factor of the order of the number of lamina.

Consider for example (Table II) a metal sheet of thickness

10-2 cm2 made of alternate sheets of metal and plastic each

r' 100 atoms or. --/ 10-6 cm thick. The effective surface

tension for small amplitude disturbances of reduced wavelength

;> O-2 cm will be increased above its normal value by a

factor of the order -'- N = 1O-2 cm/10-6 cm = 104; thus

~,oT", er' No- -' 101o • (7)

TABLE II. Surface tension for certain liquid metal-organic
compound and liquid metal-air interfaces; also estimates of the
critical point temperatures for these metals (at which the surface
tension goes to zero). The fourth column gives the calculated
critical reduced wavelength 0I = 2Arr (transition from stability
for shorter wavelengths to instability for longer wavelengths 1
for a small amplitude disturbance in a molten metal sheet 10- cm
thick of laminar construction with N = l0' lamina. under conditions
w~ere the acceleration is v l-0Tcm/sec2 . The column Afast t
3f /crit gives the reduced wavelength for which growR
small amplitude theory predicts the greatest grqwth constant,

0( = 0 = (maximum value of (gk - -k/i )- =(2g / 3 f, Y)f
This growth constant itself is tabulated in the next column.%Itk
Consider the initial surface, prepared however so well, and
Fourier analyze the irregularities in this surface, and enquire
as to the typical amplitude associated with disturbances of the
reduced wavelength tfastest . Let it be required, for the sake

growth

of illustration, that these disturbances not grow duringatime

11



Lnterval of the order of - (for example) to the point

(amplitude t.f e ) where the non-linear effects of Taylor
instability take hold. Then the initial amplitude A 4iut be
less than ,j A, . This p prepsterxPr t I . This preposterous
number is tabulated in the last column. The impossibility to
attain any such perfection in the surface shows the hopelessness
of counting on surface tension to inhibit Taylor instability in
the present circumstances.

Interface Tcrit(°K) T(°K) c-(erg/cm2) rit(cm) t(cm) OL.sec : AMgX(cm)
Oa 8t a±Iow-

able

Mercury- e 3 3-7 V.7X10Y j.. l /C 4 i -j.S 'l.Xld 8 ',e-YXIlC
Benzene

Mercury- > 8 q97 x-P3. ,IO -. X .O I

Air

Copper-H2  Iqoq 03 J-0/o~1  .A X lO "' .o x1o0 4.2x o6 ce

Aluminum-
Air 973 0/ " -1o,2 JC/

'  - '1 Ai
7  - 3 -io

3Xl

It is evident from the numbers for t,,r in the table cal-

culated for a number of laminations as great as N = lO that it

has not been of much use to laminate the metal sheet to inhibit

Taylor instability! In addition, the metal sheet is thought of

as driven by magnetic fields so great and comes to temperatures

so high that it is carried from the liquid state past the critical

temperature--where the surface tension vanishes--into the gaseous

state where the normal concept of surface tension has to be

abandoned.

The natural scale of dimensions at the beginning of the merger

12



process - as distinguished from the scale of fabricational imper-

fections ( which are overlooked here, see section IV) - is so small

(Table I) and the accelerations so high, 109 (or l03 cm/sec2

that it can well be asked (Table III) whether viscosity may not

be more important than surface tension in governing the precise

value of this natural scale of sizes.

TABLE III. Critical acceleration g crit = (01p)3/V

Here or is the surface tension (erg/cm2 ), _P ig the density
(go1m 3 ) and W'= ?/O is the kinematic viscosity (cm /sec).
For accelerations much higher than gcrit , viscosity dominates

over surface tension in determining the circular wave number A. .
and wavelength .t.= 27/4 f.g. of the fastest growing small amplitude
disturbances and the exponential growth constant 4. (sec- )
of these Taylor instabilities. For accelerations less than gcrit'

the surface tension dominates over viscosity in determining the
circular walie number and the growth constant of the small amplitude
disturbance,., which multiply at the highest rate: ..--I 9p/ 1)t/
and c , ( V.Jl . When surface tension dominates it
stabilizes small amplitude disturbances whose reduced wavelengths c
are of the order of the reduced wavelength of the fastest grow-
ing disturbances, ?o , and less. When viscosity dominates it
does not stabilize small amplitude disturbances of any wavelength,
but it does reduce the rate of multiplication of disturbances
with t< .. relative to what the growth constant would be in
the absence of viscosity, OL= ( / )I/ . Each material in the
table is considered under circumstances where.it is pushed by a
medium (gas or magnetic field or radiation) of density negligible
in comparison with the density of the pushed medium. The temp-
eratures in the table can be converted tQ electron volts by
dividing the conversion factor 1.15 x l04 °K/electron volt.

Pushed Medium T(°K) p o, tauT(&/l)

H20, Liq 293 1.00 73 0.010 3.9xi O'5

Cu, liq. 1500 8.2 1103 0.004 9.5xlO
Cu gas 1500D 1.0 -
D-% ully ion
H, fully ionized dependent lO6x-0 -2

upon cir-
cumstances

13



*The viscosity listed here for fully ionized hydrogen under

conditions of interstellar density refers to the conditions of
ideal laminar flow such as are assumed in conventional definitions
of viscosity. in other words ?'= /,ohas been estimated from the
formula f? ):

=/-V(?/P) =A- T)"':/i T is the temperature (°K),

k the Boltzman constant, Tr1o is the collision cross section
for a rigid spherical molecule, D is the coefficient of diffusion.

