-asos S8

& iy ot
2 e o et

" e R RN I

LS -

B

RRBRRAESS SRS S’ oo\ st Sl 203

AD-A009 943

LATE STAGE OF RAYLEIGH-TAYLOR INSTABILITY

David H. Sharp, et al

Institute for Defense Analyses

Prepared for:

Bowdoin College

August 1961

—

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE




i v RAR Institute for Defense Analiyses

]
3
k (-. . ke
! i Jason Summer Study j
1
C;D Bowdoin College E
: O |
3 -3 1
3 . 9 , j
1 (] d
<z .

;
3 s ﬁ
1
4 Z LATE STAGE OF RAYLEIGH-TAYLOR INSTABILITY .

by
David H. Sharp and John A. Vheeler D C

PRICES SUBJECT TO (HANGE

Brunswick, Maine
August 1961

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commorce
Springfield, VA, 22151

. IDA LOG No. U- 1997/5
nr
IAPPROVED FOR FUBLTC RELEASE ?, .

\ DISTRIBUZION UULIMITED, " E 60— S g

A~
«

3 O S P VLS. V. ST S S LI PUNTPL T 1P

{\
f
[{
|
F
E
E g




CONTENTS

ABSTRACT.........

Qo0'000OolQc‘ltll'.b'i..t.'oo'o'to0-oolo.oc.ol

I. INTRODUCTION AND SUMMARY...

!'..'.O'..-..O..loi.....QOOCO002

II. THE MINOR EFFECTS OF SURFACE TENSION AND VISCOSITY IN
INHIBITING TAYLOR INSTABILITY AT HIGH ACCELERATION........b6

III. PRIMITIVE STATISTICAL ANALYSIS OF REGIME OF BUBBLE
AI'MLGAIVMTIONo.0-000000000-0.0..0.16

IV. HOW FAR DO IMPROVEMENTS IN THE SURFACE SMOOTHNESS PAY
OFF IN REDUCED TAYLOR INSTABILITY?....eeceeeevccsascsss .40

TABLES

Ic;ovoot.0Ouoo"cOOQ.D00'0!000..00.'.00.00000'00000000l00o00007

II..... llllllll

"""'lll.‘.CQ'O'O".'.....U..O0.0.0.000..O..ll

III....Q.."'O.

l.....'.."0.'00...'000..0.'..0.....00..‘00...13

IV...'

.'.'..0.....'.'0l...'f.."..""".l.'..'."..'..0...'015

Vcc.‘oon'ooco'co

'00000Oclto.0000000000QIOlo.'.'.'.l..l...'OOOzl

FIGURES

10....'.‘........'0.‘0...'."........."..0..."‘0.00.00..0‘..5

20'000‘...0"..."'0""....'.....‘.00.'0'0.'..“'.‘00050'00010
3....l.'"C..'....l.0'0..‘0'00..0'.0...JDOO".C‘O.'OCQ'...'0018
ooto-occcooco‘oooorooooocoooooooooo-oooobo0000..000..0.0.0025

L,
5000.000'...l..l"00"l"..0.Q...l..I..'.0.....0'0.0.'......‘28
6.

.(.000..9"l'.0\\0'.O..0...0'0..0.0.0.".......0’.'l.'.l.‘ll38

AC}:I:O"IJ“J}"I]X“::}.:l!’l‘st ooooooooo ooc000o000000.o"t.aooooc.aoooooooool"g

la}‘:l“}‘:]:!‘:l!c;a:}o LI I I Y A ] LI I A ) . L ¢ s 0 @ LN 4 . L4 LI L] . * L) '50




i

LATE STAGE OF RAYLEIGH-TAYLOR INSTABILITY

by

David H. Sharp* and John A. Wheeler™

ABSTRACT
When a nearly fiat fluid surface z = o is subject to a small
sinusoidal dis‘qrqbance of the form §Z =82, cos kx and when gravity -

i or an equivalent acceleraiion field - acts on the fluid in such a
3 sense as to destabilize the surface, then the irregularities grow
exponentially with time in the regime of small amplitudes where
linear theory applies (Rayleigh). At larger amplitudes linear
theory does not apply and the gas or magnetic field on the other
side of the interface penetrates llnearly with time into the fluid
in the form of fingers or bubbles (G.i. Taylor). Considered here
is the subsequent stage of successive mergers between these fingers
to make larger and faster moving fingers. A primitive and tenta-

tive analysis of this merger process suggests the conclusion that
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*princeton University
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the advance of the leading - and growing - fingers relative to the

position of the ideal interface 1s described by an acceleration

which is of the order of 1/50 of the acceleration responsible for
the instability. Cbservations are not available to check this
conclusion, which however gives some indication of what effects to
look for when experiments like those of Lewis and Allred and Blount
are pushed into the regime of very high accelerations. To the
extent that the statistical analysis is valid, it suggests that
under the conditions assumed, a free slab of fluid cannot be
accelerated to more than roughly 50 times 1its own thickness with-

out suffering breakthrough.

I. INTRODUCTION AND SUMMARY
Magnetic fields can be envisaged today with a strength
so great (much more than 10° gauss) that the resulting magnetic
pressure can accelerate a metal object to a high velocity. We are
concerned here with a situation where the field is so intense
(field energy per unit volume of the order of heat of fusion per

6gauss) that the metal becomes liquid and

unit volume or B~ 10
the conditions are at hand for the development of Rayleigh-Taylor (L2
instabllity witb perturbations in the interface between magnetic
field and liquid of ever increasing magnitude. Under the extreme
conditions that czn be envisaged no way presents itself to hold

dovn this instability.

The surface tension of metal (Section II) is high but the
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accelerations considered arc so extreme G;,«J 109(0R 1013) cm/éecz)
that surface tension prevents only the growth of those instabili-
tiec whose reduced wavelength X = A/27r is of the order of ~ /o~ “orlc
cm or less. The idea 1s dlscussed vo increase the effective surface
tensicu by covering the surface with an alternating laminar struc-
ture composed f two fluids of high mutual surface tension, thus
enhancing the effective surface tension by a factor proportional

to the mumber of lamina. However the factor of stabilization
achievable in this way 1s not great enough to prevent the growth

of Interface irregularities with reduced wavelengths of micrometer
and greater magnitudes.

An alternative idea is discarded in the present context with-
out discussion: to reduce the rate of growth of interface dis-
turbancesfiith X less than some specified value X; s by inter-
posing between the principal metal and the magnetic field a layer
with thickness ~, %, , in which the density falls off smoothly
from that of the principal metal to very small values(3). Vie 1imit
attention to metal sheets so thin that this approach is not feasible.

Viscosity 1s a third effect which acts to inhibit the growth
of Taylor instability, but a simple analysis shows that, in the
extreme circumstances herc considered, viscosity is ineffectual in
diminishing the rate of growth of instabilities of reduced wave-
length X = lOE%n(or 1029& or less.

In the absence of any effective way to inhibit them Taylor
instabilities will grow beyond the small amplitude regime of
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exponential rise(l’ 2) and beyond the regime of formation of
spikes and fingers - and linear rise of these fingers or bubbles-
considered by Taylor(u) and will come into a third regime where
larger bubbles grow by capture of smaljer ones (Fig. 1). An attempt
is made in Sectlon III at an order of magnitude statistical
analysis of this late phase of Taylor instability. In default

of relevant experimental information about the details of this
late stage the theoretical analysis is necessarily uncertain. In
so far as the simplified assumptions and approximations used in
Section IIIX are valid, they would suggest that the heads of the
bubbles, or fingers, eat their way through the liquid with an
effective acceleration -relative tc the ideal interface- of the
order of 1/50 of the bulk acceleration of the fluid itself. 1In
other words under the conditions assumed 1t 1s concluded that 1t
is impossible to propel a sheet of fluid metal to more than rough-
ly fifty times its thickness without breakthrough. This estimate
should be taken not as a reliable guide for the design of a pro-
pulsion system but as an indicator for the hind of observations
and measurements that might be attempted in future experiments.

