
ESD-TR-75-54 .cys.i .*-* MTR-2932, Vol. 1

• "cfos

A SOFTWARE VALIDATION TECHNIQUE
FOR CERTIFICATION: THE METHODOLOGY

D. E. Bell
E. L. Burke

April 1975

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AER FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

»
Approved for public release;
distribution unlimited.

Project No. 522 B
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-75-C-0001

/ton aflW*

When U.S. Government drawings, specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy Retain or destroy.

REVIEW AND APPROVAL

"This technical report has been reviewed and is approved for
publication.,"

si

A {JtiU

/O

J^/4
WILLIAM R. PRICE, Ut, USAF
Project Engineer

n
/%*,*—&

c*
«**-.

MARVIN E. BROOKING
Project Officer

-4
FOR THE COMMANDER

ROBERT W. O'KEEFE, Colonel, USAF
Director, Information Systems
Technology Applications Office
Deputy for Command & Management Systems

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER

ESD-TR-75-54
2. GOVT ACCESSION NO 3 RECIPIENT'S CATALOG NUMBER

4 TITLE (and Subtitle) 5 TYPE OF REPORT » PERIOD COVERED

A SOFTWARE VALIDATION TECHNIQUE FOR
CERTIFICATION: THE METHODOLOGY

6 PERFORMING ORG. REPORT NUMBER

MTR-2932, Vol. 1
7. AUTHOR(J)

D. E. Bell
E. L. Burke

8. CONTRACT OR GRANT NUMBERS)

F19628-75-C-0001

9 PERFORMING ORGANIZATION NAME AND ADDRESS

The MITRE Corporation
Box 208
Bedford, MA, 01730

10. PROGRAM ELEMENT. PROJECT. TASK
AREA ft WORK UNIT NUMBERS

Project No. 522 B

11. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division, AFSC
Hanscom Air Force Base, MA. 01731

12 REPORT DATE

APRIL 1975
13 NUMBER OF PAGES

37
14. MONITORING AGENCY NAME ft ADDR ESSf// ditlerent from Controlling Ollice) 15 SECURITY CLASS, (ol this report)

UNCLASSIFIED

I5«. DECL ASSIFlC ATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, II dlllerent from Report)

18. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side it necessary and identity by block number)

Computer Security
Certification
Security Kernel

Proof-of-Correctness
Software Validation

20 ABSTRACT (Continue on reverse side II necessary end identity by block number)

Certification is the approval, by some appropriate authority, that a system meets
some functional criteria. In the past, critical software systems, such as security con-
trols have not been certifiable because of the unavailability of a formal validation tech-
nique. This paper establishes such a formal methodology for validating the correctness
of a software system. The methodology is both rigorous and general and is suitable for
certifying the effectiveness of software security controls that are to .be used in an open
environment. A companion volume will develop a detailed example based on a security

0D I j AN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfered)

SECURITY CLASSIFICATION OF THIS PAGEfHTun Dmtm Entmnd)

Abstract (Continued)

kernel for a PDP-11/45.

s SECURITY CLASSIFICATION OF THIS PAGEC^ "R D»»« Entared)

FOREWORD

For the past two years, The MITRE Corporation has been pursuing

a solution to the problem of controlling security in computer

systems. This effort, sponsored by the Electronic Systems Division

of the Air Force Systems Command, specifically addressed the military

security scheme. Because many procedures are available in the

military for communications, physical, and personnel security, this

effort has concentrated on the design and development of provably

effective hardware and software access controls. This document

addresses the problem of utilizing theoretical results about computer

security in an actual design and implementation task.

.-

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

PaRe

3

SECTION I INTRODUCTION
BACKGROUND
CERTIFICATION
OVERVIEW

SECTION II

SECTION III

SECTION IV

SECTION V

REFERENCES

COMPUTER SECURITY CONCEPTS
INTRODUCTION
REFERENCE MONITOR
MATHEMATICAL MODELS
IMPLEMENTING A SECURE SYSTEM

COMPONENTS OF A SOFTWARE DESIGN
INTRODUCTION
SYSTEM COMPONENTS
Mathematical Model
Formal Specification
Algorithmic Representation
Useable "Machine"

A PREVIEW OF CORRESPONDENCE METHODOLOGY

CORRESPONDENCE PROOFS
INTRODUCTION
THE NATURE OF CORRESPONDENCE
A MATHEMATICAL SPECIFICATION OF
CORRESPONDENCE

TECHNIQUES FOR PROVING CORRESPONDENCES
General
The Model-to-Specification Correspondence
The Specification-to-Algorithm
Correspondence

The Algorithm-to-"Machine'' Correspondence
RELATED WORK

Levels of Abstraction
Program Proving Techniques
Management Techniques

SUMMARY

7
7
7
8
9

11
11
13
14
15
15
17
17

19
19
19

20
23
23
25

25
25
28
28
29
31

32

33

LIST OF ILLUSTRATIONS

Figure Number Page

1 Reference Monitor 7
2 The Validation Chain 12
3 Proving Behavioral Correspondence 18
4 The Certified Disassembly Concept 27

