
ESD-TR-75-54 .cys.i .*-* MTR-2932, Vol.  1 

•       "cfos 

A SOFTWARE VALIDATION TECHNIQUE 
FOR CERTIFICATION:   THE METHODOLOGY 

D. E.  Bell 
E.  L.  Burke 

April 1975 

Prepared for 

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS 
ELECTRONIC SYSTEMS DIVISION 
AER FORCE SYSTEMS COMMAND 

UNITED STATES AIR FORCE 
Hanscom Air Force Base, Bedford, Massachusetts 

» 
Approved for public release; 
distribution unlimited. 

Project No. 522 B 
Prepared by 

THE MITRE CORPORATION 
Bedford, Massachusetts 

Contract No.  F19628-75-C-0001 

/ton aflW* 



When U.S. Government drawings, specifications, 

or other data are used for any purpose other 

than a definitely related government procurement 

operation, the government thereby incurs no 

responsibility nor any obligation whatsoever; and 

the fact that the government may have formu- 

lated, furnished, or in any way supplied the said 

drawings, specifications, or other data is not to be 

regarded by implication or otherwise, as in any 

manner licensing the holder or any other person 

or corporation, or conveying any rights or per- 

mission to manufacture, use, or sell any patented 

invention that may in any way be related thereto. 

Do   not   return   this  copy       Retain   or   destroy. 

REVIEW AND APPROVAL 

"This technical report has been reviewed and is approved for 
publication.," 

si 

A {JtiU 

/O 

J^/4 
WILLIAM R. PRICE, Ut, USAF 
Project Engineer 

n 
/%*,*—& 

c* 
«**-. 

MARVIN E. BROOKING 
Project Officer 

-4 
FOR THE COMMANDER 

ROBERT W. O'KEEFE, Colonel, USAF 
Director, Information Systems 
Technology Applications Office 
Deputy for Command & Management Systems 



UNCLASSIFIED 
SECURITY  CLASSIFICATION OF THIS PAGE (When Data Entered) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

I      REPORT  NUMBER 

ESD-TR-75-54 
2. GOVT  ACCESSION  NO 3      RECIPIENT'S CATALOG  NUMBER 

4     TITLE (and Subtitle) 5     TYPE OF  REPORT »  PERIOD COVERED 

A SOFTWARE VALIDATION TECHNIQUE FOR 
CERTIFICATION:  THE METHODOLOGY 

6  PERFORMING ORG. REPORT NUMBER 

MTR-2932, Vol. 1 
7. AUTHOR(J) 

D. E. Bell 
E. L. Burke 

8. CONTRACT OR GRANT NUMBERS) 

F19628-75-C-0001 

9      PERFORMING  ORGANIZATION   NAME   AND   ADDRESS 

The MITRE Corporation 
Box 208 
Bedford, MA, 01730 

10.    PROGRAM  ELEMENT. PROJECT.   TASK 
AREA  ft   WORK   UNIT   NUMBERS 

Project No.  522 B 

11.     CONTROLLING OFFICE   NAME   AND   ADDRESS 

Deputy for Command and Management Systems 
Electronic Systems Division, AFSC 
Hanscom Air Force Base, MA. 01731 

12      REPORT   DATE 

APRIL 1975 
13      NUMBER OF   PAGES 

37 
14.    MONITORING  AGENCY  NAME ft   ADDR ESSf// ditlerent from Controlling Ollice) 15     SECURITY CLASS,  (ol this report) 

UNCLASSIFIED 

I5«.    DECL ASSIFlC ATION    DOWNGRADING 
SCHEDULE 

16.    DISTRIBUTION  STATEMENT (ol this Report) 

Approved for public release; distribution unlimited 

17.    DISTRIBUTION STATEMENT (of the abstract entered In Block 20,  II dlllerent from Report) 

18.     SUPPLEMENTARY  NOTES 

19     KEY WORDS (Continue on reverse side it necessary and identity by block number) 

Computer Security 
Certification 
Security Kernel 

Proof-of-Correctness 
Software Validation 

20      ABSTRACT (Continue on reverse side II necessary end identity by block number) 

Certification is the approval, by some appropriate authority, that a system meets 
some functional criteria. In the past, critical software systems, such as security con- 
trols have not been certifiable because of the unavailability of a formal validation tech- 
nique. This paper establishes such a formal methodology for validating the correctness 
of a software system. The methodology is both rigorous and general and is suitable for 
certifying the effectiveness of software security controls that are to .be used in an open 
environment.   A companion volume will develop a detailed example based on a security 