In actuality, the interstellar medium, like the earth's
atmosphere, will typically be in turbulent motion already before
it is subject to pressure from magnetic fields or radiation such
as can generate Taylor instability. Under these conditions,
the exchange of momentum between one part of the gas and another
is brought about very little by kinetic theory motion of individual
particles, such as are considered in the elementary theory of
viscosity. The momentum exchange comes about to an enormously
greater extent through eddies and vortices that carry whole masses
of the medium from a layer with one average velocity to a layer
with another average velocity. The effective viscosity to be
used under s ch conditions is discussed, for example, n Landati
and LifshitztlO), and Hirschfelder, Curtiss and Bird 9.

Viscosity, like surface tension, decreas, ' at first as the

temperature of a molten metal is raised toward the critical

temperature. However, contrary to the surface tension which goes

to zero at the critical temperature, the viscosity goes only to

a reduced value somewhere in the neighborhood of the critical

temperature and pressure provided that the path pursued in the

PT-plane leads near the critical point. As the temperature is

increased to a figure much higher than the critical temperature

the viscosity of the metal, like the viscosity of other gases,

approaches Maxwell's law of proportionality to the square root

of the temperature T (here and in the following expressed

directly in energy units to eliminate the purely conventional

14



Boltzmann factor k and its possible confusion with the wave

ntumber k):

Here Mi is the mass of an ion (i = 1) or electron (i = 2),
V i i

viis avelocity typical o hemlagitation adern sa

effective cross section for transport such as is defined in

diffusion tfteory(9). For very high temperatures it is no longer

possible to treat this transport cross section as independent of

velocity - and therefore as independent of temperature. its

fall with temperature makes the viscosity rise with a. power of

T higher than . Table IV gives a very rough estimate of the

viscosity of copper at a temperature T,,- 1.3 ev (150C0 °K).

TABLE IV. Order of magnitude estimate of contributions to
the viscosity of copper at T-,/1.3 ev. It is assumed that the
typical atom at this temperature has been dissociated into one
Cu++ion and two electrons.

Momentum fy Contribution
transport

Particle ---,(MiT)2 (gcm/sec) (cm2 ) to 7 (g/cm see)

Electron -'0.5 x 10-19 - 0-17  -- 0.005

Cu++ ion -'-150 x 10-19 - l0-1 6 - 0.15

Total '-N 0.16 g/cm sec

Kinematic viscosity (at PJ"8g/cm2 ) estimated as z/= 0/J°'O.02
cm2/se c

15



Consider a sheet of copper vapor with the kinematic viscosity

' 2 x 10-2 cM2/o subject to acceleration by a pushing fluid of_ 113 c/e2 .

negligible density at a rate of c-; 10 1cm/see Then in the

small amplitude theory of Taylor instability those Fourier com-

ponents are calculated to grow most rapidly which have a wave

number of the order

"kA.( /" . (9)

They have a calculated exponential growth concstant

I_' -, 1.7A /0 (10)

Here as in the case of surface tension, the scale of wave-

lengths at which the inhibiting effects are significant are far

too short to make viscosity of any relevance at the scale of in-

stabilities which are of concern.

III. PRIMITIVE STATISTICAL ANALYSIS OF REGIME OF BUBBLE

AMALGAMATION

So far it has been enough to consider the rise of a

single bubble because the starting assumption was complete periodicity

with all bubbles identical. In actuality there will be small differ-

ences in size from bubble to bubble due to slight departures from

ideality at the start of the acceleration of the interface. These

differences will occur whether natural causes or machining determines

the dominant wavelength. In the one case, the spacing is determined

by the circumstance that the growth constant has'a smooth maximum

16
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as a function of the wavelength. Therefore, even a few extra

atoms here or there on the interface will favor at the start a

scale of dimensions which here is a little less than the size for

optimum growth and there a little greater. Similarly, in the

case where machinery or other techniques have built into the

initial surface irregularities with a unique characteristic length,

there will nevertheless again occur small variations above and

below this unique size from one incipient bubble to another due

to the presence or absence of a few more atoms here or there if

due to no more mundane cause!

A small fractional difference in size

=(R 2 - RI ) IRI  (11)

between one growing bubble and another will cause a corresponding

fractional difference E/R iii the rate of rise nf-(g) of the

two bubbles when they are fully developed. In consequence of this

difference in rate of rise, one bubble will get ahead of its

neighbor and dominate it. The two bubbles will come to constitute

in effect a single bubble with some minor irregularities in shape

(Fig. 3). This process of merger of tvio bubbles is a decisive

feature of the later stages of Taylor instability. Clear evidence

of repeated mergers is seen in typical photographs of Taylor in-

stability, such as those taken by Lewis (7) and Allred and Blount(8)

It is necessary to e.:amine in more detail the conditions for

merger and the consequences of merger in order to arrive at any-

thing approaching a rational estimate of the time required for

17
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Fig. 3. Factors governing bubble merger in idealized mode. Upper

rTh

cross sectional area associated with one bubbl.e in this diagram is
identified withir 2 to define the effective radius RI. Upper right:
Bubble or finger No. 39 is idealized as engulfing finger No. 35 as
soon as the effective height Zq9 of the larger one exceeds the
effective height of the smalle ~'one by the radius of the smaller
one; that is, as soon as z39 (point 8] ) comes to equality with

zB5 RB5(point El). The arrow;s recall that the rate of rise
of te arger bubble is greater than the rate of rise of the

smaller fingers a is required for capture of the smaller one:
dz/dt = 0.148 (gR)i. Instead of the true time t it is convenient
to use the "reduced tirpe", t= 0.148 g~t, so that the rate of
rise becomes dz/d = z. Lower diagram: Graphical procedure to
determine which pair of bubbles merge first. For simplicity,
attention is limited to the system of eight fingers outlined by
a heavy line in the upper left hand diagram. The calculated value
of the reduced time interval LZ required for No. 39 to capture
No. 35 is determined by the slope (with sign reversed) of the
designated line in the diagram. The line from No. 39 to No. 42
is irrelevant because it corresponds to two bubbles which are not
in contact. For fingers in contact, the line with the lowest
slope corresponds to the earliest merger. A new diagram of this
type was constructed for each successive stage in the process of
bubble merger in the process of working out the illustrative
numbers in Table V.
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bubbles to break through a slab of liquid of finite thickness.

