
mmmm m^p

A D/A-006 8 98

FOL: A PROOF CHECKER FOR
FIRST-ORDER LOGIC

Richard W. Wcyh rauch, et al

Stanford University

r
Prepared for:

Office of Naval Research
Advanced Research Projects Agency

September 1974

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

^mmm

UNCLASSIFIED n
SECURITY CLASSIFICATION OF THIS PAGECWfrifi Dmlm Enfnd)

This manual describes the use of the interactive proof checker FOL. FOL
implements a version of the system of natural deduction described by
Prawitz, augmented In the following ways:

(i) it is a many-sorted first-order logic and a partial order over
sorts may be declared: this reduces the size of formulas;

(11) purely propositional deductions can be made in a single step;
(iii) the truth values of assertions involving numerical and LISP

constants can be derived by computation;
(iv) there is a limited ability to mane metamathematical arguments,

and

(v) there are many operational conveniences.
The goal of FOL is to use formal proof techniques as practical tools for
checking proofs in pure mathematics and proofs of the correctness of
programs. It is also intended tu be used as a research tool in
modelling common-sense reasoning in the representation theory of
artificial intelligence.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEflWi.n Dmtm Bnltnd)

///

I
I

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-235
STANFORD COMPUTER SCIENCE DEPARTMENT
REPORT NO. STAN-CS.432

SEPTEMBER 1974

FOL : a Proof Checker for First-order Logic

Ri.hardVJ. Wtyhrauch
Arthur J. Thomas

Abstract:

This manual describes the use of the iüteracdve proof checker FOL. FOL implements a
version of the system of natural deduction described by Prawitz. augmented in the
following ways:

(i) II Is a many-sorted first-order logic and a partial order over sorts may be
dechrrd: this reduces the size of formulas ;
(H) purrly propositional deductions can be made in a single step;
Oil' ihe truth values of assertions involving numerical and LISP constants can
br Jrnved by computation;
<iv) ihere is a limited ability to make inetamathematical arguments, and
ivi there are many operational conveniences.

The goal ot FOL is to use formal proof techniques as practical tools for checking proofs
in pure mathematics and proofs of the correctness of programs. It is also intended to be
used as a research tool in modelling cominon-sense reasoning in the representation theory
of artificial intelligence.

Wc are f ratcful lo Ai-hf k Chandra for concrptual h"lp and for implrmcnlinff the Taul and Taulrq ruir«.

The rrwarrK drsmhrd here wa» Kiipporird by ihc Advanced Resrarch ProjrrU Agrnry of ihr Office of the
Secretary of Dcfenne under contract l)AHC-IS-7Vc-04.1,S.

The view» and concluMon« contained in this document arc thoüc of the aulhorR and (should not he interpreted
a« necewanly representing the official policie», cither cipreiCKcd or Implied, of the Advanced ReKearch
Project» Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information Service, Springfield, Virginia
22151

I
FOL Manusl Page Iv

TABLE OF CONTENTS

0 THE RATIONALE FOR A FIRST-ORDER PROOF CHECKER

1 THE NOTION OF AN FOL LANGUAGE

2 THE NOTION OF AN FOL DEDUCTION

3 THE RULES OF INFERENCE

3.1 An FOL deduction using the computer

3.2 Implementation - user oriented features of FOL

3.21 Individual symbols

3.22 Prefix and Infix notation

3.23 Extended notion of TERMs

3.24 The Equality of WFFs

3.25 VLs and subparts 0» WFFs and TERMs

3.26 Axioms and Assumptions

3.27 FOL derivations

3.28 SORTs

4 USING THE PROOF CHECKER

4.1 System specification

4.11 Declarations

4.12 SORT manipulation

4.121 NOSORT declaration

4.122 MOSTGENERAL, N:JMSORT, SETSORT, SEXPRSORT

4.123 MOREGENERAL declaration

4.124 EXTENSION declarations

4.13 Predeclared Systems

1

4

6

7

8

10

10

10

10

10

10

U

11

11

12

13

13

15

15

15

16

16

17

^^^

FOL Manual Page \f

4.2 Axioms

4.3 The eäneration of new deduction steps

431 Assumptions

4.32 Introduction and Elimination rules

4.321 AND (A) rules

4.322 OR (v) rules

4.323 IMPLIES O) rules

4.324 FALSE (FALSE) rules

4.325 NOT H rules

4.326 EQUIVALENCE (■) rules

4.327 QUANTIFICATION rules

4.3271 UNIVERSAL QUANTIFICATION (V) rul«$

4.3272 EXISTENTIAL QUANTIFICATION (3) rules

4.3273 Quantifier rules with S'JRTs

4.33 TAUT and TAU'EQ

4.34 'I he UNIFY Command

4.35 SUBSTITUTION rule

4.4 Semantic Attachment and Simplification

4.41 The ATTACH command

4.42 The SIMPLIFY command

4.43 Auxiliary FUNCTION detinition

4.5 Administrjtive Commands

4.51 The LABEL command

4.52 File Handling commands

4.521 The FETCH command

18

20

20

20

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

40

40

40

/

mt^m

^™w

I
I
I
I

I

FOL Manual Page *i

4.522 The MARK command 40

4.523 The BACKUP command 40

4.524 The CLOSE command 41

4.525 The COMMENT command 41

4.53 The CANCEL command 41

4.54 The SHOW command 41

4.55 The DISPLAY command 43

4.56 The EXIT command 43

4.58 The SPOOL Command 44

4.58 The TTY Command 44

Appendix 1 FORMAL DESCRIPTION OF FOL 45

Appendix 2 THE SYNTAX OF THE MACHINE IMPLEMENTATION OF FOL 47

Appendix 3 AXIOMS FOR ZERMELO FRAENKEL SET THEORY 52

Appendix 4 AXIOMS FOR GCtDEL-BERNAYS-VON NEUMANN SET THEORY 53

Appendix 5 INTUITIONISTIC MODAL LOGICS 54

BIBLIOGRAPHY 56

^r»m

FOL Manual Pagel

Stction 0 THE RATIONALE FOR A FIRST-ORDER PROOF CHECKER

The rrndrr rcody to plungf right into making FOI. proof» may »kip to »rction I.

The idea of doing matliematical rrasoning mechanically goes back to Leibniz, but it was not
until the did of the last century that Frcge and Peano developed the first completely formal
systems adequate for expressing some kinds of reasoning. Much of the work of Whitehcad and
Russell was an attempt at demonstrating that large parts of mathematics could actually be
expressed within such systems. After these initial successes, however, the interest of logicians
changed from proving theorems within mathematical systems to proving meta-theorems about
such systems.

Even before Coedel's work, it was intuitively clear that checking proofs was different from
finding them. It is an essential part of Ibt idea of formal system that proofs can be checked
mechanically, whereas/mrfin^ proofs mechanically was always regarded as a research problem.
This distinction was clarified by the work of Coedel, Tarskl, Turing and Church which showed
that algorithms for finding proofs car. work infallibly only in limited domains and that some
mathematical ideas cannot be completely characterized by axiomatic systems.

The advent of romputers and the beginning of the study of artificial intelligence gave rise to
attempts to explore experimi-Mally what can be proved by machine. There has been steady
progress In this endeavour, bu< twenty years work leaves us a long way from being able to prove
important mathematical theorems.

Knowing that mechanical theorem proving has a long way to go justifies a renewed interest in
the more straight-forward task of proof-checking by computer. Moreover, while it is not as
interesting to check proofs by computer as to make computers prove the theorems, proof-
checking has obvious potential applications. The most important uf these is proving that
computer programs meet their specifications since the reasoning involved is lengthy although
usually straightforward ■ or so Ou intuition tells us. Since a computer program is a
mathematical object whose properties ail determined entirely by its symbolic form, it is a
mathematical disgrace to have to debug ihein CM« by case rather than proving them correct in
general. Since the programs are lung, the proofs of correctness will be long, and since
programmers sometimes think wishfully, it is obviously desirable that the proofs be checked by
computer.

It is also interesting to see if we can check the proofs of interesting mathematical theorems even
though the problem is of less practical urgency, since the human refereeing process works quite
well.

At first sight, computer proof checking seems almost trivial. We know that almost all practical
mathematical reasoning can be done in axiomatic set theory which in turn is expressed in first
order predicate calculus. Therefore, it would seem that all we need do is to make a proof checker
for predicate calculus, choose either the Zermelo-Fraenkel or the Coedel-Bernays-von Neumann
axioms for set theory and write and check our proofs. This is one of the things the FOL project

_« -^

FOL Manual Page 2

El
;

is doing, but in order that it» formal proofs should not be substantially longer than conventional
mathematical proofs, it is necessary to reformulate the usual logical systems. This can be
thought of as an effort to produce a formal system in which the rules of inference, as well as
the expressive power of the language, is moie closely correlated with actual mathematical
practice. The use of a computer allows for the introduction of complicated rules of inference
whose metamathematics is not simple. FOL provides for the following:

(1) Its notion of a first-order language includes function symbols, equality and other usual
mathematical notation, such as infix operators, n-tuple notation;
(2) the user can declare sorts and declare variables to range over given sorts. This greatly reduces
the length of axioms and theorems and corresponds to the fact that in an informal proof a
context is established, and the reader knows that a certain part of the proof is carried out within

the context;
(3) the decision procedures for certain simple domains are built into the system. This allows
some proofs to be much shorter than usual mathematical proofs, because the computer can go
through some quite complex chains of reasoning by itself. At present, propositional deduction
and a fragment of the theory of equality have been implemented. The Boolean algebra of sets
and elementary commutative algebra are planned:
(4) some facilities for introducing definitions have been implemented;
(5) a facility is provided for defining the interpretations of constants and predicate/function
symbols, a-.d for computing within a .nodel of the language. This means, for example, that
algebraic and LISP functions can be calculated directly, rather than being synthetically derived;
(6) some primitive facilities are available for metamathematica! reasoning;
(7) rules of infere ice for some interesting modal logics are provided.

The domains which are being explored by means of FOL proofs include:

(I) CLASSICAL MATHKMATICS. This is the single most striking success in our ability to
represent reasoning in terms of formal derivations. How close are these derivations to a
mathematician's Informal proof? Do they constitute a faithful representation of his reasoning?
How are the Inference rules of our logic related to the actual rules of evidence he uses when
convincing hlmseit of some truth? The answers to these questions are important in determining
whether we can make computer-checkable proofs that are not enormously longer than the proofs
in mathematical journals. Experiment with the use of FOL in classical mathematics will help
answer them. Theoretical studies of the intensional properties of proofs such as those of Kreisel
(1971a.197lbl are also relevant. Moreover, it turns out that a large part of many mathematical
proofs In the literature are really at the metamathematical level, i.e. they are reasoning about the
reasoning in the axiomatic system. Thus it can happen that a simple theorem prover or proof-
checker is not even capable of expressing the theorems of mathematicians, let alone proving

them;

(ii) MATHKMATICAI. THKORY OF COMPITATION. (McCarthy 1963, Floyd 1967, Manna
1974)and others have shown how first-order theories can be used in proving properties of
programs. Making this into a tool for verifying programs before they are widely distiibuted is
one of the major goals of the FOL project. This will require further research in formalizing the
properties of programs, the ability provided by the attachment feature of FOL to establish

FOl Manual Page 3

decidable properties of parts of the program by direct cakalation rather than step-by-step
inference, and a great deal of experiment aimed at making the proofs correspond to the
programmer's informal reasoning tha» his prognm does what it should;

(iii) RKPRKSKVI'ATKA' THKORY. Common sense reasoning is being represented in FOL in
the style of (McCarthy and Hayes 1969). As in proving programs correct, purely inferential
reasoning must be supplemented by assertions directly computed from the data base
representing the environment: again the FOL attachment feature is the key device used. Even
more experiment will be required before the forr ■'. proofs correspond to informal reascning
than in the case of mathematics, because this area has not been well explored (perhaps only by
McCarthy, Hayes r74, and Sandewall 1970). Particular problems are the axiomatization of time,
simultaneity, causality, knowledge, and the geometric reasoning involved in perception,
Me'amathematics also comes in, particularly when it is necessary to reason about knowledge and
belief. We hope that axiomatizing the metamathematics of FOL, i.e. the structure and truth
conditions of FOL sentences together with a rtfUction p.incipU. suitably restricted to avoid
paradoxes, will enable us to express common sense reasoning about knowledge, belief, truth and

falsehood.