0D    I  j AN  73    1473 EDITION OF   1  NOV 65 IS OBSOLETE UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfered) 



SECURITY CLASSIFICATION OF THIS PAGEfHTun Dmtm Entmnd) 

Abstract (Continued) 

kernel for a PDP-11/45. 

s SECURITY CLASSIFICATION OF THIS PAGEC^ "R D»»« Entared) 



FOREWORD 

For the past two years, The MITRE Corporation has been pursuing 

a solution to the problem of controlling security in computer 

systems.  This effort, sponsored by the Electronic Systems Division 

of the Air Force Systems Command, specifically addressed the military 

security scheme.  Because many procedures are available in the 

military for communications, physical, and personnel security, this 

effort has concentrated on the design and development of provably 

effective hardware and software access controls.  This document 

addresses the problem of utilizing theoretical results about computer 

security in an actual design and implementation task. 
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SECTION I 

INTRODUCTION 

BACKGROUND 

The certification of software systems has not, in the past, 

been firmly rooted in sound engineering techniques.  During the 

development of a software security control system, or a security 

kernel, it became clear that if the kernel was to be used in an 

environment open to the malicious user, a very strong guarantee of 

the kernel's ability to protect against information compromise would 

be necessary.  The available techniques for certification were 

scrutinized and found to rely heavily on ad hoc examination and 

approval of software.  Software engineering techniques, such as 

structured programming, proof-of-correctness and automated aids for 

program proving, were available, but a comprehensive plan for using 

these techniques in a cohesive software validation effort did not 

exist.  This paper develops such a cohesive software validation 

technique that is applicable to the certification of critical 

software systems.  This certification effort is part of a broad 

program in computer security outlined by Anderson [lj. 

CERTIFICATION 

The term "certification" refers to the approval, by some 

designated authority, of some software system. This software is then 

said to be certified to perform some function.  Taking the case of 

a security kernel as an example, the functionality that must be 

certified is absence of the possibility for compromise. The judgement 

of certifiability is based on both the design of the security kernel 

and on the risks perceived to be in the computer's environment.  A 



computer system operating in a totally benign, physically protected 

environment may not need to have its hardware and software access 

controls certified against a malicious user.  In the more general 

case of an open environment, however, reference-monitor-based 

security controls provide the protection against compromise of 

classified information.  Because of the nature of the environment 

only the security kernel stands between an uncleared individual 

and classified information stored in the computer system.  This 

security kernel must, therefore, undergo a great deal of scrutiny 

before it can be certified. 

The technique developed in this paper provides the necessary 

scrutiny for software security controls that are to be used in an 

open environment.  Because the technique can be used wherever a 

mathematical model is available, the technique is quite general. 

Software validation is an engineering technique used to prove 

things about the behavior of software.  In the context of computer 

security, validation is meant to be sufficient for certification of 

a security kernel in any environment.  The goal of validation is 

dual; it is both to demonstrate that a proposed solution is_ a solution 

as well as to make the demonstration itself convincing to those who 

have the authority to approve a system for actual use. 

Hence, the process of validation must provide a sound and 

rigorous justification for a proposed solution as well as full and 

open documentation of the validation effort designed to win the 

confidence of any disinterested party. 
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OVERVIEW 

This paper establishes forms for all representations of the 

system design from the most abstract mathematical model to the 

realization of this model in binary machine language on some hardware 

base. The paper then goes on to show how each representation can be 

proven to correspond to the more abstract representation that precedes 

it. 

The methodology developed in this paper was developed for the 

certification of a security kernel.  Because many of the concrete 

examples are peculiar to security control, the next section, Section II, 

reviews the overall approach being taken in the security development 

effort.  Section III discusses the various representations of the 

software system and the relationships between these representations. 

Section IV deals with proving the correspondences between all 

representations.  Section V summarizes the key ideas of the paper. 

A companion volume will provide an explicit example taken from the 

certification of a PDP-11/45 security kernel. 

S. 



SECTION II 

COMPUTER SECURITY CONCEPTS 

INTRODUCTION 

Because the software validation effort was motivated by the 

stringent requirements for correctness imposed by the computer security 

program, a brief discussion of the important aspects of that program 

is presented below.  The history and direction of the computer 

security program are outlined by ESD [2]. 

REFERENCE MONITOR 

The ESD/MITRE computer security program centers around the 

Subjects 

Reference 
Monitor 

Access Matrix 

Objects 

Figure 1.  Reference Monitor 

concept of the reference monitor.  The reference monitor controls 

access to objects (files of information) by subjects (people, or the 

processes that operate on behalf of people) and has three characteristics 

that insure that it provides security: 

r 



1. it mediates all access attempts according to the rules 

of the DoD Security System; 

2. it is protected (usually through isolation) from the 

remainder of the software; 

3. it is provably correct. 

