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Section 0 THE RATIONALE FOR A FIRST-ORDER PROOF CHECKER

The reader ready 10 plunge right imo making FOl. proofs may skip 10 section 1.

The Idea of doing mathematical reasoning mechanically goes back to Lelbniz, but It was not
until the <nd of the last century that Frege and Peano developed the first completely fornal
systems adeqnate for expressing some kinds of reasoning. Much of the work of Whitehead and
Russell was an attempt at demonstrating that large parts of mathematics conld actnally be
expressed within such systems. After these initial successes, however, the Interest of logicians
changed from proving theoreins within mathematical systems to proving meta-theorems about
such systems.

Even before Goedel's work, It was intultlvely clear that checking proofs was different from
finding them. It Is an essentlal part of tne idea of formal systzm that proofs can be checked
mechanically, whereas finding proofs mechanically was always regarded as a research problem.
This distinction was clarified by the wock of Goedel, Tarsk), Turing and Church which showed
that algorithins for finding proofs cari work infallibly only in limited domalns and that some
mathematical ideas cannot be completely characterized by axiomatic systems.

The advent of compnters and the beginning of the study of artificial Intelligence gave rise to
attempts to explore experimerntally what can be proved by machine. There has been steady
progress In this endeavour, bn. twenty years work leaves us a long way from being able to prove
hnportant imathematical theorems.

Knowlng that mechanical theorem proving has a long way to go justifies a renewed interest in
the more straight-farward task of proof-checking by computer. Moreover, while it is not as
Interesting to check proofs by computer as to inake computers prove the theorems, proof-
checking has obvions potential applications. The most important of these Is proving that
computer programs meet their specifications since the reasoning Involved Is lengthy although
usually straightforward - or so o. Intuition tells us. Since a computer program Is a
mathematical object whose properiies iie determined entirely by its symbolic form, It is a
mmathematical disgrace to have to debug themn cas: by case rather than proving them correct in
general. Since the programs are lcng, the proofs of correctness will be long, and since
programmers somettmes think wishfully, It Is obviousiy desirable that the proofs be checked by
computer.

It Is also Interesting to see If we can check the proofs of Interesting mathematical theorems even
though the problem Is of less practical urgency, since the huiman refereelng process works quite
well.

At flrst sight, compnter proof checking seems almost trivial. We know that almost all practical
mathematical reasoning can be done in axiomatic set theory which in turn is expressed in first
order predicate calculus. Therefore, it would seem that all we need do Is to make a proof checker
for predicate calculus, choose either the Zermelo-Fraenkel or the Goedel-Bernays-von Neumann
axloms for set theory and write and check our proofs. This is one of the things the FOL project
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is doing, but in order that its formal proofs should not be substantiaily longer than conventional
mathematical proofs, it is necessary to reformulate the usnal logical systems. This can be
thought of as an effort to produce a formal system in which the rules of inference, as weli as
the exprassive power of the language, is more closely correlated with actual mathematical
practice. The use of a computer allows for the introduction of complicated rules of inference
whose metamathematics Is not simple. FOL provides for the following:

(1) Its notion of a first-order langnage includes function symbols, equality and other usual
mathematical notation, such as infix operators, n-tuple notation:

(2) the user can declare sorts and declare variables to range over given sorts. This greatly reduces
the length of axioms and theorems and corresponds to the fact that in an informal proof a
context Is establislied, and the reader knows that a certain part of the proof is carried ont within
the context;

(3) the decision procedures for certain simple domains are built into the system. This allows
some proofs to be much shorter than usual mathematical proofs, because the computer can go
through some quite complex chains of reasoning by itself. At present, propositional deduction
and a fragment of the theory of equality have been implemented. The Boolean algebra of sets
and elementary commutative algebra are planned:

(4) some facilitics for introducing definitions have been implemented;

(5) a facility is provided for defining the interpretations of constants and predicate/function
symbols, and for computing within a .nodel of the language. This means, for example, that
algebraic and LISP functions can be calculated directly, rather than being synthetically derived:

(6) some primitive facilitics are available for metamathematical reasoning:

(7) rules of infereice for some interesting modal logics are provided.

The domalns which are being explored by means of FOL proofs include:

(i) CLASSICAL MATHEMATICS. This is the single most striking success in our ability to
represent reasoning in terms of formal Gerivations. How close are these derivations to a
mathematiclan's Informal proof? Do they constitute a falthful representation of his reasoning?
How are the Inference rnles of our logic related to the actual rules of evidence he uses when
convinclng himseit of some truth? The answers to these questions are important In determining
whether we can make computer-checkable proofs that are not enormously longer than the proofs
in mathematical journals. Experiment with the use of FOL in classical mathematics will help
answer them. Theoretical studies of the intensional properties of proofs such as those of Kreisel
(1971a,1971b) are also relevant. Moreover, it turns out that a large part of many mathematical
proofs In the literature are really at the metamathematical level, Le. they are reasoning abont the
reasoning In the axlomatic system. Thus It can happen that a slmple theorem prover or proof-
checker is not even capable of expressing the theorems of mathematicians, let alone proving
them;

(ii) MATHUMATICAL THEORY OF COMPUTATION. (McCarthy 1963, Floyd 1967, Manna
1974)and othiers have shown how first-order theories can be used in proving properties of
programs. Making this into a tool for verifying programs before they are widely distribnted is
one of the major goals of the FOL project. This will require further research in formalizing the
properties of programs, the ability provided by the attachment feature of FOL to establish
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decidable properties of parts of the program by direct calialation rather than step-by-step
Inference, and a great deal of cxperiment aimed at making the proofs correspond to the
programmer’s informal reasoning that his program does what it should:

(il1) REPRESENTATION THEORY. Common sense reasoning is being represented in FOL in
the style of (McCarthy and Hayes 1969). As in proving programs correct, purcly inferential
reasoning wmust be snpplemented by assertions directly computed from the data base
representing the environment: again the FOL attachment feature is the key device nsed. Even
more experiment will be required before the forv & proofs correspond to informal reascning
than in the case of mathematics, because this area has not been well explored (perhaps only by
McCarthy, Hayes 1774, and Sandewall 1970). Particular problems are the axiomatization of time,
slmultaneity, causality, knowlecge, and the geometric reasoning Involved in perception.
Metamathematics also comes in, particularly when it is necessary to reason about knowledge and
belief. We hope that axiomatizing the metamathematics of FOL, Le. the structnre and truth
conditions of FOL sentences together with a reflection principle, sultably restricted to avold
paradoxes, will enable us to express common sense reasoning about knowledge, belief, truth and
falsehood.

FOL Is committed to a system of natural deduction. The use of the word 'na’ural’ I best
explained by Prawitz himself (Prawitz,1965):

*‘Systems of natural deduction, invemted hy Joskowski ond by Gentzen in
the early 1930's, constitute a form for the development of logic thot is
noturol in wmany respeets. In the first place, there is a similarity hetween
natural deduetion and iutuitive, informal reasoning, The inference rules of
the systems of natweral deduction rorrespond elosely to procedures commou
in intuitive reasoning, ond when informol proofs == sueh os are encountered
in mathematies for example -- are formolized within these systems, the
main strueture of the informal proofs con often he preserved. This in itself
gives the systeins of natural deduetion on interest as an explicotion of Vhe
informol concept of logical deduction.

Geutzen's variaut of natural deduction is natural also in a deeper sense.
Hlis inference rules show o noteworthy systematization, which, among other
things, is closely reloted to the interpretation of the logical signs,
Furthermore, as will he shown in this study, his rules allow the deduction 1o
proceed in a certain direct fashion, offording on interesting normol form
for deductions. The result thot every natural deduetion can he tronsformed
into this normol form is equivalent to whot is known os Hauptsatz or the
normal form theorem, o bosic result in proof theory, which was estoblished hy
Centzen for the caleuli of sequents.  The praof of this result for systems of
notural deduction is in mony ways simpler and more illuminoting.

In this manua’, most of the metamathematicol notions discussed will he referred to by word: in the
following fom: e.q. SYNTYPE, INDVAR, WFF. These notious will play a greater role in later versions of
FOL.
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Section | THE NOTION OF AN FOL LANGUAGE

In FOL the user specifies a first-order langnage by making a set of DECLARATIONs (see Section

4.3). The proof-checking system then generates a proof checker and a collection of rules specific
to that system.

An FOL !anguage is determined by specifying a way of building up expressions, usunally called
well formed formulas or WFFs, from collections of primitive symbols. In FOL these classes of
symbols are called SYNTYPEs. They are:

L. loglcal constants:

a) sentential constants - SENTCONSTs: FALSE, TRUE
b) sentential connectives - SENTCONNs: ~Av,o0
c) quantifiers - QUANT: V,3

2. auxiliary symbols: - AUXSYM: “("and ")"

3. sets of variable symbols:

a) individual variables - INDVARSs,
b) individal parameters - INDPARSs,

4. a set of n-place predicate parameters - PREDPARS.

These symbols are used to form those sentences common to all FOL langnages. Sometimes a
language L inay also contain symbols which are intended to have interpretations which are
fixed relative to the domain of the interpretation. Examples are: "¢" in set theory, "=" In first
order logic with equality, "0" and "Suc” In arithmetlc. Tlhese are represented by

5. sets of constant symbols:
a) individual constants « INDCONSTSs,
b) n-place operation symbols « OPCONSTS.
¢) n-place predicate constants - PREDCONSTs.

In addition one can

6. restrict the range of a variable symbol to some PREDCONST by declaring it to be a SORT,

7. designate a partial order to hold among some of those PREDCONSTs which hiave been declared
to be SORTs;

TERM, AWFFs (atomic well formed formulas), and WFFs (well formed formulas) are deflned In the
usual way.
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A formal description of these langnages and of the notion of SORT js given in appendix 1. The
entire extended syntax of FOL is described in appendix 2.

A flrst-order THEORY is defined by a (possibly empty) set of sentences of L, called AX:OMs. It is
the creation of such theories and the checking of valid deductions In them that is the main
purpose of the computer program FOL.