SECTION I

INTRODUCTION

BACKGROUND

The certification of software systems has not, in the past,

been firmly rooted in sound engineering techniques. During the

development of a software security control system, or a security

kernel, it became clear that if the kernel was to be used in an

environment open to the malicious user, a very strong guarantee of

the kernel's ability to protect against information compromise would

be necessary. The available techniques for certification were

scrutinized and found to rely heavily on ad hoc examination and

approval of software. Software engineering techniques, such as

structured programming, proof-of-correctness and automated aids for

program proving, were available, but a comprehensive plan for using

these techniques in a cohesive software validation effort did not

exist. This paper develops such a cohesive software validation

technique that is applicable to the certification of critical

software systems. This certification effort is part of a broad

program in computer security outlined by Anderson [lj.

CERTIFICATION

The term "certification" refers to the approval, by some

designated authority, of some software system. This software is then

said to be certified to perform some function. Taking the case of

a security kernel as an example, the functionality that must be

certified is absence of the possibility for compromise. The judgement

of certifiability is based on both the design of the security kernel

and on the risks perceived to be in the computer's environment. A

computer system operating in a totally benign, physically protected

environment may not need to have its hardware and software access

controls certified against a malicious user. In the more general

case of an open environment, however, reference-monitor-based

security controls provide the protection against compromise of

classified information. Because of the nature of the environment

only the security kernel stands between an uncleared individual

and classified information stored in the computer system. This

security kernel must, therefore, undergo a great deal of scrutiny

before it can be certified.

The technique developed in this paper provides the necessary

scrutiny for software security controls that are to be used in an

open environment. Because the technique can be used wherever a

mathematical model is available, the technique is quite general.

Software validation is an engineering technique used to prove

things about the behavior of software. In the context of computer

security, validation is meant to be sufficient for certification of

a security kernel in any environment. The goal of validation is

dual; it is both to demonstrate that a proposed solution is_ a solution

as well as to make the demonstration itself convincing to those who

have the authority to approve a system for actual use.

Hence, the process of validation must provide a sound and

rigorous justification for a proposed solution as well as full and

open documentation of the validation effort designed to win the

confidence of any disinterested party.

y

OVERVIEW

This paper establishes forms for all representations of the

system design from the most abstract mathematical model to the

realization of this model in binary machine language on some hardware

base. The paper then goes on to show how each representation can be

proven to correspond to the more abstract representation that precedes

it.

The methodology developed in this paper was developed for the

certification of a security kernel. Because many of the concrete

examples are peculiar to security control, the next section, Section II,

reviews the overall approach being taken in the security development

effort. Section III discusses the various representations of the

software system and the relationships between these representations.

Section IV deals with proving the correspondences between all

representations. Section V summarizes the key ideas of the paper.

A companion volume will provide an explicit example taken from the

certification of a PDP-11/45 security kernel.

S.

SECTION II

COMPUTER SECURITY CONCEPTS

INTRODUCTION

Because the software validation effort was motivated by the

stringent requirements for correctness imposed by the computer security

program, a brief discussion of the important aspects of that program

is presented below. The history and direction of the computer

security program are outlined by ESD [2].

REFERENCE MONITOR

The ESD/MITRE computer security program centers around the

Subjects

Reference
Monitor

Access Matrix

Objects

Figure 1. Reference Monitor

concept of the reference monitor. The reference monitor controls

access to objects (files of information) by subjects (people, or the

processes that operate on behalf of people) and has three characteristics

that insure that it provides security:

r

1. it mediates all access attempts according to the rules

of the DoD Security System;

2. it is protected (usually through isolation) from the

remainder of the software;

3. it is provably correct.

The reference monitor is realized in the hardware and software

mechanisms needed to implement this concept on a computer, and the

software portion of the monitor is called the security kernel.

MATHEMATICAL MODELS

In order to describe explicitly how the reference monitor works,

mathematical models have been developed. Two models will be

discussed. One model, developed by Bell and La Padula [3-5] is based

on general systems theory, specifically, dynamical systems theory.

The abstract reference monitor is represented in this model as rules

that govern changes of state. A state is the aggregate of several

variable quantities - the current-access set, the access matrix, and

the classification functions. The concept of security is included in

the model with the definition of a secure state. The principal result

of this model is the rigorous proof that the state transitions allowed

by the rules of the reference monitor prohibit the system from reaching

a compromise state (that is, a non-secure state).

A second mathematical model was developed by Walter et^ al [6],

This model represents the reference monitor in the most abstract sense

and attempts to use the technique of function decomposition to arrive

at a mathematical model that ultimately can guide an implementation.

8

V

The functional decomposition approach identifies access functions in

the most abstract model. Subsequent mathematical models refine these

functions into their constituent parts until the access control is

defined by compositions of functions. The functions are refined until

they correspond to the desired level of detail, i.e., until they are

specific enough to directly guide the implementation. The use of this

model to synthesize a software system will also be investigated.

