$$
\mathrm{AD} / \mathrm{A}-006898
$$

FOL: A PROOF CHECKER FOR FIRST-ORDER LOGIC

Richard W. Weyhrauch, et al
Stanford University

Prepared for:
Office of Naval Research
Advanced Research Projects Agency

Scptember 1974

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE

SECURITY CLASSIFICATICN OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO. STAN-CS-74-432	3. RECIPIENT'S CATALOG NUMBER $A D / A-006898$
4. TITLE (end Subitie) FOL: A PROOF CHECKER FOR FIRST-ORDER LOGI	5. TYPE OF REPORT A PERIOD COVERED technical, September, 1974
	6. PERFORMING ORG. REPORT NUMBER STAN-CS-74-432
7. AUTHOR(c) R. W. Weyhrauch and A. J. Thomas	8. CONTRACT OR GRANT NUMBER(s) DAHC 15-73-C-0435
9. PERFORMING ORGANIZATION NAME AND ADDRESS Computer Science Department Stanford University Stanford, California 94305	10. PROGRAMELEMENT, PROJECT, TASK
11. CONTROLLING OFFICE NAME AND ADDRESS ARPA/IPT, Attn: Stephen D. Crocker 1400 Wilson Blvd., Arlington, Va. 22209	12. REPORT DATE Sept. 1974
	13. NUMBER OF PAGES 63
14. MONITORING AGENCY NAME ADDRESS(if different from Controlling Office) ONR Representative: Philip Surra Durand Aeronautics Bldg., Rm. 165 Stanford University Stanford, California 94305	15. SECURITY CLASS. (of this report) UNCLASSIFIED
	15. DECLASSIFICATION/ OOWNGRADING

16. OISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on revorse side if necessary and identify by block number)
20. ABSTRACT (Continue on roverse side If necessary and Identify by block number)

SEE REVERSE

> Roproduced by
> NATIONAL TECHNICAL
> INFORMATION SERVICE
> US Depertment of Commerce
> Springfield, VA. 22151

CURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

This manual describes tile use of the interactive proof checker FOL. FOL implements a version of the system of natural deduction described by Prawitz, augmented in the following ways:
(i) it is a many-sorted first-order logic and a partial order over sorts may be declared: this reduces the size of formulas;
(ii) purely propositional deductions can be made in a single step; (iii) the truth values of assertions involving numerical and LISP constants can be derived by computation;
(iv) there is a limited ability to make metamathematical arguments, and
(v) there are many operational conveniences.

The goal of F OL is to use formal proof techniques as practical too's for checking proofs in pure mathematics and proofs of the correctness of programs. It is also intended to be used as a research tool in modelling common-sense reasoning in the representation theory of artificial intelligence.

FOL : a Proof Checker for First-order Logic

by
Ri:hard W. Weyhrauch
Arthur J. Thomas

Abstract:
This manuai describes the use of this interaciive proof checker FOL. FOL impiements a version of the system of llatural deduction described by Prawitz, auginented in the following ways:
(i) it is a inany-sorted first-order logic and a partiai order over sorts may be declared: this reduces the size of formulas ;
(ii) purely propositionai deductions can be made in a singie step:
(iln) the trutit values of assertions invoiving numericai and LISP constants can be derived by computation;
(iv) there is a iimited ability to make metamaticmatical arguments, and
iv) there are many operational conveniences.

The goal of FOL is to use formal proof tecliniques as practical tools for cliecking pronfs in pure malliematics and proofs of tire correctiess of programs. It is also intended to be used as a researcin tooi in modeiiing common-sense reasoning in the representation theory of artificial inteiiigence.

We are grateful to Ashok Chandra for coneeptual hilp and for implementing the Taut and Tautey rules.
The research deserithed here was suppnerict hy she Advaneed Rescarch Projests Ageney of the Offiee of the Secretary of Defenee under contract I)AHC.-15-73-e-0435.

The views and conclusions contained in this decument are those of the authors and should not he interpreted as necessarily representing the official policies, cither expressed or implied, of the Advanoed Researeh Projectis Agency or the U.S. Government.

Reproduced in the USA. Avaiiable from the National Terhnical Information Service, Springfield, Virginia 22151.
O THE RATIONALE FOR A FIRST-ORDER PROOF CHECKER 1
1 THE MOTION OF AN FOL LANGUAGE 4
2 THE NOTION OF AN FOL DEDUCTION 6
S THE RULES OF INFERENCE 7
3.1 An FOL deduction using the compuler 8
3.2 Implementation - user oriented features of FOL 10
3.21 Individual symbols 10
3.22 Prefix and Infix notation 10
3.23 Extended notion of TERMs 10
3.24 The Equalily of WFFs 10
3.25 VLs and subparts o! WFFs and TERMs 10
3.26 Axioms and Assumptions 11
3.27 FOL derivations 11
3.28 SORTs 11
4 USING THE PROOF CHECKER 12
4.1 System Specification 13
4.11 Declarations 13
4.12 SORT manipulation 15
4.121 NOSORT declaration 15
4.122 MOSTGENERAL, N:JMSORT, SETSORT, SEXPRSORT 15
4.123 MOREGENERAL declaration 16
4.124 EXTENSION declarations 16
4.13 Predeclared Systems 17
4.2 Axioms 18
4.3 The peneration of new deduction sleps 20
4.31 Assumptions 20
4.32 Introduction and Elimination rules 20
4.321 AND (\wedge) rules 22
4.322 $D R(v)$ rules 23
4.323 MPLIES (3) rules 24
4.324 FALSE (FALSE) rules 25
4.325 NOT (-) rules 26
4.326 EQUIVALENCE (-) rules 27
4.327 QUANTIFICATION rules 28
4.3271 UNIVERSAL QUUANTIFICATION (V) rules 29
4.3272 EXISTENTIAL QUANTIFICATION (3) rules 30
4.3273 Quanlifier rules with SJFTs 32
4.33 TAUT and TAUTEQ 33
4.34 The UNIFY Command 34
4.35 SUBSTITUTION rule 35
4.4 Semantic Allachment and Simplification 36
4.41 The ATTACH command 37
4.42 The SIMPLIFY command 38
4.43 Auxiliary FUNCTICiN definition 39
4.5 Administrative Commands 40
4.51 The LABEL command 40
4.52 File Handling commands 40
4.521 The FETCH command 40
4.522 The MARK command 40
4.523 The BACKUP command 40
4.524 The CLOSE command 41
4.525 The COMMENT command 41
4.53 The CANCEL command 41
4.54 The SHOW command 41
4.55 The DISPLAY command 43
4.56 The EXIT command 43
4.58 The SPOOL Command 44
4.58 The TTY Command 44
Appendix 1 FORMAL DESCRIPTION OF FOL 45
Appendix 2 THE SYNTAX OF THE MACHINE IMPLEMENTATION OF FOL 47
Appendix 3 AXIOMS FOR ZERMELO FRAENKEL SET THEORY 52
Appendix 4 AXIOMS FOR GOEDEL-BERNAYS-VON NEUMANN SET THEORY 53
Appendix 5 INTUITIONISTIC MODAL LOGICS 54
BIBLIOGRAPHY 56

Section 0 THE RATIONALE FOR A FIRST-ORDER PROOF CHECKER

The reader ready to plunger right into makitig $\mathfrak{F O L}$ proofa may akip to section I.
The idea of doing mathematical reasoning mechanically goes back to Lelbniz. bilt it was not until the end of the last century that Frge and Peano developed the first completely formal systems adequate for expressing some kinds of reasoning. Much of the work of Whitehead and Russell was all attempt at demonstrating that large parts of mathematics conld actilally be expressed whilln such systems. After these initial successes, however, the Interest of logicians changed from proving theorems within mathematical systems to provilig illeta-theorellis about such systems.

Evell before Coedel's work, It was intultively clear that checking proofs was different from findling them. It is an essential part of the diea of formal systam that proofs can be cliecked mechanlcally, whereas finding proofs me:hanically was always regarded as a research problein. Thls disilnctlon was clarified by the woik of Coedel. Tarskl. Turing and Church which showed that algorithons for finding proofs cali work infallibly only in limited domalins and that some mathematical ideas cannot be completely characterized by axiomatic systems.

The advent of computers and the beginning of the study of artificial Intelligence gave rise to attempts to explore experimoritally what can be proved by machlie. There has been steady progress lil thls endeavour, bli, twenty years work leaves us a long way froll being able to prove limportant mathematical theorems.

Knowling that mechanlcal theorem proving has a long way to go justifies a renewed interest in the more straighl-fnrward task of proof-checking by computer. Moreover, while it is llot as Interestling to check proofs by computer as to make computers prove the theorems, proofcheckling has obvions potential applications. The most important of these is proving that computer programs meet their specifications since the reasoning linvolved is lengthy although usually straightforward - or so on Intuition tells us. Slice a computer progralli is a Inathematical object whose properifes are determined entirely by its symbolic form, It is a inathematical disgrace to have to debug them casc by case rather than proving them correct in general. Slnce the prograns are leng, the proofs of correctness will be long, and since programmers sometlines thlink wislifully, It is obviousijg desirable that the proofs be cliecked by computer.

It Is also Interesting to see If we call check the proofs of Interesting mathematical theorems even though the problem is of less practical urgency, slice the human refereeling process works quite well.

At flrst sight, compnter proof checking seems almost trivial. We know that almost all practical mathematical reasoning can be done in axiomatic set theory which in turn is expressed in first order predicate calculus. Therefore, it would seemt that all we need do is to make a proof cliecker for predicate calculus, choose either the Zermelo-Fraenkel or the Goedel-Bernays-von Neumann axloins for set theory and wrlte and check our proofs. This is one of the things the FOL project
is doing, but in order that its formal pronfs should not be substantiaily longer than coll velltional inathematical proofs, it is necessary to reformulate the usinal logical systems. This can be thought of as an effort to produce a formal systell ill which the rules of inference, as well as the expresslve power of the language, is more closely correlated with actual mathematical practice. The use of a computer allows for the introduction of complicated rules of inference whose inetainatiematics is not simple. FOL provides for the following:
(1) Its ॥otion of a first-order language includes function symbols, equally and other usual inathematical notation, sucli as infix operators, In-tuple notation:
(2) the user call declare sorts and declare variables to rallge over givell sorts. This greally reduces the lengtl of axioms and theorems and corresponds to the fact that in all illformal proof a context ls established, alld the reader knows that a certain part of the proof is carried ollt within the context;
(3) the decision procedures for certaill simple domains are built into the system. This allows some proofs to be much shorter than usual mathematical proofs, because the computer can go through some quite complex clains of reasoning by itself. At present, propositional deduction and a fraginent of the theory of equality liave been implemented. The Boolean algebra of sets and elementary cominntative algebra are planned:
(4) some facilities for intrnducing definitinns liave been implemented:
(5) a facility is provided for defining the interpretations of constants and predicate/function symbols, a!:d for computing within a .nodel of the language. This means, for example. that algebraic and LISP filltions can be calculated directly, ratlier than being synthetically derived:
(6) some primitive facilities are available for metanaticmatical reasoning;
(7) rules of infere ice for some interesting modal logics are provided.