X




I'

i b

dl e e

FOL Manual Page 6

Section 2 THE NOTION OF AN FOL DEDUCTION

A derivation (the foliowing description of which is taken almost verbatim irom Prawitz 1965)
begins by inferring a conscquence from some ASSUMPTIONs or AXIOMs by mean< of one of the
RULEs listed below. We indicate this by writing the formulas assmmed on a horizontal line and
the formula inferred immediarely below this line. On the computer this can be repeated usin
previous consequences as new hypothesis. This generates a tree. which we call a DERIVATION.
Thus If we wish to derive A>(BAC) from (A2B)A(A2C) we write:

(RaB)A(RSC) (A5B) A (RSC)

At each step so far, the confignration is a DERIVATION of the undermost formuia from the set of
formulas that appear as ASSUMPTIONs. The assumptions are the wpperraost formala occr rrences,
and we say that the nudermost formnla depends on these ASSUMPTIONs. Thus, the example above
Is a deduction of BAC from the sct of assumptions {(A>B)A(A>C).A}, and in this deduction, BAC
Is said to depeind on the top occurrences of these formulas.

As the resuit of somne inferences, however, the formuia inferred becomes independent of some or
all assumptions, and we then say that we discharge the assumptions In question. There are four
ways to discharge assumptions, namely:

(1) Given a deduction of B from {AJUT, we may infer A>B and discharge the assumptions
of the forin A;

(2) Given a deduction of FALSE from {-AJUl', we may infer A and discharge the
assumptions of the form -A;

(3) Given three deductions, one of C from {AJL,, one of C from {BjUl', and one of AvB,
we may infer C and discharge the assumptions of the form A and B that occnr in the
first and second deductions respectively, ie. beiow the end-formulas of the tiree
deductions, we nay write C and then obtain a new dednction of C independent of the
mentioned assnmptions;

(4) Given a dednction of B from {A[x+a)}UT" and a deduction of 3x.A, we may infer B and
discharge assumptions of the form A[x«a), provided that a does iint accur in 3x.A, n
B, or In any assumption - other than those of the form A[x+a) - on which B depends
In the given deduction.

To continue the deduction above, we may write A>(BAC) beiow BAC and obtain a deductlon of
A3(BAC) from {(A>B)a(A>C)).
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Section 3 THE RULES OF INFERENCE

The Inference rules consist of an introduction (I) and an elimination (E) rule for ea
constant. The letters within parentheses indicate that the ircerence rule di

as explalned above.

Restriction on the Vi-rule. a must not occur in any assumption on which A depend;,

Restriction on the 3E-Rule: @ must not occur In 3x.A, In B, or In any
upper occurrence of B depends other than A[x«~a).
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Section 3.1 An FOL deduction using the computer
We show here the compnter interaction necessary to check the derivation given in Section 2.

In this and all succeeding sections examples of interactions with the computer will appear in small
type. Those lines which are typed by the u'er will be preceeded by five stars "sones™. The other lines
are those typed by the computer.

To derive A3(BAC) from (A>B)A(A>C), we proceed as follows,

s000e0ECLARE SENTCONST R,8,C,
s022sASSUNE (R3B)A(ASC),
1 (RaB1ACASC) (1)
sl L, 1y

2 (AB) n
#0090ASSUNE 1y

3 A 3

seeesdt 2,;

¢ B U

soesert 1,2y

S (RD) ($8]

sseeedE 3,5,

6 C a»

seseen] 4A5,

7 8. ¥

sereed] 357

8 A>(BAC) (1)

Each LINE typed by the compnter contains: 1) a LINENUM, which labels that LINE: 2) the WFF
representing the resnlt of applyiug the RULE typed by the user on the line above: 3) a list of
numbers representing those LINEs of the proof on which the WFF depends. Consider the LINE
begining with 7 in the above example. 7 Is its LINENUM, BAC is the WFF on this LINE, and the
derivation of BAC on this LINE depends on the assumptions on LINEs | and 3. This LINE was
generated by the user specifying as a RULE Al (AND introduction) using lines 4 and 5. This
information is typed by the user and In the example appears directly above LINE 7 of the proof.
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There are two sther thiags to notice about this example. The first thing typed by the user was
a declaratloii stating that AB and C are SENTCONSTs. Making declaratlons is essentlal. Failure
to declare an identifier is the most common reason for a syntax crror. Second is that v.nen >l
is applied to LINEs 3 and 7, LINE 3 has been removed from the list of dependencics of the new LINE.
This corresponds to the description of this rule given on each of the previous two vages. The
exact format of the commands a user must type to the computer is explained in seccion 4.
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Section 3.2 Implementation - user oriented features of FOL

There are several differences between the machine impiemention of FOL aud the description
glven above and in Appendix 1. These differences are usnally for the purpose of inaking life
easier for the user. The description in the Appendix presents a clean version of tire logic so that
the metamathematics can be discussed In a straight-forward way. The major differeices are
described brlefly below; mor2 detailed descriptlons occur In the appropriate sections of the
sequel.

Section 3.21 Individual symbols

In Prawitz's logic, individuai variabies (INOVARs) may ouiy appear bound, and individual
paramecers oniy free. In FOL, this restriction is reiaxed, and INDVARs may appear fres 2s weil as
bound in weli-formeri formulas. INDPARs, however, mnst aiways appear free. Additionaily,
natural numbers are automatically deciared to be INDCONSTs of SORT NATNUM.

Section 3.22 Prefix and Infix notation

FOL allows a user to specify that hinary predicate and operation symbols are to be used as
infixes. The declaratlon of a unary application symbol to be prefix makes the parenthiescs
around Its argument optional. The number of argumeats of an appilcation term is calied its
ARITY. Sectlon 4.1 describes hew to make such deciarations.

Section 3.23 Extended notion of TERM;s

In addition to ordinary application terms, FOL accepts TERMs representing fiaite sets,
comprehension terins, n-tuples and LISP s-expressions. A detailed description of the s ntax of
these terms Is to be found In Appendix 2.

Section 3.24 The Equality of WFFs

The description of subsitution given in Section 4.35 is consistent with FOL's notion of
equivalence of WFFs. The praof.checker always considers two WFFs to be equal if they can both

be changed into the same WFF by making allowable changes of bound variables. Thus, for
example, the TAUT ruie will accept Vx.P(x)>V¥y.P(y) as a tautoiogy.

Section 3.25 VLs and subparts of WFFs and TERM;

FOL as Implemented offers very powerfui and convenient techniques for referring to ob jects in
a proof: essentially, any weli-forimed expression has a name, and can be manlpuiated as a single
entity. A VL is a name of a part of a derlvation. There are several kinds of VLs: for example, a
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label represents a line-nuniber, the WFF on that line, and a list ~f the dependencies of that line in
the derivation.

The syntax of VLs is very extensive and a review of it will be left to Appendix 2.

“Section 3.26 Axioms and Assumptions

FOL allows the specification of certain WFFs as AXIOMs. The difference between these and
ASSUMPTIONSs is that the foriner are ot mentloned explicitly as dependencies of any lines of the
derivation. Thus every proof checked by FOL tacitly depends on a set of AXIOMs.

Section 3.27 FOL derivations

As opposed 1o a tree. a deduction in FOL consists of a collection of AXIOMs and a linear sequence
of lines, each line representing either an ASSUMPTION o a2 DEDUCTION from the previons lines
(and axioms).

Section 328 SORT;s

The addition of SORTs, and specification of a pariial order over them, constltutes a ma jor

extenslon of FOL from a computational point of view. Their meaning and use Is discussed in
the sections on declarations and the quantifier rules.
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Section 4 USING THE PROOF CHECKER

FOL is invoked at the Stanford A.l Lab by typing R FOL to the monitor. A backup file is
automatically opened onto whicit input is saved: the uante of this file may be altercd by meaus
of the BACKUP comtmand (ide infra). To save an entire core image type the command ‘EXIT;
and SAVE <filename>: to restart type RU <filename> and you will be where you left off.

The commands fall naturally imo several classes:

I. Commands for defining the first-order language under cousideration: thai is to say
commands for making Jdeclarations:

2. Contmands for defining avioms:

3. Commands for maling assumptions and applying the rules of inference to generate
new steps in a derivation;

4. Administrative commands, which do not alter the state of the derivations, but enable
varions book-kecping functions to be carried out.

In thik manual the syniax of FOL will be deceribed uring a madified forin of the MLISP?2 notion of pallern,
These form the hacie conctrucis of the FOL parser,

1. Mdentifiere which appear i patternc are 10 be taken lierally.
2. Panernc for syntatie 1ypes are surrounded by angle brackets. Thus (wif> ic a WFF,
J. Patternc for repetitions are decignated by:
REVFaf <patiern> ] means n or mare repeated PATTERN,
If a REPn hac 1wo argnment< then the second argament 15 a patiern that acis ac a separator. So
that REPI[ «wff>,, ] meanc one or more WFFs geperated by commas.
4. Alternanives appear ac ALTT CPATTERND | ... | <PATTERNm ).
ALTT <wff> 1 <iermd> ] meanc either a WFF or a TERM,
S. Opnional thps appear as O <Cpaniernd ]
REPLwf0,0PT]) means a sequence of two or more WFFs aptionally ceparated by eommac,
These conventions are combined with 1he comparatively stamlard Backng Normal Form deseription,
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Section 4.1 System Specification

The flrst step in specifying a first-order theory is the description of the langnage which is to be
used. This Is done by defining the symbols of the language, using the declaration commands.

These commands specify which symbols are to be variables, constants and predicate or function
symbols.

Section 4.11 Declarations

As we mentioned above, one ol the tirst things that a user of FOL must do is to define the FOL
ianguage to he considered. Every identifier in a proof must be declared to have a SYNTYPE.
Only nine of these types can be declared by the user. T hey are:

l. SYNTYPE|

a) INDVAR  (individual variables)
b) INDPAR  (individual parameters)
¢) INDCONST (indivadual constants)
d) SENTPAR (sentential parameters)
e} SENTCONST (sentential constants)

2. SYNTYPE2
a) PREDPAR  (predicate paramei:r¢ with one or more arguments)
b) PREDCONST (predicate constants)
c¢) OPPAR  (operation parameters or function parameters)

d) OPCONST  (operation constants or function constant:)

Declaratlons are fixed within a proof and ence inade they cannot be changed.