In so far as the statistical analysis of Taylor instability
has any validity 1t provides a new approach to an old question:
How far does it pay to go in trying to produce an ideal surface
in an effort to reduce Taylor instability? The analysis of this
point (Section IV) suggests that it is impossible ever to approach

so close to ideality that further improvements are without
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Fig. 1. Later or "non-linear" phase of Taylor instability (B -—-C)

compared and contrasted with the earlier "linear" phase (A-+B). In
v the linear phase, the shorter is the reduced wave length X of a dis-

turbance, the greater ig its exponential rate of rise:«x = (g/ x)2.

This law of growth ceases to be vaild, however, when the amplitude

of the disturbance has become comparable with x* . Also the shape

of an initially exactly sinusoidal disturbance of the surface

ceases to be sinusoidal when it has grown into the non-linear
regime.
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significant pay off. On this account electro-polishing 1is briefly
recalled as one technique by which to improve the smoothness of
a surface.
II. THE MINOR EFFECTS OF SURFACE TENSION AND VISCOSITY IN
INHIBITING TAYLOR INSTABILITY AT HIGH ACCELERATION
When a fluid of density _AP and surface tension o is
plastered smocthly on the ceiling of a room a small disturbance

in the surface

§2 =82, coo Rx (1)
will grow exponentially in time in accordance with the formula

§7 = %6 @™ (2)
or

§7 = §Zyp coh Xt (3)

In a more complete discussion one allows for the effect

of surface tension O (erg /'cme):

«2 =gk - (o7/p )3 (1)

or the effect of viscosity (dynamic, 7 , g/cm sec; kinematic,
v=7/P, cme/éec) or both in inhibiting the growth of the
disturbances(5’6).

Experiments have confirmed the expected effect of surface
tension. There is no reason to doubt that the expected effect
ol viscosity will appear when appropriate experiments are

perfoermed. Both effects one would like to increase dramatically
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if by so doing the growth of Taylor instability were effectively
inhibited.

TABLE I. Reduced wavelength X...r above which disturbances on
water and copper are unstable against exponential growth of e -1
small amplitude disturbances. From Eq (14) of text, Kéyhk=63¢p/°') = Xera

Acceleration Heo Cu
Surface fension 73 (20°¢) 1103 (1131°c)
(g/sec®) \
9 2 9 2
Acceleration in 107 cm/sec 10° cm/sec
Case I
Xenrr 1 2.7 x 10™4em 3.6 x 16% em
Acceleration in 1013 em/sec? 1013 cm/sec?
Case II
2 ~6 6 -6
Xenir, 2 .7 x 10 cm 3.6 x 107°cm

The effective surface tension is non-isotroplc when the push
comes from a magnetic field with lines of force running in the
y-direction parallel to the surface (yz-plane). From Faraday's
picture of tensions acting along the lines of force it is clear

(Chandrasekhar( 6)) that this tension augments the natural surface

tension,

Oy = O , Ao B
(£ 2 2 MmeTat 1/ He ks )

(5)

for surface irregularities
§7 = §2. w9 (RyX + Ry ) (6)

whose circular wave number k = (o, k¥) points exclusively along
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the magnetic lines of force. Under the conditions of interest

here the magnetic fields are so strong, the augmentation of surface
tension is so great and the stabllization thereby achieved is so
marked that surface disturbances running in this direction will

be disregarded. On the other hand, when the disturbance is
described by a vector ~E’ running in the x-direction the magnetic
lires of force in effect behave like separate bundles of rubber
tubing, every other bundle being raised and intermediate bundles
depressed by the perturbation. In this case the magnetic field
provides no assistance in stabilizing the surface and the effective
surface tension 1s to be identified with the surface tension of

the metal alone. To this extent it is irrelevant that the accelera-
tion is brought about by a magnetic field instead of a gas. 1In
another respect the difference is significant. In the magnetic
case the pattern of spikes and bubbles will be drawn out along the
magnetic lines of force in such a way as to create not spikes

and bubbles but crests and troughs. However, the cross section

of these topologically different types of irregularities we envisage
to be not greatly different. Consequently, the factor ~ 1/50

in the statistical analysis of bubble growth is thought to be
changed somewhat in absolute value but not in general import when
one goes from the bubble case to the magnetic case. Therefore

the bubble theory developed in Sectlon III will not be revised

on this account, and in most of the ensulng discussion the aniso-

tropy will be disregarded, that is the Taylor instabilitles will

e S
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be treated as if they arose from pressure by a gas. This is pre-
sumably the case in which experiments can be carried out, to Jjudge
from the work of Lewis(7) and Allred and Blount(B) where, however,
the accelerations were too small and the surface tension too great
to allow opportunity for the later amalgamative phase of Trylor
instability to develope. In contrast, for the accelerations listed
in Table I the natural scale of dimensions for the first bubbles

is so small that macroscopic observations will reveal, not these
first bubbles, but only the much larger ones that arise from them
by many generations of merger.

In principle, one can greatly increase the effective surface
tension operative at t.e interface between two fluids, A (magnetic
field) and C (molten copper), by replacing the simple interface
by a composite interface (Fig. 2) built out of many thin lamina
of 1liguid C and another liquid B (a plastic, for example),
according to the pattern...AAAACBCB......CBCCCC., Ordinarily such
a structurz is difficult to produce and even after being produced
will disappear through the mechanism of formation of drops and
rearrangement into a structure such, for example, as

... .AAAABBBCCCCCCC. ...

Fabrication and preservation of the laminar structure would
seem much simpler in the case of a sollid metal sheet which is
destined to be converted into a liquld only at the time of sudden
buildup of a powerful magnetic field Just above its surface. Let

the homogeneous metal sheet be replaced by a metal sheet of laminar
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Fig. 2. Increase of effective surface tension at interface between
C and A by interposition of many thin lamina of a third substance,
B
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structure produced by alternate electroplating in two electrolytes

| of very different constitution or otherwise., Let the two substances
% be so chosen that their interfacial tension is as large as possible.
Then the effective surface tension of the entire molten metal

sheet with respect to deformations of reduced wavelength x of

h the order of the foil thickness or greater has been increased by

3 a factor of the order of the number of lamina.

i Consider for example (Table II) a metal sheet of thickness

10-2 cm2

made of alternate sheets of metal and plastic each

~ 100 atoms or. ~v 10"6 cm thick. The effective surface
tension for small amplitude disturbances of reduced wavelength
x> 107°

factor of the order ~ N = 1072 em/1076 em = 10%; thus

cm will be increased above its normal value by a

Teyseetivece™~ Now ~v lO“o’ . (7)

TABLE II. Surface tension for certain liquid metal-organic
compound and liquid metal-air interfaces; also estimates of the
; critical point temperatures for these metals (at which the surface
tension goes to zero). The fourth column gives the calculated
critical reduced wavelength X..r = A/27r (transition from stabllity
for shorter wavelengths to instability for longer wavelengths,
for a small amplitude disturbance in a moﬁten metal sheet 107<cm
‘ thick of laminar construction with N = 107 lamina, under condltions
where the acceleration is ~ I0L3 cm/sece. The column X eooroot
. 32 Xopit Zlves the reduced wavelength for which growth
small amplitude theory predicts the greatest growth constant,
K = Aomax = (maximum value of (gk - = Kk%/P )2 =(2g / 3 Xp )
‘ This growth constant itself is tabulated in the next column.%&%ﬁ%ﬁ
Consider the initial surface, prepared however so well, and
Fourler analyze the irregularities in this surface, and enquire
as to the typical amplitude associated with disturbances of the
reduced wavelength '%Iastest . Let it be required, for the sake

growth
of illustration, that these disturbances not grow duringatime

[V
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interval of the order of ~ 1 4o

(amplitude ~ Agg.

instability take hold.
less than ~J Ammer wieweste = Xpg, €XP[-K5q. 1T .
number 1s tabulated in the last column. The impossibility to

attain any such perfection in the surface shows the hopelessness
of counting on surface tension to inhibit Taylor instability in
the present circumstances.