FOL is committed to a system of natural deduction.
explained by Prawitz himself (Prawitz.l9C5):

The use of the word 'naUiral' ir best

'Synirm* of nnlurnl drdnrlinn, inrriiird hy Jntknurki nnd hy Criusnn in
ihr rnrly JfW«. rnntlilulr n form for thr drvrlopmrnl of logic ihm i*
nnlurnl in ninny m/irrt». In ihr firm plnrr, ihrrr i% n ümilnrily hrlurrn
nnlnrnl drdurlion nnd inlnilivr, informnl rratoning. Thr infrrrnrr rulrt of
ihr ItltfMM of nnlnrnl drdurlion rnrmpond rlntrly to prorräitrr* rnmmon
in inlnilivr rrruoning, nnd uhrn informnl proof» -- nurh n» 0'•«, rnrounirrrd
in tnnihrmnlir* for rxnmplr — arr formnlizrd irilhin ihrtr tyMPm», ihr
mnin ururiurr of ihr informnl proof» ran oflrn hr prrsrrvrd. Thi» in il%rlf
givr» ihr »yMrm% of nnlurnl drdurlion nn inirrrn nt an rvplirniion of ihr
informnl ronrrpi of logiral drdurlion.

Crnlzrn't rnrinnl of nnlurnl drdurlion i« imli/ro/ nho in « drrprr »rntr.
Hi» infrrrnrr rulrt »how n noirironhy *y*irmnlitnlinn, which, among olhrr
ihing», it rlotrly rrlnlrd lo ihr inlrrprrinlion of thr logirnl *ign».
tu'lhrrmorr, a» uill hr thoun in ihi» tludy, hi» rulr» allow ihr drdurlion lo
prorrrd in a rrrlnin dirrrl fn»hion, nffording nn inlrrr»ling normnl form
for drdurlionk. Thr rrmll lhal rvry nnlurnl drdurlion ran hr iran»forinrd
inio ihi» normal form i» rquivalrnl lo whnl i» known a» Hauptsatz or ihr
normal form Ihforrm, a l>n»ir rr»uli in proof throry, whirh wa» f»iahli»hrd hy
Crnlzrn for thr rnlruli of »rqurnt». Thr proof of thi» mull for »y»lrm» of
nnlurnl drdurlion i» in mnny wny» timplrr nnd more illuminnting.

In ihi» mnnua , mo»t of thr mrtninnihrmnlirnl notion» di»ru>»rd will hr rrfrrrrd lo hy word- in thr
following font r.g. SYNTYPE, INDVAR, WFK. Thr»r notion» will play a grralrr rolr in lalrr vrr»ion» of
FOL

I

I

FOL Manual page |

Section I THE NOTION OF AN FOL LANGUAGE

In FOL the user specifies a first-order language by making a set of DECLARATIONS (see Section
4.3), The proof-checking system then generates a proof checker and a collection of rules specific
to that system.

An FOl. ttnglMg* is determined by specifying a way of building up expressions, usually called
well formed formulas or WFFs. from collections of primitive symbols. In FOL these classes of
symbols are called SYNTYPEs. They are:

1. logical constants:

*) sentential constants • SENTCONSTs: FALSE. TRUE
b) sentential connectives • SENTCONNs: -,A,V,3,«

c) quantifiers - QUANT: V. 3

2. auxiliary symbols: - AUXSYM: "("and")"

3. sets of variable symbols:

a) individual variables • INDVARs.
b) individal parameters • INDPARs.

4. a set of n-place predicate parameters • PREDPARs.

These symbols are used to form those sentences common to all FOL languages. Sometimes a
language L may also contain symbols which are intended to have interpretations which are
fixed relative to the domain of the interpretation. Examples are: V in set theory "«" in first
order logic with equality. "0" and "Sue" in arithmetic. These are represented by

5. sets of constant symbols:

a) individual constants • INDCONSTs.
b) n-placc operation symbols • OPCONSTs.
c) n-place predicate constants • PREDCONSTs.

In addition one can

6. restrict the range of a variable symbol to some PREDCONST by declaring it to be a SORT.

7. designate a partial order to hold among some of those PREDCONSTs which have been declared
to be SORTs;

TERM. AWFFs (atomic well formed formulas), and WFFs (well formed formulas) are defined in the
usual way.

I

1

1

^■■^

FOL Manual Page 5

1

A formal description of these laiignages and of the notion of SORT is given in appendix I. The
entire extended syntax of FOL is described in appendix 2.

A first-order THEORY is defined by a (possibly empty) set of sentences of L. called AXiOMs. It is
the creation of such theories and the checking of valid deductions in them that is the main
purpose of the computer pr^ram FOL.

-.

J

1

FOL Manual Page 6

Section 2 THE NOTION OF AN FOL DEDUCTION

A derivation (the following description of which is taken almost verbatim »rom Prawiti: l%5)
begins by inferring a conscqurncf from some ASSUMPTIONS or AXIOMs by mean« of one of the
RULEs listed below. We indicate this by writing the formulas assumed on a horizontal line and
the formula inferred immediately below this liiu. On the computer tlis can be repeated using
pi"vious consequences as new hypothesis. This generates a tree, which we call a DERIVATION.
Thus If we wish to derive A3(BAC) from (AsBWAaC) we write:

(i be)A(R>CI

A

(bBMifbO

1 HbV itaCI

1 c

(B-C)

At each step so far, the configuration is a DERIVATION of the undermost formula from the set of
formulas that appear as ASSUMPTIONS. The assumptions are the uppermost formjla occrrrences.
and we say that the undermosl formula depends on these ASSUMPTIONS. Thus, the example above
is a deduction of BAC from the set of assumptions ((AaBWAsCU}. and in this deduction. B/\C
is said to depend on the top occurrences of these formulas.

As the result of some inferences, however, the formula inferred becomes independent of some or
all assumptions, and we then say that we discharge the assumptions in question. There are four
ways to discharge assumptions, namely:

(1) Given a deduction of B from {A}Ur. we may infer AsB and discharge the assumptions
of the form A;

'

(2) Given a deduction of FALSE from {'AluF. we may infer A and discharge the
assumptions of the form -<A;

(S) Given three deductions, one of C from {AjuFi. one of C from {BiuF; and one of AvB,
we may infer C and discharge the assumptions of the form A and B that occur in the
first and second deductions respectively, i.e. below the end-formulas of the three
deductions, we may write C and then obtain a new deduction of C independent of the
mentioned assumptions;

(4) Given a deduction of B from {A[x«-a)}uF and a deduction of 3x.A. we may infer B and
discharge assumptions of the form A[x«-a). provided that a does «ot occur in 3x.A. m
B. or in any assumption - other than those of the form A[x*-a] • on which B depends
in the given deduction.

To continue the deduction above, we may write A3(BAC) below BAC and obtain a deduction of
A »(BAC) from {(AsBWAsC)).

•

\

FOL Manual
Page?

Section 3 THE RULES OF INFERENCE

I
I

1

The Inference rules consist of an introduction (I) and an elimination (E) rule for each loeical
constant. The letters within parentheses indicate that the huerence rule discharees assuniDtlons
as explained above. r "

Ul A B AE! fi-B •4
R*B A B

vl) R B

O-B RvB

vt) AvB
(A) (Bl

C C

c

>I)
m
B

M
iE) 1 AJB

1

»1) A »E) Vx.A

Vx.RI«»] ll»tl

31) Al»ll

3«.A

3E) 3».A

IB(..«))

1

1

-I)
(A)

FALSE

4

O FALSE

A

T', -A A

FALSE

FE» FALSE

A

• I) A^B BsA ■ E) AiB

A3B

AIB

AiB B5fi

Restriction on the Virule. a must not occur in any assumprion on which A depenH,.

Restriction on the 3E-Rule. a must not occu. in 3x.A. ir. B. or in any assumption on which Mie
upper occurrence of B depends other than AIx«-aJ.

FOL Manual Page 8

1

I
I
I

Stction 3.1 An FOL deduction using tht computer

Wr show here the computer interaction necessary to check the derivation given in Section 2,

In this and all succeeding sections examples of interactions with the computer will appear in small
type Those lines which are typed by the uer will be preceeded by five stars "•»•»»". The other lines
are those typed by the computer

To derive A^IBAC) from (AsBWAsC), we proceed as follows.

****«0ECLARE SENTCONST fl.B.Ci

• •♦».RSSUrtC (RieiAdbC))

1 (R>B)A(R>C) (1)

**M*«E ttl|

2 (R}B) 11*

i....B35Mfl[M,

3 fl (3)

«****}£ 2,3|

* a (13)

••»•♦■E l,7t

5 (R}C) (II

•«•«•sC 3,S|

6 C (1 31

*«M*A1 4AS|

7 B'C (1 3)

**t*t3l 397|

8 R3(BAC) (1)

Each LINE typed by the computer contains: 1) a LINLNLM which labels that LINE; 2) the WFF
representing the result of applying the RULE typed by the user on the iine above; 3) a list of
numbers representing those LINEs of the proof on which the WFF depends. Consider the LINE
begining with 7 in the above example. 7 is its LINENUM. BAC is the WFF on this LINE, and the
derivation of BAC on this LINE depends on the assumptions on LINEs I and 3. This LINE was
generated by the user specifying as a RULE AI (AND introduction) using lines 4 and 5. This
information is typed by the user and in the example appears directly above LINE 7 of the proof.

*mm

1

FOL Manual Page 9

There are two other things to nntice about this example. The first thing typed by the user was
a declaration sMting that A.B and C are SENTCONSTs. Making declarations is essential. FaJure
to declare an identifier is the most common reason for a syntax error Second is that v. nen si
is applied to LINEs 3 and 7, LINE 3 has been removed from the list of dependencies of the new LINE.
This corresponds to the description of this rule given on each of the previous two jages. The
exact format of the commands a user must type to the computer is explained in sercion 4.

I

I

ü

FOL Manual Page 10

Section 3.2 Implementation ■ mer oriented featuia of FOL

There are several differences bet wren the machine impieniention of FOL and the description
given above and in Appendix I. These differences are .isually for the purpose of making life
easier for the user. The description in the Appii'H';, presents a clean version of the logic su that
the metamathematics can be discussed in a straight-forward way. The major differences are
described briefly below; more detailed descriptions occur In the appropriate sections of the
sequel.

Section 3.21 Individual iymbols

In Prawitz's logic, indivHual variables (INDVARs) may only appear bound, and individual
paramerers only free. In FOL, this rrstriction is relaxed, and INDVARs may appe.-u frc? ?.s well as
bound in well-formed formuhs. INOPARs, however, must always appear free. Additionally,
natural numbers are automatically declared to be INOCONSTs of SORT NATNUM.

Section 3 22 Prefix and Infix notation

FOL allows a user to specify that binary predicate and operation symbols are to be used as
infixes. The declaration of a unary application symbol n be prefix makes the parentheses
around its argument optic <al. The number of argument* of an application term is called its
ARITY. Section 4.1 describes hi>w to make such declarations.

Section 3.2) Extended notion of TERMi

In addition to ordinary application terms, FOL accepts TERMs representing finite sets,
comprehension terms, n-tuples and LISP s-expressions. A detailed description of the s ntax of
these terms is to be found in Appendix 2.

Section 3 24 The Equality of WFFs

The description of subsitutinn |i«ni in Section 4.35 is consistent with FOL's notion of
equivalence of WFFi. The prnof-clirclcr always considers two WFFs to be equal if they can both
be changed into the same WFF by making allowable changes of bound variables. Thus, for
example, the TAUT rule will accept Vx.P(x):>Vy.P(y) as a tautology.

Section 3 25 VLi and suhparts of WFFs and TERMs

FOL as implemented offers very powerful and convenient techniques for referring to objects in
a proof: essentially, any well-formrd expression has a name, and can be manipulated as a single
entity. A VL is a name of a part of a derivation. There are several kinds of VLs: for example, a

^^^^■

FOL Manual Page II

label represents a llne-nun.ber. the WFF on that line, and a list f the dependencies of that line in
the derivation.

The syntax of VLs is very extensive anJ a review of it will be left to Appendix 2.

Stction 3.26 Axiomi and Assumptions

FOL allows the specification of certain WFFs as AXIOMS. The difference between these and
ASSUMPTIONS is that the former are not mentioned explicitly as dependencies of any Hues of the
derivation. Thus every proof checked by FOL tacitly depends on a set of AXIOMs.

SfCffM 3.27 FOL dfnvalicns

As opposed to a tree, a dcdiictinn in FOL consists of a collection of AXIOMs and a linear sequence
of lines. ea."h line representing cither an ASSUMPTION o, a DEDUCTION from the previous lines
(and axioins).

Secfion ?25 SORTs

The addition of SOPTs. and specification of a partial order over them, constitutes a major
extension of FOL from a computational point of view. Their meaning and use is discussed in
the sections on declarations and the quantifier rules.

