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dechrrd: this reduces the size of formulas ; 
(H) purrly propositional deductions can be made in a single step; 
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Stction  0   THE RATIONALE FOR A FIRST-ORDER PROOF CHECKER 

The rrndrr rcody to plungf right into making FOI. proof» may »kip to »rction I. 

The idea of doing matliematical rrasoning mechanically goes back to Leibniz, but it was not 
until the did of the last century that Frcge and Peano developed the first completely formal 
systems adequate for expressing some kinds of reasoning. Much of the work of Whitehcad and 
Russell was an attempt at demonstrating that large parts of mathematics could actually be 
expressed within such systems. After these initial successes, however, the interest of logicians 
changed from proving theorems within mathematical systems to proving meta-theorems about 
such systems. 

Even before Coedel's work, it was intuitively clear that checking proofs was different from 
finding them. It is an essential part of Ibt idea of formal system that proofs can be checked 
mechanically, whereas/mrfin^ proofs mechanically was always regarded as a research problem. 
This distinction was clarified by the work of Coedel, Tarskl, Turing and Church which showed 
that algorithms for finding proofs car. work infallibly only in limited domains and that some 
mathematical ideas cannot be completely characterized by axiomatic systems. 

The advent of romputers and the beginning of the study of artificial intelligence gave rise to 
attempts to explore experimi-Mally what can be proved by machine. There has been steady 
progress In this endeavour, bu< twenty years work leaves us a long way from being able to prove 
important mathematical theorems. 

Knowing that mechanical theorem proving has a long way to go justifies a renewed interest in 
the more straight-forward task of proof-checking by computer. Moreover, while it is not as 
interesting to check proofs by computer as to make computers prove the theorems, proof- 
checking has obvious potential applications. The most important uf these is proving that 
computer programs meet their specifications since the reasoning involved is lengthy although 
usually straightforward ■ or so Ou intuition tells us. Since a computer program is a 
mathematical object whose properties ail determined entirely by its symbolic form, it is a 
mathematical disgrace to have to debug ihein CM« by case rather than proving them correct in 
general. Since the programs are lung, the proofs of correctness will be long, and since 
programmers sometimes think wishfully, it is obviously desirable that the proofs be checked by 
computer. 

It is also interesting to see if we can check the proofs of interesting mathematical theorems even 
though the problem is of less practical urgency, since the human refereeing process works quite 
well. 

At first sight, computer proof checking seems almost trivial. We know that almost all practical 
mathematical reasoning can be done in axiomatic set theory which in turn is expressed in first 
order predicate calculus. Therefore, it would seem that all we need do is to make a proof checker 
for predicate calculus, choose either the Zermelo-Fraenkel or the Coedel-Bernays-von Neumann 
axioms for set theory and write and check our proofs. This is one of the things the FOL project 

_« -^ 
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is doing, but in order that it» formal proofs should not be substantially longer than conventional 
mathematical proofs, it is necessary to reformulate the usual logical systems. This can be 
thought of as an effort to produce a formal system in which the rules of inference, as well as 
the expressive power of the language, is moie closely correlated with actual mathematical 
practice. The use of a computer allows for the introduction of complicated rules of inference 
whose metamathematics is not simple.  FOL provides for the following: 

(1) Its notion of a first-order language includes function symbols, equality and other usual 
mathematical notation, such as infix operators, n-tuple notation; 
(2) the user can declare sorts and declare variables to range over given sorts. This greatly reduces 
the length of axioms and theorems and corresponds to the fact that in an informal proof a 
context is established, and the reader knows that a certain part of the proof is carried out within 

the context; 
(3) the decision procedures for certain simple domains are built into the system. This allows 
some proofs to be much shorter than usual mathematical proofs, because the computer can go 
through some quite complex chains of reasoning by itself. At present, propositional deduction 
and a fragment of the theory of equality have been implemented. The Boolean algebra of sets 
and elementary commutative algebra are planned: 
(4) some facilities for introducing definitions have been implemented; 
(5) a facility is provided for defining the interpretations of constants and predicate/function 
symbols, a-.d for computing within a .nodel of the language. This means, for example, that 
algebraic and LISP functions can be calculated directly, rather than being synthetically derived; 
(6) some primitive facilities are available for metamathematica! reasoning; 
(7) rules of infere ice for some interesting modal logics are provided. 

The domains which are being explored by means of FOL proofs include: 

(I) CLASSICAL MATHKMATICS. This is the single most striking success in our ability to 
represent reasoning in terms of formal derivations. How close are these derivations to a 
mathematician's Informal proof? Do they constitute a faithful representation of his reasoning? 
How are the Inference rules of our logic related to the actual rules of evidence he uses when 
convincing hlmseit of some truth? The answers to these questions are important in determining 
whether we can make computer-checkable proofs that are not enormously longer than the proofs 
in mathematical journals. Experiment with the use of FOL in classical mathematics will help 
answer them. Theoretical studies of the intensional properties of proofs such as those of Kreisel 
(1971a.197lbl are also relevant. Moreover, it turns out that a large part of many mathematical 
proofs In the literature are really at the metamathematical level, i.e. they are reasoning about the 
reasoning in the axiomatic system. Thus it can happen that a simple theorem prover or proof- 
checker is not even capable of expressing the theorems of mathematicians, let alone proving 

them; 

(ii) MATHKMATICAI. THKORY OF COMPITATION. (McCarthy 1963, Floyd 1967, Manna 
1974)and others have shown how first-order theories can be used in proving properties of 
programs. Making this into a tool for verifying programs before they are widely distiibuted is 
one of the major goals of the FOL project. This will require further research in formalizing the 
properties of  programs, the ability provided by the attachment feature of  FOL to establish 
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decidable properties of parts of the program by direct cakalation rather than step-by-step 
inference, and a great deal of experiment aimed at making the proofs correspond to the 
programmer's informal reasoning tha» his prognm does what it should; 

(iii) RKPRKSKVI'ATKA' THKORY. Common sense reasoning is being represented in FOL in 
the style of (McCarthy and Hayes 1969). As in proving programs correct, purely inferential 
reasoning must be supplemented by assertions directly computed from the data base 
representing the environment: again the FOL attachment feature is the key device used. Even 
more experiment will be required before the forr ■'. proofs correspond to informal reascning 
than in the case of mathematics, because this area has not been well explored (perhaps only by 
McCarthy, Hayes r74, and Sandewall 1970). Particular problems are the axiomatization of time, 
simultaneity, causality, knowledge, and the geometric reasoning involved in perception, 
Me'amathematics also comes in, particularly when it is necessary to reason about knowledge and 
belief. We hope that axiomatizing the metamathematics of FOL, i.e. the structure and truth 
conditions of FOL sentences together with a rtfUction p.incipU. suitably restricted to avoid 
paradoxes, will enable us to express common sense reasoning about knowledge, belief, truth and 

falsehood. 

FOL  is committed to a system  of natural deduction. 
explained by Prawitz himself (Prawitz.l9C5): 

The use of the word 'naUiral' ir best 

'Synirm* of nnlurnl drdnrlinn, inrriiird hy Jntknurki nnd hy Criusnn in 
ihr rnrly JfW«. rnntlilulr n form for thr drvrlopmrnl of logic ihm i* 
nnlurnl in ninny m/irrt». In ihr firm plnrr, ihrrr i% n ümilnrily hrlurrn 
nnlnrnl drdurlion nnd inlnilivr, informnl rratoning. Thr infrrrnrr rulrt of 
ihr ItltfMM of nnlnrnl drdurlion rnrmpond rlntrly to prorräitrr* rnmmon 
in inlnilivr rrruoning, nnd uhrn informnl proof» -- nurh n» 0'•«, rnrounirrrd 
in tnnihrmnlir* for rxnmplr — arr formnlizrd irilhin ihrtr tyMPm», ihr 
mnin ururiurr of ihr informnl proof» ran oflrn hr prrsrrvrd. Thi» in il%rlf 
givr» ihr »yMrm% of nnlurnl drdurlion nn inirrrn nt an rvplirniion of ihr 
informnl ronrrpi of logiral drdurlion. 

Crnlzrn't rnrinnl of nnlurnl drdurlion i« imli/ro/ nho in « drrprr »rntr. 
Hi» infrrrnrr rulrt »how n noirironhy *y*irmnlitnlinn, which, among olhrr 
ihing», it rlotrly rrlnlrd lo ihr inlrrprrinlion of thr logirnl *ign». 
tu'lhrrmorr, a» uill hr thoun in ihi» tludy, hi» rulr» allow ihr drdurlion lo 
prorrrd in a rrrlnin dirrrl fn»hion, nffording nn inlrrr»ling normnl form 
for drdurlionk. Thr rrmll lhal rvry nnlurnl drdurlion ran hr iran»forinrd 
inio ihi» normal form i» rquivalrnl lo whnl i» known a» Hauptsatz or ihr 
normal form Ihforrm, a l>n»ir rr»uli in proof throry, whirh wa» f»iahli»hrd hy 
Crnlzrn for thr rnlruli of »rqurnt». Thr proof of thi» mull for »y»lrm» of 
nnlurnl drdurlion i» in mnny wny» timplrr nnd more illuminnting. 

In ihi» mnnua , mo»t of thr mrtninnihrmnlirnl notion» di»ru>»rd will hr rrfrrrrd lo hy word- in thr 
following font r.g. SYNTYPE, INDVAR, WFK. Thr»r notion» will play a grralrr rolr in lalrr vrr»ion» of 
FOL 
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Section   I    THE NOTION OF AN FOL LANGUAGE 

In FOL the user specifies a first-order language by making a set of DECLARATIONS (see Section 
4.3), The proof-checking system then generates a proof checker and a collection of rules specific 
to that system. 

An FOl. ttnglMg* is determined by specifying a way of building up expressions, usually called 
well formed formulas or WFFs. from collections of primitive symbols. In FOL these classes of 
symbols are called SYNTYPEs.  They are: 

1. logical constants: 

*) sentential constants •  SENTCONSTs:   FALSE. TRUE 
b) sentential connectives •  SENTCONNs:   -,A,V,3,« 

c) quantifiers  - QUANT:    V. 3 

2. auxiliary symbols:  -  AUXSYM:    "("and")" 

3. sets of variable symbols: 

a) individual variables  •  INDVARs. 
b) individal parameters  •  INDPARs. 

4. a set of n-place predicate parameters  • PREDPARs. 

These symbols are used to form those sentences common to all FOL languages. Sometimes a 
language L may also contain symbols which are intended to have interpretations which are 
fixed relative to the domain of the interpretation. Examples are: V in set theory "«" in first 
order logic with equality. "0" and "Sue" in arithmetic. These are represented by 

5. sets of constant symbols: 

a) individual constants • INDCONSTs. 
b) n-placc operation symbols • OPCONSTs. 
c) n-place predicate constants  •  PREDCONSTs. 

In addition one can 

6. restrict the range of a variable symbol to some PREDCONST by declaring it to be a SORT. 

7. designate a partial order to hold among some of those PREDCONSTs which have been declared 
to be SORTs; 

TERM. AWFFs (atomic well formed formulas), and WFFs (well formed formulas) are defined in the 
usual way. 

I 

1 

1 
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A formal description of these laiignages and of the notion of SORT is given in appendix I. The 
entire extended syntax of FOL is described in appendix 2. 

A first-order THEORY is defined by a (possibly empty) set of sentences of L. called AXiOMs. It is 
the creation of such theories and the checking of valid deductions in them that is the main 
purpose of the computer pr^ram FOL. 

-. 

J 
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Section  2   THE NOTION OF AN FOL DEDUCTION 

A derivation (the following description of which is taken almost verbatim »rom Prawiti: l%5) 
begins by inferring a conscqurncf from some ASSUMPTIONS or AXIOMs by mean« of one of the 
RULEs listed below. We indicate this by writing the formulas assumed on a horizontal line and 
the formula inferred immediately below this liiu. On the computer tlis can be repeated using 
pi"vious consequences as new hypothesis. This generates a tree, which we call a DERIVATION. 
Thus If we wish to derive A3(BAC) from (AsBWAaC) we write: 

(i be)A(R>CI 

A 

(bBMifbO 

1 HbV itaCI 

1 c 

(B-C) 

At each step so far, the configuration is a DERIVATION of the undermost formula from the set of 
formulas that appear as ASSUMPTIONS. The assumptions are the uppermost formjla occrrrences. 
and we say that the undermosl formula depends on these ASSUMPTIONS. Thus, the example above 
is a deduction of BAC from the set of assumptions ((AaBWAsCU}. and in this deduction. B/\C 
is said to depend on the top occurrences of these formulas. 