No detailed hydrodynamic analysis of the merger process is

available. Therefore, order of magnitude considerations are

demanded. For this purpose, the actual situation will be replaced

by an idealized model, here called the "Maine bubble model"

because the first illustrative calculations on the model were

made in MaLne. In this model, each bubble will be considered to

stake out for itself a certain area when it is projected on the

ideal initial interface. This area will be assumed to remain con-

stant during the time of rise of the bubble. The area will typically

be irregular in outline. However, the rate of rise will be cal-

culated as if the shape were that of an ideal circle i.th the same

cross sectional area 7re (definition of R!). For the rate of

rise, Taylor's formula will be adopted,

= (0.48) (gR)2  (12)

appropriate for the case of a pushing fluid of negligible density.

Suitable changes can be made to correct the analysis when the push-

ing fluid has a density appreciable in comparison with that of

the pushed fluid.

The volume of gas which fills the bubble above the ideal

initial surface, divided by the cross sectional area of the bubble,

defines an effective height z for the bubble which is somewhat

lower than the vertex.

Two bubbles will be assumed in the model to merge into one

when the larger one is sufficiently far ahead of the smaller one.

19
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The lead required for merger will be very little when the smaller

bubble is very small compared with its winning neighbor. The

necessary lead will be greater when the effective radius of the

smaller bubble constitutes a larger fraction of the radius of the

larger one. This qualitative aspect of the merger process will be

sharpened up in the model to the following rule:

1st rule. Two bubbles will merge when the larger one of

them has a lead on the smaller as great as or greater than

the radius of the smaller one:

z+ - z > R- (13)

The other two rules adopted in the model for the merger

process are:

2nd rule. Conservation of cross sectional area,

7rX74 = 7 -fl 7 4 lR- (14)

This rule provides a way to calculate the effective radius,

R of the merged bubble.m

3rd rule. Conservation of volume,

7R 2 zm -= T R2 z +TTR (z .m (15)
From rules 2 and 3 follows an expression for the effective

height of the new bubble at th91oment of formation:
_ 

2z =R+ z+ + R9 z-

m R2 + + R? (16)

As starting cond. tions for the model one has to specify the

quantities R and z for each bubble at the time t = o and has to

give, in addition, the connectivity of the bubble pattern, either
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by way of a qualitative diagram like Fig. 3, or by way of a listing

of all bubble-to-bubble contacts which exist at the time t o.

In the example in Fig. 3, these connections are 1-2, 1-22, 1-21,

1-20; 2-3j 2-23., 2-22; .- •; 37-38.
Table V illustrates the evolution in time of an arbitrary

initial pattern of eight bubbles calculated according to the rules

of the foregoing model.

TABLE V. Development of a sample pattern of eight bubbles
(Fig. 3) as computed from rules 1,2,3 of the Maine bubble model.
The initial conditions were arbitrarily adopted to correspond to
(i) a fractional variation of the order of 50 percent in bubble
cross sections and (2) an initial elevation for each bubble equal
to the effective radius of that bubble. This condition is meant
to correspond qualitatively to the circumstance that the larger
disturbances have typically risen to a greater height than have
the smaller ones at the stage when the bubbles have come into
the non-linear regime of linear rise with time. However, the here
assumed proportionality of t. to the first power of R has no basis
in theory nor any special significance. The assumption is made
only to give definite and simple starting conditions for this
particular problem. In the table, the quantity "requced time"

r is an abbreviation for the quantity (2/3) gi't. In telms
of T the formula for the velocity of rise becomes dz/dZ = R2-.
At each stage of the calculation, every contacting pair of bubbles
is considered in turn, and for each such pair the reduced time
to merger is calculated in each phase of development that one
merger is listed which is calculated to occur earliest.

Bubble 26 33 34 35 39 40 41 42 Reduced time

R 0.31 1.21 1.10 0.74 1.44 1.09 0.64 0.72 for merger

1 0.81 1.21 1.10 0.74 1.44 1.09 0.64 0.72 47 r= 4z

dz/dt 0.90 1.10 1.05 0.86 1.20 1.04 0.80 0.85

Bubble 26 33 34 35-39 4 i 42

R 0.81 1.21 1.10 1.62 1.09 0.64 0.72

z 0.8 1.21 1.10 1.29 1.09 0.64 0.72 A'min. = 0.23

dz/dt 0.90 1.10 1.05 1.27 1.o4 0.80 0.85 'r = 0.23
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Bubble 26 33-41 34 35-39 40 42

0.81 1.37 1.10 1.62 1.09 6.72

z o.81 1.08 1.10 1.29 1.09 0.72 A 0.89

dz/dr 0.90 1.17 1.05 1.27 1.04 o.85
7= 1.12

Bubble 26-35-39 33-41 34 40 42

R 1.81 1.37 1.10 1.09 0.72

0.80 1.o8 1.1o 1.09 0.72 1.13

dz/dT 1.34 1.17 1.05 1.04 o.85 2.25

Bubble 26-35-39 33-41-42 34 40

R 1.81 1.55 1.10 1.09
Liu= 1.27

0.80 1.00 1.10 1.09

= 3.52
dz/dft 1.34 1.24 1.05 1.04

Bubble 26-35-39-40 33-41-42 34

R 2.12 1.55 1.10 ,L,A.= 3.21

0.88 1.00 1.10
= 6.73

dz/d-e 1.46 1.24 1.05

Bubble 26-34-35-39-40 33-41-42

B 2.38 1.55 AtA= 5.40

z 0.93 1.00 = 12.13

dz/d-r 1.54 1.24

Bubble 26-34-35-39-40-33-41-42

R 2.84

0.95

dz/dt 1.68
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The average velocity of the system of fingers increases step

by step as the mergers proceed until finally the entire cross

sectional area is occupied by a single finger rising at a constant

velocity. Here it is assumed that the slab of fluid is thick

enough so that breakthrough does not occur until finger amalgama-

tion is complete. A thinner slab of heavy fluid will be penetrated

by a finger of the lighter fluid which is still not merged with all

other fingers.