FOL Manual Page 12

Seclion 4 USING THE PROOF CHECKER

FOL is invoked at the Staufn-tl AI Lab by typing R FOL to the monitor. A backup file is
automatically opened onto which input is saved; the name of this file may be altered by means
of the BACKUP command irulr mjia). To save an entire core Image type the command 'EXIT;'
and SAVE 'Jiltnnmn', to restart type RU <fi!tnamt> and you will be where you left off.

The command^ fall natinally linn several classes:

1. Commands for drfinini,' the first-order language under consideration! thsi is to say.
commands for making tlidniülions;

2. Commands for drfinini,' '7\ioms;

3. Commands for making assumpfions and applying the rules of inference to generate
new steps in a drrivatmn;

4. Administrative commands, which do not alter the state of the derivations, but enable
various bonk-kerping functions to be carried out.

In thi« ni.iini.il ihr lynl.n of K)l. will i>r .IrtcriM usm^ a moiiifinf form of ihr MI,ISP2 notion of pallrrn.
Thrsr form ihr li.mr ronMnirl* of ihr KOI. par«rr.

1. Mrnlifirrs wlnrli .ipprar in palUrns aro to br takrn lilrrally.

2. Pallrrrn for s>nl,ilir lypr* arc «urroumlrd by anßlr brarkrls, Tbun <wff> la a WFF.
X Pallcrrn for r« prlilion« art ilrcifjnalril by:

RKI'n['p.illrrn)] mr.ins n or morr rrpralr.l PATTERN«.

If a RKI'n JMM IHO ,irj.MimrnU ihm ihr srrond arpiimmt it a pailrrn thai art» a« a «rparhlnr. So
that KI-.IMf 't»ff.', ,] nir.m« onr or morr Wfft »rprralrd liv romm.it

4. Allrrti.nivr« ,ipp..ir a« AI,T['I'A'ITKKM) | ... I <PATTKR\n)].

A! r[nff trrni^] mram mhrr a WFF or a TERM.
5. Optional linn/'«, appear at OI''r['p.iltrrn>]

Kl-.P^fwff .(ir !'[,]] mrans a minrnrr of two or morr WFFK oplionally mfmttti by romina«..
Tbr«r ronvmlion« arr rombmnl with tbr romparativrly Klamlanl Harkus Normal Form ilrsmiition.

1

1

FOL Manual page 13

5'Ction 4.1 SysUm Specijuation

The first step in specifying a first-order theory la the description of the language which is to be
used. This is done by defining the symbols of the language, using the declaration commands.
These commands specify which symbols are to be variables, constants and predicate or function
symbols

Stciion 411 Declarations

As we mentionril ibove. one of the first things that a user of FOL must do is to define the FOL
language to be considered. Every identifier in a proof must be declared to have a SYNTYPE.
Only nine of these types can be declared by the user. They are:
1. SYNTYPE 1

a) INDVAW Umliviilual vanabla)
h) IISPPAR (indiviilual parameters)
c) INDCONST (indivulual constants)
d) 5ENTPAR (sentential parameters)
e) SENTCONST (sentential constants)

2. SYNTYPE2

a) PREDPAR (predicate paramd.'* with one or more arguments)
b) PREDCONST (predicate constuits)
c) OPPAR (operation parameters or function parameters)
d) OPCONST (operation constants or function constant.:)

Declarations are fixed within a proof and once made they cannot be changed.

DECLARE ALU REPKoimplcleo nPTU) I REP1 [opplder N OPT (.)]] ,

There are two kinds of SYNTYPEs. those of symbols which fake areuments. SYNTYPE2s and those
which do not. SYNTYPE Is.

•iyntyp»l> ■• BLTt «indjyuo | <i(ntiyM> 1
•■iyn(yp»2> |a flLTt «prtdsyii» j <opiy«i> J

The idea of SORTs is to allow a user of FOL to restrict he ranges of funrfion to some
I predetermined set. This correspond to the usual practice of m: thematicia» s of saying let f be a

function which maps integers into integers. In FOL a SORT is just a PREDCONST of ARITY I i e
a property of individuals. The effect of this Informal restriction to Integers is achieved in FOL
by

I

I

I
I

•♦•♦♦DECLARE PREDCONST INTEGER li

>

^

FOL Manual Page M

follr*ed by

MMCSCCUM OPCONST *(lNTeCER,INTECEK)>INTECeR|

A PSEUOOSOPV is an identifier which has not yet teen declared but is assumed to be a PREDCONST
of ARITY I and is declared such because of the coniext in which it appears If INTEGER had
not been separately declared .i>,r, in Its appearance in the second comm.ind it would have been
considered to be a PSEUHOGORT and declared accordingly. There is one special PSLUDOGORT. i.e.
the PREDCONST UNIVERSAL. This represents the most general SORT and is the default option
whenever SORT specifications are optional. In declarations it can also be abbreviated by 'V".
The MOSTCENERAL command explained in the next section, can be used to (hange the name
of the MOSTGENERAL SORT.

<p«iudsiorl> ■■ RLTI <ld«nlllt«r> | *)

Simple declarations

«tlMpidao !• ««i^ntyp«!» <ldl lt(> 0PT(< <pi«gdaierl>]

Examples of simple declarations:

••«»•DECLRRE INOVRR | y ||

»««•»OECLRRE INOVRR «be« S«t, R I C (Cldti)

Application declarations

<*ppld«e> la <tijnlyp«2> <idllil> <*rfdje> OPTI I <bpd*e> 1 1
<«rqd«c> ■• RLT('«rqterl» | <n«tnua>)
<«rqtort> ■• RLTt I <torlr«p> RLTIaj«) <pi«udoterl> |

(<ierlr«p>) RLT(a|«) <pi«udetort> 1
<ioMr(p> la REPtt <pi*udoior(> , OPTlRLT(a|,)l)

<bpd«c> la RLTt <rbp> | <rbp> <lbp> | <lbp> <rbp> | INF | PRE I
<rbp> la R » <na(nua>
<lbp> i« L * <n*lnua> rlbp>

Examples of application declarations:

»»•»«DECLRRE OPCONST EXP(Int,In«)>lnt (L>SSI R>SM1 |

The meaning of this declaraion is that EXP is an OPCONST. it has two arguments (ARITY 2). both
of which are of SORT Int. It also has a value of SORT Int, and is to be used as in \nfi\ operator
with a right binding power of 800 and a left binding power of 850. This could also oe declared

»•»•»DECLRRE OPCONST EXPi InlalnNlnl (L»ISI R>MI1

■

I

I

FOL Manual page 15

Simpipr declarations can be made if you don't wish to specify so much information.

»•••»DFCLORt OPCONST EXPtlnttlnNlnl (INH ,

declares EXP the same as above out uses the default infix bindings R«-50C. l>550.

...» nfCLOAf OPCONST [XPdnl, Inl).|nl|

simply makes EXP an ordinary applicative function, so you must type EXP(a.b) rather than (a
EXP hi Further simplifiction can be made if less sort information is wanted

».♦«DECLRRf OPCONST t«P(lnl,|nl) |

makes the value of EXP iuve the SORT UNIVERSAL (the MOSTGENERAL SORT), and

»♦♦••OECLf't OPCONST tXP 2|

just says it has A^lTV 2. Of course

»•»««DECLRPe OPCONST EXP 2 I INF)

»».♦♦DECLRPf OPCONST EXP 2 ll»tS0 R-SOB) ,

have the obvious meaning. This section has illustrated most of common ways of making
declarations. There are some other examples scattered throughout this manual.

Section 4.12 SORT manipulation

There are several commands which affect the SORT structure:

Section 4 121 NOSORT (ttclaration

NÜSGRT ;

The NOSORT command turns off SORT checking. If any SORTs have already been declared, an
error message will be given.

Section 4122 MOSTCENER 4L, NUMSORT. SETSORT. SEXPRSORT

MObTGENERAL <sort> :
NUMSORT <sort> ;
SETSORT <sort> ;
SEXPRSORT <8ort> j

FOL Mr.mal Page 16

In FOL cff iin TERWs conif with predeclared SCRTs; inimerais become MOCONSTi of SORT
NATNUM, coinpreheiision tenni, set terms and n-tuple terms have SORT SET. quote-terms have
SORT SEXPR. and the default MOSTGENERAL SORT is the Pr.EDCONST UNIVERSAL. The effect of
the above comiiiands is to replace these default SORTs with those specified by the user. For
example. In the case of Coedel-Bernays-von Neumann set theory, the MOSTGENERAL SORT is called
CLASS.

Section 4 12) MOREGENERAL dtdaration

MOREGENERAL <9ort> i [<9ortJist> } :

For example.

• ««»«nORECCNEPRL cHitipicc« ' luhiUpttet.bKctpKctl |

Is equivalent to the axioms

Vx. (whitrpiece(x) a chesspiece(x))
Vx (blackpiece(x) 3 chesspiece{x))

where chesspiece. whitepiece and blackpiece are understood to have been previously declared
PREOCONSTs. Although these axioms do not appear explicitly, the quantifier rules behave as if
they did (this is explained in detail in section 4.327). This establishes a partial nrder among the
SORTs. Another typical example would be the declaration of classes to be MOREGENERAL than sets.

1*0*1 4 124 EXTENSION declarationt

EXTENSION <predcon9t> <ext_set> ;

<aKt.t*t> i« <|>rliMat> REPBI PLT|U|n|/l <prlM>l>)
«priim.i> ■• RLTI <torl> | I <lndcentt I ltt> I 1

where each of the SORTs in the <primext> already ha,* an EXTENSION defined. For example.

"

FOL Manual Page 17

•»»•»OECLRRf INOCONST |r < griMCS, UK , UKINCS)

••«»»OECLRRE PREOCONST K1NCS ||

•MMUimM BriNCS lid)

E>tentien e) jriNC^ it i|n

»»«««EXTENSION U)INCS lUH,

E~t«nilon ol UrlNCS li W)

• r«««EltTENSION » 1NCS UttNCS U BUNGS;

E>t«nt>on ol KINGS II (UK B»)

The Initial declaration declares BK to be of SORT BKIISIC. and WK to be of SORT WRING The
command 'EXTENSION BKINGS IBK):' says that BK is the only object which satisfies the
predicate BKINGS: similarly, the command EXTENSION KINGS BKINGS U WRINGS' says
that the only objects which satisfy the predicate KINGS are those in the union of Lie extensions
of BKINGS and WRINGS, i e. BR and WR. This is equivalent to the introduction of the axioms

Vx.(BRINGS(x)»(x.BR))
Vx.(WRINGS(x)»{x.WR))
Vx. (RINGS(x) • ((x-BR v x-WR) A ^(BR-WR)))

By Itself, this command has no effect, but the semantic simplifkatioo mechanism (see Section
4.4) uses these axioms.

Section 4.13 Prtdeclartd Syitemj

THEORY <sysname> ;

The THEORY command may be used to call up several predeclared systems. If no THEORY
command is given, the basic FOL system is generated, i.e. the full natural deduction system for
classical logic with the extended inference rules. The options which are available are

ttpnaM» t> RiT (PRBuiTZ | :r | CBN | S« | SS | rer | m)

where PRAWITZ is the system described by (Prawitz I9G5). i.e. without SORTs or any of the
extended Inference rules such as TAUT ZF is Zermelo-Fraenkel set theory (as defined in
Appendix 3); GBN is Goedef-Bernays-von Neumann set theory (as defined in Appendix 4): S4 and
S5 are Lewis's classical systems of possibility and necessity (as defined in Appendix 5): and RBR
and KBB are Hintikkas systems frr Knowledge and Belief respectively (see Appendix 5)

Page 18
rOL Manual

Section 4.2 Axioms

Axioms are only briefly mentioned in the description of FOL In the machine implemented
ver Z tl v play the same role as assumptions, but they do not appear In the dependency hst of
Iny step of a d ductinn. MT are they printed when yon show the prou . Thus der.va.ons are
Ilways relative to >;mentioned theory. When a theorem crrat.ng mechan.sm li ava.lable tins

will change. The syntax for defining an ?xioin is:

AXIOM «.axiom) ;

where

<*xlon> ;• REfll '«»n«»» . «««'li.) | 1
(«till«» i. BLTI .MMIItl> I REPll<*»toiii>) 1

This allows for a bhek structured way of naming sets of axioms, so they can be referred to
Ji I er by some particular name, or as part of a group. Each WFF in WFFLIST li g.ven a name by
rn This name Is cenerated by taking the AXNAM and concatenating an n.teger to it. For
ex^np^ f ' A^M is CROUP then they will be given the names CROUPI. CROUP* .
The e can then be used to refer to each axiom. An AXNAM is like a L1NENUM and may be used in
Iny context that requires a LINENUM. If WFFLIST only contains one WFF that ax.om is called

AXNAM.