The domalns which are beling explored by means of FOL proofs include:
(i) CI,ASSICAI. MATHFMATICS. This is the single most striking success in onr ability to represent reasoling in terms of formal cierivations. How close are lliese derivations to a mathematlclan's luforinal proof? Do they constitute a faltiful representation of lils reasoning? How are the linference rules of our logic related to the actual rules of evidence lie uses when convincling himseif of some trith? The answers to these questions are important In determining whether we can make computer-clicckable proofs that are not enormonsly longer than the proofs in mathematical jourmals. Experiment with the use of FOL in classical mathematics will help answer them. Theoretical studies of the intensional properties of proofs such as those of Kreisel (1971a.1971b) are also relevant. Moreover, it turns out that a large part of many mathematical proofs In the llterature are really at the metamathematical level, l.e. they are reasonlag abollt the reasonling In the axtomatic system. Thus It can liappen that a slimple theorem prover or proof. checker is not evell capable of expressing the theorems of mathematicians, let alone proving thein:
(ii) MATHEMATICAI. THEORY OF COMPUTATION. (McCartliy 1963, Floyd 1967, Manla 1974)and others liave shown liow first-order theories call be used in provillg properties of prograllis. Makling this into a tool for verifying programs before they are widely distiblited is one of the inajor goals of the FOL project. This will require furtlier research in formalizing the propertles of prograins, the ability provided by the attachment feature of FOL to establish
decidable properties of parts of the progranl by direct calculation rather than step-by-step Inference, and a great deal of experiment aimed at making lite proofs correspond to the programmer's informal reasoning that his program docs what it sloouldi
(ill) RAPRFAFNTATION THEOKY. Common sense reasoning is being represented in FOL in the style of (McCarthy and Hayes 1969). As in proving prograns correct, purcly inferential reasonling must be supplemented by assertions directly computed from the data base representling the environncint; again the FOL attachinent feature is the key device used. Even more experiment will be iequired before the form \therefore proofs correspond to informal reascuing than in the case of mathematics, becanse this area lias not been well explored (perlaps only by McCarthy. Hayes 1374, and Sandewall 1970). Particular problems are the axiomatization of time, slinultaneity, causality, knowlecige, and the geometric reasoning lnvolved in perception. Metamathematles also comes in. particularly when it is mecessary to reason about knowledge and belief. We loope that axiomatizing the metamathematics of FOL, l.e. the structure and truth conditlons of FOL sentences together with a reflection pinciple, sultably restrlcted to avold paradoxes, will enable us to express common sense reasoning about knowledge, belief, truth and falseliood.

FOL is committed to a systelil of natural deduction. The use of the word 'na'ural' Is best explalned by Prawitz himself (Praivitz.1965):
'Systems of matural dedurtion, imermed hy Josknu:ki nod ly Centern in the early 1930 's, ennstitute n form for the derelopment of lagir thot is nolurnl in many resperes. In the first place, there is a similarity beturen natural dedurtion and intuitive, informal reasomina. The infereuer rules of the sysirims of uatieral dedurtion rarrespond elosely in prosedures romunu in intuition reasouing, ond uhern informol pronfs -- surh os ner eneountered in mathemation for example -- are formolized within these systems. the main structure of the informal pronfs rou nfien he preseried. This in itself gives the systems of natural dedurtion on interest as an repplimotiott of the informol conerpt of logiral dedurtion.

Critzen's variant of natural dedurtion is untural also in a derper sense. llis inferenere rules slinto o noteworthy syatemotizntion, which, nmong other things, is elosely reloted to the interpretation of the logiral signs. Fiupliermore, as will he shou'n in this study, his rules allou the dedurtion to procered in a errenin dirert fashinn, offording on ineeresting normol form for dedurtionc. Tlie result that etery nntural dedurtioti ent he tronaformed into this normol form is equiuntent to uline is knoun os Hauptsatz or the normal form theorem, o bosir result in pronf theory, which urns c:sinblishird hy Centern for the ralruli of sequruts. The pronf of linis result for systems of notural dedurtion is in mony unas simpler and more illuminoting.

In thia manua, most of the metomonhemntirol notinms discusard will he referred in liy uorai: in the following fom re.g. SYNTYPE, INDVAR. WFF. These notious will play a greater role in Inter uersions of FOI.

Section 1 The notion of an fol language

In FOL the user specifies a first-order language by making a set of DECLARATIONs (see Section 4.3). The proof-clitcking systell then generates a proof cliecker and a collection of riles specific to that system.

All FOI ianguage is determined by specifying a way of building up expressions, usilally called well formed formulas or WFFs, from collections of primitive syinbols. In FOL these classes of syinbols are called SYNTYPEs. They are:

1. logical collstants:
a) sentential constants - SENTCONSTs: FALSE, TRUE
b) sentential connectives - SENTCONNs: $\rightarrow, \wedge, \vee, \supset, \bullet$
c) quantifiers - QUANT: $\forall, 3$
2. auxiliary symbols: • AUXSYM: "(" and ")"
3. sets of variable symbols:
a) individual variables - INDVARs.
b) individal parameters - INDPARs.
4. a set of n-place predicale parameters. PREDPARs.

These syinbols are used to form those sentences common to all FOL languages. Sometimes a language L may also contain symbols which are intended to have interpretations whlch are flxed relative to the dollain of the interpretation. Examples are: "e" in set theory, "a" In first order logic witli equality, " 0 " and "Suc" In aritlimetlc. Tliese are represented by
5. sets of constant symbols:
a) individual constants - INDCONSTs,
b) n-place operation symbols - OPCONSTs.
c) n-place predicate constants - PREDCONSTs.

In addiyioll olle call
6. restrict the range of a variable symbol to some PREOCONST by declarling it to be a SORT.
7. designate a partial orticr to liold among some of those PREDCONSTs which liave been declartd to be SORTs:

TERM, AWFFs (atomic well formed formulas), and WFFs (well formed formulas) are deflined In the usual way.

A formal description of these langnages and of the notion of SORT is given in appendix 1 . The entire extended syntax of FOL is described in appendix 2.

A first-order THEORY is defilled by a (possibly empty) set of sentences of L. called AX:OMs. It is the creation of such theorics and the checking of valid deductions th them that is the main purpose of the computer program FOL.

Section 2 the notion of an fol deduction

A derivation (the foliowing description of which is taken almost verbatim from Prawitr 1965) begins by inferring a consequence from some ASSUMPTIONs or AXIOMs by means of one of the RULEs llsted below. We indicate this by writing the formulas assunned on a horizontal line and the formula linferred immedialely beiow this linc. On the computer this can be repeated using pievious consequences as new hypohesis. This generates a tree. which we call a DERIVATION. Thus if we wish to derive $A \supset(B \wedge C)$ from $(A>B) \wedge(A>C)$ we write:

At each step so far, the configuratinn is a DERIVATION of the undermost formila from the set of forinulas that appear as ASSUMPTIONs. The assumptions are the upperianst formata occirrences, and we say that the lindermost formila depends on these ASSUMPTIONs. Thus, the example above is a deduction of $B \wedge C$ from the set of assumptions $\{(A>B) \wedge(A>C), A\}$, and in this deduction, $B \wedge C$ is said to depend on the top occurrences of these formulas.

As the resuit of some inferences. liowever, the formuia inferred becomes independent of some or all assumptlons, and we then say that we discharge the assumptions In question. There are four ways to discharge assumptions, namely:
(1) Given a deduction of B from $\{A\rangle \mathcal{\Gamma}$, we may infer $A \supset B$ and disciarge the assumptions of the form A :
(2) Civen a dedictlon of FALSE from $\{-A\} \mu \Gamma$, we may infer A and discharge the assumptions of the form -A:
(3) Civen three deductions, one of C from $\left\{A \mid \cup \Gamma_{1}\right.$, one of C from $\left\{B j \cup \Gamma_{2}\right.$ and one of $A \vee B$, we may infer C and discliarge the assumptlons of the form A and B tinat occur in the first and second deductinus respectively, i.e. below the end-formulas of the three deductions, we may write C and then obtain a new dednction of C independent of the mentioned assumptions;
(4) Civen a dednction of B from $\{A\{x+a\}\} \cup \Gamma$ and a deduction of $\exists x . A$, we may infer B and discharge assumptions of the form $A[x+2]$, provided that a does int nccur in $3 x . A$, in B, or In ally assumption - other than those of the form $A[x-a]$ - on which B depends In the givell deduction.

To contlnue the deduction above, we may write $A \supset(B \wedge C)$ beiow $B \wedge C$ and obtain a deduction of $A>(B \wedge C)$ froll $\{(A>B) \wedge(A>C)\}$.

FOL Mallial

Section 3 THE RULES of INFERENCE

The Inference rules consist of an introduction (I) and an elimination (E) rule for each $\log \mid c a l$ constant. The letters within parentheses indicate that the inserence rule disclarges assumptions as explalued above.

AE) $\begin{array}{cc}\text { RAB } & R A B \\ & R\end{array}$

31) $\begin{aligned} A(x+1)^{2} \\ 3 x, A\end{aligned}$

(E) $\begin{array}{cc}\text { ReB } & A_{2} B \\ & -A_{2 B} \\ & -\cdots\end{array}$

Restriction on the vi-ruie: a must not occur in any assumption on whicli A depents.
Restriction on the $3 E$-Rule: a must not occur $\ln 3 x . A$, In B, or \ln any assumption on which the upper occurrence of B depends other than $A[x+a]$.

Section 3.1 An FOL deduction using the computer
We show here the collipinter interaction necessary to check the derivationgiven in Secion 2.
In this and all succeeding sections examples of interactions with the computer will appear in small type. Those lines which are typed by the u:er will be preceeded by five stars "ow...". The oiher lines are those typed by the computer.

