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NOTATION
a width
A cross-sectional area of anchor base (plate, bell, etc.) :
Ab cross-sectional area of chimney or shaft
Ac surface area of chimney above the stress zone
A g Wilson and Hilts general load coefficient
A circumferential area of pile or earth cylinder formed above an aachor's bace
A, Wilson and Hilts load coefficient for moment
a, Wilson and Hilts load coefficient {or slope
A, Wilson and Hilts load coefficient for shear
A, Wilson and Hilts load coefficient for soil reaction
A, Wilson and Hilts load ccefficient for deflection
b length of rectangular anchor
b, Tsytovich’s temperature dependent parameter of continuous adfreezing
strength
B widtn of stress bulb for belled anchors
B Wilson and Hilts general sublettered moment. coefficient
B, Wilson and Hilts moment coefficient for moment
B, Wilson and Hilts moment coefficient for slope
B, Wilson and Hilts momer:t coefficient for shear
B, Wilson and Hilts moment coeffici: it for soil reaction
l?y Wilson and Hilts moment coefficient for deflection
B, B, Balla coefficients (Fig. 9)
c unit cohesion
c, Tsytuvich's temperature dejpendent parameter of continuous adfreeaing
strength
C. side area exposed to adfreezing in the active layer
Cq Wilson and Hilts depth coefficient
C,-Cq Baker and Kondner's coefficients of holding capacity
d anchor base diemeter
d, cimension =k tan B
dy side dimension of Universal Ground Anchot (Fig. 27)
D, relative density
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anchor shaft or rod diameter

void ratio

Young's modulus of elasticity

idealized maximum stress distribution

coefficient of friction at anchor/soil interface
coefficient of friction between concrete and soil (Table II)
concrete unconfined compressive strength

unit adhesion

unit friction

suction force

specific gravity in relation to pure water (unitless)
depth of anchor or stake below soil surface

height of stress zone

critical depth of a particular anchor as defined by an established critical
depth ratio and the anchor’s diameter oc b, = (d) (critical depth ratio)

deptk: to top of anchor base

depth of anchor in the active layer

depth of poction of active layer capable of adfreezing
depth of anchor helow frozen soil layer (Fig. 62)
depth of anchor into permarost

horizontal resistance

moment of inertia of the cross section of a pile or stake
Matsuo and Tagawa pullout strength factors
coefficient of earth pressure

coefficient of active earth pressure

Dewberry multiplication factor (Fig. 7)

Jaky's surface area factor for stress bulb influence
Porkhaev's coefficient of anchor pullout force
subgrade modulus

coefficient of earth pressure at rest

coefficient of passive earth pressure

length

reduction factor (Biarez and Barraud)

moment

Biarez and Barraud cohesion coefficient

Biarez and Barraud cohesion term
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moment at ground surface

Biarez and Barraud overburden coefficient

plate uplift force factor

Buuez and Barraud anchor plate uplift force factor for rectangular anchors
chimney and pad uplift factor for deep anchors with chimneys when ¢ 15%
moment on pile at depth

Biarez and Batraud gravity coefficient (Fig. 20)

Buarez and Barraud friction coefficient (Fig. 20)

factor of safety

constant of horizontal subgrade reaction

exponent of characteristic length for stiffness

bearing-capacity factor for cohesive soils

Terzaght's dimensionizss bearing-capacity factor of Universal Ground Anchors
in cohesionless soils

rectangular anchors' horizontal perimeter at any specified height, 27 R or
2nR
0

load

constant of horizontal subgrade reaction
uphift resistance of stress zone
total frictional force

long term load

horizontal earth pressure
maximum anchor load

resultant of forces Px and Py
load per unit length

ultimate load

lateral or horizontal axial load
perpendicular axial load

horizontal perimeters around anchor within active and permanently frozen soil,
respectively

surcharge load on soil developed
bearing force

frictional resistance

shear resistance

radius

equivalent radius for rectangular anchirs
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radius of anchor shaft or chimney

unit shear strength of soil

maximum shear stress of material in which aa anchor is placed
surface tensile stress perpendicular to shearing stress

Brom’s normal stresses subject to a soil element, x and y direction,
tespectively

anchor base thickness
absolute temperature below freezing, °C

volume of soil confined within failure planes or shearing boundaries
shear on pile at depth x

volume of all soil directly over an anchor

volume of soil within failure boundary less volume of soil directly over the
anchor (Fig. 11)

volume of footing shaft

critical lateral soil reaction

soil reaction at depth x

weight of anchor or anchor and soil forming fictitious pile
weight of anchor base

weight ¢f soil within failure plane

weight of earth column extending above an anchor plate

weight of soil confined within failure planes less the weight of soil confined
directly above the anchor (W, - Wsl)

anchor weight less weight of soil displaced by the anchor
expediential constant for the shear:ng method
depth below surface

distance to neutral stress

pile deflection in horizontal direction at depth x
Wilson ancd Hil.s relative stiffness factor

stiffness characteristic length for stakes and piles
angle of shear plane

(45° - ¢/2)

assumed angle of failure plane

unit weight of unfrozen soil
dry unit weight of soil
unit weight of frozen soil

soil defiection due to stake or pile placement
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ON THE THEORY OF GROUND ANCHORS

by

Austin Kovacs, Scott Blouin, Bruce McKelvy and Herman Colligan

INTRODUCTION

Foundai:un design has long presented a problem to engineers. But with the aid of soil me-
chanics (although this is not an exact science), engineers have in recent years been able to design
foundations bearing downward loads with reasonable confidence :in the soil’s performance. Further-
more, foundation theory and practice are fairly well documented in textbooks and science journals.

Anchorages are used in the design of many types of structures — power transmissica towers,
bulkheads, bridges, retaining walls, moorings, pipelines, any type of guyed structure and even
temporary buildings and tents. However, the design of anchorages is not as well defined as the
design of foundations; an? there-is no evidence of a genera; theoretical or scientific method that

meets specific engineering needs. Therefore, because soil and anchor parameters vary, there is no
single solution for all anchoring situations.

More mformation is needed on the holding capacity of anchors and on methods for installing

them. Soils which possess adequate anchorage capability for one type anchor may, on the other
hand, produce a problem in installation, or vice versa.

In short, the design and installation of anchors present complex problems. The objective of
this report is to present analytical solutions and test data to enhance the understanding of the
limitations of various anchor designs and anchoring techniques. A broad spectrum of theuries is
presented to make possible analyses of individual anchoring problems. When possible, calculated
anchor capacity and field test results are compared. However, these cowpariscns are few, owing

to differences in test techniques, lack of conclusive test results, and vast differences in the types
of soils involved.

ANCHOR TYPES

There are such 3 large number of anchor types that a complete listing will not be attempted

here. The type of anchor employed in any specific situation is a function of the load and the soil.
Some of the moie cornmon anchors used for light loads are the mechanical types such as the screw
anchor, expanding or spreading anchor, and various configurations of plates, disks, cones, crosses,
etc. (Fig. 1). They are generally used to anchor guy wites against relatively light to moderate loads.
For instance, they are extensively used by power companies to brace poles or small towers. Rec-
ommended design loads are usually specified by the manufacturer according to ancher type, size and
some measure of the soil type and condition. Under ideal conditions the maximum loads recommerded

)
et kit J-J




2 ON THE THEORY OF GROUND ANCHORS

EXPANDING POLE KEY

EXTENSICN SCREW ANCHOR

CROSS*PLATE ANCHOR

“WAY EXPAMDING ANCHOR
EIGHT-WAY EX FOUR-WAY EXPANDING ANCHOR

Figure 1. Typical mechanical anchor conligurations (from Chance 1960),
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_/ Z
Griltaoge
8 Formed \L-—_:l/
Concrete Footing
g |
C. Caisson with ? !
Enlorged Bose
l_J

D. Straoight
Coisson

E. Piles

F. Molone
Anchor

G. Block o
Anchor
I

H Grouted
Anchor

Figure 2. Miscellaneous anchor types (after Flucker and
Teng 1965).

for the larger mechanical type anchors are generally in the range ¢f 20,000 to 40,000 1b. In prac-
tice, power companies rely heavily on past experience in choosing anchors for a particular applica-
tion. Since these anchors are relatively cheap and easy to install, udditional anchors can be
utilized at any time, should the initial anchors prove inadequate.

A second class of anchors (Fig. 2) requires considerably more effort to install than the mechan-
ical types, and hence is usually used for loads in excess of the capacities of the cheaper mechani-~
cal anchors. Some of these anchor types sometimes serve a dual roll, as combination foundations
and anchors, an example being the foundation piers fc: large power transmission towers. Normally
the piers would serve to support the weight of the tower on the underlying <oil; however, during

period- of high wind the piers may act as anchors in resisting the large negative moments which
tend to overturn the towers,

The steel grillage foundation, type A of Figure 2, is commonly used to support power trans-
mission towers. It is installed in open excavations or, where conditions permit, in augered hoies.
The grillage generally consists of a number of steel beams arranged in a variety of patterns.
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4 ON THE THEORY OF GROUND ANCHORS

The conctete footing, type B, is costly and therefore is used infrequently. The concrete
caisson with an enlarged base, type C, is used in cohesive soil where the cohesion will permit
under-reaming the base without cave-in. The enlarged base greatly enhances both bearing capacity
and pullout resistance. The straight caisson can be used in cohesionless soils and is formed using
the bentonite slurry method.

Piles have a wide range of application as anchors. As combination foundation anchorages they
are used where suitable support material is at too great a depth to economically use shallow founda-
tions. Piles are also frequently used to resist lateral loads in such applications as the tiesbacks
for retaining walls and bulkheads gnd in foundations subjected to wind, explosions, earthquakes and
thermally induced lateral forces.

A variation of the pile is the ground stake. This form of anchor usually satisfies simple
anchoring requirements and in most cases is temporaty. The simplest ground stake is a rod driven
into the ground with a sledgehammer. Larger stakes may be driven by some mechanical means and
tetrieved similarly, For purposes of this paper a ground stake is defined as a rigid body while a
pile is treated as non-rigid. Rigidity is described in terms of both the pile and soil properties and
is defined in the section on miscellaneous anchors.

The Malone anchor consists of a rod or angle extending into a ball of grout. It is best suited
to cohesive soils where danger of collapse of the cavity is minimized,

The block anchor finds a wide range of application. The block is usually constructed of rein-
forced concrete and connected to the structure by means of rods and/or cables.

Grouted anchors are used in both rock and soil. Design and installation techniques vary
widely.

OVERALL ANCHOR PERFORMANCE

The idealized performance of an anchor under load is shown in Figure 3. Under small loads,
movements are elastic and the initial poetion of the cueve is nearly a straight line. As the load
is increased plastic failure zones develop around the anchor and work outward. After a maximum
force P is reached, the anchor continues to move, even though, in some cases, the load may
fall below P ..