NOTK: Th« lyntot tail» for multiple umieolont!

Examples:Bxion R. B. VX..X,X,
VY.-(X<Y»YiX)t |

Ci »U.UcUi l

This creates two axioms A and C. Axiom A contains two subaxioms BhVX.^X and
B*.VY7X(YAY<X) If you prefer to think of collections of axioms as theor.ev then the syntax
allows arbitrary nesting of theories, each followed by a semicolon. At the moment m. cl.eck.ng
Js Sone for the^onsistency of axiom names. You lose if you create confl.ct.ng ones. Ax.oms
cannot be got rid of. so be careful. Numbers are nor legitimate AXNAMs,

i

I

I

I

i

FOL Manual Page 19

Using axioms as axiom uheinas.

There are no sprrial nilct for axiom Schemas, merely an xtension of the use of the rules already
given. Namely, an axiom schema is simply an axiom with a predicate parameter (PRFDPAR) in it.

I An axiom can be used anywhric I step can by tsing an AXPEF. This is nf the form
AXNAM[PP|«-XX,,...,PPn» XXn] and its syntax is described in the section on VI'. An AXREF can

appear anywhere I VL can in the form AXNAw;oPrXX,,..,PPn-XXn] the PP, are predicate

S parameters (PP[r'Ar's) appearing in the axiom, and the XX, are propnsitional functinns assigned

to these parameters. The assignments are done successively rather than simultaneously.

I An XX is a WFF preceded by \, any number of INDVARs and a ",' (period). Thus eg. X x y i.<wff>.

The ARITY, p, of the PRFDPAR mus» be less than or equal lo the number of variables follnwing the
\. The indicated X-convrrsion on the first p variables is done automatically. The error message

("NOT ENOUGH LAMBDA VARIABLES" means p is too large. The remaining variables are
treated as parameters of the entire axiom, and the instance of the axiom returned is the
universal closure of the axiom with respect to these parameters.

'i lie :• (SUBPART) mechanism (see Appendix 2) can be used to take pieces out of the resulting
formula in the usual way.

Example of using axiom Schemas:

»tJMOCCLORE PfWBR F li

•«•»•iNOVRft X;

»«♦«iPXIOH INDUCTION; F (») AV«. (F (Ojf (««Darx,? (X) | j

INDUCTIONI FtOI-VX.(F(X)}F(X*l)3¥X.F(X)

«ttttDECLRRE INOVPR « b,

»••••M INDUCT ION (F..xb «.««b.b*«))

1 ¥«.((««01 •((!•«)'VX.((t*XI.(X««)}(««(X«l)).((X*n««))7VX. (««XI. (X4»))

MM«*] 'NHUCT IONir^b.y«,«.b.b.Sl ;

2 V«. (a*eia(0«a)*VX. (V«. («*X).(X*a)3V«. (a*(X«l)l«((X«l)*«))3VX ». (MIUII««)

»MM«| INDUCTION(F>Xb X.X*b>b«Xll

3 vx. (x«eu(e<x)AVxi. ((x*xii.(xi4X)}(x«(xi«i)).((xi«i)«x))3VX2(x*x;).(X2*x))

m

m^m

FOL Manual Page 20

Section 4 3 Tht generation of new deduction steps

Noir: whrn ihc rnrinhlm /),// nnd C nrc mentioned in l/ii« «rrlion, they refer lo the deirriptinn nf the
hanir Prnwitz logic in tretinn 3.

I
I
I

Section 4)1 Assumptions

ASSUME <ufflist> ;

The ASSUME roinmaitd makes an assumption on a new line of the deduction for each WFF in
WFFLIST. Note that the drpendcncies of a line ?ippear in parentheses at the end of a line, and
that assumptions depend upon themselves

E'trnpltii

.♦♦..pssune ¥«.«(>,

1 VK.XX (II

««•ttRSSUIE V^.^iVt ''Vy V<UI

2 Vy.^V (2)

3 -Vy.ycy (3)

Section 4)2 Introduction and Elimination rules

The general form of a RULENAWE is

«rul»n»m«> i. rloqcontl> RLTt I | C 1

where I stands for introduction and E for elimination, The format of a command is:

<rult_o).tnt»r»nco> •■ m <rul«n«nt> <Untnumlnfo |

The LINENUMINFO is different for each rule. This Is explained below. We will use • to stand for
an arüitrary VL (sec section 3.25). In the description of some of the rules it is necessary to
distinguish among several VL$. In this case we write •l.itf We will write

AI »A« J

rather than

AI <vl> A <vl> I

•

^

'

FOL Manual Page 21

Alternative alphabetic PULENAMEs will be given in parentheses after the standard ones. These
usually correspond to other frequently used names for these rules. Thus MP (modus ponens) or
UC (universal generalization) can be used, instead of =1 or VI.

All commas in these rules are optional. This will not be mentioned explicitly in the following
»ections. Thus a "." appearing in a rule specification it is to be thought of as OPT[,].

:

i

]

I
I
I
I

FOL Manual Page 22

Section 4 321 AND (*) rules

Introduction rule

(A!) («A«)A«

The LINEN'JMINFO for AI is any paremliesized conjunctive expression in whit!1 all con jiincts are
VLs. If no parentiu-scs appear (even in a subexpression) association is to the right, thus
■A(«A»A»)A» means •A((«A(«A«))At). AND is always a binary connective. The "Sc" and M," are
alternatives to the "A" symbol. The dependencies of a line are those UNENUMs mentioned.

Elimination rule

,vE(AE) • 0PT[ALT[.I:]] ALT[1I2I <subpart>) ;

I picks out the first conjunct, 2 picks out the second conjunct and SUBPART picks the
appropriate subpart. For the definition of SUBPART see Appendix 2. The dependencies of the
result are the same as those of ■ The first command in the example could have also been
written "AE 4 It" or "AE 4:1:" or "AE 4:al!".

»MM«! 4,1|

s (Vx,ci«tt(>)AV«.-.(«(nT))

6 V«.-U<nT)

*M**PE llflfMi

Th« Mln «ymbol ol Vk.Clatt(«) It not »n A

»M>«l 4if3|

In th* <iubp*rl> i#3 , 3 It <oo Itrqt

^^"I-

FOL Manual Page 23

I

Section 4J22 OR (v) rults

Introdiictinn mir

Vl(01) {•V<Mff>V<Mff>) S

OR's imy be |..irriiilir<.i7rd just like ANI)'s, but at least ont disjunrt nxnt be i VL Any VLs
given vill cause tbe ürpenüeiicirs nf ili.it line to be included in tliose of the conclusion. As with
AND, association is to the right and OR it binary.

Elimination rule

vE(0E/ ■ , «1 , «2 ;

■ is the VL on which ,i disjiinction A ii appears ■! and ».' are both VLs Mich that «1: ,iiul ■?: are
both equal lo the WFF C. The conrlusion of this rule is the WFF C. The (lepcnrlriu ii s nf the
conclusinn are thn<.e nf • along with those of »I which are not equal to A and Ikmr nf •> not
equal to D. Remeinbcr two WFFs are equal if they differ only by a change of bound variable. In
the example two different ennnnands are given. Note how the dependencies are treated in each
case.

to^BSSUflE i.v3i|

9 V». »(»v-yy.y< n (9)

MMtfll lvSl|tl 7lv3|

10 V«.»(»v-Vy,ij<(j (II

11 V4 , i^c y--Vij, M'y (31

»«••*vC 9,10,Hi

17 VK.xovVy.ijdj (91

*t*t*vC A,10,11:

13 V«.«(»V-VIJ.IJI 14 (31

»♦»»»vt 9,11,18,

14 Vx.iXKv.Vy.yiy (1 3 91

^ L

FOL Manual Page 24

1

Sedion 4 323 IMPLIFS (?) rula

Intrndnclinn rule

"

=1(DED) ALT[•»• I «Mff>3i 1 j

The diffctrnrr hclwrni «a« ami (wfftM is that in the former rase drprmlrm ir«. of il,e
con' hiMoii wltirh are equal lo Ihr hyporhesis are dclctnl. A comma is an .illrrnative In the "a"
symbol. In oiher styles of pmrNlini first order logic this rule is called the dcdurtirm theorem

15 V« . Wf »jV* . Mi X

»«•«ton luii

16 V«. «(»jV». at» (1)

•«•#• }I 2,\\

17 Vg y(y3*"..i.

Elimination rule

oEmP) ■ . •

The order in which the arguments are specified is irrelevant. This is the classical rule moJus
ponens. The depmdrm u-s of the cniulusion are the unimi of the dependencies of hnth VLs.

18 V'.x» ID

FOL Manual Page 25

;

Section 4 324 F4LSE {FAL%E))ulfi

Introdiiclimi mir

FI «1 . «2 :

If «I is of »hr fnrm A. thru «2 inuM be of the form 'A (or the mhrr way .iroimtj) Tlir
conclusion is just the WF F "FALSE" Its drpendencirs are the union of thosr of «I and ■2.

♦♦»♦»n i.3i

19 raist n 3/

Elimination riile

FE ALT(»1 I cuff» 1

• must be of the WFF "FALSE". A nrw line Is created with cither «I: or the WFF sprrifird by the
alternative. This rule says that anything follows from a contradiction. The doprndnirirs (there
had better be some) are just those of «.

I

TO -(.<nT) U 3)

'

•■^h^^^^

^^^

FOL Manual Pat;p 26

Section 4J2) NOT (-) futei

Inirotl'ictinn rtilr

-I (Nil • . ALT[•] I «uff>] ;

• must be tlir WF "IAI SE". The rnnrliision of the rule is the nrgatinu of ■!: or the WFF. The
dependeitries of the mnt limnn are those of • minus Ihr ones equal In »1: nr WfF

••»'♦-I 19,3;

n —Vy.y. y (1)

MJMOtO i5:ii

rr *«.«««5—•Vy.y«y

Eliiiiiitatinn rule

^E(NE1 AU («i i «Mff» i j

• iimst he the W'r "FALSE". «I or WFF must have the form -A. The rniulusinn is A The
depeudrnrirs »rr those ..f ■, minus .my rqual to -A. If this rule is nmittid (I>I >iiii|>lv not used)
and only the introdiM lion and rlimin.ilion rules are used the proof is intuitionisiu ly valid.

»MttRSMHI -3: |

:3 --Vy.ij. y mi

»•♦♦.•ri :3.3|

?! fPLSt 13 !i)

♦«♦ft-t 24,3;

♦»•♦«oto n^Si

26 --Vy.y<y5»y.yiy

"

FOL Manual Paqr 27

Section 4.326 E^'ll'ALENCE (•) rulti

Iwtrodllctiaii riilr

■KEI) «1 , C :

Either «I is of HIP form AaH nul •.' is of the form RsA or vice versa The rnndUMnn is AB.
The clepeixinuirs are the iiiiion nf the dependencies of »I and »2.

Eliminatinii rule

•E(EE) • . ALTl ALT[DI1] I ALT(cl2])

If • is of the form A'R t!<e!< the first alternative produces AsR. the seiond \\o\ The
dependencies are ihosr nf ■

I
i
I
I
I

1

FOL Manual

Section 4.327 QV ANT IF KATION rules

This Is an example of a proof using all the quanlif calimi rules.

M.^nECLBRE INDVHR , y, OfCLBHE IWPRfl A b, DfCLPRf PPfOPPR P J,

f^f-RSSUME V..31j.P(«,y)«yx y. (P(»,ij)5P(y,,)).

1 V..3y.P(.,y)AVw y. (P(K,y)3P(y,>,)) (1)

«<«»fE 1 1|

2 V«.3y.Pla,yl (1)

»♦»»»'£ 1 2|

3 VK y. (P(«,y)iP(y,i<)) (1)

♦»♦♦♦*E 2 «i

* lg.P(«,y) II)

«<^<VE 3 « b;

5 P(*,b)3P(b,«) (1)

V! : :3E » b,

6 PU.b) <6)

«««»»DE S,6;

7 P(b,«) (1 E)

<»«»«AI 6 7|

8 P(<,b)'P(b,«) (1 6)

< M^43I 8 b»yi

9 Sy.lPla.yj.PCy,«») (i)

-f»«»VI 9 «..;

10 V«.3y. (PU.yJAPCy.x)) (1)

«♦♦»til lilO)

11 (yx.3y.P(.,y)<V« y.(P(K,y)jP(y,,)n3V«.3y. (P(».y)AP(y1,))

Page ,>8

mmm

FOL Manual
Paijp 29

Section 4.3271 VNH'FRSALQVANTIFICATION{i)ruln

Introdiictionrii |p

»IIUGl • . BECI ncnALII,,n<).a,,l,i„<)„ar>| . , ,inWar> _ „p,, ,, |

Kfmrmhrr ilwr« i« n rrtirinion on ihr n/././irmion „f ihi, ml* ..„».,./ .1
HWI «or .„/..„r frrr in „ny of ,hr dnJLriZf , ' '* "" """'* V***W*4 mriohlr

In the rxamplp VI nrnirs on Imr n Th«» i< ...>■ ^

be generalized, as it is an INDPAR. chan^rd fn an x . a cannot

Elimination mir

VE(US) < tprm I i ot>

instantiated a hound var ah ePT;nc is,„Pad/d^ 2./^ ^ "" ^«^ '" he

created is decla.nl to he „ i^A^f ,1^ ^ToRT M"U"0" " mi,,,P Ti" ^«^

Line 4 and 5 of the example were created by this rule.