These two models are by no means the only formal mathematical

models of secure systems. Popek [7] and Hsiao et_ al [8] are two

other examples of abstract models of secure systems. In each case,

there is the notion that some formal technique must guide the eventual

design, because informal techniques are inadequate.

IMPLEMENTING A SECURE SYSTEM

The implementation of a secure computer system clearly requires

careful planning and analysis. Our analysis led to the development

of an abstract model for the reference monitor. The process of model

development gave the participants a certain insight into security-

related problems as well as specific implementation guidelines for

topics directly addressed in the model. However, the necessity of

absolute algorithmic security in the final implementation of our

system made it obvious that neither of these benefits was sufficient

to complete the task of implementing a secure system.

The translation from the model to a useable computer system must

be done just as carefully as was the development of the model. The

criteria for the design scheme is that the behavior of the software

on the machine must, in some appropriate sense, be equivalent to the

behavior of the mathematical model. The remainder of this paper is

devoted to a discussion of how the design should proceed in order to

guarantee the ultimate validation of the system with respect to the

mathematical model.

10

K.

SECTION III

COMPONENTS OF A SOFTWARE DESIGN

INTRODUCTION

In this section, we will advance and discuss a set of

components for software design. In the detailed discussion later

in this section, we will list the purpose and nature of each of the

components. Before we treat the components individually, however, we

should explain the framework for system development that we are

advocating.

The process of validation, mentioned briefly in Section I, has

as its goal the clear and rigorous proof that a conceptual solution to

a real-world problem has been precisely implemented on a particular

hardware/software "machine" that is to deal with that real-world

problem. To simplify this task, we propose the use of the validation

chain shown in Figure 2.

The use of the validation chain allows a solution to be

evaluated in several small steps rather than in one massive leap from

the "machine" to the real-world problem.* Moreover, the subdivision

of the problem makes possible the validation of several particular

solutions using several common blocks in the validation chain. For

*The full development of a mathematical model, of course, will
normally imply agreement among experts that the statement of the
problem in the model accurately reflects the real-world problem.
Hence at this point the problem is reduced to demonstrating an
appropriate correspondence between the model solution and the
"machine" solution.

1]

~<u
0) c
l-l •H
X> J=
a u
a CO
(0 s
&

CO

u

CO

(0
>

CM

•H

12

example, if one model is made of a problem and one formal specification

corresponding to the model is developed, then two particular solutions

for two different computers could be validated by completing the

validation chain in two different ways. Similar savings of efforts

could be realized at any stage of the chain, even by compiling the

source code differently, necessitating only one new validation link.

The use of the validation chain will require a clear understanding

of the purpose and nature of the constituent blocks and of the links

between them. The first of these topics will be discussed in the

remainder of this section, and the second is the topic of Section IV.

SYSTEM COMPONENTS

Each of the blocks in the validation chain represents a solution

to the problem at a different level of detail. The Mathematical

Model addresses a pure abstraction of the problem. The purpose of

the model is to describe and then to solve the problem conceptually.

The Formal Specification provides a blueprint for the organization

and structure of acceptable software implementations of the model's

solution to the problem. The Algorithmic Representation is one

particular instance of an implementation blocked out by the Formal

Specification. The Useable "Machine" is the combination of a

particular computer operating with the object code generated by a

particular compiler from the higher level source code that is

associated with the Algorithmic Representation. The "Machine" thus

depends not only on the conceptual design (at the level of detail

specified by the Algorithmic Representation) but also on the semantics

implicit in the compiler and on the computer itself.

13

As might be expected, the natures of the various components

differ. Let us now discuss each of the components in turn.

Mathematical Model

The starting point of the software system design is .he

mathematical model, the leftmost block of the validation chain. The

mathematical model is an abstract representation of the variables

of the system and of the operations allowed on these variables. For

security control, the mathematical model describes abstractly the

behavior of the reference monitor.

The Mathematical Model will normally be expressed in abstract

mathematics. General systems theory, differential equations, automata

theory, abstract algebra and linear programming are some likely

branches of mathematics that might reasonably be expected to be used

in the development of a mathematical model. In the consideration of

computer security, very simple, nonstructured construct? are the nos :

useful. In the Bell-La Padula model [3-5], general systems theory is

used, while the CWRU model [6] uses basic set theory.

The correspondence of the real-world problem to the problem

statement in the model must be agreed upon by competent experts in the

field. The correctness of the model solution to the problem is

established by proving theorems based on the model's definitions and

its statement of the problem. When the ability of the model to

describe the problem is accepted and when a correct solution has been

formulated and verified, the model becomes the standard for the

other blocks in the chain, in the manner to be discussed in Section

IV.

14

Formal Specification

The mathematical model deals with abstract entities that must be

realized in a concrete fashion. The first step in the process of

realizing the model abstractions is to impose restrictions on the

abstract entities of the model and express the resulting system as a

formal specification. This specification completely identifies the

state variables of the representation and all the functions that a

user might invoke to observe or modify one of these state variables.

As an example of the constraints placed on the model in the formal

specification, consider the security model of Bell and La Padula [3-5].