Anchor design is governed, in part, by the depth of burial. Generally speaking, if the plastic
failure zones around the anchor intersect the ground suface the anchor is considered shallow; if
not, it is considered a deep anchor. Anchor depth is normalized with respect to the anchor base
width or diameter to give a dimensionless depth ratio, h/d. Anchors having depth ratios greater or
less then a designated critical depth ratio are considered ‘‘deep’’ and ‘‘shallow’ respectively.
However, there is considerable variation in opinion as to what ratio value is critical.

A critical depth ratio of 6 was arrived at in an investigation performed in sand with circular
anchors by Baker and Kondner (1235). This critical depth ratio was based on the shape of a failure
surface proposed by Balla (1961). It was observed that for anchors with an k/d ratio less than 6,
the pullout test results were very close to those predicted by the Balla equation. At failures with
h/d ratios less than 6, a curvilinear failure plane was observed with an accompanying upheavel of
the ground surface above the anchor. Anchors having an h/d ratio greater than 6 did not cause an
upheaval of the ground suface nor did a curvilinear failure plane appear until the anchor had been
drawn upwards such a distance that the h/d ratio became less than 6. At that point, s cuwvilinear
plane was observed as in the case of the shallow anchor. In all cases where the h/d ratio was
greater than 6, the Balla analysis gave pullout capacity greater than that actually developed.
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Pmox
Movement
Predominantly P
Plastic ull
Up lift
Force
Movement
Predominantly
Elostic
Movement

Figure 3. Idealized performance of an anchor subjected to uplift (after
Flicker and Teng 1965).

Kananyan (1966) made a series of tests cn model anchors with base diameters of 15.7, 23.6.
31.5, 39.4 and 47.3 in. A total of 30 experiments were performed: 17 vertical embedments and 13
oblique embedments. All models were embedded 39.4 in. The anchors were set on a base of
3 alluvial ﬁn;a-grained sand. Backfill consisted of densely tamped sand having a unit weight of
: 101.5 1b/ft°.

3 These tests revealed that soil deformation was the result of vertical pressure and horizontal
thrust and that heaving of the soil was preceded by the formation of radial cracks (Fig. 4), which
appeared near the column of the anchor at 70-80% of the ultimate load. The appearance of these
cracks coincided with an overall loosening of the soil. As the load increased, the radial cracks

1 propagated to a citcular crack where the cracks intersected. After the appearance of the first cit-

. cular crack, the radial cracks extended further, surface def ¥mations increased markedly, and

: complete failire of the base quickly followed. Soil movemen: at failure caused a second circular
crack to ‘orm (Fig. 4). Consequently, rupturing in radial planes occurred earlier than sheanng along
the circular planes.

Figure 4 shows that the failure plane is curvilinear. The angle 8 was found to be equal to
(45° - ¢/2) where ¢ is the angle of internal friction.

Kananyan found that at greater depths less upheaval of the ground surface was exhibited.
Therefore, he considered anchors with an h/d ratio greater than or equal to 3 as being deep even
though the anchors he tested had h/d ratios of 2.5 or less.

Turner (1962) found from tests on the uplift resistance of transmission tower footings that

1 ground surface movement was relatively small for anchors having an h/d ratio greater than 1.5

: (Fig. 5). These results are plotted as the ratio of ground surface movement to footing movement
3 versus the ratio of depth to diameter. Figure 5 shows that at an h/d ratio of 6 the ground surface
3 movement was zero.

From these results, Turner defined anchors with an h/d ratio greater than 1.5 as deep and those
with an h/d ratio less than 1.5 as shallow. This ratio is considerably lower than the h/d value of
6 proposed by Baker and Kondner (1965), who gave the value of 0 ground surface movement to mark
the division for deep and shaliow anchors.
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Figure 5. Ratio of ground surface movement to
3 model anchors tested by Kananyan (19€6).

anchor movement vs ratio of anchor depth to an-
chor diameter (after Turner 1962).

¢ty

A critical depth ratio of 6 apparently can be used to define a deep anchor in soils exhibiting
high viscosity. For ratios greater than 6, failure or displacement of the soil appears to occur in

3 the immediate vicinity of the anchor base with no manifestation of movement at the soil surface.

] This has been shown by Baker and Kondrer for soils and by Kovacs (1967) for polar snow. How-
ever, for soil with low viscosity, the critical dept ratio may be lower than 6, owing to continuous
flow around the anchor at shallower depths before surface rupture occurs and Pul . is reached,

xia i

X ot el
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DESIGN OF SHALLOW ANCHORS
There are three basic approaches to the design of shallow anchors (Flucker and Teng 1965):
1 the cone method, the earth pressure method and semiempirical methods. The cone method attempts
3 to estimate the true failure surface surrounding the anchor. In its basic application the uplift
resistance is obtained solely from the weight of the anchor plus the weight of the soil within the

assumed failure planes. There are many variations of the cone method which include a variety of

assumed failure planes. In addition cohesive and friction forces acting along the failure planes
are often added to the dead weight resistance,

The earth pressure method disregards the actual shape of the failure planes. The failure plane
1 is assumed to rise vertically from the perimeter of the anchor footing to the ground surface. Pullout
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Figure 6. Soil boundaries for earth cone methsd
(Flucker and Teng 1965).

resistance 1s obtained by adding the weight of the anchor and soil within the failure surface to the
friction developed aiong the sides of the vertical failure plane.

Cone Method

Perhaps the most common method used in the past for determininy; ths- uplift capacity of an
anchor with an h/d ratio < 6 was the earth zone method (Flucker and Teng 1965). This method
assumes that failure occurs along a plane inclined at the angle 8' (F1g. 6). The uplift capacity
as calculated from the earth cone method is:

P W, + AW (1)

ult 3

where W - weight of soil within failure plane
AW - anchor weight less weight of soi1l displaced by anchor.

Since only dead weight is considered in this analysis, the ultimate load calculated is equivalent to
the ultimate load shown in the idealized performance curve of Figure 3 «. 2 may be less than the
maximum uplift developed. From Figure 6, W  can be derived by geometry:

Rectangular footings:
m .2
Ws“hy(ab+adl+bdl‘—§d1). (2)
Circular footings:

W, - % hy(3a® + 6ad, + 4d%) @)

vnhere y - unit weight of the soil
h depth
a = anchor width
b - anchor length

d, - h tan B

B' - assumed angle of failure plane.
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Figure 7. Graphical determination of anchor holding capacity (after Dewberry 1962).
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A(orea f anchor plote)

K4 MULTIPLICATION FACTOR

Class of Soil Multiply by

S0

Haordpan

Crumbly, 1omp

Firm, moist

Plostic ,wet

Loose, dry

T ]
~ o
h, Depth of Anchor, ft

I
o

The uplift capacity as computed by this method obviously varies with the assumed angle of ',

Different organizations using this method have adopted a value for S8' dependent upon the under-

lying soil:
The American Bridge Company

B' = 30° for all soile (in the absence of other specifications)

Bureau of Reclamation

B = 30° for fontings poured against undisturbed ground with an undercut and incorporating
a safety factor of 1.0,

B' = 20° for footings backfilled around all sides with a safety factor of 1.5. There is a
limitation hete to an upward pressure above the anchor not to exceed 1000 1b/1t2 for
each foot of embedment below ground.
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,
; Table I. TVA recommended values of 8' earth cone analysis.
3 1, Values may be increased 75% for ultimate loads of short dueation.
Y 2, Weight of so1l per cubic foot = 100 1b for A, 100 Ib for B, and 69
3 Ib for C, X
: 3. Vertical pressure intendeu %o cover bearing «t bottom of footing
g and bearing against soil covering footing,
N Vertical pressure (1b/(t%) Cone angle 8' (°)*
s Soil type A B c A B Cc
3 Footings 7.zainst well compacted fill
A Quicksand and alluvial 0 0 0 0 0 0
3 Sott clay 1,000 1,000 500 5 0 0
Z Moderately dry clay, clay and sand 2,000 2,000 1,000 25 20 15
; Dry loam and clay 3,000 3,000 1,500 25 20 15
; Fine firm sand 4,000 3,500 3,000 25 15 10
3 Compact coarse sand 5,000 4,500 4,000 25 15 10
3 Compact coarse gravel 8,000 8.000 8.000 30 15 10

Cemented sand and grave! 10,000 10,000 10,000 30 20 15
4 Good hardpan and hatd shale 12,000 12,000 12,000 30 26 25
3
2 Footings against undistwded astwral ground
3 Quicksand snd alluvial 1,000 500 500 0 0 0
y Soft clay 2,000 2,000 1,000 10 6 0
e Moderately dry clay, clay and sand 4,000 4,000 2,000 30 25 20
Dry loam and clay 6,000 6,000 3,000 30 25 20
3 Fine firm sand 6,000 5,000 4,000 30 20 15
. Compact coarse sand 8,000 7,000 6,000 30 20 15
A Compact coarse gravel 12,000 12,000 12,000 30 20 16
3 Cemented sand and gravel 16,000 16,000 16,000 30 25 20
¥ Good hardpan and hard shale 20,000 20,000 £0,000 30 30 30
A * Condition of sofl: A = Naturaily well drained,
: B = Subject to periodic flooding of short dicstion,
; C = Bubject to ground water several months of the year,
3
3
E
: Tennessee Villey Authority (TVA): the values for A' are listed in Table |.
] Dewberry (1182) developed a graphical means for determinipg the capacity of a cizcular anchor
i hased upon the earth cone method (Fig. 7). He assumed that soil failure oocurs alang a conjcal
3 plane estending up from the anchor base. The volume of earth V inclosed within the fallure sone
3 is approximated by:
k-
; V - Ab + A%52% 4 0,353 0
F where A = area of anchor
: h = depth.

Thus, anchor holding power is determined by:

PoKyy =K (Ah + A%Bp2 4 0.3503) ®)

Sadhial iR Oeisbbbind ks
Ny 2 R i ket el ik e haloni
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, Figure 8. Soil boundaries for the Balla cone method (Balla 1961).
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;' where K, multiplying factor governing various soil conditions (see Fig. D.

P

L1

{ Balla cone method

A variation of the cone method was proposed by Balla (1961) for circular shallow anchors
with h/d ratios < 6. Balla's method is based on a parabolic failure sutface (Fig. 8), the curvature
being a function of the soil’s angle of internal friction. In addition to the weight of soil and
i anchor, Balla’s method takes into account the friction and cohesive forces acting along the failure
; swfzces. Thus, the uplift capacily calculaied by Baila's method is equivalent to the maximum

load shown in the idealized performance curve of Figure 3.
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ON THE THEORY OF GROUND ANCHORS 11
‘The uplift capacity is given by the following: ;
¢ {
Pmax' W3+/\W+Qf (6) ‘
. ¢
4 2 4 neor  Where W. weight of soil within failure plane
Sech
' h, eehon AW, - weight of anchor less weight of soil dis-
Logorithmic placed by archor
Section Qr frictional and cohesive resistance devel-
oped along failure plane.