FOL Manual F'.TIT 10

Section 4 3277. EXISTrNTIAL QjlANTIFICATION (3) nüei

Intrndiictlon ruIc

31 (EG) • . NFPl (On (• inrni> -) <indvar> 0PT(<occli9t>),0PT(,]] ;

The list follnwini; • Irlh wliicli TERM* .irr to be {jrnrr.ili/cd If tlir nptinn.il drrm) is picsntt. it
is first rrplaml liy (imivar) at rach ncciirrcncf metltinncd in the 'ocrlistx Thr WFF nn ■ is tlirn
generaliznl and thr nrxl tiling in tlir list is consiilrml Nntirp that no use can br inailc of an
<occlist> if thrrc is no ifWM prrsrnt The niachinr will ignnre such a list in Uns ,asr. The
dependencies of the cniulnsinn are just those of •.

<occlist> := OCC <nr(lrrnalnuinlist>

The <ordernatnuinliM^ is ,i list of natuial nui.iuers in Incrraiing order

In the examplr CMMI nti.il intrndiK lion is done on line 0 of the proof Um K, t|ir ,nnst

interesting line nf Uns (\aniple Von will note that ihr (Irpenünu ies of thiv hue .ire noi .is
described above bnaii'.r nf the previous existential eli lation. This is expl.tinnl lielnw

««•««KCiMt rBtocoNST F 1|TPUT r(.).-r(.(,

27 n«)v-ri.)

■■<M 31 r7...'j ncc 2\

;8 3y. (F(,).,n1;())

."9 V«.3y. (F(»l,-f (yll

Eliminatinn rule

3E(ES) • . RFC) (All 1 <inflv.ir> I rindptr»].0PT(.]1 i

The implemrntation of this rule is the most radically diffrient from the foinnl «.i.itcnirnt given
above. This mlc < .nn piMid'. in infnrwal reasoning to ihr following I iml nf .in;nin<m Siipprnr
we have Miown ih.it «.omi thing exiMs with some parlnul.n piopriiy, c i; 1\ I'l.i.vi Ihrii wv s,iy
"call this thing b". Thi* is like laying ASSUME I'fa.li) Then we cm ir.iu.n ahmii I. Av s.mn .is
we have a senlcine. howevn. that no longer mentions b. it is a thcornn wlndi rfors not itrnrild on
what we called "y" bill only on the dependancies of the existential siatrim nt we Mailed with.
Thus we can eliminate l'(,i.b) irnm the assumptions of this theorem and lephue thnn with those
of the assuinptions of 3y l'{a,y)

FOL Manual
P.ii,'e 31

The machinr implrnirniatinn thus makrs thf correct ;mumpiion for you. rnnrml.rrs it and
automatically removes it at the first legitimate opportunity Several elhniiutmns „„ i,r donp „
once.

In the example an exiMrutial elimination was done creating step 6. This linr actually lias as its
REASON that it was AS51ACA Line 8 thus depends on it. When the existential general./ation
was done on the next line, b no longer appeared and so line 6 was removed from the
dependancies of line 9 A user should try to convince h mself that this is equivalent to the rule
stated at the beginning of this manual.

FOL Manual Pa?.? 32

Section 4.327) Quantifier rules with SORTs

The following table dnrribes the effect of the quantifier rules in the presence of SORT and
MOREGEMRAL declarations, such that p is of SORT P. q is of SORT Q^and r is of SORT R. and R is
MOREGrNERAL than Q.and Q, is MOREGENERAL than P

VE

*I

3E

31

Vq.R(q) Vq.R(q< yq.n(q)

R(p) R(q) Q(r)}R(r)

A(q) R(q) R(q)

Vp.P(p) Vq.R(q) •rror

3q.P(q) 3q.R(q) 3q.R(q)

• rror R(q) R(r)

P(q) R(q) R(q)

P(q)}3p.R(p) 3q.R(q) 3r.R(r)

As an example, it is possible that you might try to instantiate a variable to a term whose SORT is
MOREGENERAL than the quantified variable. In this case the result of the specialization is to
create an implication asserting that if the term were of the proper SORT then the specialization
holds. If the variable is MOREGENERAL than the term then the usual WFF is returned.

FC), Manual
Page 33

Section 4 31 T AI'T ,v\,l TAUTEO

TAUTOLOGY rule

TAUT <:wf f> , <vl I i5t> ;

This rule derides if the WFFs follows as a tautological ronsc« iiencc of the WFF« inrntioned in the
VLLIST (the notion of VLLIST is defined in Appendix 2). In this rase WFF is concluded and its
dependencies are the union of the dependencies of each WFF in the VLLIST. We think this
algnrithm is fairly efficient and thus should be used whenever possible,

TAUJE^riile

TAUTEQ, imphmeniv ;i drcision procedure for the theory of eriuality and n aiy predicates n 0
Its syntax is the sanu as the TAUT rule:

TAUTEQ <wff <vl I ist:

This rule decides if WFF follows from the WFFs mentioned in VLLIST in the al.ovr-inentinned
theory. Thus, anythiiiL' that can be proven by TAUT can also be proven by TAliTEQ but
TAUTEQ runs more slowly than the TAUT rule. "J

♦»»♦-OfCLPRE PRCOCONST P i 0 1,

»(»t^DCCLPPE OPCONST I 1,

te.tntCLRRf INOVRR « b|

»t«<«TRUTEQ *.h3(P(«)iP(b))|

I «•b}(P(«liP(h))

««•««TflUT «•b}(P(«liP(b))|

loucH lucr

• iniiKQ a.b3n«).nb)|

TPDCM LUC»

The formula >»li3(P{a) l'iht) cannot he proven propositionnlly: TAUT would simply rename (ab)
to a new PREOPAR with APITY 0. say PI. P(a) to P2. and P(b) to P3. and then try In prove
PI=(P2^P3). The fonmii.i (a.b)=f(a)=f(b) cannot be proven by TAUTEQ, since TAUTEQ does not
know about the argumci.ts of functions.

*mm

FOL Manual Page 34

I
I
I

Section 1 34 The UNIFY Command

UNIFY <wff> ■ ;

This command fries to establish wheiher the WFF is a consequence he VL are

This rule of Inference Is best described by first presenting some examples;

»••««RSSimE yx.ruii

1 »KP(«I

t»»t»UNirY nueu i|

7 P(H0))

'••; UNirr 3«.PI«) 1|

3 3».POO

In step 2. the UNIFY niKlianisin recnL;imed that P. applied to any TERM followed from VX.P(X)
More aggressively, on line 3, it recognised the that VX.P(X) implies that 3X.P(X). These are two
simple cases of the use of this coinni.-nd. A more complicated example is:

»ft':fiSSUn£ 3«.**. (P(X)v02(l(,Y)) ,

l 3K.vr. (Pm.Q.Mx.rn (j)

♦«»t^UNirv 3U.P(U)v3U.VZ.02(U,Z) l!

: 3u,P(u).3g.y:.o:(u,2) (j)

Notice that, in both of the examples above, the propositional structure of WFF was the same as
that of the VL. This rule is designed to handle exactly this case: namely, it is designed to handle
the quantifier manipulations involved in implications between WFFs with similar propositional
forms.

FOL Manual Page 3r.

I
I
I
I
I
I

Section 4 35 SUBSTITVTION rult

SUBST «1 OPT! OCC <or(lernatn'jml ist>]

If the major eonnrrtlvp in «I b ■ nr ■ tlifn (making .illnwanccs for hnnnd vari.ililr rbangcftl tlir
occurcncps of Ihr left Imnd sidr of »1 which appear in •'?. will he rrpl.ned hy the ritjht hand «.ide
of «1. If an ornirrriue litl appears only those listed will i^et substituted.

SUPSTR «1 IN 0PT1 OCC <orclernatnuml ist>)

does the samr as SUIl'iT hut suhstitnies the left hand side of «I for the liijht hand sulr of «I in
•2.

I

Ordinarily. f(\) tamirii he siibsiitnlnl for y in Vx.F(\.y) as the \ in fix) would then licmmr
bound, i e. f(x) is not jur]n v in Vx.F(x.y). FOL autoinatirally handles this (oufliit o| bound
variables in a snbstiiuiion; those onurences of a bound varinl)le whirh will ransr a «onf litt are
changed. Thus, if on,' tiies to siibsiitule f(x) for Vx.F(x,y) the generatrrl MihtlitNiinii instance
will be Vxl.F(xl,(f(x)) Here the newly created variable will have the MM« r>oPT as x if SOPT» are
being used.

The 'new' variable is ueaied by considering the 'old' variable to have two parts: a prefix which is
the identifier up to and including its last alphanumeric character, and an index, either empty or
a positive integer. The new variable which is generated will have the same prefix, and an
incremented index. For this purpose, an empty index is considered to be '0',

X ^ .

FOL Manual
Page 36

Section 4 4 Scnnntii Atduhmtnt and Smplijuation

FOL is fonrrrnrH willi rtarMRg llinurms in a first-order langMasr. whi.h thr IIMT ..urifirs by
making dr« laralions This languagr is thrn a strnrtiirr L-<P.F.C>. wl.cir P is a sr, „f ,,rfHk«te
symbols. F a set of nnutinn syinhnls. and C a sc» of constant symhols. A mo,l,l of 1 || a
structure Mxll.P.F'.f:*). will, D a no.i empty set. ?' a set of n-ary predicates o,, D. F' a set of

functions mappin,,' I)n into D. and C a subset of D, An inferprrtathn of I in M is ,, ,„*., vlUkU

specifies which synihols in P correspond to which predicates in M. simil.nly for F and C The
implementation of srin.intic atl.nhinrnt has two aspects:

(a) the attachment inech.niisni which allows the user to specify the objects |n ilir „„irir| wUWU

correspond ,o symbnls m the l.iiii,'ii.ii;e and vice versa, and

(b) the Mml'HJie) whiih tries to mwiptttf, in the model, the values of FOI rvprcssions j,. \\ (ISPS
the notion of uiinjinhtiti.

For example, we mi^ht associate with function symbols the correspondim- I ISP fun« lions The
OPCONST V michi he snuantically att.uhed to the I.ISP function, p| HS.'and the IfJlK i iti'Js T
and "?: (i.e. the numnals) attached to the mmhers I and ',». so that an evaluation of l.»' |H ,|,0

model would give the »umh-r 3 as an answer • the liwpUffcr would then rrfNrn the INOCON^T 'S'.

Note carefully that the map from | into M and that from M had to | may hr h,vtl*l i e there
may be symbols in | which have no defined interpretation in M and the process of
simplification with icspn, to M may .;enerate objects in M which have no (anomcal symbol |n

L. The FOI. smiphfir, simpiifir« srntences to the maximal possihle eMrm „sin,- the rrsulls of
computation within the model, as well as any relevant information about the fXlifJMnN and
SORT structures which the user has defined on L.

FOL allows the assignment of arbitrary LISP functions or lambda-expressions as the
interpretations of predicate and function symbols.