DECLARE ALT([ REP] (<simpldec> ORPT(,)) | REP1 [<appldec> OPT(,)) )

There are two kinds of SYNTYPEs, those of symbols which take arguments, SYNTYPE2s, and those
which do not, SYNTYPE |s.

v

«syntypel> te ALT( <indsym> | <senisym> )
vsyntyped> te RALT( «predsym> | <opsym> )

The idea of SORTs is to allow a user of FOL to restrict 'he ranges of function to some
predetermined set. This correspond to the usual practice of m: thematiciar s of saying let f be a
function which maps integers into integers. I FOL a SORT is Jjust a PREDCONST of ARITY |, i.e.
a property of individuals. The effect of this informal restriction to integers is achieved In FOL
by

soe0sDECLARE PREDCONST INTEGER 1,
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followed by

009090eDECLARE OPLONST o (INTEGER, INTEGER) o [NTEGER)

A PSEUDOSORY is an identifier which has not yet been declared but is assumed to be a PREDCONST
of ARITY | and is declared such because of the coniext in which it appears. If INTEGER had
not been separately declared atevz, In lis appearance in the sccond command it wonld have been
considered to be a PSEUDOSORT and declared accordingly. There is one special PSEUDOSORT, i.e.
the PREDCONST UNIVEKSAL. Tiis represents the most gencial SORT and is the defanit option
whenever SORT specificalions are optional. In declarations it can alse be abbreviated by "+"
The MOSTCENERAL command explained in the next section, can be used to change the name

of the MOSTGENERAL SORT.

<pesudosorl> 1e ALT( <identiliers | o]

L
Simple declarations
s imp ldsc> ts  «syntypel> <idlist> DOPT[ ¢ <pesudosori> )
Examples of simple deciarations:
900990ECLARE [NDVAR x y 2)
0000eDECLARE INDVAR a b ¢ ¢ Set, A B T ¢ Clasey
Application declarations
«app ldsc> 1s  «aynlype2> «ldilel> cargdoc> OPT( [ <bpdsc> ) )
<argdec> te ALV cargsorl> | cnatnums )
cargeoris te ALT[ 1 esorirsp> ALTle]+) <posudosori> |
( <sortrgp» | ALT[e}<) <pssudosori> )
V csorirsp> 1s  REPLI <pssudosorl> , DPTIALT(e},]]) )
) «bpdec» te ALTI <rbp> | «rbp> <lbp> | <lbp> <rbp> | INF | PRE )
<«rbp> te R + <nalnum
) <Ibp> te L + c<natnum

Exarples of application declarations:
09990DECLARE DPCONST EXP(Ini, Inllalnl [Le8SO Re8001

The meaning of this declaraion is that EXP is an OPCONST, it has two arguments (ARITY 2), both
of which are of SORT Int. It also has a value of SORT Int, and is to be used as in infix operator
with a right binding power of 800 and a left binding power of 850. This could also be declared

by

—— e eaw oun NN G N SR EE T was -

l #0000DECLARE DPCONST EXPrinlelntelnl (Lo858 R+8001
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Stimpler declarations can be madc if you don't wish to specify so much information.
see0eDECLARE OPCONST EXPiIntelnt«lnt (INFI

declares EXP the same as above out uses the default infix bindings R+500, L+550.
#909cDECLRRE OPCONST EXP(In1, Int)elnyy

simply makes EXP an ordinary applicative function, so you must type EX#(ab) rather than (a
EXP h). Further simplificiion can be made if less sort informaiion is wanted

+9990ECLARE OPCONST EXP (Int, In1),

makes the value of EXP ivave the SORT UNIVERSAL (the MOSTGENERAL SORT), and
+44400ECLAKE OPCONST EXP 2;

just says it has ARITY 2. Of course

seessDECLARE OPCONST EXP 2 [INF)

++++eDECLARE OPCONST EXP 2 (Lo850 R+800) |
have the obvious meaning. This section has illustrated most of common ways of making
declarations. There are some other examples scattered throughout this manual.
Section 4.12 SORT manipulation

There ate several commands which affect the SORT structure:

Section 4.121 NOSORT declaration
NOSORT ;
The NOSORT command turns off SORT checking. If any SORTs have already been declared, an

error message will be given.

Section 4122 MOSTGENERAL, NUMSORT, SETSORT, SEXPRSORT

MOSTGENERAL <sort>
NUMSORT <sort> ;
SETSORT <sort> ;
SEXPRSORT  «<sort> ¢
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In FOL cer 1in TERMs come with predeclared SORTs: numerais become INDCONSTs of SORT
NATNUM, compreheusion terms, set terms and n-tuple terms have SCRT SET, quote-terms have
SORT SEXPR, and the default MOSTGENERAL SORT is the PREDCONST UNIVERSAL. The effect of
the ahove cominands is to replace these default SORTs with those specified by the user. For
example, in the case of Goedel-Bernays-von Neumann set theory, the MOSTGENERAL SORT is calied
CLASS.

Section 4123 MOREGENERAIL declaration

MOREGENERAL <sort> 2 | <sort_iist> } i

For example,

e00eeNOREGENERAL chesspiece 2 Iuhitepiece, blackplecel
Is equivalent to the axioms

vx. (whitepiece(x) > chesspiece(x))
vx. (blackpiece(x) > chesspiece(x))

where chesspicce, whitepiece and blackpiece are understood to have been previonsly declared
PREDCONSTs. Althongh these axions do not appear explicitly, the quantifier rules behave as if
they did (this is explained in detail in section 4.327). This estahlishes a partial order among the
SORTs. Another typical example would be the declaration of classes to be MOREGENERAL than sets.

Section 4.124 EXTENSION declarations

EXTENSION <predconst> <ext_set> ;

<oxl_sel> i <primexl> REPE[ RLTIU!IN|/} <primex)> }
<primexi> te ALT{ <sori> | | <indconsitisi> | )

where each of the SORTs in the ¢primext> already ha, an EXTENSION defined. For example,
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0000 oDECLARE INOCONST BK ¢ BKINGS, WK ¢ WKINGS,
¢¢09¢DECLARE PREDCONST KINCS 1,

seeest XTENSION BKINGS 1BKI,

Extension of 3FINGS is (BK)

eesooEXTENSION W INGS (NKI,

Extension of WrINGS is (WK)

scooeEXTENSION ¥ INGS WKINGS U BKINGS,

Evtension of KINGS is (MK 8K)

The initial declaration declares BK 10 be of SORT BKING. and WK to be of SORT WKING. The
command 'EXTENSION BKINGS {BK} says that BK is the only object which satisfies the
predicate BKINGS: similarly, the command 'EXTENSION KINGS BKINGS U WKINGS' says
that the only objects which satisfy the predicate KINGS are those in the nnion of 1.e extensions
of BKINGS and WKINGS, i.e. BK and WK. This is equivalent to the introduction of the axioms:

Vx. (BKINGS(x) * (xsBK))

Yx. (WKINGS(x) s (xaWK))

VX. (KINGS(x) » ((xsBK v xsWK) A \BKsWK)))

By itself, this command has no effect, but the semantic simplificatioe mechanism (see Section
4.4) uses these axioms.

Seciion 4.13  Predeclared Systems
THEORY <sysname>

The THEORY command may be nsed to call up several pre-declared systewms. If no THEORY
command is given, the basic FOL system is generated, i.c. the full natnral dednction system for
classical logic with the extended infercuce rules. The options which are available are

cuysnames> 1o ALT | PRANITZ | 2F | GBN | S4 | S | KBK | KBS )

where PRAWITZ is the system described by (Prawitz 1965), i.e. withont SORTs or any of the
extended inference rules snch as TAUT: ZF is Zermelo-Fraenkel set theory (as defined in
Appendix 3); GBN is Gocde!-Bernays-von Neumana set theory (as defined in Appendix 4): S4 and
§5 are Lewis's classical systems of possibility and necessity (as defined in Appendix 5); and KBK
and KBB are Hintikka's systems fer Knowledge and Belief respectively (see Appendix 5).
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Section 4.2 Axioms

Axloms are only bricfly meutioned in the description of FOL. In the wachine tmplemented
version they play the same role as assnmptions, but they do not appear u the dependency list of
any step of a dednction, ner are they printed when you show the proof. Thus derivations are
always relative to au nnmentioned theory. When a theorem creating mechanism is available this
will change. The syntax for defining an axiom is:

AXIOM <axiom>

where

<oxlom> i« REPIL <axnam> 1 «ax'isl> 1)
<axligl> tu ALTL cuttiisl> | REPL[caxioms) )

This allows for a bluck structured way of naming sets of axioms, so they can be referred to
either by some particnlar name, or as part of a group. Each WFF in WFFLIST Is given a name by
FOL. This nanie Is generated by taking the AXNAM and concatenating an integer to it. For
example If the AXNAM s GROUP then they will be glven the names GROUPL GROUP2... .
These can then be used to refer to each axlom. An AXNAM is like a LINENUM and may be used In
any context that requires a LINENUM. If WFFLIST only contains one WFF that axiom s called
AXNAM.

NOTE: The ayniax calls for multiple semicolons!

Examples:
sesesRXION R Bi VXL -XcX,
VY. ~1XYAY(X)
Cs V. Hck;

This creates two axloms A and C. Axlom A contains two smnbaxioms BI=¥X.-X¢X and
B2aVY.~(X€¢YAY(X). If you prefer to think of collecticus of axioms as theories, then the syntax
allows arbltrary nesting of theories, cach followed by a semicolon. At the moment no checking
is done for the consistency of axiom names. You lose if you create conflicting ones. Axioms
cannot be got rid of, so be carcful. Numbers are not legitimate AXNAMs.
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Using axioms as axiom schemas.

There are no special rnles for axiom schemas, merely an _xtension of the nse of the rules already
glven. Namely, an axiom schema is simply an axiom with a predicate parameter (PREDPAR) in it.

An axiom can be used anywhere a step can by using an AXREF. This is of the form
AXNAM[PP XX ,..,PP e XX,] and its symntax is described in the section on Vie. An AXREF can
appear anywhere a VL can. in the form AXNAMPP, XX, PP.-XX.] the PP are predicate
paranieters (PRC. “A7) appearing in the axiom, and the XX, are propositional functions assigned
to these parameters. The assignments are done successively rather than simultancously.

An XX, is a WFF preceded by A, any number of INDVARs and a "." (period). Thus cg. X x y z.<wff>.
The ARITY, p. of the PREDPAR must be less than or equal (o the number of variables following the
A. The indicated A-conversion on the first p variables is done antomatically. The error message
"NOT ENOUGH LAMBDA VARIABLES" means p is too large. The remaining variables are
treated as paraweters of the entire axiom, and the instance of the axiom returned is the
universal closnre of the axiom with respect to these parameters.