It follows from this analysis that a slab of fluid very thick

iromparison with its effective radius will almost always be

penetrated by a single finger, independently of the original pattern

of the fingers. Moreover, the time for merger of the fingers in

this case will constitute only a small fraction of the much

longer time taken for the final big rapidly moving finger to break

through. Therefore, an estimate of the time for breakthrough can

be made in this case, from the formula

breakthrough time
for a slab of fluid (thickness of slab)
thick in comparison ___

with its effective
radius / ' ( ',

(17)

In this time the slab has advanced through the distance

distance ^.j (1/2)(acceleration)(time)
2

of advance)

2
rv(9/8)(thickness of slab) /(effective radius)s

(18)
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a quantity which is large when compared either with the effective

radius or with the thickness of the slab.

An estimate of the breakthrough time in the case of a thinner

slab demands an analysis of the details of merger. In the case

of the eight fingers considered in Table V, the velocities change

with time as indicated in Fig. 4.

The spread in velocities throughout most of the stage of

cannibalization is roughly of the order of one quarter to one

half of the average velocity itself at each instant. This average

velocity increases in a stepwise fashion with time. However, if

the increase is represented in idealized form by a curve, then a

straight line curve is not out of place to describe the results

of the computations. The rate of increase of velocity with time

read off of such a curve lies between 0.02 g and 0.05 g in the

example.

Abstracting from this special example one is led to consider

a pattern of fingers which develops in time according to a similarity

oA scaling transformation, as follows:

(1) An average rate of rise for the fingers which are

present at any given time which is given by the expression

v = (average velocity) = k1 gt,

where k is a small dimensionless numerical factor of the
1

order of

0.02 to 0.05. (19)
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Fig. 4. Velocity as a function of time for the fingers listed in
Table V. Each horizontal line corresponds to one finger. The
line starts when the finger is formed and disappears when the finger
merges with another. Some foreshadowing can be seen in this diagram
of the central points of a statistical analysis:

(1) A statistical distribution in rise velocities at any
given time. This distribution in the example, neither clearly
narrows up as time advances nor clearly broadens out when expressed
in terms of the fractional variation of the velocity about the av-
erage velocity which obtains at that instant.

(2) A roughly linear increase of this average rise velocity
with time, leading to the concept of an effective acceleration
associated with bubble rise during the regime of continued merger.
The two dashed lines correspond to values of this effective accelera-
tion of 0.02 g and 0.05 g, which, therefore, serve in the particular
example-as lower and upper limits for this effective acceleration.
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(2) An average effective finger radius

?-/ ;OP, tVZ~ (20)

where k is another dimensionless factor.~2

(3) A statistical distribution of finger radii about the

average radius given by something qualitatively like a

Gaussian curve, with a fractional spread in radii which does

not change in time as the fingers merge:

[ (R-Rv )1,/R:v = C= hSTA-T

If a distribution as special as the Gaussian distribution

were to be assumed, one would have the formula

number of fingers total number oL dR (R- R y )2
r jewith radii betwee fingers at the (R) 6xp (1

R and R+dR / given time

(21)

not only for the radii themselves, but also for the cross

section area. For the rise velocity and for the effective

height distributions are assumed-- -expressed in fractional

deviations from the average---which do not change with time.

This statistical assumption is taken to apply throughout

the regime of continuing mergers, apart from the first few

generations of mergers where the specialities of the start-

ing mechanism show themselves, anopart from the final

stage (if breakthrough has not already taken place) where

only a few fingers are left.

It is possible to make these assumptions plausible on dimen-

sional grounds. In the regime under consideration, the fingers
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have growm in size to dimensions so great compared to the characteris-

tic t set by surface tension and acceleration (or by viscosity

and acceleration) that surface tension (and viscosity) have

nothing to do with the main features of the rise phenomenon. At

the same time the fingers are small enough in comparison with the

dimensions of the slab of fluid that these macroscopic dimensions

also can have no significant effect on what is going on. Therefore,

the only physical quantities left to dominate the situation are

the acceleration g and the elapsed time t. Out of these magnitudes

there is only one way to construct a quantity with the dimensions

of an average finger radius (Eq. 19) and a quantity with the dimensions

of an average rise velocity (Eq. 20).

These dimensional arguments do not justify formulas of the

type (19) and (20) with universal coefficients k and k , indepen-
1 2

dent of the original spread in finger sizes. It is even possible

to point to a perfectly conceivable situation in which the dis-

tribution in finger sizes deviates enormously from a Gaussian

curve, not only in the first few generations of mergers, but also

right up to the stage where only a few bubbles are left. (Fig. 5).

Nevertheless, even in this extreme case a simple analysis makes it

reasonable to think of the effective rate of rise as being unaffected

by the anomaly in the distribution of finger sizes.

Rather than the big finger in Fig. 5 helping the little ones

to move forward faster, the little fingers hold back the big one,

if one can take the Mai.ne model as a guide to the true state of

27



_______________ 
_____4

_____ - HEAVY FLUID - ____

tt.