FOI Manual
Page 37

Section 4 41 The ATTACH command

ATTACH OPTfi] ALT[<predconst> I <opcon9t> I <indcon8t>] < 8_eKpr> j

<9_eKpr>
<§_•nprIi st>
<dotencl>
<atom>

:- ALT[<ato(n> I (<8_exprlist> OPT (<dotend>l)]•
:- REPH <s_e»<pr>]
!■ . <seKpr>
:- ALT[<identifier> I <natnum>]

This cnminaiKl allows for the dcfiuitimi of the maps from the FOL language that the user has
defined into the LISP rnvironmcnt which he wishes to take as the
vice versa if the ATTACH' option taint).

inodrl of his language (and

PREDCONSTs and OPCONSTi may be attached either to atoms which arc the names of already-
defined LISP functions (i.e. ones which have a SUBR, EXPR or MACRO property including of
course all the standard II.ISP functions) or legal LISP function, lambda-expression or macro
definitions The attachment mechanism checks that the functions (except SUBR«) beinc
attached have the correct number of arguments corresponding io the ARITY of the PREDCONST or
OPCONST to which the attachment is being made. INDCQNBTl may be attached to any S-
expression. J

»♦♦»»DtCLORE 1N0C0NST Zt«0. ONE (INTfCEP

• ♦»»»OfCLflRE OPCONST ♦tINTECER, INTECERI.INTECEH IINF);

.....BTTPCH :[RO e,

ZERO «tl«ch«d to I

»»«..BTTPCH ONE 1|

ONE «lltchtd Io 1

♦ »♦♦tDECLPRE OPCONST CAR CDR(LIST).USTi

Mff:DECLPRE OPCONST CONS<SEXPR,SEXPR).SEXPRi

♦(♦««RTTRCH CRR CRR|

♦♦♦♦»RTTRCH CONS C0NS|

•****0ECLRRE INOVRR fl B L < SEXPR,

I

I
I

1

1

■

I
I

FOL Manual P.ier 38

Section 4 42 The siMniFY tmmaml

SinPLIFY (ALT -uff- I <vl> I «ten»] ;

This commaiiH rffrrn Ihr Miiiplifir.itinn of an FOL snilnicr by compNlIni; within iiv mndrl.

i.e. the viiii|)lirii.itinii inrclianiMii altrmptl lo find, in flic modrl, nbjrrl« (I ISP Scxprrssmns)

which cnrrc».|mii(l In syni.idic synihols in the sentence. If any are fniiml. they aie IV'AI uatrd in

the nnnnal way I'he vimplifier tlicn atleinpts to find a term in llie lanqNa^r uliidi (oncvpnuds

to this evalnatrd enti'v In llie r»«1 nf VLs and TLfitls, the nrlqinal r\|>M «AIOII is iclnined,

together with its niaMmally siinplifKil form: if a term exists in thf l.iiii;ini;c for the

simplification, Iheii th.u forms the iii,'ht hand nf thr rr|iialiiy (Thr simiiiifh-i is aware that

NATNUMs and I ISI' nunilKrs conespond to each othnl In the case nf lil I v, uhlitinii.illv, if the

result of MmpiificalmN is a trnih-v.iliie. the UFF or its nr^atinn is riiiiiiird, wliidirvrr is
appropriate The sunpliricatinn is canird out to the maximal exlcnl

If a LISP error is encountered durini,' sjinplification. an eirnr message is given

In the inndel defined hy ihe attachmrnts made above, the following occuis;

ftttsiwtirv rcw ♦ OHI,

riPn.oNt»!

♦ :!(^3I'1^l irv CPR • m |t|

rriRc (R fni.n

In addition, the siin|)lif i< atinn mechanism takes into account any infotmation that is av.iilahle

about Ihe ZC^'i and EKTCNSION declarations that have been made For example, remeinhering the
example on extensions given in section I 121:

'. ntCLHPr IN|lfCN3T PI « BMNCS, Ul < Ml INC3|

ntCltlPf ruincONST HNCS I;

•::: :t»UN5|0N 111 INCJ IBM;

(•••nnon o) 61 Wt it IBM

:: ■ tlTCMSIW III INKS IU»li

Erl«ntiM ol Ul INC] it (UM

•■-•:("UNjiüS • INGS Ul 1NCS U %> INCSi

f .Icniion ol I HKS it IMI it)

<^->sinPLiFy UI.B* I

-(Ul .B()

FOL Manual Piff 39

Section 4 41 AuxHuvy FVNCTION df/tnilion

FUNCTION cfunctlon-9_c««pr> ;

This allows ihr (Icfinitinii nf <fuiirlinn-s pxpr> as an auxiliary LISI* fimrtinn If ihr limrtimi
definitinn is a Irqal (* cxpr) whirli is not a legal LISP funrlinn ilrfinitinn of thr 1>E or
DEFPROP sort, an nmr message will lip given.

I
I

I
I

FOL Manual I'aijr 10

Section 4 5 Ail<>iiniiluUi!>f Commonth

These rnminaiuls nianipiilatr the pmnf rliecker but do not directly alter the nirrcnt dediirtimi.

SfCtion 4 51 Thi I AHU ffmiKGHii

LAPTL ALT(' MII lit- I 'ulrnt. •> .linpnum)) ;

In the first rase the ncM line the proof thecker genrr.itrs will jjrl the lalirl I'"1' HI In the srrnnd
the LINLTJOM inrntiomd will hrionn l.iheled by IDEM I ahcls are alternatives to vis mil mn he
used in any plärr that the syntax rxpcrK them.

Section 4 52 Tilt Unnttling tomtnands

Section 4 521 The FET* H comwiil

FETCH «•filfn ■• rtTI I FBPO .».Trkl») 0PT(TO -m.irkr^] ;

The FETCH «ninmand irails the file ^filename), and exerntes any FOI. inininan.ls in this file.
FOL accepts stand.ud Stanford file designators. If mark sperificatimis are piesent. the file is
only read within the limits which they specify. The default FROM/TO are the beginning and
(lie end. respectively. n| the file The commands read (hiring a fetch are not printed in the
backup file. FCTCIIrs may he nested tn a depth of 10.

Section •M,V r*r MARK (tmuttnä

riARIC 'toknn. ;

This coiinnand has no rffrrl mi the proof, but simply places a maik in the file which the
FETCH cnininand can use to delimit leading of the file

Sfcridn 4 52^ The 1\ If KVP commmul

BAflcur - f i ip M.-im.- ;

When FOL is initiali/ed. a file called nACKDPTMP is autninatically created. All cnmnle input
from the user is savid mi this file. This comiiiaiid closes the tiirrent haiknp file, and opens a
new one with the specified file name.

\

I

■

■

FOL Manual
Page 41

5«fion 4.524 Tf,e CLOSE command

CLOSE ;

This closes and reopens il.e backup file. Normally the backup file is written every five steps in
the proof, but this connnaiKi cnablrs il.e user to save the state of his deduction at any point

Section 4)2) Tke COMMENT cmmtnd

COnnENT <tlel imi ter> «:tp><t> «ciol imi ter>

When typed at the fop-lrvn. this inserts any text between the delimters into the backup file- if it
appears in a FETCHed file, the .CM is ignored. Of course, the delimiter must not appear in the

Section 4)3 The CANCEL comwnd

CANCEL OPT[<linenum>] ;

This cancels all steps of a drduriion with LINENUMs greater than or equal to LINENUM Thus vou
MMrMM?!0^ ,,I,w"n,cd MCPS fro," a Eduction provided they are all at the end of the PROOF If no
LINENUM is specified, only the last line is cancelled. "

Section 4)4 The SHOW command

The SHOW conimanrl is used to display information generated by FOL The intent of tho
present command is to allow you to display information about a derivation at the console and
saveM on a file. The integer after .he FILENAME becomes the lineleng.h while .his command is

SHOU <9houtype> ÜPT[<f i l-nam«. HPT r • * <Tiiename> UPH <mteger>]) j

«•hOMlypt> i. PIT. PPOOr OPTf *r*n9»lm> J

SUPS OPT. <ranq*lltl>)
flXIOn OPT. (MMMttt»)
DECLPRBTIONS OPT. <d«eln(o> J
HENERPLITY OPT. .qtnlnlo>)
LORELS OPT. <l«b«llnla>]

<ranc|tlitl> i. RCPUT/in9«ip»c>,0PT[,)J
«r.nq.tp.c. i. BLTI OPT. <lin.nui.. 1 i 0PT(<lln«nui» J | <lln«nUM> 1
♦d»e(nlo> i. REP1I BLT. «lyntgpt. OPT. « <ierl>l |

<(oltyn> j
SORTS J OPT. 1]

<9«nlnlo> i« REPH <iort>, OPT.,) J '

<l«b*lln(e> ■■ Rfi. PLT. <l«b«l> | <r«ng«tpic>) , OPT.,) 1

FOL Manual Pagf 12

PANGESPEC may hr of the fnnn 23 or tiM or :65 or 31: or rvcn ; lls mr.imnij is rithci ,i ■.in^lp
LINFNUM r.r a rillgr of I iNf NUMs. If a nuinbpr stands .iloiic it simply mrans Mm mmiliri If
there are two iininliris srp.ir.ilrd by a colon, the rangt is from Ihr fiisi in ihr »Mnml |f
numbrrs iln not »pprar on rilhrr siHr of the colon Ihm the ilrfanlt n| (t m ihp |.IM linr is
assiimed An FOtSYM is any drd.unl idmtifier and sktm idnrns its r.n»;i nlMi'ifict ,in«t »bow
returns appropriate lynlaclic infnnn.iiion.

Examples are:

♦ ^«■'3H()u ppnor i.fi^.iti roo.Pfi:i:.rr.cuu) ::i

this writes lines I, ?. to I, IG to the last line of the proof onto the file FDf) |»AZ(SIT.mv\V] svitb
a linelength of t2.

»♦«>-SHOU rpnnr,

]

displays the proof on HIP console.

The next example, taken from an actual test file, shows the kind nf synladb informatmn
displayed by a "show dn laralions" connnand.

M»MSNM KCLOMriM E"PTY « ♦ < c»rr,j irem kinar^tMi

fNPir it INDCOK.T ol »on BVTCS

. il INOVn» ol «ort INTECfP

• i« 0PC0N5T

1l>» rloiM.n it INIfGfR ■ INTCCCR, d-i'l II« i m,,« i« IN If f.l r II . I.'.n 1M,PI>I

: it MfCCIMSI
Tl'« rtom.tin it INUCER ■ INTEGtRIWO P. JCOI

turrif it CPfONM
Th« rtoiMin it P<nS • B^TCS, onrt th* r,i,.-j, ,K |y|(]

'ronl it OPCONjT

Hi« do">*in it BVTES. «nd Ih» rang« it BYTE S |R. %(!)

No Otclaralion lor hinarijplui

' f*i :jH0U OECLOPPHON SORTS'

shows all the rRmcnr^rs of ARITY I (i.e. all of theSORTs)

SHOW commamls do Ihr obvious ilmiL' in conjunction with the display featuirs inmrrl on bv
DISPLAY. 7

I

mtm

FOL Manual Page 43

Section 4.i> The DISPLAY command

DISPLAY OPT I <:displaytype>) i

.diipi«giMp.. >• PLT(PROOF

STEPS

ntM
BTTPCHflENTS

0ECLRRRT10NS

LABELS

STBTUS
I

FÜL may take advantage of the display features of the Stanford DataDisc system by means of
this command.

For example:

*t***0ISPLR¥ i

creates a display window of full-scrren width, into which the steps of the proof are displayed as
the derivation enntinnrs. The page-printer is restricted to the bottom eight lines of the screen. If
the argument is non-null then the 'proof window is restricted to half-screen width, and a second
window, appropLiely labelled, occupies the other half of the screen e.g.

***«*01SPLRY RXIOtIS |

causes an 'axiom' window to be opened, and all axioms are printed to that window, rather than
to the 'proof window or the page-printer.

Whatever the current state of the display, 'DISPLAY <niill>' causes the 'proof window to be
regenerated, together with the last five lines of the proof, if any. Any other windows wiich may
be present are flushed. This method is slo-v and cannot be used from teletypes, but provides a
much more convenient way of displaying 'he steps of the proofs and other informatior.

••««»UNDISPLRY)

restores the screen to normal teletype mode.

Section 4)6 The EXIT command

EXIT ,

This command returns the user to the monitor in a state appropriate for saving his core-image.

FOL Manual
Page 14

Sfdion 4 5S The SPOOL Command

SPOOL < fi I pn.nnr^ ; KSPOOL <filen,imc> ;

These causr the ^ilin.iinr- to be <.|i(.o|,,| no Hie ipproprUtr devire (I IT i>r XCI'i

Srction 4 IS Thr TT) i fimmand

TTY .

This resets the printini; nuitinrs ^n il,,it tliey are trlrtype rather than <liM>lav nrirnlid In this
mode, the In^ic.il rnnn.ttives are rrpirsrnted by NOT, OR, ft or AND -• m IMP » m I nillV
FORALL. EXISTS

FOL Manual
Page 45

Appendix I

FORMAL DESCRIPTION OF FOL

The non-dejcripfive symbolj of FOL divide Into SYNTYPEs as follow»;

1. Individual variables . INDVAR. There are denunerably many individual variable symbols We
use x.y.i as metavariables for them; jmwmn. we

2. '"«I'vid"^ parn.j.eters ■ INDPAR. There arc denumerably many individual parameter symbols
As mpta variables we use a.b.c; '

S. n.place predicate parameters . PREDPAR. For each r. there are denumerably many predicate
parameter symbols. An n-place PREDPAR it said to have ARITY n; P"wwi«

4. Logical constants:

a) Sentential constants - SENTCONSTi FALSE and TRUE.
b) Sentential connectives ■ SENTCONN: VW»^
c) Quantifiers ■ QUANT: V and 3;

5. Auxiliary signs • AUXSYM: parenthesis (,).

A particular FOL iMgMff is distinguished from a pure first order language by declaring
cirtam constant symbols. These have the SYNTYPEs: 7 necianng

1. Individual constants • INDCONST:

2. n-place predicate constants . PREDCONST. Each n-place PREDCONST has ARITY n:

$- ÄswrsJTJÄ0PC0NST- l'k'PREDP4R' "c" 4RIIV som'""'""""
Each «^YNTYPE is assumed to be disjoint from all others.