This model deals with abstract entities called objects. In the

realization of any system based on the model, such as that by

Schiller [9j, the objects must be given certain attributes like type

and size. Object type and size then become state variables and

functions must be provided in the formal specification to observe

and manipulate these variables.

A possible format for the formal specification is that developed

by Parnas [10]. Parnas specifications have been used successfully by

Price [11] and Schiller [9] and will be used by Neumann, et al [12]

in efforts where statements about the behavior of the system must be

proved. It may be possible to circumvent the formal specification by

choosing a sufficiently rich language for the algorithmic representation.

Such a language will be considered below.

Algorithmic Representation

The functions of the formal specification must eventually be

realized by a set of algorithms, or programs. Thus the next

representation of the software system is in terms of algorithms, or

15

*•

program modules. One of the motivations for the formal specification

(according to Parnas) is to hide the details of the implementation so

that design decisions are not made solely to expedite the implementation.

Since the formal specification has decomposed the system into a series

of function modules, it should be a fairly straightforward problem to

implement each of the modules in some suitable high-level implementation

language.

The programs must then be proven correct with respect to a

series of assertions, and these assertions are derivable from the

formal specification and the correspondence mappings. The relationship

of this proof technique to work in proof-of-correctness will be

examined shortly.

It was stated previously that it may be possible to eliminate

the formal specification. Since a goal of this software synthesis

technique is to provide a methodology for realizing abstractions,

then if an algorithmic language were to exist that had a sufficiently

rich structure for expressing the abstractions of the model and for

refining these abstractions within the language, then this language

could serve as both the formal specification and the algorithmic

representation. The work of demonstrating a correspondence between

the two representations could then be done in the development of

the programs themselves. Such a language, called CLU for the

abstract data clusters it supports, is under development by Liskov

and Zilles [13]. This language has been used by Karger [14] in an

attempt to express the model of Walter, et al_. [6]. When CLU becomes

more completely specified, its utility in such a software engineering

approach should become established.

16

H

Useable "Machine"

Eventually a program is translated from the high-level language

representation into binary machine language and is run on a particular

computer. Although this component (the hardware/software machine) is

often ignored in the literature of software reliability, its behavior

is by far the most important. The notion of correctness is perhaps

fuzziest when applied to the machine language representation. While

specific guidance is given the formal specification and algorithms

from the model and specification, respectively, little guidance on

"correctness" comes to the machine language representation from the

algorithmic representation. The model's theorems dictate the function-

ality of the formal specification and relations true about the formal

specification dictate the assertions about the algorithmic represent-

ation. Because high-level languages usually lack a formal defintion

of their semantics, it is difficult to make formal inferences about

the machine language code. The correctness of the machine language

version will rest with establishing a semantics for the machine

language used and verifying the correct interpretation of this

semantics by the hardware.

A TREVIEW OF CORRESPONDENCE METHODOLOGY

Now that each component of the software system has been

described, it would be useful to preview the rest of the methodology;

in Section IV we will show the relation of this methodology to previous

work in software reliability and proof-of-correctness.

The remainder of the software synthesis technique may be clear

at this time. Given the four representations described previously,

it remains only to show how one goes about proving the correspondence

17

between each pair of successive representations. Figure 3 illustrates

how the correspondence will be demonstrated between any two consecutive

representations. The methodology will start with a mathematical model

whose

More
Abstract
Representa-
tion

State and Function
Mapping

for
Correspondence

Less
Abstract
Representa-
tion

Figure 3. Proving Behavioral Correspondence

behavior is proven secure. The object is then to prove that the be-

havior of each subsequent representation corresponds to the (proven

secure) behavior of the previous representation. The proof is done,

as shown in Figure 3, by mapping the states and functions of the less

abstract representation into the states of the previous more abstract

representation. A state of a representation is determined by the values

of the state variables and a state mapping identifies corresponding

states in each representation. The functions that change the state of

the more abstract representation have been proven acceptable in the

sense that they have been shown to always change one secure state to

another secure one. By showing that the functions of the less abstract

representation correspond to the functions of the more abstract

representation, the behavior of the less abstract representation is

shown to be secure. The next section develops these notions of

correspondence in a formal way and describes the characteristics of

the proofs.

18

V

SECTION IV

CORRESPONDENCE PROOFS

INTRODUCTION

At the heart of the validation technique what we are proposing is

the notion of correspondence: the validity of the solution that a

final hardware/software machine provides for a real-world problem is

assured by its "correspondence" to the solution of the abstract problem

addressed in the model. It is the purpose of this section to discuss

correspondence proofs by addressing, in turn, the general nature of

correspondence, a precise mathematical description of correspondence

and techniques for use in the various correspondence proofs along the

validation chain.

THE NATURE OF CORRESPONDENCE

The ''correspondence" that is required between blocks of the

validation chain is at first glance different from a proof of

program's correctness. However, a substantial case can be made for

essential identity of the two concepts [15]. In particular, what is

required in each case in some sort of demonstration that certain trans-

formations in one area of discourse correspond in some satisfying way

to expected transformations in another area of discourse. This demon-

stration must involve a type of mathematical proof, whether expressed

mathematically or not. This type of proof, as a mathematical process,

cannot be generally specified although helpful techniques can be

listed [16-18]. However, the form that the proof must take can be

elucidated using a branch of mathematics called "category theory".