(for example) to the point
) where the non-linear effects of Taylor
Then the initial amplitude A must be

Thls preposterous

o o 2 )
rface| T...:+.("K)| T(“K)|o’(erg/cm s (em) | X em) A fsec-): cm
Interface| Topi1(°K)| (%K) {o"(erg/em”) (Fpir(cm) 5?85%ﬁt( ) fasgégt QT é&_ )
' gr
able

- - -y -k
Mercury- 293 357 ~rzxw e, g X I0 7 ots x168 |vagxite
Benzene

“4 3.3 x /o'q ~leYf xlo’ ~3.3uo"’yg"
Mercury- | y /g23 283 Y87 ~li 9 K10 .
Air
Copper-Hy 14otf /103 w3 exiom? | g2 x 10”7 o x108 Jugewhe™
Aluminum~ -
Air 973 gHo ~5 3 x10°Y 0.2 x/a"/ ~8.0 x107 |~iex1axe

It is evident from the numbers for X<t in the table cal-

culated for a number of laminations as great as N = 104 that it

has not been of much use to laminate the metal sheet to inhibit

Taylor instability!

In addition, the metal sheet is thought of

as driven by magnetic fields so great and comes to temperatures

so high that it is carried from the liquid state past the critical
temperature--where the surface tenslion vanishes--into the gaseous
state where the normal concept of surface tension has to be

abandoned.

The natural scale of dimensions at the beginning of the merger

12




F

[P

ek

——

process - as distinguished from the scale of fabricatlonal imper-
fections ( which are overlooked here, see section IV) - is so small
(Table I) and the accelerations so high, 10° (or 1013) cm/éece
that it can well be asked (Table III) whether viscosity may not

be more important than surface tension in governing the precise

value of this natural scale of sizes.

TABLE III. Critical acceleration g .. = (o1pP /v Y .
Here _ o is the surface tension (erg/cm?), _P 13 the density
(g/em3) and = 7/, is the kinematic viscosity (cm</sec).

For accelerations much higher than Berit? viscosity dominates

over surface tension in determining the circular wave numbar.kiq-
and wavelength N;.g.= @W/ks.3. of the fastest growing small amplitude
disturbances and the exponential growth constant K...x (sec-

of these Taylor instabilities. For accelerations less than Borit?

the surface tension dominates over viscosity in determining the
circular wave number and the growth constant of the small amplitude
disturbance. which multiply at the highest rate: Rj.q.~ (§L/07)**
and Kemex ~ ( F3R/0° )M . VWhen surface tension dominates it
stabilizes small amplitude disturbances whose reduced wavelengths X
are of the order of % the reduced wavelength of the fastest grov-
ing disturbances, X;43 , and less. VWhen viscosity dominates it
does not stabilize small amplitude disturbances of any wavelength,
but it does reduce the rate of multiplication of disturbances

with X< X4.3. relative to what the growth constant would be in
the absence of viscosity, &= (¢/X)% | Each material in the
table is considered under circumstances where ., it is pushed by a
medium (gas or magnetic field or radiation) of density negligible
in comparison with the density of the pushed medium. The temp-
eratures in the table can be converted tﬁ electron volts by
dividing the conversion factor 1.15 x 107" ©K/electron volt.

Pushed Medium (%K Cmfaet
(%) Ve o | v | gL

50, Liq 293 1.00 73 [0.010 | 3.9x107
Cu, 1iq. 1500 8.2 1103| 0.004 | 9.5x10"°
Cu, gas 1500 1.0 — -
D-T, “fully ionized | 2X10’ 2.0 oy |— —
H, tully ionized dependent | 1.6x10 — —

upon cir-

cumstances

13
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*The viscosity listed here for fully ionized hydrogen under
conditions of interstellar density refers to the conditions of
ideal laminar flow such as are assumed in conventional definitions
of viscosity. In other words z'=+%/e has been estimated from the
formula ‘® }:

. )2
V= (UP) 2D~ (T kT) " frretp T is the temperature (°K),
k the Boltzman constant, T o® is the collision cross section
for a rigid spherical molecule, D 1is the coefficient of diffusion.

In actuality, the interstellar medium, like the earth's
atmosphere, will typically be ir turbulent motion already before
it is subject to pressure from magnetic fields or radiation such
as can generate Taylor instabllity. Under these conditions,
the exchange of momentum between one part of the gas and another
is brought about very little by kinetic theory motion of individual
particles, such as are considered in the elementary theory of
viscosity. The momentum exchange comes about to an enormously
greater extent through eddies and vortices that carry whole masses
of the medium from a layer with one averape velocity to a layer
with another average velocity. The effective viscosity to be
used under sych,conditions is discussed, for example }n Landau
and Lifshitz(10), and Hirschfelder, Curtiss and Birdl9J,

eSS

Viscosity, like surface tension, decreas.: at first as the
temperature of a molten metal is raised toward the critical
temperature. However, contrary to the surface tension which goes
to zero at the critical temperature, the viscosity goes only to
a reduced value somewhere in the neighborhood of the critical
temperature and pressure provided that the path pursued in the
PT-plane leads near the critical point. As the temperature is
increased to a figure rmuch higher than the critical temperature
the viscosity of the metal, like the viscosity of cther gases,
approaches Maxwell's law of proportionality to the square root
of the temperature T (here and in the following expressed

directly in energy units to eliminate the purely conventional

14
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Boltzmann factor k and its possible confusion with the wave
number k):

: G"
t G;IANS L TRANS , ‘

Here M, is the mass of an ion (1 = 1) or electron (i = 2),
vy 1s a velocity typical of thermal agitation and(r%rans, 4 is an
effective cross section for transport such as is defined in
diffusion theory(g). For very high temperatures it is no longer
possible to treat this transport cross section as independent of

velocity - and therefore as independent of temperature. 1Its

fall with temperature makes the viscosity rise with & power of
T higher thani. Table IV gives a very rough estimate of the
viscosity of copper at a temperature T~ 1.3 ev (150C0 °K).
TABLE IV. Order of magnitude estimate of contributions to
the viscosity of copper at T~ 1.3 ev, It 1s assumed that the

tygical atom at this temperature has been dissociated into one
ion and two electrons.