The reference monitor is realized in the hardware and software 

mechanisms needed to implement this concept on a computer, and the 

software portion of the monitor is called the security kernel. 

MATHEMATICAL MODELS 

In order to describe explicitly how the reference monitor works, 

mathematical models have been developed.  Two models will be 

discussed.  One model, developed by Bell and La Padula [3-5] is based 

on general systems theory, specifically, dynamical systems theory. 

The abstract reference monitor is represented in this model as rules 

that govern changes of state.  A state is the aggregate of several 

variable quantities - the current-access set, the access matrix, and 

the classification functions.  The concept of security is included in 

the model with the definition of a secure state. The principal result 

of this model is the rigorous proof that the state transitions allowed 

by the rules of the reference monitor prohibit the system from reaching 

a compromise state (that is, a non-secure state). 

A second mathematical model was developed by Walter et^ al [6], 

This model represents the reference monitor in the most abstract sense 

and attempts to use the technique of function decomposition to arrive 

at a mathematical model that ultimately can guide an implementation. 
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The functional decomposition approach identifies access functions in 

the most abstract model.  Subsequent mathematical models refine these 

functions into their constituent parts until the access control is 

defined by compositions of functions.  The functions are refined until 

they correspond to the desired level of detail, i.e., until they are 

specific enough to directly guide the implementation.  The use of this 

model to synthesize a software system will also be investigated. 

These two models are by no means the only formal mathematical 

models of secure systems.  Popek [7] and Hsiao et_ al [8] are two 

other examples of abstract models of secure systems.  In each case, 

there is the notion that some formal technique must guide the eventual 

design, because informal techniques are inadequate. 

IMPLEMENTING A SECURE SYSTEM 

The implementation of a secure computer system clearly requires 

careful planning and analysis.  Our analysis led to the development 

of an abstract model for the reference monitor.  The process of model 

development gave the participants a certain insight into security- 

related problems as well as specific implementation guidelines for 

topics directly addressed in the model.  However, the necessity of 

absolute algorithmic security in the final implementation of our 

system made it obvious that neither of these benefits was sufficient 

to complete the task of implementing a secure system. 

The translation from the model to a useable computer system must 

be done just as carefully as was the development of the model.  The 

criteria for the design scheme is that the behavior of the software 

on the machine must, in some appropriate sense, be equivalent to the 

behavior of the mathematical model.  The remainder of this paper is 



devoted to a discussion of how the design should proceed in order to 

guarantee the ultimate validation of the system with respect to the 

mathematical model. 

10 
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SECTION III 

COMPONENTS OF A SOFTWARE DESIGN 

INTRODUCTION 

In this section, we will advance and discuss a set of 

components for software design.  In the detailed discussion later 

in this section, we will list the purpose and nature of each of the 

components.  Before we treat the components individually, however, we 

should explain the framework for system development that we are 

advocating. 

The process of validation, mentioned briefly in Section I, has 

as its goal the clear and rigorous proof that a conceptual solution to 

a real-world problem has been precisely implemented on a particular 

hardware/software "machine" that is to deal with that real-world 

problem.  To simplify this task, we propose the use of the validation 

chain shown in Figure 2. 

The use of the validation chain allows a solution to be 

evaluated in several small steps rather than in one massive leap from 

the "machine" to the real-world problem.* Moreover, the subdivision 

of the problem makes possible the validation of several particular 

solutions using several common blocks in the validation chain.  For 

*The full development of a mathematical model, of course, will 
normally imply agreement among experts that the statement of the 
problem in the model accurately reflects the real-world problem. 
Hence at this point the problem is reduced to demonstrating an 
appropriate correspondence between the model solution and the 
"machine" solution. 
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example, if one model is made of a problem and one formal specification 

corresponding to the model is developed, then two particular solutions 

for two different computers could be validated by completing the 

validation chain in two different ways.  Similar savings of efforts 

could be realized at any stage of the chain, even by compiling the 

source code differently, necessitating only one new validation link. 

The use of the validation chain will require a clear understanding 

of the purpose and nature of the constituent blocks and of the links 

between them.  The first of these topics will be discussed in the 

remainder of this section, and the second is the topic of Section IV. 

SYSTEM COMPONENTS 

Each of the blocks in the validation chain represents a solution 

to the problem at a different level of detail.  The Mathematical 

Model addresses a pure abstraction of the problem.  The purpose of 

the model is to describe and then to solve the problem conceptually. 