-L______.] Wg and Q, are combined to form
R—

Figure 10. Failure plane configura-
tion proposed by Matsuo and Tagawa
(1968). y = unit weight of soil

W, +Q ~h3yB, + h¥cB,

where h - depth of anchor ’

¢ = unit cohesion ;

B, and B, - values derived as functions of the
h/d ratio, the angle of internal
friction @, and the unit cohesion of
soil c,

Values of B, and B, for cohesionless soils can he obtained from Figure 9.

Balla has shown close cotrelation between his theoretical load pullout strength values and
laboratory tests made on anchors embedded in sand. Photographs of his tests show that the failure
plane is convex, with the curve starting out vertically from the uppet plane of the foundation slab,
curving outwardly from the axis of symmetry of the anchor, and intersecting the ground levsl at an
angle approximately equal to (45° - ¢/2) (Fig. 8).

Paterson and Urie (1964) made full-scale uplift tests on tower foundations in clay and sandy
soils of different shear strengths and compared their findings with load capacities determined by
the Balla analysis. The anchors pulled were of the inverted-mushroom type (bellbottom) and were
constructed of concrete. In most cases the h/d ratio was less than 6. Excellent agreement was
found using Balla's formula for the anchors embedded in sandy soils, However, very poor cotrela-
tion was found for the same anchor embedded in clay at a comparable depth. In each instance, use
of the Baila formula resulted in a gross overestimation of the pullout resistance. For example, the
calculated resistance of the mushroom-type foundation in clay with a cohesion of 10 psi was
240,000 1b compared with a test value of 77,500 1b.

Flucker and Teng (1965) caution that the Balla analysis is likely to result in an overestimation
of the maximum uplift capacity. This is because failure is progressive and therefore friction and
cohesion are fully effective only in a limited zone at any given time. However, the Balla method
has the advantage of determining anchor holding capacity by the application of basic soil properties
and geometric relations, rather than arbitrary parameters.

Matsuo azd Tagaws cone method

Matsuo and Tagawa (1968) proposed a modification of the cone method applicable to circular
footings evidently in cohesionless soil. They define a failure plane, shown in Figure 10, which is
a function of the angle of internal friction and consists of a logarithmic spiral and its tangential
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straight line. The analysis is limited to shallow anchors with h2/R < 10. The maximum uplift
resistance is given by:

3 K K

’ Prax Wa-rVs+ yROK (hy/R) 2 4 cR%Ky(hy/R) 4 ™
{ where Pm ax - Ultimate load

) W_ - weight of anchor

X y - unit weight of soil ‘
P

Fé V45 volume of footing shaft

R - anchor base radius

3 h, - depth to top of anchor base

1 ¢ - unit cohesion

.

¢ - angle of internal friction, in radians

K,,K,,K4.K, - pullout strength factors dependent on the scaled depth of burial and

Pl St Ay

& angle of internal friction as follows:

3

(hy/R) limit K, K, Kq K,

Pr.

-

hy

4 0.5 < 2 <1 0.056¢ + 4.0 0.007¢ + 1.0 0.027¢ + 7.653 0.002¢ + 1.052

bt

3

3 hy

' 1< -R-gs 0.056¢ + 4.0 0.016¢ + 1.1 0.027¢ + 7.653 0.004¢ + 1.103
hy

3« T <10 0.597¢ + 10.4 0.023¢ + 1.3 0.013¢ + 6.110 0.005¢ + 1.334

Although the load capacities determined by Matsuo and Tagawa show good agreement with

Balla’s test results, eq 7 may nevertheless be limited by the same factors that seem to affect the
universality of Balla's results.

o e Lo a e v S

Marinpol'skii cone method

Marinpol'skii (1965) proposed another variation to the cone method for circular footings having
h/d < 6. According to his analysis (Fig. 11) the maximum load, as defined in Figure 3, is:

T T T TP

Prax WatWa+yVys Qg (8)

where W, weight of anchor

W,y weight of earth column extending above anchor plate
y - unit weight of soil

V, - volume of cor‘~al soil section (see Fig. 11)

Q. shear resistance developed along failure plane.
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Figure 11. Parameters related to Marinpol’skii’s
(1965) version of the cone method.
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Marinpol'skii combined the last three terms of eq 8 into:

yhll - Ry/R)2 + k tan ¢ (h/R)] + 2Sh/R
Wai v ¥V3+Q, A2 -RY) 0 3
1- (Ry/R)® - /R

9

where R and R, =radii (Fig. 11)

K, = coefficient of active earth pressure [K a " tan2(45° - /2]
he angle of internal friction derived from the re-
in the laboratory and field (Fig. 125

H = dimensiouless function of t
sults of anchor tests made

S = unit shear strength of soil
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3 14 ON THE THEORY OF GROUND ANCHORS
3 where Ph - horizontal earth pressure at base of anchor.
; Therefore
3 . yh(1 - (Ry/RP + K, tansp (h/R)| + 2Sh/R
: Poax Wy + mMR® - RY) 2 . (11)
. 1-(Ry/R)® - p/R |
§ Marinpol’skii compared the theoretical values for maximum load, calculated from eq 11, to loads
obtaind by Kananyan (1966), who conducted full-scale tests of anchors in sand and loose and dense

silt,

Marinpol’skii's theoretical values were similar to Balla’s (1961) results for cohesionless soils
and were in reasonable agreement with Kananyan's (1966) test values for shallow anchors (h/d
ratio about 0.83 to 1.67) in cohesionless soil. Again, failure, particularly in a ¢ .hesive soil, is
progressive and the cohesive force will not be developed over the entire failure surface simulta-
neously as eq 11 assumes. Flucker and Teng's caution on this would seem to apply to
Marinpol'skii’s analysis as well as to Palla’s.

TETST T T

e

Earth Pressure Method

The earth pressure method of determining the uplift capacity of an anchor (Flucker and Teng
1965) is also known as the friction cylinder method, the Swiss Formula, or Frohlick Majers® proce-
dure. This method is based upon conditions where the h/d ratio is less than 6. The method relates
anchor pullout force to the friction developed along the sides of a vertical prism (Fig. 13) with a
cross section equal to the base of the anchor.

e/l UREEAI S L o e e i e s g

The uplift capacity is given by the folluwing:

P'_wsi'wa‘qf (12)

3 v/ N/ :m R N
4
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; | |
Y I I
ho Ned |

v ! ! Py ekry i
E ' I USRS e .
4 | |
3 |
> |

A

t /A-

" 0

Figure 13. Soil boundaries for eazth pres-  Figure 14. Parameters related to Mueller’s version of
sure method (Flucker and Teng 1965). Q-  the earth pressure method (Flucker and Teng 1965).
tesistance; P load; d anchor base diam-

eter; h  depth of anchor below soil surface.
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s Teble 1. Coefficient of friction f,, for soil against concrete.
Smooth surface Rough surface
Moist clay and loam 0.2 0.3
Dry sand 0.6 0.7
Wet sand 0.3 0.5
Gravel 0.4 0.5

where W - weight of soil within failure plane
] W, = weight of anchor
Q, - frictional resistance developed along failure plane.

Mueller

TR

Mueller (Flucker and Teng 1965) relates the frictional resistance Q, in the vertical shear plane

to the magnitude of the horizontal earth pressure Ph (Fig. 14). The value of Qr for a concrete
anchor is therefore expressed as:

TR

Q- -’ig_y 2h(a + b)tang + 2(h - hyXa + b)f (13)

ghexy

>4 e

where ¢ is the coefficient of internal friction for the soil and f ¢ 18 the coefficient of friction be-
tween soil and concrete (see Table II.)

The parameter K designates the coefficient of earth pressure, where for safety against

excessive movement the use of the coefficient for earth pressure at rest (K o) is suggested. This
coefficient may be taken as:

g Kq = 0.35 - 0.60 for sand and gravel
: K = 0.45 - 0.75 for normally consolidated clays and silt

K, = 0.80 - 1.36 for overconsolidated clays.

To allow for safety against ~uilout, however, it was first decided that the following term for
passive earth pressure K p should be used:

K, 0.9 tan® (45 : ‘ﬁ)
f )

Mors

Mors (Flucker and Teng 1965) later found that the use of K_ in eq 14 generally leads to over-
estimating the failure load. Consequently, he concluded that the horizontal earth pressure P

equals the passive earth pressure only at the base of the footing and is distributed along the
failure pli.r¢ according to the function:

J
P, =Ky _:_T (see Fig. 15)

(15)
W-
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Figure 15. Parameters relat>d to Mors version of tie
earth pressure method (Flucker and Teng 1965).

where the empirical j values suggested are:

J - 13 for anchor grillage in compacted backfill

AL ANU S A RIS R e TN

j = 10 for formed concrete footings without base in gravel
j = 5 for formed concrete footings with base in gravel

j = 1 for concrete footing poured against stiff clay.

Rlas i

ii To account for this change in Ph the value of K p is determined by:

1 2 2 o

3 Kp = —tan® (45°+ ¢/2) (16)
: j+1

2

which is used in place of K in eq 13,

Motorcolumbus

Motorcolumbus (Mors 1964) suggested an empirical modification to the earth pressure method
based on numerous full scale tests. Motorcolumbus also found that the magnitude of the shear
constant does not vary linearly with depth. If, for instance, the foundation depth were doubled,

; the shear constant involved would increase only by 20 to 25%; and if the depth were increased

1 three times, the shear constant would increase at a still lower rate. Furthermore, for soils below
3 the water table, it was suggested that normal values of shea:r constants be reduced by 50%. He

: derived the following equaiion:

P n - Ws + Wa t C!.,hx (17)

4 max
: where P_. . maximum anchor load
n safety factor
W_  weight of soil within failure plane

W, weight of anchor

c, 4akK; K - coefficient of earth pressure
h  depth
a width of square base
x 152,
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P Semiempirical Methods
Baker and Kondner
N\ YN I//f
Baker and Kondner (1965) conducted a thorough
I study of m~del circular anchors in sand (Fig. 16) and
] confirmed that anchor holding capacities are influenced
h by the h/d rano.
| Through testing and dimensional analysis, the study
! provided the formula for the pullout strength capaciaty
' when h/d < 6:
At
L. . d —me o] P-Cyhd?y+ Coh®y (18)
Figure 16. Parameters related to Baker ~ Where h - depth
and Kcendner (1965) round anchor in sand d anchor diameter
analysis.

y unit weight of soil

Cl 3.0, a function of the angle of internal
friction ¢, relative density D, and void
ratio e

C, 0.67, also a function of &, D, and e.

For shapes other than circular, Baker and Kondner suggest that an equivalent diameter can be
estimated and approximate holding capacity calculated.