Category theory can be used to structure discussions of correspon-

dence proofs through its ability to address representations of finite-

state machines. Since each of the blocks of the validation can be

L9

>

conceptualized as a finite-state machine, the proof of a correspondence

between adjacent blocks of the chain can be phrased as a demonstration

of a kind of relation between finite-state machines. In particular,

it is necessary to show that each block is represented by the block to

its immediate left. Thus, any state transformation within the right

block of a link in the validation chain must be shown to correspond to

an allowable state transformation in the left block. Hence, the relation

of category theory to correspondence proofs can be addressed at the

level of abstract automata, as will be explained in the next subsection.

A MATHEMATICAL SPECIFICATION OF CORRESPONDENCE

Let A = (X, Y, K, &, A) be an abstract automaton [19], where X is

the set of inputs; Y, the set of outputs; K, the set of states; and

6 and X, the state-transition and output functions, respectively.

For every pair of states k- and k„, there are potentially many input

strings I such that k~ • 6(k-,I). Thus, the set of transformations

k1 —• k2 can be related to sets of input strings I. In particular,

a transformation a: k.. —• k„ will be associated with k.. and an

input string I such that k„ • 5(k..,I). The set K of states together

with all state transformations associated with input strings make up

a mathematical structure known as a category.

A category C = (0, M) is a set 0 of objects together with a set

M of morphisms.* A morphism can be thought of as a transformation from

an object 0.. to another object 0_. For this reason, the set M is

frequently thought of as the disjoint union of morphisms from object

0 to object 0_, as 0 and 0_ range over 0:

M - II homO^.O^

01,02e0

Basic notions of category theory can be found in [20]

20

K.

The morphisms of M must have an associative composition and there

must be an identity irorphism for each 0 e 0.

Expressing automata in category theory is very straightforward.

For the automaton A = (X, Y, K, 6, X), we define the associated state

category C = (0 , M) as follows:

0. is the set K of states; A
hom(k ,k„) is the set of pairs (k-,1) where I is an input string

such that

k„ = 6(k-,I) for states k.. and k • and

A \J hom(k..,k„).

k.,k„ek

The demonstration that C is a category is direct and is thus omitted.

The problem of proving correspondence involves two automata, the

test automaton A and the specification automaton B (the right and

left blocks of a validation link, respectively). The purpose is to

demonstrate that A is represented by B so that statements about B

are applicable to A. The importance of category theory is that, in

some limited sense, one can compare the categories of apples and

oranges (contrary to popular wisdom) by establishing a functor between

them.

In category theory, a functor relates one category to another

category while preserving the composition of morphisms. More

formally, if C and C are categories, then F is a functor between

C and C provided:

21

>

1. for every object 0 of 0, F specifies an object 0' of 0';

2. for every morphism a e hom(0 , 0„) in C, F specifies a

morphism F(a) E. hom(F(0), F(0)); and

3. the diagram below commutes (that is, the action of a

followed by translation into C is the same as translation

into C followed by the action of F(a):

a

0,

1
•• o.

-•2

F(a)

A correspondence is a functor from the state category of the

test automaton A to that of the specification automaton B. The

demonstration of a correspondence would show:

1. the explicit interpretation of a state in A as

a state in B;

2. the explicit interpretation of a state transformation

in A as a state transformation in B; and

3. that under interpretation the action of A "corresponds"

to the action of E (in the sense of the commutativity

of the diagram above)•

The correspondence that is chosen in the course of using the

validation must be carefully chosen and no specific guidance for

its choice can be given. The appropriateness of the choice will be

predicated on the ability of the people involved and established

by critical review of their work by the widest possible community.

22

S.

Through our use of the validation chain, we intended to divide

the validation task into several smaller tasks. The specification of

correspondence in categorical terras not only makes explicit the

requirements of a proof of a correspondence, but also provides a

theoretical basis for the subdivision of the tasks. In particular,

since the composition of functors is a functor, successful demonstrations

of correspondence at each link of the chain guarantees that the final

solution "corresponds", in the rigorous sense, to the conceptual

solution of the leftmost block of the chain. Moreover, the develop-

ment of specific validation techniques is now structured by the goal

of proving correspondences that has been carefully delineated.

TECHNIQUES FOR PROVING CORRESPONDENCES

General

In the framework of the validation chain that we are proposing,

the demonstration of a functor between the state categories of adjacent

blocks will vary from link to link. This variation stems primarily

from the differing modes of expression used in the various blocks. In

general, however, the constituent activities will have a common flavor.

In the second volume of this report, the various steps of the technique

will be illustrated; in the remainder of this subsection, the basic

parts of the process will be discussed in general.

First, from the overall description of each representation there

must be extracted a full list of the states and of the possible state

transformations. The specification of a state will rely on a full

list of state variables and any restriction on combinations of variables.