‘(he :@ (SUBPART) mechanism (see Appendix 2) can be used to take pieces out of the resulting
formula in the usual way.

Example of using axiom schemas:

++20+DECLARE PREDFAR F 1

seses INDVAR X;

ecessRAXI0N INDUCTIDN: F(8)AVX, (F(X)F (Xa1)oVR.F (XY

INDUCTIONt F () <¥X, (F(XYoF (XeQ)oVX, F(X)

¢osssDECLRRE INDVAR a b

ssseon] INDUCTIDN(Felrb 8.asbebeal)

1 Vo. ((a+@) 0 (Daal2VX, ((asX)o(Xea)o(as (Xel)la((Xal)eaa))oVX, (AsX)u(Xsa))
so00eal INDUCTIDN(Ferb.Ya,aebebea)

2 Va.{a¢B)a(Dea)AVX, (Va, (a4X) 0 (Xea)oVa. (s (Xal))o ((Xe1)aa))oVX a, (asX)o(Xsal
seteen]l INDUCTION(Ferb X.XebubeXt

I VX, (Xa01a (84X)AYXY, ((XaX1)m (X1aX)D(Xa (X1ad))m((X1a1)aX))OVX2(XeX21 0 (X24X))
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Section 4.3 The generation of new deduction steps

Note: when the variahles N8 and C are memioned in Vhis section, Vhey refer 10 the deseription of the
basic Prawiiz logic in seciion 3.

Section 4.3 Assumptions
ASSUME <ufflist>

The ASSUME command makes an assnmption on a new line of the deduction for each WFF in
WFFLIST. Note that the dependencies of a line appear in parentheses at the end of a line, and
that assumptions depend upon themselves

Examples:

09899ASSURE Vi, xe x|

1 Yoxex (D)

000¢oRSSUNE Yy.ycy, =Vy.ycy)
2 Wy.yy ()

3 ~Vy.yy ()

Section 4.32 Introduction and Elimination rules

The general form of a RULENAME is
<rulename> te <logconsi> RLTL | | £)
where I stands for Introdnction and E for elimination. Tlhe format of a command is:

<rule_of_Infarence> te <rulename> <linenuminlo>

The LINENUMINFO is different for each rule. This Is explained below. We will use » to stand for
an argitrary VL (see section 3.25). In the description of some of the rules It is necessary to
distinguish among several VLs. In this case we write 81,82,... . We will write

Al san

rather than

Al <vi> A <vi>
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Alternatlve alphabetic RULENAMEs will be glven in parentheses after the standard ones. These
usually correspond to other frequently used names for these rules. Thus MP (modus ponens) or
UG (universal generalization) can be used, instead of >1 or V1.

All commas in these riles are optional. This will not be mentioned explicitly in the following
sections. Thus a “" appearing in a rule specification it is to be thought of as OPT[).
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Section 4321 AND (A) rules

Introdnctlion rule

Al (Al) (nan) An :

The LINENJUMINFO for Al is any parenthesized conjunctive expression in whicl all conjuncts are
Vis. If no parentheses appear (even in a subexpression) association is te the right, thus
sA(sAsAR)A® means WA((»A(sAm))A®). AND is always a binary connective. The “&" and " are
alternatives to the "A" symbol. The dependencies of a line are those LINENUMs mentioned.

Elimination rule

AE(AE)} o  OPT( ALT(,1:3 1 ALT(1I2] <subpart> J

1 picks out the first conjunct, 2 picks out the second conjunct and SUBPART picks the
appropriate subpart. For the definition of SUBPART see Appendix 2. The dependencies of the
result are the same as those of ». The first command in the example could have also been
written "AE 4 1" or "AE 4:1:" or "AE 4:e1;".

eoveerf 4 1

S (¥x,Class(x)aVa,~(a(AT))

seceoRE 41 25N2;

6 Ya.<(achh)

ereetRE 4 0i018),

Ths main symbol of Vu.Classixl 1s nol an a

seeeerl 4:12);

In 1he <subpari> 143 , 3 Is too lergs
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Section 4.322 OR (v) rules

Intraduciion_rote

vi (0 (veuff>venffs) :

OR's may he paremhesized just tike AND's, but at least one disjunct must he a VL. Any Vis

given v ill canse the dependencies of that iine to be included in those of the conclision. As with
AND, association is 10 the right aud OR is binary.

Elimination rule

vE (OE, s , u] . w2 :

® is the VL on which a disjunction AvB appears #] and w2 are both VLs wich that wl: and w2 are
both cqual to the WFF €. The conclusion of this rule is the WFF C. The dependencies of the
concinsion are those of w along with those of 8l which are not equal 10 A and thowe of 2 pot
equal to B. Remeniber two WFFs are cqual if they differ only by a change of bonnd variable. In
the example two different commands are given. Noie how 1the dependencies are treated in each
case.

¢¢attASSUNE Lliv3sg

9 Yr.xewvaVy.yty (D)
cie0e20] 1v3: 0l 21vdy
10 Vx.wewvaVy.ycy (11

teee
11 Yy.ycyv=Yy.yry (3

s2eenvl 9,10,11;
12 YeuoxexuVy.ycy  (8)
ecoeevE 8,10,1);
13 ¥uoxqxvaVWy,ycy  (3)

sesenvE 8,11,18;

14 ¥aoxexvaVy.ycy (3 381
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Section 4323 IMPLIES (o) rules

TLatroduction rule

o] (DED) ALT[ woem | <uff>oe )

The difference hetween w8 and «wff>ae is that in the former case dependencies of 1he
conclusion which are cqual ta the hypothesis are deleted. A comma is an alternative 1o the "="
symbol. In ather styles of presenting first order logic this rule is called the deduction theorew,

eeesed] 1ol
19 Vo, wewdV¥n, w(x
t29+:0E0 lioly

16 Yu. xe¥oV¥x wew )

seeee D1 2.1,

17 Yy, yeys¥x.rex

Elimination_rule

SEMMP) e | @

The order in which the argnmcnts are specified is Irrelevant. This is the classical rule modics
ponens. The dependencics of the couclusion are the unian of the dependencics of hath Vis.

st00¢dE 1,17

18 Ve x(» tn




]

FOL Mannal Page 25

Section 4324 FALSE (FALSE) wules

Introduction_rule

FI 1 , w2

If ®f is of the form A, then ®2 must be of the forms -A (or the nther way aronud). The
conclusion is just the WFF "FALSE". Its dependencies are the union of those of 8] ayd ).

senecel] ), 3y

g ratse gy

Elimination riile
FE o , ALT( @] | «uff> ]

® must be of the WFF "FALSE". A new line Is created with cither s1: or the WFF specified by the
alternative. This rule says that anything follows from a contradiction. The dependencies (there
had better be smine) are just those of .

creetFE 19 6: 81 (Asv)y

<0 ~(y(N7) an
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Section 4.325 NOT (=) cules

Introduction_rule

=1 (N1) " o ALTE ] | cutffs ) 3

& must be the WEF "FATSE™ The conclusion of the rule is the negation of »l: or the WFF, The
dependencics of the conclnsion are those of ® minus the ones eqnal 1o 8l: or WFF.

«eece=t 19,3,
Sl =sVWy.yey (D)
+420¢¢DED 1521

S8 Y x(xd==Yy.yy

Elimination_rule
~E (NE) (] , ALTE o] | cnffs ) !

® mnst he the WIE "FALSE™. sl or WFF wmust have the form -A. The conchision is A. The
dependencies ave thoswe «f . minns any cqual te ~A. If this rale is amitted (or simply not nsed)
and only the introduction and climination rules are used the proof is intnitionisticly vahd.

et ASSUNE -1
) —-Wyuyey 20
teeerft 23,3,

& FALSE 323
ccece~b 24,3,

75 Yyouey 1230

cteesDED 23509

&6 ~-~Yy.ycyoVy.yry
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Section 4326 EQUICALENCE (3) rules
Tutroduction _rule
[ (E]} o} , &

Either 1 i< of the form AsB and #2 is of the form BoA or vice versa. The concluson s AR
The dependcucies are the nnion of the dependencies of »1 and »2.

ceevsn] 06,20,
27 --Vg_g: UIV'J,QIU

Elimination rule

ek (EE) ® , ALTLALTESI1) | ALTIcI2) )

If & is of the form A<B then the first aiternative produces AsB, the second BoA. The
dependencies are those of @

s 27 ¢y

b Yy yoys-avy gy

—— emss MES A4 El O TGS G 2 O = e -
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Section 4.327

QUANTIFICATION rules

This is an example of a proof using all the quantification rules.

¢ce2eDECLARE INDVAR x y; DECLARE INDPAR a b; DECLRRE PREDPAR P P

¥ 3y POy a¥e gu (P Ux, ) oP Uy, x)) (1)
(XX T T B I

23y P,y (D

eoeeoeb | 2

3 ¥y Pl y)oPly,x)) (D)
teeeeVE 2 ag

¢ y.Pla,y (D

¢te2eVE 3 8 by

5 Pta,b)sPib,a) ()

+02::38 4 by

6 P(a,b) (B)

oso00>f 5,6;

7 Pb,a) (] 6)

teeson] 6 7

8 P(a,b)/P(b,a) (] 6)
teeeod] 8 bey;

9 3Jy. (Pla,y)aPly, )} (1)
ste00V] 9 aex;

10 Y. 3y, (P U, ) AP Ly, x)) (1)

ceeees] 1510,

11 (Y%, 3y.P (e, y) 1 ¥x g.(P(x,g):?(g,x))):'x.]g.(P(v,g)»P(g,v))
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Section 4.3271 UNIWERSAL QUANTIFICATION (Y) rules

Introduction_rule

VH(UG) & , REF; | UF‘H/\LT[(indvat-|<indpar‘>] « ] <indvars , orPTL))Y
Several simultaneons nuiversal geunalizations on » can he ¢
each element af the list (cither X or a=x) 2 new univers

(with x for all fice nccurrences of a in the second ¢
created.

arried ont with this command.  For
Al quantifier (Vx) is putat the feom of o
ase) and a new line of the derivation js

Remembhor there ic a reariciion an vthe applicarion of this rule, namely \he newly quamiified variahle
must nat appear free in any af the dependencies of s

In the example VI accurs on line 9. T
dependency) so the gencralization is lega
be generalized, as it is an INDPAR,

here Is nothing free in the WFF an line I (line 9 anly

I. Notice that the “2" was changed to an “x". "a" cannot

Elimination_rule

VEWUS) & | ctermlicts ‘

Universal specification nses ihe treums in the ctermlist> to instanti
the order in whicl they appear. If a particular term
instantlated a bound varialile change is made and they 1y
created Is declared to he an INDVAR of the correct SORT.

ate the nuiversal quantifiers in
i not free for the variable to he
¢ substitution is made. The variable

Line 4 and 5 of the example were created by this rule.