As the result of some inferences, however, the formula inferred becomes independent of some or 
all assumptions, and we then say that we discharge the assumptions in question. There are four 
ways to discharge assumptions, namely: 

(1) Given a deduction of B from {A}Ur. we may infer AsB and discharge the assumptions 
of the form A; 

' 

(2) Given a deduction of FALSE from {'AluF. we may infer A and discharge the 
assumptions of the form -<A; 

(S) Given three deductions, one of C from {AjuFi. one of C from {BiuF; and one of AvB, 
we may infer C and discharge the assumptions of the form A and B that occur in the 
first and second deductions respectively, i.e. below the end-formulas of the three 
deductions, we may write C and then obtain a new deduction of C independent of the 
mentioned assumptions; 

(4) Given a deduction of B from {A[x«-a)}uF and a deduction of 3x.A. we may infer B and 
discharge assumptions of the form A[x«-a). provided that a does «ot occur in 3x.A. m 
B. or in any assumption - other than those of the form A[x*-a] • on which B depends 
in the given deduction. 

To  continue  the deduction above, we may write A3(BAC) below BAC and obtain a deduction of 
A »(BAC) from {(AsBWAsC)). 

• 

\ 
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Section   3   THE RULES OF INFERENCE 

I 
I 

1 

The Inference rules consist of an introduction (I) and an elimination (E) rule for each loeical 
constant. The letters within parentheses indicate that the huerence rule discharees assuniDtlons 
as  explained above. r      " 

Ul A      B AE! fi-B •4 
R*B A B 

vl) R            B 

O-B          RvB 

vt) AvB 
(A)     (Bl 

C       C 

c 

>I) 
m 
B 

M 
iE) 1 AJB 

1 

»1) A »E) Vx.A 

Vx.RI«»] ll»tl 

31) Al»ll 

3«.A 

3E) 3».A 

IB(..«)) 

1 

1 

-I) 
(A) 

FALSE 

4 

O FALSE 

A 

T', -A       A 

FALSE 

FE» FALSE 

A 

• I) A^B      BsA ■ E) AiB 

A3B 

AIB 

AiB B5fi 

Restriction on the Virule. a must not occur in any assumprion on which A depenH,. 

Restriction on the 3E-Rule.  a must not occu. in 3x.A. ir. B. or in any assumption on which Mie 
upper occurrence of B depends other than AIx«-aJ. 
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Stction   3.1   An FOL deduction using tht computer 

Wr show here the computer interaction necessary to check the derivation given in Section 2, 

In this and all succeeding sections examples of interactions with the computer will appear in small 
type Those lines which are typed by the uer will be preceeded by five stars "•»•»»". The other lines 
are those typed by the computer 

To derive A^IBAC) from (AsBWAsC), we proceed as follows. 

****«0ECLARE SENTCONST fl.B.Ci 

• •♦».RSSUrtC (RieiAdbC)) 

1 (R>B)A(R>C)  (1) 

**M*«E ttl| 

2 (R}B)  11* 

i....B35Mfl[ M, 

3 fl  (3) 

«****}£ 2,3| 

* a (13) 

••»•♦■E l,7t 

5 (R}C)  (II 

•«•«•sC 3,S| 

6 C  (1 31 

*«M*A1 4AS| 

7 B'C  (1 3) 

**t*t3l 397| 

8 R3(BAC)  (1) 

Each LINE typed by the computer contains: 1) a LINLNLM which labels that LINE; 2) the WFF 
representing the result of applying the RULE typed by the user on the iine above; 3) a list of 
numbers representing those LINEs of the proof on which the WFF depends. Consider the LINE 
begining with 7 in the above example. 7 is its LINENUM. BAC is the WFF on this LINE, and the 
derivation of BAC on this LINE depends on the assumptions on LINEs I and 3. This LINE was 
generated by the user specifying as a RULE AI (AND introduction) using lines 4 and 5. This 
information is typed by the user and in the example appears directly above LINE 7 of the proof. 

*mm 
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There are two other things to nntice about this example. The first thing typed by the user was 
a declaration sMting that A.B and C are SENTCONSTs. Making declarations is essential. FaJure 
to declare an identifier is the most common reason for a syntax error Second is that v. nen si 
is applied to LINEs 3 and 7, LINE 3 has been removed from the list of dependencies of the new LINE. 
This corresponds to the description of this rule given on each of the previous two jages. The 
exact format of the commands a user must type to the computer is explained in sercion 4. 

I 

I 
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Section   3.2    Implementation ■ mer oriented featuia of FOL 

There are several differences bet wren the machine impieniention of FOL and the description 
given above and in Appendix I. These differences are .isually for the purpose of making life 
easier for the user. The description in the Appii'H';, presents a clean version of the logic su that 
the metamathematics can be discussed in a straight-forward way. The major differences are 
described briefly below; more detailed descriptions occur In the appropriate sections of the 
sequel. 

Section   3.21    Individual iymbols 

In Prawitz's logic, indivHual variables (INDVARs) may only appear bound, and individual 
paramerers only free. In FOL, this rrstriction is relaxed, and INDVARs may appe.-u frc? ?.s well as 
bound in well-formed formuhs. INOPARs, however, must always appear free. Additionally, 
natural numbers are automatically declared to be INOCONSTs of SORT NATNUM. 

Section   3 22    Prefix and Infix notation 

FOL allows a user to specify that binary predicate and operation symbols are to be used as 
infixes. The declaration of a unary application symbol n be prefix makes the parentheses 
around its argument optic <al. The number of argument* of an application term is called its 
ARITY. Section 4.1 describes hi>w to make such declarations. 

Section   3.2)   Extended notion of TERMi 

In addition to ordinary application terms, FOL accepts TERMs representing finite sets, 
comprehension terms, n-tuples and LISP s-expressions. A detailed description of the s ntax of 
these terms is to be found in Appendix 2. 

Section   3 24    The Equality of WFFs 

The description of subsitutinn |i«ni in Section 4.35 is consistent with FOL's notion of 
equivalence of WFFi. The prnof-clirclcr always considers two WFFs to be equal if they can both 
be changed into the same WFF by making allowable changes of bound variables. Thus, for 
example, the TAUT rule will accept Vx.P(x):>Vy.P(y) as a tautology. 

Section   3 25    VLi and suhparts of WFFs and TERMs 

FOL as implemented offers very powerful and convenient techniques for referring to objects in 
a proof: essentially, any well-formrd expression has a name, and can be manipulated as a single 
entity.  A VL is a name of a part of a derivation. There are several kinds of VLs: for example, a 
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label represents a llne-nun.ber. the WFF on that line, and a list   f the dependencies of that line in 
the derivation. 

The syntax of VLs is very extensive anJ a review of it will be left to Appendix 2. 

Stction   3.26    Axiomi and Assumptions 

FOL allows the specification of certain WFFs as AXIOMS. The difference between these and 
ASSUMPTIONS is that the former are not mentioned explicitly as dependencies of any Hues of the 
derivation.  Thus every proof checked by FOL tacitly depends on a set of AXIOMs. 

SfCffM   3.27   FOL dfnvalicns 

As opposed to a tree, a dcdiictinn in FOL consists of a collection of AXIOMs and a linear sequence 
of lines. ea."h line representing cither an ASSUMPTION o, a DEDUCTION from the previous lines 
(and axioins). 

Secfion   ?25    SORTs 

The addition of SOPTs. and specification of a partial order over them, constitutes a major 
extension of FOL from a computational point of view. Their meaning and use is discussed in 
the sections on declarations and the quantifier rules. 
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Seclion   4    USING THE PROOF CHECKER 

FOL is invoked at the Staufn-tl AI Lab by typing R FOL to the monitor. A backup file is 
automatically opened onto which input is saved; the name of this file may be altered by means 
of the BACKUP command irulr mjia). To save an entire core Image type the command 'EXIT;' 
and SAVE 'Jiltnnmn', to restart type RU <fi!tnamt>  and you will be where you left off. 

The command^ fall natinally linn several classes: 

1. Commands for drfinini,' the first-order language under consideration! thsi is to say. 
commands for making tlidniülions; 

2. Commands for drfinini,' '7\ioms; 

3. Commands for making assumpfions and applying the rules of inference to generate 
new steps in a drrivatmn; 

4. Administrative commands, which do not alter the state of the derivations, but enable 
various bonk-kerping functions to be carried out. 

In thi« ni.iini.il ihr lynl.n of K)l. will i>r .IrtcriM usm^ a moiiifinf form of ihr MI,ISP2 notion of pallrrn. 
Thrsr form ihr li.mr ronMnirl* of ihr KOI. par«rr. 

1. Mrnlifirrs wlnrli .ipprar in palUrns aro to br takrn lilrrally. 

2. Pallrrrn for s>nl,ilir lypr* arc «urroumlrd by anßlr brarkrls, Tbun <wff> la a WFF. 
X Pallcrrn for r« prlilion« art ilrcifjnalril by: 

RKI'n[ 'p.illrrn) ]      mr.ins n or morr rrpralr.l PATTERN«. 

If a  RKI'n JMM IHO ,irj.MimrnU ihm ihr srrond arpiimmt  it a pailrrn thai art» a« a «rparhlnr.    So 
that  KI-.IMf 't»ff.', , ] nir.m« onr or morr Wfft »rprralrd liv romm.it 

4. Allrrti.nivr« ,ipp..ir a« AI,T[ 'I'A'ITKKM) | ... I <PATTKR\n) ]. 

A! r[    nff        trrni^ ]   mram mhrr a WFF or a TERM. 
5. Optional linn/'«, appear at OI''r[ 'p.iltrrn> ] 

Kl-.P^fwff .(ir !'[,]]   mrans a minrnrr of two or morr WFFK oplionally mfmttti by romina«.. 
Tbr«r ronvmlion« arr rombmnl with tbr romparativrly Klamlanl Harkus Normal Form ilrsmiition. 

1 
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5'Ction   4.1    SysUm Specijuation 

The first step in specifying a first-order theory la the description of the language which is to be 
used. This is done by defining the symbols of the language, using the declaration commands. 
These commands specify which symbols are to be variables, constants and predicate or function 
symbols 

Stciion  411    Declarations 

As we mentionril ibove. one of the first things that a user of FOL must do is to define the FOL 
language to be considered. Every identifier in a proof must be declared to have a SYNTYPE. 
Only nine of these types can be declared by the user.  They are: 
1. SYNTYPE 1 

a) INDVAW     Umliviilual vanabla) 
h) IISPPAR     (indiviilual parameters) 
c) INDCONST  (indivulual constants) 
d) 5ENTPAR    (sentential parameters) 
e) SENTCONST (sentential constants) 

2. SYNTYPE2 

a) PREDPAR    (predicate paramd.'* with one or more arguments) 
b) PREDCONST (predicate constuits) 
c) OPPAR      (operation parameters or function parameters) 
d) OPCONST    (operation constants or function constant.:) 

Declarations are fixed within a proof and once made they cannot be changed. 

DECLARE    ALU REPKoimplcleo nPTU)   I  REP1 [opplder N OPT (.) ]   ]     , 

There are two kinds of SYNTYPEs. those of symbols which fake areuments. SYNTYPE2s and those 
which do not. SYNTYPE Is. 