To derive $A \supset(B \wedge C)$ from ($A \supset B) \wedge(A \supset C)$, we proceed as follows.

```
*.cocoeclare sentconst r,b,C,
*0.0.ASSUNE (A>B)A(ADC),
1 (A>B)a(A)C) (1)
#OCOONE 1,1,
2 (A>B) (1)
*OC**PSSURE H/
3 A (3)
000005E 2,3:
- B (1)31
COOTOME 1,2,
5 (ASC) (1)
coocese 3,5,
C 1/3)
00000al 4A5,
OAC (1)
-0.erosl 357,
8 As(BaC) (1)
```

Each LINE typed by the computer colltains: 1) a LINEXUM, which labels that LINE: 2) the WFF representing the resinti of applylug the RULE yped by the user on the line above: 3) a list of numbers representing those LINEs of the proof on which the WFF depends. Consider the LINE beglining with 7 in the above example. 7 is its LINENUM, B^C is the WFF on this LINE, and the derivalion of $B \wedge C$ on this LINE depends on the assumptions on LINEs 1 and 3. This LINE was generated by the user specifying as a RULE AI (AND introducilon) using lines 4 and 5 . This information is typed by the user and in the exainple appears directly above LINE 7 of the proof.

Tliere are two ather things to notice about this example. The first thling typed by the user was a declaratloni stating that A,B and C are SENTCONSTs. Making deciaratlons is essentlal. Failure to declare an identifier is the most common reason for a syutax error. Secnud is that vilien \boldsymbol{y} is applied to LINEs 3 and 7. LINE 3 lias been removed from the list of dependencics of the IIew LINE. Thls corresponds to the description of this rule given on each of the previous two ? Jages. The exact format of the commands a user must type to the computer is explained in sercion 4 .

Section 3.2 Implementation. user oriented features of FOL

There are several differences betwect the machine impiemention of FOL and the description glven above and in Appendix I. These differences are asually for the purpose of making life easier for the user. The description in the Appendia presents a clean version of tise logic so that the inetallatiematics can be discussed In a straiglit.forward way. The major differences are described brlefly below; mora detailed deseriptlons occur In the appropriate sections of the sequel.

Sectior 3.21 Individual symbiols

In Prawitz's logic, individnal variahics (INDVARs) may oniy appear bonnd. and individual paramerers only free. III FOI., this restriction is reiaxed, and INDVARs may appear free as weil as bound in weli-former formulas. INDPARs, however, minst aiways appear frec. Additionaily, natural numbers are automatically deciared to be INDCONSTs of SORT NATNUM.

Section 3.22 Prefix and Infix notation
FOL allows a ilser to specify that linlary predicate and operation symbols are to be lised as inflxes. The declaratlon of a miliry appllcation symbol to be prefix makes the parentiess around its argument optioial. The number of argumeints of an appilcation term is calied its ARITY. Sectlon 4.1 describes how to make such deciarations.

Section 3.23 Extended notion of TERMs
In addltion to ordinary application terms. FOL accepts TERMs representing finte sets, comprehension terins, lituples and LISP s-expressions. A detailed descrlptlon of the s;latax of these terms is to be found lin Appendix 2.

Section 3.24 The Equality of WFFs
The descrlption uf subsitutinn given in Section 4.35 is consistent with FOL's notion of equivalence of WFFs. Tie pronf-chirctier always considers iwo WFFs to be equal if they can both be changed into the some WFF by illaking allowable cianges of boind variables. Tlius, for example, the TAUT ruie wili accept $V x . P(x) \supset V y . P(y)$ as a tautology.

Section 3.25 VLs and sutparts of WFFs and TERMs
FOL as linplemented offers very powerfui and convenient techniques for referring to objects in a proof: essentially, any weli-formed expression has a name, and can be manlpuiated as a single entity. A VL is a liame of a part of a derlvatlon. There are several klnds of VLs; for example, a
label represeints a Ine-number, the WFF on that line, and a list of the dependencies of that line in the derivation.

The syntax of VLs is very extensive alld a review of it will be leff to Appendix 2.

Section 3.26 Axioms and Assumptions

FOL allows the specification of certain WFFs as AxiOMs. The difference betweell these and ASSUMPTIONs is that the former are not mentloned explicitly as dependencies of any lines of the derivatlon. Thus every pronf cliecked by FOL tacitly depends on a set of AxiOMs.

Section $3.27 \quad F(O L$ derivations

As opposed to a erce, a dediction in FOL consists of a collection of AxIOMs and a linear sequence of lilies, earli line representing either an ASSUMPTION of a DEDUCTION from the previons lines (and axions).

Section 3.28 SORTs
The addltion of SORTs, and specification of a pariial order over them, constltutes a major extenslon of FOL from a colliputational point of view. Their meaning and use is discussed in the sections on declarations and the quantifier rules.

Section 4 USING THE PROOF C.HECKER

FOL is illvoked at the Stanford A.I Lab by typing R FOL to the monitor. A backup file is autollatically opened onto which: infilt is saved; the llatie of this file lliay be altered by mealls of the BACKUP conllilat (imle infra). To save all ellire core illage type the comilland 'EXIT; and SAVE -filename>; to restart lype RU <filename> and you will be where youll left off.

The commands fall natmrally imo several classes:

1. Comlliands for definim! the first-order language under collsideratinn: that is to say. collollatids for mahines diclorations:
2. Collmallds for defilling anioms:
3. Commands for maling assumprions and applying the rules of inference to generate new steps ill a derivatinu:
4. Administrative commands, which do not alter the state of the derivations, but ellable varinus bonk-kecping functinns to be carried out.

In this matioal the symax of Fot, will lie ileseribed uking a moilified forin of the MIISP2 notion of paliern. These form the liasie entisiruris of the foll parser.

1. lifeniliers whirli appear in patierise are in te taken literally.
2. Pallerise for symtalir lypes are surroumiled by angle brackets. Thus (wff) is a WFF.
3. Falteris for repetilions are ilrsigitatell by: RI:I'n[(paliern)] means n no more reprated PATTERNs.
If a Hil'n has iwn argiments lien the serend argument is a paliern that aets as a separator. So

Section 4.1 System Specification

The flrst step ill specifying a first-order theory is the description of the language which is to be used. Thls is done by defining the symbols of the langiage, using the declaration commands. These collmallds specify whilch symbols are to be variables, constants and predicate or fullction symbols.

Section 4.11 Declarations
As we melltionct above, one ol the first thlngs that a user of FOL must do is to define the FOL iangnage to be considered. Every identifier in a proof must be declared to liave a SYNTYPE. Only uine of these types can be declared by the user. They are: l. SYNTYPEI
a) INDVAR (individual varialles)
b) INDPAR (individual parameters)
c) INDCONST (inclimilual constanes)
d) SENTPAR (sentential parameters)
e) SENTCONST (sentential constants)

2. SYNTYPE2

a) PREDPAR (predicate faramefors with one or more argumients)
b) PREDCONST (predicati constints)
c) OPPAR (operation parameters or function parameters)
d) OPCONST (operation constants or function constant:)

Declaratlons are fixed withill a proof and ance inade they cannot be changed.

DECLARE ALI(REPI(<simpldec> חPTl,l) I REPI(<applder, OPTl,l)):

There are two hillds of SYNTYPEs, those of symbols whiclı take arguments, SYNTYPE2s, and those which do IIOI, SYNTYPEIs.

> <syntupel> i* RLTI indsym> |esenisym>)
> *syniype2s te RLIf epredsym> | consym? j

The idea of SORTs is to allow a user of FOL to restrict the ranges of fullotion to solle predetermlned set. This correspond to the usual practice of int the:naticiavs of saying let f be a function which maps integers into integers. In FOL a SORT is just a PREDCONST of ARITY I, i.e. a property of individuals. The effect of this inforinal restriction to integers is achieved In FOL by

[^0]followed by

- OAO:DECLARE OPC.ONST - (INTECER, (KIEGER)-INTEGERI

A PSEUDOSOR $;$ is all identifier which has not yet teen declared but is assumed to be a PREDCONST of ARITY I and is declared such becanse of the coniexl in which it appears. If INTEGER had not been separately dechared aine., In lis appearance in the sccond commind it wonld have been considered in be a PSEUDOSORT and ileclared accordingly. There is one sipecial PSEUDOSORT, i.e. the PREDCONST UNIVEKSAL. Tinis represents the most gencial SORT and is the defanit option whenever SORT specifications are optional. In declarations it can also be abbreviated by "*". The MOSTCENERAL command explained in the next section, can be used to change the name of the MOSTGENERAL SORT.

```
<pasudosorI> i* ALTI <ldonllllors | |
```

Simple declarations

Examples of simple deciarations:

```
OP:ADECLARE INDVAR x y zl
mamadeclare jnovar aber Sal.A:E:Clamel
```


Application declarations

```
<appldsc> i* *eynlypa2> <lallal> eargduc> OPT| { ebpdec>|)
<argdec> io ALIl eargsori> | enalnum>)
eargaorl> ie ALII I esorirsp, RLTl-|-) epmudomorls |
                                    ( esorirsp, I ALT|-1-) <pssudomoris )
esorirsp> te REPIf epssudosoris. DPT(aLT(ef,l) )
<bpduc> to {LT| erbp> | <rbp> <lbp> | <lbp> <rbp> | |NF | PRE |
<rbp> 10.R. <nalnum>
<lbp> 10 L * <nalnum>
```

Exalaples of application declarations:

The ineanling of this declaraion is that EXP is an OPCONST, it lias two arguments (ARITY 2), both of which are of SORT lint. It also lias a value of SORT Int, and is to be used as in infix operator with a riglit billding power of 800 and a left binding power of 850 . This could also be declared by

Slimpler declarations call be made if you don't wisll to specify so much information.
*** \because CECLARE OPCONST EXPiInimini-Int IIMFI I
deciares EXP the same as above ont uses the default inflx bindings $\mathbf{R}-50 \mathrm{C}$. L-550.
***OECLRRE OPCONSTEXP(InI, |nl)*Ini!
simply makes EXP an ordillary applicative function. so you must type EXP(a.b) rather than (a EXP h). Further simplificion can be made if less sorl informalion is wanted
***OCCLARE OPCONST EXP(|n|, |nl)।
makes the value of EXP have the SORT UNIVERSAL (the MOSTGENERAL SORT), and
****OECLARE OPCONST EXP 2:
just says it lias ARITY 2. Of course

- 0 **DECLARE OPCONST EXP 2 (IMF)
-000.DECLARE OPCONST EXP 2 (l.858 Ra880) ;
have the obvious meaning. This section has illustrated most of common ways of making declarations. There are some other examples scattered throughout this manual.