Momentum o Contribution
transport
1
Particle AJ(MiT)a (gem/sec) (cme) to 77 (g/cm sec)
-19 -17
Electron ~0.5 x 10 ~ 10 ~ 0.005
cw™ ton| ~150 x 1079 ~ 10716 ~ 0.15

Total 1 ~ 0.16 g/em sec

Kinematic viscosity (at P~ 8g/cm?) estimated asz/ = 7/P~0, Og/
cme/sec

15
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Consider a sheet of copper vapor with the kinematic viscosity
- B 10"2 cme/g:subject to acceleration by a pushing fluid of
negligible density at a rate of ~ 1013 cm/secz. Then in the
small amplitude theory of Taylor instability tuose Fourier com-
ponents are calculated to grow most rapidly which have a wave

number of the order
2 /3 10;3 . / a 1/3 s -1
< } com
d(?/;j ) ™~ (‘/K 107 Vit T 3x /o . (9)

/Aka‘rcs T GRewTh

They have a calculated exponential growth constant

1/3
13 & .2 y
Koy ~ ( §/¥)  ~ (—/" el ) ~ 1.7 K10 e (10)

2 x /07 cm® s
Here as in the case of surface tenslon, the scale of wave-
lengths at which the inhibiting effects are significant are far
too short to make viscosity of any relevance at the scale of in-
stabilities which are of concern.
III. PRIMITIVE STATISTICAL ANALYSIS OF REGIME OF BUBBLE
AMALGAMATION
So far it has been enough to consider the rise of a
single bubble because the starting assumption was complete periodicity
with all bubbles identical. 1In actuality there will be small differ-
ecnces in size from bubble to bubble due to slight departures from
ldeality at the start of the acceleration of the interface. These
differences will occur whether natural causes or machining determines
the dominant wavelength. In the one case, the spacing is determined

by the circumstance that the growth constant has'a smooth maximum

16
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as a function of the wavelength. Therefore, even a few extra

atoms here or there on the interface will favor at the start a
scale of dimensions which here iz a little less than the size for
ocptimum growth and there a little greater. Similarly, in the
case where machinery or other techniques have built into the
initial surface irregularities with a unique characteristic length,
there will nevertheless again occur small variations above and
below this urique size from one incipient bubble to another due
to the presence or absence of a few more atoms here or there if
due tc no more mundane cause!

A small fractional difference in size

§ = (R - Ry) /R, (11)

between one growing bubble and another will cause a corresponding
fractional difference §/2 iu the rate of rise ~; ~ (g Ri)l/a of the
two bubvles when they are fully developed. In consequence of this
difference in rate of rise, one bubble will get ahead of its
neighbor and dominate it. The two bubbles will come to constitute
in effect a single bubble with some minor irregularities in shape
(Fig. 3). This process of merger of two bubbles is a decisive
feature of the later stages of Taylor instability. Clear evidence
of repeated mergers is seen in typical photographs of Taylor in-
stability, such as those taken by Lewis (7) and Allred and Blount(8).

It is necessary to examine in more detail the conditions for
merger and the consequences of merger in order to arrive at any-

thing approaching a rational estimate of the time required for
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Fig. 3. Factors governing bubble merger in idealized model., Upper
left: Representative bubble pattern as viewed from abowe. The
cross sectional area associated with one bubble in this diagram is
identified with 7T R2 to define the effective radius R. Upper right:
Bubble or finger No. 39 is idealized as engulfing finger No. 35 as
soon as the effective height z 9 of the larger one exceeds the
effective height of the smalle% one by the radius of the smaller
one; that is, as soon as z3g (point & ) comes to equality with

z§5 + R§5 (point 7). The arrows recall that the rate of rise

of” the larger bubble is greater than the rate of rise of the
smaller fin%er, ag 1is required for capture of the smaller one:
dz/dt = 0.48 (gR)Z. 1Instead of the true time t it is convenient
to use the "reduced time", T = 0.48 gzt, so that the rate of

rise becomes dz/d¥ = D.. Lower diagram: Graphical procedure to
determine which pair of bubbles merge first. For simplicity,
attention is limited to the system of eight fingers outlined by

a heavy line in the upper left hand diagram. The calculated value
of the reduced time interval A required for No. 39 to capture
No. 35 is determined by the slope (with sign reversed) of the
designated line in the diagram. The line from No. 39 to No. 42

is irrelevant because it corresponds to two bubbles which are not
in contact. For fingers in contact, the line with the lowest
slope corresponds to the earliest merger. A new diagram of this
type was constructed for each successive stage in the process of
bubble merger in the process of working out the illustrative
numbers in Table V,
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bubbles to break through a slab of liquid of finite thickness.

No detailed hydrodynamic analysls of the merger process is
available. Therefore, order of magnitude considerations are
demanded. For this purpose, the actual situation will be replaced
by an idealized model, here called the "Maine bubble model"
because the first illustrative calculations on the model were
made in Maine. In this model, each bubble will be considered to
stake out for itself a certain area when it is projected on the

ideal initial interface. This area will be assumed to remain con-

stant during the time of rise of the bubble. The area will typlcally

be irregular in outline. However, the rate of rise will be cal=~
culated as if the shape were that of an ideal circle w.th the same
cross sectional area W R (definition of R!). For the rate of
rise, Tayleor's formula will be adopted,
~ = (0.48) (gR)
appropriate for the case of a pushing fluid of negligible density.

L
2

(12)

Suitable changes can be made to correct the analysis when the push-
ing flvid has a density appreciable in comparison with that of
the pushed fluid.

The volume of gas which fills the bubble above the ideal
initial surrace, divided by the cross sectional area of the bubble,
defines an effective height z for the bubble which is somewhat
lower than the vertex.

Two bubbles will be assumed in the model to merge into one

when the larger one 1s sufficiently far ahead of the smaller one.
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The lead required for merger will be very little when the smaller
bubble is very small compared with its winning neighbor. The
necessary lead will be greater when the effective radius of the
smaller bubble constitutes a larger fraction of the radius of the
larger one. This qualitative aspect of the merger process will be
sharpened up in the model to the following rule:

1st rule. Two bubbles will merge when the larger one of

them has a lead on the smaller as great as or greater than

the radius of the smaller one:

z -2 > R- . (13)

The other two rules adopted in the model for the merger

process are:
2nd rule. Conservation of cross sectional area,

77'Ri,. = R + RS . (14)
This rule provides a way to calculate the effective radius,
Rm of the merged bubble.

3rd rule. Conservation of volume,

2
T R, 2zp = TFRE Z, +TRe z (15)

From rules 2 and 3 follows an 2xpression for the effective
height of the new bubble at thefioment of formation:
z = Rg 24 + R? Z-
R2, + R2 . (16)

As starting cond. tions for the model one has to specify the
quantities R and z for each bubble at the time t = o and has to

give, in addition, the connectivity of the bubble pattern, either
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by way of a qualitative diagram like Fig. 3, or by way of a listing
of all bubble-to-bubble contacts which exist at the time t = o.
In the exampie in Fig. 3, thes:z connections are 1-2, 1-22, 1-21,
1-20; 2.3, 2-23, 2-22; .. . ; 37-38,

Table V illustrates the evolution in time of an arbitrary
initial pattern of elght bubbles calculated according to the rules
of the foregoing model.

TABLE V. Development of a sample pattern of eight bubbles
(Fig. 3) as computed from rules 1,2,3 of the Maine bubble model.
The initial conditions were arbitrarily adopted to correspond to
(1 )a fractional variation of the order of 50 percent in bubble
cross sections and (2) an initial elevation for each bubble equal
to the effective radius of that bubble. This condition is meant
to correspond qualitatively to the circumstance that the larger
disturbances have typically risen to a greater height than have
the smaller ones at the stage when the bubbles have come into
the non-linear regime of linear rise with time. However, the here
assumed proportionality of Z; to the first power of R, has no basis
in theory nor any special significance. The assumptign is made
only to glve definite and simple starting conditions for this
particular problem. In the table, the quantity "reduced time"

7 1is an abbreviaticn for the quantity (2/3) g2t. In teyms
of ¥ the formula for the veloclity of rise becomes dz/d¥ = R2,
At each stage of the calculation, every contacting pair of bubbles
is considered in turn, and for each such pair the reduced time
to merger is calculated in each phase of development that one
merger is listed which is calculated to occur earliest.