•iyntyp»l> ■•    BLTt  «indjyuo     |   <i(ntiyM> 1 
•■iyn(yp»2> |a    flLTt  «prtdsyii»   j   <opiy«i>      J 

The  idea  of  SORTs  is  to allow  a  user of  FOL  to restrict    he ranges of  funrfion   to some 
I predetermined set.   This correspond to the usual practice of m: thematicia» s of saying let f be a 

function which maps integers into integers. In FOL a SORT is just a PREDCONST of ARITY I i e 
a property of individuals. The effect of this Informal restriction to Integers is achieved in FOL 
by 

I 

I 

I 
I 

•♦•♦♦DECLARE PREDCONST INTEGER li 

> 
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follr*ed by 

MMCSCCUM  OPCONST  *(lNTeCER,INTECEK)>INTECeR| 

A PSEUOOSOPV is an identifier which has not yet teen declared but is assumed to be a PREDCONST 
of ARITY I and is declared such because of the coniext in which it appears If INTEGER had 
not been separately declared .i>,r, in Its appearance in the second comm.ind it would have been 
considered to be a PSEUHOGORT and declared accordingly. There is one special PSLUDOGORT. i.e. 
the PREDCONST UNIVERSAL. This represents the most general SORT and is the default option 
whenever SORT specifications are optional. In declarations it can also be abbreviated by 'V". 
The MOSTCENERAL command explained in the next section, can be used to (hange the name 
of the MOSTGENERAL SORT. 

<p«iudsiorl>    ■■    RLTI <ld«nlllt«r>  |  * ) 

Simple declarations 

«tlMpidao        !•    ««i^ntyp«!» <ldl lt(>   0PT( <  <pi«gdaierl> ] 

Examples of simple declarations: 

••«»•DECLRRE   INOVRR  | y || 

»««•»OECLRRE  INOVRR «be« S«t, R I C ( Cldti) 

Application declarations 

<*ppld«e> la    <tijnlyp«2> <idllil> <*rfdje> OPTI   I <bpd*e> 1  1 
<«rqd«c> ■•    RLT( '«rqterl»  | <n«tnua> ) 
<«rqtort> ■•    RLTt  I  <torlr«p>     RLTIaj«)  <pi«udoterl>     | 

(  <ierlr«p> ) RLT(a|«)   <pi«udetort>    1 
<ioMr(p> la    REPtt <pi*udoior(> ,  OPTlRLT(a|,)l  ) 

<bpd«c> la    RLTt <rbp>  |  <rbp> <lbp>  |  <lbp> <rbp>  |   INF   |  PRE I 
<rbp> la    R    »    <na(nua> 
<lbp> i«    L    *    <n*lnua> rlbp> 

Examples of application declarations: 

»»•»«DECLRRE OPCONST    EXP(Int,In«)>lnt   (L>SSI R>SM1   | 

The meaning of this declaraion is that EXP is an OPCONST. it has two arguments (ARITY 2). both 
of which are of SORT Int. It also has a value of SORT Int, and is to be used as in \nfi\ operator 
with a right binding power of 800 and a left binding power of 850.   This could also oe declared 

»•»•»DECLRRE OPCONST EXPi InlalnNlnl  (L»ISI R>MI1 
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Simpipr  declarations  can  be made if you don't wish to specify so much information. 

»•••»DFCLORt OPCONST EXPtlnttlnNlnl (INH , 

declares   EXP  the same as above out uses the default infix bindings R«-50C. l>550. 

...»   nfCLOAf   OPCONST  [XPdnl, Inl).|nl| 

simply makes EXP an ordinary applicative function,  so you must type EXP(a.b) rather than (a 
EXP hi     Further simplifiction can be made if less sort information is wanted 

».♦«DECLRRf  OPCONST t«P(lnl,|nl) | 

makes the value of EXP iuve the SORT UNIVERSAL (the MOSTGENERAL SORT), and 

»♦♦••OECLf't OPCONST tXP 2| 

just says it has A^lTV 2. Of course 

»•»««DECLRPe  OPCONST EXP 2  I INF) 

»».♦♦DECLRPf OPCONST EXP 2 ll»tS0 R-SOB)   , 

have the obvious meaning.   This section has illustrated most of common  ways of making 
declarations. There are some other examples scattered throughout this manual. 

Section  4.12   SORT manipulation 

There are several commands which affect the SORT structure: 

Section  4 121   NOSORT (ttclaration 

NÜSGRT  ; 

The NOSORT command turns off SORT checking. If any SORTs have already been declared, an 
error message will be given. 

Section  4122   MOSTCENER 4L, NUMSORT. SETSORT. SEXPRSORT 

MObTGENERAL  <sort> : 
NUMSORT <sort> ; 
SETSORT <sort> ; 
SEXPRSORT      <8ort> j 
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In FOL cff iin TERWs conif with predeclared SCRTs; inimerais become MOCONSTi of SORT 
NATNUM, coinpreheiision tenni, set terms and n-tuple terms have SORT SET. quote-terms have 
SORT SEXPR. and the default MOSTGENERAL SORT is the Pr.EDCONST UNIVERSAL. The effect of 
the above comiiiands is to replace these default SORTs with those specified by the user. For 
example. In the case of Coedel-Bernays-von Neumann set theory, the MOSTGENERAL SORT is called 
CLASS. 

Section  4 12)    MOREGENERAL dtdaration 

MOREGENERAL <9ort> i [ <9ortJist> } : 

For example. 

• ««»«nORECCNEPRL cHitipicc« '   luhiUpttet.bKctpKctl | 

Is equivalent to the axioms 

Vx. (whitrpiece(x) a chesspiece(x)) 
Vx  (blackpiece(x) 3 chesspiece{x)) 

where chesspiece. whitepiece and blackpiece are understood to have been previously declared 
PREOCONSTs. Although these axioms do not appear explicitly, the quantifier rules behave as if 
they did (this is explained in detail in section 4.327). This establishes a partial nrder among the 
SORTs. Another typical example would be the declaration of classes to be MOREGENERAL than sets. 

1*0*1   4 124    EXTENSION declarationt 

EXTENSION <predcon9t> <ext_set>  ; 

<aKt.t*t> i« <|>rliMat> REPBI PLT|U|n|/l   <prlM>l> ) 
«priim.i> ■•        RLTI <torl>  |   I <lndcentt I ltt> I  1 

where each of the SORTs in the <primext> already ha,* an EXTENSION defined. For example. 

" 
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•»»•»OECLRRf   INOCONST |r <  griMCS,  UK ,  UKINCS) 

••«»»OECLRRE PREOCONST K1NCS || 

•MMUimM BriNCS  lid) 

E>tentien e) jriNC^ it i|n 

»»«««EXTENSION U)INCS   lUH, 

E~t«nilon  ol  UrlNCS   li   W) 

• r«««EltTENSION  » 1NCS  UttNCS  U BUNGS; 

E>t«nt>on  ol   KINGS   II   (UK  B») 

The Initial declaration declares BK to be of SORT BKIISIC. and WK to be of SORT WRING The 
command 'EXTENSION BKINGS IBK):' says that BK is the only object which satisfies the 
predicate BKINGS: similarly, the command EXTENSION KINGS BKINGS U WRINGS' says 
that the only objects which satisfy the predicate KINGS are those in the union of Lie extensions 
of BKINGS and WRINGS, i e. BR and WR. This is equivalent to the introduction of the axioms 

Vx.(BRINGS(x)»(x.BR)) 
Vx.(WRINGS(x)»{x.WR)) 
Vx. (RINGS(x) • ((x-BR v x-WR) A ^(BR-WR))) 

By Itself, this command has no effect, but the semantic simplifkatioo mechanism (see Section 
4.4) uses these axioms. 

Section  4.13   Prtdeclartd Syitemj 

THEORY  <sysname>   ; 

The THEORY command may be used to call up several predeclared systems. If no THEORY 
command is given, the basic FOL system is generated, i.e. the full natural deduction system for 
classical logic with the extended inference rules.  The options which are available are 

ttpnaM» t> RiT ( PRBuiTZ | :r | CBN | S« | SS | rer | m ) 

where PRAWITZ is the system described by (Prawitz I9G5). i.e. without SORTs or any of the 
extended Inference rules such as TAUT ZF is Zermelo-Fraenkel set theory (as defined in 
Appendix 3); GBN is Goedef-Bernays-von Neumann set theory (as defined in Appendix 4): S4 and 
S5 are Lewis's classical systems of possibility and necessity (as defined in Appendix 5): and RBR 
and KBB are Hintikkas systems frr Knowledge and Belief respectively (see Appendix 5) 



Page 18 
rOL Manual 

Section  4.2    Axioms 

Axioms are only briefly mentioned in the description of FOL In the machine implemented 
ver Z tl v play the same role as assumptions, but they do not appear In the dependency hst of 
Iny step of a d ductinn. MT are they printed when yon show the prou . Thus der.va.ons are 
Ilways relative to >; ....mentioned theory. When a theorem crrat.ng mechan.sm li ava.lable tins 

will change.  The syntax for defining an ?xioin is: 

AXIOM    «.axiom)    ; 

where 

<*xlon>     ;• REfll  '«»n«»»  .   «««'li.)    |  1 
(«till«» i. BLTI .MMIItl>  I REPll<*»toiii>) 1 

This allows for a bhek structured way of naming sets of axioms, so they can be referred to 
Ji I er by some particular name, or as part of a group. Each WFF in WFFLIST li g.ven a name by 
rn This name Is cenerated by taking the AXNAM and concatenating an n.teger to it. For 
ex^np^ f ' A^M is CROUP then they will be given the names CROUPI. CROUP* . 
The e can then be used to refer to each axiom. An AXNAM is like a L1NENUM and may be used in 
Iny context that requires a LINENUM. If WFFLIST only contains one WFF that ax.om is called 

AXNAM. 

NOTK: Th« lyntot tail» for multiple umieolont! 

Examples: .....Bxion  R. B. VX..X,X, 
VY.-(X<Y»YiX)t   | 

Ci »U.UcUi   l 

This creates two axioms A and C. Axiom A contains two subaxioms BhVX.^X and 
B*.VY7X(YAY<X) If you prefer to think of collections of axioms as theor.ev then the syntax 
allows arbitrary nesting of theories, each followed by a semicolon. At the moment m. cl.eck.ng 
Js Sone for the^onsistency of axiom names. You lose if you create confl.ct.ng ones. Ax.oms 
cannot be got rid of. so be careful. Numbers are nor legitimate AXNAMs, 
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Using axioms as axiom uheinas. 

There are no sprrial nilct for axiom Schemas, merely an xtension of the use of the rules already 
given. Namely, an axiom schema is simply an axiom with a predicate parameter (PRFDPAR) in it. 

I An   axiom   can   be  used  anywhric  I   step  can  by   tsing  an   AXPEF.   This   is  nf   the   form 
AXNAM[PP|«-XX,,...,PPn» XXn] and  its syntax  is described  in the section on  VI'.    An  AXREF  can 

appear   anywhere  I   VL  can     in   the  form   AXNAw;oPrXX,,..,PPn-XXn]   the   PP,  are   predicate 

S parameters (PP[  r'Ar's) appearing in the axiom, and the XX, are propnsitional functinns assigned 

to these parameters. The assignments are done successively rather than simultaneously. 

I An XX is a WFF preceded by \, any number of INDVARs and a ",' (period).   Thus eg. X x y i.<wff>. 

The ARITY, p, of the PRFDPAR mus» be less than or equal lo the number of variables follnwing the 
\.   The indicated X-convrrsion on the first p variables is done automatically.   The error message 

("NOT ENOUGH LAMBDA VARIABLES" means p is too large. The remaining variables are 
treated as parameters of the entire axiom, and the instance of the axiom returned is the 
universal closure of the axiom with respect to these parameters. 

'i lie :• (SUBPART) mechanism (see Appendix 2) can be used to take pieces out of the resulting 
formula in the usual way. 

Example of using axiom Schemas: 

»tJMOCCLORE  PfWBR F  li 

•«•»•iNOVRft X; 

»«♦«iPXIOH INDUCTION; F (») AV«. (F (Ojf (««Darx,? (X) | j 

INDUCTIONI FtOI-VX.(F(X)}F(X*l)3¥X.F(X) 

«ttttDECLRRE INOVPR « b, 

»••••M INDUCT ION (F..xb «.««b.b*«)) 

1 ¥«.((««01 •((!•«)'VX.((t*XI.(X««)}(««(X«l)).((X*n««))7VX. (««XI. (X4»)) 

MM«*] 'NHUCT IONir^b.y«,«.b.b.Sl ; 

2 V«. (a*eia(0«a)*VX. (V«. («*X).(X*a)3V«. (a*(X«l)l«((X«l)*«))3VX ». (MIUII««) 

»MM«|   INDUCTION(F>Xb X.X*b>b«Xll 

3 vx. (x«eu(e<x)AVxi. ((x*xii.(xi4X)}(x«(xi«i)).((xi«i)«x))3VX2(x*x;).(X2*x)) 

m 
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Section  4 3   Tht generation of new deduction steps 

Noir: whrn ihc rnrinhlm /),// nnd C nrc mentioned in l/ii« «rrlion, they refer lo the deirriptinn nf the 
hanir Prnwitz logic in tretinn 3. 