Section 4.12 SORT manipulation
There are several commands which affect the SORT structure:

Section 4.121 NOSORT ieclaration
NOSORT :
The NOSORT command lurns off SORT checking. If any SORTs have already been declared, an error inessage will be given.

Sect!on 4.122 MOSTGENER1L, NUMSORT, SETSORT, SEXPRSORT
MOSTGENERAL <sort>:
NUMSORT <sort>:
SETSORT <sort>;
SEXPRSORT <sort> t

In FOL cer sill TERMs colle with predeciared SORTs; ummerals become INDCONSTs of SORT NATNUM, compreliension terms, set terins and n-tuple terms have SORT SET, quote-terms have SORT SEXPR. alld the default MOSTGENERAL SORT is the PfEDCONST UNIVERSAL. The effect of the above commands is 10 replace these default SORTs witl those specified by the user. For exainple, in tie case of Goedel-Berinays-von Neumann set theory, the MOSTGENERAL SORT is calied CLASS.

Secion 4.123 MOREGENERAI, declaration

MOREGENERAL <sort> \geq |<sort_list>|:
For exaillple.
-e**MOREGENERRL chossplace ? luhllaplece,blackplecel/
Is equivalelt to the axions
$\forall x$. (whitcpiece $(x) \geq$ cliesspiece $(x))$
$\forall x$. (blach piece($(x)=$ chesspiece $(x))$
where chesspiece, whitepiece and blackpiece are understond to liave beell previously declared PREDCONSTs. Althonglı these axions do not appear explicitly. the quantifier rules behave as if they did (1 io is is explained in detail in section 4.327). This establishes a partial order alnong the SORTs. Another typical exaillple would be the declaration of classes to be MOREGENERAL than sets.

Section 4.124 EXTENSION declarations
EXTENSION <predconst> <ext_set> :


```
<primexl> ie ALT|<sori> | | <indconsi|s|>|)
```

where each of the SORTs in the (primext) already has an EXTENSION defined. For example.

```
***ODECLRRE INOCONST EK & bKINCS, WK , WKINGS,
****OECLARE PREDCONST KINCS II
#0.OEEXIENSION AKINGS IBKI,
Extension ol grincs is (ak)
OOQOEXIENSION WI INCS IWKI,
Entension ol UrINGS is (uK)
- PeodEXTENSION rINCS WKINCS U BXINGSI
Ertonsion of kINCS is (uK 8k)
```

The initial declaration declares BK to be of SORT BKING. and WK to be of SORT WKING. Tlie collmand 'EXTENSION BKINGS \{BK\}:' says that BK is the only nbject which satisfies the predicate BKINGS: similarly, the command 'EXTENSION KINGS BKINGS U WKINGS' says that the only objects which satisfy the predicate KINCS are those in the intion of lire extensions of BKINGS and WKING.S. i.e. BK and WK. This is equivalent to the introduction of the axioms:
$\forall x$. (BKINCS (x) - ($x=B K$))
$\forall x .(W \operatorname{KINGS}(x):(x \cdot W K))$
$\forall x$. (KINGS $(x) \cdot((x \bullet B K \quad x \bullet W K) \wedge \neg(B K \cdot W K)))$
By Itself, this collmand has no effect, but the semantic simplification meclianisin (see Section 4.4) uses these axions.

Seciton 4.13 Predeclared Systems
THEORY <sysname>:
The THEORY command may be used to call up several pre-declared systems. If no THEORY cominand is given. the basic FOL system is generated, i.c. the full natiral drdilction systemfor classical logic with the extended inference rules. The options which are available are

where PRAWITZ is the systell described by (Prawitz 1965), i.e. withont SORTs or any of the extended inference rules slleh as TAUT: ZF is Zermelo-Fraenkel set thenry (as defined in Appendix 3); CBN is Coedel-Berıays-von Neumann set theory (as defined in Appendix 4); S4 and S5 are Lewis's classical systellis of possibility and necessity (as defined in Appendix 5): and KBK and KBB are Hintikka's systems frer Knowledge and Belief respectively (see Appendix 5).

Section 4.2 Axioms

Axfons are only bricfly inentioned in the description of FOL. In the inachine limplemented verslon they play the same role as assimptions, but they do not appear lin the dependency list of any step of a dediction, ller are they printed when yon show the proof. Thins derivations are always relative to a!d inmentioned theory. When a theorenll creating ulinechanism is available this wIll challge. Tine syllax for defillillg an axion is:

AXIOM <axiom> ;
whère

This allows for a bluck structured way of naming sets of axioms, so they call be referred to eitlier by solle particular name, or as part of a group. Each WFF in WFFLIST Is given a llalle by FOL. Thls llane is generated by takling the AXNAM and concatellating an integer io it. For exalliple if the AXNAM is GROUP thell they will be glven the llmes GROUPI, GROUP2... . These call thell be used to refer to each axiom. An AXNAM is like a LINENUM and inay be used in any context that requires a LINENUM. If WFFLIST only contalis one WFF that axion is called AXNAM.

NOTE: The ayniax colla for multiple anmicolonal

Examples:

> *****AXION AI BI VX.-Xe $x_{\text {, }}$ $\forall Y_{1}-X_{(}\left(Y_{A} Y_{(} X\right)_{1}$
> C_{1} Wu. HCH ;

This creates two axlonins A and C. Axlom A contaills two subaxions $B I=\forall X,-X \in X$ and $B 2=\forall Y$. $-(X \in Y \wedge Y \in X)$. If you prefer to think of collecticns of axionss as theories. then the syntax allows arbltrary nesting of theories, each followed by a semicolon. At the moment no cliecking is done for the consistency of axion names. You lose if you create conflicting ones. Axioms cannot be got rid of, so be careful. Numbers are not legitimate AXNAMs.

Using axioms as axinin schemas.
There are no special rules for axion schemas, merely an .xtension of the use of the rules already glvell. Nallely, all axion schema is sillply an axion with a predicate parameter (PREDPAR) in it.

All axinill call lie used anywhere a siep can by lisillg an AXREF. This is of the form AXNAM[PP $\left.+X X_{1}, \ldots, P_{n} \cdot X X_{n}\right]$ and its syutax is described ill the sectinn nll VLs. All AXREF call appear anywlicre a $V L$ call. ill the form $A X N A M\left[P P_{1}-X X_{1}, \ldots, P P_{n}-X X_{n}\right]$, the $\left\{P_{\text {, are predicate }}\right.$ parallieters (FRE, CAria) appearing in the axion, and the $X X$, are propositinnal functinlls assigued to these parameters. The assiguments are done successively ratier tian simmitimensly.

All $X X_{\text {i }}$ is a WFF preceded by λ, ally mumber of INDVARs and a "." (perind). Thils rg. λ x y z. (ivff). The ARITY, p. of the PREDPAR must be less than or eqlial to the number of variables fallowing the λ. The indicated λ-conversinn on the first p variables is done allomatically. The error message "NOT ENOUCH LAMBIAA VARIABLES" means p is too large. The remailling variables are treated as parameters of the elltire axiom, and the instance of the axinm returned is the universal closure of the axioll with respect to these paranneters.

The : (SUBPART) meclianism (see Appendix 2) can be used to take pieces out of lie resulting formula ill the usual way.

Example of using axioll schemas:

```
****OECLRRE PREOFRR F 1।
****INOVAR X;
```



```
INOUCTION, F(O),VX, (F(X) >F(X+1) >YX,F(X)
*OOADECLRRE INOVAR bI
*****a! INOUCTION(F*Ab a.a+b*b+a!।
```



```
*****al INOUCTION(F&2b,Va,a+bob+a)|
```



```
*****A! INOUCTIDN(F*Ab X, X&b=b*X!।
```

$3 \forall X,(X+\theta 1=(\theta+X) \wedge \forall X 1+((X+X 1)=(X 1+X) \rho(X+(X 1+1))=((X 1+1)+X)) \rho \forall X 2(X+X 21=(X 2+X))$

Section 4.3 The generation of new deduction steps

Note: when the marinhles $\Lambda, 13$ and C are mentioned in thin aertion, they pefer to the deseriptinn af the basir Prauilz logir in srrlinn 3.

Section 4.31 Assumprions
ASSUME <ufflist> :
The ASSUME command makes an assimption on a new line of the deduction for eacli WFF in WFFLIST. Note that the dependencies of a line appear in parentheses at the end of a line, and that assumptions depend upon themselves

Examplos:
 $\bullet * *$ ASSUAE $\forall x, x(x)$

1 Vk.x(x (1)
***ARSSUAE $Y y, y \subset y_{1}-Y_{y} \cdot y<y_{1}$
2 Vy.yey (2)
$3-V y \cdot y(y \quad 131$

Section 4.32 Introduction and Elimination rules
The general form of a RULENAME is
<rulenames : : elogeons1> ALT(I|E)
where I stands for Intinduction and E for elimination. The format of a command is:
arule_ol_Intaroncos ie arulonamas allnanuminios ;
The LINENUMINFO is different for eacli rule. This is explained below. We will use 10 stand for an ariuitrary VL (see sectlon 3.25). In the description of some of the rules It is llecessary to distinguish among several VLs. In this case we write al,w2,... . We will write

Al Ma :
rather than
Al <vi> $A\langle v i\rangle:$

Alternatlve alpliabetic RULENAMEs will be glven ill parentieses after the standard ones. These usually correspond to other frequently used names for these rules. Thus MP (modus ponens) or UG (universal generalization) can be used, instead of \mathfrak{I} or $\forall 1$.

All commas in these rules are optional. This will not be inentioned explicitly in the following sections. Thus a "," appearing in a rule specification it is to be thought of as OPT[.].

Section 4．321 AND（＾）rules
Introductlon rile

Al（Al）（＂ヘツ）べ ：
The LINENJMNFO for 1 l is any parentiesized conjunctive expression in which all conjuncts are VLs．If 110 parentheses appear（even in a subexpression）association is to the right，thus
 alternatives to the＂\wedge＂symbol．The dependencies of a line are those LINENUMS mentioned．

Elimination rule

$\therefore E(A E) \quad$ OPT（ALT（．1：］）ALT（1I2I＜subpart＞）：
1 picks out the first conjunct， 2 picks out the second conjunct and SUBPART picks the appropriate subpart．For the definition of SUBPART see Appendix 2．The dependencies of the result are the same as those of a．The first command ill the example could have also been writtell＂AE 4 I：＂or＂AE 4：l：＂or＂AE 4：al＂．＂

```
****AE 4,l!
5 (Vx.Class(x)AVa.-(a(nT))
**&&AE 4:11/R2;
6 Va.-(acMT)
***&AE ||||IOHI
The maln symbol of Vm,Clasef(x) is nol on a
****AE 4:/3;
In lhe <subpari> i/3, 3 Is lo0 large
```

Section 4.322 OR (v) rules
Introdicionin rile
VI(OI) (avanff>Vruff) :
OR's lllay be parembesized just like ANI's, but at teast one disjullet mast he a VL. Ally VLs given will callse lite urpendencies of that iine to be included in those of the collelisinn. As with AND, association is io the right alld OR is billary.