FOL Mannal PPage 30

Section 4.3272 ENISTENTIAL QUANTIFICATION (3) rules

Iutroductlon _rule

31 (EG) o , REFIIOPT(«term> «) <indvar> OPTlcoccliats),OPT(,))
Thie list following » tells which TERMy are 10 be generalized. If the optional <termd i present, it
is first replaced by <wdvar at each occurrence mentioned in the <occlisty. The WFF on * is then
generalized and the next thing in the List is considercd Notice that no use can he made of an
occlist> if there is no TERM present. The machine will ignore such a list in this case. The
dependencies of the conclusion are jnust those of ».

<acclist) := OCC ordernatnnmlisty
The <cordernatummlic® is a list of natwal numbers in increasing nrder.

In the example exidential introduction is dene on line 9 of the prroof. Thic is the wiast
interesting line of this example. You will note that the dependencies of this fiue are not as
described abave liccanse of the previous existential elimination. This is explained ficlow,

+t+t;DECLARE PREDCONST F 1 TAUT F(w)y-F (v)

PR

LES X ]
27 Flxdv=F(v)

<reen I 27,vn4 0cC 2|
8 Iy (FOa).F (y))
ttoes VI 28, »)

9 Y, Jy. (F () v=F (yl)

Elimination rnle

JE(ES) » . FRFEPHIALTL <indvars | «<indpar> ),0PT{.]} :

The implementation of this tule i< the wost radically different from the formal statement viven
abave, This vule cortesponds in infornal reasoning to the following bind of arginent, Suppoce
we have showe: that «omething exists with some particular property. e W) Then we <y
“call this thing h" Thisis like <aying ASSUME P(ah). Then we can reason about i A+ <oon as
we liave a sentence, however, that no louger mentions b, it is a theorem whicl does nog depend on
what we cafled “y™ but ouly an the dependancies of the existential statement we started with,
Thus we can eliminate P(ah) from the assumptions of this thearem and replace them with those
of the assmnptions of 3y.I'(ay)
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The machine implementation thus makes the correct assumption for yon, reamembers it and

automatically removes it at the first legitimate opportuuity. Several eliminations can he dowe at
once.

In the example an existential elimination was done creating step 6. This line actually has as its
REASON that it was ASSUMICA. Liue 8 thus depends on it. When the existential generalization
was done on the next line, b no longer appeared and so line 6 was removed from the
depcndancices of line 9. A nser shonld try to convince h'inself that this is equiv

alent to the rnle
stated at the beginning of this manual.
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Section 4.3273 Quantifier rules with SORTs

The following table describes the effect of the quantifier rules in the presence of SORT and
MOREGENERAL dcclarations, such that p is of SORT P, q is of SORT Q and r is of SORT R, and R Is
MOREGENWERAL than Q and Q is MOREGENERAL than P

vE ¥q.R{q) ¥q.R(q) ¥q.R{q)
g A A Qtr)ohte)

vl Rtq) Alg) Atlq)

e e e

3 3q.Rtg) Jq.Aty) 3q.R(q)

oot e '
3! Atq) Alq) Aty

wiEae  w  ban

As an example, it is possible that you might try to instantiate a variable to a term whose SORT is
MOREGENERAL than the qnantified variable. In this case the result of the specialization 1s to
create an implication asserting that if the term were of the proper SORT then the speclalization
holds. If the variable is MOREGENERAL than the term then the usual WFF is returned.
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Section 4.33 TAUT and TAUTEQ

TAUTOLOGY rule

TAUT  <uff> , <viliats

This rale decides if the WFFs follows as a tantological consecnence of the WFFs mentioned in the
VLLIST (the notion of VLLIST is defined in Appendix 2. In this case WFF is conclnded and its
dependencies are the nnion of the dependencies of each WFF in the VLLIST. We think this
algorithm is fairly efficient and this should be used whenever possible.

TAUTEQ rule

TAUTEQ implements a decision procedure for the theary of equality and w-ary predicates, n°0.
Its syntax is the same as the TAUT rule:

TAUTEQ <uff> , <vilists ¢

This rule decides if WEF follows from the WFFs mentioned in VLLIST in the above-imentioned

theory. Thus, anything that can be proven by TAUT can also be proven by TAUTEQ, but
TAUTEQ runs more slowly than the TAUT rule.

¢¢o¢-0ECLARE PREOCONSY P 1 Q 1
ecec:DECLARE OPCONST ¢ |
¢¢¢0:DECLARE INOVAR a b
¢eeeeTAUTEQ Aebo(P(a)aPib)),

1 aebd (P ()P (0))

eteesTAUT asb>(P(alaP (b)),
TOUGH LuCK

*18 ¢ TAUTEQ asbdl(adef (D),

- TOUGH LUCH

The formnla a=ho(P(a) Pih); cannat he praven propasitionally: TAUT wonld simply rename (a=b)
to a new PREDPAR with ARITY 0, say Pl P(a) to P2, and P(b) te P3, and then try to prove
P12(P2:P3). The farmnla (a=b)>f(a)=f(b) cannot be proven by TAUTEQ, since TAUTEQ docs not
know abont the argnmenits of functions.
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Section 4.34 The UNIFY Command

UNIFY <uff> o

This command tries to establish whether the WFF is a consequence he VL are

This rule of Inference is best described by first presenting some examples:

2009 0ASSUNE VX, P (X))
1 Y.PO
tsetsUNIFY PLICOY) |,
2 PLHON
eraUNIFY JX,PIUX) ]

3 P

In step 2, the UNIFY mechanism recounised that P, applicd to any TERM followed from VX.P(X).
More aggressively, on line 3, it recognised the that YX.P(X) implies that IX.P(X). These are two
simple cases of the nse of this command. A more complicated example is:

tees ASSUNE 3X,¥Y, (P (X)VvO2(X,Y))
1YY (PO Q2L (1)
ecetsUNIFY JW.P(WIVIW.Y2.020,2) I,

¢ WP Y.02M,2) (1)

Notice that, in both of the examples above, the prapositional structnre of WFF was the same as
that of the VL. This rule is designed to handle exactly this case; namely, it is desizned to handle
the quantifier manipulations involved in implications between WFFs with similar propositional
forms.
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Section 4.35 SUBSTITUTION rule

SUBST w1 IN #2 OPT[ OCC <ordernatnumlist> }

If the ajor connective in 1 is = or ¢ then (making allowances for honud varialile changes) the
ocenrences of the lefy hand side of »1 which appear in 82 will be replaced by the right hand side
of »l, If an occurrence fist appears anly those listed will get substituted.

SUBSTR e} 1IN o OPT( OCC <ordernatnumlists> ]

does the sauie as SURST hot substitutes the left liand side of #l for the right hand side of 1 in
")

Ordinarily, f(x) canunot he substituted for y in VX.F(x.y) as the x in £(X) wonld then hecome
bound, ie. f(x) is not free for y in Vx.F(xy). FOL automatically handles this conflict of honud
variables in a wbhstitntion; those nccurences of a bonud variable which will can<e a conflic1 are
changed. Thus, if one trics to substitute f(x) for VX.F(x.y} the generated suharitution insiance
will be YXLF(N1L(£() Here the newly created variable will hiave the same SORT as x if SORTs are
being nsed.

The ‘new’ variable is cieated by cousidering the ‘old’ variable to have two parts: a prefix which is
the identifier up to and inchnding its last alphanumeric character, and au index, cither cimpty or
a positive integrer. The new variable which is generated will have the same prefix, and an
incremented index. For this purpose, an empty index is cousidered to be ‘0",
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Section 4.4 Semantic Attachment and Simplification

FOL is coucerned with checking theorems in a first-order langnage, which the nser pecifies by
making declarations. This language is then a strncture L=< F.C>, whete P s a set of predicate
symbols, F a set of function symbols, and C a set of constam symhols, A model of 1, is a
striucture M=<D. I F'CH, with D a uoa empty set, P'a et of w-ary predicates oan D, F' a <t of
functions mapping D" into D, and €' subset of D. An mterpretation of | in M is a map which
specifies which symbals in P correspond to which predicates in M, similarly for I and C. The
implementation of senvantic attachment has two aspects:

(a) the attachment mechawism which allows the nser to specify the ohjeets in the wadel whicl
correspoud o symhole in the langnae aud vice versa, and

(b) the simpiificr which tries to campute, in the model, the vafnes of FOL exprescions ie it nges
the notinw of satisfinlility.

For example, we wight associate with fuuction symbols the corresponding VISP functions, The
OPCONST ‘4" wmight he semantically attached to the LISP function, Pi 1S, and the THOE DS TS )
and ‘2" (i.e. the wumerals) attached to the numbers | and 2 os0 that an evaluation of ‘149" iy the
model wonld give the number 3 as an auswer - the sinplifier wonld thew et the TRIWCONST g

Note (‘.'lrvfully that the wap from | into M and that from M hack tn |, may he pariial, ie. there
may be symbols in L which have no defined interpretation i M, and the process of
simplification with respect to M onay renerate oijcts in M which have uo caponical symhol in
L. The FOL simplifier simplifies sentences to the maximal possible extent, nsing the vesults of
computation within the wndel, as well as any refevaut iuformation aliont the EXTENSTON and
SORT structures which the user has defived on L,

FOL allows the assignment of arhitrary LISP  functions or lamhda-expressions as the
Interpretations of predicate and function symbois.
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Section 441 The ATTACH command

ATTACH OPT[®] ALT[ <predconst> | <opconst> | <indconst> ) <g_expr>

<s_expr> t= ALT[ <atom> | ( <s_exprlist> OPT(<dotends) ) );
<s_exprlists> t« REP1[ <s_expr> )

<do tend> I= , <sexpr>

<atom> 1= ALT[ <identifier> | <natnum> )

This command allows for the definition of the maps from the FOL langnage that the user has
defined into vhe LISP cnvironment which he wishes to take as the model of his langnage (and
vice versa if the ATTACIH: option talen).