I 
I 
I 

Section  4)1   Assumptions 

ASSUME    <ufflist>     ; 

The ASSUME roinmaitd makes an assumption on a new line of the deduction for each WFF in 
WFFLIST. Note that the drpendcncies of a line ?ippear in parentheses at the end of a line, and 
that assumptions depend upon themselves 

E'trnpltii 

.♦♦..pssune ¥«.«(>, 

1 VK.XX       (II 

««•ttRSSUIE V^.^iVt ''Vy V<UI 

2 Vy.^V     (2) 

3 -Vy.ycy        (3) 

Section 4)2   Introduction and Elimination rules 

The general form of a RULENAWE is 

«rul»n»m«>   i.   rloqcontl>  RLTt   I   |   C   1 

where I stands for introduction and E for elimination, The format of a command is: 

<rult_o).tnt»r»nco>   •■ m  <rul«n«nt>    <Untnumlnfo    | 

The LINENUMINFO is different for each rule. This Is explained below. We will use • to stand for 
an arüitrary VL (sec section 3.25). In the description of some of the rules it is necessary to 
distinguish among several VL$. In this case we write •l.itf We will write 

AI  »A«    J 

rather than 

AI   <vl>    A    <vl>     I 

• 
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Alternative alphabetic PULENAMEs will be given in parentheses after the standard ones. These 
usually correspond to other frequently used names for these rules. Thus MP (modus ponens) or 
UC (universal generalization) can be used, instead of =1 or VI. 

All commas in these rules are optional. This will not be mentioned explicitly in the following 
»ections.   Thus a "." appearing in a rule specification it is to be thought of as OPT[,]. 

: 

i 

] 

I 
I 
I 
I 
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Section  4 321    AND (*) rules 

Introduction rule 

(A!) («A«)A« 

The LINEN'JMINFO for AI is any paremliesized conjunctive expression in whit!1 all con jiincts are 
VLs. If no parentiu-scs appear (even in a subexpression) association is to the right, thus 
■A(«A»A»)A» means •A((«A(«A«))At). AND is always a binary connective. The "Sc" and M," are 
alternatives to the "A" symbol. The dependencies of a line are those UNENUMs mentioned. 

Elimination rule 

,vE(AE)     •      0PT[ ALT[.I:]   ]     ALT[1I2I   <subpart>  )     ; 

I picks out the first conjunct, 2 picks out the second conjunct and SUBPART picks the 
appropriate subpart. For the definition of SUBPART see Appendix 2. The dependencies of the 
result are the same as those of ■ The first command in the example could have also been 
written   "AE 4 It" or "AE 4:1:" or "AE 4:al!". 

»MM«!  4,1| 

s (Vx,ci«tt(>)AV«.-.(«(nT)) 

6 V«.-U<nT) 

*M**PE llflfMi 

Th«  Mln  «ymbol   ol     Vk.Clatt(«)   It not   »n  A 

»M>«l 4if3| 

In  th* <iubp*rl> i#3 ,  3  It  <oo  Itrqt 
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I 

Section   4J22    OR (v) rults 

Introdiictinn mir 

Vl(01) {•V<Mff>V<Mff>) S 

OR's imy be |..irriiilir<.i7rd just like ANI)'s, but at least ont disjunrt nxnt be i VL Any VLs 
given vill cause tbe ürpenüeiicirs nf ili.it line to be included in tliose of the conclusion. As with 
AND, association is to the right and OR it binary. 

Elimination rule 

vE(0E/       ■    ,    «1     ,    «2      ; 

■ is the VL on which ,i disjiinction A ii appears ■! and ».' are both VLs Mich that «1: ,iiul ■?: are 
both equal lo the WFF C. The conrlusion of this rule is the WFF C. The (lepcnrlriu ii s nf the 
conclusinn are thn<.e nf • along with those of »I which are not equal to A and Ikmr nf •> not 
equal to D. Remeinbcr two WFFs are equal if they differ only by a change of bound variable. In 
the example two different ennnnands are given. Note how the dependencies are treated in each 
case. 

to^BSSUflE   i.v3i| 

9 V». »( »v-yy.y< n        (9) 

MMtfll   lvSl|tl   7lv3| 

10 V«.»( »v-Vy,ij<(j       (II 

11 V4 , i^c y--Vij, M'y       (31 

»«••*vC 9,10,Hi 

17    VK.xovVy.ijdj      (91 

*t*t*vC A,10,11: 

13 V«.«( »V-VIJ.IJI 14      (31 

»♦»»»vt 9,11,18, 

14 Vx.iXKv.Vy.yiy       (1  3 91 

^ L 
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1 

Sedion   4 323    IMPLIFS (?) rula 

Intrndnclinn rule 

" 

=1(DED)       ALT[ •»•   I   «Mff>3i 1     j 

The diffctrnrr hclwrni «a« ami (wfftM is that in the former rase drprmlrm ir«. of il,e 
con' hiMoii wltirh are equal lo Ihr hyporhesis are dclctnl. A comma is an .illrrnative In the "a" 
symbol.   In oiher styles of pmrNlini first order logic this rule is called the dcdurtirm theorem 

15 V« . Wf »jV* . Mi X 

»«•«ton luii 

16 V«. «( »jV». at»       (1) 

•«•#• }I  2,\\ 

17 Vg   y(y3*"..i. 

Elimination rule 

oEmP)   ■   . • 

The order in which the arguments are specified is irrelevant.   This is the classical rule moJus 
ponens.   The depmdrm u-s of the cniulusion are the unimi of the dependencies of hnth VLs. 

18 V'.x»        ID 
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; 

Section  4 324    F4LSE {FAL%E) )ulfi 

Introdiiclimi mir 

FI    «1    .  «2      : 

If «I  is of »hr fnrm   A. thru «2 inuM be of the form 'A (or the mhrr way  .iroimtj)    Tlir 
conclusion is just the WF F "FALSE" Its drpendencirs are the union of thosr of «I and ■2. 

♦♦»♦»n i.3i 

19 raist     n 3/ 

Elimination riile 

FE ALT( »1   I   cuff»  1 

• must be of the WFF "FALSE". A nrw line Is created with cither «I: or the WFF sprrifird by the 
alternative. This rule says that anything follows from a contradiction. The doprndnirirs (there 
had better be some) are just those of «. 

I 

TO  -(.<nT)        U   3) 

' 

•■^h^^^^ 
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Section   4J2)    NOT (-) futei 

Inirotl'ictinn rtilr 

-I (Nil       •       .     ALT[  •]   I   «uff>  ]       ; 

• must be tlir WF "IAI SE". The rnnrliision of the rule is the nrgatinu of ■!: or the WFF. The 
dependeitries of the mnt limnn are those of • minus Ihr ones equal In »1: nr WfF 

••»'♦-I    19,3; 

n   —Vy.y. y        (1) 

MJMOtO i5:ii 

rr *«.«««5—•Vy.y«y 

Eliiiiiitatinn rule 

^E(NE1 AU ( «i i «Mff» i     j 

• iimst he the W'r "FALSE". «I or WFF must have the form -A. The rniulusinn is A The 
depeudrnrirs »rr those ..f ■, minus .my rqual to -A. If this rule is nmittid (I>I >iiii|>lv not used) 
and only the introdiM lion and rlimin.ilion rules are used the proof is intuitionisiu ly valid. 

»MttRSMHI      -3: | 

:3  --Vy.ij. y       mi 

»•♦♦.•ri :3.3| 

?! fPLSt       13 !i) 

♦«♦ft-t    24,3; 

♦»•♦«oto   n^Si 

26   --Vy.y<y5»y.yiy 

" 
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Section  4.326    E^'ll'ALENCE (•) rulti 

Iwtrodllctiaii riilr 

■KEI)       «1     ,     C      : 

Either «I is of HIP form AaH  nul •.' is of the form RsA or vice versa   The rnndUMnn is AB. 
The clepeixinuirs are the iiiiion   nf the dependencies of »I and »2. 

Eliminatinii rule 

•E(EE)       •       .     ALTl  ALT[DI1]    I   ALT(cl2]   ) 

If    •   is  of  the  form   A'R  t!<e!<  the  first  alternative  produces  AsR.  the  seiond   \\o\     The 
dependencies are ihosr nf ■ 
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Section   4.327   QV ANT IF KATION rules 

This Is an example of a proof using all the quanlif calimi rules. 

M.^nECLBRE   INDVHR , y,  OfCLBHE   IWPRfl A b,   DfCLPRf  PPfOPPR P J, 

f^f-RSSUME    V..31j.P(«,y)«yx y. (P(»,ij)5P(y,,)). 

1 V..3y.P(.,y)AVw  y. (P(K,y)3P(y,>,))     (1) 

«<«»fE   1   1| 

2 V«.3y.Pla,yl     (1) 

»♦»»»'£ 1 2| 

3 VK  y. (P(«,y)iP(y,i<))      (1) 

♦»♦♦♦*E 2 «i 

*   lg.P(«,y)     II) 

«<^<VE   3 « b; 

5 P(*,b)3P(b,«)     (1) 

V! : :3E  »  b, 

6 PU.b)     <6) 

«««»»DE  S,6; 

7 P(b,«)     (1  E) 

<»«»«AI  6  7| 

8 P(<,b)'P(b,«)     (1  6) 

< M^43I  8 b»yi 

9 Sy.lPla.yj.PCy,«»)     (i) 

-f»«»VI    9    «..; 

10 V«.3y. (PU.yJAPCy.x))     (1) 

«♦♦»til   lilO) 

11 (yx.3y.P(.,y)<V«  y.(P(K,y)jP(y,,)n3V«.3y. (P(».y)AP(y1,)) 

Page ,>8 
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Section   4.3271   VNH'FRSALQVANTIFICATION{i)ruln 

Introdiictionrii |p 

»IIUGl   •  .   BECI ncnALII,,n<).a,,l,i„<)„ar>|  . ,   ,inWar>   _   „p,,  ,,     | 

Kfmrmhrr ilwr« i« n rrtirinion on ihr n/././irmion „f ihi, ml*   ..„».,./    .1 
HWI «or .„/..„r frrr in „ny of ,hr dnJLriZf , ' '* "" """'* V***W*4 mriohlr 

In the rxamplp VI nrnirs on Imr n    Th«» i< ...>■        ^ 

be generalized, as it is an INDPAR. chan^rd fn an   x .    a   cannot 

Elimination mir 

VE(US) < tprm I i ot> 

instantiated a hound var ah ePT;nc   is,„Pad/d^       2./^  ^  ""  ^«^  '"  he 

created is decla.nl to he „ i^A^f ,1^ ^ToRT M"U"0" " mi,,,P    Ti" ^«^ 

Line 4 and 5 of the example were created by this rule. 
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Section   4 3277.    EXISTrNTIAL QjlANTIFICATION (3) nüei 

Intrndiictlon ruIc 

31 (EG)   •  .   NFPl (On (• inrni> -)   <indvar> 0PT(<occli9t>),0PT(,]]     ; 

The list follnwini; • Irlh wliicli TERM* .irr to be {jrnrr.ili/cd If tlir nptinn.il drrm) is picsntt. it 
is first rrplaml liy (imivar) at rach ncciirrcncf metltinncd in the 'ocrlistx Thr WFF nn ■ is tlirn 
generaliznl and thr nrxl tiling in tlir list is consiilrml Nntirp that no use can br inailc of an 
<occlist> if thrrc is no ifWM prrsrnt The niachinr will ignnre such a list in Uns ,asr. The 
dependencies of the cniulnsinn are just those of •. 