LIGHT FLUID

Fig. 5. Case of anomalous distribution in finger sizes. The
larger finger rises much more rapidly than the small ones and
engulfs them one by one until it spans the entire cross sectional
area of the slab of fluid.
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affairs. According to one of the rules of that model, a large
*

bubble of effective height z engulfs smaller ones of average

effective height z as soon as the difference z - Zav rises to a

value as great as the average effective radius R of these
av

fingers. The consequence is this, that the big finger grows in

radius faster than the little ones, but does not get out of step

with them in vertical elevation. In each interval of time dt it

eats whatever number of little bubblesdN, is required to dilute

its rise back to parity with its fellows. The new effective height

is found by adding the volume of the old finger and the newly

assimilated ones and dividing by the cross-sectional area of this

collection. If too many small bubbles have been taken in during

the interval dt, this effective height will be reduced too much

and new cannibalization cannot go on until the faster rate of rise

of the larger bubble once more allows it to get ahead. The converse

also applies--if the big bubble assimilates too few small ones, its

elevation will not be diluted back enough to make up for its faster

rate of rise. Therefore, it will get ahead and in the next time

interval take in a more than normal number of fingerlets. Thus,

in the model, there is a stability about the mechanism through which

the little bubbles govern the rate of rise of the big one.

This reasoning can be expressed in mathematical terms. Let

the average rate of rise of the small fingers be expressed in the

form (19) expected from similarity arguments,

vav (t) = kIc gt (22)
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and let their average height and average radius be written in a

form consistent with this expression:

Zav =(k 1 /2) gt2  (23)

R (t) = (k /o.48)2 gt2  (24)

The big finger is always at the point where the smallest addition

to its height makes the difference between more cannibalization and

none at all; or, according to the model,

z Zav = R av (25)

Thus one finds

z (t) = [(k3/2) + (kl/o.48) 2] gt2  (26)

The rate of rise of the big finger calculated from this expression

is
v*(t) = (,dz*/dt =k (k/o12) ] gt (27)

Any value of the effective radius R* of the large bubble is com-
patible with this expression. However, the larger R happens

to be, the greater is the natural rate of rise associated with a

finger so big,

(natural rate of
rise of big finger = (0.48)(gR*) (28)

and the more little bubbles it must assimilate per second to hold

its rate of rise back to the figure (27). The "drop back" due
@*

to eating out from the effective radius R to the effective radius
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* *

R + dR in the time dt is

z*R*2 + z 2R dR
z. - Z r jp . :g = z - a

*2 * *
R +2R* dR*

= (2dRJ/R )(* * z)av

= (2dR*/R*) Ray (29)

The rate of drop back on account of assimilating smaller bubbles

has to satisfy in the model, the equation

(rate of drop back \ (natural rate of (slower rate of rise
due to assimilation) = rise of big finger required to remain ii
of smaller bubbles/ in absence of growth./ step with smaller

bubbles

(30)

or

(2 Rav/R*)(dR*/dt) = (o.48)(gR*) - (0.48)(gRav) (31)

Under the conditions contemplated in Fig. 5, the radius R* is

large compared to Ray. Therefore, it is appropriate to neglect

the last term in (31). Then Eq. (31) for the growth of the big

finger may be integrated to give the effective radius

R *(t) = R*(to) q (32)

Here the radius R av(t) of the small fingers has been taken to

follow Eq. (24).

To fix ideas, assume, for example

31



(advance of bubbles
relative to liquid ) "breakthrouh

k = advance of= constant =0.02;
1 slab of liquid

g = 2 x l013 cm/sec2;

/dimension fized
by small amplitude

R |theory allowing ) " 3.8317 (3 a' /gA (33)
Rav to(for surface tension

- (800g/sec2 ) 1 -5"6. 6 =1.3 x 10-5 cm;

(2 x 1013 cm/sec2 )(lO g/cm3 )
1 3

Vav(to ) = (0.48)(gRav)2 = 7.7 x 10 cm;

Zav(to) = (0.23/2kl) Rav (Eqs. 23, 24) = 7.8 x l0-5 cm.

These "initial" values correspond to a time coordinate

2.0 x 10-8 sec in Eqs. (23) and (24). At any later t the

calculated effective radius of the small fingers is

Ra (t) = (3.3 x 10 cm/sec 2 )t 2  (34)

Assume that a flaw somewhere in 'he original surface gives rise

to a single disturbance--in the midst of these smaller bubbles--

with an effective radius

(to ) = 103 cm. (35)

Then the calculated radius if this dominating finger at any later
time is a

R* (t), = 10-3 cm o18 2(36)

0.18 + 2 x 10-3cm - 2 x lO-3cm

Rav (t) 1.3 x l0-!Cm
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The denominator vanishes and the finger radius goes to infinity

when Rav has increased by the very small amount

ARav = (0.18)2 (1.3 x 10-5 cm)2 /4 x lO-3 cm = 1.4 x 10 9cm

to the value

R av (new) = Ray (to ) + 6 R = 1.3 x 10-5 + 1.4 x 10-9cm. (37)

At this instant, according to the model, the big finger has grown

so much that it engulfs the entire fluid. Until this instant,

the little ones govern the rate of rise; thereafter, the big one

does, and the velocity keeps the constant value

I 1kv = .418 R q 4 '-JJ)

=(0.48) g (area of slab/'r )4. (38)

The example Just discussed would make it appear that one

finger substantially larger than its fellow4ill quickly come to

dominate the flow pattern of the entire mass of fluid. How much

validity should be ascribed to this consequence of a rather idealized

model of bubble merger? (1). Available experimental information

(Davies and Taylor (4 ; Lewis (7; Allred and Blount (8; Chang ( I )

does not show any such sudden rise of one finger to dominance.