PREDCONSTs and (IPCIINSTs may be attached either to atoms which are the names of already-
defined LISP functions (i.e. ones which have a SUBR, EXPR or MACRO property. inclnding of
course all the standard ILISP functions) or legal LISP function, lambda-expression or macro
definitions. The attachment mechanism checks that the fmnctions (except SUBRs) being
attached have the correct namber of argnments corresponding to the ARITY of the PREDCONST or
OPCONST to which the attachment is being made. INDCONSTs may be attached to any S.
expression,

¢+4490ECLARE INOCONST 2ERO, ONE ¢ INTEGER

+++440ECLRRE OPCONST +(INTEGER, INTEGER) « tNTECER (INFI,
ssseeRTTRCH 2ERD 8,

CERO allached 10 8

eeeesRTTACH ONE t,

ONE allached to |

s1+9c0ECLARE OPCONST CAR COR(LtST)aLIST,

e¢ee:0ECLARE OPCONST CONS (SEXPR,SEXPR)<SEXPR,
¢to4oRTTACH CAR CRR;

ss00sRTTACH CONS CONS,

#¢+040ECLARE INOVAR R B L ¢ SEXPR,
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Section 442 The SIMPLIFY command
SIMPLIFY [ALT «nffs | evis> | <term> )

This command effecis the simplification of an FOL «entence by compnting within its model,
ie. the simplification mechanism attenpts 1o find, in the model, cbjects (F1SP S.expressions)
which correspomd to syntactic symbols in the sentence. If any are fonud, they are FVAlnated in
the normal way. The simplifier then attempts to find a term in the langnagee which tarrsponds
to this evalnated entity 1o the case of Vs and TLHNs, the original expisaion is retnrned,
together with its maximally simphificd form: if a term exids in the Limitnasre for the
simplification, then vhat forms the vght band of the vquality. (The simplifirr i« aware that
NATNUMs amb TISE nombers correspond 1o each other). In the case of 1l i« additionally, if the
resnlt of <imphfication is a teuth-value, the WFF or it negation is avtined, whichever is
appropriate. ‘The simplification is caivied ont to the maxinal extemt,

If a LISP crror is enconntered during simplification, an error message is given.

In the model defined by the attachments made above, the following occunis:

4 e« SIPPLIFY JTRO » ONE,
CIPOWONE e}
eree:SUMPLIFY CAR * (A B,

CARC (A BI) A

In addition, the simplification mechanism takes into acconnt any information that is availahle
about the SORT and [TXTENSION declarations that have been made. For example, remembering the
example oa extensions given in section 4.124: )

e DECLRRE INDCONST B9 ¢ BFINGS, W1 « W) INGS,
© DECLARE PRINCONST ) INGS |
CEXTENSTON I INGS 1B Y
Extension of BV INCS 15 (BY)
tr EXTENSTON WY TNGS Y 1
Evtension ot WIINGS g (HKI
~+0¢¢EXTENSION 1 INGS WK INGS U B) INGS,
Evianston o) ) INGS 18 1WE BKI

t40ssSTMPLIFY WY Bl

~(H) «B})
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Section 443 Auxilimy FUNCTION dcfinition

FUNCTION <function-s_expr>

This atlows the definition of function-s expr> as an anxiliary LISP function 10 the function
definition is a legal <5 expr> which is not a fegal LISP function definition of the DE or
DEFPROP sort, an error message will he given.
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Section 4.5  Adminstrative Commands

These commands manipnlate the proof checker but do not directiy alter the current deinction.

Section 451 Thel ABEL command
LABFL ALTIL <ictents | <adents = <linenum>)
In the first case thie next five the proof checker generates will get the fLabel 1MV T T the second

the LINENUM mentiomf will iccome Labeled by IDENT. 1 ahels are alternatives 10 Vis and can he
nsed in any place thar e syntax expects them.

Section 4.52  Fule Handlmg commands

Section 4.521 The FEI'C I command

FETCH ~filepames OPTT FRON wnarkl> ) OPTL TO «markls )

The FETCH command 1cads the file <«filenamed>, and execntes any FOL commands in this file.
FOL accepts standavd Stanford file alesignators. If mark specifications are present, the file is
only read within the limits which they specify. The defanit FROM/TO are the beginning and
the end, respectively, of the file The commands read during a fetch are not printed in the
backnp file. FETCHes may be nested to a depth of 10.

Section 4520 The MARK cammand

MARK <tokens

This command has nwo effect on the proof, but simply places a mark in the file which the
FETCH commami can nse 1o delimit 1cading of the file.

Section 4523 The BACKUIP command

BACKUP ~fite noames

When FOL is initializeit, a file called BACKUP.TMP is antomatically created. All console input
from the nser is savid nn this file. This command closes the current hacknp file, and opens a
new one with the specified file name.
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Section 4524 The CLOSE command

CLOSE

This closes and rcopens the backup file. Normally the backup file Is written every flve steps In
the proof, but this comumand enables the user to save the state of his deductlon at any polnt,
Section 4.525 The COMMENT command

COMMENT <delimiter> <text> <delimiters

When typed at the top-levei, this inserts any text between the delimters into tle backup file; If it
appears In a FETCHed file, the 1ext is ignored. Of course, the dellmiter must not appear In the
text.

Section 453 The CANCEL command

CANCEL OPT[ <tinenum> );

This cancels all steps of a deduction with LINENUMs greater than or equal to LINENUM. Thus you
can remove unwanted steps from a deduction provided they are all at the end of the PROOF. If no
LINENUM is specified, only the last line is cancelled.

Section 454 The SHOW command

The SHOW command is nsed to display information generated by FOL. The intent of the
present command is to allow yon to display information about a derlvation at the console and

save it on a flle. The integer after the FILENAME becomes the Itnelength while this command Is
actlve.

SHOW <showtype> OPT{ <filename> OPT{ <integer> )]
<showiype> 1= ALT( PROOF OPT( <rangelisi> ) |
STEPS OPT( <rangelisi> ) |
ax(on OPT{ <axnamiiql> ) |
OECLARATIONS OPT( «decinlo> ) |
GENERALITY  OPT( «geninle> ) |
LABELS OPT( <labelinio> ) )

«rangeliet> 1= RCPl(<rangespec>,0PT(,))
crangespec> 1s ALT( OPT( <linenums ) & OPT( <finenum> ) | <tinenum> )
«decinlo>  1a REPI[ ALT( <syntype> OPT( ¢ <oori») |

<lolsym> }

SORTS 1, OPTL,))
<geninlo> 1o REPLI <sort>, OPT(,) )
<labelinlo> ta REPL{ ALT( <label> | <rangespec> ) , OPT{,) )
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RANGESPEC may he of the form 23 or 23:65 or :65 or 34: or even = 1ts weaning 15 cither . single
LINENUM or a range of LINFNUMs. If a nuniber stands alone it simply wieans this wimnher,  If
there are two mumhers separated by a colon, the range is from the fitst 10 the wocomt  If
nimbers do nat appear on cither sute of the colan theu the defanlt of 0 o0 the Laar line i<
asswmed. An FOLSYM is any declared alentifier and show teturns it 2000 wtentificr ana <how
returns appropriate syatactic information,

Examples are:

¢sa~eSHON PROOM |, 2:%,16: FOO.RASIHET, REW) 22,

this writes lines 4, 2 1o 5,16 to the last line of the proof anto the file FOO BAZ[SET, R W W] with
a linelength of 22,

eec¢~:SHOW PRODF ;
displays the proof on the console.

The next example, taken from an actnal test file, shows the kind of symtactic information
displayed by a “show declarations” command.

22¢+5HON OECLKPATIONS EMPTY x o < carry froni binaryptue;

EMPTY 18 INOCON:Y ol sorl BYTES

v 15 INOVAR ot sort INTEGER

¢ 18 OPCONST
Tha domain 18 INTEGER @ INTEGER, and 1ha v anna o INTEGEP (] 60 1, 40}

< 18 PRECCONST
The domain ts INTEGER w INTEGERIL. "0 F.300)

carry s OPCONSTY
The domain 1s BYTES @ BYTES, and Tha rarye 1s RYIES

front 18 OPCONST
The domain i3 BYIES, and the ranqe is BYTES(R.N54)

No dectlaration for hinaryplus

2t5¢:5HOW OECLARATION SORTS:

shows all thie PREDCONSTS of ARITY | (i.c. all of theSORTs)

SHOW commands do the ohvions thang in conjunction with the display featmes turned on by
DISPLAY.
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Section 455 The DISPLAY command

DISPLAY OPTI <displaytype> )

<displayiype> e ALT{ PROOF
STEPS
Rxlon
ATTACHMENTS
OECLARRTIONS
LRBELS
STATUS )

FOL may take advantage of the display features of th Stanford DataDisc system by means of
thls command.

For example:

eeeeeDISPLAY
creates a display window of full-screen width, Into which the steps of the proof are displayed as
the derivation continnes. The page-printer is restricted to the botiom eight lines of the screen. If
the arguinent is non-nnll then the ‘proof’ window is restricted to half-screen width, and a second
window, approp-i.icly labelled, occupies the other half of the screen e.g.

eeeee0)SPLAY RXIONS

causes an ‘'axiom’ window to be opencd, and all axloias are printed to that window, rather than
to the 'proof’ window or the page-printer.

Whatever the current state of the display, 'DISPLAY <nnlb' canses the 'proof’ window to be

regenerated, together with the last five lines of the proof, if any. Any other windows wirich may

be present are flushed. This method is slov and cannot be used from teletypes, but piovides a

much more convenient way of displayiug the steps of the proofs and other informatlon.
eevesUNDISPLAY

restores the screen to norinal teletype mode.