Elimination rule

VE (OE, • . 1 , m ;
 botlo equal to the WFF C. The conclusion of this rule is the WFF C. The depenctencies of ite conclinsinn are those of m along with those of wl which are mol equat io A and lhose of w? not equal to B. Rellimber two WFFs are equal if they differ only by a change of bonnd variable. In the example two different colllilands are given. Note how lie dependencies are ireated in each case.

$$
\begin{aligned}
& 9 \text { Yx.xixu-Vy.yey (9) } \\
& \text { fect:01 1v3:;01 2iv3; } \\
& 10 \text { Vx.merraty.yey } 111
\end{aligned}
$$

Section 4323 IMPLIES (土) rules
Iulroductinurnle

The difference hetwern and ewfeso is that ill the former case dependencies of alic conclusion which are rqual in the hypothesis are aletercl. A comma is all alternative to the " symbol. In nther styles if presenting first order logic this rute is called the redertinu theorem.

$$
\text { ocesos) } 1=11
$$

*:*OEO 1:31:
$16 \forall x, x+y \forall x, y \times \quad$ (1)
$10 * 0212.11$
17 Vy.yeyovx.mis

Eliminatinn rule
دE(MP) * . :

The order ill which the argullecuts are speclfied is Irrelevant. This is the classical rule modus ponens. The dependenrios of the conclusion are the unino of the dependencies of hoth VLs.

[^1]Section 4.324 FALSE (FALSE) IWiS

Iurroductinnrule
FI 1 . 2 :
If 1 is of the form A. then "'2 millst be of the form - A (or the nolier way aromilld). The conclusion is just the WFF "FALSE". Its dependencies are the union of those of alad al
**etry 1.3i
19 FOLSE :131

Eliminatinn riole

FE . ALT © 1 (uff) :
" ull alternative. This rule says that allything follows from a colltradiction. The deprudencirs (iliere had better be snille) are just those of m.

$$
\begin{aligned}
& : \text { :SO:FE 19 6: I1(A+N): } \\
& 20-(x, n+1) \quad(13)
\end{aligned}
$$

Secrion 4.325 NOT (-) •illes
Introúluction_rile
-I (N|) . ALT(M) | <Hff) :
 dependencies of the comelnsinn are those of minus the nomes equal in wl: ne wrf.
...e.e-1 19.3:

Eliminatinn rule
E(NE) * . NLICM1 IUft, :

 and only the introdincion and rlimination rules are used lice pronf is intilitimicticly valid.

: 0 : : ASSUME	UME -3:i
$\therefore 3-8 y \cdot y \cdot y$	y0y 1231
9.epirt 23,31	
- 5alse	13231
:-Per-E 24,3:	
\therefore Vy.yyy	$y \quad 1231$
t:*PDED 23s35;	
$26-37 y . y(y) V y . y: y$	

Section 43.6 E(!! Il'ALENCE (F) IUles
Intrndurtinn_rile

- | (E)
 The dependencies ate the union of the dependencies of $\#$ and ≈ 2.

$$
\begin{aligned}
& \text {-0.e.: } 26.2: 1
\end{aligned}
$$

Elimillatinn rele
*E(EE) • . ALT(ALT(ว11) | ALT(c|2)) :
If as of the forill $A \subset B$ lien the first alternative prodices $A \supset B$, lie seconct $B=A$. The dependencies are :linos of \quad.

Section 4.327 g!'ANTIFICATION mules

This is all example of a pronf using all the quantification rules.

```
ex*ADDECLARE INDVAR \(x\) yi DECLARE INDPAR a b; DECLARE PPEDPAR \(P\) i:
\(\because \because \because A\) QSSURE \(\forall x, 3 y, P(x, y) \nmid \forall x\) y. \((P(x, y)>P(y, x))\);
| \(\forall x, 3 y . P(x, y) \wedge \forall x y .(P(x, y)>P(y, x))\) (1)
```



```
\(=7 x .3 y . P(x, y)\) (1)
eocoo-E 1 2!
\(3 \forall x y \cdot(P(x, y)>P(y, x))\) (1)
o.oove 2 ai
- 3y.P(A,y) (1)
BCP:VE 3 ab
5 \(P(A, b)>F(b, a)\) (1)
```



```
\(6 P(A, b)\) (6)
060005E 5,6;
\(7 P(b, a)\) (1) 6\()\)
eoooonl 67
\(8 P(a, b), P(b, a)\) (1) 6\()\)
strete318 bayi
\(\left.93 y, P^{P}(a, y) \wedge P(y, a)\right)\) (1)
+totovi 9 anxi
\(10 \forall x, 3 y .(P(x, y) \wedge P(y, x))\) (1)
cotoos 12101
I| \((\forall x, 3 y, P(x, y), \forall x y,\{P(x, y) \geq P(y, x))) \geqslant \forall x, 3 y,(P(x, y) \notin P(y, x))\)
```

Section 4.327I UNIIERSAL QUANTIFICATION (V) rules
Illeroductinur rule

VI (UG) • REFil OPT (ALTl<indvarsl<indpars) - l <indivar>. OFTl.i) :
Several simullanenns miniversal gemalizations on " call he carried nolt with lhis ramlinamil. For each elellicul of the list (either x or $a^{+} x$) a new universal quantifier ($V \mathrm{x}$) is plll at tle finll of a: created. and necorrences of a ill the second casc) and a liew lille of lie derivation is
 must uni niplient fres in any af the depmendencies of e.
 dependency) sn lie gencialization is Iegal. Notice that the "a" was clialiged in all "x". "a" callot be generalized, as it is an INDPAR.

Elimillation ruin

VE(US) , <termlist> :
Universal specificatinn uses ilie trems int the <termist) to instantiate the universal gllantifiers int the order ill which thry appear. If a partlcular term is not frec for the variable in be instantated a bonnd varialife cliange is illade and then the substitution is lliade. The variable created is declaied in lie ali INDVAR of the correct SORT.
Line 4 and 5 of the example were created by this rule.

Section 4.3272 EXISTENTIAL @l/ANTIFICATION (3) rules

Imirodiction rule

 generalized and the next thing in the list is considered Notice that len luse can be made of an cocelist) if lliere is In LEAM present. The machille will ignore such a list ill thas case. Tlie dependencies of lise couclissinn are just those of ${ }^{\text {a }}$

The cordermatimmions is a list of matmal mumbers in increasillg order.

 described above lereanse of the previons existential elimillation. This is explitiond helow.

```
#*:OCCLARE RRLDCONST F 1,TRUT F(x)v-F(x)|
***
***
&)f(x)v-F(v)
\cdotseta 31 2%,*-4 तCC 21
<8 3y,(F(x),-F(y))
ftot* Y1 28, =1 
79 \forallx,3y.(F(x) v-F(y))
```


Eliminatinn rule

3E(ES) . FIFMIALII rinclviar: 1 rinclpar> J, OFTi.j) :

 what we called "y" lint ouly ntl the dependancies of the existential statcillell we vatied with. Thus we call eliminate $l^{\prime}(a, h)$ from the assumptions of this lieneren alld irplice them with those of the assumptinus of $3 y . I(a, y)$

The machine implementation thins makes the correct assumption for yoll. remembers it and automatically removes it at the first Irgitimate opportmity. Several elimillations call he dolle at once.

In the example an existential elimimatinn was done creating step 6 . This lime acmally has as its REASON that it was Assumed. Line 8 thus depends on it. When the existential generalizatinn was done on the next line, b un longer appeared and so line 6 was removed from the dependancics of line 9. A user shonld try to convince himself that this is equivalent to the rule stated at the begitming of this manual.

Section 4.3273 Quantifier rules with SORTs

The following table describes the effect of the quantifier rules in the presence of SORT and MOREGENERAL declaratinns, such that p is of SORT P. q is of SORT Q and r is nf SORT R. and R is MOREGEivERAL than Q and Q is MOREGENERAL than P

VE	Mq. $\boldsymbol{A}(\mathrm{q})$	Vq. $\boldsymbol{A (q)}$	Vq. $A(q)$
	$A(p)$	A(q)	$\theta(r)>A(r)$
V1	$A(q)$	A (a)	$A(q)$
	$\forall p . A(p)$	Va. $A(q)$	error
3E	3q. A (q)	3q. $A(q)$	3q. $\mathrm{A}(\mathrm{q})$
	orror	A (4)	A(r)
31	A (a)	$A(q)$	$A(q)$
	$P(q)$ O3p. $A(p)$	3q. A (q)	3r.A(r)

As an example, it is possible that you might try to instantiate a variable to a term whose SORT is MOREGENERAL than the quantified variable. In thls case the result of the specialization is to create an implication asserting that if the term were of the proper SORT then the speclalization holds. If the variable is MOREGENERAL than the term then the usual WFF is returned.

Section 4.33 TAllT and TAlITEQ

TAUTOLOGY rile

TAUT <wft> , <vilist>:

This rule decides if the WFFs follows as a tantological consectuence of the WFFs mentinned in the VLLIST (the Intion of VLLIST is defined in Appendix 2). In lis rase WFF is collolnded alld its dependencies are the muinn of the dependencies of each WFF in the VLLIST. We lhillk this algoritholl is faitly efficient and thes slonuld be used whenever possible.

TAUTEQ 2 mis
TAUTEQ implements a drcisinn procrdure for the thenry of equality and n-aty predicates, it 0 . Its symtax is the same as the TAUT me:

```
TAUTEQ <wff>. evllist.:
```

This rule decides if WTF follows from the WFFs mentioned in VLLIST in the above-mentinned theory. Thins, allything that can be proven by TAU'T call also be proven by TAliTEQ, bit TAUTEQ runs more slowly than the TAUT rule.

```
*:or-occlare preoconst ploll
*ct:dECLARE opCONST | 1/
OODDECLRRE INOVAR a bI
*OCOTQUSEO N=bد(P(a):P(b)),
| arbo(P(a):P(b))
****Taut nabs(p(alap(b)),
IOUGH LUCK
*a-sTQUTEO a=bsl(al-i(b),
tough luci
```

 to a new PREDI'AR with ARITY 0 , say PI. $P(a)$ to $P 2$, and $P(b)$ io P3, and thell try to prove $P 1 \supset(P 2=P 3)$. The formula $(a=b) \partial f(a)=f(b)$ cannot be proven by TAUTEQ sillce TAUTEQ dnes not know aboul the argulnctits of functions.