Next, a "translating dictionary" between the states of the blocks

in the link must be constructed for the link. Where the state is a

23

j"

vector of state variables, an association between the variables of one

representation and the variables of the other representation would he

sufficient. In fact, this arrangement is conceptually the simplest.

If certain combinations of variables are to be associated, the situation

would be made more complex, but this course cannot be ruled out as

unncessary in all circumstances. Such a translating dictionary is the

practical analog of the object map of the state category functor.

The next step is the analog of the morphism map of the state

category functor. It involves specifying for each state transformation

in the test automaton A a corresponding state transformation in the

specification automaton B. By the associativity of morphism composition,

it suffices to consider only input symbols in A, since any input tape

I in A is the concatenation of such symbols. Hence, the task degenerates

to establishing an input tape in B to correspond to each input symbol

in A. This assignment must be done with an eye towards the last step

in the process, the commutativity check.

The demonstration of the commutativity of the functor diagram is

a check that for every state v.. of automaton A and every irreducible

transformation a to state v„, the translation of v.. to automaton E

transformed by the transformation corresponding to a yields the same

state as the translation of v„ to B. Clearly, this process will be

straightforward, even if somewhat tedious. A failure to arrive at

the same state would be stimulus to try one of several courses of

action.

1. Check the demonstration itself for errors.

2. Check the object and morphism maps. With the knowledge

of what error turned up, it may be possible to alter the

morphism-map image of a to allow completion of the step.

24

3. If no reinterpretation of A can rectify the situation,

the information gathered in this effort should suggest

the changes to A which should be made to make A correspond

to B.

The Model-to-Specification Correspondence

The model is likely to be written in terms of sets and functions

while the abstract specification will probably be in a Parnas-like

specification language [10]. The differences between these modes of

expression will probably prove the greatest hurdle in proving this

correspondence. The task of establishing a translating dictionary

could be formidable here. There are no special techniques that would

appear to aid in this endeavor. This correspondence will involve

grinding through the details of a full-fledged proof.

The Specification-to-Algorithm Correspondence

Both of these representations are likely to be phrased in formal

languages. There is, furthermore, the likelihood that state variables

and state transformations will have an almost transparent correspondence

in the use of similar names. Hence, the problem here is essentially

one of translation from one language to another. In addition, if the

correspondence of specifications to progam modules is direct and simple,

the situation is precisely that of traditional proof-of-correctness,

with the benefit of an explicit standard against which to "prove" the

program.

The Algorithm-to-"Machine" Correspondence

This correspondence seems to pose the most practical problems.

In particular, the general problem here presumes an understanding of

25

the semantics of the higher-level language used in the algorithmic

representation. Unfortunately, formal semantics is in its practical

infancy and little useful work in this area has been done.

The general problem of proving that a machine-language translation

corresponds to a higher-level program admits of two general approaches.

The first approach is to establish that the compiler used generates

semantically correct machine code for any source program. Since cert-

ified compilers are not generally available, one is faced with writing

a compiler for a restricted subset of the implementation language and

certifying it to compile correctly or with adopting the second approach

to the problem.

The second approach involves uncertified compilation and certified

disassembly. The idea is to compile the program into machine language

and then to disassemble into a readable assembly language (see Figure 4).

The correspondence of the machine-language program to the assembly-

language program would be assured by the certification of the dis-

assembler; the correspondence of the assembly-language program to the

original program would be established manually by whatever means are

appropriate. Thus, the correspondence of the machine-language program

to the high-level language program is shown by the composition of the

two smaller correspondences, which together are strongly equivalent to

the actual uncertified compilation.

The certified disassembly approach is predicated on the possibility

of writing a certifiable disassembler. There has been some work done

in this vein, including the work of C. R. Hollander [21]. Work on the

certification of compilers is also proceeding; particularly interesting

work in this area has been reported by L. Ragland [22] and R. L.

London [23].

26

>^

HIGH
LEVEL
PROGRAM

Implicit
Translation

Uncertified
Compilation

ASSEMBLY
LANGUAGE
PROGRAM

\

Implicit Assembly
Implied By Certified
Disassembly

\
\

Certified
Disassembly

MACHINE
LANGUAGE
PROGRAM

Figure 4. The Certified Disassembly Concept

27

^

RELATED WORK

The major contribution of this paper is the organization of

several techniques into a cohesive software engineering framework.

In this subsection, the relation of this exposition to other important

areas of research will be described.

Levels of Abstraction

The validation chain we are proposing involves altering an abstract

solution of a problem successively until a concrete, useable solution

is reached. Despite the common term "abstract," this process is not

necessarily related to Dijkstra's levels-of-abstraction [24]. In

both contexts, "abstract" is used in the strict mathematical sense of

"more general" and "less detailed". In our situation, the abstractness

involved is that of various solutions to the same problem, solutions

which vary in mode of expresssion as well as in the degree of detail

involved. For Dijkstra, the degree of abstraction occurs within a

single solution to a problem, the amount of elaboration present (or

absent) determining the specificity of the particular description of

the solution. It is eminently reasonable, when involved in the design

of the Algorithmic Representation of our validation chain, to use

Dijkstra's levels-of-abstraction approach, either alone or in conjunct-

ion with other techniques such as raodularity.* Thus, at least in

some instances, the use of levels-of-abstraction with our synthesis

technique, although not required, can be beneficial.