The Formal Specification provides a blueprint for the organization 

and structure of acceptable software implementations of the model's 

solution to the problem.  The Algorithmic Representation is one 

particular instance of an implementation blocked out by the Formal 

Specification.  The Useable "Machine" is the combination of a 

particular computer operating with the object code generated by a 

particular compiler from the higher level source code that is 

associated with the Algorithmic Representation.  The "Machine" thus 

depends not only on the conceptual design (at the level of detail 

specified by the Algorithmic Representation) but also on the semantics 

implicit in the compiler and on the computer itself. 

13 



As might be expected, the natures of the various components 

differ.  Let us now discuss each of the components in turn. 

Mathematical Model 

The starting point of the software system design is .he 

mathematical model, the leftmost block of the validation chain.  The 

mathematical model is an abstract representation of the variables 

of the system and of the operations allowed on these variables.  For 

security control, the mathematical model describes abstractly the 

behavior of the reference monitor. 

The Mathematical Model will normally be expressed in abstract 

mathematics.  General systems theory, differential equations, automata 

theory, abstract algebra and linear programming are some likely 

branches of mathematics that might reasonably be expected to be used 

in the development of a mathematical model.  In the consideration of 

computer security, very simple, nonstructured construct? are the nos : 

useful.  In the Bell-La Padula model [3-5], general systems theory is 

used, while the CWRU model [6] uses basic set theory. 

The correspondence of the real-world problem to the problem 

statement in the model must be agreed upon by competent experts in the 

field.  The correctness of the model solution to the problem is 

established by proving theorems based on the model's definitions and 

its statement of the problem.  When the ability of the model to 

describe the problem is accepted and when a correct solution has been 

formulated and verified, the model becomes the standard for the 

other blocks in the chain, in the manner to be discussed in Section 

IV. 

14 



Formal Specification 

The mathematical model deals with abstract entities that must be 

realized in a concrete fashion.  The first step in the process of 

realizing the model abstractions is to impose restrictions on the 

abstract entities of the model and express the resulting system as a 

formal specification.  This specification completely identifies the 

state variables of the representation and all the functions that a 

user might invoke to observe or modify one of these state variables. 

As an example of the constraints placed on the model in the formal 

specification, consider the security model of Bell and La Padula [3-5]. 

This model deals with abstract entities called objects.  In the 

realization of any system based on the model, such as that by 

Schiller [9j, the objects must be given certain attributes like type 

and size.  Object type and size then become state variables and 

functions must be provided in the formal specification to observe 

and manipulate these variables. 

A possible format for the formal specification is that developed 

by Parnas [10].  Parnas specifications have been used successfully by 

Price [11] and Schiller [9] and will be used by Neumann, et al [12] 

in efforts where statements about the behavior of the system must be 

proved.  It may be possible to circumvent the formal specification by 

choosing a sufficiently rich language for the algorithmic representation. 

Such a language will be considered below. 

Algorithmic Representation 

The functions of the formal specification must eventually be 

realized by a set of algorithms, or programs.  Thus the next 

representation of the software system is in terms of algorithms, or 

15 
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program modules.  One of the motivations for the formal specification 

(according to Parnas) is to hide the details of the implementation so 

that design decisions are not made solely to expedite the implementation. 

Since the formal specification has decomposed the system into a series 

of function modules, it should be a fairly straightforward problem to 

implement each of the modules in some suitable high-level implementation 

language. 

The programs must then be proven correct with respect to a 

series of assertions, and these assertions are derivable from the 

formal specification and the correspondence mappings.  The relationship 

of this proof technique to work in proof-of-correctness will be 

examined shortly. 

It was stated previously that it may be possible to eliminate 

the formal specification.  Since a goal of this software synthesis 

technique is to provide a methodology for realizing abstractions, 

then if an algorithmic language were to exist that had a sufficiently 

rich structure for expressing the abstractions of the model and for 

refining these abstractions within the language, then this language 

could serve as both the formal specification and the algorithmic 

representation.  The work of demonstrating a correspondence between 

the two representations could then be done in the development of 

the programs themselves.  Such a language, called CLU for the 

abstract data clusters it supports, is under development by Liskov 

and Zilles [13].  This language has been used by Karger [14] in an 

attempt to express the model of Walter, et al_. [6].  When CLU becomes 

more completely specified, its utility in such a software engineering 

approach should become established. 