Baker and Kondner ran one full scale verification test on a belled anchor in sand with an h/d
ratio of 5.3. 'The pullout capacity of the anchor was higher than that predicted by both their rec-
ommended analysis and that of Balla,

Turner

Turner (1962) formulated empirical equations based on anchor dimensions and the shear strength
of the soil. He concluded after about 50 tests that, for anchors with an h/d ratio less than 1.5, the
uplift capacity is a function of the squate of the depth, whereas for anchors with an h/d ratio of
1.5 or greater, the uplift resistance of the anchor is a function of the base area. From these cor-
clusions, he derived the following equations:

For anchors with an h/d ratio < 1.5:

P, 218%%m/d) @® - D}). (19)

For anchors with an h/d ratio > 1.5:

2 2
P, 585(% - DY) (20)

where P, - ultimate load
S unit shear strength of soil
h anchor embedment depth

d anchor base diameter
Dy shaft diameter.
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Figure 17. Comparison of earth cone, shearing and
Turner methods for determining anchor holding rapacity
(after Turner 1962).
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3 Most of the values computed by Turner's equation agreed relatively closely with, and all were
A within 35% of, the actual pullout strength values. Furthermove, most of the computations were
4 conservative,

For the tests performed on 7-ft-diam underreamed (bellbottom) footings, Turner compared some
pullout test values with values calculated by the earth cone method (eq 1) and the shearing method
of Motorcolumbus (eq 17). He found that load values obtained by the earth cone method were not
always conservative. At depths of 13 ft or greater, the capacities computed by the earth cone
method were larger than those determined by Turner's tests and would have resulted in anchots too
A small to support the design load. Turner also found that except for 9- to 10-ft depths, capacities
E computed using the shearing method were in excess of test results,

Figure 17 shows that these equations provide holding capacities for shallow footings that are
intermediate to those defined by the earth cone method and shear method theories. Tigner's tests
also show that his equations yield capacities for deep footings (h/d ratio > 1.5) that are lower and
4 more accurate than those calculated by the other two theories.

T

Biarez and Barraud

Biarez and Barraud (1968) based their design recommendations on an extensive series of model
and field tests of various anchorage configurations and soil types and conditions. In addition, their
work was supported by an international working group performing a large number of full scale tests
in a wide range of soil types. In all tests, care was taken to telate anchorage petformance to
standard soil parameters. They formulated criteria, based on these parameters, for estimating the
uplift capacity of different types of anchors by using different failure planes for various soil con-
ditions as shown in Figure 18. This method can be applied to straight shaft anchors, belled
anchors and simple plates.
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Souls of category | Soil s of category Il
Saturated cohesive sails Unsaturated cohesive
with low consistency s01ls with marked n- pPowdery smls
c/0 0-¢h- 10t 15’ ternal friction ¢ 70 & 15 ¢ 0 20
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}
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i Pile or shaft of any depth.

Figure 18. [llustrations re. shallow anchor design alter Biarez and Barraud (1968).

The Biatez and Barraud method is based .upon the shear strength of the soil acting along a
failure surface described by the angle a as shown in Figure 18. Equation 21 was derived for the
holding capacity of shallow anchors where the critical depth ratio h2/d = 3 to § for granular soils
and 5 to 7 for cohesive soils:

P Al[cnc + yhg(u‘b + “)') ' qu) v W, @2n

where A1

R radius (of pile or pad, whichever 13 larger)
h, depth to top of anchor pad or plate
¢ unit cohesion
y - unit weight of soil
qQ surcharge load on soil
Wa weight of anchor, or weight of anchor ard soil forming fictitious pile
M, - cohesion coefficient - M o {1 - 1/2(tana>ny/R)] 22)

- -———m - ———— = ———

h. Pad and chimney where he/d < 2.5,

circumferential area of pile or earth cylinder forn.ed above the base, as illustrated
in Figure 18 by the dashed lines
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-60° -40°* -20° (o} 20° 40°

Figure 19. Biarez and Barraud (1968) cohesion term M, vs the angle
of the shear plane a and the angle of internal friction ¢, The factor
's tan a (eq 44) is shown where il h, < hy, b, is used in place of h,.

0.6

04 -
MeotM o Yytana
02 .
-—f
4 - 0
0 -0 -40° -20° 0 20° 40°

a

Figure 20. Biarez and Barraud (1968) friction plus gravity terms (M 4 -

M_.) as a function of the angle of the shear plane a and the angle of in-

ternal friction ¢, The fdctor ', tana (eq 45) is shown where il b < h,,
h,is applied in place of h,,.

where M, is determined from Figure 19
a angle of shear plane, either + or - depending on soil conditions (see Fig. 18)
M¢' M

y friction and gravity coefficients, respectively

(M¢0 4 Myo)ll - l/3(tana)(h2/R)l (23)
whete (M $0 * “yO) is determined from Figure 20
Mq overburden coefficient - M o (tan¢ + tana)l1 - 1/2(tan a) (hy/P)) (24)

where ¢ - angle of internal friction.
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Ground Surfoce

Skin
LFriction

hs28d

h'+dton (45’+ %) emont

cos * (3/‘1 . z!) tang

B:d| i+ ——-T

cos (45'+ -E-)

Figure 21. Theoretical stress zone developed
above a bell anchor (after Jaky 1948).

Values of 1/2 tana and 1/3 tana are given in Figures 19 and 20.

To determine the capacity of an anchor of rectangular shape, an equivalent radius R is
calculated, i.e. R, P/2nm where P periphery of anchor.

DESIGN OF DEEP ANCHORS

Jaky Method

Jaky (1948) developed a relationship for determining the supporting capacity of a pile based
upon the support derived from a zone of stressed soil formed around the bottom of an end-bearing
pile. A bell anchor is assumed to cause a similar stressed zone when pulled upward *hrough the
s0il; thus an analysis was made. The theoretical stress zone (Fig. 21) represents the case where
the total capacity is the sum of the capacities developed by the stress zone and the friction along
the anchor shaft. The soil parameters required for the analysis are unit cohesion ¢, angle of
mternal friction ¢, and the unit friction between anchor and soil F,

For analysis, the original Jaky equation for an end-bearing pile is:

P, cKjA (25)

P, uplift resistance of stress zone

[~

A cross-sectional area at base of anchor bell
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K] - cote [tan2 (45 + ;-S)e”‘“"‘ﬁ - 1]. (26)

£33 2 LAY A TN LTV aar S

Equation 26 is predicated upon a complete stress zone being formed, i.e. the anchor must have
an embedment depth equal to or greater than the height of the stress zone h'.

vy

i

To find this height, Jaky derived the equation:

h* - dtan (45 + gi)e"“"‘d’ (27)

where d - diameter at base of bell.

K
Y
b
b
]

Expanding further, if the anchor’s embedment is greater than h', anchor capacity will be in-
creased as a result of the total frictional force Pc developed along the shaft above the stress bulb:

P, AF (28)

(4

where A, - surface area of chimney above the stress zone
F  unit friction (see Table III).

Thus, to calculate anchor capacity by the Jaky method, the stress zone height is determined
(eq 27), and P\, and P, are combined, giving the total uplift capacity P as

P-P +P, cAcotd [tane(is + Z—s)eg’”“"qS - 1] + AF. (29)

Table IlII. Unit friction between pile and soil (after Chellis 1951).

Ib/tt? bounding
Materia! area of pile*

Fine-grained soils:

Mud 260 + 200
Silt 300 ¢+ 200
Soft clay 400 + 200
Silty clay 600 ¢+ 200
Sandy clay 600 *+ 200
Medium clay 700 + 200
Sandy silt 800 + 200
Firm clay 900 ¢+ 200
Dense silty clay 1200 + 300
Hard (stiff) clay 1500 *+ 400
Coarse-grained soils:
Silty sand 800 *+ 200
Sand 1200 + 500
Sand and gravel 2000 ¢ 1000
Gravel 2500 *+ 1000

* The (*) figures indicate a range governed by
the character of the soil. Not all soils faliing
in the same general classification have equal

- properties,

1f not micaceous, muddy, or under hydrostatic
pressure or vibration,
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Cakamd.

A more precise, but involved, method of calculating holding capacity can be used instead of
the A_F term of the above equation. Such an application would be beneficial in ‘'‘long-chimneyed’’
S anchors where the chimney’s anchoring capacity becomes as great as or greater than the bell's
capacity. The analysis concludes:

T

PR N

DRV

h- b .
P, = AK y(T—)! (30)

where K coefficient of earth pressure

St and e

Eodan L orrogt g an A gioacys bi e ac

y unit weight of soil

;
d
; h - h' - depth of pile above stress zone j
’% f - coefficient of friction at anchor/soil interface. j;
Although the Jaky method is considered suitable for determining anchoe capacity, the calculated ‘
4 capacity is very sensitive to the values of c and ¢. Therefore, care should be used when determin- ’
f ing P.
1 Baker aad Kondner
E Baker and Kondner developed an equation for deep, round anchors in sand in conjunction with )
E their research described in a previous section (Semiempirical Methods). For depth ratios of h/d - 6
3 they suggest:
S
P -170d%y + C4d%ty + C hdty 31)
2 where d - anchor diameter (see Fig. 16)
1
: y - unit weight of soil
3 t - anchor plate thickness
3 C4 - 2800, also a function of angle of internal friction ¢, relative density D, and void
F ratio e
C4 - 470, also a function of ¢, Dd and e.
Blarez and Barraud
3 Biarez and Barraud (1968) aiso covered deep anchors as shown in Figure 22. Two different

situations are defined, where 0° < ¢ < 15° and ¢ > 15°. For anchors with 0° -. ¢ < 15° the uplift
capacity is the sum of the earth resistance developed within the depth k, and the resistance

g developed along the chimney extending above h where h, is equal to the product of the critical
depth ratio for the soil times the diameter of the anchor base.

! For deep anchors with ¢ > 15°, two different analyses are used, depending on whether the
3 anchor is a simple plate with cable or tie rod, or a base with a chimney.

For the anchor that is a simple plate with cable or tie rod, Biatez and Barraud (1968) found
that local soil rotation occutred about the anchor base. They developed the following equation for
this condition:

4 P - AM, (yhy tang + c) (32)
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Figure 22. [llustration re. deep anchor design (after Biarez and Barraud 1968). In the first

figure, the anihor shaft above hc iv treated as in Figuie 19 while the equivalent cylinder
radius R o for rectangular pads is R,

40

30

Mll

Mo

Rectongulor anchors
of intinite length

N IR | 1 1 1 1 |
10 20 30 40
é
12n
——— e w—— - 1.6 for circular anchors
1 .6tan¢(z - g)
4 F
4n

for wfinite-length rectangular anchors

n
h;tanc&

~

Figure 23. Biarez and Rarraud (1968) plate uplift force factor

M , for various anchor base plate geomeiry and as a function of

the angle of internal friction ¢. The shape factor k is equal
to b’a where b length of base and a - width of base,

F /8 where P is the pad periphery.
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40 - 1 | N i | L T T |

30
Try
dimensional

My 20

Smoiter
Chimncys

0 ;
For the limiting value when 7 1 thew M in

9 R + 2
1.6tan o2 == .2_(.).(1.9.ln<,5 R
4 n R n

R . R R
M (_0_ , «.s) 12m _ 161192, 092
Y\R ) R

Figure 24. Biarez and Barraud (1968) pad and chim:: y upli. “=cto" Mu for different values
of Ry/R (where R, is the radius of the anchor shal: .nd R is th. :adius of the anchor pad)
vs the angle of internal :ciction ¢.

where A - cross-sectional area of anchor base
M‘ - plate uplift force factor (determined from Fig. 23).