For a complete discussion of these techniques in the development of
reliable software, see Liskov [25].

28

^^

The use of levels of abstraction in the development of secure

computer systems can be seen in many efforts. The MITRE work on the

PDP-11/45 [9] used levels of abstraction only in the development of

the algorithmic representation (just as was true for Dijkstra). The

work of Neumann et al [12] involves layered validation-chain components

for some, and possibly all, of the relevant blocks in their methodolog-

ical framework. Another approach, the development of a series of

mathematical models, with each model describing a different Dijkstra-

level, or virtual machine, is the approach being taken by Walter et^

al. [6]. The last approach we will mention is that envisioned by

Liskov and Zilles [13] in the development of the very-high-level

language CLU. Here, the model can be translated into a very abstract

algorithmic representation and the top-down development of Dijkstra

levels down to an implementation can be carried out within the language

itself.

Program Proving Techniques

The work that has been done in the field of program proving is

directly applicable to our synthesis approach. The application of

these methods, however, does require care for correct use.

The vast literature of program proofs, mostly in the form of

examples, can be quite illuminating in showing the difficulty of the

procedure. The work of Floyd (the induction theorem) [16], Manna [18],

Hoare [17], Naur (general snapshots) [26], Burstall (structural

induction for recursive programs) [27], and London [23, 28] should

be especially noted in this regard. It should also be mentioned,

hov/ever, that the problem addressed by most of these authors involves

algorithmic validity (the demonstration that a prespecified input-output

relation between variables is valid) while the general problem we

address involves continual state transformation. An important

29

investigation into proving the correctness of a computer system is

Lauer's thesis "Correctness in Operating Systems" [29],

Another branch of program proving that has great potential in

future uses of our synthesis technique is mechanical theorem proving.

The basic ideas, following a line of development from Turing through

Herbrand, Davis and Putnam and Robinson, revolve around converting a

program and its specifications into a theorem in symbolic logic.

Correctness, against some preestablished standard, can be phrased in

symbolic logic as a resolvable halting problem.* Development of auto-

mated (and eventually verified) tools to use symbolic logic in proving

a program to match an input-output relation is being carried out by

a number of people, including King [31], Good [32], and Igarashi et_

al. [33]. The last mentioned development provides for automatic

generation of some of the internal assertions used in analysis.

Further, the development of this kind of aid, based on axiomatically

defined semantics as in Pascal [34], could bring substantial benefits

to the proof of correspondence for the last two links in our valid-

ation chain.

There is an extensive literature in both areas of program proving.

Two excellent references for examples of program proofs are the survey

articles by Elspas, Levitt, Waldinger, and Waksman [35] and by

London [36]. An excellent exposition of mechanical theorem proving,

as well as an extensive bibliography on the subject, can be found

in the Chang and Lee book [30] mentioned before.

For a discussion and an explanation, see Section 10 of Chang and Lee s
Symbolic Logic and Mechanical Theorem Proving [30].

30

Management Techniques

The recent emphasis on management techniques such as the chief-

programmer method [37] and human factors in general is in a sense

orthogonal to the technique we are proposing. We are attempting to

define what goals should be recognized and pursued in the development

of a system; management techniques address how prespecified goals of

an endeavor can best be achieved. Thus, when operating within a

development framework such as ours, management techniques might well

be used in the attainment of intermediate goals; the development of

the synthesis technique itself, however, need neither presume nor

endorse any particular management philosophy.

31

SECTION V

SUMMARY

The specific requirements of a computer security program have

led us to general software synthesis technique, applicable whenever

a certain degree of assurance is required of a system. The technique

is an aggregate of mostly familiar techniques, combined into a cohesive

software engineering discipline. The framework of the technique is

the validation chain with four components representing solutions to

the given problem in varying degrees of abstractness. A precise

definition of correspondence has been formulated to clarify the issue

of the relation between the various components of the chain. We

believe the technique described herein is both practicable and useful

for the synthesis of certifiable software.

32

REFERENCES

[1] Anderson, James P., "Computer Security Technology Planning
Study," Electronic Systems Division (MCIT), AFSC, Bedford,
Mass., ESD-TR-73-51, October, 1972.

[2] "ESD 73 Computer Security Development Summary," Electronic
Systems Division (MCIT), AFSC, Bedford, Mass., MCI-74-1,
February, 1974.

[3] Bell, E. E., and La Padula, L. J., "Secure Computer Systems:
Mathematical Foundations," Electronic Systems Division (MCIT),
AFSC, Bedford, Mass., ESD-TR-73-278, Vol. I, November 1973.

[4] La Padula, L. J., and Bell, D. E., "Secure Computer Systems:
A Mathematical Model," Electronic Systems Division (MCIT), AFSC,
Bedford, Mass., ESD-TR-73-278, Vol. II, November 1973.