Section 456 The EXIT command

EXIT ¢

This command returns the user to the monitor in a state appropriate for saving his core-image.
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Section 458 The SPOOL Command
SPOOL <filenames ¢ YSPOOL <filenames ;

These cause the filewame to be spanled on the appropriate device (LPT or NG1"

Section 458 Thr TTY ¢ ommand
TTY &
This resets the priuting rontines so that they are teletype rather thau display orientcd b this

mode. the logical connectives are repiesented by NOT, OR, & or AND. = or IMP, = o oy,
FORALL. EXISTS. .
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Appendix |

FORMAL DESCRIPTION OF FOL

The ton-descriptive symbols of FOL divide into SYNTYPES as follows:

l. Individual variables - INODVAR. There are denunerably many individual variable symbols. We
use x.y.z as mneta-variables for them;

2. Individual parzineters - INDPAR. There are denumerably wmany individuai paramneter symbols.

As meta-variables we use a,b,c;

3. n-piace predicate parameters - PREDPAR. For each o, there are denumerabiy many predicate
parameter symbois. An n-place PREDPAR Is sald to have ARITY p;

4. Loglcai constants:
a) Sentential constants - SENTCONST: FALSE and TRUE.
b) Sentential connectives - SENTCONN: +AV,3 8,
c) Quantifiers - QUANT: ¥V and 3;

5. Auxiilary signs - AUXSYM: parenthesls ().

A particuiar FOL language is distinguished from a pure first order language by declaring
certain constant symbols. These have the SYNTYPESs:

I. Indlviduai constants - INDCONST;
2. n-piace predicate constants - PREDCONST. Each n-place PREDCONST has ARITY n:

3. n-place operation symbois - OPCONST. Like PREDPARs each has an ARITY. Some authors call
OPCONSTs function symbols:

Each SYNTYPE Is assumed to be dis joint from all others.
IERMs
t is a TERM In FOL if eitirer

l. t)s an INDPAR, INDVAR, or an INDCONST, or
2. tls f(t).tp...t,), where f is an OPCONST of ARITY n and tils a TERM.
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£

FFs

A is an atomic well-formed formula or AWFF if
1. A is onc of the symbois "FALSE" or "TRUE",
2. Ais P(1 ,.....l?) where P is a PREDPAR or a2 PREDCONST of ARITY n.

“Che notion of well-formed formula or WFF is defined inductiveiy by:
I. An AWFF is a WFF.
2. 1f A and B are WFFs, then so are (AAB), (AvB), (A=B), (AsB), and ~(A).
- 3. If A is a WFF, then so are VX.A and 3x.A provided that x is an INDVAR.
The usual deflnitions of free and bound variables apply and can be found in any standard logic
text (e.g. Mathematical Logic by S.C. Kleene). Below the usual conventions for omitting
parentheses will be nsed.

SUBFORMULAS

The notion of SUBFORMULA is defined inductiveiy
i. A is a SUBFORMULA of A.
2. 1f BAC, BvC, BoC, B¢C, or -B is a SUBFORMULA of A so are B and C.
3. If Vx.B or 3x.B is a SUBFORMULA OF A, so is B(tex]).

The notations A[tex) and A[t-u). where A represents a WFF, t, u TERMs and x an INDVAR are
used to denote the resnit of snbstituting x or u, respectiveiy, for all occurrences of t in A (If
any). In contexts witerc a notation jike A[tex] iz used, it is aiways assnmed that t does not occur
In A within the scope of a quantificr that is immediately foliowed by x. Tiie notation A[x«t],
denotes the result of substitnting t for all free occurrences of x.

The notation A{a=x,x+t} means the result of first substituting x for a and then t for x. To
denote simultancous substitution we use Alaexixet).




L

FOL Manual Page 47

Appendix 2
THE SYNTAX OF THE MACHINE IMPLEMENTATION OF FOL

In this monual the syntoy of FOI will be described using a modified form of the MLISP2 notion of
pattern. These form the hasie construcis of  the FOI, parser,

1. Identifiers which oppeor in patterns are 10 be taken literally,
2. Patterns for syntoctic types are surrounded by angle hreslota,
3. Patterns for repetitions are designoted hy:
REPO[<pottern>] meons 0 ar more repeoted PATTIEERN:,
REPn[<pattern>] meons n or more repeated PATTERN:.
If o REPO or a REPn has two orguments then the second orgument s a patiern that octa as a
teparator. So that REP1[<wf[> ] means one or more WFFs seporoted by commos.,
4. Meernotives appear as /1I.'I'/<P/1'I"I'h'RNl>|...|<P/)TTERNN>/.
ALT[<w[[>|<term>] means cither o WFF or a TERM.
5. Optional things appeor as OPT/<pottern>)
REP2[<wf[>0PT[,]] meons a sequence of two or more WFFs optionolly reparated by
comnos,
Theso conventions are comhined with the sandard Backus Normal Form notation.

Basic FOL sywmbols

In an attempt to wake life easier for users, the FOL parser makes wtore careful distinctions
about the kinds of syimiols that it sces than tire previous description indicated.

<in“eym> t- ALTL «<indvar> | <Indpar»> | <indconet> 1
<inavars ts  <idantifiers tdeciared INDVAR
<indpar» te <i untifiers |deciared INDPAR
<indconet> 1s RALY( «cid: > | tdeclared INDCCNST

0 1 tho deciaration neceseary
<optyms> te ATL <oppar> | <opconet> 1
<oprar> is <identifier> tdeciared OPPRR
<opconet> te <identifier> tdeciared OPCONST
<preop> 1= <opsym» tARITY 1 and declared PREFIX
<infop» 1s  copsym> 1RRITY 2 and deciared INFIX
<applog> le  copeym» tRRITY n and not declared

t INF or PRE dec

<predeym> 1e ALTI «<predpar> | <predconst> )

cpredpar> te <identifiery 1deciared PREOPAR
<predconet> 1a <identifiers tdeclared PREOCONST
<prepred> ie  <predsym> IARITY 1| and declared PREFIX
<infpred> 1e  <predeyms IRRITY 2 and deciared INFIX
<applpred> 1s <predeym> 18RITY n and not declared

| INF or PRE dec

<eontsym>  1e ALTI <sentpar> | cesntconets |
<eentpar> 1= <idontifier, jdeclared SENTPAR
<sentconst> 1= ALTL FALSE |

TRUE |
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<identitier> ) jdeclared SENTCONST
}  INF or PRE dec
<sontconn> s ALTL ~ | NOT | jnegation
v | DR | ;disjunction
A | & | AND | jconjunction
> | <« | Inp | jimplication
e | « | EQUIV ) jequivalence
<prelog> 1o ALTL - | NOT |
<Intlog> je ALTE v [ OR | A | & | AND | > ]« | IMP | a | « | EQUIV )
«quanty te ALTL Y | FORALL | 3 | EXISTS )
TERMs

The FOL syntax for TERMs allows for both prefix operators and binary inflx operators, as well
as the usual function application notation. Any undeclared identifier can be declared an
operation constant (OPCONST) using the DECLARE command. With proper declaration the
following are TERMs:

tixs-y,glxsysz))

CaRr

car(x,y)
IROBOT,B0X1,000RIUIy|Yx.P(gix,y) )
powerset (<A A,C>)

<term> (= ALT[ <indsym»
capplterm
eprotixterms
«intixterm»

c«sottorm»

«n_tupleterm»

ccompterm

( <torm» }
<ippligrmy ta capplopy ( ctormllety )
<prefixterms e «preop> cterm»
<intixterm» e <torm>  <intop> cterm»
<oetterm:, te | «tormlisty |
antupleterm» te < ctormligty >
ccompterm> te | <indvar> | <uit> |}
ctera'iet> te REPIL ctorm> , OPT(,) )

These are iilustrated above and inay be used at any time. Other additions may occur from time
to time.

Of course, the appropriate restrictions on the SORTs of the arguments of the OPSYMs nust be
met.

AWFFs

AWFFs are formed similariy, but cannot be nested.
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<auif> e ALTL <basaul{> |
cappiauii> |
apreaut > |
cinfauli> ]

«<bassautli> 1w ALTL <sentsym |

<predpar> ) juifth ARITY 8
<applauii> 1= <applipred> ( ctermilsi> )
<preauiils i <preprei> clerm»
<infauli> te  ctlerm> Infpred> <torm»

Examples of AWFFs are

1R, B, WY IX |32, He 282 X1
<a,b> = la,ia,bll
flx,yde 'cartcons !x,yll

Equality s trcated as amy other predicate constant, but the system kunows about the
substituticn of equals for equals. It does not know that A#B is usually interpreted as ~(A=B), but
treats it as any other predicate symbo).

WFFs

<uff> 1o IALT <standard f(irst order logic formuias |
<vi> 1+ 10PT <subparts! 10PT <eubs!_oper>} |

The syntax for WFFs allows the following abbreviations and options,

The primitive logical symbols are:

wiifl> 1o ALTE <primati> | <prewtts | cintutts )

primuti> 1a ALTL cautd> | <quantuti> | ( <uif> ) )

eprovti> te  eprelog> «<primifi>

<infuil> t» <primeti> <inflog> «<primutts

«quaniuii> s <quintprefixs csmalinfi>

<quanipreiix> 1= ALTL <quant> REPL( <indvar> ) , |
( <quani> REPIL <indvars ) ) )

amaiiuti> te REPB( <preiog> ) <primutis>

Parentheses may be omitted and thon association is to the right. /s is usual conjunciion hinds the
srongest, followed by disjunciion, implicotion and equivalence. Neogation, as well as hoth quontifiers,

bind 10 the shortest WFF on their right. Thus Yx.P(x)oP(x) will parse as Yx.P(x))2P(x) not as
Yx.(P(x)DP(x))!

We can write adjacent quantifiers of the same type together, so VX.Vy.P(x,y) can be written Vx
y-P(x.y). FOL also accepts (Vx)(¥y)P(x.y) or (¥Vx YIP(x.y) for Yx.Vy.P(x,y).

Subparts of WFFs and TERMs

Within a dednction there is a completely general way of specifying any subpart of any TERM or

Y

LN ey R I e
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WFF already mentioned. We accomplish thls by means of a SUBPART designator. Derivatlons
consist of WFFs, each of which has a LINENUM, The WFF which appears on this line is designated
by following it with a colou. If

18, ¥x y. (P1Ex))50(h(x,y)))

Is llne 10 of some derivation then 10: represents the WFF on that line, l.e. Vx y.(P(f(x)):aQ(h(x,y))),
Furthermore, subparts of such a WFF can be designated by a SUBPART designator.