Figure 23 gives “; values for various shaped anchor bases. However, owing to the lack of
adequate evaluation, usage of the ‘‘rectangular anchor of infinite length’’ curve is recosmended by
Biarez and Barraud for all calculations (making the calculation conservative),

For the anchor that has a base with a chimney, the following equation was developed:

P :(A-A)m)M,)yhytand +c) + Wp (33)

where A - cross-scctional area of anchor base

A, - crosu-sectional area of chimney or shaft
wp = weig;ht of anchor base

m - reduction factor = 2n(R - Ry) - t/2n(R - R)
t = anchor base thickness (see Fig. 22)
M, = chimney and pad uplift factor (determined from Fig. 24).
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L6 ON THE THEORY OF GROUND ANCHORS

To this equation is added the uplift capacity for the chimney which, as discussed earlier, can be
calculated as for a normal friction pile,

MISCELLANEOUS ANCHOR TYPES

Temporary ~nchoes

Rigid ground stakes

Rigid ground stakes are usually thought of as small, temporary anchors. The most simple
ground stake is a rod driven 1nto the ground with a sledgehammer. Larger stakes may be driven by
some mechanical means and retrieved similarly. The equations used to describe the load capacities
of nigid ground stakes do not limit such stakes to either temporary usage or smail size. Hence the
lateral load criteria would apply even to a ‘‘rigid’’ pile, but for convenience are presented here.

Extensive use of ground stakes by the Armed Forces has warranted some research on the
theory of holding capacity as well as on the development of mechax:ical devices for driving and
extracting these stakes (Gerard 1969, Kovacs and Atkins 1973, Little 1963 and U.S. Army ERDL
1964). Strickland (1964) gave two expressions for determining a stake's holding capacity. One
describes the maximum withdrawing force that can be applied axially and the other gives a
generalized solution for determining the capacity of a stuke loaded perpendicular to its axis. The
stake is assumed to be infinite in strength and rigidity and changes in load orientation due to
changes in creep are neglected. Furthermore, creep is limited by assuming the soil to be restrained
from flowing around the periphery of the stake for an extended radius of % to % the diameter,

The theory is also simplified with empirical coefficients derived from data obtained from a
pressure distribution curve observed in an unrestrained soil sample. The result is a rather rapid
technique for estimating the holding capacity of a stake,

Driving a stake into the soil causes the soil to be displaced radially a distance (Fig. 25) equal
to the radius of the rod. This displacement results in a compressive stress encompassing the em-
bedded portion of the stake. Depending on stake configuration and finish, the axial load P y neces-
sary to extract the stake is:

P, FhnDg (34)

where  F, - unit friction - F_ + P, tan¢
h - depth of stake below soil surface
D, - diameter of stake
horizontal earth pressure at stake/soil intetface owing to displacement &
F, unit adhesion
¢ - angle of internal friction.

When 4 lateral load P_ is applied, the stake is assumed to rotate at a point of neutral stress,
y distance from the tip (Fig. 26). Rotation is resisted by a force which is proportional to the de-
flection, resulting in a linear stress o stribution H, - P, d. Here P, is measured at 5=Ry+ 8,
where &' is the permissible creep:
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3 Figure 25. Parameters related to Figure 26. Generalized soil stress distribution

Strickland’s (1964) analysis of an related t a laterally loaded rigid stake or pile
axially loaded stake. (Strickland 1964).
where  H, - horizontal resistance
R, - radius of stake.

X By ..plying the conditions of static equilibrium to Figure 26 and summing forces and moments,
3 the value of P, is derived:
dh®P,
3 —_— (3%
’ * 23e-h)
a where £ - stake length.

Thus, the 1dealized maximum holding power of the stake Pmax can be found for any loading
3 condition as given by the following equation:

Al 2 2
i Pmax'" ‘/P1+Py'

r The equation presented is only an approximate solution and is limited to the assumptions made.
4
: According to Flucker and Teng (1965), the limit to which an assumption of rigidity is
2 permissible is defined by the application of the stiffness characteristic length 2':
z. N3 B (36)
3 K,

vhere K

m Mmodulus of soil reaction for soil at bottom of anchor; Km - nhh (for n,, see Table w
E - Young's modulus of pile or stake

A3

Lt

I = moment of inertia of the ¢ ake

N exponent generally set equal to 1.

W T

Up to the value h/2* . 3, the anchor is considered rigid and eq 35 may be used. However, when

h/2' > 3, the anchor must be analyzed as a flexible pile (see section on Laterally ’ ~aded Piles,
p. 30).
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Table IV. Constant of horizomtal subgrade reaction, n,.

2
a, /1t

_ Material B per ft of depth
Medium-hard calwche . 500
Fine caliche with sand lavers 400
Compact well-graded gravel 400
Hard dense clay 400
Compact coarse sand 350
Compact coatse and fine sand 300
Medramestiff clay 300
Compact fine sand 250
Ordinary silt 200
Sandy clay 200
Adobe 200
Compact morganic sand and silt mixtures 200
Soft clay 100

Universal Ground Anchors

Haley and Aldrich (1960) investigated the pullout resistance of Universal Ground Anchors.
These are arrowhead-shaped anchors driven into the soil at an angle of 45° with a detachable rod.

Holding strengths were based primarily on the bearing capacity theory suggested by Terzaghi
and Peck (1948), i.e. finding the ultimate resistance of the soil to a vertical force imposed on a
horjzontal bearing surface. It was assumed that the anchor-bearing surface was positioned perpen-
dicular to the direction of the pull (Tig. 27). Also, the soils in which the anchors were embedded
were divided into two classifications, noncohesive sands and gravels, and cohesive plastic clays.

The effect of depth and the nature of shearing resistance were both considered, It was
assumed that, for anchors driven to relatively shallow depths (h/d < 5 or 6) and pulled to the point
of failure, the displaced soil would cause an upheaval of the ground. Also, it was assumed that
for anchoes Sriven below this limiting depth, ground heave would no longer occur,

The shearing resistance of the soil was assumed due to two sources: 1) sliding friction be-
tween soil particles along a failure surface, and 2) cohesion.

In cohesive soils, it was assumed that the cohesive strength was independent of depth in a
homogeneous deposit. Therefore, since no increase in ultimate pullout resistance was expected
with an anchor embedment greater than the critical depth (h/d2 > 6), the bearing fmmula was applieo.
Thus for clays, the ultimate pullout load Pu“ is given as:

2
N ccd2

P - = (37
ult 2

wilere ¢ unit cohesion
d, side dimension of anchor (Fig. 27)

Nc dimensionless bearing-capacity factor assumed equal to 7.
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/ Puy
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h f“
Side View

Top View

Figure 27. The Universal Ground Anchor or Arrow
Head Anchor.

For the cohesionless soils:

2
Py O.4yhN, d2

where y unit weight of soil
h - depth

29

(38)

N _ - dimensionless bearing-capacity factor determined from angle of internal friction

(Hough 1957)

d, - side dimension of anclor.

The pullout resistance in eq 38 1s directly proportional to the anchor depth, i.e. it is assumed
that sliding friction increases with depth in cohesionless soil. Results of seven pullout tests in

sand with y - 96 1b/ft® - summarized as follows:

Size of Vertical Failure Total pullout
ground anchor depth load at failure
(in.) (fe) h/d, {Ib) (in,)
3 1.8 7.2 325 4
4 2.2 6.6 800 3
6 2.6 5.2 735 3
8 2.6 3.9 840 9
10 4.0 4.8 1680 6
12 6.1 6.1 5000 25
17 8.1 4.3 8500 19
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NWANVINT HANTAN TTRNVIRS

Figure 28. Unsymmetrical failure cone developed
above a circular anchor loaded at an angle (after
Kananyan 1966).

Haley and Aldrich (1960) did not determine the configuration of the failure plane, but they

assumed that the soil would be displaced aleng a surface curved upward and outward from the
anchor.

Kananyan (1966) found that for circular anchors pulled at an angle an unsymmetrical yielding
cone was formed (see Fig. 28). The outline of the upward yielding zone was an ellipse, and it is
assumed that this is the form of the failure plane assumed by Haley and Aldrich (1960). As a
consequence of the unsymmetrical yielding conditions, the anchor is displaced not in the direction
of the acting force, but rigorously, with an upward deflection.

Laterally Loaded Piles

According to Broms (1965) the lateral deflection of a pile loaded to less than approximately
half its ultimate resistance is usually calculated from either elastic theory or by using a coefficient
of subgrade reaction. The use of elastic theory places several limitations on the assumed soil
properties. To date, solutions exist only for an idealized isotropic elastic soil mass of constant
medulus of elasticity and Poisson's ratio. The soil also is assumed capable of withstanding tensile
loads, but since the tensile strength of soil is low, the elastic methods generally underestimate the
actual lateral deflections. Broms (1973) outlines several of the elastic methods. These will not be
covered here, but detailed descriptions of them can be found in Spillers and Stoll (1964), Douglas
and Davis (1964), Poulos {1871) and Oteo (1972).

The mote common method of calculating pile deflections under lateral loads 1s based on the
Winkler foundation shown schematically in Figure 29. The resultant soil reaction on a pile at any
given depth is linearly related to the pile deflection at that depth. The method does not assume
that the soil mass is a continuum. The soil reaction is given by:

P, K.y 39
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Figure 29. Winkler foundation (after

Figure 30. Variation of subgrade modulus
Broms 1973).

with depth (after Davisson and Gill 1963).

where Ph horizontal pressure on pile
K,, subgrade modulus

Yy luteral deflection.

Broms (1973) points out that the subgrade modulus Km is not a unique soil property, but varies
with the dimensions of the pile, the intensity of the applied load and the depth below the ground
surface. According to Terzaghi (1955) the subgrade modulus for cohesive soils can be represented

as constant with depth and for cohesionless soils as mcreasing linearly with dr pth according to
the equation:

nh X

m B (40)

where  n, - coefficient of horizontal subgrade reaction at a depth of umty for a pile wadth of umty

x depth
B width of pile,

Terzagh called the coefficient oy the constant of horizontal subgrade reaction, n, is primarily

a function of the soil compressibility. Davisson and Gill (1963) illustrated the probable variation
of the coefficient of subgrade reaction with depth as shown in Figure 30.

Reese and Matlock (1956) and Matlock (1962) have presented the nondimenstonal solution for
a pile with a coefficient of snbgrade reaction increasing linearly with depth, A similar solution
for a constant coefficient of subgrade reaction has been presented by Davisson and Gill (1963).
A summary of these equations (after Wilson and Hilts 1967) defimmng deflection, slope, moment,
shear and so1l reaction 1s given in Table V. Suggested constants of horizontal subgrade reaction
n, for different soil types are shown in Table IV. Schematic deflection and loading diagrams are
shown in Figute 31 and graphs of the sublettered coefficients A and B used n the equations of
Table V are shown in Figures 32-41. Wilson and Hilts (1967) recommend that short piles, with
maximum depth coefficients of 2 or lecs, be treated as rigid poles. In this case design should be
based on the method outlined in the section on Rigid Ground Stakes,
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Table V. Equations describing a laterally loaded pile with constant and
increasing subgrade modulus (after Wilson and Hilts 1967).