Bubble 26 33 34 35 39 4o 41 42 Reduced time
R 0.31 1.21 1.10 O.74 1.441.09 0.64 0.72 for merger

Z 0.81 1.21 1.10 O.74 1.44 1.09 0.64 0.72 A7, v=3SAar

dz/dt 0.90 1.10 1.05 0.86 1.20 1.04 0.80 0.8

Bubble 26 33 34  35-39 i 4p 41 42
R 0.81 1.21 1.10 1.62 1.09 0.64 0.72
z 0.81 1.21 1.10 1.29 1.09 0.64 0.72 A¥min. = 0.23
dz/dr 0.90 1.10 1.05 1.27 1.04 0.80 0.85 T = 0.23
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Bubble 26 33-41 34 35-39 40 4o
R 0.81 1.37 1.10 1.62 1.09 6.72
7 0.81 1.08 1.10 1.29 1.09 0.72 AT in= 0,89
az/at 0.90 1.17 1.05 1.27 11.04 0.8

T = 1.12
Bubble 26-35-39 33-41 34 Lo 4o
R 1.81 1.37 1.10 1.09 0.72

Tl =

7 0.80 1.08 1.10 1.09 0.72 4 1.13

T =
dz/dr  1.34 1,17 1.05 1.04 0.8 2.2
Bubble 26-35-39 33-41-42 34 Lo
R 1.81 1.55 1.10 1.09

AT...= 1.27

2 0.80 1.00 1.10 1.09

T = 3.52
dz/dx 1.34 1.24 1.05 1.04
Bubble 26-35-39-40 33-41-42 34
R 2.12 1.55 1.10

Ar..= 3,21

v 0.88 1.00 1.10

T = 6,73
dz/dv  1.46 1.24 1.05
Bubble 26-34-35-39-40 33-41-42
R 2.38 1.55 A= 5.40
A 0.93 1.00 T = 12.13
dz/dr 1.54 1.24
Bubble  26-34-35-39-40-33-41-42
R 2.84
Z Q.95
dz/dr 1.68
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The average veloclty of the system of fingers increases step

by step as the mergers proceed until finally the entire cross

sectional area is occupied by a single finger rising at a constant

[N

veloclity. Here it is assumed that the slab of fluld is thick

AT

enough so that breakthrough does not occur until finger amalgama-
tion is complete. A thinner slab of heavy fluld will be penetrated
by a finger of the lighter fluid which is still not merged with all

other fingers.

e £ aa: el W

It follows from this analysis that a slab of fluid very thick
intomparison with its effective radius will almost always be
penetrated by a single finger, independently of the original pattern

- of the fingers. Moreover, the time for merger of the fingers in

this case will constitute only a small fraction of the much
longer time taken for the {inal big rapidly moving finger to break
through. Therefore, an estimate of the time for breakthrough can
be made in this case, from the formula

breakthrough time

for a slab of fluid (thickness of slab)

thick in comparison | -

with its effective (213) (peesloroliom )72 (offeclict octins) /2
radius COZNTE GEUTIRIE e I

Y
Ll " * . or
".'\:. [ LY ‘.o,)

(a7)

In this time the slab has advanced through the distance

(distance

2
of advanc%) ~  (1/2)(acceleration)(time)

~ (9/8)(thickness of slab)e/(effective radius),
(18)
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a quantity which is large when compared elther with the effective

radius or with the thickness of the slab.

An estimate o. the breakthrough time in the case of a thinner
slab demands an analysis of the details of merger. In the case
of the eight fingers considered in Table V, the velocities change
with time as indicated in Fig. 4.

The spread in velocities throughout most of the stage of
cannibalization is roughly of the order of one quarter to one
half of the average velocity ltself at each instant. This average
velocity lncreases in a stepwise fashion with time. However, if
the increase is represented in idealized form by a curve, then a
straight line curve is not out of place to describe the results
of the computations. ?he rate of increase of velocity with time
read off of such a curve lies between 0.02 g and 0.05 g in the
example.

Abstracting from this special example one is led to consider
a pattern of fingers which develops in time according to a similarity

oR scalinpg transformation, as follows:

(1) 4n average rate of rise for the fingers which are
present at any glven time which is given by the expression
Voy = (average velocity) = kl gt,

where kl is a small dimensionless numerical factor of the
order of

0.02 to 0.05. (19)
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Fig. 4. Velocity as a function of time for the fingers listed in
Table V. Each horizontal line corresponds to one finger. The

line starts when the finger is formed and disappears when the finger
merges with another. Some foreshadowing can be seen in this diagram
of the central points of a statistical analysis:

(1) A statistical distribution in rise velocities at any
given time. This distribution in the example, neither clearly
narrows up as time advances nor clearly broadens out when expressed
in terms of the fractlonal variation of the velocity about the av-
erage velocity which obtains at that instant.

(2) A roughly linear increase of this average rise velocity
with time, leading to the concept of an effective acceleration
associated with bubble rise during the regime of continued merger.
The two dashed lines correspond to values of this effective accelera-
tion of 0.02 g and 0.05 g, which, therefore, serve in the particular
example as lower and upper limits for this effective acceleration.
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(2) An average effective finger radius

R ~ /? , ok Rav=hz gt (20)
where k2 is another dimensionless factor.
(3) A statistical distribution of finger radii about the
average radius given by something qualitatively like a
Gaussian curve, with a fractional spread in radil which does
not change in time as the fingers merge:

[(R=Rav R, /Ry = £7= constant .
If a distribution as special as the Gausslian distribution

vere to be assumed, one would have the formula

number of fingers total number of} 4R §R~Rﬂv§2
d [ with radii between| =| fingers at the [(277)z R,§ éxp{‘z (Rav § )

R and R+dR given time
(21)

not only for the radli themselves, but also for the cross
section area. For the rise velocity and for the effective
height distributions are assumed---expressed in fractional
deviations from the average---which do not change with time.
This statistical assumption is taken to apply throughout
the regime of continuing mergers, apart from the first few
generations of mergers where the speciallitles of the start-
ing mechanism show themselves, anthart from the final
stage (if breakthrough has not already taken place) where
only a few fingers are left,

It is possible to make these assumptions plausible on dimen-

sional grounds. In the regime under consideration, the fingers

26
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have grown in size to dimensions so great compared to the characteris-

tic % set by surface tension and acceleration (or by viscosity
and acceleration) that surface tension (and viscosity) have
nothing to do with the main features of the rise phenomenon. At
the same time the fingers are small enough in comparison with the
dimensions of the slab of fluld that these macroscopic dimensions
also can have no significant effect on what is going on. Therefore,
the only physical quantities left to dominate the situation are
the acceleration g and the elapsed time t. Out of these magnitudes
there is only one way to construct a quantity with the dimensions
of an average finger radius (Eg. 19) and a quantity with the dimensions
of an average rise velocity (Eq. 20).

These dimensional arguments do not justify formulas of the
type (19) and (20) with universal coefficients kland k2, indepen-
dent of the original spread in finger sizes. It is even possible
to point to a perfectly conceivable situation in which the dis-
tribution in finger sizes deviates enormously from a Gaussian
curve, not only in the first few generations of mergers, but also
right up to the stage where only a few bubbles are left,. (Fig. 5).
Nevertheless, even in this extreme case a simple analysis makes it
reasonable to think of the effective rate of rise as being unaffected
by the anomaly in the distribution of finger sizes.

Rather than the big finger in IFig. 5 helping the little ones
to move forward faster, the little fingers hold back the big one,

if one can take the Maine model as a guide to the true state of
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Fig. 5. Case of anomalous distribution in finger sizes.
larger finger rises much more rapldly than the small ones and

The

engulfs them one by one until it spans the entire cross sectional

area of the slab of fluid.
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affairs. According to one of the rules of that model, a large
bubble of effective height z* engulfs smaller ones of average
effective height zf as soon as the difference z* - Zov rises to a
value as great as the average effective radius Rav of these
fingers. The consequence is this, that the big finger grovs in
radius faster than the little ones, but does not get out of step

with them in vertical elevation. In each interval of time dt i1t

eats whatever number of little bubbles,dN, is required to dilute
its rise back to parity with its fellows. The new effective height
is found by adding the volume of the old finger and the newly
assimilated ones and dividing by the cross-sectional area of this
collection. If too many small bubbles have been taken in during
the interval dt, this effective height will be reduced too much
and new cannibalization cannot go on until the faster rate of rise
of the larger bubble once more allows it to get ahead. The converse
also appiles--if the big bubble assimilates too few small ones, its
elevation will not be diluted back enough to make up for its faster
rate of rise. Therefore, it will get ahead and in the next time
interval take in a more than normal number of fingerlets. Thus,
in the model, there is a stability about the mechanism through which
the 1ittle bubbles govern the rate of rise of the big one.