«subpari> 1a REPI[ # «<integer> )

The integer denotes which branch of the subpart tree you wish to go down. Quantified formulas
and negations have only one inmediate subpart, called 1. The otlier sentential connectives each
have two. For predicates and function symbols the number of lmmediate subparts Is
determined by their ARITYs. Any conflict with these will produce an error. Thus

10: 41

= Yy, (PUIx))DQthix,y)))
10142 = ERROR
10:01010201 & hix,g)
10141010182 = ERROR (P has RRITY 1),

Substitutions in WFFs and TERMs

Onte you have named a WFF, you can use a substitution operator to performn an arbitrary
substitution.

«<subsl_oper> 1= [ REPl(csubsilist]>,OPT( ¢)) )
<subsilisll> 1e ALTL cterm> o <lerm | <uft> » aiit> )

Examples:

101 #1(x-R0OBOT) « Yy, (P(4{ROBOT))>Q (h(ROBOT,y)))
1014141 0({x)=ROBOT:1Q(h{x,y))eP(x)) o P(ROBOTIOP(x)
10: 4101414111 ¢18:14141420141)-ROBOT) « ROBOT

10141 Ixatty)) o Yyl (POICI(YN BRI,y D),

Note: the subsiituiion operaror changed the bound variable in the last example. This prevented the yin
[(y) fromn hocaming hound, See section on subsifiutions.

WFFs and TERMs thus have the following alternative syntax:

waff> 1o «vi> 1t OPT( <subparl> OPT{ <subsi_oper> ))

<lerm> 1w <vi> 1 OPT{ <subpari> OPT{ <subsi_oper> ))

There is an ambignity as SUBPART may produce only a WFF where a TER' is necessary (or the
other way arounc). FOL checks for this and will wot allow a mistake. Such a subpart
deslguator can be nsed whenever the syntax calls for a WFF or TERM.
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Another label for handling well-formed expressions is the VL

<vl> ta ALTI <integar> | <lavel> GPTIALT( +)-} <integer>) |
<axret> | REP}(-) )

The optional « or - <integer: after a labei designates an offset from the mentioned label by the
amount designated.

The last alternative has no: been previously mentloned. Its meaning Is the n-th previous line,
where n Is the wunber of "-" sigus.
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Appendix 3

AXIOMS FOR ZERMELO FRAENKEL SET THEORY

The axioms presented here and in appendix 4 are examples of the expression in FOL of the
conventional Zermelo-Fraenkel and Goedel-Bernays-von Neumann set theories. We believe that
the practical use of sct 1heory for mathematical and computer science proofs will require an
extended practical system.

DECLARE PREOCONST ( 2[INF),
OECLARE PREOCONST ¢ 2()INF);
OECLARE CPCONST U 2()NF),
DECLARE INOVAR r 8 t u v W x y 2)

OECLARE PREOPAR A 2 B 1,

AXION 2F:
EXT: Yu y. (V2. (zcvuzeylexey)y X Exlensionallily
ENT, Ir. Yy, ~yory Y Null sel
PRIRT  ¥x y.Jz.Yu. (uczsusxviusy); X Unordered pair
UNION:  ¥x.3y.¥z. (zegz3t. (2e1adex))y X Sum eel
INF: Ju, (00 xaVy. tyc s (yUiy ) ex) )y I Inlinhiy
REPL)  ¥x.3y Vz.(A(v,2):e2) > X Repiacemeni

Yu. v (¥r. trev g 33, scusRis,r))))

SEP, Yx.3y.¥z. (zcyazevaBi2)) T Separalion
POHER: ¥x,3y.¥z.(zeyrzex)y ¥ Pouer sel
REG: ¥x.Jy. (xeBvlyoxaVe, (2exa-2ey)) ) g5y 2 Reguiariny

7 Replacement is esquivalenl to

Y V. (Jy Rlx,y)aVy 2. (Rlx,y)aR(x,2)5ye2)) >
7

7

Yu.3v. (¥r. (rcv o 3s. (scuaRie,r))))
or Y. 3y Alx,y) > Yu.dv.¥r, (rcv o Jo. (acuafie, i)

NN N

7 Separalion is 8 consequence ol and weaker [har, replacmeni, X

Z Detinilions 7

DECLARE PREDCONST FUN 1,INTO 2, PSUBSET 21INF),

DECLARE OPCONST rng 1 dom 1
rx1on
SUBSET: ¥x y. (xeya¥z. (zexd2ey))
PROPSUBSE Tt ¥x y. (PSUBSET (x,y) excya=xay)
PAIRFUN) Yx y 2. (20 ix,yl ezaxviey))
UN)TSETFUN) Y. Ixiwix,xi )y
OPAIRFUN: Y y. e yradixd, ix,gil )y
FUNCTION: Y, (FUN () ¥z, (2cud3x y. (2eax,y>))a
Vi y 2. (ex,g>cunex, 2oeHdyez) )
OOMAIN) Yu w. (vedom(u)eFUN () Ay 2, (ycnaysax,2>)))
RANGE 3 Yu x, (eerna(u) -FUN (W) AJy 2. (ycuaysaz ) )y
INTO, Yu x. OINTD(u, v)erngludex)
UNION: Vi y 2. Gevilyzonvzey)y g
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Appendix 4

AXIOMS FOR GOEDEL-BERNAYS-VON NEUMANN SET THEORY

MOSTGENERAL Class

OECLRRE PREDCONST Ciass Set |1

OECLARE PREOCONST « (Class Ciass)IINFI,;

OECLRARE PREOCONST c(Set,Ciass) [INF),

DECLRARE INOVAR R B C ¢ Class,x y u v w ¢ Set;

OECLARE PREOCONST Empty OneNany(Ciass),0isjoint(Class,Class))

r RXIDM NGB!
KLASS: Vv.Class(x)y
I 1SSET: YA B. (R(BaSet(A))
EQUAL : YA B C. ((CcAsCcBIsReB)
EMPTY! In. Yy, ~ycxy
PRIRS: Yr y.3u.¥v. (veuavexvvey)
CLASS
» EPI: JA.Yu v. leu,vacRzu(v)y
INT, YA 8.3C.Yu. (ucCrurRarucB),
: conP: YA, 3R, Yu. (ucBr-ucR),
PROJ: YA, JR.Yu. (ucBs3v.eu,varR))
| PROO: YA, I0.Yu v, (eu,v>eBrucR))
CONV: YA.ID.Yu v. (eu,vaeBrev,uscf)g
TRIL: YA, 3B.Yu v w. (eu, v,urcBrev,u,urR);
TRI2: VA.3B.Vu v W, (eu,v,u>(Baeu,u,vacR) g
SET:
INF Ju. (=Emptylu) aV¥v. (veuddu. (ue UAaveNAveN) ) !
UNIBN:  Yu,3v.Yu x. (uexaxquonev) |
PONER: Yu,Jv.Vu. (ucuzucv)
: REPL: Yu R. (Onefany (R)>3v, Yu. (uevedx, (xquacu,x>(A))) )y
| FNO: YR, (~Emp 1y (M) 53u, (ucRAD IS jolInt (u,A)),;

ACs 3A. (OneMany (R)AVu, (~Emp 1y (u)adv. (veuacv,ur(R)))
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Appendix 5

INTUITIONISTIC MODAL LOGICS
Modal 1 ngic:

The best known wmodalities are the so called ‘a/ctis’ ones, involving  nececares N and
possibity(AL): han many other sentential aperators which display modal charactenstics have been
stndied, e ¢. € for cancaty (B b« 1451), K and B for | oy ledge and beliel (lintikba1ou), 1 (or
perception (Ilintikka191) These laner modalities are the sul)_jrct of immeusive research in logic
at the moment, and a comprehensive semantics has bren evolved for some af them (Kriphe |91,
Hintikka 969 ‘Fhere are «till many difficnit problents, especially in the case of yuantification
into modal contexty, where the traditional rles of whdtitntability of equivalewts and of
existential genvralizanou do not seem 10 hold. Thie has led 1o a reformulation of many
ontological notinus in quantification theory(see, for example, (Hintikka.19%%) and tFollesdal 19GR),

(Note that modal operatnic are <entential operarars of a rather specinl kind, nog POT P08 Teo r f¢ not
possible to repard modal operators a« applyving 10 names of cemrences or formulae vithowt tocing rhe
powerful semanmiccicer, for rxample Montagae, 19630

In the current implementation, the neer may define non-standard moual systenss and operators,
Lewis S4 and Sh Ihmtikka’s KBK and KBB(opcit) are already available, together with the
operatars N(necrssarily). Mipocsibly), K(knows), B(believes).

(a) The Classical Systems T, $4 and 85

von Wright's system, T (von Wright.1951) is got from LPC by adding:
As: Npoap
A6 N.ap>aq) a2 (N.p > N.q)

Lewis’s system S4 (Lewis&Langford.1932) is got from T by adding:
A7: N.poNNp

Lewis's S5 by allding:
AR M.p o> NMp

(b) Natural Deduction Systems of Madal Logic
(1) These are hased on minimal, classical and intnitionistic logics:

(2) A formnla is <aid to be modal if its principal sign is a modal sentential operator:

(3) Necessity systems:

Prawitz has two inference rules for $4:
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and a corresponding deduction rule for NI, when the proof or deductiou of ‘a” depends only ou
modal formnlas.

In S5, N.asa wmay he inferred also when every formnla in the dependency <et is cither a modal
formmnia or the negation of 2 modal formula. begin indent 50 (4) Possibility systems:

The possihility operator, M. may be added by means of 1he rules

MI) a ME) Makb

When these riudes are added, the dedus tion rule for NI must he modificd to he <imilar to the rule
ME.

in the classical Lewis systems, M and N may be interdefined, c.¢. M.as-N-a and N.a > -M-a, bt
in the Prawitz sysiem this is wot posaible.

The syntax for madal formulac is identical to that of staudard formulac, except that Wif« may
be preceded hy | ar more modal operators(and imbedded -). followed hy a*". So a perind

amodalulis cw emodalprefivy «primuli>
emodalpratiss te cidentitiars ',

For example, NMN-MMNNMNMNM.A  and Yx.M.P(x)>MM.p(x) are well-formed.

When scanning for modal formniac is tnrned on unsing the 'THEORY' conmmand (see Scction
4.13), the following rndes then hecome available:

NECE diue winmhery, NECE  dine-numher>
POSSE dinc-numbher), POSSE dine-ummber>

as defined by the conditions ahove.(Note carefully the dependency restrictions)
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