Section 4.34 The UNIFY Command

UNIFY <Wff>: :
This comniland tries to establish whentier the WFF is a consequellce he VL are
This rule of linfercuce is best described by first presenting some examples:

```
**OARSSUNE VX.P(X),
| Vx.P(x)
**t*UNIFY P(1(0)) I;
? P(1)(0)
<\cdots:UN|FY 3X,P(X) 1/
3 3x,P(x)
```

In step 2, the UNIFY mochanism recosilised that P, applied to any TERM followed from $\forall X . P(X)$.
 simple cases of the use of this command. A more complicated example is:

```
t+e::ASSUME 3X,Yy, (P(X)v02(X,y)) I
1 IX,YY.(P(x),0:(x,Y)I (1)
**O:&UNIFY 3W.P(W)VJW.VZ.02(W,Z) 11
\therefore 3W.P(W).3W.V:.02(W,Z) (1)
```

Notice tliat, ill bonth of the examples above, the propositional structure of WFf was the salle as that of the VL. This rule is designed in handle exactly this case: uamely, it is designed in liande the quantifier manipulatinns involved in implications between WFFs with sillilar propositinal forills.

Section 4.35 SUBSTITIITION rule

SUBST 1 IN ? OPTI OCC <ordernatnumlist> ;
 occurences of the lefi hand side of al which appear in we will be replaced by lie right hand side of m. If all necurrence list appears only those listed will get substiluted.

```
SUBSTR #1 IN #.: OPTl OCC cordernatnumlist> ) :
```

 ${ }^{-2}$.

Ordinarily. f(x) calloot lie substituted for y in $\forall x . F(x . y)$ as lie x ill $f(x)$ would llon herolle
 variables ill a culistillimini linese nccurelless of a bollld variable which will calles a conflici are

 being used.

The 'uew' varialile is ctraled by consideriag the 'old' variable to lave two parls: a prefix which is the identifier up in and including its last alphanumeric character, and an index, either rompty or a positive integer. The new variable which is generated will have the salle prefix, alld ant illcrellellted index. For this purpnse, all emply index is collsidered to be ' 0 '.

Section 4.4 Semantic Altachment and Simplification

FOL is comerrued with chectimg thememes in a first-nrder lamestage, which the mere perifies by
 symbols, F a set of fullictinn symbols, alld C a set of colistaill syulions. A model of 1 is a

 specifies which s'mbink in I' correspond to which predicates in M, similaly for Fand C. The implemeritalinio of criliolitic altachinent lias iwo asperts:
 correspond in symblow ill the langua!e and bice versa, and
 the notinn of sathefurthers.

 model would give the number 3 as all allswer - the simplifier would then retull the livirans ' 3 '.

 computatinn withill the model, as well as any relevant iufnrmatinu alinut the EXIFASION and SORT siructures which the ilser lias defined on L.

FOL allows the assignoment of arhitrary LISP functions or lamhoda-expressions as the Interpretations nf predicate and functinn symbols.

Section 4.41 The ATT ACH command

ATTACH OPT (•] ALTI <predconst> 1 <opconst> 1 <indconst>] <s_expr> ;

```
<s_expr> :- ALT[ <atom> l (<8_exprlist> OPT[<dotend>) ) ]:
<s_exprlist> := REP1\ <s_expr> )
<dotend> 1-. <sexpr>
<atom> I=ALTl <identifier> | <natnum> I
```

This command allows for the definitinn of the maps from the FOL langiage that the inser has defined into the I.ISP rinvirnnment which he wishes to take as the model of his language (and vice versa if the ATTACII: nption taben).

PREOCONSTs and CIFCONSTs may be attached either to atoms which are the llames of already. defined LISP functinns (i.e. oncs which have a SUBR, EXPR or MACRO property, including of course all the standard II.ISP functions) or legal LISP function, lambda-expression or macro definitions. The attarhment mechanism checks that the finctions (except SUBRs) being attached have the correct number of arguments corresponding to the ARI TY of the FREDCONST or OPCONST to which the attachment is being trade. INOCONSTs may be attached to ally S. expression.

```
                                    *****OECLARE INOCONST ZERO, ONE ( INTECER
                                    ****OECLRRE OPCONST + IINTEGER,INTECER)=TNTECER ITNFT,
*****RTTACH ZERO 0,
ZERO Allached IO O
*****RyTACH ONE 1/
ONE allached to |
****OECLARE OPCONST CAR COR(LIST)=!IST,
*+PC:OECLORE OPCONST CONS (SEXPR,SEXPR)=SEXPR,
-coabttach car car;
****RTTACH CONS CONS,
****OECLARE IMOVAR A B L C SEXPR,
```

Section 4.42 The SIMIPLIF' command
SIMPLIFY [ALT -uff, $\mid\langle$ vi> $|$ eferm>]:
This command effects lies simplification of an FOL semence by mompling within its model, i.e. the simplificalinn merlianisulle allempts to find. ill the model, ribject (lisl S.expmesions) which correypomi to symactic symbols ill the seltence. If any are fonmd, they ane lival mated in

 togelher with its misvimally simplificil form: if a termexist ill the lamparer for the

 appropriate. 'Itie simplification is callied nut in the mavimal exterm.

If a LISP error is remonntered duriu! simplification, all eirne message is given.
In the model defiurd liy the attachinemts made above, the following nccills:

$$
\begin{aligned}
& \text { ***SIMFLIFY:TPO * ONEI } \\
& \text { IIPOAONE - } 1 \\
& \text { t: : : simpl Itry chr : iA BI; } \\
& \text { CAR('A RI):A }
\end{aligned}
$$

In additinn, the simplificatinn mechanism takes into accomint any informatinn that is availahle
 example nom extrusinns given ill section 4.124:

```
e...-neclarf iniconst b: , blings, Wi , hlincs,
\because- nCCLDAf fRIDCONST I INCS 1:
:::::EXTENSION IU|NGS IBY!:
Ertension of BI INTS is (8B)
:\therefore:OXTENSION II INGS INII:
Evtension ol wl INT.j is fukl
amertxIENSION IINCS HR INCS U BI INCS,
C=lansion ol liNGS is IUR BKI
s+r.:SIMPLIFY WI=BI,
-(4) = BF)
```

Section 443 Auxiliny $\operatorname{FUNCTION}$ definition
FUNCTION < function s_expr> :
 defillitinn is a legal es expre which is not a legal LISP function drfillitinn of ller UE or DEFPROP sort, all eirnt mesoage will be givell.

Section 4.5 Admimistration Commands
These commands manipulate the proof cliecker but do wot diectly alter tie current defliction.

```
Section 45l Thel,AllFl inminand
```


 used ill ally placo that lion syotar expects them.

Section 4.92 File llaydling commands

Scction 4.521 The FEIC II command

 FOL accepts standind stanford file ilesicnators. If marh sperifications are present, the file is only read withill the limils which they specify. The defanlt FROM/TO are the be!tinling and the cond, respectively, of the file The collmands read during a fetch are not primted int the backup file. FE:IC:Ifr: llay lie uested to a depth of 10 .

Section 43:? The M. 4 lik inmmand
MARK - TOKمIV:
This command has nor effect noll the proof, but simply places a math in the file which the FE.TC:H comimamil sall lise in delimit isading of the file.

Section 4323 The bat RUP command
BACKLIF rifin Hamי: :
When FOL is intitializel, a file called BACKUP.TMP is altomatically created. All collone inpllt from the user is savid un this file. This command coses the current hactup file, and opens a new one with lie specified file lime.

This closes and rcopens the backinp file. Normally the backup file is written every five steps in the proof, but this command chables the user to save tlie state of his deductlon at any polnt.

Section 4.525 The COMAMENT command
COMMENT <clelimiter> <text> cdelimiter>
When typed at the top.levri, this inserts any text between the delimens into the backup file; If it appears lit a FETCHed fitc, the iext is ignored. Of course, the delloniter must not appear lit the text.

Section 4.53 The CANC:EL commiand
CANCEL OPT[<linenum>];
Thls cancels all steps of a dedirtion with LINENUMs greater than or equal to LINENUM. Thus you call remove unwauted steps froml a deduction provided they are all at the end of the PROOF. If no LINENUM is specified, ouly the last line is cancelled.

Section 4.54 The SHOIV command
The SHOW command is used to diplay information generated by FOL. The intent of the present command is in allow youl in display information about a derlvatinn at the console and save it oll a flle. The integer after the FILENAME becomes the llnelength while this command is active.

```
SHOW <showtype> OPTI
    <filename> OPT( <integer> j) :
    <0howlype> t: ALI( PROOF OPI( <rangelisl>)
                        STEPS OPTI <rangellsi> J
                        AX(OM OPT( <axnamllol>) 
                        OECLARATIONS OPII sdecinlos;)
                        GENERALITY OPT( agenInlos ) f
                        LABELS OPT( alabellnlo>)j
    <rangelieis := RCP|lerangespecs,OPT(,))
    <rangespecs in ALT( OPTI &linenum> l: OPT( <llnenum> | | <llnenums)
<decinlo> &- REPI( ALT( <synfypes OPT( ( <eorl)| |
                    <lolsyms 
<genInlos ie REPI( <sorl>, OPT(,) )
<label|nlo> i= RFP|| ALT| <labol> | <rangespec>), OPTl,| )
```


 there are two illimlien arparated by a cololl, the rallge is froll the fios in the ementit If

 returns appropriate syulactic illfolliation.

Exalliples are:

this writes lines 1, 2. In 5. IG to the last line of the pronf nutn the file FOO.BA7[sl:T, R W W] with a linelengtlo of ? 2

- Co : Shou froor:
displays the pronf oll hir coilsole.
The next example, bahen from all aclual test file, slinws lise kind of symactic iuforimatinn displayed by a "slow declaratinus" collolland.

```
:A:SHNOW OECLAPAIIONS EMPTY }x\mathrm{ - Scarry fronl binarynlive:
EMPIY IE INOCONII oI sorI BYIES
* is INOVAR of sorI INTEGEP
- is OFCONSI
```



```
- is PRECCONS:
TH.N HOmAIO IS INIEGER INTEGERIL. YPO N. 3OOI
c,urgy is ORCON'T
The domain is AYIIS BYIES, and the rarga is AYPES
Iront is OFCONST
The domain is BYIES, and the range is BYI[SI9. 75,i]
No dociaralion for binaryplus
```

$\therefore: B:$ SHOH OECI ORATION SORTS
sloows all the PREDCONOTs of ARITY I (i.e. all of theSORTs)
SHOW comllinds do lie ohvinns linng in conjunction with the display featilm lilined on by DISPLAY.