This reasoning can be expressed in mathematical terms. Let
the average rate of rise of the small fingers be expressed in the
form (19) expected from similarity arguments,

t) = k; gt 22
v (8) =¥ (22)
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and let their average height and average radius be written in a

form consistent with this expression:

2,0 = (& /2) g6° (23)
R (8) = (K /0.48)2 g2 (24)

The big finger is always at the point where the smallest addition
to its height makesthe difference between more cannibalization and

none at all; or, according to the model,
¥*

Z - Zay = Ry (25)

Thus one finds

2" (8) = [(ly/2) + (i, /0.48)°) t® (26

The rate of rise of the big finger calculated from this expression
is

v¥(t) = cdz */dt = [ 1c1 + (k’la/o.lz)] gt (27)

Any value of the effective radius R* of the large bubble is com-
*

patible with this expression. However, the larger R happens

to be, the greater is the natural rate of rise associated with a

finger so big,

’ natural rate of
rise of big finger

L
= (0.48)(gR")2 (28)
and the more littie bubbles 1t must assimilate per second to hold
its rate of rise back to the figure (27). The "drop back" due

*
to eating out from the effective radius R to the effective radius
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R + dR in the time dt is

" . ‘ . ZR?2 4z, 2R aR
2 by neMEATING = B Atk LPENE S 2 -

*
R 2 + 28" ar*

(2R /R") (2" z_)
(2aR"/R*) Ryy (29)

The rate of drop back on account of assimilating smaller bubbles
has to satisfy in the model, the equation

rate of drop back \ natural rate of slower rate of rise

due to assimilatior) ={ rise of big finger - | required to remain i

of smaller bubbles in absence of growth step with smaller
bubbles .
(30)

or

* * ' % 1 1
(2 Ryy/R )(dR /dt) = (0.48)(gR )2 - (0.48)(gR,, )" (31)

Under the conditions contemplated in Fig. 5, the radius R* is
large compared to Rav’ Therefore, it 1s appropriate to neglect
the last term in (31). Then Eq. (31) for the growth of the big
finger may be integrated to give the effective radius

9k, T
Ty + [R*(tc)/ﬂnfe Rﬁv(ﬁ]-[R*(to} [o-se Hav(")J ' (32)

R (t) = R*t.) {

Here the radius Rav(t) of the small fingers has been taken to
follow Eq. (24).

To fix ideas, assume, for example
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(advance of bubbles)

relative to liquid "breakthrouﬁh

k. = fadvance of = constant = 0.02;
(slab of liquid

g = 2X 1013

cm/éecz;

dimension fized
by small amplitude

1
R (t )~| theory allowing ~ 3.8317 (3¢ /S,F’)E (33)
O \for surface tension

; [ (800g/sec?) ]”B

(2 x 1013 cm/éeca)(lo g/cm3)

= 1.3 % 1072 cm;

Y 3
Voults) = (0.48)(gR,,)° = T.7x10 om;
z_ (t;) = (0.23/2k)) Ry, (Eqs. 23, 24) = 7.8 x 107 em.

These "initial" values correspond to a time coordinate
t = 2.0 x 10~8 sec in Egs. (23) and (24). At any later t the
calculated effective radius of the small fingers is

Rav(t) = (3.3 x 10%° cm/%ecz) £2, (34)

Assume that a flaw somewhere in .he original surface gives rise
to a single disturbance--in the midst of these smaller bubbles--

with an effective radius

R (t,) = 107> em, (35)

Then the calculated radius of this dominating finger at any later

time is 2
* -3
R (t) =10~ cm 0.18 (36)
0.18 + 2 x 1073em - 2 x 10 22m
Ry (©) I.3 x 10ocm* -
32
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The denominator vanishes and the finger radius goes to infinity

when R,, has increased by the very small amount

ARav = (_0.18)2 (1.3 x 1072 cm)2 /4 x 107 3em = 1.4 x 10~%m

to the value
= - =5 -9
Rav(new) = Rav (to) + AR =1.3x10" + 1.4 x 1077cm. (37)
At this instant, according to the model, the big finger has grown
so much that it engulfs the entire fluid. Until this instant,
the 1little ones govern the rate of rise; thereafter, the big one

does, and the velocity kecps the constant value

12 Ay
v = 0.48 { gR psadive w5 Pz
LibTLRE SLAD

1
Iy

=(0.48) gé(area of slab/T )*, (38)

The example Just discussed would make it appear that one
finger substantially larger than its fellowgﬁill quickly come to
dominate the flow pattern of the entire mass of fluid. How much
validity should be ascribed to this consequence of a rather idealilzed
model of bubble merger? (1). Available experimental information
(Davies and Taylor(u); Lewis(7); Allred and Blount( 8); Chang(ll) )
does not show any such sudden rise of one finger to dominance.
However, these experiments are not relevant anyway to the peint at
issue. The original size of all fingers-and the thickness of the
slab of fluid--were not great enough compared to the characteris-

L
tic dimension 6.6( 0/ gp ) set by surface tension and by the

acceleration. Therefore, surface tension greatly changed the
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phenomena which inertia and pressure would otherwise have brought
into evidence--and which are the object of concern hers.

(2) A qualitative look at the hydrodynamics of bubble merger
in the absence of surface tension would suggest that a finite time
is required to complete the process of bubble merger. The debris
from the smaller finger has to be washed down the surface of the
newly enlarged finger before this object can be regarded as a unit.
Only then can 1t be expected to live up to its new cross-sectilonal
dimensions in its ability to engulf a new bubble. Consequently,
one would expect a certain limitation on the rate at which a
larger bubble can spread its influence sideways to take over one
smaller bubble after another. No such limitation of rate was
built into the Maine model of finger merger. Therefore, it is
permissible to doubt the prediction of the model that a significant-
ly larger thaqéverage bubble will take over the whole fluid
before the other fingers have had time even to double in height.

(3) It is conceivable that the distribution of finger sizes
igﬁayleigh-Taylor instability has a certain analogy to the dis-
tribution of electron velocities in a gas subject to an electric
field in this respect,that there is a sharp distinction between a
statistically stable situation and a runaway situation. In the
electrical case, the critical parameter is the applied electric
field. 1In the hydrodynamic case, the difference between (1)
runaway and {(2) approach to a standard distribution is governed--

on this view--not by the acceleration (regarded as fixed) but by
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the initial distribution of finger sizes itself. 1In other words,
a distribution which departs not too greatly from the canonical
distribution is conceived to approach in time the canonical one.
The characteristic scale Rav of this canonical distribution is, of
course, itself increasing at the same time. On the other hand, a
distribution of finger sizes which departs too greatly (Fig. 5)
from the canonical oneisconceived to depart more and more from
that distribution and to lead to one or more runaway bubbles.

In summary, presert information does not suffice to distinguish
between the following three possibilities:

(1) One bubble always quickly runs away.

(2) Depending upon the degree of anomaly in the original

distribution of sizes, either one bubble runs away, or a

standard statistical distribution in sizes is attained, with

a corresponding standard law of growth.

(3) A standard distribution and rate of rise are almost always

reached.