<occlist> :=   OCC   <nr(lrrnalnuinlist> 

The <ordernatnuinliM^ is ,i list of natuial nui.iuers in Incrraiing order 

In the examplr CMMI nti.il intrndiK lion is done on line 0 of the proof Um K, t|ir ,nnst 

interesting line nf Uns (\aniple Von will note that ihr (Irpenünu ies of thiv hue .ire noi .is 
described above bnaii'.r nf the previous existential eli lation.  This is expl.tinnl lielnw 

««•««KCiMt rBtocoNST F 1|TPUT r(.).-r(.(, 

27 n«)v-ri.) 

■■<M 31 r7...'j ncc 2\ 

;8 3y. (F(,).,n1;()) 

."9 V«.3y. (F(»l,-f (yll 

Eliminatinn rule 

3E(ES)     •   .     RFC) (All 1   <inflv.ir>   I   rindptr»  ].0PT(.]1       i 

The implemrntation of this rule is the most radically diffrient from the foinnl «.i.itcnirnt given 
above. This mlc < .nn piMid'. in infnrwal reasoning to ihr following I iml nf .in;nin<m Siipprnr 
we have Miown ih.it «.omi thing exiMs with some parlnul.n piopriiy, c i; 1\ I'l.i.vi Ihrii wv s,iy 
"call this thing b". Thi* is like laying ASSUME I'fa.li) Then we cm ir.iu.n ahmii I. Av s.mn .is 
we have a senlcine. howevn. that no longer mentions b. it is a thcornn wlndi rfors not itrnrild on 
what we called "y" bill only on the dependancies of the existential siatrim nt we Mailed with. 
Thus we can eliminate l'(,i.b) irnm the assumptions of this theorem and lephue thnn with those 
of the assuinptions of 3y l'{a,y) 
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The machinr implrnirniatinn thus makrs thf correct ;mumpiion  for you. rnnrml.rrs  it and 
automatically removes it at the first legitimate opportunity   Several elhniiutmns „„ i,r donp „ 
once. 

In the example an exiMrutial elimination was done creating step 6. This linr actually lias as its 
REASON that it was AS51ACA Line 8 thus depends on it. When the existential general./ation 
was done on the next line, b no longer appeared and so line 6 was removed from the 
dependancies of line 9 A user should try to convince h mself that this is equivalent to the rule 
stated at the beginning of this manual. 
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Section  4.327)   Quantifier rules with SORTs 

The following table dnrribes the effect of the quantifier rules in the presence of SORT and 
MOREGEMRAL declarations, such that p is of SORT P. q is of SORT Q^and r is of SORT R. and R is 
MOREGrNERAL than Q.and Q, is MOREGENERAL than P 

VE 

*I 

3E 

31 

Vq.R(q) Vq.R(q< yq.n(q) 

R(p) R(q) Q(r)}R(r) 

A(q) R(q) R(q) 

Vp.P(p) Vq.R(q) •rror 

3q.P(q) 3q.R(q) 3q.R(q) 

• rror R(q) R(r) 

P(q) R(q) R(q) 

P(q)}3p.R(p) 3q.R(q) 3r.R(r) 

As an example, it is possible that you might try to instantiate a variable to a term whose SORT is 
MOREGENERAL than the quantified variable. In this case the result of the specialization is to 
create an implication asserting that if the term were of the proper SORT then the specialization 
holds.  If the variable is MOREGENERAL than the term then the usual WFF is returned. 
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Section   4 31    T AI'T ,v\,l TAUTEO 

TAUTOLOGY rule 

TAUT     <:wf f>     ,   <vl I i5t>   ; 

This rule derides if the WFFs follows as a tautological ronsc« iiencc of the WFF« inrntioned in the 
VLLIST (the notion of VLLIST is defined in Appendix 2). In this rase WFF is concluded and its 
dependencies are the union of the dependencies of each WFF in the VLLIST. We think this 
algnrithm is fairly efficient and thus should be used whenever possible, 

TAUJE^riile 

TAUTEQ, imphmeniv ;i drcision procedure for the theory of eriuality and n aiy predicates  n 0 
Its syntax is the sanu as the TAUT rule: 

TAUTEQ  <wff <vl I ist: 

This rule decides if WFF follows from the WFFs mentioned in VLLIST in the al.ovr-inentinned 
theory. Thus, anythiiiL' that can be proven by TAUT can also be proven by TAliTEQ but 
TAUTEQ runs more slowly than the TAUT rule. "J 

♦»»♦-OfCLPRE PRCOCONST P i 0 1, 

»(»t^DCCLPPE OPCONST I 1, 

te.tntCLRRf INOVRR « b| 

»t«<«TRUTEQ *.h3(P(«)iP(b))| 

I «•b}(P(«liP(h)) 

««•««TflUT «•b}(P(«liP(b))| 

loucH lucr 

•    iniiKQ a.b3n«).nb)| 

TPDCM LUC» 

The formula >»li3(P{a) l'iht) cannot he proven propositionnlly: TAUT would simply rename (ab) 
to a new PREOPAR with APITY 0. say PI. P(a) to P2. and P(b) to P3. and then try In prove 
PI=(P2^P3). The fonmii.i (a.b)=f(a)=f(b) cannot be proven by TAUTEQ, since TAUTEQ does not 
know about the argumci.ts of functions. 

*mm 
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Section  1 34   The UNIFY Command 

UNIFY  <wff>  ■  ; 

This command fries to establish wheiher the WFF is a consequence he VL are 

This rule of Inference Is best described by first presenting some examples; 

»••««RSSimE yx.ruii 

1      »KP(«I 

t»»t»UNirY nueu i| 

7   P(H0)) 

'••;  UNirr 3«.PI«)   1| 

3    3».POO 

In step 2. the UNIFY niKlianisin recnL;imed that P. applied to any TERM followed from VX.P(X) 
More aggressively, on line 3, it recognised the that VX.P(X) implies that 3X.P(X). These are two 
simple cases of the use of this coinni.-nd. A more complicated example is: 

»ft':fiSSUn£  3«.**. (P(X)v02(l(,Y))   , 

l   3K.vr. (Pm.Q.Mx.rn  (j) 

♦«»t^UNirv 3U.P(U)v3U.VZ.02(U,Z)  l! 

:   3u,P(u).3g.y:.o:(u,2)   (j) 

Notice that, in both of the examples above, the propositional structure of WFF was the same as 
that of the VL. This rule is designed to handle exactly this case: namely, it is designed to handle 
the quantifier manipulations involved in implications between WFFs with similar propositional 
forms. 
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Section  4 35    SUBSTITVTION rult 

SUBST    «1 OPT! OCC    <or(lernatn'jml ist>  ] 

If the major eonnrrtlvp in «I b ■ nr ■ tlifn (making .illnwanccs for hnnnd vari.ililr rbangcftl tlir 
occurcncps of Ihr left Imnd sidr of »1 which appear in •'?. will he rrpl.ned hy the ritjht hand «.ide 
of «1. If an ornirrriue litl appears only those listed will i^et substituted. 

SUPSTR     «1      IN 0PT1  OCC     <orclernatnuml ist>   ) 

does the samr as SUIl'iT hut suhstitnies the left hand side of «I for the liijht hand sulr of «I in 
•2. 

I 

Ordinarily. f(\) tamirii he siibsiitnlnl for y in Vx.F(\.y) as the \ in fix) would then licmmr 
bound, i e. f(x) is not jur ]n v in Vx.F(x.y). FOL autoinatirally handles this (oufliit o| bound 
variables in a snbstiiuiion; those onurences of a bound varinl)le whirh will ransr a «onf litt are 
changed. Thus, if on,' tiies to siibsiitule f(x) for Vx.F(x,y) the generatrrl MihtlitNiinii instance 
will be Vxl.F(xl,(f(x)) Here the newly created variable will have the MM« r>oPT as x if SOPT» are 
being used. 

The 'new' variable is ueaied by considering the 'old' variable to have two parts: a prefix which is 
the identifier up to and including its last alphanumeric character, and an index, either empty or 
a positive integer. The new variable which is generated will have the same prefix, and an 
incremented index. For this purpose, an empty index is considered to be '0', 

X ^ . 
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Section   4 4    Scnnntii Atduhmtnt and Smplijuation 

FOL is fonrrrnrH willi rtarMRg llinurms in a first-order langMasr. whi.h thr IIMT ..urifirs by 
making dr« laralions This languagr is thrn a strnrtiirr L-<P.F.C>. wl.cir P is a sr, „f ,,rfHk«te 
symbols. F a set of nnutinn syinhnls. and C a sc» of constant symhols. A mo,l,l of 1 || a 
structure Mxll.P.F'.f:*). will, D a no.i empty set. ?' a set of n-ary predicates o,, D. F' a set of 

functions mappin,,' I)n into D. and C a subset of D, An inferprrtathn of I in M is ,, ,„*., vlUkU 

specifies which synihols in P correspond to which predicates in M. simil.nly for F and C The 
implementation of srin.intic atl.nhinrnt has two aspects: 

(a) the attachment inech.niisni which allows the user to specify the objects |n ilir „„irir| wUWU 

correspond ,o symbnls m the l.iiii,'ii.ii;e and vice versa, and 

(b) the Mml'HJie) whiih tries to mwiptttf, in the model, the values of FOI rvprcssions j,. \\ (ISPS 
the notion of uiinjinhtiti. 

For example, we mi^ht associate with function symbols the correspondim- I ISP fun« lions The 
OPCONST V michi he snuantically att.uhed to the I.ISP function, p| HS.'and the IfJlK i iti'Js T 
and "?: (i.e. the numnals) attached to the mmhers I and ',». so that an evaluation of l.»' |H ,|,0 

model would give the »umh-r 3   as an answer • the liwpUffcr would then rrfNrn the INOCON^T   'S'. 

Note carefully that the map from | into M and that from M had to | may hr h,vtl*l i e there 
may be symbols in | which have no defined interpretation in M and the process of 
simplification with icspn, to M may .;enerate objects in M which have no ( anomcal symbol |n 

L. The FOI. smiphfir, simpiifir« srntences to the maximal possihle eMrm „sin,- the rrsulls of 
computation within the model, as well as any relevant information about the fXlifJMnN and 
SORT structures which the user has defined on L. 

FOL allows the assignment of arbitrary LISP functions or lambda-expressions as the 
interpretations of predicate and function symbols. 
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Section  4 41    The ATTACH command 

ATTACH OPTfi]   ALT[  <predconst>   I   <opcon9t>   I   <indcon8t>  ]   < 8_eKpr>   j 

<9_eKpr> 
<§_•nprIi st> 
<dotencl> 
<atom> 

:- ALT[ <ato(n>   I   (  <8_exprlist> OPT (<dotend>l   )   ]• 
:- REPH <s_e»<pr> ] 
!■ .   <seKpr> 
:- ALT[  <identifier>   I  <natnum> ] 

This cnminaiKl allows for the dcfiuitimi of the maps from the FOL language that the user has 
defined into the LISP rnvironmcnt which he wishes to take as the 
vice versa if the ATTACH' option taint). 

inodrl of his language (and 

PREDCONSTs and OPCONSTi may be attached either to atoms which arc the names of already- 
defined LISP functions (i.e. ones which have a SUBR, EXPR or MACRO property including of 
course all the standard II.ISP functions) or legal LISP function, lambda-expression or macro 
definitions The attachment mechanism checks that the functions (except SUBR«) beinc 
attached have the correct number of arguments corresponding io the ARITY of the PREDCONST or 
OPCONST to which the attachment is being made. INDCQNBTl may be attached to any S- 
expression. J 

»♦♦»»DtCLORE   1N0C0NST Zt«0.  ONE (   INTfCEP 

• ♦»»»OfCLflRE OPCONST ♦tINTECER, INTECERI.INTECEH IINF); 

.....BTTPCH :[RO e, 

ZERO «tl«ch«d to I 

»»«..BTTPCH ONE 1| 

ONE «lltchtd Io 1 

♦ »♦♦tDECLPRE OPCONST CAR CDR(LIST).USTi 

Mff:DECLPRE OPCONST CONS<SEXPR,SEXPR).SEXPRi 

♦(♦««RTTRCH CRR CRR| 

♦♦♦♦»RTTRCH CONS C0NS| 

•****0ECLRRE INOVRR fl B L < SEXPR, 
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Section  4 42   The siMniFY tmmaml 

SinPLIFY   (ALT   -uff-   I   <vl>   I   «ten»  ]   ; 

This commaiiH rffrrn Ihr Miiiplifir.itinn of an FOL snilnicr by compNlIni; within iiv mndrl. 

i.e. the viiii|)lirii.itinii inrclianiMii altrmptl lo find, in flic modrl, nbjrrl« (I ISP Scxprrssmns) 

which cnrrc».|mii(l In syni.idic synihols in the sentence. If any are fniiml. they aie IV'AI uatrd in 

the nnnnal way I'he vimplifier tlicn atleinpts to find a term in llie lanqNa^r uliidi (oncvpnuds 

to this evalnatrd enti'v In llie r»«1 nf VLs and TLfitls, the nrlqinal r\|>M «AIOII is iclnined, 

together with its niaMmally siinplifKil form: if a term exists in thf l.iiii;ini;c for the 

simplification, Iheii th.u forms the iii,'ht hand nf thr rr|iialiiy (Thr simiiiifh-i is aware that 

NATNUMs and I ISI' nunilKrs conespond to each othnl In the case nf lil I v, uhlitinii.illv, if the 

result of MmpiificalmN is a trnih-v.iliie. the UFF or its nr^atinn is riiiiiiird, wliidirvrr is 
appropriate    The sunpliricatinn is canird out to the maximal exlcnl 

If a LISP error is encountered durini,' sjinplification. an eirnr message is given 

In the inndel defined hy ihe attachmrnts made above, the following occuis; 

ftttsiwtirv rcw ♦ OHI, 

riPn.oNt»! 