Equation
Term Km n, x Km constant
- x x
a. Depth coefficient Cq = Cy =
Z, Z,
c ! c u
2 b. Max depth coeffl dmax ° 7° dmax ° Z;
: E
3 c. Relative stiffness factor Z; E’- z, \ -_I
3 nh Km
; pzd w22 pz3 M 22
, ) y~1 g1 , y7e o TgTe
d. Deflection Yx Ay T + By 5 Yx Ay 5 ' By 5
3 p 2?2 MZ
9 y“1 g1
e. Slope B, A, 5 + By i
]
i (]
. f. Moment M, Aml’yzl ' Bmug M, - AmPyZ2 + BmMg
/ B.M
, v'g
g. Shear Vx -Ava + 21
Py "B
h. Soil reaction at depth x Wx - A, = Bw il
’ Z‘ 22
g 1
Where- E Young's modulus of pile

moment of inertia of pile

C2da a4

n, constant of horizontal subgrade reaction (Table IV)

AALA LA A, load coefficients of deflection, slope, moment, shear and soil
reaction (Fig. 32, 34, 36, 33 and 40)

A;.A;“ - load coefficients of deflection and moment (see Davisson 1963)

B,.B,.B,.B, B, moment coefficients of deflection. slope, moment, shear and soil
reaction (Fig. 33, 35, 37, 39 and 41)

B"', B, - moment coefficients of deflection and moment (see Davisson 1963)
Ms moment at ground surface due to load F’y
Py - horizontal force on pile
K m = Subgrade modulus

x = depth below ground surface.
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2
-Load, P, Deftection, y Moment, M=f‘-.l§-f2

Figure 31. Typical deflection and moment curves
for laterally loaded pile (after Wilson 2ud Hilts
1967).
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Figure 32. Wilson and Hilts (1967) maximum depth
coefticient {Cd m..i} curves lor the A_ deliection
coellicient vs the depth coellicient Cq
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Figure 33. Wilson and Hilts (1967) maximum depth
coefficient (C cmax’ curves for the B  deflection
coefficient vs the depth coefficient Cy
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Figure 37. Wilson and Hilts (1967) maximum depth coeffi-
cient ( Cd ma,‘) curves for the Bm moment coeflicient vs the
depth coefficient Cd.
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Figure 39. Wilson und Hilis (1967) maximum depth

coellicient ( Cdm“) curves for the B, moment coef-

licient vs the depth coefficient Cy-
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Figure 41. Wilson and Hilts (1967) maximum depth
coefficient (C4, . ) curves for the B soil reac-
tion coefficient vs the depth coefficient C ;.

Grouted Anchors

Grouted anchors are being used in both rock and soil. A Swiss firm, Losinger and Company,
SA, has made an extensive study of this ancharing technique and has developed the VSL and
Alluvium anchors (Ground Engineering 1968). The VSL anchor is primarily intended for providing
anchorage in rock hut can also be used in cohesive soils. The Alluvium anchor is designed for
use only 1 soil.

The VSL anchor consists of a high strength cable configured as shown in Figure 42. When
used as a tie-back anchorage to shore excavations or to roof bolt tunnels, the cable is tensioned
after the grout has cured. Once stressing is complete, final grouting 1s done to protect the cable
passing through \ue plastic sheath against corrosion.

The load capacity of a VSL anchor in rock is related to the shear strength of the bond at the
grout/drill hole interface. The interface strength can be determined by placing a core of the rock
in a form and filling the surtounding space with a high strength cement or resin grout. After the
grout has cured, the rock core is pressed out and the bond strength between it and the grout
determined.

The interface strength between grout and cohesive soils is often determined as being one-half
the unconfined compressive strength of the 1n situ soil. However, Skempton (1959) suggests an
adhesive value 0.45 times the undrained strength of clay with a limiting value of 2000 psi, and
Littlejohn (1968) suggests an adhesive value 0.3 to 0.35 times the undrained strength when the
anchor is embedded in stiff to very stiff clay.

Another variety of rock or cohesive soil-grout anchor is that developed by Universal Anchorage
Co., Ltd. (Ground Engineeting 1968). This system uses a patented expanding bit to cut an over-
sized hole or a series of cone sactions into the rock or soil at the base of a bored hole (Fig. 43).
The hase diameter of the cone is two to four times that of the borehole,
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Figure 42. Configuration of VSL anchor (after
Ground Engineering 1968).

Cylindrical Type Cone Type
Undercutting Undercutting

Figure 43. Configuration of Universal Anchorage Com-
pany grouted anchors (after Ground Engineering 1968).

Placement consists of drilling a hole to a depth at which the cone of rock projected from the
anchorage is capable of providing the retaining force required. It is contended by Ground Engineering
(1968) that, *‘Since no factor need be allowed for skin friction, the depth of the hole is minimized
and the elimination of a factor of friction allows design figures to be met without the excessive hole
length necessary to allow for unfavorable conditions.’’ After the hole is reamed, a steel cable

(with a ferruled or bushed end) or a tie rod is lowered in place and the hole is {illed with injected
grout of resin.

Anchors installed in alluvium generally consist of a steel cable separated into strands in the
grout zone (Fig. 44). These anchors can be used in any ground capable of cartying a load but the

highest?resistances are obtained in gravels and coarse sands where the permeability is not less than
4 « 107 in./sec.

In gravels, the anchors are installed in the sequence shown in Figure 45. The recommended
water/cement ratios for installation in gravels and coarse sands are 0.5 and 0.65, respectively; and
depending upon ground permeability, injection pressures are from 5 to 10 psi. A high aluminal con-
tent cement is used where high early strength is required.
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Steel
Cable Strands

Figure 44. Configuration of grouted anchor in alluvium (after
Ground Engineering 1968).
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Figure 45. Grouting procedure for installation of alluvium anchors (after
Littlejohn 1968). a, Installation of lining tube and positioning o! anchor
cable assembly, b. Grouting procedure,
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Littlejohn (1968) reports that the following
empirical rule can be used to determine the
ultimate resistance of an anchor grouted in
gravel or coarse sands:

P, =N tangb (41)

where % - length of grout anchor
N = 12-16 tons/ft.

Installation of alluvium anchors in fine to
medium size sands follows the same procedure
as installation in gravels. However, because
of the lower permeability of the fine to medium

3 size sands the grout zone tends to be narrower
3 Figure 46. Configuration of grouted anchors ?'"d anchor capacity lower than in gravels. To
used by Hanna (1968) for his analysis of the increase the radius of the grout areas, a larger
3 load capacity of a grouted anchor in clay. casing is often used or injection pressures ate

fSt

increased. The capacity of the anchor may
also be increased by increasing the embedment
depth of the anchor.

S LTS

s In compact, fine grained sands of low permeability (4 x 103 to 4 x 1675 in./sec) cr..m.2al

g grouts with low viscosities (20 cp at 68°F) are used. These grouts do not fill the intergranular

; voids with an epoxy matrix but do flow throughout, bonding the interparticle contact points together.
The cost of chemical grouting is indeed higher than that of cement grouting but the cost of anchor-
i ige as a function of load capacity in chemical grouting is sometimes mote favorable than that in

1 cement grouting.

Anchorages in clay are occasionally grouted in augered holes but increased capacity is ob-
tained by expanding the base of the borehole by explosive cratering, by belling, or by driving gravel
into the clay adjacent to the anchor.

Generally, the strength of the anchor cable or shaft governs the ultimate capacity of anchors
grouted in rock or sand. However, considerable uncertaiaty exists in clay soils. Hanna (1968) be-
lieves that the general approach to pile analysis may be used for tentative design of an anchor in
clay, provided caution is exercised. His design analysis is predicated upon the anchor configura-
tion shown in Figure 46. Load capacity is the summation of the end bearing force Q acting over
the upper end area of the anchor A less the area of the shaft 4, the (iiction force P developed
along the side of the grout cylinder, and the suction force I developed under the base of the
anchor. The general equation is:

ST R B it S e v s i

O CS anld

4 P=Q+Pc+F8 (42)
: where Q- oN_(A - 4,) (43)
é‘ o - undrained strength of clay at top of anchor

% N = beanng capacity factor ~ 9

f’ P, =ndLF (44)

F - average adhesion per unii area beiween clay and grout

1 d - average diameter of grout cylinder

£ - length of grout cylinder,
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I/Tume of casting normal cure specimens and thawing frozen specimens
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Figure 47. Strength behavior of concrete cured under dilferent tempera-
ture conditions (after Teshmont Consultants Ltd 1967).

Although high suction forces have been observad, the value should not be used because the
unit suction force developed is dependent upon clay properties as well as on workmanship used in
clearing out the base of the borehole. Furthermore, long-term loading causes the force to drop to
zero because of swelling of the clay. The existence of a suction force then adds an additional
degr. of safety to the design in respect to tesisting transient loading. The overall uncertainty of
this analysis lies in the proper determination of A.

Anchors being installed in rock having a temper»ture below 32°F must be specially considered.
According to Myska Ltd (1967) the recommended average ultimate bond strengths for grout anchors
installed in freezing conditions, and subsequently thawed and cured, are based upon the American
Cencrete Institute (ACI) code values. The bond strengihs recommended for the surface between the
anchor rod and the grout are:
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9 Figure 48. Influence of salt on the compressive strength of cement
(after Shideler 1952).
-
1 9.5 \/I'c_

Bond strength = (45)
0

TITI

where D - rod diameter
I'c . concrete unconfined compressive strength.

Using a concrete strength f;, of 2000 psi, the formuia gives rod/grout interface strengths of 425,
380 and 340 psi for reinforcing bar numbers 8, 9 and 10, respectively.

o oAt B RN

The suggested bond strengtii at the grout/rock interface is 200 psi. However, grout freezing
before curing can be a serious problem. This concern stems from observations that, although the
uncuted grout is capable of resisting load while frozen, upon thawing it returns to a physical state
similar to its state when powed (Fig. 47). Upon thawing, the curing process commences again but
. with permanent damage to the grout, i.e. reduction of strength. The ove:all consequence of uncured
] grout thawing around an anchor rod is obvious.

L

: To avoid grout freezing before curing, the mixture should be poured at a temperature > 70°F,

Also, the anchor rod should be heated to a similar temperature before being inserted into the grout-
tilled hole. )

Another precaution against grout freezing is the addition of salt. Salt not only lowers the
freezing and curing temperatures of the grout, but increas>s the compressive strength under most
conditions (see Fig. 48 and 49). The ACI code states that ‘‘no mote than 2% (by weight of cement)
calcium chloride’’ should be used. However, L,.ormer (1970) shows that 2, 3 or more times as much
salt can be used without damaging effects if the temperature is low enough.