However, these experiments are not relevant anyway to the point at

issue. The original size of all finCerS-and the thickness of the

slab of fluid--were not great enough compared to the characteris-

tic dimension 6.6( o/ gp )2 set by surface tension and by the

acceleration. Therefore, surface tension greatly changed the
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phenomena which inertia and pressure would otherwise have brought

into evidence--and which are the object of concern here.

(2) A qualitative look at the hydrodynamics of bubble merger

in the absence of surface tension would suggest that a finite time

is required to complete the process of bubble merger. The debris

from the smaller finger has to be washed down the surface of the

newly enlarged finger before this object can be regarded as a unit.

Only then can it be expected to live up to its new cross-sectional

dimensions in its ability to engulf a new bubble. Consequently,

one would expect a certain limitation on the rate at which a

larger bubble can spread its influence sideways to take over one

smaller bubble after another. No such limitation of rate was

built into the Maine model of finger merger. Therefore, it is

permissible to doubt the prediction of the model that a significant-

ly larger thar~verage bubble will take over the whole fluid

before the other fingers have had time even to double in height.

(3) It is conceivable that the distribution of finger sizes

irkayleigh-Taylor instability has a certain analogy to the dis-

tribution of electron velocities in a gas subject to an electric

field in this respect~that there is a sharp distinction between a

statistically stable situation and a runaway situation. In the

electrical case, the critical parameter is the applied electric

field. In the hydrodynamic case, the difference between (1)

runaway and (2) approach to a standard distribution is governed--

on this view--not by the acceleration (regarded as fixed) but by
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the initial distribution of finger sizes itself. In other words,

a distribution which departs not too greatly from the canonical

distribution is conceived to approach in time the canonical one.

The characteristic scale Ray of this canonical distribution is, of

course, itself increasing at the same time. On the other hand, a

distribution of finger sizes which departs too greatly (Fig. 5)

from the canonical oneisconceived to depart more and more from

that distribution and to lead to one or more runaway bubbles.

In summary, present information does not suffice to distinguish

between the following three possibilities:

(1) One bubble always quickly runs away.

(2) Depending upon the degree of anomaly in the original

distribution of sizes, either one bubble runs away, or a

standard statistical distribution in sizes is attained, with

a corresponding standard law of growth.

(3) A standard distribution and rate of rise are almost always

reached.

Possibilities with a light fluid to push a thin slab of heavy

fluid a great distance would seem to depend very heavily upon the

correctness of alternative (2) or (3).

How rapid will be the rate of breakthrough if (2) or (3)

apply? The following order of magnitude analysis of this question

is assumed for simplicity:

(1) something like the Maine model for bubble merger plus
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(2) stability of a canonical distribution of finger sizes.

In addition, for simplicity and deftniteness, this distribu-

tion will be taken to follow

(3) a Gaussian distribution law, with a parameter 8 of

fractional spread in radii equal to 0.5:

d(number of finers ) - dR exp{ (R-Rav) 2

(total number of fingers) (22()) Rav -(RavE) 2

9 = 0.5. (39)

E xpression (39) predicts a non-zero probability for fingers of

negative radius. However, the absolute value given for this

probability is so low that this minor drawback of the Gaussian

formula can be disregarded in favor of mathematical simplicity.

Now to estimate the rate of evolution of such a canonical distribu-

tion assuming its self-perpetuating character!

Let R1  Rav (1- S/2) represent the effective radius of

one bubble which is soon to be eaten. The larger one which eats

it has a radius of the order of R2 v Rav (1 + S/2). The

velocities of rise of the two fingers,

0.48 (gRav)'"(1- 9/2)2 and"'0.48 (gBl)2 (1 + 5/2)2,

will differ by an amount 1

6v -,- o.48 (gRay )2 /2) (40)

One must get ahead of the other by an amount zZ of the order Ray
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to merge with it. The time required for this lead is of the order

At - (2/0.48 )(Ra/g). (41)

In this time, two bubbles have amalgamated to give a single one

of roughly trice the area. The same effect has been happening

everywhere else through the fluid. Thus, rR 2 has been in-av
1

creased by a factor 2; and R has been magnified by 22; and theav 1

average velocity of rise has gone up by a factor 24, from

0.48 (gRav )2 to 2" x 0.48 (gR av)2 (42)

The increase in velocity, divided by the time A t required to

bring it about, defines the effective acceleration (see Fig. 4, 6)

associated--by the statistical model--with finger penetration:

/average acceleration
of fingers with
respect to;the base line 6V/Jwhich would be associated J/
with acceleration of

ideally flat interface
1 1.

(2" -1) 0.48 (gR av)2 (0.022 g

(2/0.48 g )(Rav / g)

or

gay = k g 0.01g. (43)

This estimate of a breakthrough coefficient kl, even If the ideas
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Fig. 6. Increase of velocity with time as a consequence of bubblemerger according to the primitive idealized statistical model of
the text. In each step the velocity increasesiby a facto- 2v andthe length of the step increases by a factor 2"  compared to thetime occupied in the previous step. Compare this regular in-crease of the velocity with that shown in Fig. 4.
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behind it have qualitative validity, is evidently uncertain by one

or more powers of two.

The present model of breakthrough predicts that a slab of

heavier liquid cannot be accelerated by gas to a distance greater

than (l1 kl)fv (25 or) 50 or 100 or 200 (or 400) times its own

thickness without suffering finger penetration. It can be called

an optimistic model of Rayleigh - Taylor instability in this sense,

that it is hard--short of drastic measures, like freezing the

liquid, etc.--to think of a way for a light fluid to accelerate

a heavy fluid to a greater distance. On the other hand, rapid

growth of larger than normal fingers could well drastically reduce

the distance over which the liquid holds together. Optimistic as

it is, the model makes it hard to see how a magnetic field could

ever propel a 0.01 cm slab of molten metal or plasma for a dis-

tance as great as 10 cm.