♦ :!( ^3I'1^l irv CPR • m |t| 

rriRc (R fni.n 

In addition, the siin|)lif i< atinn mechanism takes into account any infotmation that is av.iilahle 

about Ihe ZC^'i and EKTCNSION declarations that have been made For example, remeinhering the 
example on extensions given in section I 121: 

'. ntCLHPr   IN|lfCN3T  PI   «   BMNCS,   Ul   <   Ml INC3| 

ntCltlPf ruincONST HNCS I; 

•::: :t»UN5|0N 111 INCJ IBM; 

(•••nnon o) 61 Wt it IBM 

:: ■ tlTCMSIW III INKS IU»li 

Erl«ntiM ol Ul INC] it (UM 

•■-•:( "UNjiüS • INGS Ul 1NCS U %> INCSi 

f .Icniion  ol  I HKS   it   IMI   it) 

<^->sinPLiFy UI.B* I 

-(Ul .B( ) 
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Section   4 41    AuxHuvy FVNCTION df/tnilion 

FUNCTION cfunctlon-9_c««pr>  ; 

This allows ihr (Icfinitinii nf <fuiirlinn-s pxpr> as an auxiliary LISI* fimrtinn If ihr limrtimi 
definitinn is a Irqal (* cxpr) whirli is not a legal LISP funrlinn ilrfinitinn of thr 1>E or 
DEFPROP sort, an nmr message will lip given. 

I 
I 

I 
I 
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Section  4 5    Ail<>iiniiluUi!>f Commonth 

These rnminaiuls nianipiilatr the pmnf rliecker but do not directly alter the nirrcnt dediirtimi. 

SfCtion   4 51    Thi I AHU ffmiKGHii 

LAPTL      ALT(    ' MII lit-    I    'ulrnt.   •>   .linpnum))       ; 

In the first rase the ncM line the proof thecker genrr.itrs will jjrl the lalirl I'"1' HI In the srrnnd 
the LINLTJOM inrntiomd will hrionn l.iheled by IDEM I ahcls are alternatives to vis mil mn he 
used in any plärr that the syntax rxpcrK them. 

Section  4 52    Tilt Unnttling tomtnands 

Section   4 521    The FET* H comwiil 

FETCH    «•filfn ■• rtTI I FBPO .».Trkl»  )  0PT(  TO -m.irkr^  ]   ; 

The FETCH «ninmand irails the file ^filename), and exerntes any FOI. inininan.ls in this file. 
FOL accepts stand.ud Stanford file designators. If mark sperificatimis are piesent. the file is 
only read within the limits which they specify. The default FROM/TO are the beginning and 
(lie end. respectively. n| the file The commands read (hiring a fetch are not printed in the 
backup file. FCTCIIrs may he nested tn a depth of 10. 

Section  •M,V    r*r MARK (tmuttnä 

riARIC    'toknn.    ; 

This coiinnand has no rffrrl mi the proof, but simply places a maik in the file which the 
FETCH cnininand can use to delimit leading of the file 

Sfcridn   4 52^    The 1\ If KVP commmul 

BAflcur - f i ip M.-im.-  ; 

When FOL is initiali/ed. a file called nACKDPTMP is autninatically created. All cnmnle input 
from the user is savid mi this file. This comiiiaiid closes the tiirrent haiknp file, and opens a 
new one with the specified file name. 

\ 
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5«fion  4.524   Tf,e CLOSE command 

CLOSE  ; 

This closes and reopens il.e backup file. Normally the backup file is written every five steps in 
the proof, but this connnaiKi cnablrs il.e user to save the state of his deduction at any point 

Section 4)2)   Tke COMMENT cmmtnd 

COnnENT  <tlel imi ter>  «:tp><t> «ciol imi ter> 

When typed at the fop-lrvn. this inserts any text between the delimters into the backup file- if it 
appears in a FETCHed file, the .CM is ignored. Of course, the delimiter must not appear in the 

Section   4)3    The CANCEL comwnd 

CANCEL   OPT[ <linenum> ] ; 

This cancels all steps of a drduriion with LINENUMs greater than or equal to LINENUM   Thus vou 
MMrMM?!0^ ,,I,w"n,cd MCPS fro," a Eduction provided they are all at the end of the PROOF If no 
LINENUM is specified, only the last line is cancelled. " 

Section  4)4   The SHOW command 

The SHOW conimanrl is used to display information generated by FOL The intent of tho 
present command is to allow you to display information about a derivation at the console and 
saveM on a file.    The  integer after .he FILENAME becomes the lineleng.h while .his command is 

SHOU  <9houtype> ÜPT[ <f i l-nam«. HPT r     •   * <Tiiename> UPH <mteger>  ])   j 

«•hOMlypt>     i. PIT. PPOOr OPTf *r*n9»lm> J 

SUPS OPT. <ranq*lltl> ) 
flXIOn OPT. (MMMttt» ) 
DECLPRBTIONS OPT. <d«eln(o> J 
HENERPLITY OPT. .qtnlnlo> ) 
LORELS OPT. <l«b«llnla> ] 

<ranc|tlitl>  i. RCPUT/in9«ip»c>,0PT[,)J 
«r.nq.tp.c.   i. BLTI OPT. <lin.nui.. 1   i  0PT( <lln«nui» J   |   <lln«nUM> 1 
♦d»e(nlo>       i. REP1I BLT. «lyntgpt. OPT. «  <ierl>l   | 

<(oltyn> j 
SORTS J    OPT. 1] 

<9«nlnlo>       i« REPH  <iort>,  OPT.,)   J ' 

<l«b*lln(e> ■■ Rfi. PLT. <l«b«l> | <r«ng«tpic> )   , OPT.,)  1 
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PANGESPEC may hr of the fnnn 23 or tiM or :65 or 31: or rvcn ; lls mr.imnij is rithci ,i ■.in^lp 
LINFNUM r.r a rillgr of I iNf NUMs. If a nuinbpr stands .iloiic it simply mrans Mm mmiliri If 
there are two iininliris srp.ir.ilrd by a colon, the rangt is from Ihr fiisi in ihr »Mnml |f 
numbrrs iln not »pprar on rilhrr siHr of the colon Ihm the ilrfanlt n| (t m ihp |.IM linr is 
assiimed An FOtSYM is any drd.unl idmtifier and sktm idnrns its r.n»;i nlMi'ifict ,in«t »bow 
returns appropriate lynlaclic infnnn.iiion. 

Examples are: 

♦ ^«■'3H()u ppnor i.fi^.iti   roo.Pfi:i:.rr.cuu) ::i 

this writes lines I, ?. to I, IG to the last line of the proof onto the file FDf) |»AZ(SIT.mv\V] svitb 
a linelength of t2. 

»♦«>-SHOU rpnnr, 

] 

displays the proof on HIP console. 

The next example, taken from an actual test file, shows the kind nf synladb   informatmn 
displayed by a "show dn laralions" connnand. 

M»MSNM KCLOMriM E"PTY « ♦ < c»rr,j irem kinar^tMi 

fNPir it INDCOK.T ol »on BVTCS 

. il INOVn» ol «ort INTECfP 

• i« 0PC0N5T 

1l>»  rloiM.n   it   INIfGfR   ■   INTCCCR,   d-i'l   II«  i m,,«   i«   IN If f.l r II . I.'.n   1M,PI>I 

:   it MfCCIMSI 
Tl'« rtom.tin   it   INUCER ■  INTEGtRIWO P. JCOI 

turrif  it CPfONM 
Th«  rtoiMin   it  P<nS  • B^TCS,   onrt   th*  r,i,.-j,   ,K  |y|(] 

'ronl   it  OPCONjT 

Hi«  do">*in   it  BVTES.   «nd   Ih» rang«   it  BYTE S |R. %(!) 

No  Otclaralion   lor  hinarijplui 

' f*i :jH0U OECLOPPHON SORTS' 

shows all the rRmcnr^rs of ARITY I (i.e. all of theSORTs) 

SHOW commamls do Ihr obvious ilmiL' in conjunction with the display featuirs inmrrl on bv 
DISPLAY. 7 

I 

mtm 
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Section  4.i>   The DISPLAY command 

DISPLAY OPT I  <:displaytype> )   i 

.diipi«giMp..   >•  PLT( PROOF 

STEPS 

ntM 
BTTPCHflENTS 

0ECLRRRT10NS 

LABELS 

STBTUS 
I 

FÜL may take advantage of the display features of the Stanford DataDisc system by means of 
this command. 

For example: 

*t***0ISPLR¥ i 

creates a display window of full-scrren width, into which the steps of the proof are displayed as 
the derivation enntinnrs. The page-printer is restricted to the bottom eight lines of the screen. If 
the argument is non-null then the 'proof window is restricted to half-screen width, and a second 
window, appropLiely labelled, occupies the other half of the screen e.g. 

***«*01SPLRY RXIOtIS  | 

causes an 'axiom' window to be opened, and all axioms are printed to that window, rather than 
to the 'proof window or the page-printer. 

Whatever the current state of the display, 'DISPLAY <niill>' causes the 'proof window to be 
regenerated, together with the last five lines of the proof, if any. Any other windows wiich may 
be present are flushed. This method is slo-v and cannot be used from teletypes, but provides a 
much more convenient way of displaying 'he steps of the proofs and other informatior. 

••««»UNDISPLRY  ) 

restores the screen to normal teletype mode. 

Section  4)6    The EXIT command 

EXIT , 

This command returns the user to the monitor in a state appropriate for saving his core-image. 
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Sfdion   4 5S    The SPOOL Command 

SPOOL   < fi I pn.nnr^   ;     KSPOOL   <filen,imc>   ; 

These causr the ^ilin.iinr- to be <.|i(.o|,,| no Hie ipproprUtr devire (I IT i>r XCI'i 

Srction   4 IS    Thr TT) i fimmand 

TTY  . 