16 
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Useable "Machine" 

Eventually a program is translated from the high-level language 

representation into binary machine language and is run on a particular 

computer.  Although this component (the hardware/software machine) is 

often ignored in the literature of software reliability, its behavior 

is by far the most important.  The notion of correctness is perhaps 

fuzziest when applied to the machine language representation.  While 

specific guidance is given the formal specification and algorithms 

from the model and specification, respectively, little guidance on 

"correctness" comes to the machine language representation from the 

algorithmic representation.  The model's theorems dictate the function- 

ality of the formal specification and relations true about the formal 

specification dictate the assertions about the algorithmic represent- 

ation.  Because high-level languages usually lack a formal defintion 

of their semantics, it is difficult to make formal inferences about 

the machine language code.  The correctness of the machine language 

version will rest with establishing a semantics for the machine 

language used and verifying the correct interpretation of this 

semantics by the hardware. 

A TREVIEW OF CORRESPONDENCE METHODOLOGY 

Now that each component of the software system has been 

described, it would be useful to preview the rest of the methodology; 

in Section IV we will show the relation of this methodology to previous 

work in software reliability and proof-of-correctness. 

The remainder of the software synthesis technique may be clear 

at this time. Given the four representations described previously, 

it remains only to show how one goes about proving the correspondence 

17 



between each pair of successive representations.  Figure 3 illustrates 

how the correspondence will be demonstrated between any two consecutive 

representations.  The methodology will start with a mathematical model 

whose 

More 
Abstract 
Representa- 
tion 

State and Function 
Mapping 

for 
Correspondence 

Less 
Abstract 
Representa- 
tion 

Figure 3.  Proving Behavioral Correspondence 

behavior is proven secure.  The object is then to prove that the be- 

havior of each subsequent representation corresponds to the (proven 

secure) behavior of the previous representation.  The proof is done, 

as shown in Figure 3, by mapping the states and functions of the less 

abstract representation into the states of the previous more abstract 

representation.  A state of a representation is determined by the values 

of the state variables and a state mapping identifies corresponding 

states in each representation.  The functions that change the state of 

the more abstract representation have been proven acceptable in the 

sense that they have been shown to always change one secure state to 

another secure one.  By showing that the functions of the less abstract 

representation correspond to the functions of the more abstract 

representation, the behavior of the less abstract representation is 

shown to be secure.  The next section develops these notions of 

correspondence in a formal way and describes the characteristics of 

the proofs. 

18 
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SECTION IV 

CORRESPONDENCE PROOFS 

INTRODUCTION 

At the heart of the validation technique what we are proposing is 

the notion of correspondence:  the validity of the solution that a 

final hardware/software machine provides for a real-world problem is 

assured by its "correspondence" to the solution of the abstract problem 

addressed in the model.  It is the purpose of this section to discuss 

correspondence proofs by addressing, in turn, the general nature of 

correspondence, a precise mathematical description of correspondence 

and techniques for use in the various correspondence proofs along the 

validation chain. 

THE NATURE OF CORRESPONDENCE 

The ''correspondence" that is required between blocks of the 

validation chain is at first glance different from a proof of 

program's correctness.  However, a substantial case can be made for 

essential identity of the two concepts [15].  In particular, what is 

required in each case in some sort of demonstration that certain trans- 

formations in one area of discourse correspond in some satisfying way 

to expected transformations in another area of discourse.  This demon- 

stration must involve a type of mathematical proof, whether expressed 

mathematically or not.  This type of proof, as a mathematical process, 

cannot be generally specified although helpful techniques can be 

listed [16-18].  However, the form that the proof must take can be 

elucidated using a branch of mathematics called "category theory". 

Category theory can be used to structure discussions of correspon- 

dence proofs through its ability to address representations of finite- 

state machines.  Since each of the blocks of the validation can be 

L9 

> 



conceptualized as a finite-state machine, the proof of a correspondence 

between adjacent blocks of the chain can be phrased as a demonstration 

of a kind of relation between finite-state machines.  In particular, 

it is necessary to show that each block is represented by the block to 

its immediate left.  Thus, any state transformation within the right 

block of a link in the validation chain must be shown to correspond to 

an allowable state transformation in the left block. Hence, the relation 

of category theory to correspondence proofs can be addressed at the 

level of abstract automata, as will be explained in the next subsection. 

A MATHEMATICAL SPECIFICATION OF CORRESPONDENCE 

Let A = (X, Y, K, &,   A) be an abstract automaton [19], where X is 

the set of inputs; Y, the set of outputs; K, the set of states; and 

6 and X,   the state-transition and output functions, respectively. 