Statistical mechanics as applied to gases teaches that the

number of molecules or the energy of one extended region is the

closer percentagewise to the energy or number of molecules in an-

other extended region of the same volume, the larger this volume

happens to be chosen. Therefore on a surface covered over with

an enormous number of small scale bubbles or fingers-one might

be inclined to reason-lar scale differences between one extended

region and another can never arise. Therefore the statistical

picture of bubble merger might be considered to be complete

nonsense. Howevqr, this reasoning would appear tacitly to assume
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that there is some conserved quantity - like total energy, or

total number of particles- which cannot be supplied in surplus to

one region except at the expense of another region. There is no

such conserved quantity for bubble advance. The sooner bubbles

merge, the faster they can go forward - and this not at all by

depriving other regions of the chance to get ahead. Bubble

merger like hurricane growth is a typical example of a divergent

process in the sense of Langmuir(l2).

IV. HOW FAR DO IMPROVEMENTS IN THE SURFACE SMOOTHNESS PAY

OFF IN REDUCED TAYLOR INSTABILITY

The concept of a breakthrough coefficient k,--if such

a concept is valid--would seem to provide some rational grounds

for deciding at what degree of perfection to stop trying to improve

the original surface.

The disturbances which have evolved by merger out of the in-
evitable initial small scale perturbations ( ' fastest

growing

are taken in the statistical model to follow the law of growth,

z = (k/2) gt2av (k/ 1

Vav k1 gt = 0.48 (gRay)2  (44)

Rav = (kl/0.48)2 gt
2

with a continually increasing scale of sizes. In the meantime

the irregularities, if any, due to machining--here assumed to have

a scale Xmach much greater than fastest growing --have
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themselves been developing. Their normal rate of increase will'be

little affected by the presence of the merging and remerging smaller

scale bubble pattern until the scale of that pattern, Rav' has

reached the scale,

Rmach = 3.83 Xmach (45)

(of Section III) of the machining irregularities.. The two scales

come into concordance, according to the model, at a time (Eq. 44)

tCA;; j ,,V"(C( = (O.48/k1)(3.83 3kmach/g) (46)

At this time the calculated advance of the fingers which have

resulted from merger is

z = (o.48) /2k,) Rav av

( (0.48)2/2ki) mach (7)

= 3.83 ( (0.48)2 /2kI) 3 mach

( "- 22 Xmach or 3.5 ; maCh for kI = 1/50)

Three possibilities present themselves at this time:

(1) The disturbances which originated from machining

irregularities have already grown to an amplitude large

compared to (47). In this case they have developed well

beyond the regime of thomall amplitude theory, as may be

seen from the circumstance that in (47) Zav is large compared

to Rav. Therefore, it will be expected that fingers have

developed out of the initial fabricational imperfections
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and even that these fingers have made substantial progress

towards merger with one another. Evidently the instabilities

from this source are well ahead of those that came from

fastest growing' They dominate, not only at

t concordance (Eq. 46) but thereafter. Consequently, it

can be said that the machining irregularities are decisive

in determining the time of breakthrough in case (1).

(2) The disturbances which originate from imperfections

in the surface of reduced wave length mach have grown

by the time t of Eq. (46) to an amplitude whichconcordance

is still small compar-d to the Zav of (47). In this case

the instabilities oz natural origin dominate over those

which have their source in machining irregularities. They

dominate not only at t = tconcordance, but thereafter.

Consequently--- provided that the statistical model is valid---

the imperfections in the fabrication can be neglected in

the analysis of Taylor instability in case (2). In this

case there would seem to be little point in trying to

improve the perfection of manufacturing. Money can be saved

by loosening up on the machining tolerances!

(3) The disturbances which have grown from initial irregulari-

ties of reduced wave lengths k andfastest growing

machining have comparable amplitudes at t = tconcordance .

42



From this circumstance it follows that the machining toler-

ances have been widened to the critical limit,

( g Z)machining = ( g z)critical (48)

beyond which any further decrease in the quality of the

surface will shorten the time to breakthrough. This criti-

cal limit is the fabrication criterion sought from the

present analysis.

The concept of a critical magnitude for fabricational irregulari-

ties, while easy to describe in qualitative terms, is difficult to

make precise in the present state of knowledge. To illustrate

this point, it is sufficient to make one very literal minded cal-

culation of (S z)cri t along the lines illustrated in Fig. 7, and

then to look at the uncertainties that are associated with this

calculation. In the figure, the fingers of natural origin are

taken to increase as in the provisional statistical theory of

bubbler merger.

z = (k /2) gt
2

dz/dt = k1 gt (49)

The rate of rise given by (49) at the time

= (0.48/k I )(3.83 X mach/gW

(=47 ( tmach/g) for k = 0.02) (50)

has the value

(dz/dt)c = 0.48 (3.83 Xmach g)2 , (51)
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Fig. 7. Competition between irregularities of fabricational origin
~and of natural origin for control of Rayleigh-Taylor instability.
~Top: Fabricational irregularities dominate. Middle: Departures
~from ideality of natural origin--governed by surface tension or

viscosity--dominate. Bottom: Irregularitsies of fabricational
and natural oriin contribute comparably to the later stages ofinstability. The conditions in this case determine the critical
magnitude, dow.n to which it is desirable to reduce the fabricational
irregularities, but below which any further reduction gives a de-creased or even negligible payoff. Though the general ideas are
clear, and the curves in the diagram have been calculated on the
basis of reasonably well defined assumptions., the details of these
assumptions are not determined at the present time with any precision
by either available observations or existing theory. Mloreover,
small changes in these assumptions make a big change in the order
of magnitude of the critical magnitude (S z)__ for the irregulari-
ties ( SZ)ma h of fabricational origin at thgr~art of the accelera-
tion. Therefore, the particular assumptions used in computing the
curves in the diagram are recapitulated here: (1) The scale