This resets the printini; nuitinrs ^n il,,it tliey are trlrtype rather than <liM>lav nrirnlid In this 
mode, the In^ic.il rnnn.ttives are rrpirsrnted by NOT, OR, ft or AND -• m IMP » m I nillV 
FORALL. EXISTS 
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Appendix  I 

FORMAL DESCRIPTION OF FOL 

The non-dejcripfive symbolj of FOL divide Into SYNTYPEs as follow»; 

1. Individual variables  . INDVAR.   There are denunerably many individual variable symbols  We 
use x.y.i as metavariables for them; jmwmn. we 

2. '"«I'vid"^ parn.j.eters  ■ INDPAR.  There arc denumerably many individual parameter symbols 
As mpta variables we use a.b.c; '  

S. n.place predicate parameters  . PREDPAR.    For each r. there are denumerably many predicate 
parameter symbols.  An n-place PREDPAR it said to have ARITY n; P"wwi« 

4. Logical constants: 

a) Sentential constants - SENTCONSTi FALSE and TRUE. 
b) Sentential connectives ■ SENTCONN: VW»^ 
c) Quantifiers  ■ QUANT: V and 3; 

5. Auxiliary signs • AUXSYM: parenthesis (,). 

A  particular FOL iMgMff is distinguished from a pure first order language by declaring 
cirtam constant symbols.   These have the SYNTYPEs: 7  necianng 

1. Individual constants  • INDCONST: 

2. n-place predicate constants . PREDCONST. Each n-place PREDCONST has ARITY n: 

$- ÄswrsJTJÄ0PC0NST- l'k'PREDP4R' "c" 4RIIV som'""'"""" 
Each «^YNTYPE is assumed to be disjoint from all others. 

TERMs 

t Is a TERM in FOL if either 
1.  t is an INDPAR, INDVAR, or an INDCONST. or 
2-  ' '» WM| tB). where f is an OPCONST of ARITY n and t. Is a TERM. 



FOL Manual Page 46 

WFFs 

A Is an atomic well-lormpd formula or AWFF if 
1. A is our of thr symbols "FALSE" or "TRUE", 
2. A is PO, t?) where P is a PREDPAR or a PREDCONST of ARITY n. 

The notion of well-formed formula or WFF is defined inductively by: 
1. An AWFF is a WFF, 
2. If A and B are WFFs. then so are (AAB). (AvB). (ASB), (A^B). and -(A). 
3. If A is a WFF. then so are Vx.A and 3x.A provided that x is an INDVAR. 

The usual definitions of free and bound variables apply and can be found in any standard logic 
text (e.g. Mathematical Logic by S.C. Kleene). Below the usual conventions for omitting 

parentheses will be used. 

SUBFORMULAS 

The notion of SUBFORMULA is defined Inductively 
1. A Is a SUBFORMULA of A. 
2. If  BAC. BvC. B:»C. B«C. or -B is a SUBFORMULA of A so are B and C. 
3. If Vx.B or 3x.B Is a SUBFORMULA OF A. so is B[t«-x]. 

The notations A[t«-x) and A(t«-u], where A represents a WFF. t. u TERMs and x an INDVAR are 
used to denote the result of substituting x or u. respectively, for all occurrences of t in A (If 
any). In contexts where a notation like A[t»-xj| i: used, it is always assumed that t does not occur 
in A within the scope of a quantifier that Is Immediately followed by x. The notation A[x«-t]. 
denotes the result of substituting t for all free occurrences of x. 

The notation A[a«-x.x«-t) means the result of first substituting x for a and then t for x. 
denote simultaneous substitution we use A[a«-xixHl. 

To 
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Appendix 2 

THE SYNTAX OF THE MACHINE IMPLEMENTATION OF FOL 

In »;.M mmwnl ihr .,>,.»„, of KOI. mil ho dwribrd u»ng n modifM form of ihn Ifl/cw*     ,• 
patlrrn.   Thw form ihr hn»r ronurur,, of     ,hr hOl. pnLr. ' "^ "'",0n 0f 

1. Idrntifirr* whirl, npprnr in pnltrrn» nrr to h« mkrn litrrnlly. 
2. Pntlrrn» for »yiunrtir Ivpr» nrr tarronndrd by angle hrf-'rlt. 
3. Pnltrrn* for rrpniiinn* nrr druignnlrd hy. 

Kl:ro/<l,niirnt>/ mrnnt 0 or morr rrprnlrd P/fTFKKNi, 
Kt:f'n/<pniirrn>/ mrnn* n or morr rrprnlrd P/\TTEHN\. 

If a HKPO or n HKPn hn* two nrgumrni» ihrn ihr urcond nrgumrni n a       „ntirm ih*. -,. 
„rpnrnlor.   So ihnl RVPl/'u,ff> ./ mm,, onr or morr WFFs „pLlrd hyrommn '    " " 
4. /Iltrrnnltrr* npprnr n* /)ll7<PmTP.HM>\...\<P/ITTKRNn>J. 
/ll.Tf<u>ff>\<irr,n>/   mrnn» riihrr n WFF or a TERM. 
5. Oplionnl thing* npprnr n» ()PTf<pnttrrn>/ 

™mm,Tfr>*)PrfJ/    "U"tnt a ***** 0f lW0 0r m0r* WFFS    ^ionnlly ,rpr.ratrd hy 

n*m ronvrntion* nrr rnmhinrd with ihr uandari liarku, Normal Form notation. 

Basic FOL symbols 

In In an atfemp   to make life easier for users, the FOL parser makes more capful distinction« 
about the kinds of symL Is that it sees than the prevkJ description indicated distinctions 

<tnav»r> 
i ALT;     «indv»r> 

« ItfMIt If ltr> 
I    <tndp«r>    | 

<indp»r> i • «i   mtlliap* 
«Indconti, r« BLTt    tit- >    1 

) 

ILTI    <opp4r> 
• idint 1 MtP» 

I     opcomu    ) 

<opcontl> « ident 11 nr» 
<pr»op> »opsijm> 

<optym> 
«•pplop> <op»yiii> 

<pr«dtyn> 

«pr«dpar> 
BLTt    <prtdp«r> 

<ldtnt1ll«e> 
<pr«deenii>   ] 

<prtdcon((> <ldtnt Mltr> 
<pr*pr«d> 
<lnlprtd> 

<applpr«d> 

■pr«dlym> 

<pr«dtyM> 
'prtdty»> 

• ••nllgm» 

<s«ntp«r> 
RLT[    <(«nlpjr> 
• Idont11i«r. 

<iinlcentt>   ] 

<i*nlcenit> >• ALTt    TRLSE 1 
Tr<UE 

1 

1 

<indeontt> ) 
Idee I«r«d INOVaft 
|d«cl«rtd INOPRR 
idtciartd INOCCNST 
ino dtcl«r«tlon ntcttltry 

idcclartd OPPRR 
|d«cl»r»d OPCONST 
iflRITY 1 «nd dcclartd PREFIX 
iflRITY 2 «nd d«cl«r(d INFIX 
iflRITV n «nd not die I«rid 
I  INF or PRE doc 

I doc I«rod PREOPPR 
I doc I«rod PREOCONST 
iBRITY 1 «nd doc I«rod PREFIX 
iRRITY 2 «nd doc(«rod INFIX 
iPR I TV n «nd net doc I«rod 
I  INF or PRE doc 

I doc I«rod SENTPflR 



^ 
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..•Mronn> 

<prtloq> 
< ln(lo9> 

• gujnt > 

ildintlfl«r>        ) 

RLT[    - | NOT | 
v | OR | 
A | ( |    AND         | 
j I . I   inp      i 

• I • 

la     RLTI   ,   |   NOT  1 
l«    RLK  v  |  OR  | 

|    CQUIV    ) 

idtcUrtd SENTCONST 
I     INF or PRE d«c 

i'i«q»t ion 
idltjunction 
(Conjunct Ion 
IInpllection 
laqulvtlonc« 

I I I ANO | » | 4 |   {HP  | ■  | . | EQUIV 1 

la    ALTt V  |  FORflLL   |  3  |  EXISTS 1 

TERMS 

The FOL syntax for TERM-, allows for both prefix operators and biitary infix operators, as well 
as the usual function application notation. Any undecLred identifier can be declared an 
operation constant (OPCONST) using the DECLARE command. With proper declaration the 
following are TERMs: 

«'«♦-y. 9(«*y«l)) 

CAR 
C«r 1 « , i( ) 
(ROBOT. B0X1.000RIUIv|V«.P(q(«,y))l 
pouort* t<.A1B,C>) 

<t«r«>   ■•     ALTt * lnfisy"> 
<.1pp 1 ttrffi> 

<prsl uttmo                       | 
<inli<tira> 

«MitaNi                    | 
<n_tupl*tora>                    | 
<eonptori»» 

i (tap**   i                 } 
<ipplt*rn> l •    '«pplep> (    <t«ral m>    ) 
<prtllxt«rm> 1*     -pr.op»  <ltrM> 
< Inl Ixltrii» la    'ttri»    <lnlop>    «tor»> 
-nl ttrNi> la     1    <ttrMlltt>    1 
<n'i,pl«i«rn> I*    <    «ttralltl»    > 
<COfflpl*i M> I«     1    <(ndv«r>  |  <ull>    1 

•ItMlltl» la    REP1I («•«• , OPTt.J J 

These are illustrated above and may be used at any time. Other additions may occur from time 
to time. 

Of course, the appropriate restrictions on the SORTt of the arguments of the OPSYMs must be 
met. 

AWFFs 

AWFFs are formed similarly, but cannot be nested. 

: 

jm 
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<«MU>     la    fiLT(     <bAt«uH> | 
<A|)pl.iul(> | 

■ tnlMf I* ) 

«b«t*«wn>      i.    ALT!    «MiiltyH    | 
-pr»d|)»r>    J ,M|,h fiRITY  | 

<«ppl«uM>       i«     <jipplprtd>   (    <l«ri*lltl>> 
<pri«Hf(> ia     »ppepr«1>    <ttriii> 
«lnUuM>        la     rtarir>       ln(pr«d>    <tara> 

Ex«inple$ of AWFFs are 

Ifl.B.UIt U|3C.H<ZA2(XI 

<«,b> •   I«, i/i,bl i 
n«,y)»  'car(cam:«,y)) 

Equ-lity is treated as any other predicate constant, but the system knows about the 
substitution of equals for equals, h does not know that A'B is usually interpreted as ^(A-B) but 
treats it as any other predicate symbo'. 

WFFs 

<uf(>   la      IflLT  <it«n>1/ird   firtl  ordtr   loqlc   lornul«>     | 
<vl>     1      I0PT  >tubp«rl>l   I0PT <tubtl_opar>l     I 

The syntax for WFFs allows the following abbreviations and options. 

The primitive logical symbols are: 

<"'»> i»    BLTt »prmMM>  j  <praull>  |  <ln«MM> J 

<pr(mMM>       i. RLT[  rMll»   |   <qu«ntHli>  |   (  <MM> )  J 
.pr«uM> |a <praloq>    <prlmuff> 

(<ln«ull>        ■■ <prtmuM>    .innoq>    <prl*uM> 
<qu«nlull>    ■• «quAnlprallio    (Mtlteff» 
<qu«ntpraM»> 1.    RLTt <qu«nl>    REPK <lndvar> )     .     | 

( <qu«nl>    REPH «lndvar> ]     )    ] 
<tnallM«l> 1.    REP8(  'Drtloq> ]   <prliMll> 

AW  .    I/    r     hdi'JuHrUon mnhmuon and wivahnr*. Nrgation. a, writ a« hoth mmmi/Un 

^"'l Vl!.' adji'ccn, nua""fi"» of the same type together, so Vx.Vy.P(x.y) can be written  Vx 
y.P(x.y). FOL also accepts (Vx)(Vy)P(x.y) or (Vx y)P(x.y) for Vx.Vy.P(x.y). 

Subparts of WFFs_and TFRMs 

Within a deduction there is a completely general way of specifying any subpart of any TERM or 

/ 

\tm j 
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WFF already inentionrd. Wc ncfoinplish this by means of a SUBPART designator. Derivations 
consist of WFFo. farli of whirli has a LINENUM. The WFF which appears on this line is designated 
by following it with a cninn.   If 

le. V«  y. IP(M»l)DQ(M).,y)M 

is line 10 of some derivation then 10: represents the WFF on that line. i.e. Vx y (P(f(x))3Q(h(x.y))). 
Furthermore, subparts of such a WFF can  be designated by a SUBPART designator. 

<tubpart>   !■    REPK     I    <lnt«gtr>    ] 

The Integer denotes which branch of the subpart tree you wish to go down. Quantified formulas 
and negations have only one immediate subpart. called ■!, The other sentential connectives each 
have two. For predicates and function symbols the number of immediate subparts is 
determined by their ARITYs.   Any conflict with these will produce an error. Thus 

lOifl 
10ii7 

Vg. !P(( (.))DQ(h(.,y))) 

ERROR 
Mx.y) 
ERROR  (P hi, BRITY I». 