For every pair of states k- and k„, there are potentially many input 

strings I such that k~ • 6(k-,I).  Thus, the set of transformations 

k1 —• k2 can be related to sets of input strings I.  In particular, 

a transformation a:  k.. —• k„ will be associated with k.. and an 

input string I such that k„ • 5(k..,I).  The set K of states together 

with all state transformations associated with input strings make up 

a mathematical structure known as a category. 

A category C = (0, M) is a set 0  of objects together with a set 

M of morphisms.* A morphism can be thought of as a transformation from 

an object 0.. to another object 0_.  For this reason, the set M is 

frequently thought of as the disjoint union of morphisms from object 

0 to object 0_, as 0 and 0_ range over 0: 

M -  II homO^.O^ 

01,02e0 

Basic notions of category theory can be found in [20] 

20 
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The morphisms of M must have an associative composition and there 

must be an identity irorphism for each 0 e 0. 

Expressing automata in category theory is very straightforward. 

For the automaton A = (X, Y, K, 6, X), we define the associated state 

category C = (0 , M ) as follows: 

0.   is the set K of states; A 
hom(k ,k„) is the set of pairs (k-,1) where I is an input string 

such that 

k„ = 6(k-,I) for states k.. and k • and 

A    \J hom(k..,k„). 

k.,k„ek 

The demonstration that C is a category is direct and is thus omitted. 

The problem of proving correspondence involves two automata, the 

test automaton A and the specification automaton B (the right and 

left blocks of a validation link, respectively).  The purpose is to 

demonstrate that A is represented by B so that statements about B 

are applicable to A.  The importance of category theory is that, in 

some limited sense, one can compare the categories of apples and 

oranges (contrary to popular wisdom) by establishing a functor between 

them. 

In category theory, a functor relates one category to another 

category while preserving the composition of morphisms.  More 

formally, if C and C are categories, then F is a functor between 

C and C provided: 

21 
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1. for every object 0 of 0,   F specifies an object 0' of 0'; 

2. for every morphism a e  hom(0 , 0„) in C, F specifies a 

morphism F(a) E. hom(F(0 ), F(0 )); and 

3. the diagram below commutes (that is, the action of a 

followed by translation into C is the same as translation 

into C followed by the action of F(a): 

a 

0, 

1 
•• o. 

-•2 

F(a) 

A correspondence is a functor from the state category of the 

test automaton A to that of the specification automaton B.  The 

demonstration of a correspondence would show: 

1. the explicit interpretation of a state in A as 

a state in B; 

2. the explicit interpretation of a state transformation 

in A as a state transformation in B; and 

3. that under interpretation the action of A "corresponds" 

to the action of E (in the sense of the commutativity 

of the diagram above)• 

The correspondence that is chosen in the course of using the 

validation must be carefully chosen and no specific guidance for 

its choice can be given.  The appropriateness of the choice will be 

predicated on the ability of the people involved and established 

by critical review of their work by the widest possible community. 

22 
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Through our use of the validation chain, we intended to divide 

the validation task into several smaller tasks.  The specification of 

correspondence in categorical terras not only makes explicit the 

requirements of a proof of a correspondence, but also provides a 

theoretical basis for the subdivision of the tasks.  In particular, 

since the composition of functors is a functor, successful demonstrations 

of correspondence at each link of the chain guarantees that the final 

solution "corresponds", in the rigorous sense, to the conceptual 

solution of the leftmost block of the chain.  Moreover, the develop- 

ment of specific validation techniques is now structured by the goal 

of proving correspondences that has been carefully delineated. 

TECHNIQUES FOR PROVING CORRESPONDENCES 

General 

In the framework of the validation chain that we are proposing, 

the demonstration of a functor between the state categories of adjacent 

blocks will vary from link to link.  This variation stems primarily 

from the differing modes of expression used in the various blocks.  In 

general, however, the constituent activities will have a common flavor. 

In the second volume of this report, the various steps of the technique 

will be illustrated; in the remainder of this subsection, the basic 

parts of the process will be discussed in general. 

First, from the overall description of each representation there 

must be extracted a full list of the states and of the possible state 

transformations.  The specification of a state will rely on a full 

list of state variables and any restriction on combinations of variables. 

Next, a "translating dictionary" between the states of the blocks 

in the link must be constructed for the link.  Where the state is a 
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vector of state variables, an association between the variables of one 

representation and the variables of the other representation would he 

sufficient.  In fact, this arrangement is conceptually the simplest. 

If certain combinations of variables are to be associated, the situation 

would be made more complex, but this course cannot be ruled out as 

unncessary in all circumstances.  Such a translating dictionary is the 

practical analog of the object map of the state category functor. 