Possibilitles with a light fluid to push a thin slab of heavy
fluid a great distance would seem to depend very heavily upon the
correctness of alternative (2) or (3).

How rapid will be the rate of breakthrough if (2) or (3)

apply? The following order of magnitude analysis of this question
is assumed for simplicity:

(L) something like the Maine model for bubble merger plus
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(2) stability of a canonical distribution of finger sizes.

In addition, for simplicity and definiteness, this distribu-
tion will be taken to follow

(3) a Gaussian distribution law, with a parameter § of

fractional spread in radii equal to 0.5:

!

2
(R-Rav)
d(number of fingers) dr exp ] -
(total number of fingers) g )’é‘ ﬁav S -—_—Z(Ravg )2 ’

§ =0.5. (39)

kxpression (39) predicts a non-zero probability for fingers of
negative radius. However, the absolute value given for this
probability is so low that this milnor drawback of the Gaussian
formula can be disregarded in favor of mathematical simplicity.
Now to estimate the rate of evolution of such a canonical distribu-
tion assuming its self-perpetuating character!

Let Ry ~ Ryy (1- & /2) represent the effective radius of
one bubble which is soon to be eaten. The larger one which eats
it has a radius of the order of Ry ~ R__ (L + & /2). The
velocities of rise of the two fingers,

1 1
2

~ 0.48 (gRav)%(l— 5/2)% and~0.48 (gRl)E (1 + §/2)%

will differ by an amount

1

AV ~ 0.48 (gnavf ( §/2). (40)

One must get ahead of the other by an amount AZ of the order Ryy
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to merge with it. The time required for this lead is of the order
1
At ~ (2/0.48§ )(Rav/g)’" . (41)

In this time, two bubbles have amalgamated to give a single one
of roughly twice the area. The same effect has been happening

everywhere else through the fluid. Thus, 'U‘Bavz haslbeen in-
creased by a factor 2; and Rav has been magnified Ey 22; and the

average veloclity of rise has gone up by a factor 2ﬂ, from

-
[V

L
0.48 (gRav) to 2% x 0.48 (gRav) . (42)

The increase in veloclty, divided by the time At required to
bring it about, defines the effective acceleration (see Fig. 4, 6)

associated-~by the statistical model--with finger penetration:

averzge acteleration
of fingers with
respect to.the base line | , Apv/At
which would be associated
with acceleration of
ideally flat interface
1
Ty

L
(2% -1) 0.48 (eR  )°

- = (0,022 § ) &g
(2/0.48 § )(Rav / g)°

or

By = K & ~ 0.00g. (43)

Thisz estimate of a breakthrough coefficient ki’ even 1f the l1deas
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Fig. 6. 1Increase of velocity with time as a consequence of bubble
merger according to the primitive idealized statistical model of
the text. In each step the veloclty increases,by a facto» 2% and
the length of the step increases by a factor 2% compared to the
time occupiled in the previous step. Compare this regular in-
crease of the velocity with that shown in Fig. 4,
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behind it have qualitative validity, is evidently uncertain by one
or more powers of two.

The present model of breakthrough predicts that a slab of
heavier liquld cannot be accelerated by gas to a distance greater
than (l/kl)N (25 or) 50 or 100 or 200 (or 400) times its own
thickness without suffering finger penetration. It can he called
an optimistic model of Rayleigh - Taylor instability in this sense,
that it is hard--short of drastic measures, like freezing the
liquid, etc.-~to think of a way for a light fluid to accelerate
a heavy fluld to a greater distance. On the other hand, rapid
growth of larger than normal fingers could well drastically reduce
the distance over which the liquid holds together. Optimistic as
it is, the model makes it hard to see how a magnetic field could
ever propel a 0.0l cm slab of molten metal or plasma for a dis-
tance as great as 10 cm,

Statistical mechanics as applied to gases teaches that the
number of molecules or the energy of one extended region is the
closer percentagewise to the energy or number of molecules in an-
other extended region of the same volume, the larger this volume
happens to be chosen. Therefore on a surface covered over with
an enormous number of small scale bubbles or fingers-one might
be inclined to reason-large scale differences between one extended
reglion and another can never arise. Therefore the stat;stical
plcture of bubble merger might be consldered to be complete

nonsense. Howevgr, this reasoning would appear tacltly to assume
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that there 1s some conserved quantity - like total energy, or
total number of particles- which cannot be supplied in surplus to
one region except at the expense of another region. There is no
such conserved quantity for bubble advance. The sooner bubbles
merge, the faster they can go forward - and this not at all by
depriving other regions of the chance to get ahead. Bubble
merger like hurricane growth is a typical example of a divergent

process 1in the sense of Langmuir(le).

IV, HOW FAR DO IMPROVEMENTS IN THE SURFACE SMOOTHNESS PAY
OFF IN REDUCED TAYLOR INSTABILITY
The concept of a breakthrough coefficient kl--gg_such
a concept is valid--would seem to provide some rational grounds
for deciding at what degree of perfection to stop trying to improve
the original surface.
The disturbances which have evolved by merger out of the in-

evitable initial small scale perturbations ( X ~ }fastest )
growing

are taken in the statistical model to follow the law of growth,
(k /2) gt°

Vaoy kl gt = 0,48 (gRav)
Ryy (kl/o.u8)‘2 gt°

A
av

LM

(4h)

with a continually increasing scale of sizes. In the meantime
the irregularities, if any, due to machining--here assumed to have

a scale kmach much greater than X ~--have

fastest growing

Lo
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themselves been developing. Their normal rate of increase will be
little affected by the presence of the merging and remerging smaller

scale bubble pattern until the scale of that pattern, R has

av’
reached the scale,

Rmach =3.83 7{mach (45)

(of Section III) of the machining irregularitigs.. The two scales

come into concordance, according to the model, at a time (Eq. 44)

L
tessawsnacgnoe = (0.48/k, )(3.83 X on/B) (46)

At this time the calculated advance of the fingers which have

resulted from merger is

2 = ( (0.48)% /2k) R__

( (0.48)%/2k; ) Rypen
= 3.83 ( (0.48)% 2k ) B .o

( ~22 Xpach or 3.5 A nach for k1 = 1/50)

(47)

Three possibllities present themselves at this time:
(1) The disturbances which originated from machining
irregularities have already grown to an amplitude large
compared to (47). 1In this case they have developed well
beyond the regime of thgémall amplitude theory, as may be
seen from the circumstance that in (47) z,y 18 large compared
to Ryy. Therefore, it will be expected that fingers have
developed out of the initial fabricational imperfections
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and even that these fingers have made substantial progress
towards merger with one another. Evidently the instabilities
from this source are well ahead of those that came from

% . They dominate, not only at
fastest growing

t concordance (Eq. 46) but thereafter. Consequently, it
can be said that the machining lrregularities are decisive

in determining the time of breakthrough in case (1).

(2) The disturbances which originate from imperfections

in the surface of reduced wave length } have growvn

mach
by the time t of Eq. (46) to an amplitude which

concordance
is still small compar=d to the z,y of (47). 1In this case
the instabilities o. natural origin dominate over those
vhich have theilr source in machining irregularities. They

dominate not only at £t = ¢ but thereafter.

concordance’
Consequently--~-provided that the statistical model is valid---
the imperfections in the fabrication can be neglected in

the analysis of Taylor instability in case (2). In this

case there would seem to be little point in trying to

improve the perfection of manufacturing. Money can be saved

by loosening up on the machining tolerances!

(3) The disturbances which have grown from initial irregulari-

ties of reduced wave lengths X and
fastest growing

have comparable amplitudes at t = ¢

k'machining concordance’
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From this circumstance 1t follows that the machining toler-

ances have been widened to the critical limit,

( ) Z)ma.chinzi.ng = ( § z)critical

(48)

beyond which any further decrease in the quality of the

surface will shorten the time to breakthrough.

cal limit is the fabrication criterion sought from the

present analysis.