faslees groi of the natural irregularities at the start
is neglIgbl compgred to the scale ragch of fabricational
marks. ()The natural instabilities s sequently have a canoni-
cal distribution in sizes, of which the scale but not the form
changes with time due to finger mergers, with an average heightz = (k, /2) g t given by a "breakthrough coefficient" k
wRch is arbitrarily equated to 0.02 (3) The fabricational
irregularities grow exponentially folloying the Rayleigh-Taylor,

fo mu a ( f ) ep (g/ 'mach)-; t upto z o.48(3.83)-f mach
and thereafter (VItcontinuity of z and dz/dt attpoint A) grow
linearly at the rate (dz/dt) 0 .48(3.839 3tmach)-f. This simplifying
assumption neglects merger of the fingers resulting from fabrica-
tion until these fingers have been overtaken by the fingers which
have grown from instabilities of natural origin.
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The number agrees with the rate of linear rise of fingers of radius

3.83 A mach or of reduced wave length kmach (point C in the

diagram). Calculate back along this linear curve of rise of the

fingers of fabricational origin to the place (point A in diagram)

where the straight line agrees in magnitude and slope with the

Rayleigh-Taylor exponential curve:

(dz/dt)A = o.48 (3.83 mach g) -  (52)
A a

Z 14-K d/t ()A ( )(dz/dt)A = ( ach ) (dz/dt)

= (0.48)(3.83)2 m = 0.9L mmath mach'

tA tc I(Z - ZA)/(dz/dt)-A:,A . 5L4

(_ mach/g)2 [ 1 + (0.118)(3.83) '/2kl] (54)

, =24.5 ( mach/g) for kI = 0.02 7

Follow the exponential curve back to the time t = o to find the

critical amplitude for fabricational irregularities:

( Z)crit = (0.48)(3.83)! -mach e

= 0.94 - mach e-l- (0.48)(3.83)i/2ki (55)

( 0.94 )mach e-2 4 '5 = 2.2 x iO-11 tmach for kl =0.02)

If a value kI = 0.04 is adopted for the breakthrough coefficient

(slab of fluid accelerable to only 25 times its thickness before

the fingers of natural origin penetrate) then the calculated value

of the critical amplitude is increased from (55) to

( c cr) = 0.94 mach e- 1 2 .7510-6 A mach (k =o.o4)
crt 1 (56)
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A comparably drastic change in the order of magnitude of the cal-

culated ( 9 z) will be made by allowing--as Fig.7 does not--crit

for some preliminary merger of the fingers which grow out of dis-

turbances of reduced wave length ( = . Evidently it is not

possible from present information to state a reliable figure for

the critical amplitude (9 ZOcrit or for the corresponding dimen-

sionless ratio (' z)crit/'mach. Experiments to test the validity

of the concept of a critical amplitude and to measure its value

would therefore seem in order. They would be a natural extension

of any observational program to search for a breakthrough coefficient.

In Section II electrolysis was mentioned as a technique to

build up the proposed laminar structure. It may not be out of

place to think again of electrolysis as a general technique to

produce surfaces of very high perfection. Such perfection--

according to analysis of Sections III and IV of this report--will

not prevent Taylor instability, and could, at the worst, be a

form of "abacadabra" which costs much time and money; but it could

also help to postpone the breakthrough of spikes and bubbles.

Electro-polishing today is so greatly developed as a technology

for the manufacture of the chrome parts of automobiles and for many

other purposes that it is hardly necessary to recall the principle

of the polishing:

(1) Alternate cycles of current with different and pro-

grammed magnitudes for the product of (current density) ' (time)

in the forward cycle and the reverse cycle.
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(2) Deposition of a very thin layer of material in each

forward cycle.

(3) Inevitable formation of small bumps and spikes in this

process.

(11) Concentration of lines of force and field gradient

in the electrolytic fluid near these projections.

(5) Cessation of the deposition before this concentration

effect has succeeded in magnifying substantially these projections.

(6) Reversal of the current in the next phase of the pro-

gram to take advantage of this concentration of current density

selectively to remove the projections.

(7) A new cycle of buildup (one sign of the product of

(currenc)' (time) and electro-deposition (smaller magnitude and

opposite sign for the product of (current) • (time).

The technology of electro-polishing, however fully developed

for making shiny fenders, is not known by us ever to have been

used for scientific purposes by anyone with the talents and passion

for precision which Henry A. Rowland(13) showed in the design and

construction of an almost perfect screw for his engine to rule

gratings. Among the factors that might be considered if Rowland's

model were to be followed, this time to construct an almost perfect

surface, are these:

(1) Preparation of an almost ideal substrate upon which

to start the electro-deposition. In this connection one thinks

particularly of surface tension plus the pressure of a thin
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filling gas as a mechanism to produce a thin cylinder of fluid

connecting two separated hemispherical metal caps.

(2) Design of a system of electrodes, or a system of

automatic control. (scanning by light source plus photo electric

cell feeding into circuit which controls electrolytic current) or

both so as to maintain uniformity of thickness as closely over

large distances as over the very small distances at which Glectro-

polishing is relevant.

(3) Control of temperature and convection currents to a

completeness sufficient to prevent imperfections from these

sources greater than a preassigned magnitude.

(4) Method of mounting foil and inserting it in final

device which preserves its near perfection to the moment of use.

Surfaces prepared in this way might be expected (a) to be most

suitable for the experimental investigation of the statistical

bubble theory of Section III, which focusses attention on irregu-

larities at a microscopic - not fabricational - scale (b) to be

the most suitable for those technical applications where it is

important to minimize in any way that is feasible the effects of

Taylor instability.
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