Substitutions in WFFs and TERMs 

Once you have named a WFF, you can use a substitution operator to perform  an arbitrary 
substitution. 

<tubtl_op*r>   i>   I     REPl(<(ub(tllttl>,0PT(   i))     ] 
<tubt<llttl>    la    RLTC  «t«rs» » <itrM>  |  <ufl> * <MM> 1 

Examples: 

10;fl f.-ROPOT)     .    Vi|. (P(l(ROBOT))}0(h(R0B0T,y))) 
I0i#)fl (<(.).ROPnTlQ(h(.,,j)).P(,))     .    P(R0e0TljP(O 
10.#1#1#1#1 IMIO; »l/UTfUll-ROPOT)   .    ROBOT 
iei#ll..l (,j!|   .     Vgl. lP(MMy)))DQ(h(((y),wl))). 

A/olfl; thf mhtlilitiinn nprrnlnr rhnngrd thn hound vnrnhlc in ihr hu rxnmplo. Thin /irrtwitled l/in y in 
f(y) from hrromina hound, SM «rriioM on »uhttiiuiiont. 

WFFs and TERMs thus have the following alternative syntax: 

<uM>    ia «vl» i  0PT( <tubp«rl>   0PT( <tubil_eptr> )] 

)ar»i>  i«  «v(>  i  OPTi «-lubptrt»    OPTt <iubit_opar> 11 

There is an ambiguity as SUBPART may produce only a WFF where a TER>< is necessary (or the 
other way aronnJ). FOL checks for this and will not allow a mistake. Such a subpart 
designator can be used whrncver the syntax calls for a WFF or TERM. 
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Another label for liaiidling well-fonned expressions is the VL 

<vl>  ■■    fiLT( <lnt*qer>  |  <lab«l> OPTtBLTt ♦).)  <lnl«9tr>]     | 
<«Krtl>  |  REPl(-)  1 

The optional * or - Ontcgcr, after a label designates an offset from the mentioned label bv the 
amount designated. ' 

The last alternative has no  been previously mentioned.   Its meaning is the n-th previous line 
where n is the number of "-" siens. 
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Appendix 3 

AXIOMS FOR ZERMELO FRAENKEL SET THEORY 

The axioms presented here and in appendix 4 are examples of the expression in FOL of the 
conventional Zermclo-Fraenkel and Cocdel-Bernays-von Neumann set theories. We believe that 
the practical use of set theory for matliematical and computer science proofs will require an 
extended practiccil system. 

* f 

OECLORE PREOCONST  ,   ItlND, 
OECLRRE PREOCONST c 2(1^1, 
OECLBRE OPCONST U 21 INF), 
DECLARE INOVRR riluvuxVi| 
OECLRRE PREOPRR A 2 B 1| 

flxion ZFi 
EXTi V»  y. (Vi. (loiKyliviy)) X Exlmtlon«! 11^ 
EflTi 3»,*y.-y»»| T Nu I I   it I 
PRIRi *■  y.3z,Vu. Iu(;-ui«vu>y); X Unordtrcd pitr 
UNION) tfi.ly.Vl.<t<yt]t.iMl*UK)l| X Sun («t 
INF: 3(. (6(<AVg. (i^od^Ulgl )(«)); XInlinlly 
REPLi V>.3g  Vz. (Rl«,:)'!!.;)   } X R(pl«c*m«nl 

Vu.3^.(Vr.<r..  i   3i. (4<u'R(»,rl)l)| 
SEpi V«.3y.Vt. ({(g't< "(((z)) | XStp«r«l>on 
POUERi Vir.3g,Vt. (zryrzol! X Pentr t«l 
RfCi V«. 34, I..0-W'«•*?. (z( o-ztij))) 111 XRtfultrlly 

/  R«pl<c*m«nt    ll   tquiv«l«nt   to / 
7 V«. (Sg.Hf'.yJAVy z. (R(«,y)«R(>(,z)^>z))  9 X 
7 Vu.3v. (Vr. tr»v i  3l.(»(u*fl(i,r»))) I 
X or        Vx.S'y.RU.y)   3 Vu. 3v.Vr, (r(v i 3t. (KUAAff,, i) I Z 

' Stp«r«lion   It • conioquonco ol «nd uocktr  that. r«pl«cMnt.        Z 

X  0«l IrM ions     / 
DECLARE PREOCONST FUN 1.INT0 2,PSUBSET 2(INF|| 
DECLARE      OPCONST rnq 1 do» 1| 

f-xion 
SUBSETi Vx y.tKcyiVz. (zcozjyl»! 
PROPSUBSETl ¥.   4, (PSUB3fT(.,y   ..cj.-.y)! 
PAIRFUNi V« y z.(z( l>>,4liza>vz>y)| 
UNITSETFUNi Vx. (   Ui.lx.xl   I, 
OPAIRFUNi V> y.(  «x,y>. I Ul, Ix.yll   )| 
FUNCTION! Vu. (ruN(u)iVz.(z(M33x y.(|.<xly>))A 

Vx  y  I. (<xly>(UA<iil{>(M»ya|)   l| 

DOHPIN, y„  >. (»cdomtuJiFUIHulASy t. (yiUAy.<x,z>)) | 
"RNCEl Vu  x. (x rnr|(u)-f llN(u) A3y I. Iy4 UAyxi ,«>)) | 
INTO! *M    .     (ISiniu,. )rr,„,(u)c,), 

UNION! »x y 7. l.-f.lig-7(xvZ(y)|   | 
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Appendix  4 

AXIOMS FOR COEDEL-BERNAYS-VON NEUMANN SET THEORY 

nOSTCtNfPRL   ClASK 
OECLfiRE PfEOCONST ClMI  S«l   1; 
DECLARE PREDCONST < (C l«s»,C IäSIK INF); 
DECLRRE  PREOCONST edcl.Clau) tIV)| 
OECLPRE   INOVRR R B C  (   CUti.x  y u v u <   |a«| 
DECLRRE  PREOCONST Empty On(n«r\y(C litl) .Oitjolnl (CI«lt,Cl«lt)| 

PXIOn    NCfti 

►LfiSSi V>.CI«tl(<)| 
ISSETi VR B. (RtBsStKR))) 
EQURLi VR B C. ((C(PiC<B>ifl«B)| 
EflPTVi 3».*y.-y<»| 
PRIRSi *■   j   3u  ♦     i..-.1  .. .   .^) [ 

CLRSSr 
EPIi in ru   .   i.u, . x R-u. .)! 

INT: *fl fi.3C.yu. (u(Clu<flAU(B)i 
COMP, *R.3n.*u. (u(Bf-u«B)| 
PPOJi Vfl.B.Vu. (u«Bt3v..J,v»«)| 

PROOi M,]|.thl v.Cc«,VHIMCMI 
CONVi vn.3n.Vu  v. (.u.-xBi'v.ux«)! 
TRI1: *R.3B.*u  v w. («u, V,M><BI»V,W,U><R) | 
TRIJl *R.3B.*U    V   M. (<U,V,U>(6l<U,H,V»A)| I 

SETi 
INFi 3u. (-Empty (UJAVV. (V(U33U. (u(UA->vaUAvCu))' | 
UNION: Vu.3/.Vu  >. (m «MI(U3U( v) | 
POUERi VU.3V.VH. (ucu2u<v)| 
REPLi Vu R. <On»n«ny(B)j3v.VM. (mviaK.lMtuMM.xxflinii 

ENOi VR. ( -1 »PIVHI^U. (u<flADltjelnl(u,R)))| 

RCi 3fl. (On»l1«.iy(fl)AVu. (-Eiiiply<u)33v. (v(UA<v,u>«AI)) 11 
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Appendix   5 

INTlimONISTIC MODAL LOGICS 

I'.i^r 54 

! 

The   best   knew »il.ihiies   are   Hie   so   called   WrtAn'   ones,   invnltlni;    nr,-ts<i'\<H)   and 
petSiblfity(A1>, Inn many ..il.cr seiileniial operators wliirli display ino.lal . h.n .< ut^h s |iavr hrrn 
stiidird, TQ r fm «anviliiy (BtirUIMU, K and R for hiowlrd^r and MM (IliniiU ,H''(.>» p (or 
perrrption (lln.tiUa.l'H.'ii These latter modalities are the subject of interime iwrtli In Imic 
at the moinnit. and a jomprehensive Minaiitics has hirn evolved for vomc of them iKtipiv I'M. I 
Hintikka.lW'h TUnr are still many difficult prohlemv especially in the r«* of .|u,iiitiri, ^tion 
into modal conirMs. uhere the ira.lnional rules of Mihst.t.itahility of rqn.v.ihnis and „f 
existential ?em i.ili7.ii....i ,lo not seem to hold This bat led to a rrfo,miil,iiio„ of .„.my 
ontnlnpical notions in .|ii..ntification theory(see. for example. (HintikkalT,-,) aiM| fFn||rMlai.|%A) 

(\nlr ,hnl woHnl o/.rrnl.n* nrr mlflUM "/.rralOM of n rnll,.'r <r,rinl AjM/f. MN P»»« [> ' TI' I, ,, „„, 
pmuMfl» frn.,1 w.ulni nrrrr,lor< n'. „Vl,lune 10 MMM ../ WW«>IMVI or formulor ,.,,/,,,„, /„.,„,. ihr 
pnurrfiil triuonlii t.'frr, for rxmmpll' < Uonlngur, /'MJi 

In the current nnph meutation. the user may define nnn-standard modal sysiruss md nnfrafnn 
Lewis S4 and RS. ll.niiUas KBIs and KBB(P^,M are already availahlr. to^eth., sv.th the 
operators N(necrssarily). r.!(pnssibly>, KfklMW^, B(belieyes). 

(a) The Classical Systems T. S4 and SÜ 

von Wriphl's systrm. T (von Wrii;ht.l9M) is got from l?C by adding: 
ASt      N.p 9 a 
AG:       Ntpsq) z> (N.p s N.q) 

Lewis's system S4 (I ewis.SfLangford.1932) is got from T by .adding: 
A7:      NpaNNp 

Lewis's S5 by addmi,'; 
AH:       M p a NM p 

(b) Natural Dednclinn Systems of Modal Logic 

(1) These .nr based on minnnil. classical and intuiiionistic logics: 

(2) A foimnla is s.m| to be wodal if its principal sign is a modal sentential operator: 

(3) Necessity systems: 

Prawitr has two inierencr rules for S4: 
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Nl)      a 

Na 

NE)      N.a 

a 

and a rnirrvpoiKlinc dnliiitinn rule for NI, when the proof or rirdiiction of 'a' depends r»rj/ip on 
modal fornmlas. 

In S5. N.aaa may b*   infrrrrd also uiicn every formula in the dependrmy srl is ritlirr a modal 
fonnnla or the negation of a modal formula,  begin indent 5,0 (4) Possibility systems: 

The possibility operator. M  may be added by means of the rules 

Ml)      a ME)      Ma&b 

Ma b 

When these rules ,iie .nldrd. the dedinnon rule for Nl must he modified to he similar In the rule 

ME 

in the (lassieal I ewis sysiems. M and N may be interdefined, f.j. M.a=-N   a and N.a ^ -M- a. but 
in the Prawn? system this is not possible. 

The syntax foi modal (iiimulae is identical to that of standard formulae, exicpt that Wl F». may 
be preceded by I or more modal opcrators(and imbedded -). followed by a '.'. So a period 

«modi IMH > 
• »ort^Ipr•I i 

[■   • «ort<*'prt I l • >   'prt»Hll> 

For example, NMN-MMNNMNMNM A    and Vx.M P(x)3MM p(x) are well formed 

When  scannint;  lor modal formulae is turned on using the THEORY' command (sec Section 
4.13). the followim,' rules then become available; 

NEC'I   'line number). NlfiE  <line-nuniher> 
POSSI 'liiieiiumher>, POSSE <line-number> 

as defined by Ihf comlitnms above.(Note carefully the dependency restrictions) 
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