Section 4.55 The DISPLAY command
DISPLAY OPT (<displaytype>) I

<displaylyne> :- ALTI PROOF	
STEPS	
RXIOH	
	RTTACHAENTS
	OECLARATIONS
	LABELS
	STATUS

FOL may take advantage of the display features of the Stanford DataDisc system by means of thls command.

For example:
*****OISPLAY,
creates a display windnw of full-screen width, Into which the steps of the proof are displayed as the derivation continlies. The page-printer is restricted to the botion eight lines of the screen. If the argument is noin-InIl then the 'proof' window is restricted to half-screen widtli, and a second whindow, approf-inely labelled, occupies the other half of the screen e.g.

```
****OJSplay axions I
```

causes an 'axion' window to be opened, and all axlons are prlnted to that wlndow, rather than to the 'pronf' window or the page-printer.

Whatever the current state of the display, 'DISPLAY cnulli' callses the 'proof' window to be regenerated. Ingether with the last five lines of the pronf, if any. Any other windows which may be present are flushed. This method is slow and cannot be used from teletypes, but provides a much inore convenient way of displaying the steps of the proofs and other informatlon.

> -***undisplar ;
restores the screell to normal teletype mode.

Section 4.56 The EXIT command
EXIT I
This command returns the user to the monitor in a state appropriate for saving hils core-inage.

Section 4.58 The sroul Command
SPOOL <filenimev: ysfoll <filename>:

Sechon 4.58 Th 7TY 6 immand
TTY:

 FORALL, EXISTS.

Appendix 1

FORMAL DESCRIPTION OF FOL

The non-descriptive symbols of FOL divide into SYNTYPEs as follows:

1. Individual variahles - INDVAR. There are denumerably many individual variable syinbols. We use x, y, z as meta-variables for them;
2. Individual paraineters - INDPAR. There are denumerably inany individuai parameter symbols. As meta-variables we use a,b,c;
3. n-place predicate parameters . PREDPAR. For each :: there are denumerably many predicate parameter symbois. All in-place PREDPAR is sald to have ARITY in;
4. Lngical constants:
a) Sentential constants - SENTCONST: FALSE and TRUE.
b) Sentential connectives - SENTCONN: $, \boldsymbol{\sim}, \mathrm{v}, \boldsymbol{z}$, .
c) Quantifiers - QUANT: V and 3 ;
5. Auxillary signs • AUXSYM: parentiesls ().

A particuiar FOL language is distinguished from a pure first order language by declaring
certain constant symbols. These have the SYNTYPEs:
I. Indlviduai constants - INDCONST;
2. n-place predicate constants - PREDCONST. Each n-place PREDCONST has ARITY n:
3. n-place operation symbois . OPCONST. Like PREDPARs each lias an ARITY. Some authors call
OPCONSTs function symbols:

Each CYNTYPE is assumed to be disjoint from all others.

TERMs

t is a TERM In FOL if eiticr

1. is a il INDPAR, INOVAR, or an INDCONST, or
2. t is $f\left(t_{1}, t_{2} \ldots, t_{n}\right)$, where f is an OPCONST of ARITY n and $t_{1} l_{s}$ a TERM.

WFFs

A is all atomic well-formed formula or AWFF if

1. A is nue of the symbois "FALSE" or "TRUE".
2. A is $P\left(t_{1}, \ldots, t_{2}\right)$ where P is a PREDPAR or a PREDCONST of ARITY n.

The notion of well-formed formula or WFF is defined inductiveiy by:
I. All AWFF is a WFF.
2. If A and B are WFFs, then so are $(A \wedge B),(A \vee B)$. $(A>B),(A=B)$, and $-(A)$.
3. If A is a WFF, thell so are $\forall x . A$ and $3 x . A$ provided that x is an INDVAR.

The usual deflnitinns of free and bound vapiables apply and can be found in any standard logic text (e.g. Mathematical Logic by S.C. Kleene). Below the usual conventions for onnitting parentlieses will be used.

SUBFORMULAS

The notinn of SUBFORMLLA is defined inductively
i. A is a SUBFORMULA of A.
2. If $B \wedge C, B \vee C, B=C, B \approx C$, or $-B$ is a SUBFORMULA of A so are B and C.
3. If $\forall x$.B or $3 x . B$ is a SUBFORMULA OF A, so is $B(t-x)$.

The notations $A[t-x]$ and $A[t-u]$, where A represents a WFF, t, u TERMs and x an INDVAR are used to denote tire resinit of shbstituting x or u, respectiveiy, for all occurrences of t in A (If any). In conterts where a motation like A[t-x] is used, it is aiways assmmed that 1 does not occur In A within the scope of a quantifier that is immediately foliowed by x. Tine notation $A[x+t]$, denotes the resilt of substititing t for all free occurrences of x.

The notation $A[a+x, x+1]$ means the result of first substituting x for a and then t for x. To denote simultancous substitution we use $A[a+x i x+t]$.

Appendix 2

TIIE SYNTAX OF THE MACHINE IMPLEMENTATION OF FOL

In this monual the syntox of FOI, will be deseribed usiliz a modified form of the MIISP2 notion of pallern. These form the linsir romatruets of the FOl, paraer.

1. Identifiers whirh oppmor in patierma ore on be taken literally.
2. Palterms sor ayntortic types are surroundrd by analo brartiets.
3. Pallerna for reprititions are designoted hy:

KEP'I/<nnilern>/ meons n or more repenied PATTERNs.
 aeporotor. So that RE:PI/<w/s/./ miratis one or more WFFs arporoted by commos.
4. Aliernotives apprar an AIT/PATTY:RNI1...|<PATTERNn>).

AIT//<uss>|<irrm>/ means rilier o WFF or a TERM.
5. Optionol things appror an ()PT/<potiorn>)

REPa/<ufß, oPTII/ menms a sequence of two or more WFFs optinnolly arporated by
rommos.
Thesa comvelliona ore comhilled with the alandard Backus Norinal Form notation.

Basic FOL symbols

In an attempt to tuake life easier for users, the FOL parser makes more careful distinctions about the kitids of symionls that it sees than the previous description indicated.

TERMS

The FOL syntax for TERMs allows for both prefix operators and biary inflx operators, as well as the usual function application notation. Any undeclared identifier call be declared an operation constant (OPCONST) using the DECLARE command. With proper declaration the following are TERMs:

```
    (1(x+-y,g(x*y+z))
    CAR
    car (x,y)
    IROROT,BOXI,OOORIUIy|Vx,P(g(x,y))|
    powersel(.A,B,C>)
<torm> 10 ALTI <Inतsym>
        a.pplierm>
        <prolixterm>
        <inlixterms
        eselterm>
        <n_lupleterm>
        <compterm>
        ( (lorm) )
<epplterm> IQ <Applop\rangle ( <tormllot> )
<prolixtorm> is eproop\rangle <term>
<inllxiorm> in <torm> <Intop> <term>
<eotlerm: io l <termlist> l
<nluplocorms to <tormlists,
ccomptorm> io 1 <Indvar> | <wll> I
<lermliets io REPIl <torm>, OPT(,) )
```

These are iilustrated above and may be used at any time. Other additions may occur from time to time.

Of course, the appropriate restrictions on the SORTs of the arguments of the OPSYMs inust be met.

AWFFs

AWFFs are formed similariy, but cannot be nested.

```
<anfl> is ALTl <basawil> ( <n|pisuli> {
<baseauli> in ALTl <senisym> |
<appiautt> i= <applpred> ( <termilol>)
<preamit> i" <prepret> elerm>
<infauti> iv clerm> sinfpred> <term>
```


Examples of AWFFs are

$$
\begin{aligned}
& \mid A, B, \text { W| }|x| 32 . H \in Z \star Z(x) \\
& \langle A, b\rangle=|A,|A, b|| \\
& f(x, y)=\text { car }(c o n s i x, y| |
\end{aligned}
$$

Equality is treated as any other predicate constant, but the system knows about the substituticin of equals for equals. If does not know that $A=B$ is usually interpreted as $-(A=B)$, but treats it as any other predicate syinbol.

WFFs

```
<ull> i= IALt <standard |irsi order logic lormula> |
    <vi> ! IOPT <subparisi 10PT <eubs!_opersl I
```

The syntax for WFFs allows the following abbreviations and options.
The primitive logical symbols are:

Parrntheses may he omilted and thell asmoniation is to thr right. As is usual ronjurretion binds the strollgrst, follourd by disjunction, impliention and nquivalrmee. Nrgation, as urll as both quontifiera,
 $\boldsymbol{V}_{x} .(P(x) P P(x))!$

We can write adjacent quantifiers of the same type together, so $\forall x, \forall y . P(x, y)$ can be written $\forall x$ $y . P(x, y)$. FOL also accepts $(\forall x)(\forall y) P(x, y)$ or ($V x y) P(x, y)$ for $\forall x, V y \cdot P(x, y)$.

Subparts of WFFs alld TERMs

Within a deduction there is a completely general way of specifying any subpart of any TERM or

WFF already mentiourd. We accomplish thls by means of a SUBPART designator. Derivatlons colnsist of WFFs, each of which lias a LINENUM. The WFF whicli appears on this line is designated by following it with a colonl. If

$$
\text { 10. } \quad \forall x y \cdot(P(1(x))>0(h(x, y)))
$$

Is llie 10 of some derivation then 10 : represents the WFF on that line, l.e. $\forall x$ y. $(P(f(x))>Q(h(x, y)))$. Furtheriliore, subparts of such a WFF call be designated by a SUBPART desigilator.

```
*subparI> ie REPII cinteger> J
```

The illteger denotes which branch of the subpart tree you wish to go dowil. Quantified formulas and negations liave ouly one illuediate subpart, called al. The otlier sentential connectives each have two. For predicates and finction symbols the number of linninediate subparts is determilled by their ARITYs. Ally colnflict wlth these will produce all error. Thus

Substitutions ill WFFs and TERMs

Once you liave nalled a WFF, you call use a substitution operator to perform an arbitrary substitution.

```
*subsI_oper* i" { REPI{-subsilistl>,OPT(i)] )
```


Examples:

$$
\begin{aligned}
& \text { 10:11(xal(y)): Vyl.(P(i(1)(y)))20(h(f(y),yl))). }
\end{aligned}
$$

 $f(y)$ from heroming hould. Sere serition on subalilulione.