TERMs

t Is a TERM in FOL if either
1. t is an INDPAR, INDVAR, or an INDCONST. or
2- ' '» WM| tB). where f is an OPCONST of ARITY n and t. Is a TERM.

FOL Manual Page 46

WFFs

A Is an atomic well-lormpd formula or AWFF if
1. A is our of thr symbols "FALSE" or "TRUE",
2. A is PO, t?) where P is a PREDPAR or a PREDCONST of ARITY n.

The notion of well-formed formula or WFF is defined inductively by:
1. An AWFF is a WFF,
2. If A and B are WFFs. then so are (AAB). (AvB). (ASB), (A^B). and -(A).
3. If A is a WFF. then so are Vx.A and 3x.A provided that x is an INDVAR.

The usual definitions of free and bound variables apply and can be found in any standard logic
text (e.g. Mathematical Logic by S.C. Kleene). Below the usual conventions for omitting

parentheses will be used.

SUBFORMULAS

The notion of SUBFORMULA is defined Inductively
1. A Is a SUBFORMULA of A.
2. If BAC. BvC. B:»C. B«C. or -B is a SUBFORMULA of A so are B and C.
3. If Vx.B or 3x.B Is a SUBFORMULA OF A. so is B[t«-x].

The notations A[t«-x) and A(t«-u], where A represents a WFF. t. u TERMs and x an INDVAR are
used to denote the result of substituting x or u. respectively, for all occurrences of t in A (If
any). In contexts where a notation like A[t»-xj| i: used, it is always assumed that t does not occur
in A within the scope of a quantifier that Is Immediately followed by x. The notation A[x«-t].
denotes the result of substituting t for all free occurrences of x.

The notation A[a«-x.x«-t) means the result of first substituting x for a and then t for x.
denote simultaneous substitution we use A[a«-xixHl.

To

FOL Manual
•age 47

Appendix 2

THE SYNTAX OF THE MACHINE IMPLEMENTATION OF FOL

In »;.M mmwnl ihr .,>,.»„, of KOI. mil ho dwribrd u»ng n modifM form of ihn Ifl/cw* ,•
patlrrn. Thw form ihr hn»r ronurur,, of ,hr hOl. pnLr. ' "^ "'",0n 0f

1. Idrntifirr* whirl, npprnr in pnltrrn» nrr to h« mkrn litrrnlly.
2. Pntlrrn» for »yiunrtir Ivpr» nrr tarronndrd by angle hrf-'rlt.
3. Pnltrrn* for rrpniiinn* nrr druignnlrd hy.

Kl:ro/<l,niirnt>/ mrnnt 0 or morr rrprnlrd P/fTFKKNi,
Kt:f'n/<pniirrn>/ mrnn* n or morr rrprnlrd P/\TTEHN\.

If a HKPO or n HKPn hn* two nrgumrni» ihrn ihr urcond nrgumrni n a „ntirm ih*. -,.
„rpnrnlor. So ihnl RVPl/'u,ff> ./ mm,, onr or morr WFFs „pLlrd hyrommn ' " "
4. /Iltrrnnltrr* npprnr n* /)ll7<PmTP.HM>\...\<P/ITTKRNn>J.
/ll.Tf<u>ff>\<irr,n>/ mrnn» riihrr n WFF or a TERM.
5. Oplionnl thing* npprnr n» ()PTf<pnttrrn>/

™mm,Tfr>*)PrfJ/ "U"tnt a ***** 0f lW0 0r m0r* WFFS ^ionnlly ,rpr.ratrd hy

n*m ronvrntion* nrr rnmhinrd with ihr uandari liarku, Normal Form notation.

Basic FOL symbols

In In an atfemp to make life easier for users, the FOL parser makes more capful distinction«
about the kinds of symL Is that it sees than the prevkJ description indicated distinctions

<tnav»r>
i ALT; «indv»r>

« ItfMIt If ltr>
I <tndp«r> |

<indp»r> i • «i mtlliap*
«Indconti, r« BLTt tit- > 1

)

ILTI <opp4r>
• idint 1 MtP»

I opcomu)

<opcontl> « ident 11 nr»
<pr»op> »opsijm>

<optym>
«•pplop> <op»yiii>

<pr«dtyn>

«pr«dpar>
BLTt <prtdp«r>

<ldtnt1ll«e>
<pr«deenii>]

<prtdcon((> <ldtnt Mltr>
<pr*pr«d>
<lnlprtd>

<applpr«d>

■pr«dlym>

<pr«dtyM>
'prtdty»>

• ••nllgm»

<s«ntp«r>
RLT[<(«nlpjr>
• Idont11i«r.

<iinlcentt>]

<i*nlcenit> >• ALTt TRLSE 1
Tr<UE

1

1

<indeontt>)
Idee I«r«d INOVaft
|d«cl«rtd INOPRR
idtciartd INOCCNST
ino dtcl«r«tlon ntcttltry

idcclartd OPPRR
|d«cl»r»d OPCONST
iflRITY 1 «nd dcclartd PREFIX
iflRITY 2 «nd d«cl«r(d INFIX
iflRITV n «nd not die I«rid
I INF or PRE doc

I doc I«rod PREOPPR
I doc I«rod PREOCONST
iBRITY 1 «nd doc I«rod PREFIX
iRRITY 2 «nd doc(«rod INFIX
iPR I TV n «nd net doc I«rod
I INF or PRE doc

I doc I«rod SENTPflR

^

FOL Manual Page 48

..•Mronn>

<prtloq>
< ln(lo9>

• gujnt >

ildintlfl«r>)

RLT[- | NOT |
v | OR |
A | (| AND |
j I . I inp i

• I •

la RLTI , | NOT 1
l« RLK v | OR |

| CQUIV)

idtcUrtd SENTCONST
I INF or PRE d«c

i'i«q»t ion
idltjunction
(Conjunct Ion
IInpllection
laqulvtlonc«

I I I ANO | » | 4 | {HP | ■ | . | EQUIV 1

la ALTt V | FORflLL | 3 | EXISTS 1

TERMS

The FOL syntax for TERM-, allows for both prefix operators and biitary infix operators, as well
as the usual function application notation. Any undecLred identifier can be declared an
operation constant (OPCONST) using the DECLARE command. With proper declaration the
following are TERMs:

«'«♦-y. 9(«*y«l))

CAR
C«r 1 « , i()
(ROBOT. B0X1.000RIUIv|V«.P(q(«,y))l
pouort* t<.A1B,C>)

<t«r«> ■• ALTt * lnfisy">
<.1pp 1 ttrffi>

<prsl uttmo |
<inli<tira>

«MitaNi |
<n_tupl*tora> |
<eonptori»»

i (tap** i }
<ipplt*rn> l • '«pplep> (<t«ral m>)
<prtllxt«rm> 1* -pr.op» <ltrM>
< Inl Ixltrii» la 'ttri» <lnlop> «tor»>
-nl ttrNi> la 1 <ttrMlltt> 1
<n'i,pl«i«rn> I* < «ttralltl» >
<COfflpl*i M> I« 1 <(ndv«r> | <ull> 1

•ItMlltl» la REP1I («•«• , OPTt.J J

These are illustrated above and may be used at any time. Other additions may occur from time
to time.

Of course, the appropriate restrictions on the SORTt of the arguments of the OPSYMs must be
met.

AWFFs

AWFFs are formed similarly, but cannot be nested.

:

jm

FOL Manual

!

Page 49

<«MU> la fiLT(<bAt«uH> |
<A|)pl.iul(> |

■ tnlMf I*)

«b«t*«wn> i. ALT! «MiiltyH |
-pr»d|)»r> J ,M|,h fiRITY |

<«ppl«uM> i« <jipplprtd> (<l«ri*lltl>>
<pri«Hf(> ia »ppepr«1> <ttriii>
«lnUuM> la rtarir> ln(pr«d> <tara>

Ex«inple$ of AWFFs are

Ifl.B.UIt U|3C.H<ZA2(XI

<«,b> • I«, i/i,bl i
n«,y)» 'car(cam:«,y))

Equ-lity is treated as any other predicate constant, but the system knows about the
substitution of equals for equals, h does not know that A'B is usually interpreted as ^(A-B) but
treats it as any other predicate symbo'.

WFFs

<uf(> la IflLT <it«n>1/ird firtl ordtr loqlc lornul«> |
<vl> 1 I0PT >tubp«rl>l I0PT <tubtl_opar>l I

The syntax for WFFs allows the following abbreviations and options.

The primitive logical symbols are:

<"'»> i» BLTt »prmMM> j <praull> | <ln«MM> J

<pr(mMM> i. RLT[rMll» | <qu«ntHli> | (<MM>) J
.pr«uM> |a <praloq> <prlmuff>

(<ln«ull> ■■ <prtmuM> .innoq> <prl*uM>
<qu«nlull> ■• «quAnlprallio (Mtlteff»
<qu«ntpraM»> 1. RLTt <qu«nl> REPK <lndvar>) . |

(<qu«nl> REPH «lndvar>])]
<tnallM«l> 1. REP8('Drtloq>] <prliMll>

AW . I/ r hdi'JuHrUon mnhmuon and wivahnr*. Nrgation. a, writ a« hoth mmmi/Un

^"'l Vl!.' adji'ccn, nua""fi"» of the same type together, so Vx.Vy.P(x.y) can be written Vx
y.P(x.y). FOL also accepts (Vx)(Vy)P(x.y) or (Vx y)P(x.y) for Vx.Vy.P(x.y).

Subparts of WFFs_and TFRMs

Within a deduction there is a completely general way of specifying any subpart of any TERM or

/

\tm j

FOL Manual Page 50

WFF already inentionrd. Wc ncfoinplish this by means of a SUBPART designator. Derivations
consist of WFFo. farli of whirli has a LINENUM. The WFF which appears on this line is designated
by following it with a cninn. If

le. V« y. IP(M»l)DQ(M).,y)M

is line 10 of some derivation then 10: represents the WFF on that line. i.e. Vx y (P(f(x))3Q(h(x.y))).
Furthermore, subparts of such a WFF can be designated by a SUBPART designator.

<tubpart> !■ REPK I <lnt«gtr>]

The Integer denotes which branch of the subpart tree you wish to go down. Quantified formulas
and negations have only one immediate subpart. called ■!, The other sentential connectives each
have two. For predicates and function symbols the number of immediate subparts is
determined by their ARITYs. Any conflict with these will produce an error. Thus

lOifl
10ii7

Vg. !P(((.))DQ(h(.,y)))

ERROR
Mx.y)
ERROR (P hi, BRITY I».

Substitutions in WFFs and TERMs

Once you have named a WFF, you can use a substitution operator to perform an arbitrary
substitution.

<tubtl_op*r> i> I REPl(<(ub(tllttl>,0PT(i))]
<tubt<llttl> la RLTC «t«rs» » <itrM> | <ufl> * <MM> 1

Examples:

10;fl f.-ROPOT) . Vi|. (P(l(ROBOT))}0(h(R0B0T,y)))
I0i#)fl (<(.).ROPnTlQ(h(.,,j)).P(,)) . P(R0e0TljP(O
10.#1#1#1#1 IMIO; »l/UTfUll-ROPOT) . ROBOT
iei#ll..l (,j!| . Vgl. lP(MMy)))DQ(h(((y),wl))).

A/olfl; thf mhtlilitiinn nprrnlnr rhnngrd thn hound vnrnhlc in ihr hu rxnmplo. Thin /irrtwitled l/in y in
f(y) from hrromina hound, SM «rriioM on »uhttiiuiiont.

WFFs and TERMs thus have the following alternative syntax:

<uM> ia «vl» i 0PT(<tubp«rl> 0PT(<tubil_eptr>)]

)ar»i> i« «v(> i OPTi «-lubptrt» OPTt <iubit_opar> 11

There is an ambiguity as SUBPART may produce only a WFF where a TER>< is necessary (or the
other way aronnJ). FOL checks for this and will not allow a mistake. Such a subpart
designator can be used whrncver the syntax calls for a WFF or TERM.

mmm*

FOL Manual
Page 51

Another label for liaiidling well-fonned expressions is the VL

<vl> ■■ fiLT(<lnt*qer> | <lab«l> OPTtBLTt ♦).) <lnl«9tr>] |
<«Krtl> | REPl(-) 1

The optional * or - Ontcgcr, after a label designates an offset from the mentioned label bv the
amount designated. '

The last alternative has no been previously mentioned. Its meaning is the n-th previous line
where n is the number of "-" siens.