By preheating and adding salt, many precuring-freezing problems may be overcome. However,
the science of combining the two procedures must be explored further. Also, a study of soil
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Figure 49. Strenyth behavior of concrete cured under

different temperatures as influenced by salt additives

(after Stormer 1970), (Mixture 50/50 is an equal molar
concentration of NaCl and CaCl,).

temperatures versus required salt percentages and preheat temperatures required to ensure adequate
curing and soil-grout adhesion would be of considerable value when anchors are being designed for
trozen ground installation.

Some quantitative testing conducted by Dorman et al. (1969) confirms that slurry backfill could
be an answer to some permafrost anchoring problems. Their anchors consisted of small diameter
rods of different configuration slurried in place with a silt-water or quick setting cement backfill.
Although the anchors could sustain high transient loads, long-term loading resulted in appreciable
creep. More tests must be undertaken, however, to define the load-creep behavior versus tempera-
ture for anchors embedded in a frozen backfill. A beginning in this direction has been made by
Johnston and Ladanyi (1971).
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Block Anchors
Tschebotarioff (Leonards 1962) presents a
15t summary of design criteria for block anchors, some-
1.4 ¢ Theoretical Limit (Hansen) times termed deadmen, in both cohesive and non-
— cohesive soils. Hansen (1953) presented an equa-
T 8.5¢c B tion, based on the Coulomb and Rankine - Résal
(e) criteria, for an anchor block of rectangular cross
Experimental Curve section pulled through a plastic clay, as shown in
5 (MacKenzie) Figure 50. It was concluded that the total resis-
tance P per unit of anchor block width was:
1 s i 1 N 1 )
0 4 8 12 6 20 P, -114ct (46)
h/t
Figure 50. Theoretical and expetimental re- ~ Where ¢ umt cohesion
sistance of a block pulled through cohesive t anchor thickness (see Fig. 50).

il (: : 1962).
svil (after Leonards ) MacKenzie (1955) performed model tests on

rectangular anchor blocks 1n two plastic clays and
concluded that:

P 8.5¢ct 47)

for scaled depths, h/t, greater than 12. MacKenzie's experimental curve for P as a function of
depth is represented in Figure 50. Tschebotanoff (Leonards 1962) recommends that MacKenzie's
experimental curve be used for design in conjunction with appropriate factors of safety.

For anchor blocks in cohesionless soils Tschebotarioff (Leonards 1962) presents equations
detived by Buchholz (1930/31) and Streck (1950) based on experiments in medium density sand
with a friction angle ¢ 32.5°. Equations are given for a continuous block and for a block whose
length equals its height, as shown 1n Figure 51. The resistance of a continuous block per unit
width of block is given by:

yh?

Py =K, (48)

where K p values are obtained from Figure 51. Note that the scaled depth has little influence on

Kp.

The resistance of a square block is given by:

2
rh®
P L Kib (49)

where b is the length of the block and just equals the height t, and K ;, 1s obtained from Figure 51,
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Figure 51. Earth resistance coeflicients for blocks pulled through sand
(after Leonards 1962).

FIELD EVALUATIONS

Reinart

A study was made by Reinart and Adalan (1969) and Reinart et al, (1968) to develop design
criteria for anchoring transmission line towers in permafrost. They concluded that permafrost
would most likely degrade beyond the economical anchorage depth within the Iifetime of the trans-
mission line and therefore decided that the anchors should be designed on the basis of the thawed
soil properties. However, it was necessary to 1nstall the test anchors in frozen ground to account
for installation problems associated with permafrost. Therefore, once the anchors were installed,
the ground was artificially thawed.

Cast-in-place concrete hell anchors were selected for the tests. These anchors had shaft
diameters of 18 to 24 in. and bell diameters of 36 to 48 in. Three 18-in.-diam 12-ft-long straight-
shaft anchors were also tested.

For both straight-shaft and bell anchors, the test load was applied 1n increments of 5 kips and
anchor deflection was measured at 5-min intervals. The load level was not increased until creep
had virtuallv stopped ot the rate of creep had maintained a constant value for a period of at least
2% hours, the anticipated duration of the maxamum design load. The creep behavior observed was
similar to the generalized curve shown in Figure 52. Additional load increments were applied until
the creep rate increased with time (the tertiary point) or until the total deformation made further
testing impractical. For the straight-shaft anchors, failure was defined as the load that caused the
onset of tertiary creep within the 2% hour time limit.

Because of jack travel limitations, the failure load of the bell anchors was considered to have
been reached when the creep rate was no longer "‘appreciably’’ decreasing with time, i.e. failure
was selected as some arhitrary creep rate along the primary stage of the creep curve (see Fig. 52).
This occurred when the creep rate still exceeded 3 in./hr.
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Figure 52. Components of creep curve.

Maximum capacities of the bell anchors were developed after a relatively large anchor movement
of approximately 6 in.

Straight-shaft anchors first exhibited capacities between 15 and 18 kips. However, when they
were again tested, approximately three weeks later, their holding capacity had increased approxi-
mately 50%. Reinart and Adalan (1969) stated that this increase was related to increaced consolida-
tion of the soil.

Excavation and visual examination of 9 of the 20 test anchors showed that the 18-in.-diam
shafts were formed as designed, but that the 24-in, shafts were oversized by 2 to 3 in. Also, the
inclined bell anchors had larger bell diameters than specified and were slightly oval in shape;
this was considered to be a contributing factor to their higher capacities. The 36-in.«liam bells
were undersized, measuring only about 29 in. This undersizing was thought to be caused by the
fact that the belling tools were designed for cutting 48-in. bells and had functioned improperly in
cutting the smaller size, The 48-in.-diam bells of the vertically installed anchors were of the
proper size.

Of the four inclined bell anchors tested, two exhibited capacities of about 60 kps while the
other two sustained and probably could have surpassed 70 kips, the capacity of the est equipment.
The apparent higher capacities of the inclined anchors were helieved to have resulted from larger

bell sizes and a greater degree of consolidation of the soil owing to a longer period of time between
thawing and testing.

The results of the anchor tests were compared to values calculated from theoretical methods
developed by Jaky (1948) and Biarez and Barraud (1968). Reinart and Adalan found that the cal-
culated values were in good agreement with the test results when the results were extrapolated to
account for consolidated soil properties assumed to have existed d-~ing the tests.

American Electric Power Service Anchor Tests

A report on load versus anchorage requirements based on economical considerations was pre-
pared by the American Electtic Power Corpotation (Zobel 1885). In their study, the following
types of anchorages were evaluated: Malone anchors, steel grillage anchors, concrete bell anchors,
steel grillage and screw anchor combinations, and Never-Creep anchors.
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.

Anchor Rod

Concrete
4000 psi

Figure 53. Idealized configuration of Malone anchor (after
Zobel 1965).

All anchors were tested in uplift. Loads were applied in 10,000-1b increments and anchor
movement was measured to the nearest % in. All of the tests were performed in what appeared to
be dry clay.

The Malone anchor 1s a conctrete anchor formed 1n a cavity made by drilling and blasting.
Placement procedures are as follows: 1) a hole is augered to the desired depth, 2) a charge is
detonated at the bottom of the hole to form a spherical cavity, 3) the cavity and shaft are then filled
with concrete, and 4) a steel tie rod is inserted into the concrete. An idealized sketch of the re-
sulting anchor configuration is shown in Figure 53.

Two blasting methods are used to form the cavity. The first method uses several charges: an
intial charge to start the cavity, and then additional charges to expand the cavity to the desired
size. After each blast, concrete is measured and poured nto the cavity through a steel casing.
The addition of concrete helps to concentrate the explosion and to prevent caving in of the hole.

The second method consists of forming the cavity with a single charge; concrete is placed in
the augered hole prior to and after detonation. Although this method is more expedient that the
first, the load test results of the anchors so formed were found to be erratic. This installation
method is thercfore considered unsatisfactory.

Anchors installed by the first method, at depths ranging from 6 to 12 ft, in dry, compact soil,
were satisfactory. An average of four tests indicated a pullout capacity of 80.000 1b, but the size
of the concrete ‘‘bells’* was not determined. For additional test results of Malone anchor installa-
tions, see Abels (1967).

Two types of steel grillage anchors were used: 1) the standard grillage shown in Figure 54a,
with earth or rock backfill, and 2) the pyramid grillage shown in Figure 54b, also with earth or rock
backfill. The pyramid grillage anchor was designed with a steel plate bolted to its bottom and had
numerous connections. (This anchor required about twice as many man-hours to asseinble as the
standard grillage anchor.)
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Figure 54. Standard grillage anchor (a) and pyramid grillage anchor (b) tested by
the American Electric Power Service Corporation (after Zobel 1965).

Test results from the steel grillage were consistent. Anchors installed 10 and 13 ft deep with
earth backfill had average total movements of 2 in. for the pyramid grillages and 4°, in. for the
standard grillages under uplift loads of 90,000 1b. Anchors installed 7 ft deep failed at 70,000 and
80,000 b for the pyramid and standard grillage anchors, respectively.

Pyramid grillage anchors installed 10 ft deep with 3 ft of rock backfill moved ®, in. and standard
grillage anchots moved ', in. under an uphft load of 90,000 1b. The pyramid grillage anchor with the
steel plated bottom 1s more costly than the standard grillage anchor. However, certain features of
the design are effective n resisting shear loads. The holding power of the grillage anchors was
greatly increased when crushed rock backfill was used. AEPS recommended that crushed rock back-
fill be specified at locations where ‘‘wet soil’’ conditions exist, since no test intormation was ob-
tzined for such soil.

Three types of concrete bell anchors were tested (Fig. 55) and all except one performed well.
The anchors accepted loads up to 90,000 1b and moved a total of ', in. or less. At these loads there
was no indication that any one type was superior to another. The bell anchor was considered
superior to the grillage anchor in compact soil because 1ts movement was resisted by undisturbed
so1l. Further testing was recommended to determine whether bell anchors were economical for
general use and to gain experience with the installation of the anchors in very wet soils using
bentonite to prevent hole collapse during augering.

Six installations were tested to investigate the performance of a steel grillage - screw anchor
combination (Fig. 56). The steel grillages used were 5-ft square with a screw anchor attached to
each cover. Eight-in.-diam power-installed screw anchors were used 1n three tests, and 11-in.-diam
powet-installed screw anchors were used in the remaining tests. The screw anchors were instalied
below the hottom of the 3-ft-deep open excavation for the steel grillage. The grillage was then set
in place and connected to the anchor rods (Fig. 56).

Several complications were experienced in installing the screw anchors. In one test an 8-in,
anchor was fractured during installation when it struck a rock. In four of the six test installations,
rock interference prevented the screw anchors from being nstalled to the depth desired.
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Typs A

Fignre 55. Configuration of bell anchors tested by the Amer-
ican Electric Power Service Corporation (after Zobel 1965).
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Figure 56. Configuration of steel grillage ~ screw an-
chor comtination (after Zobel 1965).
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Backfill /\52'
/ /L

Figure 57. Never-Creep anchors tested by the American Electric
Power Service Corporation (alter Zobel 196°%).