WFFs and TERMs thus liave the following alternative syintax:

```
<wfl> la <vl> 1 OPTI <eubparl> OPT( <subsi_oper> )]
\!erm> :" <vI> : OPTi <subparl> OPT\ <subsl_oper> )|
```

There is an ambignity as SUBPART may produce only a WFF where a TERil is llecessary (or the other way arnullu'. FOL cliecks for this and will not allow a mistake. Sucli a subpart desiguator call be used whencrer the syutax calls for a WFF or TERM.

A nother tabel for haluling well-formed expresslons is the VL

$$
\begin{aligned}
& \text { carreis | REPI(-)) }
\end{aligned}
$$

The optional - or - cinteger» after a labei dejignates an offset from the mentioned label by the amount desig naled.

The last alternative has un: beel previously mentloned. Its meaning is the intli previous lline, where il Is the number of "." signs.

Appendix 3

AXIOMS FOR ZERMELO FRAENKEL SET THEORY

The axions presented here and in appendix 4 are examples of the expression in FOL of the conventional Zermelo.Fraenkel and Goedel-Bernays-von Neunann set theories. We believe that the practical use of set llieory for mathematical and computer science proofs will require an extended practica! systell.

```
OECLRRE PREOCONST ( 2[INF)
OECLARE PREOCONST e 2[JNFJ;
OECLARE OPCONST U 2(INFII
DECLARE INOVAR r s iuvanxyzl
OECLARE PREOPAR A 2 B 1/
AXIOM 2FI
\begin{tabular}{|c|c|c|}
\hline EXT: &  & \(x\) Exionsionallily \\
\hline EMT, & 3x.Vy. - \(V^{\prime}\left(y_{1}\right.\) & \(x\) Null sel \\
\hline PAIRI &  & \(X\) Unordered pair \\
\hline UNIONI &  & \(x\) Sumeol \\
\hline INF: & Fx. (0rxavy. (yrxa(yUlyl) (x)): & \(x\) Inlinliy \\
\hline REPLI &  & \(\chi\) Replacemenl \\
\hline &  & \\
\hline SEP1 & \(V_{x} .3 y . V_{z},\left(z\left(y z z(x, B(z))_{1}\right.\right.\) & \(z\) Saparalion \\
\hline POHER: & \(\forall x .3 y . V_{2} .\left(z z_{y} \pm 2(x)\right.\); & \(z\) Powar sel \\
\hline REGI & \(\forall x, 3 y .\left(x \in \theta \cup(y r x a v z .(z(x)-z(y)))_{11}\right.\) & \% Regularily \\
\hline
\end{tabular}
    #y.(x=0v(yrxAVz. (z(x)-z(y))):1|
```

 Replacemont is equivalent \(10 \quad x\)
 \(\forall x .(\exists y . A(x, y)\) A \(\forall y z .(A(x, y) \wedge A(x, z)>y=z))\)) \(\quad y\)
 Vu. Jv.iVr.irive Js.iscuaA(e,ril)) \(z\)

x Separalion is a consequance ol and weaker thati replacment. z
x Delinilions y
DECLARE PREDCONST FUN 1,INTO 2,PSUBSET 2IINF),
DECLARE OPCONST rag 1 dom 1_{1}
axion

SUBSET:	
PROPSUBSETI	$\forall x y .1$ PSUBSET (x, y) exeyA-xay);
PaIRFUN1	
UN I TSE TFUN,	$\forall x,(\mid x i, i x, x i){ }^{\prime}$
OPAIRFUN:	$\forall x, y .1$ ex,y>eiixi,ix,yil)/
FUNCTIONI	
OOMAIN,	
RANGE:	
INTO,	$V_{w} \times .() N 10(w, x) r$ ring (w)ex);
UNIONI	

Appendix 4

AXIOMS FOR COEDEL-BERNAYS.VON NEUMANN SET THEORY

```
MOSTGENEAAL CIASsI
OECLARE PREDCONST CIASE Sol 1;
OECLARE PREOCONST, (CIAss,CIAse)IINFI,
OECLARE PREOCONST C(Sel,Class)IINF),
DECLARE INOVAR A B C Class,x y u var Sefi
DECLARE PREOCONST Empiy Onemany(Clase), Oisjoinl(Clase,Close),
AXIDM NGB,
    KLASS: Vx.Clase(x);
    ISSETI
    EOUAL:
    EMPTY:
    PAIRS:
    CLASJ!
        EPI: 3n. V11v.(ev,v>(AEu(v),
        INT: VA A.JC.Vu.lurCeurA&u(B);
        COMF: VA.3R.Vu.(urBE-u(A),
        FROJ: VA,JR.Vu.(u,B:Jv.<u,v>(A),
        PROO: KA.JR.Vu v. (<u,v>(Beus(A))
        CONV: \forallA.3A.Vu v.leu,v>cB:ev,u>(A),
        TR11: \forallR,38.\forallu v w.l(u,v,w)(BIev,w,u>(A);
        TR12: VR,3B.\forallu v w. (ru,v,w>(B!<u,w,v>(A)||
    SET:
        INF: Ju.(-Emply(u)AVr.(veusJw.(me unavamavew))?!
        UNIDN: Vu, J%,Vm x. (mexaxcumwev),
        POWER: \forallu.Jv.Vm.(meuzw(v)।
```



```
        VA, (-Emply(H) sJu. (uf AaDisjolnf(u,A))),
    AC: JA. (Onalany (A)^\forallu.(-Empiy(u) oJv.(v(u^ev,u>(A)))|,
```


Appendix 5

INTUTIONISTIC MODAL LOGICS

Modal logir:

 Lewis S4 and St. Inmitha's KBK and KBB(opcit) are already availahile. Ingether witlo the

(a) Tlie Clascical Syuchar T. $\$ 4$ alld $S .5$
voll Wriglit's s.atcin. T (van Wrightil951) is got from LPC by adding:

$$
\begin{array}{ll}
\Lambda 5: & N . p>p \\
\Lambda f: & N .(p \supset q) \supset(N . p \supset N . q)
\end{array}
$$

Lewis's system SA (l.cwisislangfordig32) is got from T by adding:
A7: $\quad \mathrm{N}_{\mathrm{f}} \mathrm{l}=\mathrm{NN}_{\mathrm{f}} \mathrm{p}$
Lewis's $\$ 5$ by anding:
A8: $\quad \mathrm{M}_{\mathrm{f}} \mathrm{p}=\mathrm{NM} . \mathrm{p}$
(b) Nafiral Dedurtinu Sy tecms of Mmial Logic
(I) Tlicue are hasen nil mintinal. classical and intmitionistic Ingics:
(2) A forillila is said to be madnal if its principal sign is a modal sentential operator:
(3) Necessity syarems:

Prawitz lias iwn inference rules for S 4 :

NII	a	NE)	N.a
	$\ldots . .$.		2

and a roiresponding dedinction rule for NI, when the pronf or deductinu of 'a' deperids anly nu illodal forminlas

III S5. N.ama may lie inferred alsn when every formmla ill the depenilency set is cither a modal forilila or the "çation of 2 mindal formula. begill indent 5.0 (4) Possibility systems:

The possihility nperaine, M, Inay be arlded by means of the riles

MII	a	ME)	M.a \& b
	$\ldots .$.		$\cdots \cdots$

 MF.
 ill the Prawitz syclem this is unt finssilile.

$$
\text { -modilmil. } \quad \text { : modalprelics eprimults }
$$

amonitprali.. : .imentifiar.'.

For exalliple. NMN-MMNNMNMNM.A and $\forall x . M . P(x)$ MMM.p(x) are well.formed.
When scamming for molal formulae is turned on using the 'TIIFORY' rommand (ser Section 4.13). the followitus rules licul licenime available:

NE(:I (liuc unmher), NE: (lime-\|umber)
POSSI <line-numlier>, POSSE 《line-Inmber)
as defilled by lien enmetitions alinve. (Note carefully the dependency restrictiona)

Bibliography.

Burks, A.W.(1951) 'Tlie logic of calmsal propositions', M1IND. 60.363.52
Floyd. R. (1963) 'Ascis!ning meanings to programs' in (J.T.Schwartzed.) Pimicedings of a symposiam in appheal mathematios. vol 1^{7} (New York: Allericall Mallematical Snciety)

Follesdal. D.(1968) 'Knowledge, Identity and Existence', Thicorin, 33:1
Hayes, P.J.(1974) 'Snme problems and non-problems in represellation lienry' in Procecidings AIS B Conforence, Sussex. Englinnd

Hillikka, J.(1955) 'Form and contem in quantification theory', Actn Phil Fimmin, s 7
 Cormell (II.)

Hillikka, J.(19Gil) 'Modeds for Modalitv'. (New York: D.Rcidel)
Kreisel. G.(1971a) 'Five notes on the application of pronf lleory to comphter science'. Stanford University IMISSS Tichnial Refolt IS2

Kreisel. C.(19711) 'A survey of proof theory.II' ill (J.E.Fensiad.ed.) Procedidings of the Second Scanilinaman Lagn Svmposium.(AIIsterdani: Norti-IInlland)

Kriphe, S.A.(I9G1)'Semantical consillerations on modal Ingic', Acta Phil Fennian. lís 3
Lewis, C.I. \& I.ang̣fod. C:(1932) 'Symlolic Logic', (New York: Dover)
Mallla. Z. (1974) M1athemution Theoly of Computation. (New York: McGraw•llill)
 and Foumal Svstems, (1 insterdanio: North-Holland)

Monlague. R.(I!li3) 'Syutactical treatments of modality', Acta Phil.Fennica, Symposium madal and manv-malucd lọ̆us.

Prawitz. D.(1965) 'Natmal [Icduction - a proof-theoratical stuly'. (Stockliolm : Almquist \& Wiksell)
Sandewall. F:(1970) 'Representing Natural-language information in predirate calculas', Stanford A. $1 . \mathrm{Mcme}_{12 \mathrm{~s}}$
von Wright, G.II.(|951) 'An Essay on Modial Logic',(Ainsterdam: Nortli-Holland)

[^0]: ***DECLARE PREDCONST JNTEGER dI

[^1]: \rightarrow :OODE 1,17,
 18 Vx.xix (1)