The next step is the analog of the morphism map of the state 

category functor.  It involves specifying for each state transformation 

in the test automaton A a corresponding state transformation in the 

specification automaton B.  By the associativity of morphism composition, 

it suffices to consider only input symbols in A, since any input tape 

I in A is the concatenation of such symbols.  Hence, the task degenerates 

to establishing an input tape in B to correspond to each input symbol 

in A.  This assignment must be done with an eye towards the last step 

in the process, the commutativity check. 

The demonstration of the commutativity of the functor diagram is 

a check that for every state v.. of automaton A and every irreducible 

transformation a to state v„, the translation of v.. to automaton E 

transformed by the transformation corresponding to a yields the same 

state as the translation of v„ to B.  Clearly, this process will be 

straightforward, even if somewhat tedious. A failure to arrive at 

the same state would be stimulus to try one of several courses of 

action. 

1. Check the demonstration itself for errors. 

2. Check the object and morphism maps.  With the knowledge 

of what error turned up, it may be possible to alter the 

morphism-map image of a   to allow completion of the step. 
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3.  If no reinterpretation of A can rectify the situation, 

the information gathered in this effort should suggest 

the changes to A which should be made to make A correspond 

to B. 

The Model-to-Specification Correspondence 

The model is likely to be written in terms of sets and functions 

while the abstract specification will probably be in a Parnas-like 

specification language [10].  The differences between these modes of 

expression will probably prove the greatest hurdle in proving this 

correspondence.  The task of establishing a translating dictionary 

could be formidable here.  There are no special techniques that would 

appear to aid in this endeavor.  This correspondence will involve 

grinding through the details of a full-fledged proof. 

The Specification-to-Algorithm Correspondence 

Both of these representations are likely to be phrased in formal 

languages.  There is, furthermore, the likelihood that state variables 

and state transformations will have an almost transparent correspondence 

in the use of similar names.  Hence, the problem here is essentially 

one of translation from one language to another.  In addition, if the 

correspondence of specifications to progam modules is direct and simple, 

the situation is precisely that of traditional proof-of-correctness, 

with the benefit of an explicit standard against which to "prove" the 

program. 

The Algorithm-to-"Machine" Correspondence 

This correspondence seems to pose the most practical problems. 

In particular, the general problem here presumes an understanding of 
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the semantics of the higher-level language used in the algorithmic 

representation.  Unfortunately, formal semantics is in its practical 

infancy and little useful work in this area has been done. 

The general problem of proving that a machine-language translation 

corresponds to a higher-level program admits of two general approaches. 

The first approach is to establish that the compiler used generates 

semantically correct machine code for any source program.  Since cert- 

ified compilers are not generally available, one is faced with writing 

a compiler for a restricted subset of the implementation language and 

certifying it to compile correctly or with adopting the second approach 

to the problem. 

The second approach involves uncertified compilation and certified 

disassembly.  The idea is to compile the program into machine language 

and then to disassemble into a readable assembly language (see Figure 4). 

The correspondence of the machine-language program to the assembly- 

language program would be assured by the certification of the dis- 

assembler; the correspondence of the assembly-language program to the 

original program would be established manually by whatever means are 

appropriate.  Thus, the correspondence of the machine-language program 

to the high-level language program is shown by the composition of the 

two smaller correspondences, which together are strongly equivalent to 

the actual uncertified compilation. 

The certified disassembly approach is predicated on the possibility 

of writing a certifiable disassembler.  There has been some work done 

in this vein, including the work of C. R. Hollander [21].  Work on the 

certification of compilers is also proceeding; particularly interesting 

work in this area has been reported by L. Ragland [22] and R. L. 

London [23]. 
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Figure 4.  The Certified Disassembly Concept 
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RELATED WORK 

The major contribution of this paper is the organization of 

several techniques into a cohesive software engineering framework. 

In this subsection, the relation of this exposition to other important 

areas of research will be described. 

Levels of Abstraction 

The validation chain we are proposing involves altering an abstract 

solution of a problem successively until a concrete, useable solution 

is reached.  Despite the common term "abstract," this process is not 

necessarily related to Dijkstra's levels-of-abstraction [24].  In 

both contexts, "abstract" is used in the strict mathematical sense of 

"more general" and "less detailed".  In our situation, the abstractness 

involved is that of various solutions to the same problem, solutions 

which vary in mode of expresssion as well as in the degree of detail 

involved.  For Dijkstra, the degree of abstraction occurs within a 

single solution to a problem, the amount of elaboration present (or 

absent) determining the specificity of the particular description of 

the solution.  It is eminently reasonable, when involved in the design 

of the Algorithmic Representation of our validation chain, to use 

Dijkstra's levels-of-abstraction approach, either alone or in conjunct- 

ion with other techniques such as raodularity.* Thus, at least in 

some instances, the use of levels-of-abstraction with our synthesis 

technique, although not required, can be beneficial. 