Three tests with the 11-in.-diam screw anchots and one test with 8-in.-diam screw anchors
showed that the grillages with screw anchors performed better than those without. The two remain-
ing tests with 8-1n. screw anchors failed at the hightest test loads. AEPS felt that the screw

anchor-grillage combination would perform satisfactorily provided screw anchor installation prob.
lems could be overcome.

For the Never-Creep anchor tests, a special 24- x 60-in. nonproduction anchor was built by
the A.B. Chance Company (Fig. 57). These anchors were geometrically similar to the familiar
Never-Creep anchots on the market today. However, in an effort to improve holding power and re-
strain vertical movement, rectangular plates were welded at each end of these anchors to serve as
creep guards. Ten anchors were tested. Five of these were installed in vertical holes and five in
holes augered at an angle (Fig. 57). The anchors were forced flush against the side of the hole in
which they were installed and then backfilled with earth with standard tamping (i.e. hand tamping
around the anchot, and machine tamping in 12-in. levels thereafter).

The types of failures experienced 1n testing the Never-Creep anchor were noteworthy. A struc-
tural failure was experienced with the anchors installed in vertical holes. Here the rod guides,
which were welded to the anchor. sheared off under loads approaching 50,000 to 60,000 1b. This

structural failure did not cause complete failure of the anchor, but did allow additional deformation
to occur.

A common failure was experienced in the tests in which the anchors were installed in sloping
hoivs. Here failure was complete because the anchor rods pulled completely out of the anchor
plate. Failure occurred at loads of 60,00 to 80,000 1b for anchors installed 7 to 10 ft deep. AEPS

suggested that the Never-Creep anchor would perform satisfactorily provided the connection between
anchor plate and rod was redesigned.

As in other AEPS tests, information was not obtained on the performance of this anchorage in
wet'' soil.

Iy

Expaadable Land Aachor

In a study of an expandable land anchor, Dantz (1966) found that it could effectively resist
a 30,000- to 40,000-1b load. Installation of this anchor requires that a hole be augered, the anchor
inserted, the hole backfilled, and a seating load applied to the anchor (Fig. 58). Tests were con-
ducted on a 6-in.-wide by 18-in. expanded-width anchor in sand, clay and sandy loam soils.
Figure 59 presents the results,

Sl
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ANCHORAGES IN FROZEN GROUND
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Table VI. Results of Universai Ground Anchor tests in frozen and unfrozen 3oil.

Fajlure load summer testing

Winter series  Driven and Average of
Anchor Failure load tested 1n tested 1 hr all summer
stze Depth winter series Summer series summer later tests
(in.) (1n.) (1d) (1b) (1b) (1b) (1b)
2 10 4000 (3) 250 (1) 250 (1)
2 20 4000 (3) 800 (4)
2 30 4000 (1) 1400 (5) 1400 (5)
2 30 3000 (1)*
4 10 3500 (2) 800 (5) 6800 (5)
4 20 3800 (1) 1460 (5) 1000 (1) 1200 (1) 1360 (7)
4 30 4000 (2) 2660 (5) 2500 (1) 2000 (1) 2590 (7)
6 10 5000 (1) 580 (5) 580 (5)
(] 20 5000 (1) 1340 (5) 1500 (1) 1700 (1) 1410 (1)
8 30 5500 (1) 2760 (5) 2700 (1) 2800 (1) 2760 (7)
8 10 5000 (1) 800 (2) 800 (2)
8 20 5700 (1) 1050 (2) 1800 (1) 1500 (1) 1350 (4)
8 30 5000 (1) 2700 (2) 3000 (1) 2800 (1) 2800 (4)

* This anchot was the only anchor of the winter group that was successfully pulled out of the ground.
However, the test was made by puiling on both the holding and retrieving cables simultaneously.

NOTES: 1. All the anchors except one of the winter group failed either by the anchor or cable
breaking.
2, All the anchors of the summer group were successfully pulled out of the ground.
3. All loads are average.
4. Numbers in parentheses refer to number of tests performed,

However, frccen soil may present problems in installing conventional anchors. Bernadin (1961)
found that it was impossible to drive universal ground anchors far enough into frozen ground to hold
desired loads. Likewise, Fletcher (1966) found that in -65°F soil aluminum stakes could not be
driven deep enough to hold desired loads. Also, removal of the stakes was reported to be exceedingly
difficult. It is evident that such anchors have high potential in frozen ground if placement difficulties
can be overcome,

One of the greatest difficulties in using anchors in frozen ground is maintaining the area around
the anchorage in the frozen state. Thawing of permafrost is greatly enhanced once the insulating
organic cover is even slightly disturbed and the subsequent thawing results in a tremendous loss in
strength, especially with fine-grained soils. Sanger (1969) states that anchors in permafrost have
given considerable problems in the past and as a result are often designed on the basis of dead
weight alone. In ctitical cases it has been necessary to employ some means of refrigerating anchots
to maintain the surrounding soil in the frozen condition.

Another problem involving anchors in cold climates is the upward forces which develop as a
result of freezing of the active layer during the winter. These can be large enough to pull an ;: chor
from the ground independently of the live load which the anchor was designed to resist. The Russian
permafrost code suggests an average value of about 1700 1b/1t2 to be used as an adfreeze strength
for the entire thickness of the active soil layer. The uplift force resulting from frost heaving is
estimated to be about 560 and 950 1b/linear inch for the peripheral surfaces of foundations embedded
in soils havinp active layer thicknesses of 4.3 and 8.6 ft, respectively.
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strength and moisture content, and ultimate adfreezing
strength and grain size (after Tsytovich 1958).

For anchor design 1n a permafrost region, the Russian permafrost code recommends that the
anchor capacity be greater than the sum of the frost force and the long-term guy load. This may be
computed from the following equation:

0.9pP 2(1.4r,,4,)+ (0.9P8) (50)
where P - design load
. r,q adfreeze strength between the anchor and frozen soil
: A, - area of anchor embedded in an active layer

P g long-term load.

Backed by much study and testing, Tsytovich (1958) established that the adfreeze strength is
most directly related to the moisture content and grain size (Fig. 60). Both higher moisture content
and generally smaller grain size resuiied in higher adfreeze strengths.
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Tsytovich then determined the basic principles
of adfreezing. He defined r, as “‘the value of con-
tinuous force of adfreezing’’ within the adfreeze
portion of he active layer (H in Fig. 61) and r,_ as
‘‘the value of continuous force of adfreezing'’ at

sznrmm the depth of the anchor into a permanently frozen
r layer H ¢ He found that where the active layer is
underlain by frozen soils, frest heaving stresses do
To not appear through the entire depth of the active
r H layer. Thus, adfreezing occurs only in the portion
' of the active layer capable of adfreezing (H Fig.
! 61),
This phenomenon is explained mainly by the

fact that the lower part of the active layer is dried

‘ up in the process of moisture migration toward the

T, freezing front. As an approximation, H was two-
,'.;:Ll thirds H 5+ the maximum depth of frost penetration.

‘L b b By summmg all forces in the y direction (Fig. 61)

&y the following equation is presented.
Figure 61, Stress components related to an -P-r,H P 4 rpH (Pa=0 (51)
anchor subjected to forces developed in the

active layer (after Tsytovich). where P, and P, = mean perimeters of the founda-

tion within the active and per-
manently frozen soil layers,
respectively

which reatranged gives the required depth of anchor embedment in permafrost H ras

'aHaPI + P

Hr=____
er2

(52)

where P - foundation or anchor load with downward being +

7o = €, + b (T) = values of continuous adfreeze force within the active layer, where ¢, and
bz are parameters dependent upon the absolute value of temperature below freezmg.
¢, = 4.26 to 5.68 psi and b, - 1.42 to 2.13 psi °C

T = “‘mathematical absolute value'’ of the temperature below 0°C, i.e. ~15°C = 15°C.

r =

P T

B'

=] oe

where  r, = temporary soil adfreeze sfren;;th (found from field tests).
Equation 52 is accurate only for temperatures higher than -15°C (6°F).

Through an understanding of adfreeze forces, proper steps can be taken to reduce their offects.
One solution is described by McKinley (1952) and an overall discussion of foundations in frozen
ground is given by Sanger (1969).
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FOUNDATION ANCHORING IN THAWED GROURD

Porkhaev (1958) published an analysis, Foundation
Anchoring in Thawed Ground, describing the holding strength
of an anchor exposed to frozen soil conditions. In his analy-
sis, based upon the soil weight directly over the anchor
. Frozen (Fig. 62), Porkhaev concluded that the pullout resistance is:

Yo H
e [ RETE P—-[ "}‘( a+yﬂb](A—Ab) (53)

k
Unfrozen

b ~ [*—R, where P = anchor resistance to pullout
K, - coefficient of anchor pullout force determined
[ from Table VII
R ]

Figure 62. Parameters related tc . . .
R . = unit weight of unfrozen soil
Porkhaev’s anchor analysis (after Y &

Potkhaev 1958). A - area of anchor bottom

Y = unit weight of froen soil in the seasonal frost
layer

A, - cross-sectional area of anchor column

H o = depth of portion of active soil layer capable
of freezing (see Fig. 62)

H p depth of anchor below frozen soil layer (see
Fig. 62).
In this analysis Porkhaev made conservative assumptions. This implies that eq 53 has an

adequate built-in safety factor. However, it should be noted that Porkhaev did not consider heaving
forces.

CONCLUSIONS

The reports cited herein and the information presented demonstrate the wide spectrum of anchor
types, applications and design methods found today. This report is far from all-inclusive, and
touches orly briefly on the more common anchor types and design techniques; but it does point to
the fact that the design of any anchorage system is dependent on the individual situation. There is
) single anchor type or design method suitable for all applicat~~s., The most rzliable design
method is, of course, previous experience in identical or similar s.tuations, Where this is lacking,
the techniques outlined here can be used to suggest the more practical anchor types and to give
some idea of the loads they will hold. Under these circumstances, however, a specific design still

requires testing to assure that it will satisfy design requirements. The need for such testing can be
reduced as more conclusive data are accumulated from field and laboratory teats.

Collection of such data 18 in itself a cumplex and time-consuming undertaking. Over the past
few years a tremendous amount of research has been done on anchorages. Broms (1973) claims that
over 150 articles have been published since 1960 on laterally loaaed piles alone. Cluarly, there is
a great need to collect, analyze and disseminate ihis wealth of data. Likewise, some organization
of on-going and future effort is badly needed. Perhaps the internationai effort of CIGRE Study

Committee No. 7 (Biarez and Barraud 1968) could se.ve as a model. Here ag evidently successful
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international effort was made by interested companies to test various configurations of power trans-
mission tower anchors in different soil types throughout the world. The effort was centrali, ~oor-
dinated and all data were submitted in standardized form. As more and more such data are assim-
ilated the science of anchorage design and construction will become more refined and economical.
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