This criti-

The concept of a critical magnitude for fabricational irregulari-

ties, while easy to describe in qualitative terms, i1s difficult to

make precise in the present state of knowledge. To illustrate

this point, it is sufficient to make one very literal minded cal-

culation of (S’z)Crit along the lines illustrated in Fig. 7, and

then to look at the uncertainties that are assoclated with this

calculation. In the figure, the fingers of natural origin are

taken to increase as in the provisional statistical theory of

bubbler merger.
z = (kl/é) gt2

dz/dt = k, gt

The rate of rise given by (49) at the time

Y
t, = (0.48/k )(3.83 X . /&)?
(=47 ( X n0n/8)F for k= 0.02)

has the value
1
2

(dz/at), = 0.48 (3.83 X .., 8)°,

43

(49)

(50)

(51)



}— — {2 Xl —{r/X, )~

ced

‘-mx 70) e
(Y /0) -

-}
n
-— T O —

i
T

Fig. 7. Competition between lirregularities of fabricational origin
and of natural origin for control of Rayleigh-Taylor instability.
Top: Fabricational irregularities dominate. Middle: Departures
from ideality of natural origin--governed by surface tension or
viscosity--dominate. Bottom: Irregularities of fabricational

and natural origin contributc comparably to the later stages of

instability. The conditions in this case determine the critical

magnitude, down to uhich it 1s desirable to reduce the fabricational
irregularities, but below which any further reduction gives a de-
creased or even negligible payoff. Though the general ldeas are
clear, and the curves in the diagram have been calculated on the

! ) basis of reasonably well defined assumptions, the detaills of these

{ assumptions are not determined at the present time with any precision

) by either available observations or existing theory. lNoreover,
small changes in these assumptions make a big change in the oxrder
of magnitude of the critical magnitude (§ z) for the irregulari-

ties ASz)ma n of fabricational origin at thgrgﬁart of the accelera-

‘ tion. There?ore, the particular assumptions used in computing the

curves in the diagram are recapitulated here: (1) The scale

? . kfasgeit groving of the natural irregularities at the start

is negligible compared to the scale X mach of fabricational

! marks. 2) The natural instabilities sﬁ%sequently have a canoni-

cal distribution in sizes, of which the scale but not the form

changes with timeedue to finger mergers, with an average height

z,v = (ky /2) g t° given by a "breakthrough coefficient" ky

whlch is arbitrarily equated to 0.02 (3) The fabricational
irregularities grow exponentially folloying the Rayleigh-Taylor,

. formula z = ( § z)yaon €x0 {8/ Xpach)? t up to z = 0.48(2.83)2 Xyach
and thereafter (witﬁacontinuity of z and dz/dt at,point A) grow
linearly at the rate (dz/dt) = 0.48(3.83g Xpach)2. This simplifying
assumption neglects merger of the fingers resulting from fabrica-
tion until these fingers have been overtaken by the fingers which
have grown from instabllities of natural origin.
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The number agrees with the rate of linear rise of fingers of radius
.8
3.83 ﬁ:mach

diagram). Calculate back along this linear curve of rise of the

or of reduced wave length a(mach (point C in the

fingers of fabricational origin to the place (point A in diagram)

vhere the straight line agrees in magnitude and slope with the
Rayleigh-Taylor exponential curve:

(az/dt), = 0.48 (3.83 X __ . g) 3 (52)
2 = (/R)(a/av), = ( X ppo/e)? (az/at) (53)
= (0'48)(3'83)% kmach = 0.9 X mach’

tA = tc - (Z A)/(dz/dt),ramonT*uwel“
<7<mach/s [ 1+ (0.58)(3.83)%/2k; (54)

‘{ =245 agmach/g)"«" for k, = 0,02 )

Follow the exponential curve back to the time ¢ = o to find the
critical amplitude for fabricational irregularities:

1
(8§ 2) ;= (0.48)(3.83)F X e
-1- (0.48)(3.83)Z
0.94 X __ . e (0.48)(3.83)2/2k; (55)

~~
1}

—240 — "‘ll
If a value kl = 0.04 is adopted for the breakthrough coefficient
(slab of fluid accelerable to only 25 times its thickness before
the fingers of natural origin penetrate) then the calculated value

of the critical amplitude is increased from (55) to

-12. -6
( (“ Z)Cri’c = 0.94 ﬁmach e 75:10 .i mach (kl=0.ou%56)
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A comparably drastic change in the order of magnitude of the cal-
culated ( § z)crit will be made by allowing--as Fig.7 does not--
for some preliminary merger of the fingers which grow out of dis-
turbances of reduced wave length R = } cn’ Evidently it is not
possible from present information to stagz a reliable figure for

the critical amplitude (§ z) or for the corresponding dimen-

crit
sionless ratio (§ z),nit/ Xmache Experiments to test the validity
of the concept of a critical amplitude and to measure its value
vwould therefore seem in order. They would be a natural extension
of any observational program to search for a breakthrough coefficient.

In Section II electrolysis was mentioned as a technique to
build up the proposed laminar structure. It may not be out of
place to think again of electrolysis as a general technique to
produce surfaces of very high perfection. Such perfection--
according to analysis of Sections III and IV of this report--will
not prevent Taylor instability, and could, at the worst, be a
form of "abacadabra" which costs much time and money; but it could
also help to postpone the breakthrough of spikes and bubbles.
Electro-polishing today 1s so greatly developed as a technology
for the manufacture of the chrome parts of automobilles and for many
other purposes that it is hardly necessary to recall the principle
of the polishing:

(1) Alternate cycles of current with different and pro-

grammed magnitudes for the product of (current density) °* (time)

in the forward cycle and the reverse cycle.

L6




(2) Deposition of a very thin layer of material in each
forward cycle.

(3) Inevitable formation of small bumps and spikes in this
process.

(4) Concentration of lines of force and field gradient
in the electrolytic fluid near these projections.

(5) Cessation of the deposition before this concentration
effect has succeeded in magnifying substantially these projections.

(6) Reversal of the current in the next phase of the pro-
gram to take advantage of this concentration of current density
selectively to remove the projections.

(7) A new cycle of buildup (one sign of the product of
(currenc): (time) and electro-deposition (smaller magnitude and
opposite sign for the product of (current) . (time).

The technology of electro-polishing, however fully developed
for making shiny fenders, is not known by us ever to have been
used for scientific purposes by anyone with the talents and passion
for precision which Henry A, Rowland(13) showed in the design and
construction of an almost perfect screw for his engine to rule
gratings. Among the factors that might be considered if Rowland's
model were to be followed, this time to construct an almost perfect
surface, are these:

(1) Preparation of an almost ideal substrate upon which
to start the electro-deposition. In this connection one thinks

particularly of surface tension plus the pressure of a thin

bt
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f11ling gas as a mechanism to produce a thin cylinder of fluid
connecting two separated hemisphericai metal caps.

(2) Design of a system of electrodes, or a system of
automatic controi (scanning by light source plus photo electric
cell feeding into circuit which controls electrolytic current) or
both so as to maintain uniformity of thickness as closely over
large distances as over the very small distances at which clectro-
polishing is relevant.

(3) Control of temperature and convection currents to a
completeness sufficient to prevent imperfections from these
sources greater than a preassigned magnitude.

(4) Method of mounting foil and inserting it in final
device which preserves its near perfection to the moment of use.

Surfaces prepared in this way might be expected (a) to be most
sultable for the experimental investigation of the statistical
bubble theory of Section III, which focusses attention on irregu-
larities at a microscopic - not fabricational - scale (b) to be
the most suiltable for those technical applications where it is
important to minimlze in any way that is feasible the effects of
Taylor instability.
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