For a complete discussion of these techniques in the development of 
reliable software, see Liskov [25]. 
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The use of levels of abstraction in the development of secure 

computer systems can be seen in many efforts.  The MITRE work on the 

PDP-11/45 [9] used levels of abstraction only in the development of 

the algorithmic representation (just as was true for Dijkstra).  The 

work of Neumann et al [12] involves layered validation-chain components 

for some, and possibly all, of the relevant blocks in their methodolog- 

ical framework.  Another approach, the development of a series of 

mathematical models, with each model describing a different Dijkstra- 

level, or virtual machine, is the approach being taken by Walter et^ 

al. [6].  The last approach we will mention is that envisioned by 

Liskov and Zilles [13] in the development of the very-high-level 

language CLU.  Here, the model can be translated into a very abstract 

algorithmic representation and the top-down development of Dijkstra 

levels down to an implementation can be carried out within the language 

itself. 

Program Proving Techniques 

The work that has been done in the field of program proving is 

directly applicable to our synthesis approach.  The application of 

these methods, however, does require care for correct use. 

The vast literature of program proofs, mostly in the form of 

examples, can be quite illuminating in showing the difficulty of the 

procedure.  The work of Floyd (the induction theorem) [16], Manna [18], 

Hoare [17], Naur (general snapshots) [26], Burstall (structural 

induction for recursive programs) [27], and London [23, 28] should 

be especially noted in this regard.  It should also be mentioned, 

hov/ever, that the problem addressed by most of these authors involves 

algorithmic validity (the demonstration that a prespecified input-output 

relation between variables is valid) while the general problem we 

address involves continual state transformation.  An important 
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investigation into proving the correctness of a computer system is 

Lauer's thesis "Correctness in Operating Systems" [29], 

Another branch of program proving that has great potential in 

future uses of our synthesis technique is mechanical theorem proving. 

The basic ideas, following a line of development from Turing through 

Herbrand, Davis and Putnam and Robinson, revolve around converting a 

program and its specifications into a theorem in symbolic logic. 

Correctness, against some preestablished standard, can be phrased in 

symbolic logic as a resolvable halting problem.* Development of auto- 

mated (and eventually verified) tools to use symbolic logic in proving 

a program to match an input-output relation is being carried out by 

a number of people, including King [31], Good [32], and Igarashi et_ 

al. [33].  The last mentioned development provides for automatic 

generation of some of the internal assertions used in analysis. 

Further, the development of this kind of aid, based on axiomatically 

defined semantics as in Pascal [34], could bring substantial benefits 

to the proof of correspondence for the last two links in our valid- 

ation chain. 

There is an extensive literature in both areas of program proving. 

Two excellent references for examples of program proofs are the survey 

articles by Elspas, Levitt, Waldinger, and Waksman [35] and by 

London [36].  An excellent exposition of mechanical theorem proving, 

as well as an extensive bibliography on the subject, can be found 

in the Chang and Lee book [30] mentioned before. 

For a discussion and an explanation, see Section 10 of Chang and Lee s 
Symbolic Logic and Mechanical Theorem Proving [30]. 
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Management Techniques 

The recent emphasis on management techniques such as the chief- 

programmer method [37] and human factors in general is in a sense 

orthogonal to the technique we are proposing. We are attempting to 

define what goals should be recognized and pursued in the development 

of a system; management techniques address how prespecified goals of 

an endeavor can best be achieved.  Thus, when operating within a 

development framework such as ours, management techniques might well 

be used in the attainment of intermediate goals; the development of 

the synthesis technique itself, however, need neither presume nor 

endorse any particular management philosophy. 
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SECTION V 

SUMMARY 

The specific requirements of a computer security program have 

led us to general software synthesis technique, applicable whenever 

a certain degree of assurance is required of a system.  The technique 

is an aggregate of mostly familiar techniques, combined into a cohesive 

software engineering discipline.  The framework of the technique is 

the validation chain with four components representing solutions to 

the given problem in varying degrees of abstractness.  A precise 

definition of correspondence has been formulated to clarify the issue 

of the relation between the various components of the chain.  We 

believe the technique described herein is both practicable and useful 

for the synthesis of certifiable software. 
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