FOL Manual Page 52

Appendix 3

AXIOMS FOR ZERMELO FRAENKEL SET THEORY

The axioms presented here and in appendix 4 are examples of the expression in FOL of the
conventional Zermclo-Fraenkel and Cocdel-Bernays-von Neumann set theories. We believe that
the practical use of set theory for matliematical and computer science proofs will require an
extended practiccil system.

* f

OECLORE PREOCONST , ItlND,
OECLRRE PREOCONST c 2(1^1,
OECLBRE OPCONST U 21 INF),
DECLARE INOVRR riluvuxVi|
OECLRRE PREOPRR A 2 B 1|

flxion ZFi
EXTi V» y. (Vi. (loiKyliviy)) X Exlmtlon«! 11^
EflTi 3»,*y.-y»»| T Nu I I it I
PRIRi *■ y.3z,Vu. Iu(;-ui«vu>y); X Unordtrcd pitr
UNION) tfi.ly.Vl.<t<yt]t.iMl*UK)l| X Sun («t
INF: 3(. (6(<AVg. (i^od^Ulgl)(«)); XInlinlly
REPLi V>.3g Vz. (Rl«,:)'!!.;) } X R(pl«c*m«nl

Vu.3^.(Vr.<r.. i 3i. (4<u'R(»,rl)l)|
SEpi V«.3y.Vt. ({(g't< "(((z)) | XStp«r«l>on
POUERi Vir.3g,Vt. (zryrzol! X Pentr t«l
RfCi V«. 34, I..0-W'«•*?. (z(o-ztij))) 111 XRtfultrlly

/ R«pl<c*m«nt ll tquiv«l«nt to /
7 V«. (Sg.Hf'.yJAVy z. (R(«,y)«R(>(,z)^>z)) 9 X
7 Vu.3v. (Vr. tr»v i 3l.(»(u*fl(i,r»))) I
X or Vx.S'y.RU.y) 3 Vu. 3v.Vr, (r(v i 3t. (KUAAff,, i) I Z

' Stp«r«lion It • conioquonco ol «nd uocktr that. r«pl«cMnt. Z

X 0«l IrM ions /
DECLARE PREOCONST FUN 1.INT0 2,PSUBSET 2(INF||
DECLARE OPCONST rnq 1 do» 1|

f-xion
SUBSETi Vx y.tKcyiVz. (zcozjyl»!
PROPSUBSETl ¥. 4, (PSUB3fT(.,y ..cj.-.y)!
PAIRFUNi V« y z.(z(l>>,4liza>vz>y)|
UNITSETFUNi Vx. (Ui.lx.xl I,
OPAIRFUNi V> y.(«x,y>. I Ul, Ix.yll)|
FUNCTION! Vu. (ruN(u)iVz.(z(M33x y.(|.<xly>))A

Vx y I. (<xly>(UA<iil{>(M»ya|) l|

DOHPIN, y„ >. (»cdomtuJiFUIHulASy t. (yiUAy.<x,z>)) |
"RNCEl Vu x. (x rnr|(u)-f llN(u) A3y I. Iy4 UAyxi ,«>)) |
INTO! *M . (ISiniu,.)rr,„,(u)c,),

UNION! »x y 7. l.-f.lig-7(xvZ(y)| |

FOL Manual page 53

Appendix 4

AXIOMS FOR COEDEL-BERNAYS-VON NEUMANN SET THEORY

nOSTCtNfPRL ClASK
OECLfiRE PfEOCONST ClMI S«l 1;
DECLARE PREDCONST < (C l«s»,C IäSIK INF);
DECLRRE PREOCONST edcl.Clau) tIV)|
OECLPRE INOVRR R B C (CUti.x y u v u < |a«|
DECLRRE PREOCONST Empty On(n«r\y(C litl) .Oitjolnl (CI«lt,Cl«lt)|

PXIOn NCfti

►LfiSSi V>.CI«tl(<)|
ISSETi VR B. (RtBsStKR)))
EQURLi VR B C. ((C(PiCifl«B)|
EflPTVi 3».*y.-y<»|
PRIRSi *■ j 3u ♦ i..-.1 ^) [

CLRSSr
EPIi in ru . i.u, . x R-u. .)!

INT: *fl fi.3C.yu. (u(Clu<flAU(B)i
COMP, *R.3n.*u. (u(Bf-u«B)|
PPOJi Vfl.B.Vu. (u«Bt3v..J,v»«)|

PROOi M,]|.thl v.Cc«,VHIMCMI
CONVi vn.3n.Vu v. (.u.-xBi'v.ux«)!
TRI1: *R.3B.*u v w. («u, V,M><BI»V,W,U><R) |
TRIJl *R.3B.*U V M. (<U,V,U>(6l<U,H,V»A)| I

SETi
INFi 3u. (-Empty (UJAVV. (V(U33U. (u(UA->vaUAvCu))' |
UNION: Vu.3/.Vu >. (m «MI(U3U(v) |
POUERi VU.3V.VH. (ucu2u<v)|
REPLi Vu R. <On»n«ny(B)j3v.VM. (mviaK.lMtuMM.xxflinii

ENOi VR. (-1 »PIVHI^U. (u<flADltjelnl(u,R)))|

RCi 3fl. (On»l1«.iy(fl)AVu. (-Eiiiply<u)33v. (v(UA<v,u>«AI)) 11

FOL Manual

Modal 1 ngji

Appendix 5

INTlimONISTIC MODAL LOGICS

I'.i^r 54

!

The best knew »il.ihiies are Hie so called WrtAn' ones, invnltlni; nr,-ts<i'\<H) and
petSiblfity(A1>, Inn many ..il.cr seiileniial operators wliirli display ino.lal . h.n .< ut^h s |iavr hrrn
stiidird, TQ r fm «anviliiy (BtirUIMU, K and R for hiowlrd^r and MM (IliniiU ,H''(.>» p (or
perrrption (lln.tiUa.l'H.'ii These latter modalities are the subject of interime iwrtli In Imic
at the moinnit. and a jomprehensive Minaiitics has hirn evolved for vomc of them iKtipiv I'M. I
Hintikka.lW'h TUnr are still many difficult prohlemv especially in the r«* of .|u,iiitiri, ^tion
into modal conirMs. uhere the ira.lnional rules of Mihst.t.itahility of rqn.v.ihnis and „f
existential ?em i.ili7.ii....i ,lo not seem to hold This bat led to a rrfo,miil,iiio„ of .„.my
ontnlnpical notions in .|ii..ntification theory(see. for example. (HintikkalT,-,) aiM| fFn||rMlai.|%A)

(\nlr ,hnl woHnl o/.rrnl.n* nrr mlflUM "/.rralOM of n rnll,.'r <r,rinl AjM/f. MN P»»« [> ' TI' I, ,, „„,
pmuMfl» frn.,1 w.ulni nrrrr,lor< n'. „Vl,lune 10 MMM ../ WW«>IMVI or formulor ,.,,/,,,„, /„.,„,. ihr
pnurrfiil triuonlii t.'frr, for rxmmpll' < Uonlngur, /'MJi

In the current nnph meutation. the user may define nnn-standard modal sysiruss md nnfrafnn
Lewis S4 and RS. ll.niiUas KBIs and KBB(P^,M are already availahlr. to^eth., sv.th the
operators N(necrssarily). r.!(pnssibly>, KfklMW^, B(belieyes).

(a) The Classical Systems T. S4 and SÜ

von Wriphl's systrm. T (von Wrii;ht.l9M) is got from l?C by adding:
ASt N.p 9 a
AG: Ntpsq) z> (N.p s N.q)

Lewis's system S4 (I ewis.SfLangford.1932) is got from T by .adding:
A7: NpaNNp

Lewis's S5 by addmi,';
AH: M p a NM p

(b) Natural Dednclinn Systems of Modal Logic

(1) These .nr based on minnnil. classical and intuiiionistic logics:

(2) A foimnla is s.m| to be wodal if its principal sign is a modal sentential operator:

(3) Necessity systems:

Prawitr has two inierencr rules for S4:

FOl Manual Paqr 55

Nl) a

Na

NE) N.a

a

and a rnirrvpoiKlinc dnliiitinn rule for NI, when the proof or rirdiiction of 'a' depends r»rj/ip on
modal fornmlas.

In S5. N.aaa may b* infrrrrd also uiicn every formula in the dependrmy srl is ritlirr a modal
fonnnla or the negation of a modal formula, begin indent 5,0 (4) Possibility systems:

The possibility operator. M may be added by means of the rules

Ml) a ME) Ma&b

Ma b

When these rules ,iie .nldrd. the dedinnon rule for Nl must he modified to he similar In the rule

ME

in the (lassieal I ewis sysiems. M and N may be interdefined, f.j. M.a=-N a and N.a ^ -M- a. but
in the Prawn? system this is not possible.

The syntax foi modal (iiimulae is identical to that of standard formulae, exicpt that Wl F». may
be preceded by I or more modal opcrators(and imbedded -). followed by a '.'. So a period

«modi IMH >
• »ort^Ipr•I i

[■ • «ort<*'prt I l • > 'prt»Hll>

For example, NMN-MMNNMNMNM A and Vx.M P(x)3MM p(x) are well formed

When scannint; lor modal formulae is turned on using the THEORY' command (sec Section
4.13). the followim,' rules then become available;

NEC'I 'line number). NlfiE <line-nuniher>
POSSI 'liiieiiumher>, POSSE <line-number>

as defined by Ihf comlitnms above.(Note carefully the dependency restrictions)

I
FOL Manual P.ifjc S6

Bibliography.

Burks. AW (1951) 'Thr kigic nf raii>..il prnpositions', MIND. 60 36 3-82

Floyd. R. (lOfil) 'AVMIMIIIII,' inr.iiiingv to programs' in (J.T.SrliwarU.rd) PiKtctlinti of a
iymp9iium in n^p/ml mathmnUd, vol 1° (New Vorl.: Ainrriran Mailirnialiral Smicly)

Follesdal. D.(l%8) 'Knowledge. Identiiy and Existence", Theorin. 33 1

Hayes. P.J(in74) 'Some prnblnNi and non-problems in representation theory' in Piocctilings
AISB (onfrrencf, ^msfx, England

HlNtikka, J.(I9S.M'Fflrm an«! r^ntent in quantification tlieory', Acta Phil FmmoT. S7

Hintikka, J.(l!l6t») 'Knwlotgf nnil BflifJ ■ an intrpductfon to the hgic of rht two notions', Hthaca:
Cornell U.P.)

Hintikka. J (l%'0 'Mcxlfli for MoiMlty', (New York: D.Rridrl)

Kreisel. C.(1971a) 'Five notes on the application of proof theory to computer science'. Stanford
University IMSSS Tnhnnal Rtpott IS2

Kreisel. 0.(19711)) 'A survey of proof theory,IT in (J LFenstad.ed.) PreettMingi of thr Second
Scandinavmn I ogii Symf*0SiumJlAm%ttr4*mi Norili-llnii.md)

Kripke, S.A (I9C-I) 'Semantical considerations on modal logic", Acta Phil Fenniüi. In SI

Lewis, C.I. Ä- l.angfoid. f:.(l932) 'Symbolic Logic'. (New York: Dover)

Manna, Z. (1974) Mathemotical Theory of Computation. (New York: McGraw-Hill)

McCarthy, J (I9f>1) "A hasis for a mathematical theory of computation', in Computer Ptogittmnini
and Foimnl Systems, (Amsterdam: North-Holland)

McCarthy, J .Sr llayrv P.J.(I9(9) 'Smiie Philosophical Prohlrins from the viewpoint nf Artificial
Intelligriur'. in (I) Muhie.ed.) Machine Intelligence.'/ {V.iimlnn^U: Fdinhiiigh H.P.)

Montague, R.(|9G3) 'Syntactical treatments of modality", Acta Phil Fennica. Symposium on modal
anil many-valued hgHS,

Prawiti, D.(l9t..ri) 'Nannal [ieduction ■ a proof-theoretical study', (Stockholm : Almqvist fc Wiksell)

Sandewall, F (1970) 'Rrprrsenting Natural-language information in predicate calculus'. Stanford
Al Memo I2S

von Wright, 0.11.(1951) 'An Essay on Modal Lo^Amsterdam: North-Holland)

mm