[5] Bell, D. E., "Secure Computer Systems: A Refinement of the
Mathematical Model," Electronic Systems Division (MCIT), AFSC,
Bedford, Mass., ESD-TR-73-278, Vol. Ill, April 1974.

[6] Walter, K. G., et al.. "Primitive Models for Computer Security,"
Electronic Systems Division (MCIT), Bedford, Mass., ESD-TR-74-
117, January, 1974.

[7] Popek, G. J., "Correctness in Access Control," Proc. 1973 ACM
National Conference, August, 1973.

[8] Hsaio, D. K., Kerr, E. J., and McCauley, E. J., Ill, "A Model
for Data Secure Systems (Part I)," Computer & Information
Science Research Center, OSU-CISRC-TR-73-8, Ohio State University,
February, 1974.

[9] Schiller, W. Lee, "Design of a Security Kernel for the PDP-11/45,"
Electronic Systems Division (MCIT), AFSC, Bedford, Mass., ESD-TR-
73-294, December 1973.

[10] Parnas, D. L., "A Technique for Software Module Specification
with Examples," CACM, Vol. 13, No. 5, May, 1972.

[11] Price, William R., "Implications of a Virtual Memory Mechanism
for Implementing Protection in a Family of Operating Systems,"
Ph.D Thesis, Carnegie-Mellon University, June, 1973.

[12] Neumann, Peter G. , e_t al_. , "On the Design of a Provably Secure
Operating System," presented at the International Workshop on
Protection in Operating Systems, IRIA, August, 1974.

33

[13] Liskov, B. and Zilles, S., "Programming with Abstract Data
Types," Computation Structures Group Memo 99 MIT Project Mac,
March, 1974 (also presented at the Very High Level Language
Symposium, Santa Monica, California, March 28-29, 1974).

[14] Karger, P. K., "On the Specification of Abstract Models of
Computer Security," report for MIT course 6.891.

[15] Bell, D. E., "Correctness Can Be Categorically Affirmed,"
journal article in preparation.

[16] Floyd, R. W., "Assigning Meaning to Programs," Proc. Symposium
on Applied Mathematics, A.M.S., Vol. 19 (1967), 19-32.

[17] Hoare, C. A. R., "Proof of a Program: FIND," Comm. ACM 14
(1971), 39-45.

[18] Manna, Z., "The Correctness of Programs," J_. Computer System
Science 3 (1969), 119-127.

[19] Arbib, M. A., Theories of Abstract Automata (Englewood Cliffs,
1969), p. 57. "

[20] Mitchell, B., Theory of Categories (New York, 1965), p. 1 ff.

[21] Hollander, C. R., "Decompilation of Object Programs," AD-768
887, Stanford University, January, 1973.

[22] Ragland, L., "A Verified Program Verifier," Ph.D Thesis, The
University of Texas at Austin, May, 1973.

[23] London, R. L., "Correctness of Two Compilers for a LISP Subset,"
AD-738 568, Stanford University, October, 1971.

[24] Dijkstra, E. W., "The Structure of the 'THE'-Multiprogramming
System," Comm. ACM 11 (May, 1968), 341-346.

[25] Liskov, B. H., "A Design Methodology for Reliable Software
Systems," Proc. FJCC, AFIPS 41 (1972), pp. 191-199.

[26] Naur, P., "Proof of Algorithms by General Snapshots," BIT 6
(1966), 310-316.

[27] Burstall, R. M., "Proving Properties of Programs by Structural
Induction," The Computer Journal, 12 (1969), 41-48.

34

[28] London, R. L., "Proving Programs Correct: Some Techniques and
Examples," BIT 10 (1970), 168-182.

[29] Lauer, H. C., "Correctness in Operating Systems," AD-753 122,
Carnegie-Mellon University, September, 1972.

[30] Chang, C. L., and Lee, R. C. T., Symbolic Logic and Mechanical
Theorem Proving (New York, 1973), pp. 210-233.

[31] King, J. C, "A Program Verifier," Ph.D Thesis, Carnegie-
Mellon University, 1969.

[32] Good, D. I., "Toward a Man-Machine System for Proving Program
Correctness," Ph.D Thesis, University of Wisconsin, 1970.

[33] Igarashi, S., London, R., and Luckham, D., "Automatic Program
Verification I: A Logical Basis and its Implementation,"
STAN-CS-73-365, Stanford University, May, 1973.

[34] Hoare, C. A. R., and Wirth, N., "An Axiomatic Definition of the
Programming Language Pascal," Acta Informatica 2 (1973)
pp. 335-355.

[35] Elspas, B., Levitt, K. N., Waldinger, R. J., Waksman, A., "An
Assessment of Techniques for Proving Program Correctness,"
Computing Surveys 4 (1972).

[36] London, R. L., "The Current State of Proving Programs Correct,"
Proc. ACM National Conference, 1972.

[37] Mills, H., "Chief Programmer Team Principles and Procedures,"
IBM Federal Sys. Div., June, 1971.

35

